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Abstract 

Acoustic bat detectors are an extraordinarily valuable tool in bat research as 
they enable researchers to listen in on the otherwise secretive world of bats, 

providing the means to non-invasively survey and monitor bats in their 

natural habitats. Technological advances facilitate unprecedented data 

collection, considerably expanding the scope of field studies. However, the 

burden of manual analysis, and difficulty in identifying some species reliably 

from their calls, hampers the development of systematic survey and long­

term monitoring methods. We developed a series of algorithms for the 

automated analysis of bat detector recordings, used to detect and extract 

calls from continuous recordings, and measure temporal and spectral call 

variables. By hand-labelling the location of calls in field recordings, we were 

able to evaluate the accuracy of the automated method at detecting calls. 

Comparison on the same dataset with two conventional bioacoustic signal 

detectors revealed our algorithm was more accurate and robust. Using 

machine learning (ML) classification algorithms that learn to identify calls 

following training using a reference library, we developed a fully automated 

species identification system. Evaluation of the system was carried out by 

cross-validation of our reference call library, containing recordings of >5000 

calls from known British species, comparing classifier predictions to ground­

truth labels. The ML approach outperformed conventional statistical 

analysis using discriminant function analysis (DFA). We applied our novel 

system to two field studies that highlight its utility. Firstly, monitoring multi­

species bat activity at a remote cave system over a period of three months, 

analysing >20,000 audio files to investigate temporal patterns in activity. 

Secondly, separating acoustically cryptic Myotis species from data collected 

in the Lake District National Park, to generate presence data for species 

distribution modelling, facilitating the creation of species-specific habitat 

suitability maps projected over the entire Park (ca. 3,300 km2
). 
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Chapter 1 : General Introduction 

Chapter 1: General Introduction 

1.1 Scope 

The focus of this research is on advancing the tools and techniques 

available to study bat echolocation, specifically through developing 

automated analysis procedures, and the application of techniques developed 

from the field of machine learning (ML). The topics are technical in nature, 

and this introductory chapter aims to serve as a primer for ecologists. The 

nature of bat echolocation will be discussed, and the relevance to ecologists 

and conservationists. The latest techniques for recording ultrasound in the 

field will be discussed, as well as some fundamentals of digital signal 

processing, pertinent to the analysis of echolocation calls. ML classification 

and methodology will be introduced, illustrated with examples relevant to the 

study of bat echolocation. Lastly, the rationale behind the study will be 

presented, with the principle aims of the research. 

1.2 Bats and echolocation 

Bats emit very high frequency, short duration vocalisations and listen to the 

returning echoes to detect, localise and classify objects in their 

surroundings. This system of echolocation allows insectivorous bats to 

orientate and hunt at night by building up a sound picture of their 

environment. New World frugivorous bats make use of odour and vision, but 

also utilise echolocation in foraging and assessing fruit ripeness (e.g. Korine 

& Kalko, 2005). Bats are both the signallers and receivers of their own calls, 

and actively control the structure of their calls to influence the type, and 

quality of information encoded in the returning echoes (Schnitzler et al., 

2003; Surlykke et al., 2009). The sensory demands that bats face in the 

environment are determined by the habitat they forage in, what they eat, and 

how they acquire it. These perceptual challenges have led to strong 

selection pressure on signal design, and bats have evolved signals that best 

suit their needs. Dawkins (1986) uses bat echolocation as an example of 

'good design' through evolution by natural selection. 
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Bat species can be split broadly into guilds according to their habitat use, 

with associated adaptations in signal design for three major tasks in 

echolocation - detection, localisation and classification (Schnitzler & Kalko, 

2001). Narrowband signals that concentrate their energy in a narrow range 

of frequencies are suited to detection. Nyctalus species hunt in open areas, 

and use relatively long, low frequency calls that return strong echoes from 

distant targets (Jones, 1995). Myotis and Plecotus species that take prey 

from close to vegetation use broad band calls that sweep through a range of 

frequencies, increasing localisation ability, and keep the duration of their 

calls short to prevent overlap between emitted calls and returning echoes. 

Frequency dependent atmospheric absorption rapidly attenuates high 

frequencies (Lawrence & Simmons, 1982), making broadband calls effective 

only over short distances. Moreover, there is a trade-off between detection 

and localisation ability, and a signal optimised for detection will be poorer at 

localisation. Bats such as Pipistrellus species are very flexible in their use of 

habitat, and alter their call types accordingly; in more open habitats their 

calls are narrowband and long, for increased detection, but become 

progressively shorter, and more broadband as they approach clutter to 

favour localisation. Horseshoe bats have a specialised call type that is long 

in duration, and of a high constant frequency. This sophisticated call 

facilitates the fine-tuned detection, and even classification, of insects from 

their fluttering wings (Schnitzler & Flieger 1983; Emde & Schnitzler, 1990). 

1.3 Bat detectors and ultrasound recording 

Due to the nocturnal habits of bats, visual identification in flight is rarely 

possible. Moreover, as small, fast flying animals with a highly evolved 

sensory system, capture using traps is a highly skilled, labour intensive 

process with typically low capture success rates (e.g. Berry et al., 2004). 

However, the fact that bats call at a high repetition rate in flight, to 

continuously update their sound picture, offers enormous potential for 

researchers to eavesdrop on these calls. The majority of signals emitted by 

bats are ultrasonic (above the range of human hearing), neceSSitating some 

form of transformation to make them audible to humans. Bat detectors 

provide this function, and have been widely applied to gain insights into their 
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ecology and behaviour, and are ubiquitous in practical conservation work for 

monitoring bat populations (Ahlen & Baagee, 1999; Fenton, 2003). 

There are three distinct methods typically employed for converting 

ultrasounds into audible sounds, although a single bat detector may employ 

more than one for flexibility: heterodyning, frequency-division, and time­

expansion. The methods each have advantages and disadvantages 

(Parsons et al., 2000), but time-expansion is the only method that retains the 

original structure of the recorded signal. Heterodyning and frequency­

division both necessitate at least some loss of signal content in the process 

of transformation, making time-expansion most suited to subsequent 

detailed acoustic analYSis. Time-expansion works on the principle of playing 

back a small sample of recorded ultrasound at a slower rate, thus reducing 

its pitch. A factor of ten is frequently employed, bringing ultrasonic 

frequencies up to -200 kHz down into the audible range, at the expense of a 

tenfold increase in playback time. The output from a time-expansion 

detector can be recorded by a conventional audio recorder, for later acoustic 

analysis using a computer. The limitation with this technique is that current 

detectors will only make short recordings (a few seconds), and they are 

unable to playback and record concurrently, so during playback continued 

sampling of ultrasound cannot take place. 

Ultrasound can be recorded in analog format using high speed tape 

recorders, but digital recording technology has largely replaced this practice. 

A digital recorder stores discrete samples of the signal at a very high rate. 

To avoid an undesirable effect known as aliasing, that causes different 

signals to become indistinguishable when sampled, the highest reproducible 

frequency, or Nyquist frequency, is half the sampling rate. For conventional 

audio material, since human hearing only extends to a maximum of -20 kHz, 

digital audio is typically sampled at 44.1 kHz. This leads to a Nyquist 

frequency of 22.05 kHz. Accurate sampling of ultrasound requires even 

higher sampling rates, and the latest digital recorders are capable of 

sampling at up to 500 kHz, leading to faithful signal representation up to 250 

kHz. These advances in digital recording technology in combination with 

increases in data storage capabilities, have led to a new generation of bat 

detectors that directly sample ultrasound received at the microphone for 
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subsequent analysis. Recording length using direct sampling is limited only 

by the storage space available. This offers the advantage that a recorded 

'bat pass' (a sequence of echolocation calls recorded from a bat passing the 

microphone), can be captured in its entirety, rather than sampling only a 

single call as is often the case with the limited sampling of time-expansion 

detectors. The limitation is that the recorded ultrasound remains inaudible at 

the time of recording, although they can later be time-expanded using a 

computer. Direct sampling is currently the most convenient way of recording 

high quality ultrasound for detailed acoustic analysis using computers. 

1.4 Acoustic analysis 

Recording ultrasound permits researchers to view and analyse the spectral 

content of a signal. A captured audio recording allows detailed and 

quantitative analysis of signals, capable of revealing temporal and spectral 

detail of signal structure. Recorded signals can be analysed using time or 

frequency domain techniques. Zero-crossing analysis is a time domain 

technique that analyses the recorded audio samples directly. A zero­

crossing detector registers the transition of a signal waveform from positive 

and negative, which provides a means to track the harmonic with greatest 

amplitude (Parsons et al., 2000). Zero-crossing analysis is very efficient due 

to its simplicity, but loses all harmonic information in the signal. The Fourier 

transform is a frequently employed frequency domain technique, which 

converts the time domain samples into the spectral composition of the 

signal. The Fourier transform permits a full spectrum analysis, revealing the 

harmonic content of the signal. The short time Fourier transform (STFT) 

slides a discrete analysis window through the signal, using the Fourier 

transform to reveal the changing frequency content of the signal over time. 

The Fourier transform is computation ally intensive, and there is a trade-off 

between time and frequency resolution due to the Gabor limit (Gabor, 1946). 

To achieve a high frequency resolution, a large analysis window is required, 

which results in reduced temporal precision. In contrast, a shorter analysis 

window provides higher temporal resolution, but a coarser frequency 

resolution. There are alternative frequency domain techniques, for example 

wavelets (Graps, 1995), but they have not gained widespread use in 

analysing echolocation calls. This may be in part due to a very efficient 

algorithmic implementation of the Fourier transform, called the fast Fourier 
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transform (FFT), which can be run in real time or faster on modern 

computers. 

The output from the STFT can be used to plot the time-varying distribution of 

energy by frequency, called a spectrogram (Figure 1.1). In the 

spectrogram, time is displayed on the x-axis, and frequency is displayed on 

the y-axis. Energy, or amplitude, is typically represented by colour intensity 

or shade on the z-axis. The spectrogram is analogous to a musical score, 

with higher frequency sounds displayed in the upper regions of the plot. The 

spectrogram displays the time-varying structure or 'shape' of signals, and 

can be used to measure specific features of interest. A further 

representation is the power spectrum, which is a two-dimensional 

representation of power as a function of frequency (Figure 1.2). The power 

spectrum is time invariant, and can be used to summarise the frequency 

content over an entire call. Amplitude is usually expressed in decibels (dB), 

and is frequently relative to the loudest part of a call (e.g. 20 dB below the 

peak). In some cases amplitude may be expressed relative to digital full 

scale (dBFS), the maximum value that can be represented by a digital file. 

In this case dBFS reaches a maximum value of 0, and everything below 

takes negative values (e.g. -20 dBFS). 
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Figure 1.1: Spectrogram of a Myotis echolocation call. 

Warmer colours indicate frequencies containing more energy. The time 
domain signal is plotted below as a waveform , showing the amplitude 
of the signal over time. 
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Figure 1.2: Power spectrum of a Myotis echolocation call. 

Frequency versus amplitude plot calculated using a 256-point Fourier 
transform and window overlap of 75%. 

By making spectral and temporal measurements, researchers can compare 

echolocation calls. Spectral features of echolocation calls commonly 

measured include the frequency at the start of the call, the frequency at the 

end of the call, and the frequency at the point of maximum energy in the call. 

A temporal feature, call duration, is most accurately measured from a plot of 

the time domain samples (waveform; Fig. 1.1), due to the higher temporal 

precision that can be achieved. Spectrogram displays and measured call 

features are frequently used to identify species on the basis of their calls. 

This can be achieved using subjective or quantitative statistical methods. 

For some species identification can be made quickly and reliably from call 

'shape' and end frequency (Fenton & Bell, 1981). However, subjective 

separation of species in this way is not recommended, as it can vary 

significantly between researchers depending on their skills and experience, 

making results difficult to repeat (Parsons et al., 2000). Quantitative 

statistical methods of separating species on the basis of measured call 

features, using techniques like discriminant function analysis (DFA; e.g. 

Obrist, 1995; Vaughan et al., 1997; Russo & Jones, 2002), are therefore 

preferred. 
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1.5 Machine learning and classification 

Machine learning (ML) is a branch of artificial intelligence (AI), and diverges 

from traditional statistical modelling by making no assumptions about the 

underlying data distribution, which is treated as unknown (Breiman, 2001). 

There exists a wide array of machine learning algorithms, including artificial 

neural networks (ANN) and classification and regression trees (CART). 

Increasingly these techniques are being applied in ecology to flexibly model 

complex problems, and they routinely outperform traditional statistical 

methods (e.g. Olden et al., 2008). ML algorithms have been applied to the 

identification of bat echolocation calls, both to discriminate between different 

species (e.g. Skowronski & Harris, 2006; Parsons & Jones, 2000; Redgwell 

et al., 2009; Armitage & Ober, 2010), and even individuals within a species 

(Burnett & Masters, 1999; Yovel et al., 2009). However, whilst there is 

increasing use of ML algorithms in the literature, they are not widely used by 

ecologists despite the advantages they offer (Olden et al., 2008). This may 

in part be because the ML algorithmic modelling approach diverges from the 

traditional statistical culture of data models, and remains poorly understood. 

Classification or supervised learning is a form of predictive analysis. In 

classification a prediction is made directly on the data, to assign each case 

to one of a set of predefined classes. For example, classify an acoustic 

event as being an echolocation call or simply noise. This type of 

classification is considered "supervised", because the classes are 

determined by the researcher, rather than inferred from the data as in 

"unsupervised" clustering. There are many different algorithms that perform 

classification, but the process of building and using a classifier is shared, 

and can be broken into three main stages: training, testing and application. 

Training and testing necessitate ground truth data. To illustrate, in order to 

discriminate between Pipistrellus pipistrellus and Pipistrellus pygmaeus 

echolocation calls, example calls from each species are required. This 

necessitates building an echolocation call library, containing reference 

recordings from known species. To achieve this, recordings are typically 

made from bats that have been caught, identified and subsequently 

released; and from bats emerging from known roosts (e.g. Parsons & Jones, 

2000; Obrist et al., 2004). Once echolocation call features have been 

measured, a dataset is prepared containing multiple records for each class 

8 



Chapter 1 : General Introduction 

(in this case the two species), each record containing several call features 

and a class label (e.g. "Pipistrellus pipistrellus'). The data set is split into a 

training set and an independent test set. During a training phase, the 

classification algorithm attempts to iteratively "learn" to separate the classes 
based on the available features, hence the name machine learning. Once a 

classifier has fitted a function to the data, the training error is found by 

comparing the predicted class labels to the actual training data class labels. 

Results are frequently summarised in a confusion matrix, which displays the 

numbers of correctly and misclassified cases (Table 1 shows an example 

confusion matrix for a binary classification problem where 5 Pipistrellus 

pipistrellus calls are misidentified as P. pygmaeus, and 2 P. pygmaeus calls 

are misidentified as P. pipistrellus). 

Predicted 

Pipistrellus pipistrellus Pipistrellus pygmaeus 

Pipistrellus pipistrellus 75 5 

Pipistrellus pygmaeus 2 78 

Table 1.1: Example confusion matrix for a binary classification 
problem. 

The training error estimate may be optimistic, and not a reliable measure of 

the future performance of the classifier on new data. To obtain an unbiased 

estimate of the generalisation error, the independent test set is used to 

estimate the error of the classifier. In this way, the performance of the 

classifier on data that were not used in training is established. To achieve 

good generalisation performance, i.e. make accurate predictions on unseen 

data, there is a balance to be made between under-fitting (high bias) and 

over-fitting (high variance). Under-fitting results in low accuracy on training 

and testing sets, whilst over-fitting results in high training set accuracy but 

lower test set accuracy. There is a bias-variance trade-off in fitting a 

function to a problem: under-fit and the function is too simplistic to accurately 

separate the classes, but over-fit and the function is overly-complex and 

models the training data too closely, which results in poor performance on 

previously unseen data. Figure 2 summarises these concepts. 
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Underfit Overfit 

• 
• • • 

• 

• ••• 

Figure 1.3: Examples of model underfitting and overfitting. 

A linear decision boundary fails to fully separate the two classes (red 
and blue circles). In contrast, the example on the right shows a 
complex decision boundary that is overfit to the training data, and 
subsequently misclassifies independent test data from the blue class 
(shown as hollow blue circles). 

Solving problems of bias or variance is complex and requires a deep 

understanding of the data and classifier being used. Some classifiers are 

high bias in design, and can only fit simple functions. Others have many 

user tuneable parameters, allowing them to fit complex and arbitrary 

functions (e.g. artificial neural networks). The classification problem itself 

may be trivial, with classes perfectly separated using a linear function , or 

may be more complex. Furthermore, the measured features have a large 

impact on the classification problem. A single feature may be enough to 

separate two classes, or many features may be required. For example, of 

the British species, only the two rhinolophid bats can be separated using the 

frequency of maximum energy alone (e.g. Parsons & Jones, 2000). The 

more features that are measured however, the greater the opportunity for a 

complex algorithm to overfit to the training data, highlighting the importance 

of the independent test set. Unfortunately, selecting features to use in a 

classification problem is domain specific, and remains empirical and 

heuristic. There is no independent and rigorous way of determining whether 

a dataset contains sufficient information to permit successfully classification 

(Janert, 2011) . If a classifier fails , it may be unclear whether a different 

classifier would have been successful, or whether different/additional 

features may be useful. 
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In practice, where ground truth data are difficult to collect, as in the case of 

echolocation calls, data sets may be too sparse to split into independent 

training and test sets. One of the most important factors in training a useful 

classifier is having enough training data to accurately model the problem. 

Therefore, cross-validation is a commonly used technique to make most 

effective use of the available data for training and testing. K-fold cross 

validation is an iterative process whereby the dataset is partitioned into k 

discrete subsets. A single subset is withheld, with the remainder used 

during training, and subsequently the withheld subset is used as an 

independent test set. The process is repeated, each time withholding a 

different subset as the test set, until all k subsets have been used in this 

way. The estimated error is then averaged across subsets. Ten fold cross 

validation (k=10) is commonly adopted, as is leave-one-out cross validation 

(LOOCV), which splits the dataset into as many subsets as there are data 

points. Cross validation is a computationally expensive process, requiring k 

models to be trained and tested, but maximises the available training data 

and gives an almost unbiased estimate of the true error (Varma & Simon, 

2006). It is important that any adjustments in the model building process are 

carried out prior to testing. It has been common for researchers to train and 

test a classifier, before adjusting model parameters and repeating the testing 

process until the highest accuracy has been attained (Simon et al., 2003). 

This is overfitting to the dataset, and is highly likely to result in inflated 

estimates of classifier accuracy, as it allows the classifier to overfit to the 

total dataset. Where model parameter or architecture tuning is undertaken, 

a separate validation set should be employed. This allows different models 

to be trained and tested, with the aim of minimising the validation set error, 

and then once the final model has been selected, the independent test set is 

employed to estimate the unbiased generalisation error. In some cases the 

methodological details given are not sufficient to verify whether final models 

have been tested using independent test sets (e.g. Redgwell et al., 2009). 

Once a classifier has been optimised and tested, it can be used to classify 

unseen data, for which the correct class label is unknown (note that this is in 

contrast to the test set data, for which the class labels were known but 

withheld from the classifier). For this purpose, the classifier is first trained 

with all the available data. In making predictions, the classifications can be 

hard or soft. Hard classifications give the class output only, e.g. "Pipistrellus 
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pipistrellus', or "Pipistrellus pygmaeus', whereas soft classifications are 

probabilistic in nature, e.g. "Pipistrellus pipistrellus: 0.96", "Pipistrellus 

pygmaeus: 0.04". Not all classifiers provide probabilistic output, but where 

available they offer an insight into the classifier's confidence in the 

prediction. 

1.6 Purpose of research 

Acoustic methods are an extraordinarily valuable tool in bat research, 

facilitating rapid survey and non-invasive monitoring. With recent advances 

in bat detectors many hours of high quality digital recordings can be 

collected, extending the scope of current research. However, manual 

analysis is slow, laborious and subjective, and freely available methods to 

automate the procedure have not been forthcoming. The project evolved to 

address the following issues: 

(i) To build an echolocation call library from British bat species, 

providing robust ground truth data for subsequent call 

classification experiments 

(ii) The development of a robust method of automatically locating 

echolocation calls in audio recordings 

(iii) The development of a robust method to automatically extract 

echolocation call parameters 

(iv) To assess the ability of machine learning methods to classify 

calls to species from automatically extracted echolocation calls 

(v) To assess the application of a fully automated acoustic 

identification system to two field studies 

1.7 Thesis outline 

Chapter two introduces a robust signal detection algorithm for locating bat 

echolocation calls in continuous recordings. The accuracy and 

computational cost of the algorithm is assessed on a dataset of field 

recordings, and compared to two conventional bioacoustic signal detection 

algorithms. Code is provided for the algorithm implementation. Chapter 
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three builds on the signal detection algorithm, providing a means to 

automatically extract spectral and temporal features of echolocation calls 

suitable for quantitative description and classification. The methods used to 

collect a bat echolocation call library from sites across the UK are detailed. 

The call library is used to compare the ability of a machine learning 

classifier, random forest, to classify calls to genus and species level. The 

analysis procedure is compared to conventional methods of acoustic 

analysis. Chapter four explores the implications of novel signal types on 

automated acoustic classification, and details the use of outlier detection to 

mitigate against the effects. Chapter five applies the methods developed 

over the previous chapters to a field study, monitoring bats over a three 

month period visiting a remote cave system in northern England. Chapter 6 

applies automated classification of acoustically cryptic Myotis bats to provide 

presence data for species distribution modelling in the Lake District National 

Park. Chapter seven discusses the implications of our developments and 

findings, and reviews the usefulness of automated acoustic methods as a 

bat research and conservation tool. 
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Chapter 2: Automated signal detection 

2.1 Abstract 

Acoustic methods are an invaluable tool in the study of bat ecology and in 

conservation work. Reliably detecting echolocation calls in bat detector 

recordings is a vital first stage in developing a fully automated species 

identification system, which would reduce the burden of manual analysis. 

We developed an algorithm designed to locate echolocation calls in 

continuous recordings. The algorithm automatically estimates and subtracts 

the background noise in the recording to increase the sensitivity of detection, 

and improve the robustness of the detection threshold to varying signal 

levels. The location of echolocation calls in field recordings were hand­

labelled, providing ground truth data for evaluating the accuracy of 

automated call finding algorithms. By comparing the location of calls found 

by the automated algorithm to the hand-labelled ground truth data, we 

established the good detection rate (calls correctly detected) and error rates 

(missed calls and false detections caused by noise). We compared our 

algorithm to two conventional bioacoustic signal detection algorithms. Our 

algorithm achieved a high percentage of good detections (97.6%), with few 

false detections (1.8%), outperforming the conventional detectors. Our 

approach is more robust theoretically and practically. 
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2.2 Introduction 

Since the introduction of portable bat detectors, enabling researchers to 

eavesdrop on the echolocation calls of bats, acoustic methods have become 

an invaluable tool in the study of bat ecology and in conservation work 

(Ahlen & Baag0e, 1999). As nocturnal fast flyers, bats are a difficult group 

to survey; visual identification in flight is rarely possible (Walsh & Harris, 

1996), and capture requires skill, is labour-intensive, biased (e.g. 

MacSwiney et al., 2008) and disturbs natural behaviour. As the echolocation 

calls of bats are readily detectable using portable ultrasonic detectors, they 

facilitate the non-invasive, rapid survey of bats in their natural habitats. 

Acoustic surveys have a wide range of applications, from compiling species 

inventories and assessing patterns of habitat use (e.g. Krusic et al., 1996; 

Vaughan et al., 1997; Russo & Jones, 2002, 2003; Davy et al., 2007; Rebelo 

& Rainho, 2009; Webala et al., 2011), to discriminating morphologically 

cryptic species (Jones & Parijs, 1993; Helversen et al., 2001; 

Ramasindrazana et al., 2011). While qualitative identification, based on 

expert opinion, remains a useful technique for identification of at least some 

species in the field, particularly in regions with few species, identification by 

quantitative analysis of recordings is repeatable, and not subject to 

researcher bias. It therefore has to be the method of choice for scientific 

research and survey, and monitoring for conservation. 

There are two principle tasks involved in the bioacoustic analysis of 

recordings: signal detection and signal classification. Signal detection is the 

localisation of signals of interest in continuous recordings, e.g. bat 

echolocation calls. Signal classification labels signals into biologically 

relevant groups, for example to genus or species level. Quantitative 

acoustic identification has been applied to a wide range of animals, from 

birds (e.g. Peake & McGregor, 2001), to marine mammals (e.g. Mellinger & 

Clark, 2000; Yack et al. 2010), and insects (Mankin et al., 2011). 

Classification of bat echolocation calls has been carried out using a variety 

of approaches, including multivariate statistical analysis (Vaughan et al., 

1997; Papadatou et al., 2008), hidden Markov models (Skowronski & Harris, 

2006), synergetic pattern recognition (Obrist et al., 2004), artificial neural 

networks (Parsons & Jones, 2000), support vector machines (Redgwell et 

al., 2009), and random forests (Armitage & Ober, 2010). However, despite 
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the wealth of research on signal classification in the last two decades, the 

manual detection and extraction of calls from recordings, through the time­

consuming visual inspection of spectrograms, remains commonplace in 

conservation work and research. 

There is an increasing need to automate the process of signal detection, as 

developments in hardware and digital storage now facilitate unprecedented 

data collection. Remote loggers are able to operate for extended periods 

storing many hours of audio under field conditions (e.g. Pettersson D500X; 

http://www.batsound.com/). The use of automated loggers increases the 

scope of field studies, but the bottleneck of manual analysis effectively 

necessitates the use of automated methods of signal detection and 

extraction. As bat echolocation calls are pulses of energy, an intuitive way 

to detect calls is through measuring the changes in energy throughout the 

recorded audio file. Simple energy based methods have successfully been 

applied to extract and analyse a single call from a recorded 'bat pass' (e.g. 

Parsons & Jones, 2000; Redgwell et al., 2009). However, it is desirable to 

develop methods suitable for detecting all calls in a recorded sequence, 

maximising the use of available data. In addition, the automated methods of 

Parsons and Jones (2000) had to be abandoned in a subsequent study, as 

the calls were of lower signal to noise ratio (SNR), and the methods did not 

prove robust (Jennings et al., 2008). Recording bats under controlled 

conditions or where flight paths can be estimated (e.g. on emergence from 

roosts), can result in high quality calls with good SNR (strong recorded 

signal with quiet background noise), as bats may be <2m from the detector 

at the time of recording. In contrast, under field conditions bats are 

frequently recorded at much greater distances, resulting in lower SNR 

(weaker recorded signal with relatively higher levels of background noise). 

In addition, field recordings may be corrupted by varying levels of abiotic 

noise (for example, caused by wind or flowing water), and echoes may be 

recorded as a result of ground reflected calls received at the microphone. 

Reliably determining the location of bat echolocation calls algorithmically in 

field recordings is not trivial, as calls may have low SNR and call echoes can 

easily be mistaken as calls. Sophisticated statistical model-based methods 

have been proposed (e.g. Skowronski & Fenton, 2008), but free and publicly 
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available implementations remain elusive. Published mathematical 

descriptions of algorithms, if they are not supported by the code used to 

implement them, may not be easy to implement without significant 
guesswork and interpretation by others (Thimbleby, 2003). This makes it 

difficult to reproduce and build upon the work of others, creating a significant 

barrier to new researchers in the field, and restricting the widespread 

adoption of proposed methods. 

More recently, commercial programs that automatically extract echolocation 

calls from bat detector recordings, and classify them to species have 

become available (e.g. ecoObs bcAdmin, http://www.ecoobs.com/; Elekon 
AG BatExplorer, http://www.elekon.ch/en/batlogger/homel; SonoBat 3; 

http://www.sonobat.com/SonoBat3.html). However, the high cost and 

current lack of scientific evaluation may restrict the adoption of commercial 

solutions by many. There remains a dearth of freely available automated 

software tools for bat researchers. This is in contrast to the field of marine 

bioacoustics, which has benefited from free and open source software tools 

specifically designed for detecting and classifying marine mammal 

vocalisations (e.g. PAMGUARD; Gillespie et al., 2008). The open source 

nature of these tools allows other researchers to learn from, and adapt the 

code used to implement them. Furthermore, the openness and 

transparency of making code available encourages peer review, which may 

lead to improvements in methods (e.g. Barnes, 2010). 

We developed a robust algorithm to locate bat echolocation calls in 

continuous recordings, using open source tools, as part of the ongoing 

development of methods for automated analysis. We describe the algorithm 

and its implementation, documenting the C++ source code. Our algorithm is 

evaluated on a dataset of field recordings with hand-labelled echolocation 

calls. Hand-labelling the location of calls allows us to compare the locations 

returned by the automated algorithm with the hand-labelled ground truth 

location of calls. The detection rate, error rates, and computational cost of 

our algorithm is compared to two conventional methods of bioacoustic signal 

detection described in the literature. 
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2.3 Methods 

2.3.1 Signal detection algorithms 

A recorded 'bat pass' contains broadband continuous background noise, and 

one or more discrete echolocation calls, which are pulses of acoustic energy 

(Figure 2.1). Here we define any discrete portion of a recorded signal above 

the level of background noise as an acoustic event. Under this definition, an 

acoustic event may include an echolocation call, a call echo and other noise 

sources, either biotic (e.g. stridulating insects) or abiotic (flowing water, rain, 

wind-induced vegetation noise). 
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Acoustic events can be detected by first characterising a recording by its 

energy content, and defining a threshold rule for selecting events containing 

energy above the threshold. As audio is oscillatory, a recorded signal 

cannot be characterised by its energy content directly from the time domain 

audio samples, and an intermediate signal is therefore necessary. This is 

typically achieved by applying the short-time Fourier transform (STFT; e.g. 

Boulanger et al. , 2010), a technique that slides a fixed size analysis window 

through the signal, applying the fast Fourier transform (FFT) to reveal the 

spectral energy in the signal. The output from the windowed analysis is a 

discrete set of values forming the detection function, from which the 

locations of events can be identified through simple thresholding (Figure 

2.2). 
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Plot of amplitude (dB) as a function of the STFT analysis frame 
number. A threshold set at 10 dB (shown as dashed line) results in a 
single detected event (grey highlighted area) following a simple 
threshold procedure. 

2.3.2 Conventional algorithms 

Two conventional methods of bioacoustic signal detection are the spectral 

sum, and spectral peak algorithms. For a signal x at time n , we define 

X [n ] as its STFT, where IXk [n ll is the spectral magnitude of the k t
• FFT 
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bin at n. The spectral sum algorithm calculates the sum of the STFT 

magnitudes (the total energy over the entire spectrum) at each consecutive 

window through the signal to create the detection function: 

N 

Dsum[n] = LIXk[n]1 (2.1) 
k=O 

The spectral peak detector is similar in design, but uses the peak spectral 

magnitude from each analysis window, in contrast to the sum of all spectral 

magnitudes: 

(2.2) 

Implementations of these conventional energy detectors are available in 

bioacoustic software (e.g. 'PAMGUARD', Gillespie et al., 2008) and as a 

package in R ('Seewave'; Sueur et al., 2008). However, we chose to 

implement them in C++, for direct performance comparison with our 

proposed algorithm (for pseudo code for all algorithms see Appendix A). 

The conventional signal detection algorithms assess the energy in a digital 

recording, resulting in detection functions that are dependent on the level or 

gain of the recording. This complicates the setting of a consistent detection 

threshold value, as recordings may be at different levels. To illustrate, two 

copies of the same recording, one normalised to increase its level without 

changing the content, would require different threshold levels to detect the 

same acoustic events. In this study we normalised the detection function for 

each individual recording, by subtracting the median value over all analysis 

windows of a recording from each detection function data point (e.g. 

Skowronski & Fenton, 2009). The median value is an estimate of the noise 

floor of the recording, and the process of median offsetting allows the use of 

a fixed threshold parameter, that is then independent of the recording level. 

The process of normalisation requires that the entire signal must be acquired 

prior to processing, ruling out real time operation. A simple threshold 

algorithm selects candidate call locations from the detection functions 
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normalised output. The threshold algorithm works by first marking the 

location at which the detection function crosses the trigger threshold level (in 

dB). From this point, the location of the maximum level of the detection 

function is tracked. On the detection function subsequently falling below the 
threshold, the location of the maximum level of the detection function whilst 

over the threshold is stored as a candidate acoustic event. Candidate 

events are subsequently filtered using the following rule: if the duration of the 

detected event is less than 1.5 milliseconds (ms) it is removed. This 

duration threshold is set to help remove spurious detections caused by 

transient noise. 

2.3.3 Proposed noise subtraction algorithm 

We developed a call detection algorithm to overcome some of the 

shortcomings of the conventional methods outlined above. Our algorithm is 

designed to estimate and remove the noise floor from recordings using only 

past values of the signal. By estimating the noise floor of the recording from 

a fixed window of previous analysis frames, a priori knowledge of the signal 

is not required for detection function normalisation, and real time operation 

remains a possibility. In addition, by estimating the noise floor locally, the 

algorithm can dynamically react to changes in the signal within a recording. 

We estimate and subtract the noise floor independently for each spectral bin 

of the FFT spectrum. Environmental noise and microphone self noise is 

rarely white in nature (equal power at all frequencies), and is typically 

weighted more heavily at the low end of the frequency spectrum (Figure 

2.3). Frequency-specific noise subtraction can attenuate the noisier low 

frequency regions of the spectrum more heavily than the higher frequency 

and lower noise parts. This process increases the sensitivity of the call 

detection at higher frequency regions of the spectrum, as signals in those 

regions consequently have a higher SNR. We also employ a temporal mask 

to reduce the influence of call echoes on the detection function: an 

exponential decay curve is applied to the output of the detection function, 

which acts as an adaptive threshold. Echoes falling below the threshold do 

not contribute to the detection function as they are masked by the louder 

preceding call. The exponential decay curve is defined as: 

F[n] = max(D[n], a· F[n - 1] + (1 - a) . D[n]) (2.3) 
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where F[n] is the threshold function, D[n] is the detection function and a is 

the exponential decay factor (Oixon, 2006). This echo suppression is based 

on psychoacoustic principles (Moore, 1993), and aims to reduce the false 

alarms caused by echoes exceeding the energy threshold that triggers the 

detector. We experimented with various values of the a parameter, and 

found values >0.8 worked well in practice. When evaluating the algorithm in 

this study we fixed the parameter at a value of 0.9. 

The detection function is generated by first summing all spectral magnitudes 

in frequency bands that are greater than both their local median values, and 

the temporal masking threshold. This value is considered to be the signal 

content. A noise estimate is then taken as the sum of all local median 

values. Finally, the detection function is expressed as a signal to noise ratio 

(SNR) in dB as: 

(
Signal) 

SNR = 20 ·loglo . 
nOtse 

(2.4) 

In this way, the proposed algorithm can be considered a modified spectral 

sum algorithm with background noise reduction and echo suppression. 
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100 

Frequency (kHz) 
15 0 200 

Figure 2.3: Ultrasound recording noise floor. 

Power spectrum for Pettersson D500X detector noise floor, showing 
non linear frequency weighting. Calculated using a window size of 256-
points and a window overlap of 75%. An inbuilt high pass filter on the 
D500X has strongly filtered frequencies below 15 kHz. 

2.3.4 Implementation 

Both conventional signal detection algorithms and our noise subtraction 

algorithm use a FFT window size of 256-points, with a Blackman Harris 4-

term window to reduce spectral leakage (Harris, 1978). Larger FFT windows 

produce finer frequency resolution (an increased number of FFT bins, each 

with a narrower frequency span), but increase computation time and reduce 

temporal resolution due to Gabor's uncertainty principle (Gabor, 1946). All 

algorithms were implemented in C++ (for pseudo code see Appendix A) , and 

used the FFTW (http://www.fftw.org/) and libsndfile (http://www.mega­

nerd.com/libsndfile/) libraries, for Fourier transforms and sound file loading 

respectively. 

2.3.5 Evaluation 

An ideal call find ing algorithm would detect all calls without falsely triggering 

due to noise. In practice, all calls can be detected simply by using a very 

low trigger threshold . However, this would result in a high error rate due to 

27 



Chapter 2: Automated signal detection 

false triggering of the detector caused by noise (false positives). Raising the 

threshold reduces the error rate caused by false triggers, but gradually 

increases the error rate due to Iow-intensity echolocation calls remaining 

undetected (false negatives). Achieving optimum performance is therefore a 

trade-off between selecting a threshold level that detects as many calls as 

possible, whilst minimising false detections. To evaluate the performance of 

a detection algorithm, the automated detections must be compared to 

ground truth locations. We used a dataset of field recordings made at a 

range of sites in the Lake District National Park during May-Sept 2010. At 

each site a series of 'spot count' recordings were made, recording bat 

activity from a stationary position. Recordings were made using a direct­

sampling detector (Pettersson D500X, http://www.batsound.com/) at 500 

kHz sampling rate, and stored as 16 bit WAV files. Recordings triggered 

automatically on detecting ultrasound and recorded for a period of 1 sec, 

after which time the detector was ready to trigger again. We determined the 

start and end points of echolocation calls in recordings by visual inspection 

of waveforms and spectrograms using Adobe Audition 

(http://www.adobe.com/products/audition.html). The times of call start and 

end points were recorded as the number of samples through the recording in 

a CSV text file. Calls were classified to genus level using the overall shape 

of calls, and published descriptions of call frequencies (Vaughan, Jones & 

Harris, 1997; Parsons & Jones, 2000) to categorise recorded sequences by 

call type. 
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Figure 2.4: Spectrogram and waveform view illustrating a single hand­
labelled call location. 

The boxed area marks the duration of the echolocation call. The 
detection is only considered correct if it falls within the boxed area. 
Detections outside the boxed area, e.g. in the following echo, count as 
false positives. Failure to detect the call in the boxed region results in a 
false negative. 

We considered a call to be correctly detected if the returned call location fell 

within the ground truth call start and end times. We did not penalise doubled 

detections (a single call recognised as two), since the purpose of automated 

detection was subsequent call extraction, and detections that overlap with 

previously extracted calls can simply be disregarded. An undetected call 

represents a false negative, and false detections caused by noise represent 

false positives. 
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The algorithms were evaluated using four statistics: good detections 

(correctly detected calls; GO), false positives (false alarms caused by noise; 

FP) and false negatives (missed calls; FN), which are given by: 

c 
GD=-­

c+ in 

FP= ip 
c+ in 

FN= in 
c+ in 

(2.5) 

(2.6) 

(2.7) 

A perfect score is GD = 1. Detection success can also be evaluated using 
precision, recall and the F-measure (FN ), which are given by: 

c 
P=-­

c + ip 

c 
R=-­

c+ in 

(1 + N2). p. R 
FN = N2. P + R 

(2.8) 

(2.9) 

(2.10) 

Note that the good detection rate (GD) is identical to the recall (R). Precision 

(P) compares the number of correctly detected calls to the number of 

automated detections, rather than the number of hand-labelled calls. Here 

we use the F1-measure, and refer to it as the F-measure. The F-measure is 

the weighted harmonic mean of precision and recall, and represents the 

optimal point on the receiver operator characteristic (ROC) curve (van 

Rijsbergen, 1979). The F-measure is a useful single statistic to optimise 

algorithm parameters (e.g. Hoffmann et al., 2001). 
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We evaluated the automated detection algorithms described above in two 

separate optimisation and testing experiments. Each algorithm was 

evaluated using 50 % of the input dataset stratified by genus/call type, using 

a range of trigger threshold values to find the optimum performance as 

measured by the F-measure statistic. Each detector was run with threshold 

values ranging from 0.0 to 60.0 dB in 0.25 dB steps. The trigger threshold 

producing the best performance was identified for each algorithm as the 

peak F-measure obtained over all threshold values. The remaining 50% of 

the dataset was then used as an independent test set, to obtain an unbiased 

estimate of algorithm performance using a single optimal threshold value. 

The computational costs of the different automated algorithms in our 

implementation were estimated by calculating the time required to analyse 1 

minute of 500 kHz audio. Low computational cost is important if real time 

operation is desirable, but also in offline processing applications where large 

datasets require analysing. Benchmarks were run on a 2.4 GHz laptop 

running Windows Vista. 
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2.4 Results 

The database of field recordings was used to assess the signal detection 

algorithms' performance. It consists of 886 hand-labelled calls, in 102 

recorded sequences (Table 2.1). The collection of recordings contains calls 

from Myotis, Nyctalus and Pipistrellus spp. (Figure 2.5). 

Table 2.1: Summary of evaluation dataset. 

Number of recorded sequences and individual hand-labelled calls, 
grouped by genus. 

Sequences Calls 
Myotis 32 362 
Nycta/us 26 130 
Pip is trellus 44 394 
Total 102 886 
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Figure 2.5: Spectrogram of call types. 
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Example call types for Myotis, Nyctalus, and Pipistrellus spp. within the evaluation dataset. 
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2.4.1 Threshold optimisation 

The threshold setting influences the numbers of calls detected and the 

numbers of false positives and negatives, reflected in the F-measure. At low 

thresholds the number of calls detected is at its highest, but false positives 
due to noise are also common. As the threshold is increased, fewer low 

intensity noises are detected, resulting in a higher overall F-measure. 

Beyond a certain threshold false negatives increase as calls are missed, and 

the F-measure decreases. Table 2.2 shows the maximum F-measure 

achieved by each of the three algorithms on the optimisation dataset. We 

ran separate experiments for each genus, for example detecting only Myotis 

calls, as well as on the full dataset containing Myotis, Nyctalus and 

Pipistrellus calls. The noise subtractive algorithm outperforms both 

conventional detectors in all tests. 

Table 2.2: maximum F-measure during training. 

spectral spectral noise 
sum !!eak subtractive 

Myotis 0.734 0.796 0.977 

Nyctalus 0.918 0.929 0.962 

Pipistrellus 0.969 0.974 0.995 

All 0.873 0.851 0.989 

Figure 2.5 shows the results for the three detection algorithms evaluated on 

the optimisation dataset. It can be seen that the conventional energy 

detectors have a narrow band of threshold values that perform well, and 

outside of this range performance drops rapidly. In contrast, the noise 

adaptive algorithm performs well over a broader range of thresholds, as well 

as outperforming the conventional algorithms. 
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Figure 2.5: Effect of the threshold on the F-measure. 

Results obtained on the mixed species optimisation dataset for each 
algorithm. 

The individual results for Myotis, Nyctalus and Pipistrellus spp. as plotted in 

Figures 2.6 to 2.8 reveal that for the conventional detectors, the optimum 

threshold is a narrow band, with the peak located at different thresholds for 

each group. In contrast, the noise subtraction algorithm is optimal over a 

broad range of threshold values, and these regions are largely similar for 

each call type. 

35 



0 .8 

Q) 0.6 L 

::J 
U'l 
CO 
Q) 0.4 E 
I u... 

0.2 

n.n 

0 10 

Chapter 2: Automated signal detection 

20 30 40 

Threshold (dB) 

Algorithm 
- noise subtraction 

spectra l peak 
- spectral sum 

50 60 

Figure 2.5: Effect of the threshold on the F-measure for Myotis. 
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Results obtained for the Myotis spp. in the optimisation dataset for each 
algorithm. 
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Figure 2.6: Effect of the threshold on the F-measure for Nyctalus. 

Results obtained for the Nyctalus spp. in the optimisation dataset for 
each algorithm. 
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Figure 2.7: Effect of the threshold on the F-measure for Pipistrellus. 

Results obtained for the Pipistrellus spp. in the optimisation dataset for 
each algorithm. 

2.4.2 Test evaluation 

Table 2.3 shows the results on the test dataset using the optimal threshold 

value identified from the optimisation dataset. There is a large improvement 

in F-measure using the noise subtraction algorithm over the conventional 

energy detectors. The noise subtraction algorithm also achieves a higher 

percentage of good detections, and fewer false detections. 

Table 2.3: Detection results. Good detections (GO), false positives (FP), 
false negatives (FN) and F-measure. 

Algorithm % GD % FP % FN F-measure 

noise subtract ion 97.6 1.8 2.4 0.98 

spectral peak 80.1 10.4 19.9 0.85 
spectral sum 83.1 14.8 16.9 0.83 

Computation time is dependent on the hardware used to run the algorithms, 

as well as algorithm efficiency. All algorithms performed significantly faster 

than real time (Table 2.4). Our noise subtraction algorithm was the slowest 

of those evaluated, yet still more than 7 times faster than real time. The 
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extra processing time can be attributed to the calculation of the median for 

each spectral band, in every analysis frame, to estimate the background 

noise level. However, the algorithm retains efficiency due to its 

implementation in C++, which is faster than interpreted languages such as R 

and Matlab. 

Table 2.4: Computation time. 

Time taken to analyse a one minute 500 kHz WAV file for each 
algorithm. 

2.5 Discussion 

Algorithm 

noise subtraction 

spectral peak 

spectral sum 

Time (s) 

8.49 

3.68 
3.68 

We developed a bioacoustic signal detection algorithm for the automated 

location of bat echolocation calls. Tests on a real-world dataset of field 

recordings confirmed that the new method outperformed two conventional 

approaches in terms of accuracy. The good detection rate was higher than 

both conventional approaches, indicating that subtracting the local noise 

floor estimate increased call detection sensitivity. In addition, the lower false 

positive rate can be attributed to the effectiveness of the temporal mask in 

reducing false triggers caused by call echoes. Our algorithm was the 

slowest evaluated, although implemented in C++, an efficient low-level 

language, it performed significantly faster than real time. Under field 

conditions, where levels of background noise may change, the robustness of 

our algorithm to the threshold setting represents a clear improvement on 

conventional methods. The fact that no prior knowledge of the signal is 

required for processing, offers the potential for the algorithm to be 

implemented in real time. This opens up the possibility of integrating the 

algorithm into suitable hardware, and developing a field portable 

identification system. 

Comparison with previous call detection studies (e.g. Skowronski & Fenton, 

2009) is not possible in the absence of a shared evaluation dataset. The 
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difficulty of the detection task is affected by the quality of the recordings, the 

SNR of the recorded calls, and the type of noise sources present. As a 

result, fair comparisons can only be made between algorithms on the same 

dataset. The approach taken by Skowronski and Fenton (2009) was to 

generate synthetic bat calls and embed them in Gaussian noise. This gave 

them control over the SNR of calls, providing a precise evaluation of detector 

performance, and enabling the generation of a large dataset of synthesised 

recordings with known call locations for evaluation. However, they 

acknowledge that this approach fails to provide a truly real-world test for the 

detection algorithms, as the synthetic calls do not accurately match the 

variety and quality of signal types encountered under field conditions. 

A balanced evaluation dataset should be representative of the real-world 

data that the detection algorithms are intended for, which is application 

specific. For example, an automated detection algorithm may be desired to 

process recordings of captive bats under controlled conditions, in which case 

a very simple algorithm may perform well, as recordings are likely to be high 

quality. In contrast, the same algorithm may perform poorly when applied to 

field recordings where the SNR of calls are lower. For evaluation, we used 

field recordings made during stationary spot counts, as they closely match 

our intended application of an automated system. Recordings made during 

walked transects frequently contain extraneous noises, as the detector 

records researcher-induced noise, for example the movement of vegetation. 

As a result, a higher false positive rate would be expected in applying 

automated detection. However, our dataset provided a reliable means to 

compare algorithms. Moreover, when call detection is used as a front-end 

for subsequent call extraction and classification, it is false negatives that 

should be minimised, as calls missed at the detection stage never reach the 

classifier. If the classifier is robust and can reliably discriminate echolocation 

calls from noise sources, then the cost of a high false positive rate is only 

one of efficiency, with more processing time spent extracting and classifying 

noise sources for rejection. 

The main problem with the conventional signal detection algorithms is that 

they performed best at different threshold settings for different signal types. 

This complicates their effective use, as achieving good performance may 
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require considerable manual analysis to determine a suitable threshold 

setting, undermining the objective of automated analysis. In addition, they 

require normalisation to account for possible differences in recording level, 

which means they cannot be implemented in real time. Furthermore, the 

approach does not scale well with recording length, as the entire detection 

function must be stored in memory for median offsetting, restricting their use 

to shorter recordings. In contrast, our noise subtraction algorithm performed 

well with all signal types across a broad range of thresholds, making it 

simpler to apply in practice where the recording content is not known a priori. 

As normalisation is applied in real time through local background noise 

subtraction, the length of the recording to be analysed has no effect on 

algorithm efficiency. 

Implemented our algorithm in C++ ensured efficient performance, which is 

an important factor where large numbers of files need processing in long 

term studies. Using open source libraries for calculating the Fourier 

transform (FFTW, http://www.fftw.org/) and reading WAV files (libsndfile, 

http://www.mega-nerd.com/libsndfilel) increased the development time, 

freeing us to concentrate on other aspects of the development. The 

detection algorithm forms the front-end for a fully automated species 

identification system we are developing. As an open source project, we 

hope other researchers will benefit from our developments. Although 

beyond the scope of this study, the detection algorithm may prove useful for 

the bioacoustic signal detection of other taxa. 
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Chapter 3: Acoustic identification of British bats from their 
echolocation calls 

3.1 Abstract 

This study describes a robust method for automatically extracting and 

measuring echolocation call features from calls embedded in continuous 

recordings, and represents the first use of random forest for the identification 

of bats from directly sampled recordings. Directly sampled echolocation 

calls from all genera of British bats were recorded and analysed. Temporal 

and spectral variables were automatically extracted from calls, and used to 

train a random forest classifier, a machine learning (ML) algorithm. In 

addition to four commonly measured 'base' call variables (call start 

frequency, end frequency, frequency at the point of maximum call energy, 

and total call duration), we included power spectra of calls as features for 

classification. A process of cross-validation was used to test the ability of 

classifiers to classify previously unseen data. Training and testing were 

carried out using sequences of recorded calls, and we report accuracies at 

both the call, and sequence level. An overall accuracy of 97.6% and 98.4% 

was achieved for classification to genus at the call and sequence level 

respectively, and 93.1 % and 95.9% for classification of Myotis bats to 

species. We statistically compared the overall accuracy achieved by 

random forest classification of power spectra, to classification using the 

'base' call features, and to quadratic discriminant function analysis (aDA), a 

traditional statistical classifier. Random forest had significantly higher 

accuracy to both genus and species level than aDA using the commonly 

measured temporal and spectral call features (p<O.001). 
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3.2 Introduction 

The bioacoustic analysis of vocalisations has been applied to the 

identification of species in a wide range of taxa, and is of great conservation 

importance (for a review see Laiolo, 2010). The identification of bats from 

their echolocation calls is a vital tool in the study of their ecology and in 

conservation work. Phylogeny, ecology and morphology influence 

echolocation call signal structure, offering significant potential for 

discriminating between species on the basis of their calls. Some species are 

readily identified, because their calls occupy a niche in the frequency 

spectrum, e.g. Rhinolphus hipposideros, or because they emit a 

characteristic alternating call type, e.g. Barbastella barbastellus. However, 

for many species the situation is more complicated, and identification cannot 

necessarily be made with certainty. Whilst echolocation is influenced to 

some degree by phylogenetic constraints, the importance of environmental 

factors in shaping signal design has led to bats that feed in similar habitats 

evolving similar designs of echolocation calls, despite being distantly related 

(Jones & Holderied, 2007). Echolocation is functional, and bats change the 

structure of their calls in relation to situation. For example, vespertilionid 

bats flying in open areas use relatively longer duration calls with a narrower 

bandwidth, compared to the shorter and more broadband calls they emit in 

increasingly cluttered habitats (e.g. Schnitzler & Kalko, 2001). Echolocation 

calls may also vary due to the presence of con specifics (Obrist, 1995), age 

and gender (Russo et al., 2001). 

In addition to the variation in echolocation calls caused by ecology and 

morphology, variability is introduced between the emission of a call and the 

signal that is received by the bat detector. The recorded signal is heavily 

influenced by both the distance and relative position of the bat to the bat 

detector. At increasing distances, high frequency attenuation caused by 

atmospheric absorption (Lawrence & Simmons, 1982) low pass filters the 

signal, resulting in a recorded call that has high frequency loss. Additionally, 

the frequency content of the received signal is affected by the relative angle 

of the bat to the bat detector. Echolocation calls are projected in front of the 

bat in a relatively narrow beam, and the bat detector is most sensitive to 

sounds arriving within a narrow arc in front of the microphone. Recorded 

calls from bats off-axis from the detector will therefore suffer some form of 
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frequency-specific attenuation. Finally, echoes caused by ground reflection 

may add to the degradation of the recorded signal, and the overall result is 

that the recorded signal may not closely match the call actually emitted by 

the bat. For all but the most acoustically characteristic species, quantitative 
analysis that gives an objective measure of confidence in the identification is 

therefore preferred to the subjective judgement of human experts (Jones et 

al., 2000). 

The extraction of calls from recordings, and the subsequent measurement of 

call features, should be automated to fully remove any subjectivity from 

species identifications (Jones et al., 2000). Automated methods remove the 

burden of hand measurement, a time-consuming process, and therefore 

costly in studies that generate significant amounts of data. They are also 

objective and repeatable, and not subject to researcher bias. Moreover, 

detailed call information can be extracted precisely, which may not be readily 

measurable by hand. However, the practical application of quantitative 

analysis of bat echolocation calls in field studies remains focused on the use 

of small numbers of hand measured call features, typically followed by 

traditional statistical classification techniques such as discriminant function 

analysis (DFA; e.g. Russo & Jones, 2003; Davy et al., 2007; MacSwiney et 

al., 2008; Georgiakakis et al., 2010). This is presumably because there is a 

lack of viable alternatives. Parsons and Jones (2000) developed an 

automated method of call extraction and measurement, and used it to 

successfully classify twelve species of British bat from high quality 

echolocation call recordings. However, Jennings and colleagues (2008) 

found the proposed automated call measurement system was not robust to 

the low signal to noise ratios (SNRs) typical of calls encountered during field 

studies. There are significant technical challenges in tracking the harmonic 

with most energy in echolocation calls recorded under field conditions, as 

there may be significant low frequency noise, calls may be notched (heavily 

attenuated at specific frequencies), or they may suffer interference from 

echoes. Without the ability to track the harmonic with most energy, some of 

the call features that researchers have typically measured, e.g. the 

frequency at the start and end points of the call, cannot be accurately and 

robustly measured. However, the features that are most intuitive to 

researchers may not be the most important for discriminating between 

species. Modern non-linear machine learning classification algorithms such 
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as artificial neural networks (ANN) and support vector machines (SVM) can 

handle large numbers of call features, whilst making few assumptions about 

the underlying data distributions, making them powerful tools relative to 

traditional statistical techniques like DFA. Parsons (2001) applied an ANN to 

the classification of two species of New Zealand bats, and found they could 

be unambiguously identified using traditional measured parameters, or using 

power spectra from time-expanded calls. A power spectrum describes the 

power of a call as a function of frequency, independent of temporal 

information. Similarly, Yovel and colleagues (2009) applied power spectra 

and SVM to the task of identifying individual greater mouse-eared bats 

(Myotis myotis), and achieved high levels of accuracy (81-90%). 

In this study we consider direct sampling recordings, a method that retains 

more detail of recorded calls than other methods (Parsons et al., 2000), and 

apply an automated call analysis algorithm to extract full spectrum call data. 

We apply random forest, a machine learning classifier, and statistically 

compare its ability to classify calls from British bat species. 
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3.3 Methods 

3.3.1 Recording methods and call analysis 

We recorded search-phase echolocation calls of bats (the calls emitted in 
free flight rather than immediately prior to insect capture; Griffin et al., 1960). 

The majority of calls were recorded as bats left or returned to roosts, but at a 

distance of 10-20 m from the roost to ensure that normal search-phase calls 

were recorded. Where it was not possible to obtain recordings outside 

known roosts, calls were recorded from hand-released bats following 

capture under licence using harp traps (M. bechsteinil). Recordings were 

made at foraging sites where bats could be identified unambiguously 

(B. barbastellus and Nyctalus noctula, identified from their distinctive 

alternating call types). Recordings were made during 2009-2010 between 

May and October at a range of sites across the UK. Sites included the Lake 

District National Park (M. brandtiilM. mystacinus, M. daubentonii, 

M. nattereri, N. noctula, Pipistrellus spp.) , the North York Moors (all Myotis 

species excluding M. bechsteinil) , the Peak District National Park 

(M. daubentonil) , the Yorkshire Dales National Park 

(M. brandtiilM. mystacinus, M. daubentonii, M. nattereri, N. noctula, 

Pipistrellus spp.) , Dorset (Eptesicus serotinus) , Herefordshire 

(B. barbastellus), Monmouthshire (R. ferrumequinum and R. hipposideros) , 

Norfolk (B. barbastellus, M. natteren) , Sussex (B. barbastellus, M. alcathoe, 

M. bechsteinil). We obtained recordings from the seven genera of British bat 

species, Barbastella, Eptesicus, Myotis, Nyctalus, Pipistrellus, Plecotus and 

Rhinolphus. Of the bats known to breed in Britain, P. nathusii, P. austriacus, 

and N. leisleri were not recorded. 

Recordings were made using a D500x direct sampling detector (Pettersson, 

www.batsound.com). and stored as 16 bit 500 kHz WAV files. Recordings of 

several seconds were made to capture a sequence of calls from each 

individual bat as it approached the detector. This procedure resulted in a 

large dataset of calls, capturing multiple calls per individual bat that varied in 

their characteristics. This variability was caused by behavioural differences: 

bats changing their call structure in relation to their environment, and 

acoustical differences: the distance and position of the bat relative to the bat 

detector microphone differed between emitted calls in flight, resulting in calls 

that varied in their signal to noise ratio (SNR), and degree of high frequency 
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filtering due to atmospheric attenuation (Lawrence & Simmons, 1982). We 

pooled data from two morphologically cryptic species, M. brandtii (Brandt's 

bat) and M. mystacinus (whiskered bat), due to the difficulty in separating 

them on morphology alone (e.g. Berge, 2007). Small numbers of hand­

released bats were subsequently confirmed genetically, but sample sizes 

are currently too small for comparison. 

As features for classification we used the power spectrum of calls. The 

power spectrum is the square of the FFT magnitude, and describes the 

power of a signal as a function of frequency (see Figure 3.1). Power 

spectrums were calculated through the short time Fourier transform (STFT) , 

sliding a 256 point window through recordings with an overlap between 

consecutive windows of 75%, resulting in a frequency resolution of 2 kHz 

and a time resolution of 0.13 ms. A 4-term Blackman Harris smoothing 

window was applied prior to the FFT (Harris, 1978). Background noise was 

estimated as the median spectrum of the previous 55 FFTs (6.91 ms), and 

subtracted from each analysis window. Individual calls were segmented as 

follows: the start of a call was estimated as the point at which a signal 12 dB 

above the background noise estimate was encountered, as measured by the 

total spectral magnitude above the background noise estimate. Subsequent 

analysis windows were summed for the generation of power spectra, and the 

end of the call was signalled by a drop in energy of more than 40 dB from 

the peak energy encountered during the call. Power spectra were taken 

from the first 0.75 ms of the call, and from the total call duration. Power 

spectra were normalised to have a maximum of 1 by dividing by their 

maximum value. Call duration was calculated as the time in ms between the 

point of triggering and the call end. Frequency at the point of maximum 

energy was calculated as the frequency containing the maximum power 

spectral value. Start and end frequencies were estimated from the initial and 

final power spectra respectively, as the frequency at the maximum power 

spectral value. We measured the call signal to noise ratio (SNR) taking the 

estimate of the signal as the average spectral energy of the call after 

background subtraction, and calculating the ratio to the background noise 

estimate. We excluded from our analysis triggered regions that had 

durations of less than 1.5 ms, or SNRs of less than 20 dB, to exclude small 

fragments of calls or feeding buzzes. The background subtraction protocol 

led to power spectra that were independent of the acoustic transfer function 
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of the recording equipment, and the environmental noise present in the 

recording. 
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Figure 3.1: Example power spectrum for an echolocation call. 

3.3.2 Classifiers 

140 

Quadratic discriminant function analysis (QDA) is a traditional statistical 

classification technique that has been widely applied to the classification of 

bat echolocation calls (e.g. Parsons & Jones, 2000; Russo & Jones, 2002; 

Preatoni et al., 2005; Papadatou et al., 2008; Armitage & Ober, 2010; 

Hughes et al., 2010; Redgwell et al. , 2009). We used the implementation of 

QDA in the MASS package for R (Venables & Ripley, 2002). 

Random forest (RF) is an ensemble learning method that combines multiple 

classification and regression trees (CARTs) using a process termed bagging 

(bootstrap aggregating). Bagging aims to increase the diversity of each tree 

by ensuring they grow from different subsets of the training data. In the 

prediction of new data, each tree contributes a single vote and the majority 

vote determines the final classification of the data (Breiman , 2001 b) . In this 

study, calls were classified using the randomForest R package (Liaw & 

Wiener,2002). All RF models were built using the default parameters. 
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3.3.3 Model evaluation 

The predictive ability of each classifier was evaluated using cross-validation 

of the call dataset. Supervised classifiers require training examples in order 

to create the decision boundaries between classes. Once trained, a 

classifier will assign new data presented to it into one of the categories 

previously defined during training. In assessing the classifiers predictive 

ability it is insufficient to simply classify the data used to train the model, as a 

complex model may overfit to the data, and the resulting error rate will be 

optimistic of the future performance of the model on data not encountered 

during training (Cawley & Talbot, 2010). As the predictive ability of the 

classifier is of primary concern, independent data must be used to test the 

classifier, giving an indication of the ability of the classifier to generalise to 

new data. This conditional or true error rate can be estimated in several 

ways, the simplest of which is to arbitrarily partition the dataset into discrete 

training and testing sets. However, this makes inefficient use of the 

available data where sample sizes are limited. A more recent approach is to 

use cross-validation. In this approach a portion of the dataset is removed or 

held out, the remainder is used to train the model, and the held out portion of 

data is then used as an independent test set. This process of training and 

testing models is repeated, each time holding out a different portion of the 

dataset until all the data have been used for testing. The results of all 

iterations are then averaged to provide an estimate of the true error rate. 

Whilst computationally intensive, cross-validation makes efficient use of the 

available data, and has been demonstrated to provide an almost unbiased 

estimate of the true error rate (Varma & Simon, 2006). 

An important property of the test set in evaluating classifiers is that it is 

independent of the training data. In this study we measured call parameters 

from echolocation call sequences, containing multiple calls from each 

individual. As calls from the same individual are temporal pseudoreplicates 

(Hurlbert, 1984), cross-validation is performed on the sequence level. 

Cross-validation on the call level would result in twinning, training and test 

sets with calls from the same individual. In this study we use leave one out 

cross validation (LOOCV), holding out all the calls from an individual 
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sequence at each iteration for testing. The result of the cross-validation 

procedure is a prediction for every call in the dataset. 

In addition to total classifier accuracy, class specific metrics were calculated. 

We used positive predictive power (PPP). PPP is the proportion of calls 

predicted to be a class that are actually of it. It is the conditional probability 

that a case is truly positive given it is predicted to be positive. 

To compare pairs of classifiers tested on the same dataset we used 

McNemar's test (McNemar, 1947) (Salzberg, 1997), a non-parametric test 

based on the standardised normal test statistic: 

(3.1) 

where t12 represents the total number of cases correctly classified by 

classifier 1, but misclassified by classifier 2; and i21represents the total 

number of cases correctly classified by classifier 2, but misclassified by 

classifier 1 (see table 3.1). We used the exact McNemar test implemented 

in R by the extract2x2 package (Fay, 2010). 

Table 3.1: Illustration of the 2x2 table required for the McNemar test. 

Classifier 1 

Correctly classified 

Misclassified 

Classifier 2 

Correctly classified Misclassified 

/12 
/22 
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3.4 Results 

We recorded a total of 609 bat passes of known identity, from which we 

extracted 5370 individual calls for analysis (Table 3.2). Within the Myotis we 

obtained 296 recordings from four species and one species group, 

comprising 3208 individual calls (Table 3.3). 

Table 3.2: Summary of echolocation call library. 

Seqs Calls 
Barbastella 62 186 
Eptesicus 13 330 
Myotis 300 3207 
Nyctalus 27 502 
Pipistrellus 67 782 
Plecotus 80 270 
Rhinolophus 16 93 

Table 3.3: Summary of Myotis echolocation call library. 

Abb. Species Seqs Calls 
M. ale Myotis aleathoe 23 309 
M.bee Myotis beehsteinii 16 191 
M. bra./mys. Myotis brandtii/mystacinus 88 1221 
M.dau Myotis daubentonii 96 775 
M. nat Myotis nattereri 73 712 

3.4.1 Random Forest classification 

A confusion matrix summarises the results of the model classification of test 

data. The relation between the actual identity of calls and the predicted 

identity of calls is displayed in a matrix which has one row and column for 

each class. Diagonal elements represent correct classifications, whilst all 

elements off the diagonal represent misclassifications. Random forest using 

power spectrum features classified calls to genus with an overall accuracy of 

97.6% and 98.4%, at the call and sequence level respectively (confusion 

matrices in Tables 3.4 and 3.5). At the sequence level, Barbastella, 

Eptesicus, Nyctalus, Pipistrellus and Rhinolophus were all identified with 

100% PPP. A single Pipistrellus sequence was misclassified as Myotis and 

three Barbastella sequences were misc\assified as Plecotus. At the call 
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level, all Rhinolophus calls were unambiguously identified. Barbastella, 

Myotis, Nyctalus, Pipistrellus and Plecotus were all identified with a PPP of 

more than 90%. Eptesicus was identified with the lowest PPP, due to 

confusion with Nyctalus. 
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Table 3.4: Genus sequence classification. 

en m 

Confusion matrix showing the classification of sequences to genus level using power spectra features and a random forest 
classifier. Positive predictive power (PPP) indicates the percentage of calls predicted to be from a group that were actually from 
that group. Overall accuracy was 98.4%, with an average PPP over all classes of 99.2%. 

Predicted class 

Barbastella Eptesicus Myotis Nyctalus Pipistrellus Plecotus Rhinolophus unclassed 

Barbastella 35 0 0 0 0 3 0 2 

Eptesicus 0 U 0 0 0 0 0 1 
." 
." 

Myotis 0 0 296 0 0 0 0 0 cu 
"0 
cu Nyctalus 0 0 0 26 0 0 0 0 
::J 
ti Pipistrellus 0 0 1 « 0 66 0 0 0 

Plecotus 0 0 0 0 0 54 0 1 

Rhinolophus 0 0 0 0 0 0 16 0 
PPP 100.0 100.0 99.7 100.0 100.0 94.7 100.0 



01 
--..I 

Table 3.6: Genus call classification. 

Confusion matrix showing the classification of individual calls to genus level using power spectra features and a random forest 
classifier. Positive predictive power (PPP) indicates the percentage of calls predicted to be from a group that were actually of 
that group. Overall accuracy was 97.6%, with an average PPP over all classes of 95.6%. 

Predicted class 

Barbastella Eptesicus Myotis Nyctalus Pipistrellus Plecotus Rhinolophus 

Barbastella 174 3 4 0 2 3 0 

VI 
Eptesicus 1 293 0 36 0 0 0 

VI 

Myotis 2 0 3196 0 9 0 0 "' u 
"' Nyctalus 0 38 0 455 0 9 0 
::I 
tJ Pipistrellus 2 0 10 0 770 0 0 « 

Plecotus 2 3 0 3 0 262 0 

Rhinolophus 0 0 0 0 0 0 93 
PPP 96.1 86.9 99.6 92.1 98.6 95.6 100.0 
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Random forest classified Myotis species with an overall accuracy of 93.1 % 

and 95.9%, at the call and sequence level respectively. At the sequence 

level, M. bechsteinii, M. daubentonii and M. nattereri were all identified with 

100% PPP. M. alcathoe and M. brandtiilmystacinus were identified with 

more than 90% PPP. M. bechsteinii was the most frequently misclassified, 

with sequences being confused with M. alcathoe and M. brandtiilmystacinus. 

At the call level M. alcathoe, M. daubentonii and M. nattereri were classified 

with more than 90% PPP. Few M. brandtiilmystacinus calls were 

misclassified, but all other species were misclassified to some degree as 

M. brandtiilmystacinus, resulting in a PPP of 88.8%. M. bechsteinii was 

frequently misclassified as M. brandtiilmystacinus. M. alcathoe and 

M. brandtiilmystacinus were misclassified as M. bechsteinii resulting in a 

PPP of 87.4%. 

Table 3.5: Myotis sequence classification. 

Confusion matrix showing the classification of Myotis sequences using 
power spectra features and a random forest classifier. Positive 
predictive power (PPP) indicates the percentage of calls predicted to be 
from a group that were actually from that group. Overall accuracy was 
95.9%, with an average PPP over all classes of 97.1 %. 

Predicted class 

M.ale M. bra./mys. M.bee M.dau M.nat unclassed 

M. ale 23 0 0 0 0 0 
VI 
VI 

M. bra./mys. 1 86 0 0 0 1 10 
U 
10 M.bee 1 6 8 0 0 1 
:J 
1:) M.dau 0 0 0 94 0 2 « 

M.nat 0 0 0 0 73 0 
PPP 92.0 93.5 100.0 100.0 100.0 

58 



Chapter 3: Acoustic identification of British bats from their echolocation calls 

Table 3.7: Myotis call classification. 

Confusion matrix showing the classification of individual Myotis calls 
using power spectra features and a random forest classifier. Positive 
predictive power (PPP) indicates the percentage of calls predicted to be 
from a group that were actually from that group. Overall accuracy was 
93.1 %, with an average PPP over all classes of 92.5%. 

Predicted class 

M.ale M.bra./mys. M.bee M.dau M.nat 
M.ale 28S 19 

VI 
4 1 0 

VI 
M.bra./mys. 16 1169 9 23 4 "' u 

"' M.bee 14 84 90 3 0 
::::I 
U 
<C 

M.dau 0 39 0 735 0 

M.nat 0 5 0 0 707 

PPP 90.5 88.8 87.4 96.5 99.4 

3.4.2 Classifier comparisons 

For classification at the genus level, the largest increase in overall accuracy 

was achieved as a result of the change in classifier, from OOA to RF (5.6% 

increase, p<O.001). In classifying calls from the genus Myotis, there was a 

significant improvement in overall accuracy as a result of the switch from 

OOA to RF (3.2% increase, p<O.001). However, the greatest increase in 

classification accuracy was a result of additional features, in the form of the 

power spectrum (PS) values. The addition of the overall call PS features 

improved accuracy by 6.4% (p<O.001), with a further 4.7% (p<O.001) 

increase with the addition of the PS features measured from the start of the 

call. 

Table 3.8: Classifier comparisons at the genus level. 

Overall accuracies (Acc) and statistical comparisons of classifiers in the 
classification of calls to genus. Classifiers are quadratic discriminant 
function analysis (OOA) and random forest (RF). Features are the 
conventional 'base' call features, power spectrum (PS) and power 
spectra (2 x PS). Classifier 1 accuracy is statistically compared to 
classifier 2 accuracy, e.g. there is a statistical difference in the accuracy 
of OOA using 'base' features compared with RF using 'base' features. 
95% Cl = confidence intervals for the McNemar test. 

Classifier 1 Acc (%) Classifier 2 Acc (%) McNemar test 95% Cl Odds ratio 

QDA 'base' 90.6 RF 'base' 96.2 p <0.001 3.29 to 5.18 4.11 

RF 'base' 96.2 RF PS 95.7 P =0.15 0.67 to 1.06 0.84 

RF 'base' 96.2 RF 2x PS 97.6 P <0.001 1.44 to 2.50 1.89 
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Table 3.9: Classifier comparisons for the Myotis. 

Overall accuracies (A cc) and statistical comparisons of classifiers in the 
classification of calls to genus. Classifiers are quadratic discriminant 
function analysis (QDA) and random forest (RF) . Features are the 
conventional 'base' call features, power spectrum (PS) and power 
spectra (2 x PS) . Classifier 1 accuracy is statistically compared to 
classifier 2 accuracy, e.g. there is a statistical difference in the accuracy 
of QDA using 'base' features compared with RF using 'base' features. 
95% Cl = confidence intervals for the McNemar test. 

Classifier 1 Ace (%) Classifier 2 Ace (%) McNemar test 95% Cl Odds ratio 

QDA 'base ' 78.8 RF 'base' 82.0 p < 0.001 1.37 to 2.07 1.68 

RF 'base' 82.0 RF PS 88.4 P < 0.001 0.43 to 0.61 0.51 

RF PS 88.4 RF 2 x PS 93.1 P < 0.001 0.13 to 0.28 0.2 

Myotis spp. calls were very variable . Figures 3.2 - 3.6 show Boxplots of 

average power spectra for each species. 
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Figure 3.2: M. alcathoe average power spectrum. 
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Myotis bechsteinii 
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Figure 3.3: M. bechsteinii average power spectrum. 

Myotis brandtiilM. mystacinus 
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Figure 3.4: M. brandtiilM. mystacinus average power spectrum. 
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Myotis daubentonii 
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Figure 3.6: M. nattereri average power spectrum. 
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3.5 Discussion 

3.5.1 Classification of sequences and calls 

We showed that classification at the sequence level is possible with a high 

degree of accuracy. We used a simple majority voting strategy, where 

sequences were only left unclassified in the case that there was a tie in the 

maximum number of votes. We could have broken ties randomly, or 

implemented a voting strategy that required a minimum number of votes, or 

introduced thresholds on the posterior probability of classified calls. In 

classifying sequences of calls recorded using the Anabat frequency division 
detector, Adams and colleagues (2010) first rejected calls identified as lower 

quality, indicated by the R2 of the model fit to calls. Low quality calls, as 

identified by their definition, were rejected and not considered in the 

subsequent voting scheme. Our procedure produced few misclassified and 

unclassified call sequences, but a more elaborate procedure that rejects low 

quality, or low confidence classifications, may prove effective in situations 

where encountering sequences containing exclusively low quality calls are 

common. 

Classification accuracy was lower for individual calls than sequences. This 

reflects the variability of individual calls within a sequence. Sequences 

frequently contain calls that have suffered some degree of high frequency 

attenuation, and may contain atypical calls that are more prone to 

misclassification, especially in the Myotis where there is extensive spectral 

and temporal overlap of call variables. It is difficult to attribute variation 

within an individual recorded sequence to differences in the emitted calls, or 

merely in the received calls as the bat moves relative to the bat detector, 

introducing differing degrees of filtering by the environment. Consequently, 

we did not attempt to quantify within and between sequence variation. 

However, it may be possible to set a call quality threshold in terms of call 

SNR, to facilitate a quantitative comparison of variation among the higher 

quality recorded calls. M. bechsteinii was often misclassified as 

M. brandtiilM. mystacinus. However, this may be a consequence of the 

relatively low sample size for this species. Whilst a large error rate can be 

attributed to the difficulty of the classification problem, insufficient training 
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data may also degrade classifier performance (Raudys & Jain, 1991). We 

will continue to add to our echolocation call library, to investigate the effects 

of sample size on classification accuracy. M. bechsteinii was frequently 

misclassified as M. brandtiilM. mystacinus which lowers the probability of 

detecting this rare species using acoustic methods. However, all 

M. bechsteinii sequences classified as M. bechsteinii were of M. bechsteinii 

(100% positive predictive power). Whilst we must remain cautious given the 

small sample size (n=8), this suggests acoustic methods may still prove a 

reliable way of generating presence data for M. bechsteinii. Presence data 

can then be used to build species distribution models, and produce habitat 

suitability maps, valuable conservation tools (species distribution modelling 

is the focus of Chapter 6, and more fully discussed there). 

Ideally an identification system should be transferable between areas, but 

geographic variation and differing species assemblages may complicate the 

transferability of trained systems. A concern is that any technique that has 

been trained from calls from a species from one part of its geographic range 

may have learned features that are specific to that area, and may not 

transfer to other areas with the same accuracy in classifications (e.g. Barclay 

& Brigham, 2002). However, a statistical finding of call variation across a 

species' geographic range may not affect the ability to identify the species by 

call structure (e.g. O'Farrell, 2000). Also, in practice, a local call library may 

simply not be available, and references calls may have to be taken from 

locations as close to the study area as possible that share similar habitats 

(Barclay & Brigham, 2002). Davy and colleagues (2007) tested two DFAs 

trained to identify calls from Italian bats, using a small sample of calls from 

known species of Greek bats, and found the functions proved effective. 

3.5.2 Comparison with other studies 

High classification accuracies were reported by Redgwell et al. (2009) for 

British species, with correct identification rates that varied from 91 - 100% 

for five species of Myotis, using an ensemble of 21 neural networks. A 

previous study using the same dataset achieved classification rates that 

varied from 75-90%, using a single neural network (Parsons & Jones, 2000). 

Direct comparison with this study is not possible as we use a different 

dataset, which is not biased towards high quality calls, a caveat 
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acknowledged by the previous studies' authors (Parsons & Jones, 2000; 

Redgwell et al., 2009). In addition, the exact methodology that led to the 

improvements in accuracy attained by Redgwell et al. (2009) is not clear. 

There is no mention of a validation set in determining the best performing 

neural networks prior to their aggregation into ensembles, and final testing 

on an independent test set. It appears that the best performing neural 

networks may have been selected on the basis of their performance on the 

final test set, although it was not possible to determine for certain because 

insufficient information was provided. If this was the case, it is an example 

of overfitting, i.e. the models are given the opportunity to take advantage of 

statistical peculiarities of the dataset, and it is expected that many of the 

results obtained will therefore be overly optimistic (Cawley & Talbot, 2010). 

To ensure unbiased estimates of accuracy, any tuning of model parameters 

or changes to model architecture must be performed prior to seeing the final 

test set (Salzberg, 1997). 

3.5.3 Concluding remarks 

The results of this study show that the random forest classifier and 

echolocation call power spectra can be used to reliably identify British bats 

from their calls. This approach outperformed conventional statistical 

analysis. However, echolocation calls are variable within a species, and 

some calls may be confused with other species. Classifying sequences of 

calls, and using a voting scheme to assign a final identification, produces 

more accurate results. We achieved high positive predictive power at the 

sequence level even for the Myotis bats, indicating that acoustic methods 

can reliably be used to collect accurate presence data for species 

distribution modelling and assessing habitat use (Chapter 6). A trained 

machine leaming classifier can operate in almost real-time. As our approach 

classifies calls in a single pass through a recording, this opens up the 

possibility that the identification system could be built into equipment that 

could be used in the field to acoustically identify bats in situ. 
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Chapter 4: Removing errors due to unexpected species and 
noise 

4.1 Abstract 

Supervised classification assumes that all classes to be encountered in 

practical use were included in training the classifier. For ecological 

applications such as classifying bat echolocation calls, this is rarely likely to 

be the case, and the number of classes may be unknown or unbounded. 

The failure to satisfy the assumption of an exhaustively defined set of 

training classes leads to the misclassification of outliers, signals very 

different from the training examples. We used two techniques to try and 

remove outliers, in an attempt to reduce misclassifications. Firstly, we used 

the soft classification output, in the form of posterior probability estimates, to 

try and identify and remove untrained classes using a simple threshold 

procedure. Post-classification thresholding proved ineffective in reducing 

the misclassifications caused by untrained classes. Secondly, a one-class 

support vector machine (SVM) was applied to each species group used in 

training, to protect the classifier from outliers not representative of the 

training data. One-class SVM reduced the misclassifications caused by 

untrained species at the cost of rejecting some known data. We suggest 

that in a fully automated identification system, methods of outlier detection 

must be employed for reliable classification. 

70 



Chapter 4: Removing errors due to unexpected species and noise 

4.2 Introduction 

Statistical classification methods are widely used in ecology, with 

applications ranging from species distribution modelling (e.g. Garzon et al., 

2006; Olden et al., 2008), to the characterisation of vegetation types from 

aerial imagery (e.g. Chapman et al., 2010; Bradter et al., 2011). A diverse 

range of classification techniques has been investigated for the identification 

of bat echolocation calls, from traditional statistical methods such as 

disciminant function analysis (DFA; Parsons & Jones, 2000; Russo & Jones, 

2002; Preatoni et al., 2005; Papadatou et al., 2008; Armitage & Ober, 2010; 

Hughes et al., 2010; Redgwell et al., 2009), to an array of more modern 

machine learning approaches, including artificial neural networks (ANNs; 

Parsons & Jones, 2000; Preatoni et al., 2005; Armitage & Ober, 2010; 

Redgwell et al., 2010), holographic neural networks (Broders et al., 2004), 

Gaussian mixture models (GMMs; Skowronski & Harris, 2005), hidden 

Markov models (HMMs; Skowronski & Harris, 2005), synergetic pattern 

recognition (Obrist et al., 2004), classification and regression trees (Adams 

et al., 2010), cluster analysis (Preatoni et al., 2005), support vector 

machines (SVM; Armitage & Ober, 2010; Redgwell et al., 2009) and random 

forests (RF; Armitage & Ober, 2010). Machine learning approaches are 

suited to solving non-linear and high-dimensional problems, and have 

generally been found to outperform traditional statistical methods such as 

DFA (e.g. Armitage & Ober, 2010; Redgwell et al., 2009). High classification 

accuracies have been achieved, even where the spectral and temporal 

characteristics of calls exhibit extensive overlap (e.g., Myotis bats -

Redgwell et al., 2009). However, models have frequently been trained using 

only high quality calls, recorded as bats were within 2 m of the bat detector 

(e.g. Parsons & Jones, 2000; Redgwell et al., 2009), and it has been 

demonstrated that the performance of such models degrades when faced 

with classifying lower quality calls, more typical of those encountered during 

field studies (Jennings et al., 2008). 

Where classifiers have been applied to field studies, it has been typical for 

the researchers to hand select the calls for classification, using only those 

with the highest signal to noise ratio (SNR) from each recorded bat pass 

(e.g. Davy et al., 2007). This procedure ensures that calls of low SNR or 

that have suffered high-frequency attenuation, can be excluded from 
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analyses to reduce the risk of misclassification. The manual measurement 

of call parameters remains a time-consuming and error-prone task, and it is 

desirable to fully-automate the process of call detection, extraction and 

classification. However, there are numerous challenges associated with 
moving from semi-automated, where there is still significant human 

interaction in the process, to fully-automated classification. The most 

significant challenge is perhaps the problem of how to deal with "unknowns" 

(Gaston & O'Neill, 2004). The basic underlying assumption of supervised 

classification is that the number of classes is exhaustively defined (Foody, 
2001). When making a prediction, a classifier assigns the incoming data to 

one of the classes defined during training. If the incoming data is novel, for 

example an echolocation call from a species not encountered during 
training, it will be misclassified. This represents a significant problem where 

classifiers are to be applied to field data, where additional species or novel 

signals may be encountered. Compiling echolocation call libraries, 

containing representative calls of known species, is a time-consuming and 

difficult task (Obrist et al., 2004). Due to the potential for intraspecific 

geographic variation (e.g. Barclay et al., 1999; O'Farrell et al., 2000; 

Papadatou et al., 2008), libraries local to the area to which they are to be 

applied are desirable. Obtaining reference calls of all species in an area 

may be very difficult, especially in areas of high species richness. 

Additionally, species assemblages should not be assumed to be static. 

Regional species composition is dynamic and likely to change over time due 

to factors such as climate change driven range expansion (e.g. Lundy et al. 

2010), or the identification of morphologically cryptic species (Barratt et al., 

1997; Helversen et al., 2001; Spitzenberger, 2006). Even where 

comprehensive call libraries can be obtained, known species may emit novel 

call types that are not represented in the training data, e.g. social calls 

(Fenton, 2003). Moreover, novel signals may be encountered due to noise. 

Noise sources may be biotic (other calling animals or stridulating insects) or 

abiotic (flowing water, rain, wind-induced vegetation noise). During manual 

analysis, researchers may filter the data that is presented to a classifier, 

ensuring that calls significantly different from the training data are not 

passed on to the classification stage. However, in a fully automated system 

there must be some provision for identifying and rejecting novel data, so that 

the classifier can return "unknown" rather than force a misclassification. This 

issue has been overlooked in the past (but see Adams et al., 2010), perhaps 
because fully automated systems were not yet developed. 
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Previous research on classifying bat echolocation calls has been largely 

concerned with hard (crisp) classification methods. In this approach, a call is 

a member of a class or not, and the decision is binary. This may suffice 

where classes are discrete, mutually exclusive and exhaustively defined, but 

this is often not the case (Foody, 2001). An alternative to hard classification 

is soft (fuzzy) classification, which provides posterior probability estimates 

for class membership. Soft classification is therefore able to represent 

ambiguity between classes, and the input data can be predicted to belong to 

more than one class. A 'winning' class can still be determined by selecting 

the class with the highest probability estimate. A single class probability 

estimate dominating all others suggests confidence in the classification. In 

contrast, if estimated probabilities are almost equal in value between 

classes, the prediction can be considered for rejection, and labelled as 

having an unknown class membership. Alternatively, a prediction may be 

assigned to multiple classes, for example a species group. This procedure 

has been applied to improve classification rates in a range of problem 

domains, for example handwritten digit recognition (Le Cun et al., 1989), 

diagnosing sleeping disorders (Gudmundsson et al., 2005), and the acoustic 

identification of insects (e.g. Chesmore, 2004). However, soft classification 

has largely been ignored for the task of bat echolocation call classification. 

Post-classification thresholds on probability estimates offer the potential to 

reject novel signals that would otherwise be misclassified (Morris et al., 

2001). A further possibility is the use of outlier detection methods, to reject 

data that are significantly different from the training data (e.g. Tax & Duin, 

1999). One-class support vector machines have been applied to the 

problem of outlier detection, and have proved particularly successful on high 

dimensional data (Tax & Duin, 2004). 

The aim of this study was to explore the effects of novel data, i.e. untrained 

classes, on the accuracy of hard and soft classifications produced by a 

support vector machine classifier. Post-classification probability thresholds 

and one-class support vector machines were investigated to reduce the 

misclassifications caused by untrained classes. 
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4.3 Methods 

4.3.1 Database of recordings 

During 2009-2011 we recorded bats at a range of sites across the UK to 

build an echolocation call library for British bat species (Chapter 3). In 

addition to our echolocation call library, we collected a database of noise 

recordings, to investigate the effects of noise sources being presented to the 

classifier. Noise recordings were obtained by carrying out walked transects, 

where noise was frequently encountered of sufficient amplitude to trigger the 

detector. 

4.3.2 Call analysis 

Calls were automatically extracted from recordings using the methods 

detailed in Chapter 2. 

For the purposes of machine classification, discriminatory features must be 

extracted from calls. Features, in classification terms, are quantifiable 

attributes that provide useful information for the discrimination of different 

classes. Features can be continuous (e.g. frequency at the start of the call), 

or binary (presence or absence of a characteristic). Four call features were 

automatically extracted from each call: call duration (ms), frequency at the 

start of the call (kHz), frequency at the end of the call (kHz), and frequency 

at the location of maximum energy of the call (kHz). These call variables are 

commonly employed in echolocation call analysis (e.g. Vaughan et al., 1997; 

Parsons & Jones, 2000; Russo & Jones, 2001), and are described in 

Redgwell et al. (2009) as 'base' parameters, a convention we adopt here. 

4.3.3 Classification algorithms 

Support vector machines (SVM) are a supervised learning technique derived 

from statistical learning theory (Vapnik, 1995). Training data features are 

mapped into a higher dimensional space using the 'kernel trick', to find the 

optimal separating hyperplane that maximises the distance between two 

groups of data. The hyperplane is a non-linear decision boundary, and 

during classification of novel data, the assigned class is determined from the 

side of the hyperplane that the data point falls on. In constructing the 
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optimal hyperplane, the algorithm only considers the support vectors, those 

data points that lie on the boundary between classes. Mapping into a higher 

dimensional space can be achieved using non-linear kernels where classes 

are not linearly separable, e.g. radial basis function (RBF) or sigmoidal. For 

a more detailed mathematical derivation of SVMs refer to (Burges, 1998). 

We implemented SVMs using UBSVM, a library for support vector machines 

developed by Chang and Lin (2001). The UBSVM package estimates 

posterior probabilities by fitting a sigmoid function that maps the SVM 

outputs (Gudmundsson et al., 2005). 

SVMs are essentially a binary (two-class) classification technique, and to 

achieve multiclass classification, the outputs of multiple models must be 

combined. Multiclass classification in this study was achieved using the 'one 

vs. one' approach implemented as default in UBSVM (Chang and Lin, 

2001). An SVM classifier is constructed for each pair of classes, resulting in 

N(N-1 )/2 models. For example, a classifier trained to discriminate 

Pipistrellus, Myotis and Nyctaius species requires three separate SVM 

classifiers. Classifier 1 is trained to discriminate Pipistrellus and Myotis, 

classifier 2 Pipistrellus and Nyctalus, and classifier 3 Myotis and Nyctalus. 

In classifying novel data, each model predicts the class in turn, and the class 

with the majority of votes over all models is selected as the predicted class. 

A common alternative is the 'one vs. all' approach, which consists of building 

one SVM per class, trained to discriminate that class from all others, but this 

has not been shown to improve predictive performance over the 'one vs. 

one' procedure (Schwenker, 2000). 

The one-class SVM algorithm is a variation on the standard SVM technique, 

adapted to use examples from only one class in training (Tax & Duin, 1999). 

Input data are mapped into a high-dimensional feature space using a kernel 

function as in SVM. However, the origin is treated as the only example from 

other classes. The algorithm iteratively finds the maximum margin 

separating hyper-plane between the training data and the origin. In this way 

a' hyper-sphere is fitted around the training data. Adjusting the kernel 

parameter nu changes the shape of the boundary, and provides a method of 

fitting a specified proportion of the data. During prediction of new data, 

points falling outside the boundary are classed as outliers to the class. For 
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example, a one-class SVM fitted to training data from Myotis species should 

reject all non-Myotis calls as outliers. However, there is a trade-off between 

rejecting all outliers, and accepting all true data. In practice, some true data 

must be rejected to ensure the majority of outliers are rejected correctly. In 

this study we used a fixed nu value of 0.05, effectively fitting the boundary 

around 95% of the training data of a class. Consequently, a one-class SVM 

fitted to Myotis species would reject -5% of true Myotis calls in order to 

reliably reject non-Myotis calls. The literature provides little guidance on 

parameter settings for one-class SVM, but a nu value of 0.05 is default in 

LlBSVM. 

4.3.4 Model evaluation 

A support vector machine was first trained using data from all species, to 

illustrate the results obtained when all classes are known. That is, during 

testing the classifier was not presented with data from species that it had not 

been trained with. To evaluate the effects of novel signal types on the 

classifications, the noise dataset was used to test the predictions of the 

classifier. In addition, we created a series of classifiers form which a single 

species group had been excluded during training. Each classifier was then 

tested with the data from the excluded group, for example Barbastella calls 

withheld during training, but subsequently presented to the classifier during 

testing. Following classification, a series of thresholds on the posterior 

probability estimates were applied to reject low-confidence classifications. 

Additionally, a one-class support vector machine was fitted to each class, 

and used to reject outliers following prediction by the standard SVM 

classifier. 

To obtain an unbiased estimate of the true error rate of different 

classification algorithms, models must be tested using a set of data 

independent from that used to train the model. Cross-validation procedures 

use the available data more efficiently than a simple division into a separate 

training and test set. A small amount of data is withheld, with the remaining 

data being used to train the classifier. The withheld data are then used to 

test the classifier. This process is repeated, withholding a new set of data 

each time, until all data have been classified. A nearly unbiased estimate of 

classifier accuracy is then obtained by averaging the results from all 
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iterations (Varma & Simon, 2006). We performed validation of models using 

the leave-one-out cross-validation (LOOCV) method, taking call sequences 

as the sampling unit. A single sequence of calls (Le. an individual bat) is 

held out and used to assess the accuracy of a model trained on the 

remaining sequences of calls, by classifying each individual call from the 

withheld sequence. This process is repeated until all sequences have been 

used as test sets. This approach maximises the information available to 

train models, whilst avoiding training and testing models using calls from the 

same individual, which would introduce problems of pseudo-replication 

(Hurlbert, 1984). 

Models were evaluated using positive predictive power (PPP; percentages of 

predictions that were actually calls of that species), and sensitivity 

(percentage of calls correctly classified). Accuracy metrics were calculated 

for individual classes, as overall measures of model accuracy can be biased 

by unbalanced class sizes. 
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4.4 Results 

We used an evaluation database of 5518 echolocation calls, from 565 

recorded sequences (Table 4.1). In addition, to evaluate the effects of noise 

being presented to the classifier we collected a database comprising 414 

noise samples. 

Table 4.1: Summary of call library used for evaluation. 

Seqs Calls 
Barbastella 62 222 
Eptesicus 13 306 
Myotis 300 3185 
Nyctalus 27 512 
Pipistrellus 67 829 
Plecotus 80 354 
Rhinolophus 16 110 

When all classes were included in classifier training, the accuracy with which 

the test set was classified using leave-one-out cross-validation (LOOCV) 

was high, with a minimum positive predictive power (PPP) of 88.6% for 

Eptesicus, with all other groups above 90% (Table 4.2). 
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Table 4.2: Confusion matrix for an exhaustively defined set of classes. 

....... 
(0 

Support vector machine classification, evaluated using leave-one-out cross-validation (LOOCV). Positive predictive power (PPP) 
indicates the percentage of calls that were predicted to be from a genus that were actually of that genus. 

Predicted 

Actual Barbastella Eptesicus Myotis Nyctalus Pipistrellus Plecotus Rhino/ophus 

Barbastella 210 0 0 0 0 12 0 
Eptesicus 0 279 0 27 0 0 0 
Myotis 0 0 3183 0 2 0 0 
Nyctalus 0 31 0 476 0 5 0 
Pipistrellus 0 0 1 0 828 0 0 
Plecotus 5 5 0 0 0 344 0 
Rhino/ophus 0 0 0 0 0 0 110 
N 215 315 3184 503 830 361 110 
PPP 97.7 88.6 100.0 94.6 99.S 95.3 100.0 
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Table 4.3 shows the results of withholding all Barbastella calls during 

classifier training, but including them during testing. Omitting a class in this 

way violates the classifier's assumption of an exhaustively defined set of 

classes. It can be seen that calls from Barbastel/a are misclassified as four 

other genera, with the majority of calls misclassified as Plecotus. As a 

result, the PPP for Plecotus is reduced from 95.3% to 66.5%. 

Table 4.3: Confusion matrix with Barbastella excluded during training. 

Support vector machine classification, evaluated using leave-one-out 
cross-validation (LOOCV). Barbastella calls are withheld during 
training, but presented to the classifier during testing. Positive 
predictive power (PPP) indicates the percentage of calls that were 
predicted to be from a genus that were actually of that genus. 

Predicted 

Actual Eptesicus Myotis Nyctalus Pipistrellus Plecotus Rhinoloe.hus 

Barbastella 42 0 4 8 168 0 

Eptesicus 279 0 27 0 0 0 

Myotis 0 3183 0 2 0 0 

Nyctolus 31 0 476 0 5 0 

Pipistrellus 0 1 0 828 0 0 

Plecotus 5 0 0 0 344 0 

Rhinolophus 0 0 0 0 0 110 

I 357 3184 507 838 517 110 

N 315 3184 503 830 361 110 

PPP 78.2 100.0 93.9 98.8 66.5 100.0 

Table 4.4 shows the distributions of misclassifications as a result of 

excluding a single class in turn from the training set, but including it during 

testing. The average classifier confidence is presented, calculated over all 

the calls misclassified as a particular genus. It can be seen that when 

Barbastella calls were excluded, they were classified with a high confidence 

as Plecotus (median confidence 0.93). Barbastella calls were also 

misidentified as Eptesicus, Nyctalus and Pipistrellus, although the classifier 

confidence is lower (median confidence 0.63, 0.44, and 0.53 respectively). 

Excluding Eptesicus calls during training results in their misclassification as 

four other genera, with the majority and highest confidence being Nyctalus 

(median confidence 0.94). Myotis calls were also misclassified as four other 

genera, with the majority misclassified as Pipistrellus (median confidence 
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0.92}. Nyctalus calls were misclassified as three other genera, the majority 

as Eptesicus (median confidence 0.8). Pipistrellus calls were misclassified 

as two other genera, the majority as Myotis (median confidence 0.99). 

Plecotus calls were misclassified as three other genera, the majority as 

Barbastella (median confidence 0.84). Rhinolophus calls were exclusively 

misclassified as Myotis (median confidence 0.71). In general, excluding a 

class during training led to misclassifications which had falsely high levels of 

confidence, with median confidence frequently higher than 0.9. 
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Table 4.4: Confusion matrix showing the distribution of misclassifications on testing a classifier with calls from a class 
excluded during training. 

The median and inter-quartile ranges are given for the probability estimates of each misclassified class; e.g. a classifier not 
trained with calls from the Barbastella class misclassifies them as Eptesicus, Nyctalus, Pipistrellus, and Plecotus; 42 calls are 
misclassified as Eptesicus, and the median probability estimate for those calls is 0.63, while the inter-quartile range is 0.23. 

Misclassifications 

excluded class Barbastella Eptesicus Myotis Nyctalus Pipistrellus Plecotus Rhinolophus I 
Barbastella x 42 0 4 8 168 0 222 

Median (IQR) 0.63 (0.23) 0.44 (0.06) 0.53 (0.19) 0.93 (0.18) 

Eptesicus 35 x 1 209 0 61 0 306 

Median (IQR) 0.57 (0.18) 0.47 (0) 0.94 (0.20) 0.55 (0.19) 

Myotis 0 63 x 0 3102 1 19 3185 

Median (IQR) 0.63 (0.34) 0.92 (0.14) 0.18 (0) 0.37(0.19) 

Nyctalus 0 481 4 x 0 27 0 512 

Median (IQR) 0.80 (0.34) 0.49 (0.05) 0.70 (0.22) 

Pipistrellus 114 0 715 0 x 0 0 829 

Median (IQR) 0.73(0.45) 0.99 (0.04) 

Plecotus 246 42 0 66 0 x 0 354 

Median (IQR) 0.84(0.24) 0.53 (0.22) 0.80 (0.22) 

Rhinolophus 0 0 110 0 0 0 x 110 

Median (IQR) 0.71 (0) 
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Using the soft classifier output and a post-classification threshold, calls can 

be rejected that have been classified with low confidence. Table 4.5 shows 

the results of varying the post-classification thresholds. It is evident that 

increasing the threshold results in more calls being rejected. Myotis and 

Rhinolophus are identified with 100% PPP over all thresholds, but all other 

genera show increasing PPP with increasing threshold. This indicates that 

the low confidence classifications were those more likely to be misclassified, 

and were rejected by the threshold procedure. However, sensitivity 

decreases with increasing threshold, with the rejection of more calls. 
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Table 4.5: Classifier accuracy in response to a post-classification threshold. 

CD 
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Classifications below the threshold are rejected. Accuracy is assessed in terms of positive predictive power (PPP; percentages 
of predictions that were actually calls of that species), and sensitivity (percentage of calls correctly classified). The minimum 
classification rate (i.e. species with the lowest correct identification rate) is highlighted in bold for each threshold. The number of 
rejected calls left unclassified for each threshold level is shown. 

Genus 
Threshold Barbastella Eptesicus Myotis Nyctalu5 Pipistrellus Plecotus Rhinolophus 

none PPP (sensitivity) 97.7(94.6) 88.6 (91.2) 100 (100) 94.6 (93.0) 99.8 (99.9) 95.3 (97.2) 100 (100) 
0.5 rejected 0 1 0 8 0 2 0 

PPP (sensitivity) 97.7(94.6) 90.3 (91.2) 100 (100) 94.8 (92.8) 99.8 (99.9) 95.8 (96.9) 100 (100) 
0.6 rejected 6 13 1 25 0 3 0 

PPP (sensitivity) 97.7 (93.7) 92.5 (88.2) 100 (100) 95.3 (91.2) 99.9 (99.9) 97.1 (96.6) 100 (100) 
0.7 rejected 12 30 1 42 0 9 0 

PPP (sensitivity) 99 (92.8) 94.9 (85.0) 100 (100) 96.6 (89.8) 99.9 (99.9) 98.9 (95.8) 100 (100) 
0.8 rejected 16 42 3 60 2 15 0 

PPP (sensitivity) 99 (91.0) 95.8(82.0) 100 (99.9) 97.2 (87.0) 99.9 (99.6) 98.8 (94.1) 100 (100) 

0.9 rejected 33 93 7 87 9 38 0 
PPP (sensitivity) 99.5 (84.2) 98.1 (68.0) 100 (100) 98.8 (82.8) 99.9 (98.9) 99.4 (88.1) 100 (100) 

N 222 306 3185 512 829 354 110 



Chapter 4: Removing errors due to unexpected species and noise 

To investigate the ability of a post-classification threshold to reject noise 

data, a classifier trained on all genera was tested with noise, at a range of 

threshold values (Table 4.6). At a threshold of zero all noise files are 

misclassified as echolocation calls, distributed between the Myotis, Nyctalus 

and the majority misclassified as Plecotus. 82% of noise files remain 

misclassified even at a high threshold level of 0.9. Noise files are totally 

rejected at a threshold level of 0.99, a level that would reject the majority of 

echolocation calls. 
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Table 4.6: Confusion matrix showing classification of noise recordings. 

The classification of noise files are shown for varying post-classification thresholds. At a threshold of zero, all 414 noise files are 
misclassified. A threshold of 0.99 is required to correctly reject all noise files. 

Threshold Barbastella Nyctalus Pipistrellus Plecotus Rhinolo hus I 

0 0 0 3 27 0 384 0 414 

0.5 0 0 3 27 0 375 0 405 

0.6 0 0 3 27 0 370 0 400 

0.7 0 0 0 24 0 368 0 392 

0.8 Q.I 0 0 0 22 0 358 0 380 .!!! 

0.9 
0 

0 0 0 17 0 323 0 340 z 
0.95 0 0 0 7 0 154 0 161 

0.97 0 0 0 4 0 29 0 33 

0.98 0 0 0 1 0 9 0 10 

0.99 0 0 0 0 0 0 0 0 
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In contrast to probability thresholding, outlier detection proved more 

effective. The use of outlier detection, in the form of a one-class SVM, 

protected the classifier from untrained classes. Table 4.7 shows the results 

of excluding the Barbastella class during training. Ten calls were 

misclassified as Plecotus, and all others were rejected by the classifier. 

When Barbastella calls were included during training of a standard classifier 

without outlier detection, twelve Barbastella calls were misclassified as 

Plecotus. This indicates that whilst there is some confusion between 

Barbastella and Plecotus due to their similar call types, the outlier detection 

effectively protects the classifier from untrained classes. The classifier was 

also presented with noise, and all noise files were correctly rejected by the 

classifier. 
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Table 4.8: Confusion matrix for hard classification of calls, followed by outlier rejection by a one-class SVM. 

The Barbastella class has been excluded during training, to illustrate the effects of a novel class during testing. In addition, the 
classifier is tested with noise files. Classifier accuracy for each class is assessed in terms of positive predictive power (PPP; 
percentages of predictions that were actually calls of that species), and sensitivity (percentage of calls correctly classified). The 
number of rejected calls is also shown. 

Predicted 

Actual Eptesicus Myotis Nyctalus Pipistrellus Plecotus Rhinolophus Rejected 

Barbastella 0 0 0 0 10 0 212 
Eptesicus 279 0 25 0 0 0 2 

Myotis 0 3021 0 1 0 0 163 
Nyctalus 31 0 458 0 5 0 18 
Pipistrellus 0 0 0 787 0 0 42 
Plecotus 5 0 0 0 327 0 22 
Rhinolophus 0 0 0 0 0 99 11 
Noise 0 0 0 0 0 0 414 
I 315 3021 483 788 342 99 884 

N 315 3184 503 830 361 110 
PPP 88.6 100.0 94.8 99.9 95.6 100.0 

sensitivity 88.6 94.9 91.1 94.8 90.6 90.0 
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4.5 Discussion 

Classifiers implicitly assume that the data used in training is representative 

of the real world data they are expected to make predictions on. This 

presents a problem for ecological applications classifying species, where 

during training some species may be excluded because suitable data was 

unavailable, or because they were unknown to the researcher. In the 

absence of publically available echolocation call libraries, researchers must 

develop their own. Collecting ground truth data for classifying bat 

echolocation calls is labour intensive and time consuming. Bats must be 

captured so that they can be identified and recorded on release, or species­

specific roosts must be found, enabling recordings of bats of known identity 

to be recorded emerging from or returning to their roost. Collecting sufficient 

data for training a classifier from rare species may not be possible without 

considerable effort, and the species may not even be of interest for the 

particular applications of the researcher. However, this study has clearly 

shown that without a comprehensive library of calls, misclassifications will 

occur in the event of novel calls being presented to the classifier, unless 

measures are taken to prevent it. Previous echolocation classification 

studies have rarely considered the implications of untrained classes, as their 

focus has largely been comparing methods of classification (e.g. Parsons & 

Jones, 2000; Redgwell et al., 2009). Jones and colleagues (2000) 

acknowledge that classifiers are limited by the data they are trained with, 

and that misclassification will result from a species a trained system has not 

seen before. However, they make no suggestion as to how this can be 

resolved. Where classifiers have been applied to practical ecological 

research, calls have been hand-selected for classification, enabling the 

researcher to filter the calls reaching the classifier, protecting it from novel 

signals, for example untrained social calls and feeding buzzes (e.g. Davy et 

al., 2007). 

In a fully automated identification system without a human screening 

process, a range of novel signal types may reach the classifier. By forcing 

data into the classes predefined during training, species not present during 

training will be misclassified. In addition, other signals such as social calls or 

environmental noise will be misclassified as echolocation calls, unless 

measures are taken to prevent it. Training data for an exhaustive set of 
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classes may not be available, particularly in ecological applications, and 

some form of outlier detection is necessary. The posterior probability 

estimates from soft classifiers provide a relative measure of class 

membership, and can therefore be used to identify calls that are not clearly 

identifiable as belonging to a single species or species group. Soft classifier 

outputs are increasingly used in land cover classification from remotely 

sensed data, where pixels may not comprise homogeneous cover of a single 

class (Foody, 2001). Despite the extensive overlap in the spectral and 

temporal parameters in the echolocation calls of some species, soft classifier 

outputs have rarely been made use of. We used a simple post-classification 

processing of the soft output to reject classifications falling below a 

confidence threshold. This procedure effectively rejected calls falling close 

to the boundary of known classes that had been classified with low certainty. 

This improved the positive predictive power for many species. However, we 

found probability estimates to be routinely over confident in the face of 

outliers, data significantly different from which the classifier had been trained 

with. Novel data are classified arbitrarily according to where they fall in 

relation to the decision boundaries created during training. It appears that 

where data fall far from a decision boundary, they are classified with falsely 

high confidence. This may be in part due to probability estimates being 

normalised to sum to unity over all classes for anyone prediction. This 

means data are never classified as having a low probability over all classes, 

and renders probability thresholding an ineffective method for rejecting novel 

data. 

In contrast to post-classification thresholding, one-class support vector 

machines, a dedicated form of outlier detection, robustly rejected novel data. 

Noise and species not represented in the training data were successfully 

rejected as outliers, preventing misclassification. With a conventional 

classifier, considerable effort must be directed on obtaining training data for 

an exhaustive set of classes, for example all species in a geographic area, 

to ensure misclassifications are not made. However, only a subset of those 

species may be of interest to the researcher. In addition, in some cases, for 

example rare species, obtaining representative training data may not be 

feasible. Here, it is suggested that a one-class-classification approach could 

provide a solution. The one-class approach could be particularly useful 

when interest focuses on a specific species or species group, and the goal 
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of classification is not to produce full inventories. In this case, researchers 

could rapidly obtain training data for the target group, and use outlier 

detection to filter calls from other species. One-class SVMs are simple to 

apply, but their use comes at the cost of falsely rejecting some known data. 

However, in applications where the number of classes cannot be known, the 

alternative is misclassification of novel data, or significant human 

intervention to manually filter the input to the classifier. The use of outlier 

detection methods enables the reliable application of fully automated 

species identification systems, removing the bottleneck of manual analysis, 

increasing the scope of field studies. 

Once in practical use in the field, the classifications rejected as outliers from 

an automated species identification system may prove informative. For 

example, clustering techniques such as k-means (MacKay, 2003) may be 

applied to the outlying data, to group similar call types and to try and identify 

the number of unknown classes that are being encountered. This technique 

could prove particularly insightful applying acoustic methods in species rich 

areas, where only a proportion of the species in bat assemblages may be 

known. Acoustic methods could be applied to survey and monitor those 

species for which training data is available, with the accumulating outlying 

data used to identify morphospecies not present in the training data. 

Morphospecies richness as identified by acoustic methods may be a 

valuable first step in understanding the bat biodiversity of a region. 
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Chapter 5: Species-specific swarming activity using 
automated echolocation call loggers 

5.1 Abstract 

We used acoustic loggers to monitor species-specific bat activity at Link Pot, 

part of a remote cave system in the north of England, over a period of three 

months. In total, >20,000 audio files were analysed to investigate the 

temporal patterns in activity. The use of automated methods allowed the 

rapid analysis of the acquired data and the separation of species with high 

accuracy in an objective, repeatable way. We showed that for monitoring 
purposes, acoustic logging is a viable alternative to catching, which is a 

labour intensive and intrusive technique that need only be used when 

necessary. We also demonstrate the use of generalised additive models 

(GAM), a flexible non-linear statistical technique, to produce a quantitative 

phenological model of late autumn swarming, relating temporal bat activity 

and environmental variables. 
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5.2 Introduction 

During the autumn many species of bats gather at underground sites such 

as caves and mines, in an activity known as 'autumn swarming'. Many 

hundreds of bats may visit a single site each night, arriving from a large 

catchment area, and staying for only a few hours before returning to their 

day roosts (e.g. Fenton, 1969; Parsons & Jones, 2003; Rivers et al., 2006). 

Within this time the bats fly in and around the entrances to underground 

sites, often chasing other individuals in what can be a spectacular social 

display. The most widely accepted function of swarming is that it is a mating 

event (Thomas et al., 1979; Rivers et al., 2005; Furmankiewicz & 

Altringham, 2007), although it may also play an important role for the bats in 

assessing hibernacula before the onset of winter (e.g. Fenton, 1969; Veith et 

al., 2004). The species that take part in this activity belong to the genera 

Myotis, Plecotus and Barbastella and include some of Britain's rarest 

mammal species, including Bechstein's bat (Myotis bechsteinil) and the 

newly discovered Alcathoe bat (M. alcathoe). Swarming individuals are 

typically faithful to a single location (Glover and Altringham, 2008), and given 

the large number of bats and the rarity of some of the species involved, 

these sites have a vital role to play in conservation (Parsons et al., 2003a). 

With the bats flying in to sites from such large catchment areas, swarming 

also offers an opportunity to monitor bat populations at the landscape scale. 

The identification and monitoring of swarming sites is challenging. 

Answering many of the ecological questions surrounding swarming has 

necessitated the capture and recapture of ringed bats, helping provide 

estimates as to the numbers of individuals visiting a site, and the catchment 

areas involved (e.g. Parsons & Jones, 2003; Rivers et al., 2006). Whilst 

these studies have provided an invaluable insight into the use of swarming 

sites by bats, capture is an intrusive and extremely labour intensive survey 

method that can only be carried out by highly trained individuals. Small, 

portable devices that log the echolocation calls of bats have been used both 

to discover and monitor sites without disturbing the natural activity of the 

bats (Parsons et al., 2003b; Glover & Altringham, 2008). In addition, light 

barrier systems that log the movement of bats as they break carefully placed 

beams, have also been applied to swarming studies (e.g. Berkov8 & Zukal, 

2010). Both types of activity logger can be left for extended time periods to 
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collect large quantities of data. Whilst they give only an index of activity (a 

single bat may trigger a logger multiple times), logged activity at a site has 

been shown to be strongly correlated with the number of bats caught 

(Parsons et al., 2003b). Loggers remain the most practical method of 

monitoring long-term population trends at large numbers of underground 

sites (Glover & Altringham, 2008). However, these devices have been 

limited to monitoring the overall bat activity, with no ability to discriminate 

between species. With advances in bat detector technology it is now 

feasible to collect long term monitoring data that stores high quality digital 

recordings of the bats' calls, from which species information can 

subsequently be extracted. 

In this study we applied automated acoustic analysis techniques to extract 

species-specific data on swarming activity at a known swarming site. 

Ecological data are frequently complex and non-linear in nature, making it 

challenging to identify meaningful patterns using traditional statistical 

techniques such as linear regression. The use of simple linear statistical 

techniques is still widespread in ecology, but increasingly ecologists are 

applying flexible non-linear models such as Generalised additive models 

(GAM; e.g. Baker, 2008; Maloney et al., 2011). GAMs offer a flexible 

modelling approach that retains the interpretability of standard linear models, 

fitting smooth functions to identify nonlinearities in the relationship between 

predictor and response variables (Wood, 2006). We demonstrate the use of 

GAM to produce a quantitative phenological model of late autumn swarming, 

relating temporal bat activity and environmental variables. 
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5.3 Methods 

5.3.1 Study site 

The study was carried out at the entrance to Link Pot, part of the Ease Gill 

cave system on the Cumbria/Lancashire border (OS grid reference 

S0668803; Figure 5.1). 

Figure 5.1: A view over Casterton Fell with the Ease GiI! cave system 
below. The entrance to Link Pot is situated approximately in the centre 
of the picture. 

5.3.2 Acoustic data collection 

A direct sampling detector (Pettersson OSOOX, www.batsound.com) was 

positioned within 2 m of the narrow, vertical entrance to the cave, and left to 

collect data for a total of 48 nights during August-October 2010. The 

detector was secured to a tripod -1 m above ground level. The detector was 

set to trigger on detecting ultrasound, and subsequently record for a period 

of 1 s. Recordings were stored internally at 16bits/SOOkHz on removable 

compact flash cards. The effective frequency response of the system was 
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10-250 kHz which enabled all British species of bat to be recorded. The 

detector trigger threshold and gain were kept constant throughout the study 

period to maintain consistency in sensitivity. Sampling was not carried out in 

periods where heavy rain was forecast, as the detector had limited weather 

proofing. 

5.3.3 Acoustic analysis 

Echolocation calls were automatically extracted and classified to species 

level using the methodology outlined in Chapters 2-4. At the start of each 

WA V file the D500X detector embedded the date and time as the number of 

seconds elapsed since midnight Coordinated Universal Time (UTC) of 

Thursday, January 1st, 1970 (a convention known as Unix time). Dates and 

times were subsequently extracted during analysis using a custom written 

C++ function (Appendix C.1). For each recorded file, all individual calls 

detected were classified to genus, with a further stage of classification for 

Myofis and Pipisfrellus calls to species level. The results from a single file 

were converted into a list of presences and absences, with a record for a 

presence requiring at least 3 classified calls with posterior probabilities 

obtained from the classification algorithm of >0.5. This procedure enabled a 

recorded sequence to be attributed to more than one group (multiple species 

may fly in the same airspace and be recorded concurrently). Such an 

approach also prevents a single, or pair of misclassified calls, from being 

incorrectly attributed as a presence. A log of absences was made to help 

ensure that in sampling multiple nights it was possible to separate (using an 

automated script), an 'absence of presence' or true absence, from the 

absence of data due to a period without data collection. The automated 

analysis procedure stored the presence/absence log, date and time for all 

recordings in a simple text file format (comma separated file; CSV). Text 

files were then imported into the statistical program R (R Development Core 

Team, 2011), where scripts were used for aggregating and plotting data, and 

for statistical analysis. 

Two main R scripts were used to summarise bat activity from the raw 

presence absence data extracted from each sound file over the study period. 

We summarised activity by night, producing a nightly activity index for each 

species as the sum of passes for that species. This was achieved using the 
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period.apply function from the package xts (Ryan & Ulrich, 2011; Appendix 

C.2). Additionally, we summarised activity measured as hours after sunset, 

summed over the swarming season. This script automatically calculated the 

time of sunset for the study site, for each day of sampling, using the function 

sunriset from the package maptools (Lewin-Koh & Bivand, 2011; Appendix 

C.3). 

5.3.4 Environmental variables 

Weather data were obtained from the closest publically available records to 

the study site, at Storth (Weather Underground, 

http://www.wunderground.coml). situated -20 km Link Pot. Percentage of 

moon face illuminated was obtained from the Solar and Moon Calculator 

(Dexter, 2011; http://ftdevelop.pcriot.com/index.php). Data are shown in 

Appendix C.4. 

5.3.5 Statistical analysis 

Previous studies have indicated that activity at swarming sites is highest 

throughout August-October (the swarming period), with a peak of activity in 

September (Parsons et al., 2003a; Glover & Altringham, 2008). We used 

penalized regression splines in generalised additive models (GAM), to model 

the non-linear development in nightly bat activity over the swarming period. 

Variance inflation factors (VIF) were used to identify and drop correlated 

variables prior to analysis (Zuur et al., 2009). VIF values were calculated 

using the corvif function from the AED package (Zuur, 2010). All GAM 

models were fitted in R using the package mgcv (Wood, 2011) assuming a 

negative binomial distribution. For count data, Poisson or negative binomial 

models should be fitted in preference to log-transforming the data to satisfy 

parametric test assumptions (O'Hara & Kotze, 2010). Predictors were fitted 

using smooth terms and 4 degrees of freedom. 
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5.4 Results 

5.4.1 Total activity and species composition 

7699 bat passes (recorded sequences containing >2 calls) from 47 nights of 

sampling were classified (Tables 5.1-5.3). 

Table 5.1: Bat passes classified to genus. 

The number of passes classified (N) and the percentage of the total 
passes (%) for each genera classified. 

N % 

Myotis 6250 81.2 
Nyctalus 363 4.7 
Pipistrellus 1031 13.4 
Plecotus 55 0.7 
TOTAL 7699 100.0 

Table 5.2: Pipistrellus passes. 

The number of passes classified (N) and the percentage of the total 
passes (%) for Pipistrellus bats classified. 

Table 5.3: Myotis passes. 

N % 
P. pipistrellus 864 83.8 
P. pygmaeus 167 16.2 
TOTAL 1031 100.0 

The number of passes classified (N) and the percentage of the total 
passes (%) for Myotis bats classified. 

N % 

M. alcathoe 57 0.9 
M. brandtii/ M. mystacinus 3090 49.4 
M. daubentonii 695 11.1 
M. nattereri 2408 38.5 
TOTAL 6250 100.0 
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Activity was dominated by Myotis bats, comprising 81.2% of total bat 

passes. Pipistrellus species accounted for of the bulk of the remaining 

activity, with >10% of the total passes. Small amounts of Nyctalus and 

Plecotus activity were also recorded, at 4.7% and 0.7% of the total activity 

respectively. The grey long-ea red bat (Plecotus austriacus) has a very 

restricted distribution in Britain (Harris et al., 1995), and the Plecotus activity 

recorded in this study can confidently be attributed to the brown long-eared 

bat (P. auritus). Calls attributed to the genus Nyctalus were long duration 

and low frequency, characteristic of N. noctula. 

Activity within the Myotis was dominated by the species group 

M. brandtiilM. mystacinus and M. nattereri, with 49.4% and 38.5% of the 

total activity respectively. A previous study carried out catching at swarming 

sites in the wider study area, and found both M. brandtii and M. mystacinus 

(n=103 & n=76 respectively; Glover & Altringham, 2008), so the activity 

found in this study attributed to the species group is likely to be split fairly 

evenly between the two species, making M. nattereri the likely dominant 

swarming species. M. daubentonii accounted for> 10% of the total Myotis 

activity, and a very small number of passes were attributed to M. alcathoe 

(0.9% of the total). The majority of Pipistrellus activity was P. pipistrellus, 

with P. pygmaeus occurring in lower proportions (83.8% and 16.2% 

respectively) . 

Species composition changed throughout the three months of the swarming 

season, with a transition of dominance from M. brandtiilM. mystacinus to 

M. nattereri (Figure 5.2). The proportion of M. daubentonii decreased 

steadily throughout the season, and the proportion of M. alcathoe was 

consistently low. 
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Figure 5.2: Myotis species composition by month of acoustic sampling. 

5.4.2 Changes in activity through the swarming season 

Myotis, Pipistrellus and Plecotus activity peaked in early September, whilst 

Nyctalus activity was consistently low until a late peak in October, dominated 

by a single night (14th October; Figure 5.3). Visual inspection of sound files 

revealed Nyctalus feeding buzzes (highly increased call repetition rate), 

consistent with foraging activity. Myotis and Plecotus activity remained low 

throughout October, but relative Pipistrellus activity showed signs of 

continuation into the second half of October. There was considerable night 

to night variation in activity in all groups. 

104 



Chapter 5: Species-specific swarming activity using automated echolocation 
call loggers 

M otis N ctalus 

• 250 - • 1500 

200 -

1000 • 150 -
~ 
-+-J 
L 
(J) 100 -.-
c 500 
~ 50 -ill 
0. 
Ul 0 -Q) 0 
Ul 
Ul 
co 
0. Se Oct Se Oct 

-+-J Pi istrellus Plecotus co 
.D 30 - • 
'-..../ 

X 200 - 2S -ill 
-0 
C • 20 -
>-

150 -
-+-J 

15 -
> • 

-+-J 
U 10 -« 

5 -

o -

Sep Oct Sep Oct 

Date 

Figure 5.3: Seasonal activity. 

Myotis, Nyctalus, Pipistrellus and Plecotus nightly activity over the 
swarming period (August-October) . 

The similarity between seasonal Myotis and Pipistrellus activity was 

unexpected, as catching records indicate Pipistrellus spp. do not engage in 

autumn swarming activity at the site (Glover & Altringham, 2008). There 

was a significant moderate to strong positive correlation between Myotis and 

Pipistrellus activity (Pearson's correlation coefficient = 0.742, d.f . = 45, 

p<0.001 ; Figure 5.4). 
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Figure 5.4: Correlation between Myotis and Pipistrellus activity. 

Myotis species showed broadly similar seasonal patterns in activity, with all 

species showing high levels of activity in early September (Figure 5.5) . At a 

finer scale, M. alcathoe showed relatively higher levels of activity in August, 

declining through September. LOESS curves in Figure 5.5 reveal earlier 

patterns of activity for the species group M. brandtiilM. mystacinus in 

comparison to M. daubentonii, and for M. daubentonii compared to 

M. nattereri. 
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Figure 5.5: Seasonal Myotis activity. 

Myotis spp_ nightly activity over the swarming period (August-October)_ 

5.4.3 Changes in activity through the night 

The median time of activity after sunset was significantly different between 

genera (Kruskal-Wallis H= 575.5, df = 3, p < 0.001) , with all pairwise tests 

significant (p < 0_01) except between Myotis and Plecotus (Wilcoxon rank 

sum tests, using Bonferroni adjustment for multiple tests; Table 5.4). 

Median Nyctalus and Pipistrellus activity were approximately 2 and 3 hours 

after sunset respectively, with median Myotis and Plecotus activity both 

approximately 4 hours after sunset (Figure 5_6). The overal l nightly 

distribution of activity was significantly different at the genus level between 

all groups (pair wise two-sample Kolmogorov-Smirnov tests with Bonferroni 

correction for multiple tests, Table 5.5) . Pipistrellus and Nyctalus activity 
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were positively skewed, and Myotis activity showed a more normal 

distributions (kernel density plots Figure 5.7). 

Table 5.4: Pairwise comparisons of median activity after sunset. 

Wilcoxon rank sum tests (ns, not significant). 

Myotis Nyctalus Pipistrel/us 

Nyctalus p<O.OOl 

Pipistrel/us p<O.OOl p<O.OOl 

Plecotus ns p<O.Ol p<O.Ol 

Figure 5.6: Boxplot of time of activity (bat passes) relative to sunset. 

Table 5.5: Comparison of nightly distribution of activity. 

Pairwise two-sample Kolmogorov-Smirnov tests. 

Myotis Nyctalus Pipistrel/us 

0 p-value 0 p-value 0 p-value 

Nyctalus 0.65 p<O.Ol 

Pipistrellus 0.32 p<O.Ol 0.35 p<O.Ol 

Plecotus 0.26 p<O.Ol 0.81 p<O.Ol 0.47 p<O.Ol 
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Figure 5.7: Bat activity relative to sunset, shown as kernel density 
plots. 

The median time of activity after sunset was significantly different between 

the Myotis species (Kruskal-Wallis H= 459.3, d.f. = 3, P < 0.001), with all 

palrwlse tests significant except between M. alcathoe and 

M. brandtiil M. mystacinus and between M. alcathoe and M. daubentonii 

(Wilcoxon rank sum tests, using Bonferroni adjustment for multiple tests; 

Table 5.6, Box plots shown in Figure 5.8). Between the Myotis species the 

nightly distribution of activity was significantly different between all pairs of 

species except for between M. alcathoe and M. daubentonii, and between 

M. alcathoe and the species group M. brandtiilM. mystacinus (pair wise two­

sample Kolmogorov-Smirnov tests with Bonferroni correction for multiple 

tests, Table 5.7) . The data for M. brandtiilM. mystacinus were more 

positively skewed than M. daubentonii and M. nattereri (kernel density plots 
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Figure 5.9) . M. alcathoe activity was positively skewed, although the sample 

size was small. 

Table 5.6: Pairwise comparisons of median activity after sunset for the 
Myotis. 
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ns 
p < 0.05 

p < 0.001 

P < 0.001 
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P < 0.001 

M. natt ereri 

Figure 5.8: Boxplot of time of activity (bat passes) relative to sunset. 

Table 5.7: Comparison of nightly distribution of activity for the Myotis. 

Pairwise two-sample Kolmogorov-Smirnov tests. 

Myotis alcothoe M. bra./ M. mys. M. daubentonii 
0 p-value 0 p-value 0 p-value 

M. bra./ M. mys. 0.12 p<O.Ol 

M. daubentonii 0.21 p<O.Ol 0.16 p<O.Ol 

M. nattereri 0.30 p<O.Ol 0.29 p<O.Ol 0.18 p<O.Ol 
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Figure 5.9: Bat activity relative to sunset, shown as kernel density 
plots. 

5.4.4 Generalised additive modelling (GAM) 

An initial inspection of the environmental variables was undertaken to 

identify outliers. Average daily wind speed and rainfall sum were 

subsequently square root transformed because of large values. Variance 

inflation factors (VIF) revealed that many environmental variables were 

highly correlated (Table 5.6) . 
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Table 5.6: Variance inflation factors (VI F). 

VIF values for the environmental variables prior to dropping variables. 

VIF 
Moon illumination 1.37 
Temp High 3.85 
Temp Average 72.76 
Temp Low 49.28 

Dewpoint High 25.27 
Dewpoint Average 74.60 
Dewpoint Low 50.55 
Humidity High 4.48 

Humidity Average 17.24 

Humidity Low 9.95 
Pressure High 7.43 
Pressure Low 8.72 
Windspeed High 9.63 

Windspeed Average 10.92 

Rai nfall Sum 2.28 

Collinear explanatory variables should be avoided in statistical modelling, 

and a cut off threshold of 3 was used to drop highly correlated variables prior 

to model building (Zuur et al., 2009). A stepwise procedure was used, 

dropping the variable with the single highest VIF value until all remaining 

variables had VIFs less than the threshold of 3. This process removed eight 

of the environmental variables leaving a final set of seven variables for 

subsequent GAM analysis (Table 5.7). Temp high showed a seasonal trend, 

which led us to create a further variable, residual temperature, taken as the 

residuals from a GAM fitted to temp high. 

Table 5.7: Variance inflation factors (VIF). 

VIF values for the final environmental variables. 

VIF 

Moon illumination 1.17 
Temp High 1.29 
Humidity High 1.32 

Humidity Low 1.52 
Pressure High 1.30 

Windspeed Average 1.40 
Rainfall Sum 1.62 
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GAM explained 60.6% of the deviance of M. nattereri nightly activity over the 

season. There was a significant non-linear effect of day on activity levels (p 

< 0.001), reflecting a seasonal change in swarming behaviour. In addition, 

percentage moon illumination (p < 0.001), average wind speed (p < 0.01) 

and daily humidity high (p < 0.05) had significant effects on activity (Figure 

5.10). No significant relationships were found between activity and daily 

humidity low, daily preCipitation sum, daily pressure high, daily temperature 

high, or residual temperature. 
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Figure 5.10: GAM plot for Myotis nattereri nightly activity. 

Plots show the effects of: (a) day of the year: day, (b) moon 
illumination, moon (%), (c) daily average wind speed, sqrt(wAvg) (km/h) 
and (d) daily high humidity, hHigh (%). Rug plots at the base of each 
scatter plot show the observed values of each explanatory variable. 
The solid line in each plot shows the estimate of the smooth function, 
with 95% confidence limits represented by the shaded area. Note that 
average wind speed was square root transformed to reduce variance 
heterogeneity. 

5.4.5 Data compression and computational cost of automated 

analysis 

This study generated a total of 20,713 one second 16bit/500kHz WAV files, 

requiring 19.3 GB in total storage space. Lossless compression of the audio 

files using the Free Lossless Audio Codec (FLAC; 
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http://flac.sourceforge.netl) resulted in a 50% reduction in total file size. The 

automated analysis procedure used libsndfile (http://www.mega­

nerd.com/libsndfilel), a C library for reading and writing sound files that 

supports FLAC natively. However, conversion to FLAC prevented the time 

and date, embedded by the D500X bat detector at the start of each WAV 

file, from being read by the analysis routine. Analysis in this study was 

therefore carried out on the original WAV files. However, an identical 

version of the original WAV file is obtained on reconverting from FLAC, so 

files can safely be stored in compressed form until analysis is required. 

The total time taken by the automated analysis procedure, reading and 

processing all files to classify calls and extract time and date information, 

was 72.5 minutes. Analysis was therefore almost five times faster than real­

time (345.2 minutes of audio analysed in total). The speed of human 

analysis depends on the expertise of the researcher and the number of calls 

contained in the recordings. However, we estimate human analysis to take 

at least an order of magnitude longer than automated analysis, without 

taking into account breaks required by a human analyst. In addition, 

automated analysis can be left running unsupervised freeing researchers to 

concentrate on other tasks. 
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5.5 Discussion 

In addition to activity from swarming bats of the genera Myotis and Plecotus, 

notable activity was recorded from Pipistrellus and Nyctalus bats. These 

species are very rarely caught at swarming sites (e.g. Glover and 

Altringham, 2008), and have a different mating strategy (McCracken & 

Wilkinson, 2000), indicating that they were foraging on site and their calls 

were of sufficient intensity to trigger the acoustic logger. 

57 passes (0.9% of total Myotis activity) were attributed to M. alcathoe, only 

recently identified in Britain (Jan et al., 2010). M. alcathoe has been caught 

at a swarming site in the North York Moors, ca. 90 km to the east, but there 

are currently no catching records for the present site. M. alcathoe has a 

distinctive call among the Myotis (with a call end frequency typically > 40 

kHz), and the automated classifier used in this study had a high positive 

predictive power for this species. Some caution must be used in attributing 

a species presence from acoustic records, as bats are capable of great 

plasticity in call design, and swarming sites where individuals are engaging 

in chasing behaviour may result in atypical calls being recorded. 

Furthermore, in a study where thousands of calls are recorded, 

misclassification rates as low as 1 % will result in hundreds of misclassified 

calls. This complicates the extraction of reliable data from species that may 

be present in very low numbers. However, manual inspection of sequences 

classified as M. alcathoe revealed search phase echolocation calls typical of 

reference calls recorded from the species. In light of this, it seems likely that 

M. a/cathoe is indeed a rare swarming visitor to Link Pot and the Ease Gill 

system of caves. The lack of catching records may be a reflection of the fact 

that it has only recently been discovery in Britain, and may have been 

overlooked due to its similarity to other Myotis species, and that the 

probability of capture is extremely low given its scarcity. 

Catching results from the sites in the area (Glover & Altringham, 2008), 

support our acoustic data, with abundant M. nattereri and M. daubentonii. 

We recorded levels of M. brandtiilmystacinus higher than might have been 

expected from catching alone. This may represent behavioural differences, 

with M. brandtiilmystacinus spending more time swarming outside the cave, 
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triggering the detector multiple times, although we have no data to support 

this. Further years of monitoring, with additional catching data, would help 

determine how closely catching and acoustic data represent the relative 

species proportions. 

5.5.1 Changes in activity through the swarming season 

Consistent with previous studies we found large variations in temporal bat 

activity, both for foraging (Hayes, 1997) and swarming species (Parsons et 

al., 2003b). Two nights in particular (September 1 st and 3rd) dominated the 

average activity for many species. Species-specific automated logging 

revealed trends supporting catching data, with early peaks of M. daubentonii 

and M. brandtii/mystacinus as found at sites in the same area (Glover & 

Altringham, 2008), in the south of England (Parsons et al., 2003), and in 

Poland (Furmankiewicz & Gorniak, 2002). 

5.5.2 Changes in activity through the night 

Myotis and Plecotus bats showed patterns of low activity at dusk and dawn, 

with peak activity -4 hours after sunset, consistent with late emergence 

relative to other species, and of bats travelling from some distance away 

from the site to swarm. In contrast, Pipistrellus and Nyctalus activity began 

around dusk, peaking 1-2 hours later. This suggests early evening foraging 

activity of local bats, rather than swarming behaviour, further supported by 

the low incidence of captures reported by a previous study of swarming sites 

in the area (Glover & Altringham, 2008). Patterns of activity within the 

Myotis showed fine grain differences, but an overall trend for a peak in 

activity -4 hours after sunset, consistent with catching data from the same 

site (Glover & Altringham, 2008). Kernel density plots showed evidence 

that M. alcathoe may swarm earlier in the evening than the other Myotis 

species in this study, although due to its scarcity, further data are required to 

draw robust conclusions. 

5.5.3 Environmental effects on swarming: the generalised 
additive model (GAM) 

Day of the year had a clear non-linear trend on the activity of M. nattereri, 

consistent with the seasonal development of swarming behaviour. The 
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combined effect of day, moon illumination, average daily wind speed and 

daily humidity high explained 60% of the variation in activity. However, 

considerable unexplained variation remains, and further nonlinear effects are 

likely. We found no significant effect of rainfall on activity, although sampling 

was not undertaken in periods where heavy rainfall was forecast. Parsons 

and colleagues (2003b) found heavy rainfall suppressed swarming activity. 

In contrast, Navo and colleagues (2002) noted that activity at a swarming 

site remained high during a thunderstorm. As previously noted by Parsons 

and colleagues (2003b), it seems plausible that heavy rainfall at the time of 

emergence suppresses swarming activity, whereas if conditions at 

emergence are favourable and bats commit to swarming, later rainfall has a 

diminished effect on activity levels. We found evidence for a nonlinear 

effect of moon illumination, which has not previously been reported to 

significantly influence swarming activity (Parsons et al., 2003b; Karlsson et 

al., 2006). Cloud cover was not included in our analYSiS, which may have 

confounded the relationship with moon illumination. In addition, we had no 

data on other factors that affect the brightness of the moon, such as its 

height in the sky. The influence of humidity on bat activity has been little 

explored. However, little brown bats (Myotis lucifugus) were found to reduce 

their activity at lower humidity levels (Lacki, 1984). A possible hypothesis for 

this is that the bats reduce their activity to avoid excess water loss because 

of extremes in vapour pressure deficits during flight (Lacki, 1984; Adam et 

al., 1994). In north of England it is unlikely that humidity is an important 

factor in swarming activity, and the effect may be a result of the relationship 

between humidity and rainfall. We found a significant non-linear effect of 

wind. Strong wind may negatively affect swarming activity as is likely to 

significantly increase the energy demands for bats flying long distances to 

sites from their roosts. The non-linear relationship we found for wind, with 

an increase in activity with increasing wind speed, before a strong negative 

influence, is difficult to interpret. It is possible that an interaction with 

another environmental variable is confounding the GAM analysis (Zuur et al., 

2009). 

The effects of environmental variables on activity are difficult to interpret, 

and are complicated by the high correlation among many of the variables. 

However, Pipistrellus and Myotis activity was positively correlated, 

supporting the hypothesiS that favourable nights for swarming are also 

118 



Chapter 5: Species-specific swarming activity using automated echolocation 
call loggers 

favourable for foraging (Parsons et al., 2003b). Revealing associations 

between activity and environmental variables is complicated by the large 

catchment areas that swarming sites support. Bats have been recorded 

travelling maximum distances of between 20 to 60 km between diurnal 

roosts or hibemacula to swarming sites (Parsons & Jones 2003, Rivers et al. 

2006). In addition to site-specific conditions, local environmental factors at 

the time of emergence may be critical in bats' decisions whether to swarm or 

not. As such, models may benefit from averaged weather data at larger 

spatial scales around the site. Furthermore, daily averages of weather data 

may be too general, as daytime weather may not directly affect activity; 

rainfall around emergence time is likely to be more critical. Preliminary 

results here are based on a single season of data, and the addition of data 

from additional years would permit a more rigorous evaluation of the 

environmental factors influencing swarming activity. Due to the remoteness 

of the study site, the nearest available weather records were from a site 

almost 20 km away, which may not always have been representative of the 

weather on site. Small, portable weather loggers may be the only option to 

obtain reliable data regarding on site temperature and humidity, but this still 

does not account for weather conditions at the roost sites that bats travel 

from, which may be the more critical factor. However, attempting to describe 

the intensity of autumn swarming in relation to time, and identifying 

environmental factors that influence activity levels, highlights the utility of 

GAM as a flexible non linear modelling tool. 

5.5.4 Data compression and computational cost of automated 

analysis 

The high sampling rates required to directly record ultrasound results in 

larger file sizes than conventional audio applications. Many detectors utilise 

a simple triggering system so that they are not continuously sampling, but 

only activate on detecting ultrasound to make short recordings. This 

reduces the storage demands on the detector, which typically store digital 

audio on removable media. The duration researchers can leave detectors to 

collect data, before returning to down load information collected, is limited by 

the digital storage capabilities of the particular device. However, 

technological advances are occurring rapidly, providing increasingly large 

and inexpensive digital storage. In practice, power requirements may be the 

limiting factor in the duration detectors can be left remotely monitoring. In 
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this study the detector ran for less than five nights before requiring a new 

power source, and the removable media never filled in this time (note - the 

detector was run on internal batteries, and subsequently connections to 
larger external sources of power have become available). An important 
aspect of quantitative acoustic studies is data archival. Stored recordings 

are available for reanalysis as new methods become available, or may act 

as acoustic voucher specimens (O'Farrell et al., 1999). It is therefore 

desirable to apply data compression to archived recordings to reduce space 

requirements. Lossy compression, where reduction of file size is achieved 

by discarding some data, is widely used for audio (e.g. MP3) where an 

effective trade-off between file size and sound quality can be achieved. 

However, for detailed bioacoustic analysis it is desirable to preserve the 

original audio data, as it is not predictable whether important information 

may be lost in conversion. Lossy compression is not reversible and 

discarded data are lost permanently. FLAC (Free Lossless Audio Codec; 

http://flac.sourceforge.netl) is a relatively recent development facilitating 

lossless compression, meaning that there is no loss in audio quality as a 
result of data conversion. Moreover, FLAC files can be decoded back to 

their original WAV file format. We applied FLAC conversion to the files 

generated in this study and effectively halved the storage requirements, 

helping us achieve reliable and relatively inexpensive data archival. 

Automated loggers can produce voluminous data, presenting challenges to 

researchers in terms of analysing and archiving sound files. Traditional 

bioacoustic software for echolocation call analysis, e.g. BatSound Pro 

(www.batsound.com). are designed for analysing single files and performing 

manual analysis. To address this we applied custom written programs 

designed to batch process large numbers of files. Automated analysis of 

sound files was faster than real-time, and we estimate several orders of 

magnitude faster than possible by human analysis. Moreover, the 

automated method is repeatable and not subject to researcher bias. 

Automated methods can be applied to data collected over a variety of time 

frames (hours, days, months, years), unconstrained by the high costs of 

manual analysis. In addition, by archiving recordings, as new analysis 

techniques become available, the data can be re-evaluated. We aim to 

make the software we have developed available as free and open source 
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software, enabling other researchers to apply our methods to large data 

sets. 

5.5.5 Conservation implications 

Studying autumn swarming presents significant challenges to researchers. 

Sites may be remote (Link Pot is only accessible by foot, over the open 

moorland of Casterton Fell) and open, making effective capture of bats using 

mist nets or harp traps difficult. Automated acoustic loggers offer intensive 

and expansive sampling capabilities, combined with non-invasive data 

collection. The interpretation of conventional acoustic logger data is 

complicated by the assemblage of species, each of which may display 

different patterns of activity throughout the night and over the season, 

clouding the overall data obtained. In addition, our results suggest that at 

least at some sites, the activity registered from non-swarming species is not 

negligible. Acoustic loggers are also sensitive to rain, causing them to 

falsely trigger, which in the case of conventional loggers, can then not be 

separated from bat activity. The use of direct-sampling loggers and 
subsequent automated acoustic analysis can address all these problems, 

extending current capabilities, and helping researchers better understand 

species-specific temporal variation in swarming activity. Conventional 

acoustic loggers are likely to remain a powerful tool in discovering swarming 

sites however due to their low cost, which enables multiple units to be 

deployed, facilitating rapid acoustic survey. 

Acoustic monitoring of bats is a powerful tool for researchers and 

conservation workers. However, the effective long-term monitoring of 

swarming and other sites is complicated by a number of factors. Equipment 

must be suitable for deployment in a field environment, with the associated 

hazards from environmental damage and theft. Conventional heterodyne 

bat loggers (e.g. Glover & Altringham, 2008) are relatively inexpensive and 

can be made robust to environmental conditions through placement in 

waterproof cases with small holes cut for the microphone to receive data. 

As conventional loggers only need to detect the presence of ultrasound, 

rather than produce high quality recordings for analysis, the quality of the 

signal is less important, considerably simplifying their deployment. In 

contrast, direct sampling detectors are expensive in comparison, and high 
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quality recordings are necessary for successful automated analysis. Ground 

reflection causes interference in recorded signals degrading their quality, 

and so careful placement of detectors 1-2 m from ground level and other 

reflective surfaces is required to achieve the best recordings. Providing 

effective weather protection without compromising the quality of the 

recorded signal is also challenging. In addition, running electrical equipment 

for long periods under field situations is often difficult. In this study the bat 

detector was run on internal batteries which lasted 3-5 days before a visit to 

the site was required to renew the power source. This was a time­

consuming and labour-intensive task. Although the detector never exceeded 

its storage capabilities in this time, it provided an opportunity to down load 

data, and check on the security of the equipment. The use of external 

battery supplies could feasibly extent the useful deployment of equipment to 

a period of weeks or even months. However, issues of equipment security 

remain for many sites, and the long-term installation of monitoring equipment 

remains problematic. 

The direct sampling detectors used in this study allowed detailed acoustic 

analysis and classification of calls to genus and in many cases species level. 

This represents a substantial advantage over conventional loggers, both 

acoustic and beam-break systems, that do not permit the extraction of 

species information. This benefit must be weighed against the increased 

cost of direct sampling detectors, and the higher level of expertise required 

in their effective setup and post data collection analysis. A remaining 

limitation is that acoustic loggers are only able to determine presence at a 

swarming site, and not movement of the bats. Double-beam light barriers 

provide data on the direction of flight, which with careful setup can be used 

to distinguish between flights into or out from caves or mines. Previous 

studies have also used video techniques to show a net influx into a cave in 

late autumn, to identify the onset of hibernation (Rivers et al. 2006). 

However, automated logging remains the most practical method of 

identifying and monitoring long-term trends at multiple sites (Glover & 
Altringham, 2008), and the ability to discriminate species using automated 

methods extends current capabilities. 
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Chapter 6: Acoustic monitoring and species distribution 
modelling as a non-invasive conservation tool for bats1 2 

6.1 Abstract 

Species distribution models (SDMs) can be used to predict areas of potential 

distribution, and investigate the habitat requirements of species. 

Consequently, SDMs are becoming a valuable tool in landscape scale 

conservation efforts. In this study, we used acoustic surveys and catching 

techniques to collect data on the spatial distribution of foraging bats, from 30 

field sites in the Lake District National Park. Echolocation calls were 

identified to species/species groups, using machine learning (ML) 

classification to separate acoustically cryptic Myotis species. GPS 

technology provided precise locations for all foraging bats, and a geographic 

information system (GIS) was used to generate fine scale habitat data. We 

employed the presence-only modelling software MaxEnt to investigate the 

patterns of geographic distribution, and produce species-specific habitat 

suitability maps for the entire Lake District National Park (ca. 3,330 km2). 

The resulting maps were used to generate a species richness map, 

highlighting hotspot areas of potential conservation priority within the Park. 

The robustness of models to geographic transferral was tested using 

independent data collected from eight field sites outside the range of the 

training data area. 

1 A paper based on this work is being prepared for submission to Journal of 
Applied Ecology. 

2 Chloe Bellamy planned fieldwork and carried out acoustic transects, GIS 
and MaxEnt modelling work (Bellamy, 2011). Catching work was carried 
out jointly by Chloe Bellamy and Chris Scott. Chris Scott carried out the 
classification of Myotis calls and assisted with acoustic transects. 
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6.2 Introduction 

For effective conservation planning and management, knowledge of the 

geographic distribution of species and their habitat requirements are 

prerequisites. For many species, large scale survey is impractical, time­

consuming and costly. Bats are a prime example, as their nocturnal 

behaviour makes them difficult to detect and survey. Increasingly, practical 

information on the spatial patterns of distribution of species is being provided 

by species distribution models (SDMs). SDMs use occurrence data, and 

associated ecogeographic variables (EGVs; e.g. altitude, slope, vegetation), 

to predict areas of potential distribution between and beyond the known data 

which fulfil the species' niche requirements (Elith & Leathwick, 2009). Using 

geographical information systems (GIS), model output can be visualised as 

habitat suitability maps. SDMs are now widely used to gain insight into 

species ecological requirements and to predict distributions across 

landscapes (Elith & Leathwick, 2009), and are becoming valuable tools in 

conservation planning and management, assessing potential impacts from 

human activities and climate change (e.g. Lundy et al., 2010). 

For some species, suitable data for building SDMs may already be held by 

natural history museums and herbaria (e.g. Elith & Leathwick, 2007), and 

atlas data (e.g. Niamir et al., 2011). For bats, survey is complicated and 

labour-intensive, and consequently existing records may be deficient. 

Increasingly sophisticated modelling techniques are maximising the 

information that can be extracted from small datasets. For example, the 

freely available modelling software Maximum Entropy Species Distribution 

Modelling (MaxEnt; http://www.cs.princeton.edu/-schapire/maxentJ; Phillips 

et al., 2006) can generate accurate models from presence-only data, and 

with small sample sizes (Wisz et al., 2008). However, SDMs perform better 

if the presence data is unbiased and free of error (Graham et al., 2007), and 

where presence data is sparse and its reliability is questionable, improving 

the quality of the occurrence data is suggested (Lobo, 2008). The ability to 

use presence-only data considerably simplifies survey work, as it may be 

difficult to obtain accurate absence data for mobile species with large home 

ranges (Brotons et al., 2004). 
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In this study we used a combination of acoustic and catching techniques to 

collect data on foraging bats in the south of the Lake District National Park. 

Acoustic methods facilitated the rapid and systematic survey of sites, 

recording the echolocation calls of foraging bats for subsequent identification 

to species/species groups. Automated methods of call analysis were 

employed to aid in the separation of acoustically cryptic Myotis species, 

which are not reliably identified using conventional analysis, due to extensive 

overlap of call parameters (e.g. Parsons & Jones, 2000; Chapter 3). In 

addition to acoustic surveys, we caught foraging bats to increase the 

available presence data for Plecotus auritus, a Iow-intensity 'whispering' 

species (Waters & Jones, 1995), rarely recorded during acoustic surveys 

(e.g. Bellamy, 2011). The robustness of models to geographic transferral 

was tested using independent data collected from eight field sites outside 

the range of the training data. This study represents the first use of machine 

learning techniques to classify acoustically cryptic Myotis calls to provide 

presence data for species distribution modelling. 

The aim of the present study was to demonstrate the use of acoustic 

methods and machine learning techniques to provide species-specific 

presence data, in producing species distribution models (SMDs) and habitat 

suitability maps. 
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6.3 Methods 

6.3.1 Study area 

The study was carried out in the Lake District National Park, in Cumbria, 

north-west England. This is a diverse and complex landscape with a high 

density of deciduous and ancient woodland, given National Park status in 

1951. 

6.3.2 Acoustic transects 

Bat presence data for training models were collected by recording 

echolocation calls during 2-3 km walked transects, in thirty 1 km2 field sites 

in the south of the park during 2008 and 2009 (Figure 7.1). Sites were 

selected using a stratified sampling design to ensure a range of habitats and 

elevations were represented (for further details see Bellamy (2011)). 

Transects were walked twice each year during the period May-Sept, to cover 

the main foraging activity of UK bat species. During the second visit transect 

routes were reversed to reduce possible bias due to the effect of time of 

night on activity. A single transect was walked per night, starting one hour 

after sunset to avoid bats commuting from roosts, and to cover all species' 

peak foraging activity (Barlow & Jones 1997). Transects lasted -90 minutes, 

walking at a slow, steady pace. Surveys were not carried out on nights 

when weather conditions were adverse for bat activity, i.e. Iow temperatures 

«10 QC) or strong winds (>20 km/h). 

Bats were recorded using the time-expansion output of an ultrasound 

detector (D240x; www.batsound.com) and an Edirol R-09 digital recorder 

(www.edirol.com). The detector triggered automatically on detecting 

ultrasound, sampling 100 ms of audio at 307 kHz, which was then time­

expanded (10x) and recorded at 16 bit, 44.1 kHz by the Edirol R-09. 

Transects were walked with a GPS (Garmin GPSmap 60Cx; 

www.garmin.com/ukl) which logged a breadcrumb trail storing accurate 

position, speed, direction and altitude every 20 s. This enabled each 

recorded bat passes to be linked to a specific geographic position. 

129 



Chapter 6: Acoustic monitoring and species distribution modelling as a non­
invasive conservation tool for bats 

To provide an unbiased test of model accuracy, an independent test set of 

presence data was collected from eight field sites, four to the north and four 

to the west of the training sites (Figure 6.1). Test data from outside the 

region of training data were used to assess the geographic transferability of 

models. Data were collected using the same field methods as the training 

data. 
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Figure 6.1: Map of study area showing field sites. 

Field sites (illustrated with small squares) for training and testing 
regions used to build and validate models. From Bellamy (2011). 

6.3.4 Sound analysis 

Bat detector recordings were visualised as spectrograms using BatSound 

Pro (www.batsound.com) . using the overall shape of calls and published 

131 



Chapter 6: Acoustic monitoring and species distribution modelling as a non­
invasive conservation tool for bats 

descriptions of call frequencies (Vaughan, Jones & Harris, 1997; Parsons & 

Jones, 2000) to identify calls to species level. Myotis calls were initially 

classed as a species group only, due to the high degree of overlap in 

spectral and temporal call parameters. We randomly selected 10% of 

Myotis calls to identify to species level using the automated techniques 

described in chapter 3. Only a subset of calls were classified in this way, as 

the automated call finding algorithm was still in development, manual 

extraction of calls is extremely time consuming, and only limited number of 

presence points were required for modelling purposes. The GPS data from 

each walked transect were used to add each identified call to the GIS 

database (ArcGIS; version 9.3, www.esri.com). 

6.3.5 Additional catching data 

To increase the number of presence points for modelling P. auritus (whose 

low intensity calls were rarely recorded during transects), we carried out 

additional catching surveys within the field sites during 2008 and 2009. Bats 

were caught using two harp traps (Figure 6.2) and an acoustic lure to 

increase capture rates (Hill & Greenaway, 2005). The acoustic lure 

broadcast bat echolocation and social calls to attract bats in the immediate 

vicinity towards the traps. The lure was broadcast for 5 min periods using 

the available call types, using an interval of 2 min silence between playback 

sessions. The lure was stopped on catching a bat to minimise any potential 

distress caused by the playback. Bats were identified to species level and 

released at the site of capture. Capture of bats was carried out under a 

Natural England license. 
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Figure 6.2: Harp trap. A single harp trap set up at a catching site. 

6.3.6 Distribution modelling 

Presence-only modelling was used to predict the distribution of species 

using MaxEnt. MaxEnt is a machine learning presence-only method (Phillips 

et al., 2006), that uses spatially distributed presence data and associated 

ecogeographic variables (EGVs) to predict areas of potential distribution. 

EVGs consisted of fifteen habitat variables, including distance to water, 

distance to woodland edge, mean altitude and slope, and the percentage 

cover of five habitat classes (buildings, water, coniferous woodland, 

deciduous woodland, and manmade surface and road). These were 

measured over a range of spatial extents (100 - 6,000 m) using a moving 

window analysis in GIS (ArcGIS 9.3, www.esri.com; Store & Jokimaki, 2003) 

and were represented at a fine resolution (100 x 100 m for Plecotus auritus 

and 50 x 50 m for all other species). The variables were tested for their 

predictive accuracy over a range of spatial scales using 5-fold cross 

validation. Each variable was selected at its best performing scale to enter 

into a species' SOM. These models were then pruned using a backwards 
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stepwise reduction procedure to produce minimum adequate models (Parolo 

et al., 2008). Full methodological details are given in Bellamy (2011). All 

models were built using Maxent v3.3.2, using mainly default settings 

(http://www.cs.princeton.edu/-schapire/maxenV; Phillips et al., 2006). 

Models were built using training data, and tested using the independent test 

data to assess model accuracy. The area under the ROC curve (AUC) 

statistic was used to measure model accuracy (e.g. Fielding & Bell, 1997). 

MaxEnt models presence-only data by first adding randomly generated data 

points or "pseudo-absences" to the data. Pseudo-absences were extracted 

from the region of the independent test sites in assessing the AUC score. 

AUC was calculated in R using the package ROCR (R Development Core 

Team, 2011; Sing et al., 2009). 2,000 bootstrap iterations were used to 

generate 95% confidence intervals. 

A species richness map was produced using a simple aggregation method in 

ArcGIS, summing the logistic habitat suitability values for each species in 

each cell, producing a continuous measure of potential species richness 

(Aranda & Lobo, 2011). 
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6.4 Results 

Walked transects covered 334 km, recording approximately 180 hours of 
acoustic survey data. 15,466 echolocation calls were manually categorised 

into five species groups (Bellamy, 2011), with 266 Myotis calls subsequently 

classified using automated methods (Table 6.1). 

Species/species Presence points collected 

(i) (ii) (ii i) (iv) 

Call ID Machine Caught Incidental! Total 
learnin museum 

Pipistrellus 
5,210 N/A 

pipistrellus 
17 0 5,227 

P. pygmaues 6,489 N/A 43 0 6,532 

Plecotus auritus 22 N/A 18 34 74 

Nyctalus spp. 675 N/A 1 0 676 

Myotis spp. 3,051 N/A 71 0 2,477 

M. daubentonii 0 101 13 0 114 

M.bra./mys. 0 139 45 0 184 

M. nattereri 19 26 13 0 58 

Table 6.1: Total number of presence records per species for 
modelling collected from field sites in the southern Lake District by (i) 
examination of call spectrograms, (ii) classification using machine 
learning algorithm, (iii) capture using harp traps, and (iv) Tullie House 
Museum (Cumbria County Council) records. 

Models performed well with AUC scores on the independent test data all 

above 0.7 (Table 6.2). Habitat suitability maps were created for each 

species model (two examples are shown in Figures 6.3 & 6.4). The 

predictive species richness map is shown in Figure 6.5. 
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Spe.. N TestAUC Cl 

P. pip 113 0.704 0.656 - 0.754 

P.pyg 117 0.751 0.719 - 0.784 

N.noc 16 0.803 0.731- 0.875 
M. bra./mys. 26 0.733 0.656 - 0.809 
M.dau 2S 0.760 0.692 - 0.827 

M. nat 7 0.842 0.622 - 1.062 

Table 6.2: Performance of models on independent test data. 

AUC Cl = 2000 bootstrap confidence intervals. 
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Figure 6.3: Habitat suitability map for foraging M. nattereri. 

Colour-mapped Habitat Suitability Index (HSI) projected over the Lake 
District National Park, showing areas of high suitability in deep blue. 
From Bellamy (2011). 
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Figure 6.4: Habitat suitability map for foraging M. daubentonii. 

Colour-mapped Habitat Suitability Index (HSI) projected over the Lake 
District National Park, showing areas of high suitabi lity in deep blue. 
From Bellamy (2011). 
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Figure 6.5: Species richness map. 

Predictive species richness map, produced by summing the predicted 
HSI values for each individual species. Higher scores indicate hotspot 
areas for bat foraging activity. LDNP = Lake District National Park. 
From Bellamy (2011). 
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6.5 Discussion 

Knowledge of species habitat requirements, and reliable data on their 

distribution, are vital to adequately assess conservation status. Species 

distribution modelling increasingly has a role to play in providing practical 

information for difficult to survey species. Previous studies have sourced 

presence data for building SDMs from natural history museums and herbaria 

(e.g. Elith & Leathwick, 2007), and atlas data (e.g. Niamir et al., 2011). 

However, records may be biased due to non-representative sampling, and 

inaccurate due to misidentifications (Graham et al., 2004). In addition, not 

all records may be suitable for modelling due to their coarse geographic 

resolution (e.g. Rebelo & Jones, 2010). Where data remain sparse or 

absent due to difficulties in survey, new methodologies may be required to 

facilitate data collection. Capture is intrusive to bats, requires considerable 

skill and training, and is labour-intensive, making it inefficient for large scale 

survey. Furthermore, capture is restricted to the structurally complex 

habitats in which nets and traps are effective, and biased as some species 

easily detect and avoid nets and traps (e.g. Larsen et al., 2007). In contrast, 

acoustic methods facilitates the rapid sampling of diverse habitats over large 

areas, and the analysis of echolocation calls allows the identification of bat 

species that are difficult to capture. In this study, the use of a machine 

learning classifier trained using a reference call library enabled the 

identification of acoustically cryptic Myotis species, increasing the scope of 

acoustic methods, providing data for species-specific habitat suitability 

maps. 

Quantitative acoustic identification can accurately discriminate between 

many species, even in areas of high species richness (e.g. Russo & Jones, 

2002; Obrist et al., 2004; Papadatou et al., 2008). However, not all species 

are equally acoustically apparent, as some low-intensity 'whispering' species 

are only detected at close range (e.g. Plecotus auritus; Waters & Jones, 

2005). These differences in the probability of detection mean acoustic 

methods used in isolation may under-record some species (e.g. Q'Farrell & 

Gannon, 1999). In addition, separating some species on the basis of their 

echolocation calls remains challenging. For Myotis brandtii and 

M. mystacinus, separation morphologically is possible but complicated 

(Berge, 2007), and in such cases catching combined with genetic analysis 
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may be the only reliable way of obtaining accurate species-specific presence 

data (Mayer et al., 2007). However, acoustic methods may still be employed 

to collect accurate data for a species group. In this study we used a 

combination of acoustic and catching techniques to reliably survey a large 

number of sites in the most efficient way possible. The use of an acoustic 

lure (Hill & Greenaway, 2005) aided the capture of 'whispering' species 

under-recorded during acoustic surveys (e.g. Plecotus auritus). In future 

research we will apply an acoustic lure to attract bats, to bring 'whispering' 

species closer to the bat detectors. By doing so, we expect to obtain 

recordings suitable for automated classification from 'whispering' species, 

without necessitating capture. This novel use of a lure would further 

increase the efficiency of collecting presence-only bat data, leaving labour­

intensive capture techniques for situations where genetic separation is 

desired. 

MaxEnt produced useful models that performed reasonably well (AUC > 0.7) 

using presence-only data, making it a potentially powerful tool for 

researchers where reliable absence data cannot be acquired. The habitat 

suitability maps produced in this study provide reliable baseline data for the 

Park, and the combined species richness map can be used to identify 

'hotspot' areas of high conservation priority. Moreover, model output can be 

used to determine the species-specific environmental factors that drive 

patterns of distribution. A strong positive relationship between the presence 

of woodland and fresh water habitats was apparent for all species. 

However, there were also species- and scale-specific effects (Bellamy 

2011). 

By projecting beyond the region they were fitted, species distribution models 

can be used to predict whether a species is likely to occur outside of its 

known range (Randin et al., 2006). As ongoing work, we are building 

models for the North York Moors and Yorkshire Dales National Parks, where 

predictive maps are being generated, and ground-truth data collected to 

investigate the geographic transferability of the models developed in this 

study. The long term goal is accurate bat habitat suitability maps for the 

whole of the UK. A priority is the collection of data from rare species. 

Myotis alcathoe has only recently been discovered in the UK (Jan et al., 
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2010), and acoustic methods offer the opportunity to rapidly survey and 

model suitable habitat, which could be used to predict its distribution and 

target further surveys and research. 
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Chapter 7: General Discussion 

Acoustic methods are central to bat research as they provide the means to 

non-invasively survey and monitor bats in their natural habitats, revealing 

their presence and facilitating the study of their habitat preferences and 

temporal patterns of activity. Technological advances are permitting 

researchers to monitor acoustically at greater spatial and temporal 

resolution, opening new avenues of research. The major problem with 

expanding the scope of current research is that acoustic analysis requires 

skill, and is repetitive and time consuming. Automation of analysis removes 

the burden of routine identifications, and provides a replicable methodology 

(Gaston & Q'Neill, 2004). Additionally, automated methods may also enable 

faster and more accurate identifications than possible by human experts. 

However, the adoption of automated methods of analysis by researchers 

and conservation workers has been hampered by a lack of reliable and 

freely available tools. 

We developed and described an algorithm to locate, extract and measure 

objective spectral and temporal call features from continuous bat detector 

recordings. In a comparison with two conventional bioacoustic energy 

detectors, our algorithm proved more accurate and robust at locating calls in 

field recordings, minimising false detections caused by echoes. Through 

efficient implementation in an open source programming language, C++, the 

algorithm runs faster than real time and an order of magnitude faster than 

possible by human analysis. These developments allow the location of 

signals of interest in a fast and reliable manner, facilitating intensive acoustic 

sampling over extended time periods, without the bottleneck of manual 

analysis. The automated measurement of temporal and spectral call 

parameters provides data suitable for the quantitative bioacoustic description 

of signals, and for statistical analysis or machine learning (ML) classification. 

Using ML algorithms, we implemented a fully automated acoustic 

identification system for bat echolocation calls. To evaluate the system we 

built a reference echolocation call library, recording known species of British 

bats at a range of sites across the UK. The combination of full spectrum call 
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parameters and a non-parametric ML classifier achieved a high level of 

accuracy and outperformed conventional statistical analysis using 

discriminant function analysis (DFA). Automated classification also provided 

levels of confidence in the identifications, which allowed us to reduce 

misclassification rates by leaving classifications below a confidence 

threshold as 'unknown'. We found that in a fully automated unsupervised 

system, steps must be taken to mitigate for the effects of novel signals 

presented to the classifier. Classifiers implicitly assume that training data 

are representative of the real world data to be encountered in practical use, 

and force all new data into the categories defined during training. However, 

in ecological applications this presents a significant problem, as it may be 

impossible to collect representative data from all species in a study area, or 

to know the full species assemblage in advance, leading to the 

misclassification of call types that are novel to the classifier. We showed 

that ML methods of outlier detection effectively protect a classifier from novel 

signal types, not representative of those encountered during training. This is 

a vital step in ensuring unsupervised classifiers produce sensible output, and 

allows researchers to focus their efforts on collecting training data for target 

species, as classification methods can then be applied without an exhaustive 

call library for the area of study. This facilitates the early adoption of 

automated acoustic survey and monitoring methods in new areas, where 

development of comprehensive call libraries may take several years. 

To assess the automated identification system we applied it to two real world 

field studies. Firstly, we investigated the multi-species bat activity at a 

remote cave in the north of England over a three month period. The use of 

automated methods allowed the rapid analysis of the acquired data (>20,000 

audio files) and the separation of species with high accuracy in an objective, 

repeatable way. Through the use of the freely available statistical program 

R (R Development Core Team, 2011; http://www.r-project.org/) and its 

related packages, we have written scripts to visualise the results of our 

automated acoustic analysis, revealing temporal trends at scales from 

minutes to months. We showed that for monitoring purposes, acoustic 

logging is a viable alternative to catching, which is a labour intensive and 

intrusive technique that need only be used when necessary (Parsons et al., 

2003; Rivers et al., 2006; Glover & Altringham, 2008). These automated 

techniques allow researchers to take hundreds of hours of acoustic data and 

147 



Chapter 7: General Discussion 

produce mUlti-species plots of activity in a period of hours. Secondly, we 

separated acoustically cryptic Myotis species from data collected in the 

south of the Lake District National Park. The identified calls had precise 

GP8 locations, provided spatially explicit presence data to generate species 

distribution models (8DMs) using MaxEnt. Models were used in 

combination with geographic information systems (GI8) to create species­

specific predictive habitat suitability maps covering the entire Park (ca. 3,300 

km2). These results can be used to aid the development of management 

plans and identify areas of conservation priority. This work is currently being 

extended to the North York Moors and Yorkshire Dales National Parks, 

where further predictive maps are being generated, and ground-truth data 

being collected to validate models with independent test data. The long term 

goal is accurate bat habitat suitability maps for the whole of the UK. 

In developing tools for the automated acoustic analysis of bat detector 

recordings, this work has extended the scope of acoustic monitoring studies. 

Automated tools provide efficient data analysis and fill a gap in current 

capabilities, providing replicable methods and making long term monitoring 

feasible. Future research aims to integrate the automated methods we 

developed into a woodland bat survey protocol. The UK's rarest bat species 

are all woodland species, their declines in recent centuries a reflection of the 

degradation, fragmentation and loss of habitat as a result of human activity 

(Altringham, 2011). However, the application of acoustic surveys to the 

monitoring of many of our woodland species has been limited by two 

problems. Firstly, there has been the difficulty in identifying the six species 

of Myotis bats from their echolocation calls using conventional methods. 

Secondly, there is the risk of under-recording low-intensity 'whispering' 

species, that are only recorded when they fly very close to the detectors. 

We will apply our automated methods of acoustic identification, and 

overcome the issue of under-recording 'whispering' species through the 

novel use of an acoustic lure. Broadcasting ultrasonic bat calls has 

increased capture rates, by attracting bats into nets and traps (Hill & 

Greenaway, 2005). We aim to attract bats into close range of a bat detector, 

to ensure high quality recordings of all species suitable for classification. 

This offers the potential for a new national woodland bat monitoring scheme, 

collecting data that is vital for effective conservation in a manner that is 

scientifically rigorous, efficient, and capable of being carried out by trained 
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volunteers. Through the combined use of GPS and GIS technology, survey 

data can contribute to ongoing predictive habitat mapping. As part of this 

work we will provide a user friendly front end to our algorithms, to maximise 

the ease with which the research community and conservation workers can 

benefit from these tools. 

We restricted this study to the identification of bat species' from their 

echolocation calls. Despite their high variability, some species may encode 

individual-specific information in their echolocation calls sufficient for 

recognition (e.g. Yovel et al., 2009). If vocal individuality can be extracted 

reliably, it offers the potential to estimate numbers of individuals acoustically, 

thus extending the current scope of acoustic methods to studying the 

population ecology of bats. In addition to echolocation calls, bats also emit 

social calls for the purpose of communication, carrying information to 

conspecifics (Fenton, 2003). Social calls may be species- and individual­

specific (Pfalzer & Kusch, 2003), providing further opportunity for 

researchers to extract information from the vocalisations of bats. 
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Appendix A 
Signal detection code 

c++ pseudo code for the signal detection algorithms described in Chapter 2. 

A.1 Spectral peak algorithm 

II Input WAV samples stored in a std::vector 

/I Output detection function as a std::vector 

vector<double> spectraIPeak(vector<float> const& audioSamples) 

{ 

int fftSize = 256; 

int binN = fftSize/2.0; 

step = 0.25*binN;I/75% overlap 

Ilcalculate how many iterations 

int frames = 1 + floor((audioSamples.size()-fftSize)/(double)step); 

vector<double> detectionFunc(frames); 

int startN = 0; 

double magnitude, peak; 

for(int i=O; i<frames; ++i) { 

Calculate FFT from audio samples at startN 

peak = 0.0; 

for (int j=1; j<binN; j++) { 

magnitude = FFTU]; 

peak = max(peak, magnitude); 

} 

Ilconvert peak value to dB and store 
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detectionFunc.at(i) = 20. * log10(max(peak, 0.000001 )); 

lIadvance frame position by step 

startN += step; 

} 

return detectionFunc; 

} 
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A.2 Spectral sum algorithm 

/I Input WAV samples stored in a std::vector 

/I Output detection function as std::vector 

vector<double> spectraIPeak(vector<float> const& audioSamples) 

{ 

int fftSize = 256; 

int binN = fftSize/2.0; 

step = 0.25*binN;ln5% overlap 

Ilcalculate how many iterations 

int frames = 1 + floor((audioSamples.size()-fftSize)/(double)step); 

vector<double> detectionFunc (frames); 

int startN = 0; 

double magnitude, sum; 

for(int i=O; kframes; ++i) 

{ 

} 

Calculate FFT from audio samples at startN 

sum = 0.0; 

for (int j=1; j<binN; j++) { 

magnitude = FFTU1; 

sum += magnitude; 

} 

IIconvert peak value to dB and store 

detectionFunc.at(i) = 20. * log10(max(sum, 0.000001 )); 

lIadvance frame position by step 

startN += step; 
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return detectionFunc' , 

} 
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A.3 Noise subtraction algorithm 

II Input WAV samples stored in a std::vector 

/I Output detection function as std::vector 

vector<double> noiseSubtraction(vector<float> const& audioSamples) 

{ 

int frames = 1 + floor((audioSamples.sizeO-fftSize)/(double)step); 

int binN = fftSize/2.0; 

step = 0.25*binN;ln5% overlap 

vector<double> detectionFunc; 

int startN = 0; 

double signal, noise; 

signal = noise = 0; 

for(int i=O; kframes; ++i) { 

Calculate FFT from audio samples at startN 

for(int j=1 ; j<binN; ++j) { 

double magnitude = FFT[j];llbin magnitude at j 

calculate median from circular buffer of previous magnitudes 

Ilsubtract median 

double tmp = magnitude - median; 

Ilhalf-wave rectify 

tmp = (tmp + fabs(tmp)) * 0.5; 

tmp = max(tmp, 0.000001); 

median = max(median, 0.000001); 

Ilskip any bin less than background 

if(tmp < tmpMed) continue; 

signal += tmp; 
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} 

} 

noise += median; 

startN += step;lIadvance frame position by step 

Ilcalculate signal to noise ratio in dB 

double dB = 20. * log10( signal I noise ); 

detectionFunc.push_back( dB); 

return detectionFunc; 

} 

Appendix A 
Signal detection code 
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Appendix B: Chapter 6 source code 

C.1 - C++ function to read date and time from D500X file 

II this C++ function returns the date and time as Unix time (seconds elapsed 

II since 00:00 hours, Jan 1, 1970 UTC), read from the start of a 0500X 

II recording. Input is the path to the filename as a std::string, and 

/I Unix time output is as a long unsigned integer. 

#include <iostream> 

#include <cstdlib> 

#include <cstring> 

#include <string> 

#include <fstream> 

#include <iomanip> 

#include <sys/time.h> 

#include <sstream> 

long unsigned int readTime(std::string filePathH 

long unsigned int epoch = -1 ; 

const char * astr = filePath.c_strO; 

fstream callTime( astr, std::ios::in I std::ios::binary); 

if (caIlTime.is_openO H 

caIlTime.seekg( 240, std::ios::beg); 

std::string waveChunk ("0500X"); 

char chunk1 [6] = {O,O,O,O,O}; 

caIlTime.get(chunk1, 6); 

II extract date and time 
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if(!waveChunk.compare(chunk1)) { 

IIthis is a D500X recording 

caIlTime.seekg( 224, std::ios::beg ); 

char chunk[16]; 

caIlTime.get(chunk, 16); 1/ read date and time from D500X 

int date Time[16]; 

int d; 

for(int i=O; i<16; ++i){ 

std::stringstream ss; 

} 

ss « std::hex « chunk[i]; 

ss» d; 

dateTime[i] = d; 

11 create a time struct and fill 

11 with data from D500X recording 

/1 seconds elapsed since 00:00 hours, Jan 1, 1970 UTC 

/1 http://www.epochconverter.com/ 

int dec[2] = {1,1 O}; 

int tmp = 2000 + dateTime[O]*dec[1] + dateTime[1]*dec[O]; 

dUm_year = tmp - 1900; /1 year - 1900 (years since 1900) 

tmp = dateTime[2]*dec[1] + dateTime[3]*dec[O]; 

dUm_mon = tmp - 1; /1 month - 1 (months since January 0-11) 

tmp = dateTime[4]*dec[1] + dateTime[5]*dec[0]; 

dUm_mday = tmp; 

dUm_hour = dateTime[7]*dec[1] + dateTime[8]*dec[O]; 

dt.tm_min = dateTime[1 0]*dec[1] + dateTime[11 ]*dec[O]; 

dUm_sec = dateTime[13]*dec[1] + dateTime[14]*dec[O]; 

dt.tm_isdst = -1 ;/IIess than zero if not known 
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} 

} 

} 

dUm_wday = 0; 

dUm_yday = 0; 

epoch = mktime(&dt); 

callTime .close(); 

return epoch; 

Appendix B: Chapter 6 source code 
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C.2 - R code to aggregate bat activity by night and plot as a 
time-series by species group. 

#Ioad necessary R packages 

library(chron) 

library(zoo) 

library(xts) 

# load in data from csv file 

#columns - ''time'', "N", "species" 

# time = Unix time (an integer) 

# N = binary presence absence (1 /0) 

# species = name of genus or species, e.g. "Pipistrellus" 

setwd("C:/Users/ ... ")#location of file 

dataset<-read.csv(file = "filename.csv", header= TRUE)# filename 

#convert Unix time (epoch) in column named 'time' to POSIX format 

dataset$time<-dataset$time - 21600#minus 6 hours as bat activity runs 

overnight 

dataset$time<-as. POSIXct( dataset$time, 

origin=ISOdatetime(1970,1 ,1,0,0,0), tz="GMT") 

#convert to xts format 

species<-mat.or.vec(0,1 ) 

dates<-mat.or.vec(0,1 ) 

values<-mat.or.vec(1,0) 

#make time/date a factor 

dataset $time<-factor(dataset $time) 

#aggregate nightly activity 
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for(i in levels(dataset $species)) 

{ 

} 

#subset data by species 

subset<- dataset [which(dataset $species==i),] 

#subset$N is a column with binary presence absence (1 /0) 

xtS.ts <- as.xts(subset$N, order.by=subset$time) 

#sum the activity 

nightly<-period.apply(xts.ts, endpoints(xts.ts,"days"), sum) 

dates<-c( dates, index( nightly)) 

values<-c(values,as. vector(nightly)) 

species<-c(species, rep(i,length(as.vector(nightly)))) 

dat<-data.frame(species, dates, values) 

dat$dates<-as.POSIXct(dat$dates, origin=ISOdatetime(1970, 1,1,0,0,0), 

tz=IGMT") 

dat$dates<-as. Oate( dat$dates) 

#code to plot nightly activity as time-series 

library(ggplot2) 

ggplot(dat, aes(dates, values, color = species))+ 

geom_point()+ 

faceCwrap(- species, scales="free") + 

#faceCgrid(species - ., scales="free") + 

scale_coloucbrewer(palette=IISet1 11
) + 

staCsmooth(alpha = 0.6, span = 0.4) + 

ylab(IIActivity index (bat passes per night)") + 

xlab(IIOatell
) + 

opts(legend.position = "none") 

161 



Appendix B: Chapter 6 source code 

C.3 - R code to summarise bat activity after sunset and plot 
the kernel density by species group. 

#Ioad necessary R packages 

library(chron) 

library(zoo) 

library(xts) 

library( maptools) 

# load in data from csv file 

#columns - ''time'', "N", "species" 

# time = Unix time (an integer) 

# N = binary presence absence (1 /0) 

# species = name of genus or species, e.g. "Pipistrellus" 

setwd("C:/Usersl. .. ")#Iocation of file 

dataset<-read.csv(file = "filename.csv", header= TRUE)# filename 

#convert Unix time (epoch) in column named 'time' to POSIX format 

times<-as.POSIXct(dataset$time, origin=ISOdatetime(1970,1, 1,0,0,0), 

tz="GMTI) 

times<-as. POSIXlt(times) 

dataset$time<-dataset$time - 21600# minus 6 hours as bat activity runs 

overnight 

dataset$time<-as.POSIXct( dataset$time, 

origin=ISOdatetime(1970,1,1 ,0,0,0), tz=IGMT") 

dataset<-data.frame(dataset, times) 

#keep only presence data 

dataset<-dataset[ which(dataset$N > 0),] 

subset<-dataset 
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#convert to xts 

subset$species<-factor( subset$species) 

species<-mat.or.vec(0,1 ) 

dates<-mat.or.vec(0,1 ) 

hours<-mat.or.vec(1,0) 

#dayonly 

subset$time<-as. Date( subset$time) 

#sunset times http://www.earthtools.org/ 

link <- matrix(c(-2.51857,54.22762), nrow=1)#Bullpot farm lat long 

for(i in 1 :length(subset$N» 

{ 

down <- sunriset(link, as.POSIXct(subset$time[i]), direction="sunset", 

P05IXct.out= TRUE) 

sunset<-down$time#time of sunset 

hours<-c(hours, difftime(subset$times[i], sunset, 

units="hours"»#hours after sunset 

dates<-c( dates,subset$time[iD 

species<-c(species, as.character(subset$species[i]) 

} 

dat<-data.frame(dates, species, hours) 

dat$dates<-as. Date( dat$dates) 

dat$dates<-factor( dat$dates) 

#plot kemel density 

Iibrary(ggplot2) 

ggplot(dat, aes(hours, fill = species» + 

faceC wrap( - species) + 

scale_fiILbrewer(palette = 15et1") + 

xlim(-1, 12) + 
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geom_density(color = 'transparent', alpha = 0.7) + 

ylab("Density") + 

xlab("Hours after sunset") + 

opts(legend.position = "none") 
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C. 4 - Environmental variables 

Table C1: Environmental variables by date used for generalised additive 

modelling (GAM) of swarming data. Date, moon illumination in % (Moon), 

daily temperature high (Temp High), daily humidity high (Hum High) and low 

(Hum Low), daily pressure high (Press High), daily average windspeed 

(Wind Avg), and daily rainfall sum (Rain Sum). 

Moon Temp 
Hum Hum Press Wind Rain 

Date 
(%) Hi h (GC) High Low High Avg Sum 

g {%~ {%~ {hPa~ {kmLh~ (cm) 
09/08/2010 0.7 19 96 79 1017 6 0.03 
10/08/2010 0.3 16 99 79 1009 14 0.15 
14/08/2010 27.6 21 96 62 1023 4 0 
15/08/2010 38.6 22 96 64 1025 5 0 
17/08/2010 GO. 7 19 98 72 1012 15 0.33 
21/08/2010 93.1 19 95 78 1014 19 0 
22/08/2010 97.2 18 95 71 1013 12 0.05 
24/08/2010 99.4 16 93 72 1011 21 0.48 
25/08/2010 99.8 18 96 53 1013 5 0 
26/08/2010 98.3 20 96 52 1009 2 0 
31/08/2010 65.7 17 98 64 1027 2 0 
01/09/2010 55.4 20 94 93 1023 0 0 
03/09/2010 33.4 22 97 61 1022 1 0 
04/09/2010 22.9 20 97 68 1021 2 0.03 
05/09/2010 13.6 21 92 61 1020 4 0.05 
06/09/2010 6.2 19 93 55 1014 6 0.48 
10/09/2010 7 17 99 92 1015 9 2.18 
11/09/2010 13.6 17 98 82 1014 13 0.46 
12/09/2010 14.4 17 94 65 1024 13 0.05 
13/09/2010 34 17 98 85 1023 28 2.34 
14/09/2010 44.8 17 97 70 1012 35 0.56 

15/09/2010 55.4 15 92 72 1009 32 0.1 
16/09/2010 65.4 15 90 69 1012 11 0.03 
17/09/2010 74.6 14 90 56 1018 5 0 
21/09/2010 98 19 97 75 1017 2 0.03 
22/09/2010 98.85 18 98 76 1016 2 0.51 

23/09/2010 99.7 18 98 83 1007 3 0.89 

24/09/2010 99.5 13 90 65 1017 11 0 
25/09/2010 97.3 13 95 63 1020 3 0 
26/09/2010 93.3 15 95 70 1020 2 0 
27/09/2010 87.4 15 93 86 1016 1 0 
28/09/2010 79.8 16 96 85 1016 1 0.13 
29/09/2010 70.6 15 98 87 1014 6 1.32 
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Hum Hum Press Wind Rain 
Moon Temp . 

Date 
(%) H' h (0C) High Low High Avg Sum 

Ig (%) (%) (hPa) {km/hl {cml 
30/09/2010 60.3 16 99 75 1013 2 0.03 
06/10/2010 2.9 14 97 76 1010 9 0.94 
07/10/2010 0.3 19 98 58 1017 2 0 
11/10/2010 19 18 93 62 1023 1 0 
12/10/2010 28.4 13 99 76 1024 1 0.03 
13/10/2010 38.4 9 98 87 1024 1 0 
14/10/2010 48.6 12 95 80 1023 1 0 
15/10/2010 58.6 14 97 73 1022 5 0 
16/10/2010 68.1 13 96 70 1027 1 0 
17/10/2010 76.7 12 98 81 1027 7 0.05 
18/10/2010 84.4 13 94 84 1019 18 0.13 
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