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ABSTRACT 

The problem of weight estimation in the aerospace industry has been acquiring 

considerably greater importance in recent years, due to the numerous challenges fre­

quently encountered in the preliminary phases of the design of a new aircraft. This is 

the stage where it is possible to make design changes without incurring into excessive 

cost penalties. On the other hand, the knowledge of the design, of the relationships 

existing between the different variables and their subsequent impact on the final weight 

of the structure is very limited. As a result, the designer is unable to understand the 

true effect that individual design decisions will produce on the weight of the structure. 

In addition to this, new aircraft concepts end up being too conservative, due to the high 

dependency of current weight estimation methods to historical data and off-the-shelf 

design solutions. 

This thesis aims at providing an alternative framework for the weight estimation 

of aircraft structures at preliminary design stages. By conducting a thorough assess­

ment of current state-of-the-art approaches and tools used in the field, fuzzy logic is 

presented as an appropriate foundation on which to build an innovative approach to 

the problem. Different adaptive fuzzy approaches have been used in the development 

of a methodology which is able to combine an analytical base to the structural design 

of selected trailing edge components, with substantial knowledge acquisition capabili­

ties for the computation of robust and reliable weight estimates. The final framework 

allows considerable flexibility in the level of detail of the estimate consistent with the 

granularity of the input data used. This, combined with an extensive uncertainty 

analysis through the use of Interval Type-2 fuzzy logic, will provide the designer with 

the capabilities to understand the impact of error propagation within the model and 

increase the confidence in the final estimate. 
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"If we worked on the assumption that what is accepted is true, then there would be 

little hope for advance" 

-Orville Wright-

To both my grandmas, the kindest souls I know. 
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NOMENCLATURE 

Most of the symbols used in this thesis have different meanings in different chapters 

while others are only relevant to short sections of text. Below are listed those symbols 

which have a general meaning, however specific definitions will depend on the context. 
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m 
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Constants of proportionality 

Cross sectional area for rib bottom beam section 

Cross sectional area for rib top beam section 

Cross sectional area for rib vertical beam section 

Cross sectional area for rib back vertical beam section 

Cross sectional area for rib front vertical beam section 

Constants of proportionality 

Engine performance parameter 

Correlation factor 

Young's modulus 

Load from hydraulic system attachment 

Hinge load 

Axial load 

Spar height 

Second moment of area for rib bottom beam section 
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Chapter 1 

1.1 The challenges for weight estimation in the aircraft 

industry 

The success of a new aircraft program is directly proportional to the ability of the 

new design to satisfy the operational needs and requirements set by the customers. In 

addition to being reliable and technically robust, the aircraft needs to be able to justify 

its selling price and operating costs by providing the performance levels stipulated with 

the customer. The preliminary stage of the design of a new aircraft, in particular, is the 

most critical point for the attainment of the required commercial competitiveness. It is 

at this time that the design team determines whether the agreed operational capabilities 

are technically feasible and defines the best combination between performance and cost 

within the limits of available technology and constraints. 

Weight control, namely the process by which the lightest possible airplane is 

derived within the constraints of the design criteria (Niu, 1988), is an essential module 

of the design process of any aerospace vehicle. In turn, the fundamental task in a 

weight control program is weight estimation. Accurate estimations of aircraft weight 

are vital in the early stages of an aircraft design process. They concretely drive all 

the major choices in configuration and layout as well as being the main foundation 

of performance predictions. An overestimate of Maximum Take-Off Weight (MTOW) 

will result in the aircraft being not competitive enough on the market. Conversely, 

if the weight of the aircraft after production is higher than expected, the company 

will incur financial penalties related to both time spent for the post-production weight 

shedding task and to its inability to meet contractual guarantees (Sparaco, 2003). The 

recent example of Airbus losing the Fed Ex contract for its A380 Freighter due to the 

uncertainties in its final weight and performance levels is just the last in a long list of 

economic losses related to weight issues. The weight weaknesses in the A380 program 

development have also led Airbus to lose up to 160 orders between Virgin Atlantic, 

Thai Airways and Emirates (Mecham and Wall, 2006). 

Weight estimation has acquired considerably greater relevance in the aerospace 

industry from the moment it emerged as an individual analysis field in the 1930s (Bech­

dolt et al., 1996). Recent aerospace periodicals are filled with examples of manufactur-
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ers struggling wi th aircraft structures being overweight . The new Boeing Dreamliner 

needs a 2 percent weight reduction in order to meet its target performance, which will 

only be achieved from the seventh aircraft produced onwards (Schoefieled , 2006). The 

direct consequence of t his is a reduction in achievable range between 10 and 15 percent, 

which can translate into a diminished range capabili ty of up to 12800 kilometre- below 

the initially advertised values (Ostrower , 2010). The A3 0 was 5.5 tons overweight at 

it launch , with up to 5 percent exceeding weight across the whole family (Sparaco, 

2003; Wallace, 2011 ). The initial promise to the customers of a 555-seat 15 percent to 

20 percent cheaper to operate than the Boeing 747, with 35 percent more passengers 

and 10 percent greater range has been hard to achieve. In terms of profi t and perfor­

mance , each ton over t he original weight prediction for the Dreamliner compares to 12 

less passengers for a total of up to 55 less people. The program itself was delayed 2 

years in order to solve the weight issue (Wallace, 2006). Lockheed :'1art ins Joint St rike 

Fighter (JSF) was 1400 pounds over its t arget take off weight by the fir t critical design 

review in 2003 (Selinger, 2003). 
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FIGuRE 1 .1: Aircraft empty weight breakdown. 

T hese numbers could be mistaken wi th being irrelevant penalties on the large 
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scale. This could not be further from the truth The weight of aircraft structures in 

particular , however, has a snowball effect on a different number of performance param­

eters, from maximum operative ceiling and endurance to maximum payload capacity. 

Aircraft structures, in fact , account for about 50 percent of the total empty weight 

(Figure 1.1) , thus it is the area where inaccuracies in the estimation of weight mostly 

influence the efficiency of the design. 

Overall, the key point for an aircraft manufacturer is that an increase in MTOW 

will ultimately mean that the vehicle will not be able to carry a specific payload from 

point A to point B (Sparaco, 2003). Figure 1.2 shows how weight can affect the range 

for propeller driven aircraft . An aircraft which is , at production stage, 1.5 t imes heavier 

than expected will incur in up to 20 percent reduction in available range. This value 

could double in the case of commercial jets (Bechdolt et al., 1996). Conversely, a 50 

percent reduction in weight could result in up to 40 percent increased maximum range 

attainable by the design. 
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FIGURE 1.2: Influence of weight on range for propeller driven aircraft (Bechdolt et al. , 1996). 

The effort towards more effective and precise weight estimation methodologies 

has also been spurred in recent years by an increasing demand for designs which are 

simultaneously cost effect ive as well as more environmentally friendly. The aerospace 
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industry has, therefore, redirected its focus towards new configurations, weight saving 

materials and alternative production methods in order to satisfy the market demand 

(Jankowski, 1990; Udin and Anderson, 1992). As a result, traditional approaches to 

weight prediction have become obsolete as well as very limited in their reliability and 

accuracy. The majority of these methodologies, in fact, rely on past experiences: they 

base weight and performance predictions for new designs on databases which are rep­

resentatives of conventional configurations and technology rather than new trends. 

In order to improve weight estimation capabilities, empirical techniques have, 

therefore, been substituted by or combined with more accurate analytical and semi­

analytical formulations. The incorporation of load analysis within statistical techniques 

has been seen as a way to encompass in greater detail the nature of aerospace structures 

and reduce the error in the prediction of their weight. Initially these methods used to be 

stand-alone processes, aimed at generating final weight breakdowns for the only purpose 

of performance estimation. This has changed considerably in the past few yeas, when 

the analytical equations for weight derivation have started appearing as integral parts 

of structural analysis (Droegkamp, 1992; Sensburg et ai., 1994; Sensmeier et ai., 2006) 

and solid modelling packages (Flamand, 2001; Zaidel, 1992). 

The current trend is converging towards a more concurrent approach to the 

design process as a whole. Efforts and research are aimed at concretely integrating 

the different analysis, from aerodynamics to structures as well as system implementa­

tion and weight control, in a coherent multidisciplinary framework able to evolve and 

progress in parallel with the design sequence (Bos, 1998; Kroo et ai., 1994). Weight 

estimation has, therefore, acquired increased importance not only as the linking ring 

between the various discipline areas but also as the main focus for the development 

of optimisation techniques. An accurate and rigorous weight prediction is, as a conse­

quence, the starting point for an optimal design. Clear identification and traceability 

of the sources of weight inefficiencies can focus the efforts on their elimination or sub­

stitution, resulting in a more efficient feature/component design, a concrete reduction 

in the overall assembly weight and consequent performance enhancement. 

The concurrent view on the design process combined with the increasing market 

demand for shorter delivery time on highly cost and performance efficient designs, 

5 



Chapter 1 

has thus pushed the boundary on weight estimation frameworks. The focus is on the 

production of fast and reliable methodologies, which are able to converge towards an 

economical and technical optimum at the early stages of the design to avoid costly 

changes later in the process. The need for the application of this kind of tools early in 

the design results in the requirement for a procedure which could work with a minimum 

amount of input data for the production of an optimum initial solution. In addition to 

this, flexibility must be a key characteristic of any newly developed weight prediction 

method, to allow for a proportional increase the level of detail in output in parallel 

with the design process itself. 

A few attempts at this have been made over the years. However, the results pro­

duced are still not satisfactory enough in terms of accuracy and versatility. Moreover, 

the process of weight estimation, although extremely important in the aerospace design 

cycle, does not seem to have raised as much interest in the engineering community as 

other disciplines have. The progress made in the development of new techniques and 

approaches to the problem seem to have come to a halt. 

1.2 Scope and objectives of this research . 

The aim of this research is to develop a new methodology for the weight estima­

tion of aircraft structures, which is able to fulfil the current requirements and demands 

of the aerospace engineering field. 

The proposed methodology will be centred on adaptive fuzzy logic techniques 

and tools. The use of fuzzy logic principles will be explored in relation to the extraction 

of knowledge and design rules from the design domain of the structures being analysed. 

Fuzzy principles will be used in conjunction with a modular model structure to enhance 

the applicability of the approach to different structures and facilitate its integration 

in the design process. The approach will be assessed in terms of its ability to provide 

accurate and reliable weight estimates at the conceptual and preliminary design stages. 

In addition to this, the quality of the final knowledge base produced by the model will 

also be investigated in parallel with an evaluation of the capabilities of the framework 

to perform a robust uncertainty analysis on the design domain. 
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The research presented in this thesis was conducted in order to fulfil the following 

objectives: 

1. Identification of major structural weight estimation techniques, their develop­

ment and formulation, with focus on benefits and flaws related to the individual 

procedures; 

2. Identification of innovative approaches and techniques to be used as foundation 

for the development of an alternative weight estimation methodologyj 

3. Implementation of reliable structural analysis and parameterisation approaches 

in the final weight estimation model; 

4. Investigation and implementation of robust uncertainty analysis across the pro­

posed framework; 

5. Application of the methodology to aircraft structural examples for performance 

assessment and validation; 

6. Development of suitable structure/framework for the weight prediction method­

ology which enables to satisfy different levels of granularity in the analysis. 

1.3 Thesis layout 

This thesis presents the development and analysis of a weight estimation method­

ology for aircraft structures. The body of this thesis explores the development process 

for the design of the approach, based on an initial assessment of current methodologies 

and tools used within the field of weight estimation. The discovery of fuzzy logic as a 

potential aid to the process of weight estimation follows as a direct consequence of the 

analysis of the pitfalls of traditional methods for weight analysis. This thesis highlights 

the evolution of the framework across different design requirements and through the 

use of various fuzzy logic techniques. Some of the issues explored relate to the knowl­

edge extraction capabilities of the selected tools, to the formulation of a rulebase for 

the formalisation of the weight estimation process, to the transparency of the model 

and its ability to trace weight inefficiencies within the design and to the analysis and 

propagation of uncertainty within the framework. 
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The analysis of the issues and concepts related to the design of the approach 

has been structured across 9 chapters, in a way that closely follows the development 

process carried out for the design of the methodology itself (Figure 8.3). 

Chapter 2 provides a critical review of the current techniques and approaches 

used in the weight estimation of aircraft structures. The analysis has been conducted by 

exploring the traditional categorisation of weight estimation methodologies as empiri­

cal, semi-analytical and analytical. Within these categories, both theoretical method­

ologies and practical tools used in industry have been assessed in relation to their 

benefits and pitfalls. The focus was also directed at examining new techniques and 

efforts within the engineering community, aiming at creating a more multidisciplinary 

view of the derivation of structural weight for new design concepts. 

Chapter 3 presents an introduction to fuzzy logic as a way to overcome the 

limitation of traditional and current weight estimation methods. A background of the 

general principles of fuzzy logic is presented and put into the context of the different 

tools used within the research. 

Chapter 4 presents an initial application of a fuzzy logic based weight estimation 

method. The approach introduced is based on the application of Adaptive Network­

based Fuzzy Inference System (ANFIS) for a feature-based weight analysis of spoiler 

attachment ribs. Although only approaching the problem from a general geometrical 

and load definition of the structure, the chapter highlights the initial benefits obtained 

by the use of a fuzzy approach for this type of problem. 

Chapter 5 expands on the concepts from Chapter 4 by extending the ANFIS 

method to a more physics-based weight analysis. The approach is further developed to 

be able to mirror closely the actual design process of aircraft structures, by combining 

weight estimation with the analytical sizing of the structural component. The process is 

validated across two case studies, spoiler and aileron attachment ribs. The performance 

of ANFIS is assessed in terms of knowledge acquisition capabilities, transparency of 

the knowledge based derived and through the overall interpretability of the method 

and its results. 

Chapter 6 introduces the Neura-Fuzzy Function Approximator (NEFPROX) 
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as an additional fuzzy tool to be used for weight estimation. The chapter focuses 

on the comparisons between ANFIS and NEFPROX in terms of the quality of both 

approximation and rulebase produced in the weight estimation environment. 

Chapter 7 expands on the model structure presented in Chapter 5 and 6 by 

adopting Interval Type-2 (IT2) fuzzy logic. The use of this tool allows the integration 

of uncertainty analysis and propagation within the network. The principles of IT2 fuzzy 

systems are presented in relation with the creation of a more comprehensive and robust 

analysis. Through the use of case studies, the benefits of using IT2 are highlighted and 

critically assessed with respect to both ANFIS and NEFPROX. 

Chapter 8 presents the concept of granularity in the field of weight estimation. 

The advantages of three fuzzy tools introduced in the previous chapters are set into 

the context of a flexible and versatile framework for the weight estimation of aircraft 

structures at preliminary design stages. 

Chapter 9 provides a conclusion to the thesis, highlighting the achievements and 

main contributions of this research, while critically assessing the benefits of conducting 

weight estimation using fuzzy logic techniques. 

10 



Chapter 2 

Weight Estimation for Aircraft 

Structures: Theory and Practice 

Contents 

2.1 

2.2 

2.3 

2.4 

2.5 

Introduction .•............ 12 

Classification of current approaches 12 

Empirical weight estimation . . . • • . 15 

2.3.1 Derivation of empirical formulations . . . . . . . . . 15 

2.3.2 Level of granularity of empirical weight estimation methods 17 

2.3.3 Benefits and limitations . . . . . . . . . . . . . . 24 

Semi-analytical weight estimation ...•.... . • . .• 27 

2.4.1 Applicability of semi-analytical weight estimation formulations 30 

Analytical methods . 31 

2.6 Alternative solutions 38 

2.6.1 Solid modelling and Finite Element Analysis for weight esti-

mation ....................... . 

2.6.2 Functional level weight estimation methodologies 

38 

45 

2.7 Weight optimisation and management in the design process 49 

2.8 Summary ...•••.•... . • . • • . . . . . . • . . • . . .• 53 

11 



Chapter 2 

2.1 Introduction 

The aim of this section is to provide a clear overview of existing weight prediction 

methodologies and formulations for aerospace structures. The different approaches to 

the derivation of weight formulations are defined, highlighting assumptions as well as 

the main steps for their development. Examples of some of the techniques within the 

literature are also presented, with emphasis on the relative flaws as well as the benefits 

of the individual solutions. An outline of the development and evolution of structural 

weight estimation techniques is also drawn, with reference to frameworks for weight 

analysis currently being used in the aerospace industry. 

2.2 Classification of current approaches 

Weight estimation has acquired increasing importance within the aircraft design 

community since the moment it became recognised as an individual analysis field in 

the 1930s. The weight of air vehicles has always been a point of concern and aircraft 

designers have been "in a continuos struggle with the laws of weight" since the begin­

ning of aviation (Bechdolt et al., 1996). From the designers' viewpoint, however, the 

struggle has always been twofold. On one hand, the major challenge is to find practical 

and effective design solutions for an overall weight reduction and consequent perfor­

mance enhancement (Pollard, 1928). At the same time, this cannot be done without 

reliable weight estimates which are built on methodologies and approaches that are able 

to embody the principal features and characteristics of the proposed design (Barlow, 

1999). 

The task of estimating the weight of a new aircraft concept is not an activity 

that is carried out only once during the design process and whose results are stored 

somewhere until one of the disciplines domain feels the need for them for one of its 

analyses. On the contrary, weight estimation spans the whole of the design cycle and 

continually evolves in parallel with the maturity of the project itself (Figure 2.1). It 

starts with a weight assessment at configuration level during the conceptual design 

stage and the level of granularity mirrored by the estimate increases to system and 
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component level between preliminary and detail design phases, as more information 

becomes available. The challenge is to b e able to deliver representative and reliab le 

weight estimates for each individual milestone in the design, using the information 

available at the time. At early stages, the knowledge of the design itself is very limited 

and the concept undergoes a series of re-evaluations that have to be individually weight 

reviewed in order to assess their viability. The analysis then shifts to the estimation 

of weight at subsystem level and all the way down to individual component weights 

towards the detail design phase proportionally to the amount of data available and 

the knowledge of t he design. For these reasons, the development of weight estimation 

methodologies and tools is tailored to address the specific requirements related to the 

design phase in which they will be applied (R aymer , 2006) . 
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FIGURE 2.1: Schematic representat ion of the aircraft design process highlighting the relation­
ship between weight estimation methodologies and indiv idual stages in the process (Komarov 

and Weisshaar, 2002). 

At the beginning of the design process, con figuration level weight assessments 

tend to be conducted using empirical formulation, which are statistically drawn from 

databases comprising of data related to existing design examples . Normally this cate­

gory of formul ae relate crucial overall weights (i.e. gross take-off weight, landing weight, 
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fuel weight, etc.) to specific parameters relative to top level design requirements, rang­

ing from payload to range and operational factors (Torenbeek, 1985; Corke, 2003; Sael­

man, 1975). They can also be formulated towards the end of the conceptual stages and 

extended to estimate the weight of major subsystems (Le. wing, fuselage, landing gear, 

etc.) (Roskam, 2003; Svoboda, 1999). Although these formulations are normally easy 

to use and do not require a high computational effort, the credibility of the estimates 

that they are able to provide is limited since they tend to be representative of designs 

which are similar, technologically and performance wise, to those in the database of 

reference. 

Most aircraft manufacturers tend to prefer semi-analytical approaches in order to 

compensate for these pitfalls. These formulations combine a structural weight picture, 

which is analytically derived, with statistically drawn factors to account for specific 

items and features related to aspects such as manufacturing and installation. This 

approach extends the applicability of these types of methods to designs which differ 

from the ones in the reference database, from either a feature-based point of view 

(Saelman, 1964; Niu, 1988), or due to the presence of additional components (Udin and 

Anderson, 1992) or to specific materials and manufacturing processes used (St.John, 

1969). Although these formulations are able to provide a more comprehensive picture 

of what makes up the weight of the structure, they tend to become increasingly complex 

in proportion to the level of detail required, with the risk of presenting erroneous trends 

and interactions between the numerous parameters involved. 

Analytical methods are generally preferred in the design environment due to 

a higher rigorousness in their derivation. This ensures not only that the final results 

fully represent and embody the physics behind the design, but also allows a greater 

traceability of the sources of weight inefficiencies in the design at hand. These methods, 

however, are not suitable for conceptual and preliminary design stages. The majority 

of analytically derived weight estimation methodologies require a number of detailed 

information that normally is not available in the early phases of the design and end 

up being computationally expensive if coupled with structural analysis (Droegkamp, 

1992; Zaidel, 1992) and CAD modelling software (Flamand, 2001). If applied based 

on erroneous initial inputs, analytical weight methods not only will produce a result 
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that is as realistic and accurate as one obtained via a simpler empirical model, but 

also they will not be able to provide any means of assessing the viability of the results 

themselves. 

It is important to consider, however, that the boundaries between the different 

phases of the aircraft design process are not dearly distinguishable and often they 

tend to overlap quite considerably. For this reason, it is crucial to be able to identify 

the scope of individual weight estimation methodologies, their applicability within the 

specific design context and the tolerance and robustness of the results they can provide 

according to the quality of the information at hand at the time of the analysis. 

2.3 Empirical weight estimation 

Empirical methodologies represent one of the earliest approaches to the weight 

estimation of aircraft structures and have been the most commonly adopted formu­

lations at preliminary aircraft design stages in particular. These relationships are 

statistically drawn from individual databases providing information on the component 

or assembly weight being considered. The source of the data mainly relates to aircraft 

which are already operative, with similar characteristics or configuration as well as to 

experimental data acquired from scaled models developed for particular studies. 

2.3.1 Derivation of empirical formulations 

The general formulation of weights based on empirical data tends to assume the 

form of the power law (Equation 2.1) 

(2.1) 

where: 

~Vi represents the component weight to be analysed; 

¢ is the dependent variable on which to base the analysis; 
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A and Bi are the constants of proportionality determined via the chosen sta­

tistical method. 

The general approach for the determination of a component weight can be broken 

down into four individual steps (Torenbeek, 1985): 

1. Definition of the component weight Y as a sum of individual contributions Xi 

(Equation 2.2) 

where: 

Xi represents the single items making up the component weight; 

Y represents the component being analysed. 

2. Choice of relevant parameters for each contribution; 

(2.2) 

3. Definition of functional variation of Y with respect to Xi. This choice will depend 

on factors such as range of data available as well as variation among the data 

itself. In the case of a limited size database, a relationship involving the linear 

variation of the component weight will usually be sufficient to accurately represent 

the trend amongst the data (Equation 2.3). 

Y=a+bX (2.3) 

On the other hand, in the case of a larger data set where the value of the com­

ponent weight changes considerably, power law (Equation 2.4) or logarithmic log 

fittings (Equation 2.5) are preferred. 

Y=kXn (2.4) 

log(Y) = log(k) + nlog(X) (2.5) 

4. Estimation of standard error between actual and estimated weight (Equation 2.6) 

s= (2.6) 

where: 
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N represents the number of components under study; 

mi the ratio of actual to estimated weight for the chosen sample. 

The literature provides numerous examples of statistically drawn weight esti­

mating relationships (WERs). Regression analysis has been used extensively in the 

derivation of WERs, ranging from overall aircraft weight (Anderson, 1972) to subsys­

tem (Svoboda, 1999) and component level weight breakdown for items such as high-lift 

devices (Macci, 1995). However, one of the earlier pitfalls of using this type of deriva­

tion is the creation of misleading and erroneous trends due to correlations between 

independent parameters which were either overlooked or difficult to detect (Bechdolt 

et al., 1996). Staton (1969) contributed to overcome this by adopting constrained re­

gression to the derivation. In this case, the best curve fit is determined within a set of 

limits specified by the user over the whole set of statistically determined values. More 

recently, Rocha et al. (2006) compared the results of several model building techniques, 

ranging from polynomial interpolation, all the way to radial basis function (RBF) and 

Gaussian interpolation to evaluate the benefits of the methods in the wing weight data 

fitting problem. The results of his study proved that models built using principal com­

ponent regression (PCR) with multiquadratic RBF interpolation were not only more 

accurate than the other example, but also able to depict more representative weight 

trends by an a priori selection of the optimum combination of input variables for the 

type of model building technique to be used in the analysis (Rocha, 2008). 

2.3.2 Level of granUlarity of empirical weight estimation methods 

Empirical WERs mainly differ among themselves in terms of the initial assump­

tions adopted for their derivation and the focus of the analysis. They can range from 

formulations designed to estimate the weight of the aircraft as a whole depending on 

the type of load carrying material used (Caldell, 1969; Arjomandi and Liseytsev, 2000) 

or to the weight of individual structural assemblies (Macci, 1995; Udin and Anderson, 

1992; Corke, 2003). The nature of these methods makes them better suited to either 

overall aircraft level (Mack, 1999) or to main subassembly level (Le. wing group, tail 

group .. ) weight analysis (Kyser, 1977). Relationships and general trends are drawn 

between some defining geometrical parameters by looking at historical examples from 
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similar aircraft, mainly as a way of establishing at a preliminary stage of the design 

how the variation of the size or location of a particular subgroup can affect the overall 

aircraft performance. On the other hand purely analytical methods, which are based 

on the determination and analysis of load cases on particular components, are better 

suited to weight estimation of single components (Le. ribs, spars .. ). Single elements 

are looked at according to the function they need to accomplish and loading to be sus­

tained and sized accordingly, limiting the application of these methodologies at later 

stages of the design process where more details are known. 

The simplest form of empirical weight relationship method is the Fixed Fraction 

Method. Very suited for the early conceptual design stage, it allows to compute the 

weight of individual components and structural assemblies as a fraction of either the 

vehicles empty weight or its maximum take-off weight (Gersh and York, 1979). The 

most recent example of the development of this method is provided by Scott and 

Nguyen (1996). The analysis is based on the consideration that the gross weight of the 

aircraft can be considered as the summation of its corresponding fuel weight, payload 

weight and Operational Weight Empty (OWE) (Equation 2.7). 

Wg = OWE + Wpl + Wluel (2.7) 

where: 

Wg is the gross weight of the aircraft; 

Wpl is the payload weight; 

WItte! is the fuel weight required for the completion of the mission. 

In addition to this, the aircraft OWE can be regarded as the summation of two 

different weight components. The first one is a constant weight component, which does 

not vary during the sizing process but only depends on the number of passengers to 

be carried and the vehicles year of entry into service in order to account for possible 

technological advancement. The second term identifies a variable mass component 

changing proportionally to gross weight in terms of a coefficient identifying the ratio 

of variable weights to the aircrafts design gross weight (Equation 2.8). 
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(2 .8) 

where: 

a 
0 
0 
0 
T"" 
~ 

u 
3: 

We is the constant weight component of the aircraft; 

Kw is the statist ical coefficient relat ing variable weight to the gross weight of 

the aircraft 
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FIGliRE 2.2 : Graph showing the variation in weight due to passenger capacity for commercial 
transports (Scott and l'\guyen, 1996) . 

Weight analysis at t his level of granularity identifies t ructure and systems 

as functional groups. Systems such as avionics, instrument and electrical equipment 

as well as fuselage structure and furn ishing are incorporated in the constant weight 

component since they only depend on the passenger capacity and the specific level of 

technological advancement applied to the vehicle (Figure 2. 2). The remaining load 

carrying structures as well as systems such as propulsion, flight controls and landing 

gear are included in the varying weight component (Table 2.1) . 
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TABLE 2.1: Identification of functional weight groups for the Fixed Fraction Method (Scott 
and Nguyen, 1996). 

CONSTANT WEIGHT (WcJ I VARIABLE WEIGHT (WvJ 

Body /Fuselage 

Auxiliary Power Plant 

Instruments 

Electrical 

Avionics 

Armament 

Furnishing/Equipment 

Air Conditioning 

Load and Handling 

Fixed Useful Load 

Wing 

Rotor 

Tail Group 

Alighting Gear 

Engine /N acelle 

Air Induction 

Propulsion 

Flight Controls 

Hydraulic /Pneumatic 

Anti-Icing 

Rather than being used for a detailed weight analysis, methods like this provide 

a quick estimation of the efficiency of a particular design. In this case it is useful 

to adopt the ratio of the Operational Weight Empty to Maximum Take-Off Weight 

(OWE/MTOW) to compare the performance of a particular configuration to that of 

aircraft employed for similar purposes. The method assumes conventional commercial 

transports to be characterized by 54 percent of variable weight components and the 

remaining 46 percent related to fixed weight structures and systems. In addition to 

this, the use of the Fixed Fraction Method allows for an easier definition of the design 

space being explored, for a ready identification of the parameters with the highest 

degree of influence on the desired performance characteristics of the design as well 

as highlighting the possible consequences of changing any of these parameters in the 

configuration. This can be readily seen in the incorporation of the Breguets equation 

for range in the computation of the aircraft gross weight (Equation 2.9). 

W 
_ Wc+Wpl 

g- R 
(1 + Kwev) x 10c - (Kwev + Krsv) 

(2.9) 
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where: 

Kwev correlates variable and gross weight in the same way as Kw in the method 

of Scott and Nguyen (1996); 

K rsv is a factor used to include the effects of reserve fuel on gross weight; 

R indicates the design range of the aircraft. 

C allows to account for engine performance and depends on the type of engine 

used in the design (Equation 2.10, 2.11): 

C = 326 x (~) (S ;C ) for propeller driven aircraft (2.10) 

for jet powered aircraft (2.11) 

where: 

15 is the lift to drag ratio of the design; 

n is the cruise efficiency for the propeller; 

SFC is the average cruise specific fuel consumption for propeller driven aircraft; 

TSFC is the average cruise thrust specific fuel consumption for jet powered 

aircraft. 

This is a particular adaptation of the relationship between range and gross weight 

as presented by Bechdolt et al. (1996). Each empirical method will have a similar 

formulation incorporating other parameters according to the focus of the particular 

study. Equation (2.8), for instance, identifies payload and constant weight component 

as the main driving parameters for range and, consequently, for fuel reserve. Scott and 

Nguyen (1996) provide an equivalent type of relationship (Equation 2.12). 

w _ Wc+Wpl 
9 - R 

Kca x (1 + Kwev) x 10c - (Kwev + Kr8v ) 
(2.12) 
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where: 

Kca is a correlation factor allowing for extra fuel burnt during climb and accel-

eration. 

The main layout of the formulation mirrors (Equation 2.9), however in this case 

it has been rearranged to include the effect of climbing performance on take-off weight 

through the correction factor. 

Of a similar degree of simplicity is the risk analysis carried out for this type of 

methodologies. One of the first examples of the quantification of the "risk" of using a 

particular WER was conducted by Ballhaus (1947) who adopted probability theory to 

enhance the applicability of empirical WERs at aircraft subsystem level. In particular, 

the study focuses on examining first the effects of the individual geometrical or opera­

tional parameters chosen by the designer on the subsystem weight and, subsequently, 

their combined impact. Once the WERs are derived, probability theory is then applied 

to compute the probable error of estimate that can be expected from the formulation 

based on the analysis of the given statistical data. Although still basic in both the 

structure of the WERs and the application of the theory of probability for the solution 

of the problem, BaUhaus {1947} showed the first real attempt to assist the designer in 

judging the validity and applicability of their weight estimates. 

Scott and Nguyen (1996) prefer the Growth Factor (GF) approach as a first 

attempt to risk analysis for empirical weight estimation at preliminary design stages. 

Through the computation of the GF, it is possible to estimate the relationship between 

increments in empty weight and desired level of performance of the design. In par­

ticular, this parameter was proven successful in determining the degree of impact of 

different weight variations in less than one-tenth of the time required by other statistical 

methods and with greater accuracy (Equation 2.13). 

GF = (Cgf) 1 + Krs~ 
Kca x (1 + Krsv) x 10c - (Kw + Krsv) 

(2.13) 

where: 
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Cgf is an addit ional correlation factor. 

The factors relating gross weight to reserve fuel, climb performance and vari­

able weight components are still considered. The equation itself, however, would over 

estimate the growth factor: for this reason the correction factor C 9 f, ranging from a 

minimum of 0.7 up to 0.85 for long range transport. 

The idea of using the growth factor as a way of evaluating overall weight penalties 

in the general gross weight of the design by changes in individual components, however, 

was first presented by Saelrnan (1973) . By identifying the relationship between fixed 

weight and gross weight as a mathematical relationship (Figure 2.3), the growth factor 

itself can also be formalised further as the rate of change of aircraft gross weight to 

aircraft fixed weight (Equation 2.14). 

(2.14) 

where: 

Wo is the fixed weight of the aircraft . 

FIGURE 2.3: Graphical interpretation of the growth factor. 

The initial weight estimation method provided by Scott and Nguyen (1996) was 

applied by the same authors to a database of 17 aircraft and resulted in an absolute 
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average error of less than 3 percent. The method, however, strongly relies on database 

predictions and similarity approach. The purpose of the similarity approach is that of 

normalising the database in terms of critical design parameters, such as configuration 

layout and type of propulsion system, so as to try and minimise the error in the 

estimation. Additional considerations are also included in the analysis. The effect of 

technological advancement, for example, is also included by multiplying the constant 

weight component by the Advanced Technology Multiplier (ATM) (Equation 2.15). 

AT M = 0.9985(Y EIS-1975) (2.15) 

where: 

Y E ISis the year of entry into service for the aircraft. 

Although still applied only at early design stages and limited to first approxi­

mation studies of subsystem level, empirical WERs have proven useful in the weight 

estimation of spacecraft structures (Hassman, 1975) and hypersonic vehicles (Plank 

et al., 1970), especially when embedded in multidisciplinary analysis software such as 

the Weight Analysis of Advanced Transportation Systems (WAATS) program (Cook, 

1981) 

2.3.3 Benefits and limitations 

One of the main benefits of weight estimation methods based on empirical for­

mulations is their ability to produce reasonably accurate results with minimum effort 

and time constraints (Carreyette, 1950). It is, in fact, easy to produce simple weight 

equations for particular trade studies, incorporating in them the parameter in which 

to focus the analysis. This kind of methodology will allow a rapid evaluation of a num­

ber of configurations, structural solutions and material choices without great detailed 

knowledge of the design itself, making this method very suitable for weight evalua­

tion in early design stages (Jankowski, 1990). From here it is also possible to derive 

trend curves to define the best correlation of two or more design parameters for the 

attainment of a particular degree of performance, which proves to be very useful espe-
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cially when designing different design combinations for a family of aircraft (Scott and 

Nguyen, 1996) . 
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FIGURE 2 .4: Commercial t ransport MTOW per seat t rend (Scott and Nguyen, 1996). 

Figure 2.4 is an example of the kind of definition of the design space obtained 

by using empirical methods. In particular, the trend curves in this case relate range 

to the general configuration of the aircraft in terms of the ratio of maximum t ake-off 

weight to passenger capacity. It is easy to underst and the benefits of adopting this 

kind of relationship and visual description of the design space: this can be considered 

not only as a good starting point for the design process but also a sanity check for 

the more detailed weight predictions produced in the later design stages . The ease of 

development of empirical WERs and the limited computational effort needed for the 

analysis makes this type of formulations also particularly suited to early trade studies 

for cost and development models (Beltramo et al., 1977). 

These benefits, however , are also the main limitations of this kind of methods. 
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From the various examples in the literature (Howe, 2000; Torenbeek, 1985) it can been 

seen how the simplicity of empirical WERs can only restrict their use to early and basic 

trade studies and not for more advanced stages in the design process. In the majority 

of cases, the simplicity of these formulations and the basis on average values for main 

variables involved in the analysis makes it hard to ensure their validity (Macci, 1995). 

Moreover, this kind of weight prediction proves to be only valid when analysing 

designs which are mostly similar to those included in the reference database, limiting 

their usefulness in predicting initial performance for unusual designs or concepts in­

volving the use of new materials of technologies. As pointed out by Scott (1992) when 

examining seven different wing weight estimating relationships, the variation in the 

value of the exponents for the same parameter can mainly be attributed to variation in 

the reference database. The increasingly spreading use of composites for load carrying 

structures in aircraft is a typical example. The use of weight fractions based on nearly 

all metal designs will result in highly erroneous weight estimations for new generations 

of aircraft which are characterised by an always higher percentage of the structure 

manufactured from lighter composite materials, making this approach unable to in­

clude effects of innovations in the weight prediction. It is, therefore, vital to not only 

build up the reference data set on similar configurations, but also to focus on the level 

of technological advancement to ensure that the results will be truly representative of 

the final design. The quality of the results produced will also be significantly depen­

dent on the nature of the databases used. The higher the number of detailed weight 

estimates from other designs as well as their degree of similarity to the configuration 

being examined will determine the accuracy of the prediction. 

To improve the degree of accuracy and reliability of empirical weight estimating 

relationship it is important to: 

1. Adopt mathematical formulations precisely representing the degree of influence 

of the individual geometric parameters on the overall weight trend; 

2. Combine all the necessary parameters affecting the final weight, even those con­

tributing to it in a minor way (Scott, 1992). 

Limiting the formulation to an exponential form would not allow the repre-
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sentation of more complicated weight trends, such as bucket-shape ones determining 

the relationship between fuselage weight and finess ratio (Scott and Novelli, 1989). 

If this is combined with the inclusion of secondary parameters in the analysis (Le. 

wing-fuselage joint weight) the error between real and estimated weight could be con­

siderably reduced. It is, however, important that the size of the reference database 

is larger than the number of parameters used in the weight estimating relationship to 

avoid misleading results. 

2.4 Semi-analytical weight estimation 

Different alternatives of semi-analytical weight prediction methods are available, 

mainly differing among themselves in the kind of initial assumptions on which the 

derivation is based. These methods are usually individually derived by the aircraft 

manufacturers and are based on the detailed knowledge acquired on a specific kind 

of component family or aircraft category, resulting in a large number of individual 

formulas for the estimation of the same structural component. They also tend to aim 

at sizing components via equations derived on the assumption of one critical design 

condition. 

Derivation of wing group weight is the one that has acquired the major interest 

in the literature. Changes in the overall design of the vehicle during its evaluation 

often require considerable resizing of the wing. Even though only accounting for 10 

percent of the structural weight of the aircraft, any design changes to the wing will have 

a considerable impact on the overall performance of the aircraft. Efforts have been, 

therefore, aimed at producing a wing weight estimation model able to yield highly 

accurate results with minimum time effort. 

Hopton-Jones (1955) provides one of the earliest examples of rigorous structural 

wing weight build-up methodology by this approach. Figure 2.5 highlights the structure 

of the approach. The wing structural material is distinguished into basic box structure 

and secondary structure. The elements in the secondary structure and most of those 

related to the interspar weight are estimated via empirically derived \VERs. However, 

the main bending and shear material groups depend on the loading the structure needs 
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to counteract. In particular, the analysis focuses on the effect of airloads, as well as 

distributed and concentrated inertia, with the addition of effects from landing gear 

loads. 
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FIGURE 2.5: Diagram of semi-analytical wing weight build-up methodology 
(Hopton-Jones, 1955). 

One of the most recently developed semi-analytical tools for wing weight estima­

tions can be attributed to Macci (1995), and its derivation very much mirrors layout 

and methodology as the above example. The theoretical derivation is based on the 

computation of t he amount of material needed in the structural wing box in order to 

satisfy bending and torsional stiffness under prime loading conditions of axial compres­

sion, shear and bending. In this case, aeroelastic effects are also considered in order to 

prevent torsional instability and flutter. 

The overall mass of the wing structure is , t herefore, assumed to be made up of 

the mass of the structural box derived analytically, as well as contributions from rib 

structure, control surfaces and miscellaneous element computed via empirical methods. 

In particular , the structural mass of the wing box can be seen as being made up of 

bending material (skin cover) and shear material (shear web) both inside and outside 
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the fuselage. The derivation of these formulae is based on the consideration of the worst 

loading case, in other words the case in which the ultimate loading factor assumes its 

maximum value within the flight envelope, in either deep maneuvers or under gust 

conditions. Moreover, the derivation includes load relief effects due to inertia forces 

in the structure, by means of a theoretical inertia relief factor incorporating relief 

due to wing structure, fuel and engine attachments. Effects on allowable stress due to 

individual material properties are also included in the calculations by means of different 

formulations for design stress depending on whether the structure is fabricated from 

metal or laminate composites. 

Slingerland et al. (2007) adopt a similar approach for the derivation of fuse­

lage weight. By analysing the fuselage as both barrel sections and individual panels, 

the methodology allows for analysis of load variation in both longitudinal and cir­

cumferential directions and, consequently, a more representative load and thickness 

distribution. The overall structural weight is then derived by combining the analyti­

cally derived panel weights with empirical WERs for additional components. A growth 

factor approach is then used to evaluate weight savings achievable by using different 

materials both for the overall design as well as for individual fuselage sections. 

In the majority of semi-analytical weight estimation approaches, the weight of 

secondary structures, ranging from leading and trailing edge fixed and movable com­

ponents to landing gear and engine attachments, is computed empirically (Carreyette, 

1950; York, 1980). The mass of the components, in this case, is not driven by stress 

and loading issues, but merely on a combination of geometrical parameters as well 

as statistical correction factors incorporated by constant exponents and multiplication 

factors. Another example is the weight of attachment of engine and undercarriage 

which is mainly driven by the total number of landing gear in the design and the num­

ber of the landing gear units attached to the main wing structure, whilst the additional 

components are estimated through factors accounting for miscellaneous features such 

as cutouts and minimum gauge design. 
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2.4.1 Applicability of semi-analytical weight estimation formulations 

Semi-empirical weight estimation approaches, as seen in the previous section, 

are much more representative of the parameters affecting components and assembly 

weight compared to simpler empirical methodologies, thus creating a broader base 

for structural optimisation (Gallman et al., 1997; Huang et al., 1996). They allow a 

much more in depth functional level analysis by considering the different loadings the 

structure needs to be able to sustain as well as including weight effects induced by the 

application of new technology (York, 1980). 

Even though the number of semi-empirical equations tends to vary largely ac­

cording to the component/subassembly considered, ranging from as little as three 

(Macci, 1995) to hundreds (Roland, 1969), they are very suited to be incorporated 

in semi-automated weight estimation routines. Typical examples are programs such 

as the Weight Analysis of Advanced Transportation Systems (WAATS), developed as 

part of the Space Shuttle Synthesis Program (SSSP) (Glatt, 1974) and the Weight 

Integrated Sizing Evaluation (WISE) tool (Gersh and York, 1979). These types of au­

tomated frameworks for preliminary design differ amongst themselves in terms of the 

kind of equations used and the degree of accuracy provided in the analysis. Nonethe­

less, they are all based on a similar aim: a simple architecture which is at the same 

time flexible and highly responsive, as well as able to work with minimal inputs, but 

while outputting as much information on the design as possible (Glatt, 1974; St.John, 

1969). 

WISE, in particular, has been structured in two separate modules. WISE-One 

was designed for an initial rapid evaluation of the concept using empirical methods, 

while WISE-Two aimed at optimising the results from the first unit in terms of cost 

and weight using more detailed semi-analytical formulations (Gersh and York, 1979). 

This kind of approach to the weight prediction problem solves some of the issues 

related to the more basic empirical solution. Macci (1995), however, has highlighted 

some of the limitations of the method, which are typical drawbacks of more general 

semi-analytical weight estimation procedures. The underestimation incurred in the 

results has to be related to the lack of information on additional penalties such as 
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sealant, paint or storage tanks not accounted for in the empirical equations. The 

approach suggested by Hammitt (1956), although still computing weight penalties in 

a semi-empirical way due to the excessive time needed for computation, provides an 

extensive list of weight penalties incurred by both wing and fuselage structures. They 

range from additional weight incurred by substituting the wing edges with control 

surfaces, to bulkheads, joints and supports. However, this kind of approach still limits 

the application of the methodology to aircraft fitting the characteristics of the reference 

database. 

This drawback is always going to be present due to the empirical contributions 

within these methodologies and can only be limited by increasing the size and quality 

of the reference database as much as possible. Moreover, care should be taken in the 

choice of parameters to be used. Most of the empirical correction factors used in this 

kind of methods are extrapolated from statistical trends. It is important to consider 
I 

data points that do not fallon the regression line, since they might indicate the need 

of a different statistical correlation to be adopted. 

2.5 Analytical methods 

Purely analytical weight estimation methodologies tend to appear in later design 

stages, where a more detailed knowledge of the design has been acquired and the weight 

and balancing process itself is aimed at a specific design intent which cannot be related 

to any existing database. These methods are mainly designed to analyse particular 

structural arrangements (KeIrn et al., 1995) and are structured around point sizing 

criteria, allowing to reach the single component weight level, not covered by the two 

previously described methodologies (Ritter, 1960). 

Analytically derived weight statements are usually drawn around three main 

considerations (Bechdolt et al., 1996): 

1. Design intent: the analysis of the component starts from the initial sketch which is 

then translated into weight analysis by concurrent consideration of the necessary 

approximations to be applied to the model. Care needs to be taken in ensuring 
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that the approximations applied are valid and able to include manufacturing and 

installation issues. 

2. Sizing criteria: specified in order to satisfy strength and stiffness requirements 

according to the loading to which the component will be subjected, in parallel 

with material properties and constraints. 

3. Production design: issues concerning the manufacturability of the component are 

included in the analysis in the form of physical constraints and calibration factors. 

Analytical weight prediction methods, although often very different among them­

selves, are all based on theoretical formulations aimed at defining the optimum weight, 

in other words the minimum possible attainable weight (Shanley, 1960). The real 

weight of a structure, however, is a combination of the theoretical optimum and a 

non-optimum contributions due to inefficiencies in the design, ranging from joints to 

cutouts, which can add up to 80 percent above the ideal structural weight. Analyti­

cal procedures will result in formulations relating size, material properties and applied 

loads (Staton, 1974; Simpson, 1973). 

Due to the degree of detail included in the derivation, analytical methodologies 

tend to work in a bottom to top way. The analysis is carried out on an individual 

component basis, by: 

1. Simplification of the load carrying elements according to theoretical assumptions; 

2. Identification of the loads driving the design of the component and their locali-

sation; 

3. Integration of the loads and derivation of load distribution for the individual 

component; 

4. Evaluation of minimum weight to satisfy the loading conditions. 

Once these steps have been carried out, the size and weight contributions from 

different components are available and it is possible to clearly define the effect of the 

component-level design on the assembly/subsystem weight (Marczi and Smrcek, 2004). 

When defining the idea of optimum design, Shanley identifies in the ultimate 

strength the most important loading condition for the determination of the overall 
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weight of any load carrying structure. This work also highlights the importance of 

developing a method of integration in a simple manner without sacrificing the oppor­

tunity to consider the effects of different jactoTs on the final weight (Shanley 1960). 

Constant allowable stress and integration methods over inaccurate load distributions 

are also identified as the major flaws of the weight estimation methodologies adopted 

until then. 

FIGURE 2.6: Typical sheet-st ringer-rib type wing structure (Shanley, 1960). 

In the derivation of sheet-stringer-rib type wing structure (Figure 2.6), in ad­

dition to the identification and analysis of the individual effects of the main loads 

acting on the different structural components, the combined effects of torsion, shear 

and bending are computed by means of the interaction-curve method (Shanley, 1960). 

Crushing and pressure loads on ribs are also accounted for. In terms of overall geo­

metrical layout , the resulting wing weight underlines the relative effect of geometric 

parameters such as span, mean aerodynamic chord and wing area, as well as semi-span 

depth ratio and taper. The formulation also allows the analysis of both take off and 

landing conditions as well as providing essential information for trade studies, such as 

the impact of an increase in take-off weight on wing structural weight as compared to 

that resulting from an increase in wing span . 
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The derivation process follows a similar pattern in the case of the weight esti­

mation of fuselage structures. Both general instability type failure, with buckling of 

stringers, skin and frames, as well as a panel-type failure, with buckling of skin-stiffener 

panel only in between the frames, are incorporated in the analysis due to equal prob­

ability of occurrence under loading conditions. It is assumed, however, that all loads 

from the wing are transmitted to a single point in the fuselage along its centerline. 

This assumption results in higher bending moments than those the structure will be 

subjected in reality due to width of fuselage and wingbox being neglected (Shanley, 

1960). 

To these optimum weights, weight inefficiencies are included as non-optimum 

factors. In the case of joints, the non-optimum factor is calculated by considering the 

length over which the inefficiency is present in comparison to the length of the structure 

affected by it. The result from the application of this analytically derived inefficiency 

factor is a doubler effect, underlining the increase of volume over the optimum value 

that the assembly of individual components would result in (Equation 2.16). 

(2.16) 

where: 

kj2 represents the increase in volume of the structure due to the presence of 

doublers 

LD is the equivalent length of the doubler material 

Ln is the length of the joint 

kD represents the ratio of doubler cross sectional area to its ideal cross section. 

Compared to previous methods, additional sources of inefficiencies are also ex­

amined, such as tapered sheets, the use of standard gauges, reinforcements due to 

cutouts and fixtures as well as their combined effects. Weight of high-lift devices, how­

ever, is kept semi-empirical on the assumption that the portion of volume occupied by 

the structure and the loadings they are subjected to are very low. 

34 



Chapter 2 

Numerous methods have been developed after these analytical formulations, but 

the majority of them used Shanley's assumptions and derivation methods as a basis for 

analysis. Razani (1965) proved the existence of a relationship between the convergence 

of a fully stressed design and its associated minimum weight (Singh and Yadav, 1993). 

Crawford and Burns (1963) expanded the concept of minimum weight analysis pro­

posed by Shanley to a variety of structural arrangements and loading combinations for 

stiffened cylinders. This allowed for an extensive analysis of the efficiency of different 

design solutions and stiffening arrangements as well as the definition of a comprehensive 

set of design information to be readily applicable within the design process of fuselage 

structures. 

In addition to the analysis of relationships for optimum weight design, the main 

effort behind analytical formulations for structural weight estimation developed after 

Shanley's example aimed at widening the applicability of the weight estimation method­

ology. In particular, the interest was focused on including the effect of parameters and 

variables which had been thus far overlooked as well as generalising the derivation so 

that it could be applicable to more unusual loading conditions and structural arrange­

ments (Regis et al., 2004; Schmidt et al., n.d.). The approach proposed by Lewis and 

St.John (1975) tried to simultaneously simplify the problem and improve the accuracy 

of the results by accounting for test results on allowable stress as the main basis of 

the derivation. By using normalised stress and fatigue index techniques, the method 

manages to theoretically include all material-temperature combinations in the analysis 

and was easily combined with cost estimation methods for trade studies on the relative 

benefits of the use of different materials (Figure 2.7). 

An alternative solution for wing and fuselage weight of hypersonic vehicles was 

provided by Ardema, and later generalised for transport aircraft (Ardema et al., 1996a; 

Ardema, 1972; Ardema et al., 1996b; Ardema, 1988). The method combines classical 

plate theory and beam theory on simplified models in order to be able to rapidly 

asses the benefits of different configurations but in a more accurate way than empirical 

models and with a less detailed knowledge of the structure compared to the final element 

method. The approach examines the structure under three separate load cases: the 

weights of the load bearing structures resulting from the analysis were then compared 
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FIGuRE 2.7: Hi -togram showing the results of t he study conducted on the ffects of di ffer nt 

material choices on the weight of the F-1 8 wing (Lewis and t.J ohn , 1975). 

to total weights computed through PDCYL, the main subroutine for weight prediction 

developed at ~ASA as part of t he weight module within their AirCraft SYKThesis 

progTam (Ardema, 1996). The accuracy of the results was measured by means of a 

correlation coefficient and improved for the preliminary design stage by linear regression 

equat ions relating the theoretically derived weight wi th those compu ted via PDCYL. 

Eustace (April 199 ) tried to concretely integrate structural weight estimation 

wi thin the design process by designing a more flexible analytical framework . In addi­

tion to providing a strong base by including true loads, materials and geometries in 

the analysi ,thi method has the fl exibility of considering different combinat ions of 

materi als. designs and configurations as well as allowing for a preliminary optimisation 

of size and layout of the structures. The program works around a series of EXCEL 

spreadsheets linked by macros to provide a stable iterative loop. The process star ts 

wi th an initial de ign defini t ion , first estima te of design weight and flight loading pro­

vided by the user which are iteratecl on both a component and assembly I vel un t il 
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convergence. More than providing alternative analytical equations for the structural 

weight derivation, the method is based on an alternative framework for the analysis. 

The user is forced to address the structural layout from the start as well as their var­

ious tradeoffs. Moreover, compared to other weight estimation procedures , it includes 

the weight effects of different locations of sub-systems and equipment as well as their 

related structural implications. 

A limited amount of initial data needs to be provided by the user , ranging from 

geometric parameters, main loading at specified stations (i.e. ribs , frames .. ) material 

properties, details on attachment masses/high lift devices as well as an initial estimate 

on the number of secondary structures. The outputs following the different iterations 

include load distribution graphs, spar and rib geometry distribution pattern and buck­

ling ratio distribution (Figure 2.8, 2.9). 
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Skin Thickness 
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FIGURE 2.9 : Skin thickness distribution (Eustace, April 1998). 

2.6 Alternative solutions 

1.CD 

In recent years, the development of new state of the art technology has pushed the 

engineering industry to find alternative ways of solving the weight problem in the 

design of aerospace vehicles. The focus has been to substantially improve the accuracy 

of the predictions whilst limiting the computational time mainly by increasing the 

degree of automation of the process. Moreover , considerable effort has been put into 

combining weight estimation with structural optimisation with the aim of improving 

the efficiency of the vehicle as much as possible by means of more significant weight 

reductions. 

2.6.1 Solid modelling and Finite Element Analysis for weight estima­

tion 

Finite Element Analysis (FEA) has been evolving over the years. From being 

only relegated to the static analysis of structures, it has become an essential part of 

the design process. The literature proposes numerous methods of formally integrating 

FEA in the early stages of the design not only as a tool for structural analysis, but 
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also to aid the weight estimation process. 

Chiesa et al. (1999) outline the framework for successful integration of FEA in 

the conceptual design and mission analysis of launch vehicles. The process starts with a 

concept definition conducted with statistical weight formulations and basic estimation 

of performance parameters to provide the starting points for the FEM based design. 

The results of the process are then iterated until convergence of mass and performance 

values. The core of the methodology lays on the automatic generation of the FEM 

model from the parametric CAD model derived from initial concept study. 

Komarov and Weisshaar (2002) suggest the incorporation FEA in the design 

environment in two separate stages: a first simplistic model (FEM-1) for the defi­

nition of the design space, constraints and loads, and a higher fidelity one (FEM-2) 

which includes further details as well as additional considerations such as manufactur­

ing constraints and product requirements. On the basis of the creation of FEM-2 a 

first Theoretical Optimal Structure (TOS) is produced by formal optimisation tech­

niques and which is able to provide initial rough estimates on load path, thickness 

distribution as well as preliminary weight. The final weight prediction is a result of 

the more advanced structural analysis supplied by FEM-2 and validated by both TOS 

and FEM-1 and translated into real manufacturable weight by means of empirically de­

rived conversion factors which allow to both determine the final design efficiency of the 

structural arrangement (load carrying factor) and convert the ideal optimised FEM 

weight into an "as-manufactured" structural weight (construction factor) (Komarov 

and Weisshaar, 1998). 

Although proving to be an excellent tool for the improvement of the structural 

design process, FEA as a weight estimation technique has its own downsides. The 

issue of "weight conversion" is of primary importance when adopting FEA for weight 

estimation purposes. The main consideration when applying it to weight derivation is 

the awareness that the FEM does not represent the actual weight: the model, in fact, 

is built around the concept of stiffness rather than mass, therefore making conversion 

between the two compulsory when analysing the model. One of the main challenges, 

therefore, has been the integration of the factoring process in the FE routine. This was 

already outlined by Murphy (1987) in one of the first application of FEA to the weight 
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estimation process and is still a challenge. Hutton and Richmond (1979) provided a 

first attempt to the solution of the problem by applying FEA to the F-15A wing struc­

ture and iteratively compare the results to manufactured weights for the optimisation 

and convergence of individual subfactors (Figure 2.10). 

~----+ I AHALYSlSF-II I-I ':;'~TAII-----, 
... 

VULNERA8IUTY) 

FIG URE 2.10: Flow chart illustrating the development and validation of mass factors for FEM 
conversion (Hutton and Richmond, 1979). 

The result is the complete integration in the FEA of a wide range of subfac­

tors . This addition aims at allowing the modelling process to embody and represent 

unmodelled weight (i.e. joints, fasteners ... ) and as well as adding the capability of 

converting FE stiffnesses to real masses. In addition to this, the inclusion of subfactors 

enables the modelling process to translate more realistically approximations related to 

material properties and overall model calibration (Figure 2.11 ). The general categories, 

however, are further specified according to the specific component being analysed, its 

features and the types of elements used to model the component in the finite element 

environment. 

A imilar approach to the problem of conversion of Finite Element weight to 

real structural weight has been presented by Droegkamp (1992). The various element 

groups defining the FEM include the mass of unmodelled structures. Accounting for 

unmodelled elements (i.e. fastening, joints ... ) during the weight estimation process is 

vital since they can account for up to 80 perc nt of the as-built structure depending on 

the type of material used (Figure 2.12) and ignoring their effect would result in highly 

erroneous results. 

The conver ion is then carried out by means of reduction algorithms combined 
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FIG URE 2 .11 : Categorisation of subfactors accord ing to Hutton and Richmond (1979). 

with mass factors applied at the component, sub-assembly and final assembly level. 

The aim of these tools is to: 

1. Match neutral axis and bending moment between real and ideal strength critical 

structures; 

2. Account for differences in structural properties for stiffness critical structures; 

3. Account for weight of unmodelled structures. 

Finite Element Analysis has also proved to be extremely beneficial in terms of a 

more disciplined weight control and systematic weight management methodology Zaidel 

(1992). It is easier to clearly identify inefficient areas in the target weight distribution 

and visualise possible solutions by including FEA in the design routine. 

It is also possible, by combining FEA with CAD, to provide a more efficient 

solution to the problems related to the accounting phase of the weight estimation pro­

cedure. One of the traditional pitfalls incurred in the production of detailed structural 

weight statements is the clear definition of subassemblies and their individual compo­

nents. Parts tend to be neglected or overlooked in the final weight statement as well as 

accounted for more than once due to lacking of a clear definition of the elements making 

up subassemblies. The Innovative Mass Prop ert ies Analysis CATIA Tool (IMPACT) 
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FIGURE 2.12: T heoretical we ight as a percentage o f actua l as buil t weight (Bechdolt et at., 
1996). 

is a great example of t he benefi ts of accurate weight accounting proced ure in terms of 

time savings and accuracy of results (Flamand , 2001 ). The program effi cient ly links 

CAD modelled structures and Finite Element Analy is outputs wi th a well structured 

weight accounting database. The assembly t ree eas ily developed during the creation 

of t he model is transferred to the database by an integrated coding sy ' tem able to 

prod uce extensive weight reports as well as record geographical locations of individual 

components and subassembly. The risk of under / over counting parts i , therefore, non 

existent thus allowing a concrete reduction of the overall error in the weight prediction 

process . 

Of a similar nature is the framework adopted by the Vehicle An alysis Branch 

at ~ASA as part of the CO~ figuration SIZing Program (CO~SIZE) (Martinovic and 

Cerro , 2002). By coupling solid modelling tools (I-DEAS ) with a Finite El ment rou­

t ine combining a sizing lllodule (HyperSizer) wi th appJiedloads and individual locations 

(EXCEL, JAVA), gr at r consistency was en ured for the weight estimat ion proces . A 

eries of automated loop link the different uni ts until convergence, concretely speeding 
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up the process of computing preliminary structural weight estimates (Figure 2.13). 

CONSIZE 

CAD 

GEOMETRY 

EXCEL/JAVA 

FEA 

SOLVER 

SIZING ------I.. HYPERSIZER I ~_ 

FrGt;RE 2.13: Flow chart outlining the procedure for structural weight estimation for CO):­
SIZE ( ~l artinovic and Cerro, 2002). 

The Finite Element YIethod for ~1ass Estimation (FE?--IyIAS) was developed 

by Airbus to addre the need to combine the ability to rapidly evaluate a number 

of different tructural arrangements with finite element models that are able to truly 

r present in detail the defining features of the different arrangements (Wenzel, 2007). 

The approach for a more efficient creation of FE~f in this case lays on the component­

based architecture behind FE:'1:'IAS. This allow the creation of an independent library 

made up of a number of parametri -ed models for individual component definition that 
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can be reused for both different configuration arrangements as well as in other software 

environments, allowing data exchange between different disciplines more rapid and 

smoother. 

The use of Finite Element Analysis still presents some strong limitations. It is 

very easy to include in the model elements which are not related to the real structure 

but which are necessary for the accurate design of the computational model itself. It 

is, therefore, necessary to identify those elements and make sure that they are not 

included in the conversion/accounting phase in order to allow the production of an 

accurate weight statement. 

Of primary importance is also the accurate placement of the loads on the model. 

The nature of the Finite Element representation makes it necessary to apply continuous 

loads on an individual node basis. The choice of an excessively small number of nodes 

can, therefore, result in an excessively large portion of the load being carried by a 

discrete location. This will, therefore, result in elements being oversized in order to 

counteract the applied load and, consequently, in the analysis providing misleading 

outcomes (Hutton and Richmond, 1979). As a consequence, even though the model 

has been designed to allow an analysis as close to reality as possible, this so called 

pillow effect could produce very erroneous results. 

Ledermann et ai. (2006) propose the use of dynamic CAD objects to success­

fully link the model to the finite element structure during preliminary design. The 

parametric-associative methods used for CAD model definition allow for rapid changes 

in the design configuration by describing the interdependencies among the different 

elements of the design. 

The accuracy of the weight prediction produced through Finite Element Analysis 

and CAD is directly dependent on both model maturity and consistency of application 

of weight factors. This kind of analysis, although providing good quality results at a 

later stage of model definition (approximately 3 percent for the aft fuselage structure 

(Zaidel, 1992)), is not highly responsive conceptual and preliminary design applica­

tions in terms of analysis flow time. The relationship between degree of model detail, 

structural layout definition and computational time with associated accuracy of results 

make it more suitable as a validation tool rather than a primary weight evaluation 
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methodology. 

2.6.2 Functional level weight estimation methodologies 

The preferred approach to combine structural analysis and weight estimation 

especially at a conceptual level stage can be related to the use of integrated compu­

tational analysis frameworks (i.e. FLOPS (McCullers, 1984), ASCYNT (Mason and 

Arledge, 1993)). The benefits of adopting this type of tools is linked to the multi­

disciplinary nature of the analysis that they allow to conduct, their straightforward 

architecture and the structure of the codes behind it which allows easy integration of 

different analysis subroutines. Moreover, the flexibility of the codes enable to define 

an increased level of detail in the analysis in parallel with the design stage considered 

(Garrison, 1973). In order to make weight estimation an integral part of these tools it 

is, therefore, necessary to design an overall approach which: 

1. Can easily accommodate different analysis levels; 

2. Is rapid and cost effective; 

3. Can be implemented in different analysis frameworks for a more concurrent design 

development. 

A design-oriented stochastic approach to weight estimation has been proposed 

as a solution to this problem (Sexstone, 1998). The basis of the structural analysis 

is an extension of the Equivalent LAminate Plate Solution (ELAPS) code combined 

with stochastic weight analysis of the preliminary weights provided by the code itself 

in order to considerably reduce the uncertainty intervals at both a component and as­

sembly level. Although similar to Finite Element Analysis in the necessary conversion 

between ideal and real mass as well as in the definition of non-optimum weight fac­

toring, the definition of the structure itself follows a functional build-up methodology. 

The decomposition is conducted at different levels of detail according to the degree of 

uncertainty required by the study, with the identification of the component with the 

greatest impact on the range of accuracy of the results. Successive minimization of 

confidence intervals is, therefore, possible as the design process proceeds. 
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This methodology has identified the Non-Optimal Mass Factors (NOMFs) as 

the main source of uncertainty in the derivation of structural weight. The main con­

dition for a successful weight estimation is, therefore, the definition of the principal 

ources of uncertainty in the weight prediction at a component level with the aim of 

producing a configuration design with minimal sensitivity to it. Compared to tradi­

tional approaches, the result of this methodology is a probabilistic weight distribution 

at the end of each stage of the iterative process. As the design progresses, the upper 

and lower boundary of the various probability distributions used to define the system 

get closer together thus reducing the risk of discrepancies between estimated weight 

and as-built weight until desired convergence (Figure 2.14). 
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FIG uRE 2.14: Graphical representation of increase in confidence with learning th rough weight 
probability distributions (Sexstone, 1998). 

The stochastic approach used by ELAPS is of a very basic level, where only 

three \'OYIFs sets are required: the small st po sible NOMFs, the largest and the 

most likely to occur which are used for a curve fi tting process. However, more ad­

vanced and reliable methods could be implemented , namely Design of Experiments 

(DoE) and YIonte Carlo Simulations (Fisherman, 1996). They would allow the random 

production of sub- ets of \'OF~1s inclusive of those representative of each component 

from which the as-built weight would be computed. Combined with a Pareto analysis, 

the rejection process of \'OFYls to which the configuration would be insen itive could 

be significantly improved in terms of computational time (Sexston , 1998). 
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FIGURE 2.15: Flowchart summarizing the evolutionary approach to st ruc tural weight est ima­
tion adopted by Airbus. 

Airbus has recently adopted the evolutionary feature-based weight pr diction ap­

proach in order to solve some of the problems related to conventional weight estimation 

techniques. It can be considered as function al-level approach , even if very di imilar 

to the method provided by Sextone (Baker and mith, 2003). The evolutionary char­

acteristics of the methodology can be linked to the way the method itself works: the 

weight and sizing of a component evolve gradually through the process from a com­

bination of its detailed geometry and feature definition, themselves derived from the 

identification of their relative driving param ters. Rather than providing one single 

way of dealing with the weight estimation procedure, however , this method structures 
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itself around both parametric and analytical prediction methods (Figure 2.15). The 

choice of most suited sizing approach depends on user preferences as well as the stage 

of the design process in which the method is applied, allowing the procedure to evolve 

with its progression. 

The key innovation provided by this approach is the identification of the driving 

parameters at the individual component level, including: 

1. Component loading; 

2. Geographical positioning in the assembly; 

3. Component family; 

4. Specialist function. 

These parameters, however, are individually ranked in order to determine their 

relative influence on the design of the component itself and, consequently, on its weight. 

Traditionally, the analysis in the design and weight estimation process is based exclu­

sively on component loading to determine its size and features. However, this could 

be very limiting not only in the eye of component development, but especially when 

approaching the accounting stage of weight estimation. The simultaneous considera­

tion of all these different factors allows for a more systematic and rigorous procedure. 

As a result, it is possible to obtain a clear identification of both the single parts of as­

sembly (component level weight accounting) and the individual features characterizing 

the layout of the component (volume based weight accounting) by linking them to a 

specific function. Moreover, this framework provides not only the benefit of including 

manufacturing and assembly considerations very early in the design process, but also 

allows for a continuous questioning and challenge of the design itself. The review of 

each individual feature will make it easy to identify redundancies in the component, 

thus concretely integrating weight reduction efforts in the overall analysis framework. 
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2 .7 Weight optimisation and management In the design 

process 

\Vith the aircraft industry currently increasi ng the pressure for shorter devel­

opment times for designs that ensure better performan e and increased r liabili ty, the 

demands are pushing for the application of improved weight and costs management 

frameworks as early as preliminary design phases. The focus has shifted from accu­

racy to confidence levels in the weight est imates . Design teams are more interested in 

knowing how likely the weight of the proposed design is to change according to possible 

modifications that might occur in later tagcs rather than hav ing a fixed single weight 

with no knowledge of the likelihood of matching it at the end of the design process 

(:'Ionroe et al., 199 ). 
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F IGCRE 2.16: Funnel of weight and cost (Dahm, 2007). 

Computer aided weight and cost management tool have so far successfully aid d 

the designer ' in actively managing different design scenarios and configurat ions. The 

risk and opportunities driven approach proposed by Dahm (2007) in the object oriented 
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aircraft weight management software SMART ACT allows the designer to work within 

the weight bandwidths for individual design solutions at different development stages. 

In addition to this, the design team is also able to compare the selected arrangement 

with alternative weight variants. This enables the designer to identify and account for 

any possible snowball effect within the configuration studied from the beginning of the 

design development and ensure a fast and reliable convergence of the cost and weight 

bandwidths to a desirable target (Figure 2.16). 

Mauersberger et al. (2007) prefer a stochastic approach to the use of more 

simplistic and less reliable WERs to solve the problem of weight estimation in early 

project phases. In particular, the use of a probabilistic approach within the weight 

management environment allows for a consistent and more robust way of handling 

uncertainties within the mass properties life cycle. Mavris and DeLaurentis (2000) 

adopt a stochastic approach for a life-cycle process management from the point of view 

of exploring the feasibility of different design concepts with respect to their affordability. 

In this case the focus is not the lowest cost or weight, but rather a product that achieves 

the right balance between effectiveness and the costs and potential risks associated with 

its development. 

The degree of complexity associated with aerospace systems has recently moved 

the focus towards the optimization of the overall design process (Sobieszczanski-Sobieski 

and Haftka, 1997). Great effort has been directed towards the integration of several 

disciplines in the preliminary stages of the design, aiming at achieving a more well­

rounded optimum design rather than excellence in a single discipline (Bonardi, 1990; 

Meledy, 1974; Tong and Naylor, 2009; Carrera et al., 2003). 

In order to more deeply understand the impact of external influences on the 

design and conduct a more comprehensive analysis, Frank (1997) added decisions and 

constraints from both customers and manufacturers to the design optimisation ap­

proach. In particular, the definition of a market-based weight metric in the analysis 

allows the identification of weight changes that specific departure from the original 

specifications can have on the design and the their consequent impact on the final 

revenue. 

In terms of wing design and weight optimisation, a great effort has been directed 
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towards the inclusion of aero elastic effects in the analysis and the sensitivity studies 

aimed at understanding the relative impact of the individual disciplines on the final 

design weight (Malone and Mason, 1995; Sensburg et al., 1994; Robinson and Heal, 

1959). Barthelemy et al. (1994) provides one of the first examples of multidisciplinary 

weight analysis applied to supersonic wing models with the inclusion of aeroelastic 

considerations. The approach, based on the coupled effect of aerodynamics and struc­

tures, provides a basis for trade studies on the effects of material selection on the wing 

minimum weight. 

Zink et al. (1999) were able to evaluate the variation in wing structural weight 

with the inclusion of aeroelastic effects through multidisciplinary design optimisation 

and response surface methods. The results of the study provided a comprehensive set 

of weight relationships derived via a parametrically-defined FEM combined with an 

aerodynamic wing model able to compare the weight impact of conventional control 

as compared to Active Aeroelastic Wing (AAW) technology with respect to minimum 

weight design parameters. FEM based optimisation was also used in conjunction with 

statistical weight equations by Huang et al. (1994). The study aims at both verifying 

the applicability of the selected WERs to the weight analysis of optimally designed 

high speed wing structures but most importantly at defining a variable-fidelity opti­

misation and weight estimation methodology able to provide a compromise between 

computational expenses and model accuracy. 

A more multidisciplinary approach for aircraft design synthesis has been pro­

posed by DeLaurentis et al. (1996) who structured a complex aircraft design framework 

on a combination of Design of Experiment (DoE) and response surface methods which 

can guide the overall design process from the very early phases. The framework com­

bines mission requirements with an assessment of aerodynamic, structural and propul­

sion technologies as well as market demands and economic constraints to direct the 

optimisation process from both a weight and an overall design efficiency perspective. 

The results is a design that is not only the optimum configuration choice based on 

weight, performance and structural arrangement, but it is also an economically viable 

solution. From a deterministic perspective, a similar approach has been presented by 

Hwang et al. (2005) who propose a strategy for a completely automated and more ef-
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ficient aircraft methodology by combining multidisciplinary analysis and optimisation 

with effective database management techniques. 

Klemt and Oltmann (2007) suggest building a multidisciplinary design environ­

ment on the entire definition of the design concept by parametric-associative models 

where individual parts are automatically generated and parametrically defined so that 

any change at component level can be immediately reflected in a rearrangement of the 

structural definition of the overall configuration. By linking this type of model with 

analysis routines within the different design disciplines, the design definition can be 

continually updated to respond to the individual discipline requirements whilst main­

taining consistency in the data exchange process. 

More recently, topology optimisation has become more and more relevant within 

the weight estimation community as a way of more efficiently shedding extra pounds. 

In particular, the focus is on trying to merge topology optimisation activities with 

the weight reduction techniques early in the design development. At the aircraft wing 

level, Sensmeier et al. (2006) suggest combining a parametric definition of the configu­

ration with moderate-level fidelity FEA which, through the use of specifically designed 

algorithms for model definition and analysis, enable the designer to evaluate a greater 

number of possible topologies with a much reduced computational effort. Having iden­

tified manufacturing feasibility as one of the key requirements in the early concept 

definition, Thomas (2005) adopts topology optimisation to be able to address the issue 

of system-structure integration for an optimised structural design from early project 

phases. By including specific constraints related to individual manufacturing methods 

within the optimisation process, he combines minimum weight design strategies with 

optimum topologies and a global optimum layout for a solution that can be concretely 

manufactured. The solution is a structure that, through particular manufacturing tech­

niques, can accommodate the integration of specific features or systems in an optimal 

way with minimum weight penalties (Figure 2.17). 
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(a) 

(b) 

FIGURE 2 .17: Rib topology without (a) and with (b) the effect of pattern repetition for system 
routing (Thomas, 2005). 

2.8 Summary 

Weight estimation has been fundamental to the design of aerospace structures 

from the beginning of flight, although it only started to receive the attention of the 

engineering community when it was first recognised as and individual analysis field in 

the 1930s. Since then, the development of weight estimation methodologies has been 

taking primary importance within the aircraft design process. 

Weight estimation methods , although still classifiable according to traditional 

groupings , have undergone drastic changes with the introduction of new technologies 
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and algorithms. The rise of FEA and CAD techniques within the design process has 

greatly influenced the redesign of what weight estimation truly is and the focus has 

moved from dry mathematical relationships to multidisciplinary analysis and frame­

works to allow an effective management of structural weight from the very early stages 

of the design all the way to production and delivery to the customer. 

There is still, however, a lack of tools and techniques to address the sizing and 

weight estimation of especially secondary structures at preliminary design stages. The 

methodologies already established in the design community are able to tackle quite 

successfully primary structures whose design is primarily driven by load considerations 

which can be closely embodied by analytical approaches and computational tools. The 

majority of frameworks for the weight estimation of aircraft structures still use empir­

ical relationships to "guesstimate" the weight of components whose primary function 

is not that of sustaining loads. Important issues, such as individual features of dif­

ferent structural layouts, structural and system integration as well as manufacturing 

constraints, although thoroughly considered within the design process, do not seem to 

be successfully included in weight estimation techniques and relationships. There is 

also no established way of including the uncertainty related to these factors within the 

analysis as early as concept definition and propagate its effect not only from component 

to overall configuration level but also all the way through the design process. 

Although they have become an integral part of the multidisciplinary design 

environment, weight estimation methodologies in general do not seem to be currently 

designed with the aim of contributing to the knowledge base of the overall design 

process. Weight estimation naturally links all the various design disciplines together 

and current approaches end up retaining important knowledge and information on 

how the different fields impact on each other and how, in turn, they influence the final 

design. 
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3.1 Introduction 

This section introduces the theory behind the computational tools used within 

this thesis. From the analysis of the issues permeating the weight estimation task at 

the preliminary stages of aircraft design, fuzzy logic theory is identified as a suitable 

aid to the problem. In particular, it is emphasised how fuzzy logic can be applied to 

help in acquiring more in depth knowledge about the system at hand as well as with 

dealing with the uncertainties within the problem itself. 

Fuzzy logic has been extensively applied in this research through the use of 

different Fuzzy Inference Systems (FIS). Details of the theory and structure of Adaptive 

Network-based Fuzzy Inference Systems (ANFIS), Multiple Adaptive Network-based 

Fuzzy Inference Systems (MANFIS) and Neuro-Fuzzy Approximator (NEFPROX) are 

presented in this chapter, highlighting the differences amongst them and how their 

individual characteristics are valuable in handling the specific requirements encountered 

in the weight estimation process. 

Type-2 fuzzy logic theory is then introduced to complete the picture, as a way 

to combine the knowledge mining properties of traditional type-l fuzzy logic with 

uncertainty management and quantification, for a more comprehensive and exhaustive 

weight analysis. 

3.2 A new perspective on weight estimation 

The design of a new aircraft is characterised by a complex iterative nature. 

At the beginning of any design process the design parameters are only approximated 

quantities, which are identified within vague and imprecise ranges of possible values and 

are coupled with a large number of safety factors as an attempt to account for variability 

in the estimate. From the very start, these parameters are modified, restructured and 

redefined until the design is as close to the desired target as possible. 

The weight estimations resulting from the analysis of these variables will, there­

fore, always be fuzzy in their nature: they will be always associated with an inherent 

degree of imprecision due to having been derived from loosely approximated parame-
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ters. The degree of fuzzines associated with design variables and , consequently, with 

the estimated weight, will increase proportionally to the degree of innovation that the 

organisation wants to embed in the final product. At the same time, the system of 

design iterations will become longer and more complicated. The further the de ign is 

away from conventional configurations and design solutions, the gTeater the numb er of 

loops to be undertaken resulting in longer completion times. Moreover, the lack of a 

basis for comparison and reasonability check makes it harder to get it right the first 

time around, resulting in costly changes further along the design process (Mauersberger 

et al., 2007). 

FIG URE 3.1: Gra ph howing the relationsh ip between risk and cost for change in the design 
process (Neff, 2001). 

Figure 3.1 underlines the dichotomy between cost and knowledge during the 
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design process. In the early stages of the design of a new vehicle, only limited knowledge 

of the required design parameters is available. However, it is right at the conceptual 

and basic development stages that the most crucial decisions are being made. The cost 

of making decisions and modifying them rises exponentially with program development. 

It is vital to concretely consider the risks and uncertainties associated with each piece 

of information and subsequent design decision in order to speed up the loops and avoid 

costly changes later in the process. 

For these reasons, when designing a model for weight estimation, it is important 

to couple a substantial understanding of the system under analysis with the ability to 

identify the unknowns in the problem and account for them within the estimate itself. 

The weight estimation task can, therefore, be thought as comprising of two 

fundamental phases. To begin with, it is vital to obtain extensive knowledge about the 

system under consideration. This will range from information regarding its different 

parts and features, details of the processes needed for its manufacture and assembly 

as well as how the combination of these factors ends up influencing the final design 

itself. This will allow complete traceability of the set of design decisions taken as well 

as their combined impact on the design, thus not only improving the overall accuracy 

and credibility of the weight estimate but also resulting in added confidence during the 

decision making process. 

Complete knowledge of the system, however, will never be possible. The number 

of variables and the iterative nature of the design process itself permeate the weight 

estimation task with a high degree of uncertainty, which grows exponentially with the 

application of new technologies within the design concept. There is the need, therefore, 

to combine a comprehensive knowledge acquisition with the ability to identify the 

uncertainties in the problem and account for them in the estimate itself (Figure 3.2). 
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FIG URE 3.2: Diagram showing the decomposition of the weight est imation problem into its 
two main mod ules. 

3.3 Fuzzy logic for knowledge acquisition and manage-

ment 

In t he design of a weight estimation model, the focus is on the use of tools and 

techniques that are able to provide robust and reliable approximations when adopted 

in noisy and uncertain environments. The literature provides examples of successful 

applications of soft comput ing techniques for modelling problems which are charac­

terised by missing and imprecise information which are comparable to t hat present in 

the preliminary stages of the design of a new aircraft (Fonseca et al. , 2001; Chawdhry 

and Pant , 1997). 

Among these, fuzzy logic appears to be extremely suited for the task, due to 

its capability to t ranslate t he interdependencies between the different variables within 

t he problem into a series of rules which can then be included as an integral part of a 

dynamic knowledge base to be used during both the design and weight est imation of 

aircraft structures . 
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3.3.1 Fuzzy logic vs. classical logic 

Fuzzy logic was first introduced by Prof. Lofti Zadeh in 1965 as a mathematical 

framework designed to deal with uncertainty (Zadeh, 1965). The initial inspiration 

behind the development of fuzzy set theory was based on the notion that the infor­

mation that a mathematical model is able to provide rapidly declines as the system 

under analysis becomes more complex, thus considerably affecting the capability of 

the engineer to take the most appropriate decisions. Fuzzy logic was, for thi reason, 

introduced as a tool to enable to formalise and analyse ill-defined problems. 

The theory behind fuzzy logic parallels that of classical logic. Both environ­

ments are built around the notion of sets as collections of elements which share a 

specific characteristic or property. Within classical logic, the sets are defined in such 

a way that members and non members of a specific sets are unambiguously defined. 

An element, therefore, either belongs or does not belong to a set, and the transition 

between membership and non membership to the set is crisp (Ross et al., 2002). A 

membership value of "1" will identify a member of the set, whilst a value of "0" will 

be associated to an element that does not belong to such set. 

1.0 

oL-____ J---------~------.. x, 

(a) 

1.0 

Mernbefshjp 
Ilange 

O ~--x~, --~~------~x-) ---L~--~x 

(b) 

FIGURE 3.3: Diagram showing the difference between crisp sets (a) and fuzzy sets (b) according 
to membership function definition. 

In everyday situations, however, such sharp classification is often impossible. 

The perception and description of the real world is often done through concepts which 

can be vague and imprecise, and through statements which can be true or false only 
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to some degree. Elements will belong to a specific fuzzy set according to various 

degrees of membership which indicate the extent to which the element itself is associable 

to the concept represented by the fuzzy set. As a result, membership to a fuzzy 

set can be defined via a characteristic membership fun ction (MF) which maps the 

individual elements to a specific value between 0 and 1 according to its specific degree 

of membership to that set (Figure 3.3). 

3.3.2 Reasoning with fuzzy logic 

Within the fuzzy logic environment, the description and approximation of a 

system is obtained by mapping an input space to an output space through a set of 

rules of the form: 

IF premise (antecedent), THEN conclusion (consequent). (3.1) 

o 

FIG URE 3.4: Schematic representation of the definition of the design space though membership 
functions and fuzzy rules. 
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The IF-THEN rule base is used to represent the condition that if a specific fact 

is known , then it is possible to deduce a conclusion. In the case of a mathematical 

system, the process of fuzzy inference can be expressed as: 

IF x is A, THEN y is B. (3.2) 

where x and y are the variables of interest , and A and B relate to individual fuzzy sets 

within the universe of discourse of the problem. 

Each rule defines a distinct fuzzy patch in the design space of interest, depend­

ing on the shape and properties of the different membership functions used (Figure 3.4). 

y y 

x 

FIG URE 3.5: Schematic representation of the evolution of fuzzy rules in the design process and 
its impact on the accuracy of system approximation. 

Such representation of the system under study can greatly aid the visualisation 

of the effects of several different combinations of design variables on the final solut ion. 

In terms of building a weight estimation model, this type of approach could also enable 

the accuracy of the approximation to grow in parallel with the design process itself. 

At the very early stages of concept definition the fuzzy sets will be large and able to 

approximate the system loosely. With an increased definition of the design, the rule 

patches will get smaller, leading to improved and more representative estimates (Figure 

3.5) (Kosko, 1994). 

The application of fuzzy reasoning principles and techniques for system mod­

elling is achieved through the use of fuzzy inference systems (FIS). FIS are computa­

t ional frameworks based on the principles of fuzzy reasoning and fuzzy set theory and 

are structured around five functional blocks (Figure 3.6): 
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1. T he rule base which holds the necessary IF-THEN rules; 

2. The database which manages the information about the membership functions of 

the relevant fuzzy sets used wi thin the rules; 

3. T he decision-making unit which performs the inference on the rules; 

4. The juzzijication unit which converts the variables of interest into fuzzy quanti-

ties; 

5. The dejuzzijication unit which translates t he fuzzy outputs into crisp quantit ies 

at the end of the process (Sivanandam et al. , 2006). 

INPUT 

Fuzzification 
Interface 

Knowledge base 

I Rule-base I I Database I 

1 r 
Oecision-maklng unit 

Oefuzzification 
Interface 

(fuzzy) 

FIGURE 3.6: Fuzzy inference system. 

OUTPUT 

T wo types of FIS in particular have been successfully applied to a variety of 

engineering problems and they differentiate themselves in both the nature of their 

outputs and the way they are derived (Figure 3.7). Mamdani fuzzy inference systems 

were first ly introduced by :v1amdani and Assilian (1975) as a tool for the design of 

automatic controllers. In this type of FIS , each rule consequent will be represented 

by a fuzzy set. Once all the rule consequents have been evaluated, they are combined 

together to get a output distribution, which can be defuzzified or maintained as a 

fuzzy quantity according to the specific needs of the study. In the Takagi-Sugeno-Kang 

(TSK) FIS , on the other hand , the consequents of the individual rules are formulated 

as crisp polynomial funct ions , which relate the input variables to the desired output 

within the fuzzy region specified by t he individual rules (Jang and Sun, 1997). 

As shown by figure 3.7, the principal difference between the two fuzzy inference 

systems lays in the nature of the consequent of the fuzzy rules and, as a consequence, 

in the methods of defuzzification employed by the FIS . T his strongly influences both 
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premise part consequent part 
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FIGURE 3.7: Schematic representation of the differences in output derivation between Mamdani 
and TSK fuzzy inference systems. 

the quality of the estimation of provided by the system, the final FIS structure as well 

as the overall interpretability of the resultant network and of the rulebase it derives. 

In terms of approximation qualities, t he complexity of TSK FIS depends on the 

nature of the function being analysed: the higher the number of extrema, the larger 

the number of fuzzy sets needed. In addition to this, TSK FIS are characterised by 

a higher number of adjustable parameters especially within the rule consequents, as 

opposed to the Mamdani type. For this reason, in the case of larger scale problems, 

the resultant system structure for TSK FrS could potentially become too complex 

and unmanageable due to the "curse of dimensionality" (Guney and Sarikaya, 2008). 

The literature, however , identifies TSK FIS not only as being able to achieve higher 

accuracy in approximations environments, but also better suited at being coupled with 

algorithms for automated learning due to the more explicit functional relationship 

between inputs and outputs (J assbi et al., 2006; J ang and Sun, 1997). 

Mamdani FIS appear more largely in industrial applications, mainly due to 

their ability to provide high accuracy through a relatively simple network structure. 

The attractiveness of Mamdani over TSK FIS lays on the more intuitive nature of its 

64 



Chapter 3 

rulebase. Since both input and output are fully described as fuzzy sets, the system 

becomes highly more interpretable from a visual perspective as well as more intuitive 

in its design, which eases the process of converting the designer's knowledge into fuzzy 

rules. 

3.4 Neuro-fuzzy systems 

Fuzzy systems have been a source of growing interest across the engineering 

community in recent years (Chawdhry and Pant, 1997; Dhingra et al., 1990; Ghorbani 

and Ghasemi, 2009; Top<;u and Saridemir, 2008). The attractiveness of the fuzzy 

approach for engineering problems lays in: 

1. The capability of fuzzy systems to incorporate the uncertainties within the prob­

lem in the analysis in a way which can be easily interpreted and modified by the 

user; 

2. The flexibility of expanding and enhancing the analysis by adding expert knowl­

edge to the framework; 

3. The robustness of fuzzy systems to noisy environments. 

The design of a conventional fuzzy system requires the users to convert their 

knowledge of the problem into the fuzzy rules required for its complete definition. In 

the case of problems such as that of weight estimation, however, the designer does not 

have the complete knowledge of the system a priori; on the contrary, the aim of the 

analysis is to gather as much information about the system as possible in order to be 

able to make informed and efficient design decisions. It is, therefore, vital to have a 

system which is capable of deriving its own set of fuzzy rules, which in turn can be 

used in the description and approximation of the system. 

This can be achieved through neura-fuzzy systems, mathematical frameworks 

which integrate Artificial Neural Network (ANN) theory for parameter derivation and 

optimisation with fuzzy logic (Vieira et al., 2004). These are multi-layered, feed forward 

networks which are trained by a set of algorithms to learn relationships between the 

variables defining the problems from a set of given data. The learning process consists in 

65 



Chapter 3 

the modification of the structure of the FIS itself on the basis of input-output patterns 

in order allow the network to match the system response and provide an improved 

numerical approximation of the problem under analysis. 

The fusion of FIS with ANNs has been a source of great interest for the solution 

of real life problems, due to the ability of the hybrid system to combine the expres­

sion of knowledge through linguistic rules with adaptive learning (Guney, 2006; Lotfi, 

2001; Dinh and Afzulpurkar, 2007). The main reason for the interest of the research 

community in these modelling tools lays in their ability to combine the low-level learn­

ing and minimal computational effort required by neural networks with the higher-level 

transparent linguistical system description which is distinctive of fuzzy logic. The most 

widely used types of neura-fuzzy systems belong to the fused category: the learning al­

gorithms from ANNs drive the computation of the parameters within the FIS structure 

via an ANN-based network (Abraham, 2001). 

3.4.1 Adaptive Network-based Fuzzy Inference Systems (ANFIS) 

Adaptive Network-based Fuzzy Inference Systems (ANFIS) represent the most 

successful and widely used type of neura-fuzzy architecture for the optimisation of TSK 

fuzzy inference systems. Firstly developed by Jang (1993), ANFIS was designed as a 

way of deriving "an input-output mapping based on both human knowledge (in the form 

of fuzzy if-then rules) and stipulated input-output data pairs". For a given data set, an 

A~FIS network can be created and subsequently optimised by adaptive learning. 

Adaptive techniques are aimed at changing selected parameters within the FIS 

in order to better reflect the relationships existing between the different variables in the 

problem. This is achieved by linking the FIS to a multilayered feed forward network 

made up of nodes and directional links. Each node performs a particular function based 

on both the incoming signals related to the input variables and the specific parameters 
I 

pertaining to the node itself. The network is made up of adaptive nodes, traditionally 

represented by squares and whose parameters are updated during network training, and 

fixed nodes, which define the necessary operations to be carried out on the adaptive 

parameters. The parameters associated with the adaptive nodes can be updated using 

back propagation and hybrid learning techniques in order to match a given training 
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data set. 

layer 2 
-l-

layer 3 
-l-

layer 5 
-l-

z 

\ 

FIGURE 3.8: Schematic representation of ANFIS network with two inputs. 

Figure 3.8 represents the case of a network with two inputs, x and y, and an 

output z, and which is described by two fuzzy rules of the form: 

The adaptive (square) nodes occur in layers 1 and 4 and the fixed (circular) 

nodes in layers 2, 3 and 5. In layer 1, the adaptive node yields a nodal output given 

by: 

(3.3) 

where 01 is the membership function which determines the degree to which a given 

input (x) belongs to a defined fuzzy set and /-LAi is associated with the shape of the 

membership function being used. For instance, in the case of a bell shaped member­

ship function with maximum and minimum values of 1 and 0 respectively, J.LAi will be 

represented by: 

(3.4) 
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where ai,bi,e; is the set of adaptable parameters associated with this layer. 

The process of inference of the fuzzy rules in the problem occurs in layer 2, where 

the system picks the specific rules to apply based on the value of their firing strength 

Wi which is calculated by multiplying together the signals coming into the node from 

layer 1. 

Wi = {tA;(X) X {tB;(Y), i = 1,2 (3.5) 

The normalised firing strength (Wi) which is the specific weight of the rule based 

on the structure of the entire network, is then calculated in layer 3, according to the 

individual firing strengths present within the network, as, 

(3.6) 

Partial node outputs are calculated in layer 4 as, 

(3.7) 

where (Pi, qi, ri) is the adaptable parameter set associated with each square node in 

this layer. The overall output Or is then computed in layer 5 as a summation of all 

the incoming signals from the individual nodes within layer 4, 

(3.8) 

When the data is fed through the network for the first time, however, the final 

output may not match the training data set accurately. In such cases, the adaptable 

parameters sets associated with layers 1 and 4 can be changed to improve the quality 

of the approximation via a hybrid learning technique combining gradient based and 

least squares methods (Jang and Sun, 1997; Gallo et al., 1999). Each step (epoch) of 

the hybrid learning cycle comprises two phases: a forward pass and a backward pass. 

In the forward pass, the input data and functional signals are sent forward and used 

in the calculation of the node output. The parameter set associated with the calcu­

lated output node is then evaluated using least squares method. The functional signal 

is then carried forward throughout the network until the error measure is calculated. 
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The derivative of the error measure with respect to the parameters in each output node 

(error rates) is then calculated and propagated from the output end towards the in­

put end (back propagation) and the parameters set updated accordingly using gradient 

based optimization methods. The parameters can either be updated after the complete 

training data set has been examined by the system (batch or offline learning), or they 

can be sequentially modified after each input-output pair has been presented. 

ANFISz • Y2 

• • • 
• • • 
• • • 

ANFISn • Ym 

FIGURE 3.9: Schematic representation of a MANFIS network. 

In its traditional layout, however, ANFIS can only provide an analysis framework 

for single output problems. For this reason, the principles behind ANFIS have also 

been extended for the development of Multiple Adaptive Neuro-Fuzzy Inference System 

(MAN"FIS) (Cheng et al., 2002). MANFIS represent a generalisation of ANFIS for 

handling the modelling of systems with multiple outputs and responses. In this case, the 

network can be visualized as a combination of a number of individual ANFIS structures 

simulating a single response (Figure 3.9). In the case of MANFIS, however, the mapping 

between individual inputs and the desired multiple outputs can be obtained by the 

minimisation of the error measure obtained by summing the squared errors of the m 

ANFIS used in the network structure. This, in turn, can be approached as the learning 

of m individual AN"FIS (Dhingra et al., 1990). 

69 



Chapter 3 

3 .4 .2 Neuro-Fuzzy Approximator (NEFPROX) 

The :\""euro-Fuzzy Function Approximator (NEFPROX) is a neuro-fuzzy archi­

tecture designed to derive fuzzy systems of t he Mamdani type via back propagation 

and reinforcement learning (:\""auck, 1997). The network is structured in 3 layers: the 

first denoting the input variables (Xl, ... ,Xn ), the second the fuzzy rules (RI , ... ,Rk ) and 

the last the output variables (Yl,"" Ym) (Figure 3.10). One of the characteristics of 

this network structure, as opposed to other fused neuro-fuzzy systems like ANFIS , is 

the sharing of the weights across different rules . This ensures that each fuzzy set and 

associated linguistic value are uniquely defined and that all the fuzzy weights related 

to them evolve in the same way during the learning process to guarantee consistency. 

FIGURE 3.10: Structure of the t\EFPROX network. 

The system evolve through supervised learning in a heuristic manner. The error 

between the system output and the expected value is computed and u ed to modify 

the member hip functions of the consequent part of the rule to a higher or lower value, 

then it is propagated back through the network. At this stage the individual error of 
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each rule node is computed and used to modify the membership functions relative to 

the antecedent part of the fuzzy rule. The new output is then computed in a similar 

manner and the training proceeds until t he desired level of convergence is achieved . 

The difference in learning methodology between NEFPROX and ANFIS lays 

in the nature of the rulebase itself. The overall output of a TSK FIS is represented 

by a linear combinat ion of the consequent parameters of the rules u ed and therefore 

the error rates are differentiable funct ion. On the other hand , the rules within the 

Mamd ani FIS in ~EFPROX are fuzzy in both their premise and consequent side and 

can only be optimised using heuristic approaches. 

3.5 Designing under uncertainty 

In the conceptual stage of the design of a new vehicle the engineer is faced with 

the possibility of highly influenCing the final product though the deci ion making pro­

cess . However , at this point, only limited information and detail of the system itself 

are available. The first step to t ry and adapt to this kind of uncertain environment i 

the clear ident ification of the possible sources of uncertainties that the program will be 

affected by. 

SOURCES 

TYPES 

UNCERTAINTIES IN DESIGN 
Unavailable 
Information 

Inocewacy 

Misinterpretation J 

-... 
Unreliability ) 

FIGURE 3.11: Uncertainties in the de ign process. 

Hahn and Shapiro (1994) defined that the compl te knowledge of a system is 

usually prevented by different types of uncer tainties r lated to unavailable info rmation, 

erroneous information as well as misinterpretation of available information (Figure 
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3.11). In the preliminary stages of a design process, the whole range of parameters 

affecting the design is unavailable. The engineer has, therefore, to deal with incomplete 

set of data (Le. skin thicknesses not defined, exact location of cutouts, etc.) and it is 

forced to make assumptions. The result of this is an inherent degree of inaccuracy in 

the output of the analysis. Erroneous information comprises of both lack of confidence 

in the data as well as inconsistency in data itself. Misinterpretation of information is 

the one that occurs the most in the weight engineering environment. The lack of a 

standard and recognised weight accounting system is usually one of the main sources 

of misinterpretation. Parts of a subassembly or individual features can be considered 

more than once or even ignored if mistakenly attributed to a nearby subassembly. 

Probability theory so far has been the preferred method for the quantification 

of uncertainty within engineering design (?). More recently, however, the engineering 

community has highlighted that complex systems are characterised by more multi­

faceted and varied types of uncertainty which traditional probability analysis is not 

fully capable of handling. In addition to this, probabilistic frameworks are usually 

based on strong assumptions for the complete characterisation of the required uncer­

tain parameters. A typical example is the definition of probability density functions 

(PDFs) derived without any sufficient supporting evidence (Bae et al., 2004). As a con­

sequence, the quality of the results from this type of analysis will only be a reflection 

of the quality of the assumptions used. 

Traditional fuzzy logic represent as a suitable alternative to probability analysis 

as a framework for weight estimation. It is able to: 

1. Comprehensively deal with the vagueness and imprecision which permeates this 

type of analysis; 

2. Provide a model which is sufficiently flexible to be adapted according to the level 

of information available at specific stages of the design; 

3. Capture knowledge about the system under study in terms of both the various 

interdependencies between the different variables and their impact on the final 

design solution. 

FIS are, however, subject to inherent uncertainties: 
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1. Uncertainties related to the definition of antecedents and consequents especially 

if extracted from a group of experts, 

2. Noisy measurement in the activation of membership functions, 

3. Noisy training data. 

3.5.1 Interval type-2 fuzzy sets 

Zadeh (1975) was the first to address the issue of uncertainty quantification 

within fuzzy logic by providing a generalisation of conventional (type-I) fuzzy set theory 

by introducing the notion of type-2 fuzzy sets. A general type-2 fuzzy, as opposed 

to type-I, is characterised by membership functions that are themselves fuzzy. In 

particular, within the research presented in this thesis, only interval type-2 fuzzy sets 

(IT2 FS) will be considered, due to their greater computational efficiency as opposed 

to general type-2 fuzzy sets. 

The reasoning behind the transition from classical logic to fuzzy logic has its 

foundation in the inability of determining the membership of an element to a specific 

set in a crisp and unambiguous way. Membership functions of a type-1 fuzzy system 

can be defined either through expert knowledge or adaptive procedures. In situations 

such as the weight estimation of an aerospace structural system, the data driving the 

FIS adaptive learning is, itself, fuzzy and subjected to variability which is difficult and 

computationally expensive to quantify at the preliminary phases of the design process. 

The membership functions derived during the network optimisation will, therefore, be 

characterised by a degree of uncertainty. 

Figure 3.12 highlights the differences between type-I and type-2 fuzzy sets. It is 

possible to visualise type-2 fuzzy sets as a "blurring" of type-1 membership functions, 

which is obtained by shifting the points to the left or to the right of the original MF. As 

a result, at specific values of x, the type-2 membership functions will be characterised by 

an interval of possible values. The type-2 fuzzy set is bounded by 2 type-l membership 

functions, an upper (X) and a lower (X) MF. 

The shape of the region bounded by the two MFS, called footprint of uncer-
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FIGURE 3.12: Transition from type-1 membership function (a), to blurred type-1 membership 
function (b) and interval type-2 fuzzy set and its respective foot print of uncertainty (FOU) (c) . 

tainty (FOD), is of primary importance in t he analysis of t he system since its shape 

is a direct consequence of t he nature of the uncertainties within the problem under 

study (Mendel, 2001 ). In t he case of interval type-2 fuzzy sets, t he different possible 

membership values for a specific x all have the same weighting, which is highlighted 

by the uniform shading of the FOD. In part icular , two types of FODs are very useful 

in t he analysis of uncertain systems with interval type-2 fuzzy sets (Figure 3.13). The 

first is represented by a Gaussian primary MF with uncertain mean, which is used to 

visualise data characterised by certain standard deviation u and variable mean , which 

can take any values in the range [ml' m2] (7.13). 

[ 
1 (x- m)2] J.LAi = exp - 2 - u- m E [m l ,m2] (3.9) 

T he second is represented by the case where t he set is ident ified by a Gaussian 

primary membership function characterised by a fixed mean m but uncertain standard 

deviation with values luI, U2] (3.10). 

(3.10) 

It is easy to understand why the different choices of FOU are an excellent way 

of assessing quantitatively and visually t he uncer tainty within t he system under study. 
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FIGURE 3.13: Examples of FOUs for Gaussian primary membership functions with uncertain 
mean (a) and uncertain standard deviation (b). 

A larger FOU will highlight a more uncertain environment, and viceversa. 

3.5.2 T yp e-2 fuzzy system s and t h eir structure 

.. _ .. -_ ... _ .................. -- -_ ............ -----_ ...................... _ .... _._ ............ _ .... -.. 
( Output Processing ": : .#-_ ........ _------------.. " : , , , , , , 

i I Defuzzifier ~ Crisp output 
• '. • • y , , , , , , , , , , , , 

Crisp input ' , , 

.---_x----':>: I I Type-reducer ~ Type-redu~ed set 
. Fuzzifier . ~ (Type 1) , , , , , 

, " 

! 1,=" I Inference I ~~:~m--r·mm--. 
: mput sets. . output sets . 
" ......... _ ........... _ .... -_ ................................................... -_ ....................................... -,' 

FIG URE 3. 14: Type-2 fuzzy inference system. 

The general principles behind type-2 fuzzy inference system do not change 

greatly from type- I. What differs between the two type of FIS is the nature of the 

membership functions used to descr ibe the problem and, as a consequence, the opera­

tions that are based on them. The structure of type-2 fuzzy inference sy terns , for this 

reason, is not dissimilar to that of a type-l (Figure 3.14) . The juzzijier still embodies 

the function of mapping crisp inputs into fuzzy sets, in this case IT2. T he formu­

lation of the rulebase still follows the traditional IF-THEN structure, with the only 

difference that some or all the ets associated with rule antecedents and consequents 
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are IT2. Consequently, the inference engine in this case will combine the necessary 

rules together to provide a mapping from type-2 inputs to type-2 outputs. The main 

difference lays in the computation of the output. In type-l FIS, the defuzzifier block 

enables the translation of the fuzzy output into a crisp quantity (Le. type-l to type-O 

transformation). This functional unit has been replaced in type-2 FIS by an output 

processing block. Since the output of the inference engine is a type-2 set, an "extended 

version" of type-l defuzzification is necessary to go from type-2 to type-l fuzzy set 

(Zadeh, 1975). This is achieved through the type reducer. The resultant type-1 set can 

then be defuzzified into a crisp output. 

Type-2 fuzzy systems can be interpreted as a blurred type-1 FIS due to the effect 

of uncertainties within the problem (Karnik et al., 1999). For this reason, it is possible 

to interpret the type-l fuzzy set obtained from the type reduction operations in the FIS 

as a measurement of the uncertainty of the system. By assessing measures of spread 

within the resultant type-reduced fuzzy sets, it is therefore possible to understand 

the variability in the outputs of the systems and trace them back to the uncertainties 

within the initial quantities inputted to the FIS. This allows a complete and exhaustive 

visualisation of the sources of uncertainties and risk within the problem itself and their 

impact on the final solution. 

3.6 Summary 

This chapter has introduced the computational tools used within this research. 

The analysis of the task of structural weight estimation at the preliminary stages of 

the design of a new aircraft, as presented in Chapter 2, highlighted significant points to 

consider when designing a new approach to the problem. In particular, it is important 

to keep in mind that the basis for an accurate and reliable weight model is the efficient 

coupling of a substantial knowledge of the design of the component itself with a frame­

work that is capable of accounting for and propagating the uncertainties permeating 

the problem at hand throughout the computational modelling. 

Fuzzy logic appears to be able to combine: 
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1. Effective knowledge acquisition attributes; 

2. Intuitive visualisation of knowledge of the design space of interest and causality 

among the variables; 

3. Extensive and robust uncertainty management and propagation capabilities. 

In particular, a number of framework within the fuzzy logic environments have 

been introduced and their specific attributes will be analysed in relation to the design 

of an optimal weight estimation model in the later chapters of this thesis. 

Neuro-fuzzy systems have been introduced as a suitable way of combining the 

ability to extract knowledge from data with a fuzzy rule-based structure and visuali­

sation. Within this category, Adaptive Network-based Fuzzy Inference Systems (AN­

FIS) and Neuro-Fuzzy Approximator (NEFPROX) were selected. Numerous examples 

within the literature have showed how both FIS structures are able to combine great 

modelling accuracy with simple networks and minimal computational effort. The fol­

lowing chapters will explore how both approaches compare in terms of: 

1. The accuracy within the estimation; 

2. The interpretability of both the resultant network structure and rules extracted 

from the data; 

3. The complexity of the final network and rulebase; 

4. The flexibility to incorporate different requirements in parallel with the evolution 

of the design process itself. 

In terms of uncertainty management, the concepts have been extended to Type-

2 fuzzy logic. This tool has been identified as a suitable means of combining the 

knowledge mining properties of traditional type-l fuzzy logic with uncertainty man­

agement and propagation within the computational model, for the design of a more 

comprehensive robust weight estimation framework. 
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4.1 Introduction 

This chapter introduces the application of neuro-fuzzy systems for the weight 

estimation of aircraft structures. In particular, this section will assess how the perfor­

mance of an ANFIS-based framework compares against the design requirements and 

expectations relative to the initial definition and preliminary design of a structural 

component. 

The model, in this first instance, can only be formulated on the basis of space 

requirements from a preliminary assessment of the location where the structure itself 

will be placed and of its overall function. The variables of interests, therefore, will 

relate to the location of the component within the major subassembly, to a preliminary 

geometrical definition of the structure itself and of its predominant features as well as 

to an initial characterisation of its surroundings and to the different loading applied to 

it. 

In addition to the requirements established within the design process, the focus 

of the design of the weight model will cover issues such as structure parameterisation, 

variable selection and model optimisation with the aid of a specific structural example. 

4.2 Weight estimation for aircraft secondary structures 

While major structural assemblies, such as wing or fuselage, justify the use of 

computationally expensive modelling tools to aid the weight estimation process due 

to their size and function, the methods used for assessing the weight of secondary 

structures appear to be mostly empirically based even at later stages of the design 

process. On one hand, the design of this type of structures is driven by a high number 

of variables related to both the individual structure itself as well as the surrounding 

elements. This makes the development of analytical methods that are able to represent 

the numerous functions covered by secondary structures a very challenging task. On 

the other hand, the weight of these structures is minimal compared to that of primary 

structural elements. As a result, it is currently infeasible to apply computationally ex­

pensive analytical tools such as FEA for the weight estimation of secondary structures, 
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from both a cost-to-weight point of view as well as due to their inability to fully capture 

the weight implications of major issues such as system installation. There is, however, 

a lack of empirical or semi-analytical approaches able to provide reliable results and 

incorporate the effects of additional factors such as manufacturing and installation 

within the estimates themselves. 

The fixed trailing edge (FTE) is the section of the wing extending aft of the 

rear spar and acts as support for ailerons, spoilers, shroud box and shroud panels. It is 

mainly made up of ribs which are designed to transmit the aerodynamic loads acting 

on the movable surfaces and panels to the rear spar. The wing FTE can be split into 

three sections: 

1. Inboard Fixed Trailing Edge (IFTE), which houses landing gear attachments and 

false rear spar assembly; 

2. Midboard Fixed Trailing Edge (MFTE), which comprises spoiler and flap track 

attachments; 

3. Outboard Fixed Trailing Edge (OFTE), which includes aileron supports and outer 

falsework. 

4.2.1 Case study: spoiler attachment ribs 

Spoiler attachment ribs are part of the wing fixed trailing edge and their main 

purpose is to provide fixed support for the spoilers (Figure 4.1). For the purpose of 

this study only spoiler attachment ribs in the MFTE have been considered. All spoiler 

hinge ribs are shaped as an A structure and their main function is that of ensuring fixed 

support for the spoilers. In addition to this, they also allow the aerodynamic contour 

of the wing to be preserved during flight and provide the necessary space allocation, 

attachment points and support for the systems running through the wing trailing edge. 

Their individual functions depend on their location along the span of the spoiler itself 

and the type of loading that they need to sustain. This allows the classification of the 

ribs according to 4 different categories: 

1. Actuator hinge ribs: they provide a restraint for the spoiler in the hinge line 
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direction , and in both perpendicular directions to the hinge line. They carry 

loads acting on the spoiler and distribute t hem to the upper and lower wing skins 

and into the rear spar . 

2. Common ribs: they provide a common attachment point to the adjacent movable 

surfaces . 

3. Failsafe ribs: they appear in along the span of critical spoilers to prevent t he 

detachment of the spoiler in case of failure of any of the actuator hinge ribs. 

4. Intermediate ribs: they provide attachment points and support for top and bot­

tom secondary structural panels as well as system routing. They also allow aero­

dynamic and system loads to be transferred into the rear spar as well as upper 

and lower skins . 

• 

COMMON 

, I 

! 
FAILSAFE 

OUTBD 

SPOILER 
ATTACHMENT 

RIBS 

(a) 

HINGE 
OUTBD , 

f 
HINGE 
INBD 

(b) 

FAILSAFE 
INBD 

J 

, 
COMMON 

FICt;RE 4.1: A general midboard fixed trailing edge assembly (a), highlighting spoiler attach­
ment ribs and their nomenclature (b). 
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In order to make the weight model representative of the real structure, it is 

important to be able to embody the actual design of the component/assembly being 

evaluated. In the case of spoiler hinge ribs, the design is driven by both loading 

consideration as well as the need to maintain the aerodynamic integrity of the wing. 

A typical spoiler attachment rib needs to sustain the following loads: 

1. Aerodynamic loads (Waero) , which are applied to the upper section of the rib 

through its direct attachment to the fixed upper skin panel. 

2. Hinge loads (Fr) resulting from the axial hinge force components from the spoiler 

and acting on the spoiler hinge line. 

3. Strut loads (Pr ), which are the effect of aerodynamic loads acting on the fixed 

lower skin panel and transmitted to the bottom section of the rib via a strut. 

4. Fuel loads (w/ueZ) acting on the vertical section of the rib, which can be found 

in those ribs that are positioned where an external integral spar stiffener would 

have been. 

5. System attachment loads resulting from the routing of system runs across the 

trailing edge and fixed on individual rib locations. 

6. Applied thermal stresses (O"th) arising from the differences in thermal expansion 

at composite to metal interfaces. For the purpose of this study a constant 20MPa 

was applied on metallic sections connected to composite components. 

Figure 4.2 shows a schematic representation of the positive loads acting on a 

spoiler hinge rib. System installation considerations have been taken into account in 

the analysis. This was achieved by including within the input variable set the total 

axial load resulting from system attachment (Fhyd) on individual ribs as well as the 

number of hydraulic system attachment points on the rib structure (nhyd). For the 

purpose of this study, only hydraulic installation has been taken into account due to 

the greater proportion of its loading on the rib structure compared to that resulting 

from electrical installation and other miscellaneous systems. 
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FIGURE 4 .2: Typical spoiler attachment rib (a) and its schematic representat ion (b), high· 
lighting its main three sections, the posit ive forces applied on them and global geometrical 

parameters, 

4 .3 Model development 

4 .3 .1 Subt ractive clustering for fuzzy model extraction 

Subtractive clustering was adopted for model initialisation in order to derive an 

optimal and concise model structure and ensure a rapid convergence during network 

training. T he method was initially proposed by Chiu (1994) as a way to identify natural 

groupings of data within the original input-output data pairs and formulate from t hese 

an initial fuzzy model to further opt imise. By identifying cluster centres within the 

data set , it is possible to determine the init ial rules needed to describe the system by 

associating each cluster with the presence of a rule. In addit ion to this, the techniques 

also helps establish init ial values for the premise parameters for the individual rules. 

T he determination of cluster centres and init ial estimation of rule parameters 

can be formalised as follows. Consider a set of data points Xl, X2, .. . , Xn in an M­

dimensional space which have all been normalised in each dimension. Initially it is 

reasonable to a sume that each single data point is a potent ial cluster centre. It is 

possible to measure the individual potential of each data point Xi to be a cluster centre 

as: 
n 

Pi = L exp - allxi -Xj 11 2 ( 4,1) 
j = l 

83 



where: 

4 
O!=­

T2 
a 

Chapter 4 

(4.2) 

Ta is a positive constant indicating the cluster radius selected for the problem and 

IIxi - xjll indicates the Euclidean distance between the points considered. This formu­

lation for the potential of a data point depends on its distance from the other points 

in the set, with Ta indicating the radius of the neighbourhood under analysis. In other 

words, the impact of neighbouring data points diminishes exponentially with the square 

of the distance between the points. 

Once the potential of all data points has been calculated, the point characterised 

by the highest value of Pi will be singled out as the first cluster centre. xi and Pi will 

subsequently be used to identify its location and potential respectively. The potential 

of the remaining data points will then be computed again as: 

where: 

4 
/3= 2 

Tb 

(4.3) 

(4.4) 

Equation 4.3 highlights how the new potential of the single data points decreases 

proportionally with its distance from the cluster centre. The value of Tb will define the 

radius of the neighbourhood affected by a reduction in potential and normally it is set 

at a value higher than T a to avoid closely spaced clusters. 

A new cluster centre will then be identified once the new potential of all remain­

ing points has been computed. The process continues by further reducing the potential 

of the data points with respect to their distance from the second cluster centre. In 

general terms, once the kth cluster has been located, the potential of each point can 

be adjusted according to: 

(4.5) 

where xZ identifies the location of the kth cluster centre and Pk the value of its poten-
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tial. The process continues until the condition P; < O.15Pt is met. 

Each cluster will identify a specific input-output behaviour present in the system 

to be modelled. As a consequence, each cluster centre can be adopted as a starting 

point for the formulation of a fuzzy rule for the description of the system behaviour. 

4.3.2 Variable selection 

One of the major issues regarding the acquisition of knowledge of a system in 

the weight estimation environment is the large number of associated variables. Fuzzy 

models have the capability of dealing with multiple combinations of input variables. 

However, with such capabilities come associated problems, including overcomplicated 

models, which are computationally expensive. It is crucial, therefore, from the mod­

elling perspective, to be able to reduce the number of parameters to an optimum, by 

eliminating variables that have little or no impact on the performance of the model 

itself. This not only makes the model much simpler, but also improves its usability 

and reliability. 

One of the most efficient ways of selecting input variables and rapidly simplifying 

the ANFIS network structure present in the literature is the method of variable removal 

introduced by Chiu (Chiu, 1996). The process is initiated with the development of an 

initial fuzzy model containing all possible input variables through subtractive cluster­

ing. This method determines the number of rules and the associated rule parameters, 

which can in turn be tuned or optimized using ANFIS to minimize the root mean 

square error (RMSE) of the output with respect to the checking data, computed as: 

RMSE= 
n 

(4.6) 

where fh and 8i indicate respectively the real and predicted values for the variable of 

interest for n number of data points. 

The importance of each input variable is then determined by the systematic 

elimination of variables and their associated rules. This allows the effect on the per-
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formance of t he full model to be analysed and rapid ly determine the optimal variable 

set for t he modelling of the problem, as a compromise between model complexity and 

accuracy in the estimation . This process is deployed in five main steps (Figure 4.3): 

1. Evaluation of model performance on checking data according to RMSE analysis , 

based on the model built with all input variables; 

2. Evaluation of model performance with systematic variable removal from the orig­

inal model; 

3. Identification of the most efficient partial set of input variable for model definition; 

4. Subsequent variable elimination from best performing model from step 3 and 

re-iteration of steps 2-3; 

5. Selection of the best performing variable set based on th e minimum RMSE cal­

culated across the various models . 

Model w ith all input variables 

1 2 3 

2 3 4 

Model w ith no variab les 

1 2 3 
Best perform ing 
model w ith removal 
of var iable 3 

'----- ------' 

'----=-- -----' 

Best performing 
model with removal 
of variable 1 

F IGURE 4.3: ~1ethod of systematic variable -elect ion proposed by Chiu (Chiu, 1996). 

A final fuzzy model can then be generated using subtract ive clustering in con­

junction with A::\FIS based only on the best performing set of variables as inputs to 

the sy tem. 
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4.3.3 Parameterisation and data pre-processing 

One of the principal aims of the model was to identify the effect of individ­

ual design parameters on the component structural weight. In order to achieve this, 

the initial parameterisation of the problem for ANFIS modelling was developed by 

considering three main parameter classifications: 

1. Global variables; 

2. Local variables; 

3. Loads. 

Spar height (h) at the individual rib location and hinge line datum (£) were 

chosen as global geometric definition of the fixed trailing edge (Figure 4.2). These 

variables would be readily available from the onset of the design as soon as the team 

has agreed on a wing geometrical definition. Moreover, these quantities will be able to 

link the rib to a specific spanwise location and an unambiguous rib type by considering 

geometry and location of the individual spoilers. Second moments of areas have been 

selected as variables to locally define the different rib sections: ITop, IBOTTOM and 

IVERT represent sectional properties for top, bottom and vertical section respectively. 

This has been preferred to the geometrical definition of single flanges through individual 

variables such as thicknesses and length, in an attempt to both reduce the number of 

variables to a minimum and allow the design to be more generic. 

The different loads acting simultaneously on the ribs have all been included as 

variables. Their values are the maximum that the structure would be designed for, 

including retracted and extended spoiler setting as well as intact and failed conditions 

where applicable. 

Input data pre-processing is crucial for the attainment of a well performing 

adaptive fuzzy model, both in terms of its accuracy and convergence rate. Data nor­

malisation, in particular, is of primary importance. In the case of complex problems, 

the variables required for a reliable estimate might be numerous and represented by 

very different scales. Numerical models based on adaptive network structures tend to 

ascribe higher importance to those variables characterised by higher values (Sola and 
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Sevilla, 1997). In addition to this, when adopting subtractive clustering for the initial 

model extraction, the lack of normalisation in the pre-processing of the training data 

strongly biases the location of the cluster centres towards the high valued regions of the 

design space. The final model, therefore, will be unrepresentative since it will neglect 

the impact that the lower valued quantities have on the final output. 

Variable normalisation is of primary importance to ensure that all variables 

of interest get equal weighting during the training process. Moreover, by adopting 

normalised and compressed scales, the search space is reduced in all directions thus 

significantly condensing the distance to be covered by the backpropagation algorithm. 

This also aids the gradient descent algorithm which is used in parallel with backproaga­

tion during network training. In this case, large values tend to slow down considerably 

the algorithm, due to the gradient of the activation function for the individual rules 

approaching zero (Dawson and Wilby, 2001). 

For these reasons, prior to the development and application of the model, all 

variables in the input-output data pairs were normalised according to the formula: 

X-J.L z=-­
a 

(4.7) 

where X is the variable of interest characterised by the mean J.L and standard deviation 

a while Z represents the variable rescaled to a Gaussian distribution with a mean of zero 

and unit standard deviation. This process sets the variables in a non-dimensional form 

and ensures that all the inputs receive equal weighting during the network training. 

Two weight models were created. Model A evaluates the rib weight without 

considering the impact of system loads, whilst model B includes variables linked to 

loads due to hydraulic system installation. As a consequence, model A was initialised 

with 10 input variables while model B with 12 (Table 4.1). Both AN"FIS models were 

designed and optimised using Matlab and the A~FIS toolbox (MATLAB, 2008; Jang, 

1993). 

One vital part of developing a fuzzy model that is representative of the rela­

tionships between the variables of interest, is the selection of appropriate data sets for 
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TABLE 4.1: Input variables used for the definition of the geometrical fuzzy models for the 
weight estimation of spoiler attachment ribs. 

MODEL MODEL 

A B 

GLOBAL 
L L 

h h 

hop hop 
LOCAL fBOT fBOT 

fVERT fVEFIT' 

Waero Waero 

Wfuel Wfuel 

CFth CFth 

LOADING Fr Fr 

Pr Pr 

Fhyd 

nhyd 

network training and testing. Studies have shown that the way that the reference data 

is selected and split into these categories has a considerable effect on the accuracy of the 

estimations provided by the adaptive model (Tokar and Johnson, 1999; Shahin et al., 

2004). When splitting the data, care should be taken in ensuring that both training 

and testing data sets include the descriptive trends characterising the full database. 

This allows the model to be optimised in terms of both extrapolation and generalisation 

capabilities. As a consequence, the statistical properties of the produced data set need 

to be analogous between both training and testing sets as well as with the full database 

of reference, so as to ensure that the model is representative of the same population. 

Shahin et al. (2004) highlight how, in the case of an adaptive network structure, 

the performance of the model is noticeably improved by adopting statistically similar 

data sets during the process of model derivation. In this work, a similar data splitting 

process is used. The available data is manually separated into training and testing 

sets, following a 70-30 split between the two categories. The data is selected by en­

suring that elements from each individual spoiler attachment rib groups are included 

in both sets and that the training comprises also of individual examples with features 

or characteristics which are unusual within the overall database (e.g. additional parts, 
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attachments, minimum/maximum values of variables, etc.). Once these are produced, 

t- and F- tests are carried out to assess that their statistical similarity. The t-test 

examines the null hypothesis of no difference in the means of two data sets and the 

F-test examines the null hypothesis of no difference in the standard deviation of the 

two sets (Shahin et al., 2004). A level of significance of 0.05 is chosen to as a threshold 

for the tests, which highlights a 95 percent confidence level of statistical consistence 

between the two derived sets. 

The reference database was built on 36 examples of spoiler attachment ribs, 

related to two different aircraft models. The first design considered (Aircraft 1) is 

representative of a long-range civil transport. Its wing is of a traditional layout, with 

composite wing panels and metallic spars. In the case of Aircraft 2, both wing covers 

and spars are of composite design. The reference database was split into 25 examples 

for model training and 11 for testing of the optimised model structure. 

4.4 Results 

4.4.1 Sensitivity and model selection 

The method of variable selection was applied for the optimisation of the two fuzzy 

models, with checking RMSE error on the testing database as the selection criterion. 

Subtractive clustering was preferred for the derivation of the initial model structure. A 

cluster radius of Ta = 0.4 and accept and reject ratio of 0.5 and 0.15 were used for both 

model A and B, since it allowed for a good compromise between accuracy of solution 

and overall model complexity. 

An initial checking RMSE of 0.144 on the initialized model A was achieved, which 

was reduced to 0.050 at 8 variables (Figure 4.4). The graphs shows the variable removal 

process for model A. Each point indicates the normalised checking error associated with 

the removal of a specific variable at each stage of the analysis, as annotated. The point 

represents the model at the last stage of the process after the elimination of variable 

L, leaving h as the only input. The optimum model was attained by removing both 

thermal effects and strut loads from the initial input variable set, thus defining them 
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FIG URE 4.4: Effect of variable removal on the accuracy of model A for spoiler attachment ribs. 

as the least influential parameters. This is reasonable if relat ed to the design process 

of the component, which is primarily driven by spoiler loads. This i also confirmed 

by the results of the model optimisation process, where hinge load is the last loading 

variable eliminated, thus making it the primary one necessary for model formulation. 

From t he point of view of the geometrical definition of the ribs, the most significant 

parameter for the evaluation of the weight is the spar height , b eing the last parameter 

left after the removal of t he hinge line location. 

:'1odel B, on t he other hand, showed a better initial p erformance, with a checking 

RMSE of 0.077 on the full set of 12 inputs (F igure 4.5) . This was reduced to an 

optimum value of 0.056 with 9 inputs. In this case, the optimum model was obtained 

by subsequent removal of three variables , namely thermal stress, and second moment of 

area for bottom and vertical section . The small relative importance of these paramet rs 

is understandable. In a similar way to model A, thermal loading is not a design driv r 

for the component . In addition to th is, the vertical section only appear in a limited 

number of examples and its propertie are rela tively minor compared to the other two 

ections. The results of the optimi ation process also suggest the smaller influence of 

the bottom section of the rib on the final design weight , mainly due to the fact that 
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FIGURE 4.5: Effect of variable removal on the accuracy of model B for spoiler attachment ribs. 

the load sustained by this part of the structure is comparatively lower than that acting 

on the top section. The most significant parameter was found to be the hinge load, a 

it had the gTeatest impact on model accuracy. 

Although the best performance occurs with 8 input variables for model A and 

9 for model B , it can be seen from the results that 7 and 8 variables for A and 

B respectively are still capable of achieving a relatively accurate approximation. A 

compromise can therefore be made between accuracy of results and model simplicity 

based on the information at hand at the time of the analysis. In the case of the selection 

of a simpler model, thi process allows the quantification of the error resulting from 

the choice of a maller variable set, therefore enabling the designer to compensate for 

this in weight estimation process. 

4.4 .2 M odel performance 

Figure 4.6 shows the individual results from model A and B on hinge ribs from 

th two representative transport aircraft . The addition of system integration consid­

erations in the model, although slightly increasing its complexity, has improved it 
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FIGURE 4.6: Model performance on the individual ribs in the testing database for both model 
A and B. 

generalization capabilities. It also reduces the average error in the estimation from 

10.4 percent (Model A) to 8.5 percent (Model B). As shown, both models have been 

able to approximate the ribs closely, with the exception of Aircraft 2 hinge rib spoiler 

1 inboard , hinge ribs spoiler 3 inboard and outboard. This can be attributed to the 

simplistic way thermal effects have been accounted for. A constant thermal stress of 

20MPa was applied to all the ribs without considering the proportion of their areas 

interfacing with a composite component. 

For example, in the case of Aircraft 1 only the skin panels are composite while 

the rear spar is of metallic design. This results in the top surface of the rib top section 

being in full contact with a composite skin panel and the bottom section being attached 

to it only via a small fraction of its lower area. In the case of the Aircraft 2 on the other 

hand , both skins as well as the rear spar are composite which results in the addition 

of a vertical component where spar stiffening is required. As a consequence, a higher 

fraction of the rib is subjected to thermal effects. This , however, has not been fully 

accounted for in the fuzzy model , which may be the cause of the higher discrepancies 

in the estimated results. Had this been represented more accurately rather than with a 
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constant value, the system would have recognized its impact on the final design weight , 

yielding improved performance in both models. 

Both models have managed to accurately capture existing relationships between 

the different variables and the final output. The addition of the hydraulic system 

installation parameters , however, has impacted the degree with which the chosen vari­

ables affect the rib weight . Figure 4.7 shows the combined effect of rib height and 

length on the component weight . In both cases, the direct proportionality between the 

input variables and the output has been identified , however the proportion to which 

they impact t he output has diminished in model B. In terms of weight prediction, the 

results show that , for the same applied loading, model A attributes a maximum of 20 

percent additional weight to the structure, a proportion which relates to the impact of 

hydraulic system loads on the final component weight. 
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FIGURE 4.7 : Effect of height and length on the weight of spoiler attachment ribs for model A 
(a) and model B (b). 

The hinge load is t he loading parameter which has the greatest effect on the rib 

weight . Model B is able to represent this more closely, as shown in Figure 4.8. Both 

the rib height and the hinge loading, contribute to the increase in the final output. The 

representation of the true impact of t he loading, however , is more closely embodied in 

model B than model A, where the proport ion of t he rib weight associated to its height 

is much higher . 

Model B also captured a more representative picture of t he role that the differ­

ent types of loading play on the structure. Aerodynamic and hinge load influence the 
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majority of the structure. For a rib with spar height equal to the hinge line datum, an 

increase of both loading will result in the increase of the structural weight of the com­

ponent with a greater weight impact attributed to hinge loading (Figure 4.9). Model 

A, however, erroneously applies an addit ional 8 percent of structural weight on the rib 

from this types of loading, which in model B is related to systems being attached to 

the structure itself. 
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FIGURE 4 .8: Effect of height and hinge load on the weight of spoiler attachment ribs for model 
A (a) and model B (b). 
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FIGURE 4 .9: Effect of aerodynamic and hinge loads on the weight of spoiler attachment ribs 
for model A (a) and model B (b). 

Overall , model B provides a better representation of the multidisciplinary nature 

of the problem. The addition of system installation parameters allow a more com­

plete understanding of the sources of weight inefficiencies . During the design process, 

the design of the structure tends to be conducted separately from that of the ystem 

architecture and it assumes an overall greater importance. From figure 4.10, however, 
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it is possible to note how hinge load and the load resulting from hydraulic installation 

impact rib weight. The impact of system loading on the rib structural weight , although 

not as considerable as that resulting from hinge loading conditions, is still noticeable 

and neglecting it would result in an incomplete and unrepresentative estimation of the 

component weight . 
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FIG URE 4.10 : Effect of hinge and hydraulic system attachment loads on t he weight of spoiler 
attachment ribs. 

4.5 Summary 

This chapter has introduced ANFIS as a computational tool for the weight 

estimation of aircraft structures at preliminary design stages. In particular , the focus 

has been primarily on the design of a structural weight model based purely on specific 

geometrical variables, location parameters and initial loadings applied on the structure. 

Specific techniques for A JFIS model design and optimisation have been high­

lighted. Subtractive clustering was chosen for the initial fuzzy model extraction based 

on data clusters present in the available data set of reference. An iterative variable 

selection process was also used in parallel with this in order to evaluate the combi­

nation of input variables providing greatest accuracy in the estimation of the chosen 

component weight. 

The literature highlights a lack of representative and reliable weight estimation 
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methodologies for secondary structures. Major structural assemblies, such as wing or 

fuselage, justify the use of computationally expensive modelling tools to aid the weight 

estimation process due to their size and function. The methods used for assessing 

the weight of secondary structures, however, appear to be mostly empirically based 

even at later stages of the design process. The high number of variables involved 

in the weight estimation problem, combined with the numerous interactions between 

structural and systems components within secondary structural assemblies makes them 

ideal candidates for the application of neura-fuzzy modelling. In particular, spoiler 

attachment ribs were selected as case study for this chapter. 

In order to make the weight model representative of the design of the component, 

ANFIS was structured on the basis of 3 input variable categories. Global variables were 

used to relate the individual spoiler attachment ribs to their location across the wing 

fixed trailing edge. Local variables allowed to characterise the three individual sections 

of the structure by identifying their second moments of area. Lastly, loading variables 

allowed for a full definition of the applied loads on the individual rib structures. In 

particular, within the loading categories, parameters related to system attachments 

on the ribs as well as the loading resulting from them were considered. In addition 

to this, installation issues such as additional thermal stresses at metallic to composite 

interfaces were also included where applicable. 

Two separate models were derived in order to assess the impact of adding vari­

ables related to systems installation issues on the final estimation accuracy of the 

model. Adding system installation in the analysis reduces the average error by approx­

imately 2 percent, which highlights the importance of a more multidisciplinary weight 

analysis as early as preliminary design stages. The study also emphasises that it is 

possible to conduct a more comprehensive weight analysis that includes system attach­

ments and other installation considerations even with the specific extent and quality 

of information available at early project phases. In terms of the representation of the 

relationships between the different variables of interest, the addition of system instal­

lation parameters allowed a more exhaustive representation of the sources of weight 

inefficiencies as well as more representative trends. 

ANFIS proved to be a successful modelling tool when applied to weight estima-

97 



Chapter 4 

tion problems, both in terms of accuracy and its ability to handle complex nonlinear 

relationship between variables. The following chapters will explore more in-depth the 

use of AXFIS in more complex problems where weight estimation is conducted in paral­

lel with the design of the structure within the neuro-fuzzy environment. In particular, 

its performance will be evaluated and compared to that of NEFPROX with focus on 

the comparison between both accuracy and interpretability of the models derived. In 

addition to this, the focus will be on the analysis of the rulebase developed with the 

two neuro-fuzzy tools and its impact on the weight estimation problem. 
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5.1 Introduction 

One of the crucial challenges for any weight estimation framework to be used 

at preliminary design stages is the ability to provide a weight solution that is straight­

forward to obtain and requires minimal computational effort. At the same time, the 

weight model should still be able to capture the physics behind the design of the com­

ponent at hand even with the limited information and data available at this phase in 

the design. 

It has been demonstrated in Chapter 4 that fuzzy logic could be adopted as 

a basis for a weight model through the use of an ANFIS structure designed around 

a preliminary geometrical and functional definition of the structure to be analysed. 

This chapter aims at expanding the concepts presented in Chapter 4, by providing 

practical examples of how to construct an ANFIS-based model that can be successfully 

integrated in the preliminary design process of aircraft secondary structures. 

This chapter will highlight the definition of a model structure for the derivation 

of both preliminary sizing as well as weight estimates for structural components. The 

design of the computational model will be based on the information and knowledge of 

the design which would be normally available at the early stages of its development. 

The model will be designed around a combination of ANFIS and MANFIS network 

structures. 

The case studies used for model validation within the chapter will highlight the 

potential benefits of adopting such framework. In particular, results will focus on the 

ability of the methodology to identify the major trends and relationships between the 

number of design variables involved, the reliability and quality of the estimates provided 

as well as on the specific features of the rulebase derived through the framework. 

The framework will be analysed from the point of view of its ability to com­

bine an analytical methodology for component design with a fast and computational 

inexpensive tool, which is able to improve the quality of the estimates very early in 

the design of the component itself. Parameterisation and model optimisation issues 

are emphasised in order to enhance model performance. The benefits of implementing 

fuzzy logic techniques in the process will also be highlighted and placed into the over-
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all context of obtaining a more comprehensive knowledge acquisition phase within the 

weight estimation process. 

5.2 Structural design with fuzzy logic 

The weight estimation of an aerospace structural component during the prelim­

inary design stages is a very complex process, at the basis of which there is a flow of 

information and data from the different departments taking part in the analysis. The 

route to a representative weight assessment of the component under analysis can be 

delayed by bottlenecks within the sharing of information across the different disciplines 

until the right information gets to the mass estimation department. In addition to this, 

once all the necessary data is gathered, more often than not the mass properties engi­

neers have little or no insight in the reliability and accuracy of it. As a consequence, 

there is very limited control on the final weight estimate provided at the end of the 

cycle. 

For this reason, the weight estimation teams are always in search of modelling 

tools which can replicate the necessary design steps to get the right information needed 

for the weight analysis but with minimal computational effort and time. These are not 

only seen as a way to optimise the process itself in the case of delays within the exchange 

of data across the different departments, but also as a way of carrying out inexpensive 

safety checks on the high fidelity models built with the full set of data. 

These tools and frameworks should be able to provide robust weight estimates 

with minimal computational effort whilst capturing the physics behind the design of 

the component at hand even with the limited information and data available at this 

phase in the design. In order to do this, it is vital that the methodology at the basis 

of them replicates the design process for the structure being analysed, even if just on 

a smaller scale. 

The preliminary design of a structural component can be condensed and viewed 

as an iterative 3-tiered flow of information (Figure 5.1). The process starts with the 

definition of the necessary design requirements, namely the function of the component, 

its location within the main assembly and relative spatial constraints, materials and 
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processes to be used for its manufacturing, as well the various loads that it needs to be 

able to sustain. All this information is then used for the sizing process and comprehen-

sive design definition. The overall component function and its relative location within 

the assembly initially define the configuration and individual features of the structure. 

The loads are then translated into minimum sizing requirements (e.g. sectional proper­

ties) . Finally, space constraints define the global geometry, while manufacturing issues 

drive local geometry and specific features. Once these parameters are derived, they are 

used to formulate a weight estimate which is evaluated and reviewed with respect to 

some of the input parameters . If the estimate is considered erroneous, too conservative 

or too ambitious, the process is reiterated by modifying the design definition at any of 

the intermediate stages. 

[ REQUIREMENTS ] [ DESIGN DEFINITION ] 

· Component function 
· Configuration 

· Spatial constraints 
· Features WEIGHT 

· Manufacturing 
· Local geometry 

· Materials 
· Global geometry 

. Assembly 
· Sectional properties 

· Loads 

FIGURE 5.1: Schematic representation of the flow of information used within the weight esti­
mation process. 

5.2 .1 Model framework 

When applied to the weight estimation of the spoiler attachment ribs in Chapter 

4, ANFIS modelling proved to be a viable option, providing accurate results as well as 

realistic trends between the variables of interest. The model approached the problem 

from the point of view of combining loading information with details of the geometry, 

function and location of the selected structures in order to derive weight estimates . 

However, the results highlighted the need to provide more knowledge and insight into 

the sizing methodology for the component to be able to fully support the design process. 
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For this reason , the neuro-fuzzy approach was extended to supply initial sizing 

information as well as weight estimates for t he selected structural example based on 

the type and nature of the information available in preliminary design stages. 

Figure 5.2 shows an illustrative example of the architecture of a generic neuro­

fuzzy framework for the weight estimation of aircraft structures, derived following the 

main design process steps at the preliminary stages of structural definition of the com­

ponent. The majority of the initial requirements can be translated into input variables 

for the sizing part of the neuro-fuzzy system developed to derive sectional propert ies 

and local geometry parameters for the structure. These results will indicate the mini­

mum sizing parameters for the structures . The remaining initial spatial requirements 

can then be combined with the outputs of the first neuro-fuzzy unit as well as with 

addit ional parameters relative to the component local geometry, configuration and fea­

tures that the designers can agree upon once minimum sizing has been derived . These 

will represent the inputs for the secondary module of the neuro-fuzzy system which 

will be used to compute the weight estimate. 

[ REQUIREMENTS ] 

SPATIAL 
CONSTRAINTS 

[ DESIGN DEFINITION ] 

FIG URE 5 .2 : Illustrative framework architecture for neura-fuzzy sizing and weight estimation 
of structural components. 

According to the results obtained, the process can be reiterated and the relevant 

variables modified according to varying design requirements or optimised in view of 

weight reduction effort. The results t hemselves will highlight t rends and relationship 
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between the different variables, causality of design changes and sensitivities of the final 

weight of the component to different design solutions, which will enable the designer 

in the optimisation process. 

5.3 ANFIS-based structural sizing and weight analysis: 

spoiler attachment ribs 

In order to assess the applicability of the method, the sample framework illus­

trated in the previous section was implemented on two separate structural examples. 

The first test was carried out on spoiler attachment rib structures. 

Figure 5.3 shows the model structure for the sizing and weight estimation of 

spoiler attachment ribs. The general architecture has been adapted to work within an 

ANFIS and MANFIS network structures as well as to fit the specific inputs and design 

requirements for the component. In line with the general illustrative framework, the 

aims of the computational model were to provide an accurate' weight estimate for the 

component at hand as well as to act in parallel to the design process in order to fulfil 

the needs of the design team during both preliminary design and weight estimation 

tasks. For this reasons, the model was structured in 3 parts: 

1. An interactive Microsoft Excel based loading module, was developed and used 

to evaluate resultant bending moments, shear and axial forces in the structure 

from applied loads 

2. A multiple output MANFIS-based sizing module to evaluate sizing parameters 

for the structure by combining the results of the loading module with relevant 

material properties 

3. An ANFIS-based weight module evaluating the structural weight of the com­

ponent by combining local sizing parameters generated by the sizing module with 

global sizing variables related to the specific location and function of the spoiler 

attachment rib within the fixed trailing edge. 
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FIGURE 5.3 : Schematic representation of the three-level sizing and weight estimation frame­
work for spoiler attachment ribs, highlighting the variables and structure of MANFIS-based 

sizing module and A:\FIS-based weight estimation module. 

5.3.1 Loading and structural sizing 

From the schematic representation of the Al\FIS-based framework for spoiler 

attachment ribs , it is easy to understand the process of translating the general frame­

work to a practical, real life structural problem. In the case of spoiler attachment ribs, 

the overall process was based on the idealisation of the structure as a combination of 

three individual beams, the design of which is driven by their different functions and 

loading scenarios (Figure 5.4). 

The requirements posed by the design process for the component are mainly 

covered in the sizing module. Based on the individual loads act ing on the spoiler 
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FIGURE 5.4: Schematic representation of a spoiler attachment rib with the relevant loads 
acting on it (a) and its idealisation into a 3-beam structure with relevant loads and boundary 

conditions for sizing within the ANFIS framework (b) . 

attachment rib, an Excel/Visual Basic system solved the individual beam components 

for maximum bending moment (Mmax) a.xial forces (Fx) according to beam theory 

principles . Within the loading module, i sues such as manufacturing and installation 

are included, such as additional thermal stresses occurring at the composite to metallic 

interfaces as well as loading resulting from the addition of system installation within 

the structure itself. Ma.ximum resultant axial and bending loads are then used as input 

for the MANFIS based sizing module in combination with the Youngs modulus (E) 

and ultimate tensile stress of the material (uult). 

The initial weight estimation study described in Chapter 4 showed the impor­

tance of describing the structure of spoiler attachment ribs through local sectional 

properties , global parameters and loading information when approaching the problem 

of structural weight estimation with ANFIS. Within the new 3-layered framework, the 

same information is kept throughout the process but fed into the system at different 

stages. 

Loading variables appear at the beginning of the process and they are used to 

derive the local sectional properties for the 3-beam structure, namely sectional mo­

ments of inertia (ITOP , f BOT and f VERT) and cross sectional areas (ATOP, ABOT and 

AV ERT) ' The cross sectional areas for the 3 beams are then combined in the weight 

module with global geometry, spatial requirements and specific feature definition em-
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bodied by the individual variables of spar height (h), location of hinge line datum (L) 

and rib type (rtype) for a full definition of the structure. 

Overall, this type of framework encompasses the main analytical steps of the 

structural design and weight estimation of the component by combining an analytical 

loading solution with a neuro-fuzzy derivation of sizing and weight. 

5.3.2 Sizing module performance 

The database of reference provided a total of 77 beam components for spoiler 

attachment rib structures, of which 59 were used for training the MANFIS network 

at the basis of the sizing module and 18 for its performance assessment. During the 

training process, subtracting clustering was applied for initial rule derivation to avoid 

combinatorial explosion of rules and to ensure quick and consistent convergence of the 

model optimisation process. A radius of ra = 0.4 and accept and reject ratios of 0.5 

and 0.15 respectively were chosen as suitable cluster parameters for the chosen model. 

In addition to RMSE, the performance of the Al.\FIS models was assessed using 

Mean Percentage Error (MPE) and Mean Absolute Percentage Error (MAPE), which 

are defined as: 

MPE = ~ ~ Oi - ei 

n L...J e· 
i=l ~ 

(5.1) 

(5.2) 

where (h and Oi indicate respectively the real and predicted values for the variable of 

interest for n number of data points. The model managed to provide satisfactory results 

in terms of the accuracy in the computation of sizing and weight variables (Table 5.1). 

In particular, the model shows greatest modelling accuracy in the estimation of second 

moment of area I across the different beam types, with lowest values of RMSE and 

MAPE. 

A more in depth analysis of the performance of the sizing module reveals a 
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TABL E 5.1: Performance assessment of ANFIS framework applied to the sizing and weight 
estimation of spoiler attachment ribs. 

A MANFIS I MANFIS W ANFIS 
No. of Inputs 4 4 6 

Training 59 59 59 
Testing 18 18 20 
Rl\1SE 0.131 0.117 0.140 
:v1PE -7.07 -3.31 1.97 

MAPE 11 .26 8.87 10.25 

tendency from MANFIS to under estimate the required cross sectional areas and sec­

ond moments of inertia for t he given condition , which can be rectified by applying 

correction factor on the final results (Figure 5.5). The reason behind this could b e 

attributed to t he fact that analytically, a load and sizing analysis normally leads to 

minimum sizing requirements for the structure, whilst the values used for the design 

of the model represent t he structure" as built" . The applicat ion of a correction fact or 

wit hin t he structural assessment could pot ent ially a id the designer in understanding 

the relative effect of addit ional fabrication and inst allation issues on the final design of 

t he component which cannot be readily incorporated in t he ANFIS model. 
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F IG URE 5.5: Performance of the MAKFIS sizing module fo r spoiler attachment ribs on testing 
database for cross sectional area A and second moment of area 1. 
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Overall, the model has accurately represented the physical relationships between 

the input variables and the structural sizing parameters chosen. As expected, the 

trends are highly nonlinear , in particular within the effect of the axial forces on the 

output variables. The rate of change of cross sectional area with respect to bending is 

inconspicuous if compared to the impact that a change in a.xial force will have on it 

(Figure 5.6(a)). Conversely, the second moment of area of the beam increases steadily 

with bending but its value will only fluctuate minimally with respect to changes in 

axial forces (Figure 5.6(b)) . 
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FIGURE 5.6: The figure shows the results from MANFIS with regards to the variation in beam 
cross sectional area (a) and second moment of area (b) due to applied bending and axial loads 

on spoiler attachment ribs. 

5 .3.3 Weight module performan ce 

The method of variable selection proposed by Chiu (Chiu, 1996) was used to 

better understand the relative importance of the different input variables on the perfor­

mance of the ANFIS weight model, with respect to the resultant RMSE on the testing 

database and to optimise the final model itself. As shown in Figure 5.7, the greatest 

accuracy is attained with the full variable set and the removal of any of the input pa­

rameters generates a substantial deterioration in the accuracy of the estimation. The 

results highlight how the global geometrical definition of the rib though hand L as 

well as its function , determined by the rib classification parameter rtype , are essential 

variables for the design of a reliable weight model for this structural component, as 

demonstrated also by the previous numerical example of Chapter 4. 

109 



w 
C/) 

:E 

Chapter 5 

3 ~--------------------------------------------------------~ 
-+-Testing 

-+-Training 
2.5 ~~~~------------------------------------------------~4 

h 

ABOT 

2 ~------------------~~--------~~=-------~--------~ 
L 

~ 1.5 ~----------------------------------------------~~------~ 

0.5 ..-- = ----------------------\-\-1 

o ~--------~--------~--------------------~-----=~~ 
1 2 3 4 5 6 

No. of Variables 

FIGURE 5.7: Effect of variable removal on the accuracy of the ANFIS weight module for spoiler 
attachment ribs. 

Weight data for a total of 79 examples of spoiler support ribs was collected , of 

which 59 sample ribs were used for network training and 20 for test ing following the 

method of statistical similarity described in Chapter 4 (Shahin et al. , 2004) . The net­

work shows high generalisation capabilities on the testing dataset as well as satisfactory 

overall performance (Table 5.1). The results show that the ANFIS network acquired 

higher generalisation capabilities in the case of intermediate ribs compared to hinge 

ribs (Figure 5.8) . This underlines the need to improve the defini tion of the spoiler 

support rib structure by adding addit ional parameters in the analysis, in particular 

with respect to specific features related to manufacturing and fabrication. 

The results show that global rib geometry and the location of the structure within 

the trailing edge have a higher impact on the final structural weight of intermediate ribs 

as opposed to hinge ribs (Figure 5.9). The design of intermediate ribs is mainly driven 

by spatial requirements, whereby the main aim of the structure is that of maintaining 

the aerodynamic profile of the fixed trailing edge, as opposed to loading considerations. 

In terms of local geometry, the model was capable of identifying the main con-

no 
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FIG URE 5.8: Performance of the ANFIS weight module for spoiler attachment ribs on testing 
database. 

tributions to the structural weight in the cross sectional areas of the vertical and top 

sections of the structure. In the case of hinge r ibs , the vertical component is of promi­

nent influence due to the size required to replace vertical spar stiffeners and sustain 

fuel loads (Figure 5.10(a)). Vertical and top components have a similar effect on the 

weight of intermediate ribs but altogether show a lower combined effect on the output 

compared to that on hinge ribs (Figure 5.10(a)) . This can be attributed to the minimal 

variation in beam size, which characterizes this type of component . 

The results also help in understanding the different contribut ions that the choice 

of a specific design for the rib has on the final weight of the structure. The effect of 

top and bottom section sizes is approximately 3 times higher on a hinge rib as opposed 

to an intermediate rib of the same global geometry. This also confirms how both the 

design and final weight of hinge ribs is highly dependent on loading and , consequently, 

size of its individual sections, whilst global geometry is the major factor affecting the 

weight of intermediate ones. 
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FIGURE 5.9: Variat ion in spoiler attachment rib weight with respect to hinge line datum (L ) 
and spar height (h) for hinge ribs (a) and intermediate ribs (b). 
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FIG URE 5.10: Effect of local geometry on rib structural weight for spoiler hinge ribs (a) and 
intermediate ribs (b). 

5.4 ANFIS-based structural sIzIng and weight analysis: 

aileron attachment ribs 

Aileron attachment ribs were chosen as an additional case study to explore the 

validity of the methodology. As with spoiler attachment ribs, these are secondary 

structures which are part of the fixed trailing edge and for which weight estimation 

activities are still being carried out with basic empirical methods. They are located in 

the outboard part of the fixed trailing edge and their purpose is that of sustaining the 

loads transmitted from the aileron, as well as maintaining the aerodynamic integrity 

of the outboard fixed trailing edge whilst providing space allocation and attachment 

points for system routing. 
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FIGU RE 5.11 : Schematic representation of Design A for the aileron attachment rib wi th the 
relevant loads acting on it (a) and its idealisation into a 4-beam structure with the relevant 

loads and boundary condit ions for sizing within the ANFIS framework (b). 

(a) (b) 

FIGURE 5. 12: Schematic representation of Design B for the aileron attachment rib with the 
relevant loads acting on it (a) and its idealisation into a 2-beam structure with the relevant 

loads and boundary conditions for sizing within the ANFIS framework (b). 

Normally, only hinge ribs are present within the outboard fixed trailing edge 

(OFTE). Their design is driven by t he need to sustain the following loads: 

1. Aerodynamic loads (waero ) , which are applied to the upper section of the rib 

through its direct attachment to the fixed upper skin panel. 

2. Hinge loads (Fr) result ing from the axial hinge force components from the aileron 

and acting on the spoiler hinge line. 

3. Strut loads (Pr ) , which are the effect of aerodynamic loads acting on t he fixed 

lower skin panel and t ransmitted to the bottom section of the rib via a strut. 

4. Fuel loads (w fu el) acting on t he vert ical section of the rib , which can b e found 

in those ribs that are positioned where an external integral spar stiffener would 

have been. 

5. System attachment loads resulting from t he rout ing of system runs across t he 
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FIGURE 5.13: Schematic representation of Design C for the aileron attachment rib with the 
relevant loads acting on it (a) and its idealisation into a single beam structure with the relevant 

loads and boundary conditions for sizing within the ANFIS framework (b). 

trailing edge and fixed on individual rib locations. 

6. Applied thermal stresses (O'th) arising from the differences in thermal expansion 

at composite to metal interfaces . For the purpose of this study a constant 20MPa 

was applied on metallic sections connected to composite components. 

These loading requirements have generated 3 different designs within commercial 

and military aircraft, all of which made up by I cross-sectional beam structures. Figure 

5.11 highlights the structure of Design A, which is representative of aileron attachment 

ribs for larger aircraft. This design is characterised by the presence of two vertical beam 

sections, of which the back provides additional stability to the spar in the absence of 

a vertical stiffener and the front one helps the structure carry a larger hinge load. 

Design B (Figure 5.12) is not dissimilar from the general layout of spoiler attachment 

ribs, with a two-beam configuration. In the case of Design C (Figure 5.13), the same 

requirements are satisfied by a single tapered beam structure occupying the majority of 

the available cross sectional trailing edge space. In this case, there is no need to provide 

additional space allocation for system installation due to re-rout ing and attachment of 

system lines onto the t he rear spar instead than onto the rib itself. All three designs 

were used for model training and validation by idealising the structure as individual 

beams, in a similar way as for spoiler attachment ribs. 

The model structure follows the initial general illustrative framework and is 

similar to that used for sizing and weight estimation of spoiler attachment ribs. In 

oder to increase the flexibility of the model to allow the analysis of the different design 

variants being included in th is case study, the model has been modified to account for 

114 



Chapter 5 

the addit ional beam elements within the structure (Figure 5.14). By modifying the 

model for the concurrent analysis the three different aileron support ribs, it will be 

possible to understand the weight penalties result ing from adopting alternative design 

solutions as early as conceptual design stages . 
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work for aileron attachment ribs , highlighting the variables and structure of \tIANFIS-based 

sizing module and AXFIS-based weight estimation module. 
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5.4.1 Sizing module performance 

The database of reference provided sizing information for a total of 63 beam 

components of aileron attachment rib structures, of which 44 were used for training 

the MANFIS network at the basis of the sizing module and 19 for the assessment of 

model performance. During the training process, subtracting clustering was applied 

for initial rule derivation to avoid combinatorial explosion of rules and to ensure quick 

and consistent convergence of the model optimisation process. A radius of Ta = 0.4 and 

accept and reject ratios of 0.5 and 0.15 respectively were chosen as suitable parameters 

for cluster definition. 

TABLE 5.2: Performance assessment of ANFIS framework applied to the sizing and weight 
estimation of aileron attachment ribs. 

A MANFIS I MANFIS W ANFIS 
No. of Inputs 4 4 7 

Training 44 44 46 
Testing 19 19 20 
&\1SE 0.121 0.125 0.132 
MPE -1.72 0.37 -3.65 

MAPE 11.65 10.48 6.49 

The model managed to provide satisfactory results in terms of the accuracy 

in the computation of both sizing and weight variables (Table 5.2). As for spoiler 

attachment ribs, the sizing module performed better when estimating second moment 

of area for the individual beams rather than for the computation of their cross sectional 

areas. In this case, however, the difference in accuracy is minimal from the point of 

view of both MAE and MAPE and with MANFIS showing slightly lower RMSE in the 

estimation of cross sectional area. 

MANFIS continues to show a general tendency to under estimate the cross 

sectional areas for the beam sections. This can be linked to the presence of constraints 

and minimum gauges driving the geometry of the manufactured sections in parallel 

with loading requirements. In the case of second moment of areas, on the other hand, 

the results balance out, showing no clear trend within the estimation capabilities of 

the network for these type of designs. 
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FIGURE 5.1 5: Performance of the MANFIS sizing module for aileron attachment ribs on testing 
database for A and I. 

In addition to an overall satisfactory performance in the estimation of sizing 

parameters, t he model has been able to analyse and represent clear and accurate re­

lationships between the different variables of interest (Figure 5.16). As for spoiler 

attachment ribs, the t rends produced are representative of the physics behind the de­

sign of t he component . Bending is shown to have only a minimal impact on the cross 

sectional area of the beam elements whilst it drives the choice of second moment of 

area. Conversely, t he lower values of axial force appear to produce a considerable 

linear increase in cross-sectional area, compared to higher ones. The profile of t he 

relationship , in this case, suggests t he presence of additional factors, on top of loading 

considerations , which contribute to the choice of beam cross sectional area for aileron 

attachment ribs. 

5.4.2 Weight module performance 

Weight data for a total of 66 examples of spoiler support ribs was collected and 

split into training and testing datasets, according to the method of statistical similarity 
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FIG URE 5.16: The figure shows the results from :\1A~FIS with regards to the variation in the 
beam cross sectional area (a) and second moment of area (b) due to applied bending and axial 

loads on aileron support ribs. 

formalised by Shahin et al. (2004). As a result, 46 sample ribs were used for network 

training and 20 for testing. 

Due to the presence of addit ional beam sections in Design A, the weight module 

for the analysi of aileron support ribs was initialised with seven inpu t variables. The 

method of variable selection (Chiu , 1996) was also used in this case to both optimise the 

model with respect to input variables and to understand the impact of t he individual 

parameters on the performance of the A:-\F IS weight model. 

As for spoiler attachment ribs, the full variable set provides the best estimation 

accuracy with an R:vISE of 0.132. A quick deterioration in performance occurs with the 

removal of the cross sectional areas of the two vertical sections A VERT! and A VERTb. 

Global geometrical parameters still have the greatest impact on the quality of the 

approximation, with location of hinge line datum L being the last variable removed. 

The cross sectional area of the top beam ATOP , however , has a much greater impact on 

the overall model accuracy for aileron attachment ribs as opposed to spoiler ones: it 

removal from the analysis could result in an error in the estimation up to 7 times higher 

than the one obtained with the full set of input variables in the worse case scenario 

(Figure 5.1 7). 

Overall, the weight module for aileron attachment ribs show greater general­

isation capabiliti s compared to that for spoiler attachment structur s (Figure 5.18) . 

Both R.\ISE and :-IAPE have improved. with :-1APE reduced by over 4 percent. In 

thi case . howeyer, the model has a much greater tendency to underestimate the weight 
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FIGURE 5. 17: Effect of variable removal on the accuracy of the A 'FrS weight module for 
aileron attachment ribs. 

of the structure on average by nearly 4 percent. Compared to spoiler attachment ribs, 

in fact , the three designs analysed here appeared to have a higher number of specific 

features which have not been explicitly accounted for within the model itself, such as 

a higher number of stiffening elements in the larger beam structures or the presence of 

holes for system rout ing within Design C. 

The results across the three different designs agree when it comes to the weight 

impact of global geometry on the structure. Overall , an increase in the height of t he 

structure h and , therefore, its location fur ther inboard along the spar, influence the final 

weight t he mo t, as opposed to the po it ion of the hinge line datum L. In particular , 

the highest impact from this parameter occurs in the case of Design C. Since this type 

of attachment rib is des igned on a single beam structure, an increase of height will 

cause a higher volumetric expansion. As a consequence, the weight penalty result ing 

from the location of t he rib in the wing spanwise direct ion is double that which would 

be incurred by Design B and i up to 7 t imes higher compared to the 4-beam solution 

of Design A (Figure 5.19) . 
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FIGURE 5 .18: Performance of the ANFIS weight module for the aileron attachment ribs on 
the testing database. 

For both Design A and B, the geometry of the top beam section appears to 

have the highest impact on the final structural weight, validating t he results of the 

model optimisation process. In particular, ABoT shows to be inducing the same weight 

increase in both cases (Figure 5.20). The proportion of weight dependent on ATOP is 

approximately 1.5 times higher in the case of Design B, due to the lack of the additional 

vertical beam sections sharing the load and, therefore, the extra weight of the structure. 

Figure 5.21 shows how the added structural weight is mainly driven by the back vertical 

beam section, which is responsible to both stiffening the spar and carrying the fuel load 

from the wing box, whilst only approximately one fifth of the overall weight of the rib 

is dependent on the inclusion of the front vertical beam section. 

In the case of Design C, where only a single beam structure is present , the 

cross sectional area ATOP contributes to approximately a third of the rib weight when 

compared to its global hinge line datum location L (Figure 5.22). The dip in weight 

occurring at the maximum values of the two geometrical parameters can be attributed 

to the maximum influence of spar height h on the weight of the structure. This is 
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FIG URE 5.19 : Effect of hinge line datum (L ) and spar height (h) on the structural weight of 
Des ign 1 (a), Design 2 (b) and Design 3 (c) aileron attachment ribs. 

particularly relevant in the case of the larger aileron attachment ribs, which are located 

on the inboard side of the OFTE where spar height is at its maximum, as previously 

highlighted in Figure 5.19( c) . 

5.5 The TSK fuzzy knowledge base: structure, interpretabil­

ity and versatility 

In addition to the numerical estimation of sizing and weight for spoiler and 

aileron attachment rib structures, both modules are accompanied by a full rulebase 

describing the overall behaviour of the system. 

In the case of A?\FIS and MAl\FIS modelling, the set of rules derived by the 

model have the form" IF - THEN" with the antecedent side of the rule defin ed by the 

membership funct ions for each individual input applicable for the selected rule. Since 

the fuzzy model derived through AKFIS is of the Takagi-Sugeno type (Jang, 1993), 
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(a) (b) 

FIGURE 5.20: Effect of cross sectional areas of top (ATOP) and bottom (ABOT) beam section 
on the structural weight of Design 1 (a) and Design 2 (b) aileron attachment ribs. 

0.' 

A.,oP A"ERTb 

(a) (b) 

FIGURE 5.21: Variation in the aileron attachment rib weight with respect to the change in 
cross sectional areas of the top beam section (ATOP) with the addition of a back (Av ERTb) (a) 

and a front (Av E RT f) vertical beam section (b). 

the consequent part, or the output side of the rule, is represented by a single value or 

singleton. 

Figure 5.23 shows the rulebase for the sizing module for spoiler attachment ribs . 

As shown, the optimised system consists of 4 inputs and 2 outputs each. For each rule, 

each input is defined by a relevant membership function within the variable design space 

which is derived during the network training process. For the purpose of the figure, 

inputs have been set at random values . Once the input values have been selected and 

juzzijied according to the relevant membership functions, the rules are weighted and 

the individual output from the rules is computed. According t o the weight assigned to 

each rule, t he individual outputs are aggregated into a one single fuzzy output which 

is then defuzzified into a crisp quantity. 
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FIGURE 5.22: Effect of hinge line datum (L) and top beam cross sectional area (ATOP) on the 
structural weight of aileron attachment ribs. 

In this case, the system derived through the optimisation process is simple, 

due to the small number of rules necessary for its full description . However , its inter­

pretability is limited because of the nature of the outputs. By looking at the rulebase, 

the designer could easily understand where the chosen design solution is located within 

the design space, in terms of input variables. In addition to t his, for each rule it will 

be possible to intuitively understand the initial effect that the variability in the design 

parameters could have on the rule weighing, by looking at the applicable membership 

functions for the individual variables . By using the TSK fuzzy systems, however , t he 

representation of the outputs as singletons prevents the immediate visual understand­

ing of the degTee of uncertainty within the outputs themselves and how this changes 

according to individual design decisions. 

In the case of t he rulebase behind the weight module, the structure itself is 

more complex (Figure 5.24). The higher number of input parameters has led to an 

exponential increase in the number of rules necessary to describe the system. This is 

typical of TSK FIS derived through ANFIS. The network behind the weight estimation 

module is characteri ed by 20 rules linking the 6 input variable to the single output. 

The higher number of rules contributes to the reduction in the interpretability of the 

system, especially in the analysis the consequentiali ty between the individual inputs 

and the final output. 

Figure 5.25 and figure 5.26 highlight the rulebase for both sizing and weight 
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modules for aileron attachment ribs. The rule structure behind the sizing module 

appears to be not very dissimilar from that of spoiler attachment ribs, with 4 inputs, 2 

outputs and 6 rules. The rulebase is very compact due to the few rules describing the 

system, however its interpretability is still limited due to the crispness of the outputs. 

ANFIS, however, was able to derive a somewhat simpler rulebase for the weight module. 

Despite having 7 inputs, as opposed to the 6 inputs of the weight module for spoiler 

attachment ribs, only 18 rules are sufficient for a full definition of the problem. 

5.6 Summary 

This chapter presented the definition of a model structure based on the ANFIS 

and MANFIS network structures, for the derivation of both preliminary sizing and 

weight estimates for aircraft structural components. The model was designed with the 

aim of closely embodying the general structural sizing and weight estimation process 

within the preliminary stages of the design of new components. 

The initial framework was applied on two separate case studies for testing and 

validation: spoiler and aileron attachment ribs. The general design process for these 

two types of structures translated into a 3-stage model, consisting of an analytical 

Microsoft Excel module for derivation of loading scenarios, a MANFIS-based sizing 

module and an ANFIS-based weight estimation module. 

The flow of input-output data between the different parts of the model replicates 

the data and information transfer occurring during the preliminary design process of 

the structural components and is able to translate the physics behind the design itself 

in the actual model structure and analysis. This ensures that the weight engineer 

has a way of deriving the required structural and sizing data in the case of delays 

within the data transfer between the departments involved in the design or if selected 

information is missing or unreliable. In addition to this, the tool represents a fast and 

computationally inexpensive way to obtain reliable and traceable estimates which can 

act as safety checks for higher fidelity models. 

The network-based modules of the framework were trained and optimised us­

ing databases with real structural test cases. The final models succeeded in deriving 
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accurate estimates for sizing and weight for both structure types. In particular, the 

estimates for both cases never exceeded an overall average error of 12 percent during 

the validation process. The major source of error can be attributed to the absence of 

specific feature analysis within the estimation process. The neuro-fuzzy model derived 

the minimum sizing needed to sustain the applied loading, but in essence this estimate 

was compared to "as built" structural examples. In depth feature analysis is beyond 

the scope of weight estimation activities within the preliminary design stages also due 

to the lack of information typical of this phase. However, the general underestimation 

of the model could be compensated either by statistically derived adjustment factors 

specifically design to incorporate the effects of typical manufacturing and assembly 

related features in the estimate itself. 

In addition to accurate approximations, the model was able to successfully derive 

reliable trends and to identify the principal causalities between the numerous variables 

of interest. By idealising both the spoiler and aileron support ribs as aggregations of 

beam structures, the results were also able to highlight the possible weight penalties 

resulting from the selection of a particular design solution instead of another or from 

the possible integration of system routing within the structural assembly itself. 

The rulebase derived through the ANFIS-based network optimisation process, 

however, presents the typical restrictions of a TSK fuzzy system. Although ANFIS 

allows for fast computation and a compact rule and network structure, the derivation 

of a TSK FIS instead than a Mamdani type one results in a rulebase that fully explores 

the design space in terms of variability of input parameters but lacks interpretability 

of the causality of this on the outputs. These, in fact, are only represented by sin­

gletons rather than through membership functions, which prevents both a visual and 

intuitive definition of the full design space and a comprehensive understanding of how 

the uncertainty in the inputs translates into the definition of the outputs. 

The next chapter will explore the use of Mamdani systems derived through the 

Neuro-Fuzzy Approximator (NEFPROX) in order improve the modelling capabilities 

of the framework from the point of view of the extraction of a more intuitive and 

comprehensive knowledge base able to aid the designer during the sizing and weight 

estimation process. 
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FIGURE 5.25 : Rulebase for the est imation of sectional properties for a ileron attachment ribs. 
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Chapter 6 

6.1 Introduction 

Accuracy and reliability are only two of the desirable qualities of a successful 

weight estimation methodology. At preliminary design stages in particular, the focus 

of the weight engineer is to obtain both a meaningful solution as well as a way of 

understanding how possible future design changes will influence the final weight of the 

structure. 

The rule base structure characterising neuro-fuzzy systems is very attractive 

since it allows the designer to derive a set of mathematical guidelines which are able to 

illustrate how the chosen structural and design parameter interact with each other and, 

in turn, impact the weight of the structure itself. The definition of the design variables 

by means of membership functions also aids the designer in deriving a visual and more 

intuitive definition of the design space. The fuzzy rule base which is derived via neuro­

fuzzy systems can act as a visual map of the design space itself to be used as a guide 

during the decision making process. The rules highlight how different combinations of 

input variables impact the structural weight of the component. In addition to this, the 

representation of the variables by means of membership functions helps bring focus to 

the effects of the variability within the inputs themselves on the final design solution. 

Chapter 5 demonstrated how neuro-fuzzy systems derived though ANFIS and 

MANFIS can successfully support both the sizing and weight estimation processes for 

structural components at preliminary design stages. The results derived using adap­

tive nero-fuzzy techniques proved to be accurate as well as able to extract a compre­

hensive knowledge base for the structural examples being analysed. The nature of 

the TSK fuzzy systems derived though ANFIS, however, results in the outputs being 

computed as singletons rather than through membership functions, thus limiting the 

interpretability of the knowledge base from the point of view of output characterisation 

and definition. 

This chapter aims at overcoming this pitfall by deriving a Mamdani-type neuro­

fuzzy systems for sizing and weight estimation using NEFPROX. The use of spoiler 

and aileron attachment ribs as case studies for model validation within the chapter 

will highlight the potential benefits of adopting Mamdani-type FIS for the derivation 
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of a more efficient and explicit rulebase for sizing and weight estimation. In particular, 

the results will focus on the analysis of the system from the point of view of accuracy, 

network complexity, fuzzy variable definition and quality of the structure as well as 

according to the rationale behind the rulebase derived within the analysis. 

6.2 Selecting a fuzzy system for design applications: ac­

curacy vs. interpretability 

The choice of neuro-fuzzy systems for structural sizing and weight estimation at 

preliminary design stages was made based on: 

1. The ability of the system to learn from given examples; 

2. The capability of translating the acquired knowledge of the system under study 

into a set of rules to be used within the design process; 

3. The possibility of combining the results with knowledge from experts; 

4. The ability to provide reliable and accurate results even in the presence of noise; 

5. The capability of incorporating the uncertainties within the problem in the anal­

ysis in a way which can be easily interpreted and modified by the user. 

In certain cases, however, the adaptive learning algorithms used to extract the 

optimal FIS structure from data, such as those used by neuro-fuzzy systems, can lead to 

the derivation of fuzzy system that lack model interpretability (Zhou and Gan, 2008). 

In the development of models built using adaptive learning, accuracy and the need to 

preserve the interpretability of the final solution tend to be two conflicting objectives. 

This is normally the basis of the dichotomy between Mamdani and Takagi-Sugeno-Kang 

FIS. The former allows a complete fuzzy visualisation of both input and output spaces, 

with a more legible rulebase and an increase insight into the complex system. This 

attempt to move from a black box setting to a more grey box environment, usually comes 

at the price of lower accuracy and additional computational effort. In contrast, TSK 

FIS combine rapid computation and improved modelling accuracy at the expense of 

the readability and transparency of the solution. It is, therefore, important to evaluate 

the benefits of using Mamdani or TSK FIS for a specific modelling problem and asses 
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the relative benefits of preferring added interpretability to accuracy, or viceversa. 

6.2.1 Interpretability of fuzzy systems 

It is relatively easy to assess and quantify the accuracy of a FIS, by looking at 

error measures obtained by applying the model derived from training data on a testing 

set, which comprises of data points relative to examples previously "unseen" by the FIS 

itself. In terms of interpretability, however, research shows no agreement in the defi­

nition of an appropriate measure for its quantification, resulting in assessments which 

predominantly follow a more qualitative approach Castellano et al. (2003); Alonso et al. 

(2009); Alonso and Magdalena (2010). 

Zhou and Gan (2008) suggest that, when trying to evaluate the interpretability 

of a fuzzy system, the user will have to consider two different aspects: 

1. The architecture of the rulebase; 

2. The expression of the fuzzy sets within it. 

Low-level interpretability is specifically connected to the design of the member­

ship functions at fuzzy set level and their consequent ability of unequivocally represent 

a particular fuzzy partition. Conversely, high-level interpretability is concerned with 

the overall FIS structure and the transparency of its rulebase. Both of these levels 

of analysis are characterised by specific criteria and conditions which enable a more 

coherent evaluation of the FIS itself. 

When it comes to membership function analysis, it is vital to appraise the model 

by considering: 

1. Distinguishability: the domain of interest of input and output variables should 

be represented by clearly defined and distinct fuzzy partitions. 

2. Number of membership functions: the amount of fuzzy partitions used to de­

fined each variable should stay within 7±2, which identify the limits of human 

information processing capability (Miller, 1956). 

133 



Chapter 6 

3. Completeness: the entire domain of each individual variable should be covered 

by MFs. 

Full interpretability, however, can only be achieved if the rulebase as a whole is 

"readable". High-level interpretability is based on: 

1. Completeness: at least one rule should be activated for each instance, thus en­

suring that the entire design space is examined and considered. 

2. Readability of rules: as for membership functions, the elements in the premise 

part of each rule should align with the 7±2 rule. 

3. Consistency: rules should not be confiicting (Le. for similar combination of 

inputs, the rules should produce similar outputs). 

4. Transparency: this is related to the inner structure of the fuzzy system itself. 

For instance, Mamdani FIS are technically transparent by nature, due to the 

way their outputs are represented, as opposed to TSK. 

To be able to select the most appropriate type of fuzzy system for design and 

weight estimation applications, NEFPROX (Nauck and Kruse, 1999) will be used to 

derive Mamdani-type FIS equivalent to the TSK ones presented in previous chapters. 

They will be compared to be able to gauge the best trade-off between accuracy and 

interpretability of rulebase. 

6.3 NEFPROX-based structural sizing and weight esti­

mation: spoiler attachment ribs 

The illustrative framework for structural sizing and weight estimation was trans­

lated into a NEFPROX-based model in a similar way as for the ANFIS testcase (Figure 

6.1). For the structural sizing and weight estimation of spoiler attachment ribs, the 

model framework follows an equivalent 3-layered architecture: 

1. An interactive Microsoft Excel based loading module, used to evaluate resultant 

bending moments, shear and axial forces in the structure from applied loads; 
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2. A multiple output :\EFPROX-based s izing module to evaluate sizing parame­

ters for the structure by combining the results of the loading module with relevant 

material proper t ies; 

3. A l\EFPROX-based we ight module evaluating the structural weight of the 

component by combining local sizing parameters computed by the sizing module 

with global sizing variables related to the specific location and function of the 

spoiler attachment rib within the fixed trailing edge. 
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FIGURE 6 . 1 : Schematic representat ion of the three-level sizing and weight estimation frame­
work for the spoiler attachment ribs , highlighting the variables and structure of -EFPROX­

based sizing and weight estimation modules. 

From the point of view of the architecture, there is no substantial difference 

between the AKFIS and :\EFPROX framework, as they were both designed in order 

to closely mirror the information flow and processing structure within the preliminary 

design stage of a structural component. In the case of the :\EFPROX architecture, 

however, there is a much comprehensive pre ervat ion of information between the differ-

ent stages of the process . The reason for this relate to the derivation of Ylamdani FIS 
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through NEFPROX rather than TSK ones. In this case, the output of the sizing mod­

ule will be fuzzy in nature and the output domain will be characterised by membership 

functions rather than individual singletons. The translation of the cross-sectional area 

from outputs of the MANFIS sizing module to inputs of the ANFIS weight estimation 

module means converting a singleton into a fuzzy membership function. 

This can lead to an inevitable loss or alteration of the qualities and properties of 

the variable under study. Firstly, the process of aggregating the individual rule outputs 

in a TSK system is achieved via the process of weighted avemge of the partial individual 

rules. Although computationally faster than the various defuzzification methods used 

in Mamdani systems, averaging across a range of singletons inevitably leads to results 

which are highly approximated and whose accuracy is strongly dependent on the quality 

of the input data. In the case of weight estimation at the preliminary design stages, the 

information and data available for the analysis is not only limited but also permeated 

with noise. The reliability of the results will, in turn, be greatly affected as well as 

hard to quantify. 

In addition to this, singletons are characterised by a reduction in the represen­

tation capabilities of the fuzzy region analysed. Singletons represent one dimensional 

fuzzy sets, whose membership function is unity at a particular point and zero every­

where else in the universe of discourse. On the other hand, a traditional Gaussian 

membership function is able to incorporate, both visually and mathematically, infor­

mation about noise and spread of the variable under consideration due to its two 

dimensional profile. The consequence of this lack of dimensionality within the fuzzy 

singleton is the loss of detail in the representation of the variable as well as a reduction 

in the visual and intuitive interpretability of the model. 

In the specific case of the NEFPROX-based model derived for sizing and weight 

estimation of spoiler attachment ribs, the additional benefit of using Mamdani FIS as 

opposed to TSK ones derived via ANFIS, is the ability to easily translate the cross 

sectional areas computed from the sizing module into inputs for the weight estimation 

module without having to empirically modify the relative fuzzy sets from singleton to 

gaussian definition. 
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6.3.1 Sizing module p erfor m a nce 

Training and testing of the NEFPROX sizing network was conducted using the 

same database of reference as for the ANFIS model, with a total of 77 beam compo­

nents for spoiler at tachment rib structures, 59 of which were selected for training and 

18 for its performance assessment. In order to be able to compare the performance of 

the NEFPROX-derived model with ANFIS, subtracting clustering was applied for ini­

tial rule derivation during the training process . The same parameters of cluster radius 

of Ta = 0.4 and accept and reject rat ios of 0.5 and 0.15 respectively were chosen. 
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FIGURE 6.2: Performance of the TEFPROX sizing module for spoiler attachment ribs on 
testing database for A and 1. 

NEFPROX shows satisfactory generalisation capabilities when applied to the 

beam sizing problem. An analysis of the model performance highlights an average 

absolute error of prediction of 9.6 percent and 7.7 percent in the estimation of beam 

cross section area and second moment of area respectively (Figure 6.2). In a similar way 

as shown by the testing procedure of the MANFIS sizing module, the results underline 

a general tendency of the network to underestimate the outputs by approximately 6 

percent for both cases (Table 6.1). Overall , the NEFPROX model shows improved 
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generalisation capabilities as opposed to MANFIS. The model R.\1SE has reduced by 

approximately 17 percent for both cross sectional area and second moment of area 

which is also mirrored by the lower values of MAPE. On the other hand, the MAE 

shows a 2 percent larger underestimation of the second moment of area by NEFPROX 

compared to MANFIS, whilst the average underestimation level for the cross-sectional 

area is of approximately the same magnitude between the two fuzzy models. 

TABLE 6.1: Performance assessment of the NEFPROX framework applied to the sizing and 
weight estimation of spoiler attachment ribs. 

A NEFPROX I NEFPROX W NEFPROX 
No. of Inputs 4 4 6 

Training 59 59 59 
Testing 18 18 20 
R.\1SE 0.110 0.096 0.102 
MPE -7.68 -5.13 -1.93 

MAPE 9.54 7.69 8.80 

In terms of the impact of the individual input variables on the final outputs, 

the trends shown by both models are highly nonlinear, but are able to highlight the 

different dependencies between the variables of interest. In particular, the relationships 

derived through NEFPROX are strongly validated by those previously obtained with 

ANFIS. Cross-sectional area, as expected, is highly dependent on the value of axial 

force (Figure 6.3(a)). More specifically, the rate of change of cross sectional area with 

respect to axial force is comparable to that computed by the previous model. Similarly 

to AKFIS, NEFPROX was able to capture the higher influence of bending loads on the 

second moment of area compared to axial loads (Figure 6.3(b)). In addition to this, 

NEFPROX provided a more realistic approximation at higher values of applied loads, 

with a steady increase of sectional properties in the design space. On the other hand, 

the results from the ANFIS model highlight a noticeable dip in second moment of area 

at higher values of applied axial force. 

6.3.2 Weight module performance 

The derivation of the NEFPROX weight module was also conducted using the 

same database of reference as for the corresponding ANFIS model. A total of 79 

138 



Chapter 6 

., 

(a) (b) 

FIG URE 6.3: The figure shows the results from j\EFPROX with regards to the variation in 
the beam cross sectional area (a) and second moment of area (b) due to applied bending and 

axial loads on spoiler attachment ribs . 

examples of spoiler attachment rib structures were employed, 59 of which were selected 

for training and 20 for its performance assessment. 

Table 6.1 summari es the results from the application of the weight estimation 

model on spoiler attachment ribs. It is clear that the overall performance of the model 

has improved greatly, with over 35 percent reduction in the testing RMSE and an overall 

decrease in MAPE from 10.25 to 8.8 percent in the estimation of structural weight. 

Similarly to A:\FIS, the model appears more accurate in the analysis of hinge ribs as 

opposed to intermediate ones, but shows a higher tendency to provide a lower estimate 

across the full range of ribs (Figure 6.4) . This restates the need to further improve 

the model at later stages with additional considerations related to features which are 

rib specific or which link the structural element to a particular manufacturing process . 

This will enhance the approximation capability of the model and allow it to better 

discriminate across a range of different design solutions . 

The results of the variable selection process also validates the modeL As shown in 

figure 6.5, the greatest accuracy is obtained with the full set of variables and the removal 

of any of the input parameters noticeably deteriorates the accuracy of the final weight 

estimate. In particular , the removal sequence is the same as for the AKFIS modeL In 

line with the previous model, the results stress the importance of the definition of the 

rib through global geometrical variables and rib function . It is also important to note 

that :\EFPROX provides a much lower R:-'1SE at each stage of the removal process, 
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FIG URE 6.4: Performance of the NEFPROX weight module for spoiler attachment ribs on 
testing database. 

thus proving it to be a better solution in terms of accuracy, even in cases where the 

information relative to specific variables is missing. 

The approximations from the two models appear very similar in terms of weight 

estimates. Both NEFPROX and ANFIS highlight how the weight penalties from global 

geometry on the final structural weight are shared in equal proportions between hinge 

line datum and spar height. In particular, in the case of spoiler hinge ribs, NEF­

PROX is able to derive a more realistic trend between global geometrical parameters 

and structural weight, with a steady direct proportionality between the variables and 

without displaying anomalous decrease in weights at higher values of Land h (Figure 

6.6 (a)) . Results are in strong agreement in the case of intermediate ribs. The surface 

displayed in figure 6.6 (b) closely matches that developed through ANFIS, both in terms 

of dependencies between the variables and overall profile. 

Cross-sectional areas of top and vertical beams are identified as the main contri­

butions to the rib structural weight in terms of local geometry, as well as their higher 
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FIGURE 6.5: Effect of variable removal on t he accuracy of the NEFPROX weight module for 
spoiler at tachment ribs. 

impact on weight as compared to global geometrical parameters. NEFPROX, however, 

suggests a lower weight penalty result ing from the inclusion of the ver tical beam in the 

design of the spoiler rib as compared to that coming from top beam in the case of 

hinge ribs (Figure 6.7(a)). In both cases, dip in weight is clearly ident ifiable at higher 

values of cross sectional areas for the two selected beams , suggesting that in the case 

of bigger spoiler ribs, the bot tom section suffers a more considerable increase in size 

thus contribut ing more to the final structural weight . In terms of intermediate ribs, 

the influence of t he local geometry of both top and vertical b eams on the structural 

weight of the rib is highly consistent across the results of both ANFIS and NEFPROX. 

The surface profile in figure 6. 7(b) clearly matches that computed via the TSK fuzzy 

system previously, with the except ion of minor additional nonlinearities . 
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FIGURE 6.6: Variation in spo iler attachment rib weight with respect to the hinge line datum 
(L) and spar height (h) for hinge ribs (a) and intermediate ribs (b), as derived through the 

:\EFPROX weight module. 
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FIGURE 6. 7: Effect of local geometry on the rib structural weight for spoiler hinge ribs (a) and 
intermediate rib (b), as derived through the NEFPROX weight module. 

6.4 NEFPROX-based structural sizing and weight esti­

mation: aileron attachment ribs 

The same process employed in the case of the spoiler attachment ribs was used 

for the conver ion of the general illustrative framework for struct ural sizing and weight 

estimation into a ::\EFPROX-based mode architecture. Figure 6. highlights the 3-layer 

model structure for the aileron problem. 

As in the case of the A::\FIS model structure, this framework allows for the 

analysis of different aileron designs. This is po sible by idealising the a ileron up-
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FIG URE 6.8: Schematic representation of the three-level sizing and weight estimation frame­
work for the aileron attachment ribs, highlighting the variables and structure of NEFPROX­

based sizing and weight estimation modules. 

port rib structure as a combination of individual rib components, giving the model 

increased flexibility when dealing with possible changes in design configurations . The 

three designs analy ed are the same as in the previous case study: 

1. Design A identifies a 4-beam configuration, characterised by both a front and a 

back beam in addition to the traditional top and bottom ones; 

2. Design B characterises t he more common 3-beam rib structure, with a vertical 

support beam as a replacement for the spar stiffener ; 

3. Design C identifies a single t apered beam tructure. 
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6.4.1 Sizing module performance 

The same database of reference used for the development of the ANFIS frame­

work was employed in the testing and training of the NEFPROX-based sizing model. 

Data for a total of 63 beam components of aileron attachment ribs was collected, of 

which 44 were used for training and 19 for module testing. Initial rule derivation was 

obtained through subtractive clustering with the same parameters as for the ANFIS 

sizing model to unsure consistency within the results and to allow for unbiased com­

parison. A cluster radius of Ta = 0.4 and accept and reject ratios of 0.5 and 0.15 

respectively were chosen as suitable parameters for cluster definition. 

The model performance has greatly improved through the use of NEFPROX. 

Both RMSE and MAPE have considerably decreased with the estimation of cross­

sectional area and second moment of area (Table 6.2). In particular, results show a 

reduction of 30 percent on average in the RMSE for both variables. This highlights 

the higher capability of the MANFIS fuzzy inference system, compared to the TSK 

FIS derived through ANFIS, to both learn underlying trends within the given sample 

dataset as well as generalise to unseen examples. The results show no clear tendency 

of the model to either over or under estimate the output variables, as opposed to the 

ANFIS model (Figure 6.9). 

TABLE 6.2: Performance assessment of NEFPROX framework applied to the sizing and weight 
estimation of aileron attachment ribs. 

A NEFPROX I NEFPROX W NEFPROX 
No. of Inputs 4 4 6 

Training 44 44 46 
Testing 19 19 20 
RMSE 0.088 0.081 0.073 
MPE -0.07 -0.66 -2.45 

MAPE 9.29 8.38 6.39 

The model performance appears to have improved even in terms of the influences 

of the different variables on the sizing parameters of the structure. Overall, the trends 

derived by the model follow the same general pattern as those obtained via ANFIS. 

Result highlight how MANFIS FIS is able to derive more credible and realistic trends, 
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FIGURE 6.9: Performance of the NEFPROX sizing module for aileron attachment ribs on 
testing database for A and 1. 

especially in the regions around the boundaries of the design domain or in areas where 

the TSK FIS displayed unlikely maxima or minima. 

The relationship between beam cross sectional area and axial loads shows a 

steadier direct proportionality that plateaus only at the very edge of the domain of 

interest (Figure 6.10(a)) . This is in strong contrast to the results from ANFIS: although 

the rate of change between the variables is the same, the maximum value of cross 

sectional area is reached at much lower values of Fx and then maintained, indicating 

the inability of ANFIS to handle limit regions. Similarly, in t he case of second moment 

of area, NEFPROX derives a more reliable trend. The model has been able to handle 

the nonlinearities especially in the relationship between I and Fx in parallel with 

highlighting the a steadier dependency between second moment of area and bending 

moment (Figure 6.10(b)). 
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FIGuRE 6 .10: Effect of axial and bending loads on beam cross-sectional area (a) and second 
moment of area (b) for aileron attachment ribs. 

6 .4 .2 W e ight module p e rformance 

T he derivation of the :\EFPROX weight modules was also conducted using the 

same database of reference as for the corresponding A:\FI model, with a total of 66 

examples of aileron upport ribs, 46 of which were selected for training and 20 for 

performance assessment . 

Although the model performance has not changed significantly in t rms of ;-'1APE 

between A:'\FI and :,\EFPROX frameworks, the model has acquired greater general­

isation capabilities with the use of a :vIA:\FI FIS , which is confirmed by 44 percent 

reduction in R;-'1SE. In addi t ion to this, the tendency of the model to underestimate 

the structural weight has also improved , wi th ;-'1AE reducing from -3.65 to -2.45 per­

cent . The undere timation is more prominent when the model tackle the weight of 

both Design A and B, whilst no clear tendency appears within the weight analysis of 

Design C (Figure 6.11 ). 

The model is further validated by the resul ts of the variable Ie tion process. 

As in the case of the A:,\FIS model, the greatest accuracy is obtained when the analy i 

is conducted u ing the full set of variables (Figure 6.12 ). with noticeable decrease in 

effectiveness wi th the subsequ nt removal of variables. The removal pattern is the 

same across both A:,\FIS and :\EFPROX, wit h hinge line datum L and top beam 

local geometry ha\·ing the gr ate t influence on the final model performance. In this 

case, the magni tude of R;-'I E at the different tagcs of the approximation doe not 
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FIGURE 6 .11 : Performance of the :-.l'EFPROX weight module for aileron attachment ribs on 
testing database. 

change when ANFIS and NEFPROX models are compared, as opposed to the spoiler 

attachment rib case. 

Overall, the results corroborate the find ings obtained via the ANFIS model: the 

weight penalties resulting from global geometrical parameters L and h between the two 

models are very similar in terms of scale and trend especially for Design Band C. In 

particular, the findings highlight once again how the weight penalty coming from an 

increase in the height of the structure and, therefore, from its location along the OFTE, 

is higher than that resulting from a change in hinge line location. The general pattern of 

dependency between the variable is clearly maintained across the three different designs, 

as shown by figures 6.13 (a), (b) and (c). The trends characterising Design B and Design 

C are in very close agreement between ANFIS and NEFPROX, in terms of nature and 

magnitude of the dependency between the global geometry and the structural weight, 

with the only difference laying in the convexity of the curves produced by NEFPROX. 

The main discrepancies can be found within the results of Design A between the two 

different models. The curve produced by NEFPROX follows the convexity of the 
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FIGURE 6.12: Effect of variable removal on the accuracy of the NEFPROX weight module for 
aileron attachment ribs. 

other two designs, but with higher gradient relating L to the structural weight of the 

component. This strongly contrast with the lower weight impact attributed by ANFIS 

on the two geometrical parameters for this type of design solution and, combined with 

the difference in concavity between the two surfaces, highlights the lower generalisation 

capability of the TSK fuzzy inference system in the case of aileron attachment ribs. 

NEFPROX continues to attribute the highest weigh impact to the top beam 

section, when it comes to local geometry (Figure 6.14) . Even in this case, ATOP 

appears to impact the weight of both Design A and B by a comparable magnitude, 

which is also in agreement with the results from the variable removal process. The 

findings from ANFIS , however, highlight an inverse proportionality between the cross 

sectional area of the bottom beam and the structural weight of Design A ribs. This, 

however, is in contrast with the trend derived by NEFPROX, where a more realistic 

direct proportionality is shown between the variables, with a plateau at higher values 

of ATOP and ABOT suggesting that a lower proportion of the weight of the larger ribs 

within the Design A category can be attributed to the size of the two additional vertical 

beams (Figure 6.14(a)) . The same conclusion can be reached in the case of Design B. 
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FIGURE 6. 13: Variation in the aileron attachment rib weight with respect to changes in the 
hinge line datum (L) a nd spar height (h) for Design 1 (a), Design 2 (b) and De ign 3 (c), as 

derived by t he XEFPROX model. 

The profile of the trend derived by ~EFPROX is very similar to that provided by 

A~FIS, with inver e proportionality between lower b am geometry and rib structural 

weight (Figure 6.14(b)) . The gradient of the NEFPROX curve, however, is much lower 

than the A~FIS one, denoting the lower impact of the vertical rib geometry on the 

weight of larger ribs. 

~EFPROX confirms how this added structural weight can be attributed specif­

ically to the back vertical beam section geometry, as opposed to the front one . Figure 

6.15 shows how, even in this case, the weight penalty related to the inclusion of the 

front vertical beam ction is minimal compared to that of the back beam component. 

In particular, in this case, the proportion of the structural weight related to the back 

section is about 30 percent higher than the additional weight incurred by the inclu­

sion of a front beam component . The :'vlamdani fuzzy inference system is also able to 

highlight the marked nonlinearitie associated with the front beam section which the 

TSK FIS did not detect. These can be attributed to both the spread in the values 
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FIGlJRE 6.14: Variation in the aileron attachment r ib weight with respect to changes in the 
cross-sectional areas of tOp (ATOP) and bottom (A BOT) beam. ect ion for Design 1 (a) and 

Design 2 (b) respectively, as derived by the \"EFPROX model. 

of cross sectional for thi particular beam section and the specific features associated 

with some individual vertical beam elements present in the data sets which contribute 

with some of the higher weight penalties. A concrete example could be the inclusion 

of larger hinge attachments which are present on specific vertical beam member but 

not explicitly accounted for within the model. 
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FIGURE 6.15 : Variation in the aileron attachment rib weight with respect to the cro -- s ctional 
areas of tOp beam section (ATOP) and with the addition of a back (Avt:HTb ) (a) and a front 

(AVERT!) vertical beam sect ion (b), as d rived by the \"EFPROX model. 

When analysing De ign C, :\EFPROX produces very imilar result as compared 

to A:\FIS . Within the single beam design . even in this case there is a 3:1 ratio of 

influence of hinge line datum and beam cro s sectional area on the over aU rib structural 

weight respecti\-ely (Figure 6.16). In this case . howe\'er, there is no dip in the trend 

at higher valu s of L and ATOP, but rather a steady direct dependencies between 
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2.5 

FIGURE 6.16: Variation in the ai leron attachment rib weight with respect to changes in the 
hinge li ne datum (L ) and top beam cross sectional area (ATOP), as derived th rough NEFPROX. 

the input variables and the outputted weight. Thi fur ther reiterates the inability of 

A -FIS-developed model to accurately portray the boundary regions of the domain of 

interest, but rather produce erroneous and misleading trends during the approximation 

process . The reason behind this can be linked with the way Al\'FIS represents the 

final output. By using a linear combination of t he individual outputs rather than 

part itioning the output r gion y temat ically as in a YIamdani model, TSK FIS incur 

the risk of misinterpreting the underlying relation hip between the variable of interest, 

especially when it comes to limit regions within the domain , as shown throughout this 

chapter . 

6.5 Mamdani vs. Sugeno for knowledge acquisition in the 

design process 

The results so far have shown a considerable improvement in th accuracy of the 

modelling approximation by opting for a Mamdani instead of a TSK fuzzy inference 

ystem , for the sizing as well as the weight estimation modules in both structural ex­

amples used. In add ition to this , the Yfamdani FIS derived using :-\EFPROX overcome 

the problem of producing erroneous approximations at t he limits of the design domain , 

which were evident whil t using A\,"FIS . 
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The additional benefits of adopting a Mamdani FIS structure instead of a TSK 

one are linked with the: 

1. Definition of the fuzzy variables; 

2. More efficient partitioning of the design space; 

3. Increased interpretability of the FIS due to the improved visualisation of the 

rulebase itself. 

In the case of spoiler attachment ribs, the quality of the approximation has 

improved with a reduction of approximately 17 percent on the RMSE for the testing 

data for the sizing module and with over 25 percent improvement on the RMSE for 

the weight estimation module (Table 6.3). As expected, the use of Mamdani systems 

produces a more complex network, with nearly twice as many rules as its TSK coun­

terpart. Despite this, NEFPROX is able to describe the individual variables with a 

reduced number of membership functions and, consequently, a lower number of fuzzy 

partitions. 

The Mamdani system is more complex also in the case of the FIS for the aileron 

support rib problem, with twice the number of rules compared to the TSK correspec­

tives for both sizing and weight estimation. The fuzzy inference system derived by 

NEFPROX, however, appear highly more efficient than the ANFIS one. In the case of 

the weight module for the aileron support ribs in particular, the Mamdani system is 

able to describe each variable, both input and output, with less than half the number 

of membership functions, but still maintaining a substantially higher accuracy than 

the TSK one. 

This allows for an overall more interpretable definition of the system itself. In­

terpretability for a fuzzy system lays on both system description and network structure 

(Alonso et al. (2009)), the former identifying the complexity of the individual system 

components (i.e. rulebase, fuzzy sets, ... ) and the latter the network structure itself 

(i.e. network operations, number of variables, rule structure, ... ). In this case, the 

TSK FIS developed through ANFIS are defined by simpler network structures, being 

described by overall fewer rules and modifiable connections. Their descriptive elements 

however are much less interpretable compared to those in the Mamdani FIS developed 
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TABLE 6.3: Comparison of results for the architecture sizing and weight fuzzy inference systems 
built with ANFIS and NEFPROX for both spoiler and aileron attachment ribs. 

SPOILER AILERON 

ANFIS NEFPROX ANFIS NEFPROX 

IL\1SE 0.131 0.110 0.121 0.088 
A No. of Rules 7 13 6 11 

MFs* 9 7 6 5 

RMSE 0.117 0.096 0.125 0.081 
I No. of Rules 7 13 6 11 

MFs* 9 7 6 5 

RMSE 0.140 0.102 0.132 0.073 
W No. of Rules 14 34 18 34 

MFs* 20 15 18 7 

through KEFPROX. 

Figure 6.17 shows the way in which input and output variables within both 

the ANFIS and the NEFPROX-derived FIS are defined by the use of membership 

functions. In the case of the Mamdani FIS derived through NEFPROX, all the variables 

appear characterised by clearly distinguishable and complementary fuzzy partitions. 

The additional difference is in the output W, which is not defined by fuzzy partitions 

in the ANFIS structure, since the outputs of a TSK FIS are identified by singletons. 

On the other hand, the Mamdani system allows for a visual definition of the output 

variables too. This ensures that the design space is fully defined, thus providing a 

clearer and more transparent problem characterisation. 

In the case of the networks developed for the weight module of spoiler attachment 

ribs, ANFIS derived 6 membership functions more per variable, however the distribu­

tion and shape of those used within the NEFPROX network is more consistent and 

allows a more even description of the variables themselves. All the variables within the 

NEFPROX network are fully defined within the design space by uniformly distributed 

membership functions. On the other hand, input variable description within ANFIS 

appears more irregular, with noticeable gaps in locations where the system does not 

seem able to describe the input domain, as well as numerous duplicated fuzzy parti­

tions. This discrepancy is particularly evident in the definition of the input variable 
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AVERT. The fuzzy definition of the variable by the ANFIS network is ambiguous and 

incomplete: the figure highlights the ability of the network to describe only the leftmost 

part of the variable domain with repeated and highly overlapping membership func­

tions. In contrast, the definition of the same variable provided by NEFPROX appears 

highly more transparent (Castellano et al., 2003), providing a complete and unequiv­

ocal description of the design space being considered by adopting clearly defined and 

discernible fuzzy partitions. 

Figure 6.18 highlights similar trends within the definition of variables in the 

aileron attachment rib problem. Each input variable within the NEFPROX architec­

ture, as well the the output one, is defined by 8 membership functions which evenly 

span the entire variable domain and are clearly distinguishable. Conversely, ANFIS 

produces over twice the amount of membership functions per input variable, the ma­

jority of which tend to show more than 90 percent overlap, causing fuzzy partitions 

to be ambiguous and hard to identify. This is evident especially the case of variables 

such as AVERTb and AVERTf. These two variables do not appear as often, due to the 

difference between the three designs for aileron support ribs considered in the problem. 

As a consequence, the fuzzy system has less instances to learn the behaviour of these 

variables. The performance of ANFIS appears to be strongly affected by this factor: 

although still using 18 membership functions to define them, they are only able to 

interpret the extreme regions within the full domain of the variables. 

The fuzzy rather than crisp description of the output variables within the Mam­

dani systems developed with NEFPROX is also more advantageous from a design 

perspective, since it allows a more visual assessment of the impact of the individual 

variables on the final output, resulting in a more manageable and easy to read system 

(Alonso et al., 2009). By looking at the rulebase at the basis of the sizing module for 

spoiler attachment ribs, it is easy to appreciate how the definition of the individual 

rule outputs as fuzzy partitions helps visualising how, for each specific input condition, 

the design will have to focus on a particular region of the design space (Figure 6.19). 

The additional benefit of adopting a Mamdani FIS is the possibility of under­

standing as well as visualise the impact of the variability and uncertainty of the design 

parameters on the final input. According to the value of each individual input for 
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the specific design under study, each rule will be fired with a different strength. For 

instance, in the case of the determination of cross sectional area for aileron attachment 

ribs, with the input given, rule number 7 has the highest influence on the final output 

(Figure 6.20). The weighted outputs from the individual rules are then aggregated to 

determine a final overall output distribution. The fuzzy definition of this final output 

will change in profile and spread very dynamically in parallel with variations in in­

put values. In a real-life design scenario, this will enable the engineer to visualise very 

rapidly the impact of individual design decisions on the sizing and consequent weight of 

the structure. In addition to this, the designer will be able to get a better understand­

ing of how the variability within the output will translate into an altogether different 

fuzzy partition within the output space, from the point of view of the magnitude of 

the spread of the resultant fuzzy set and, as a consequence, the uncertainty of its crisp 

counterpart. 

6.6 Summary 

This chapter explored the issue of interpretability within a data-driven fuzzy 

inference system. In particular, one of the main topics analysed was the critical eval­

uation of the trade-offs between modelling accuracy and interpretability in involved 

in the choice of a Mamdani or of a TSK FIS. Definitions of low-level and high-level 

interpretability were introduced with explicit criteria for a comprehensive qualitative 

assessment of fuzzy inference systems. 

This formed the background for a comparative evaluation of Mamdani and TSK 

system within the sizing and weight estimation framework for aircraft structures. NEF­

PROX was used to derive Mamdani-type FIS for both spoiler and aileron attachment 

ribs, using the same reference datasets adopted for TSK FIS extraction and optimi­

sation through ANFIS. The new fuzzy inference systems were also designed following 

the same illustrative general framework for design and weight estimation produced 

following the flow of information within the design process, making the new FIS equiv­

alent in terms of analysis and overall structure to the previous ones and, thus, easily 

comparable. 
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The final models were firstly assessed in terms of their modelling accuracy. The 

Mamdani FIS developed using NEFPROX showed greater generalisation capabilities 

than their TSK counterparts from the point of view of both sizing and weight estima­

tion. In particular, RMSE decreased by approximately 20 percent on average across 

the different sizing modules and 30 percent on the weight ones. In addition to this, the 

Mamdani FIS were able to produce more reliable trends for the relationships between 

the different variables of interest and proved to be more efficient than TSK in analysing 

the limit region of the design domain. 

NEFPROX was also able to derive more streamlined FIS structure. Although 

the overall number of rules was on average twice as high as those derived through 

ANFIS, the system was successful in describing each single variable by a substantially 

lower number of fuzzy partitions without affecting the final modelling accuracy. This 

was also coupled with a better coverage of the universe of discourse of all input and 

output variables though better defined and distinguishable fuzzy partitions. For this 

reason, the rulebase derived within the Mamdani environment was substantially more 

transparent, with a clear fuzzy definition of the design space through a set of simpler 

and more readable rules. 

The next chapter will focus on enhancing the capabilities of the Mamdani FIS 

for both spoiler and aileron attachment ribs by implementing the derived architectures 

within a Type-2 fuzzy logic environment. This will allow to combine the accuracy and 

interpretability of this system with a more explicit and understandable way of dealing 

with the uncertainties permeating the variables and their impact on the final outputs. 
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FIGURE 6. 17: Comparison between the membership functions for the individual variables in 
the weight module for spoiler attachment ribs, as derived using ANFIS and NEFPROX. 
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FIGURE 6.18: Comparison between the membership functions for the individual variables in 
the weight module for aileron attachment ribs, as derived using ANFIS and NEFPROX. 

158 



Chapter 6 

~J d d~aJa~~j~~ ~: 
";" 

~a a g a ~ 1 a a a j a a a ~: 
~ J J J] ~ J J] J J j J j: 

9 

i~ J J ~ ~ ~ J J ~ J ~ ]~: 
c::i 

!d j j j j ~ j j j ~ j ~ 3: 
... . 

!·a a ~ ~ d a ~ ~ J d d d~: 
... N M ~ ~ ~ ~ ~ me'" N M~ ..- ~ ~ ..-

";" 

FIGU RE 6.1 9: Rulebase for the estimation of ectional propert ies for spoiler attachment ribs, 
a derived wi th NEFPROX. 

159 



~~aaaaaaaaa~~: 
..... . 

~~ a ~ d g a a a a a a~: 
'":" 

~d~aja~~~~j~: 
9 

~JJJ~JJ~~JjJ: 
9 

!;~~~~~~~~~~a~ 
-.:f 

!]aa~~~aJ~~a: 

Chapter 6 

FIGURE 6.20: Rulebase for the estimation of sectional properties for ai leron attachment ribs, 
as derived with NEFPROX. 
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7.1 Introduction 

When designing a computational model for approximation applications, it is 

of vital importance to be able to correctly embed uncertainty information within the 

model itself. It is of even greater significance to be able to construct a model which is 

able to propagate the uncertainties permeating its variables all the way down to the 

final approximation and visualise the effect they have on it. 

Although probabilistic approaches continue to dominate the field of uncertainty 

analysis, they can prove to be the wrong choice of modelling technique. This is par­

ticularly true of applications where a complete knowledge of the variables themselves 

is not sufficiently extensive to be able to build reliable probability density functions 

(PDFs). The lack of knowledge about the variables and the uncertainties associated 

with them, can induce a considerable error propagation within the model itself, produc­

ing misleading results. In addition to this, the limited understanding of the correlation 

between the variables of interest, combined with PDFs which are constructed under 

erroneous assumptions, will inevitably lead to a biased representation of the combined 

uncertainty across the model. 

Previous chapters have proven how type-1 fuzzy logic, implemented through both 

TSK and Mamdani fuzzy systems, can help in achieving both approximation accuracy 

and modelling transparency when applied to the estimation of sizing and weight of 

aeronautical structural components at preliminary design stages. The additional bene­

fit of adopting fuzzy techniques lays also in the possibility of deriving a rulebase which 

highlights the relative impact of the individual variables on the approximation and 

which can be used as a set of visual guidelines in the design process. 

Although type-l FIS are able to handle the uncertainties and noise within the 

data, they are unable to fully visualise and propagate them within the model. It is 

possible to view the output of a type-1 FLS as the mean of a PDF. When dealing with 

uncertainties, it is important, however, to know also the variance of the distribution. 

Type-2 fuzzy logic can be seen as a tool to derive a measure of dispersion about the 

mean and capture a more comprehensive uncertainty picture of the problem at hand. 

This chapter aims at analysing the potential benefits of using type-2 FIS in the 
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sizing and weight estimation of aircraft structures. In particular, background theory 

on interval type-2 FIS and their design will be presented. This will then be put into 

context through the description and analysis of interval type-2 FIS for the sizing and 

weight estimation of spoiler and aileron attachment ribs. Their performance will be 

firstly evaluated by assessing their approximation capabilities and comparing it with 

the type-l FIS derived in previous chapter. In addition to this, they will be analysed 

from the point of view of uncertainty analysis, with particular focus on the propagation 

of uncertainties within the model structure. The final rule base will also be reviewed 

in terms of its ability to combine transparency in the representation of the causalities 

among the system variables and readability, with a comprehensive overall visualisation 

of the uncertainties within the system itself. 

7.2 Type-2 fuzzy systems theory for scenario analysis 

To better understand the translation from type-l to type-2 fuzzy set, imagine 

adding the uncertainty information about the variables to the initial fuzzy partition, 

by blurring the original type-l membership functions by transposing the points within 

the curve to the left or right of the membership function itself. By doing so, for each 

value of x, the membership function will no longer assume a single value. Instead, the 

membership of each individual point will be represented by an fuzzy interval, whose 

values will be themselves weighted differently through secondary membership functions. 

This results in type-2 fuzzy sets being defined by a three dimensional membership 

function. 

A type-2 fuzzy set A, defined by the membership function J..LA(x, u), where x E X, 

u E Jx ~ [0,1], can be identified as: 

A = 1 1 J..LiI.(X, u)/(x, u)Jx ~ [0,1] 
xEX uEJ., 

(7.1) 

where ° ~ J..LiI.(x,u) :=:; 1 and J J indicates the union over all the possible x and u. 

Jx ~ [0,1] indicates the primary membership of x in the fuzzy set, whilst J..L A(x, u) is 

used to represent a type-l fuzzy set acting as a secondary set. In other words, a type-2 
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membership can be represented by any subset in [0, 1] as primary membership, and ach 

primary membership will be associated to a secondary one defining the unc rtainty of 

the primary MF itself (Sepulveda et al., 2006). 

In order to significantly reduce he computational effort required to analy e 

type-2 fuzzy system , the engineering community has b en focusing on interval type-2 

fuzzy sets (IT2 FS) (Melin et al. , 2010; Mendoza et al., 2009; Lee et al., 2009; Ranjbar­

Sabraie et al., 2011). These are special cases of type-2 fuzzy sets, occurring when all 

jJ, }.(x, u) = 1 and can be mathematically represented as: 

A = 1 1 l/(x,u),Jx ~ [0,1] 
xEX uEJx 

(7.2) 

J1 , (x, lI) 

u 

FIGURE 7.1: Illustrative representation of an interval type-2 membership function for discrete 
values of x and u. 

Figure 7.1 shows a repr sentation of the membership function of an inter­

val type-2 fuzzy set in the case of discrete x and u for X = 1,2, 3,4,5 and U = 

0,0.2,0.4,0.6,0. ,1. The individual lines on th graph identify values of jJ,}.(x ,u) at 
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discrete (x, u) locations. The grey area in the graph is the footprint of uncertainty 

(FOD) for the membership function considered. 

The FOD is a region in the set of interest which represents the union of all 

the primary membership functions within the region of uncertainty for the set itself 

(Equation 7.3). 

FOU(A) = U Jx (7.3) 
xEX 

The FOD is of primary importance in the analysis of interval type-2 fuzzy systems. 

Firstly, it fully conveys the uncertainties and variability within the membership function 

itself, since they directly impact its shape and size. Secondly, since the secondary 

membership is constant for IT2 FS, the footprint of uncertainty represents the complete 

definition of the fuzzy set itself. As a consequence, the uniformly shaded FOD used to 

describe IT2 FS, highlights the uniform secondary membership characterising it. 

Gaussian primary membership functions with uncertain means have been se­

lected to be the basis of the IT2 fuzzy sets for both antecedents and consequents of the 

FLS. These are formalised as: 

(7.4) 

where m~ E [mil,m~21 indicates the uncertain mean, with i = 1, ... ,p (number of an­

tecedents ) and I = 1, ... , M (number of M rules), and 0'1 is the standard deviation. 

The type-2 fuzzy rules for fuzzy inference assume a similar form as their type-l 

counterparts: 

IF x is A, THEN y is E. (7.5) 

where x and y are the variables of interest, and A and E relate to individual type-2 

fuzzy sets within the universe of discourse of the problem. 
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As mentioned in Chapter 3, the difference between traditional type-l and type-2 

fuzzy systems lays in the addition of an extra processing block in the system. The type 

reducer is included in the framework to allow the translation of consequents fuzzy sets 

from type-2 to type-1 for output computation, before moving onto a crisp solution. 

Once type-reduction operations have been carried out, the resultant type-1 sets 

can be viewed as output sets of a type-l FLS. As a consequence, the original IT2 FLS 

is an aggregation of of the individual type-l systems, which are themselves embedded 

in it. The type-reduced set is, therefore, an aggregation of the outputs of all the 

embedded type-1 FLS (Mendel, 2001). For this reason, the type-reduced set can be 

regarded as the fuzzy representation of the output of the type-2 FLS. In turn, the 

membership functions of the type-reduced set can be seen as a way of understanding 

and defining the level of uncertainty of the embedded type-l systems. By viewing type-

2 FLS as type-l FLS that have been blurred due to the presence of uncertainties within 

the system itself, the type-reduced set can be thought of indication the characteristic 

uncertainties within the crisp output of its respective type-2 FLS. 

By analysing the shape and spread of the type-reduced set, it is then possible 

to understand the variability of the output due to uncertainties, as well as assess the 

reliability of the approximations derived by the system. 

1.2.1 Development and optimisation of interval type-2 fuzzy logic sys­

tems 

For the purpose of this study, the development of the interval type-2 fuzzy 

system has been designed to follow from the results of the best performing type-l 

FLS from derived within previous chapters. In terms of both approximation accuracy 

and system interpretability, the fuzzy systems obtained using NEFPROX substantially 

outperformed those produced by ANFIS. For this reason, the type-2 fuzzy logic system 

was initialised using the fuzzy sets built and optimised through NEFPROX for both 

inputs and outputs. 

An interval type-2 fuzzy logic system is characterised by a number of design 

parameters, namely mean bounds m~l and m~2 and standard deviations cr! for each 
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antecedent and consequent, as well as input measurement parameters O"xk • There 

are different design approaches for an interval type-2 fuzzy systems, all aiming at 

establishing the different parameters of the membership functions for antecedent and 

consequents (Mendel, 2001): 

1. All the design parameters for antecedents, consequents and input measurement 

parameters, thus establishing the shape of FOUs. The data is only used to 

determine the rules. 

2. All design parameters for antecedents and consequents are fixed as well as the 

shape of the membership functions, but not the input measurement parameters. 

The data is use to optimise input measurement parameters and fuzzy rules. 

3. The shape of all antecedent, consequents and input measurement parameters is 

fixed, thus establishing the shape of the FOUs. The data is used to optimise 

all the design parameters, allowing the size the individual FOUs and the input 

measurement parameters to reflect the patterns within the specific data set. 

The third approach is the most suitable for this particular study. By using the 

data to optimise the majority of the FLS structure, it will be possible to evaluate the 

uncertainties within the system itself, to gain a better understanding on of uncertainties 

in the approximation process as well as assess the reliability of the final solution on the 

basis of these factors. 

7.2.2 The iterative design approach 

An iterative design process was set up and carried out in order to both im­

prove the structure of the interval type-2 fuzzy system and optimise its approximation 

capabilities. The design and optimisation process follows four main steps: 

1. Conversion of the type-1 fuzzy logic system derived through NEFPROX into an 

interval type-2 FLS. Within this phase, the design parameters for antecedent 

and consequent membership functions are initialised, whilst the rule structure as 

well as the number and shape of the individual fuzzy partitions and membership 

function are retained from the type-1 FLS. 
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2. Design and training of the type-2 fuzzy logic system using backpropagation. In 

this step, all design parameters for antecedents and consequents are tuned by a 

steepest descent optimisation algorithm based on training and testing data until 

desired approximation error threshold is met. 

3. Rule reduction and fuzzy logic system structure optimisation by Singular-value 

decomposition (SVD) combined with QR decomposition. The combined SVD-QR 

process allows the identification of the most important rules within the rulebase 

of the FLS to overcome the problem of combinatorial rule explosion (Liang and 

Mendel, 2000). 

4. Reiterations of steps 2 and 3 for further parameter and rulebase optimisation 

until approximation performance is acceptable. 

7.2.3 SVD-QR routine 

Combinatorial explosion of rules is a common problem encountered by fuzzy 

logic systems, both type-l and type-2. In the case of previous examples with type-l 

FLS within this research, subtractive clustering was used in combination with variable 

selection routines in oder to overcome this problem (Chiu, 1994, 1996) 

In the case of IT2 FLS, SVD has proven successful in the identification and 

extraction of the most important rules for output approximation within an initial rule­

base (Mouzouris and Mendel, 1996; Yam et al., 1999). From a general perspective, 

SVD is an effective and widely used mathematical approach for the solution of alge­

braic problems, such as the determination of the rank of a matrix and the computation 

of numerical solutions of least squares problems. 

Consider H a K x M matrix, and U and V two K x K and M x M unitary 

matrices respectively. The SVD of H can be computed as: 

(7.6) 

In particular, the attractiveness of the SVD method lays in its straightforward way 

of identifying dominant and sub dominant subspaces within a particular domain of 
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interest. By looking at the rulebase as a matrix <I> made up of the individual rules or 

fuzzy basis functions (FBFs) (Wang and Mendel, 1992), as: 

<1>= (7.7) 

where cI>1(x)(l = 1, ... , M) represents the single fuzzy basis function with l indicating 

the rule number. The FBF can itself be formalised as: 

(7.8) 

where J.LFI(Xi) relates to the membership grade of input Xi for the lth rule . 
• 

By considering cI>t(x) as a span of the input domain, the SVD method allows to 

translate it into an equivalent orthogonal span (Mendel, 2001). This enables both the 

determination of the most dominant and sub dominant FBFs as well as the combination 

of FBFs which is able to represent the system most reliably and accurately. 

The SVD routine essentially orders the individual fuzzy basis functions according 

to their importance within the matrix, based on their numerical rank. The rules with 

the least impact, in other words those whose rank is below a specific user-defined 

threshold, are removed. This results in an optimised fuzzy logic system with only the 

minimum number of rules needed to fully describe the problem, without compromising 

its approximation accuracy. 

Overall, the general layout of the SVD-QR routine can be formalised as follows: 

1. Computation of the SVD of <1>. 

2. Computation of the rank of <1>. 

3. Retain the components of the SVD of <I> associated with the numerical rank of 

the matrix. 
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4. Use the QR algorithm to order the fuzzy basis functions associated with the SVD 

matrix according to rank. This will lead to a new matrix cP M' 

CPM' = (7.9) 

where M' < M highlights that the number of the new fuzzy basis functions M' 

has decreased from the original set of M FBFs, due to the removal of the lower 

ranked functions, and <p' indicate that the fuzzy basis functions have been ordered 

according to their rank. The fuzzy logic system can now be formalised as 

M' 
y(x{i)) = !s(x(i)) = 2: ii¢~(x) (7.10) 

1=1 

5. Normalisation of the M' fuzzy basis functions using the firing strengths of only 

those functions which have been maintained after the ordering process. This is 

an extremely important step: if this step is ignored, the M' will be normalised at 

the level of the original set of fuzzy basis functions, thus nullifying the ranking 

effect of the previous steps in this process (Hohensohn and Mendel, 1994). 

6. Determination of the parameters for the total number of remaining fuzzy basis 

functions (M' 'Ii) using least-squares. 

For interval type-2 fuzzy logic systems, the crisp output at the end of the defuzzi­

fication process is represented by the center of the type-reduced set. In other words, 

the output is a type-1 set which is determined by both its left and right-most points, YI 

and Yr (Liang and Mendel, 2000). This set can then be further defuzzified to produce 

a crisp output. The type-reduced set, however, is sometimes more important than the 

final crisp value itself since it conveys the uncertainties which have been propagated 

through the FLS. 
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In the case of SVD-QR for IT2 FLS, the starting point will be two separate 

fuzzy basis functions, one for the left point and one for the right point, represented by 

equations 7.11 and 7.12 respectively: 

M .. M 
_ Ei-l flYi _ '" i i 

Yl- "M Ii - ~YIPI 
L...i= 1 I i= 1 

M .. M 

Y = L:i=l f;Y~ = '" yipi 
r M' ~rr 

L:i=l f: i=l 

(7.11) 

(7.12) 

where If and I: indicate the firing s~rength membership grades which contribute to YI 

and Yr, p1 = £l i and P~ = £: i are two FBFs used to simplify the expansions. 
L:i=l II E i =l Ir 

In this case, the general SVD-QR process will be applied to both YI and Yr. The 

results from the two processes are then combined to produce one single rule set from 

the union of the two individual rule sets obtained from the process. 

The design process for interval type-2 fuzzy logic systems as outlined here has 

been applied within this research in the Matlab® environment using the open source 

framework for the design ofIT2 FLS developed by Karnik et al. (2011). 

7.3 Structural sizing and weight analysis using interval 

type-2 fuzzy systems: spoiler attachment ribs 

The same illustrative framework for structural sizing and weight estimation was 

translated into a interval type-2 fuzzy based model in a similar way as for the NEF­

PROX testcase. For the structural sizing and weight estimation of spoiler attachment 

ribs, the model framework follows an equivalent 3-layered architecture: 

1. An interactive Microsoft Excel based loading module, used to evaluate resultant 

bending moments, shear and axial forces in the structure from applied loads 

2. A multiple output IT2 fuzzy logic-based sizing module to evaluate sizing pa­

rameters for the structure by combining the results of the loading module with 
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relevant material properties 

3. An IT2 fuzzy logic-based weight module evaluating the structural weight of the 

component by combining local sizing parameters outputted by the sizing module 

with global sizing variables related to the specific location and function of the 

spoiler attachment rib within the fixed trailing edge. 

From the point of view of the architecture, there is not a substantial difference 

between the A~FIS, NEFPROX and IT2 FIS framework: all three of them have been 

designed in order to closely mirror the information flow and processing structure within 

the preliminary design stage of a structural component. In particular, both the IT2 

FIS based sizing and weight module have been initiated with the NEFPROX-derived 

network structure. In other words, to reduce the computational burden involved within 

the type-2 FIS design, the initial Mamdani FIS structure optimised using NEFPROX 

has been used as a starting point for the network design and optimisation process. The 

number and size of antecedent and consequents as well as number and structure of the 

individual rules was therefore maintained the same as in the NEFPROX-derived FIS. 

The choice of initialising the model with the Mamdani structure obtained by 

NEFPROX, rather than with the TSK one derived by ANFIS, is due to both preser­

vation of information and readability of the final FIS. Firstly, translating singletons 

outputs from the sizing modules into 3 dimensional type-2 fuzzy partitions will in­

evitably lead to a loss of information especially from the point of view of uncertainty. 

FOUs cannot be preserved without having to make assumptions about design param­

eters, when converting singletons outputs from the sizing module in the type-2 par­

titions used as input of the weight estimation module. In particular, in the case of 

type-2 fuzzy systems where the principal aim is that of being able to readily visualise 

and interpret the uncertainties within the system, the description of the outputs with 

singleton partitions causes a reduction in the representation capabilities of the fuzzy 

region analysed. The lack of dimensionality within singletons equates to a loss of detail 

in the representation of both variable and overall system. 
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7.3.1 Sizing module performance 

The design and optimisation of the IT2 FIS for sizing derivation of the beam 

components of spoiler attachment ribs followed the iterative process described in previ­

ous sections. The network was initialised using the Mamdani fuzzy inference structure 

derived by NEFPROX in Chapter 6, where input and output variables were defined by 

7 Gaussian fuzzy partitions and the overall FIS structure was based on a system of 13 

rules. With this FIS definition as a starting point, the fuzzy partitions were converted 

into interval type-2 with Gaussian primary membership function with uncertain mean 

[ml,m2], with the following general formulation: 

(7.13) 

The process was initialised using mean and standard deviation for the individual 

variables based on the full data set used for training and testing process. The individual 

fuzzy partitions were also initially defined using the following 

(7.14) 

where mJ.l. and O'J.I. are the shape parameters of the type-l fuzzy partitions optimised by 

NEFPROX. 

Training and testing of the IT2 FIS sizing network was conducted using the 

same database of reference as for both the ANFIS and NEFPROX models, with a total 

of 77 beam components for spoiler attachment rib structures, 59 of which were selected 

for training and 18 for its performance assessment. 

The iterative design process combining backpropagation and SVD-QR for rule 

reduction was able to generate a substantially more concise and compact fuzzy system, 

with the rulebase reduced from 13 to 4 compared to the NEFPROX-based FIS and a 

much more intuitive variable definition with 4 fuzzy partitions for inputs and outputs 
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TABLE 7.1: Comparison of results for the architecture of sizing and weight fuzzy inference 
systems of type-1 built with NEFPROX and interval type-2 for spoiler attachment ribs. 

SPOILER 

NEFPROX IT2 FIS 

RMSE 0.110 0.156 
A No. of Rules 13 4 

MFs* 7 4 

RMSE 0.096 0.123 
I No. of Rules 13 4 

MFs* 7 4 

RMSE 0.102 0.108 
W No. of Rules 34 4 

MFs* 15 4 

(Table 7.1). By streamlining the FIS, however, the quality of the approximation has 

reduced. This is evident by examining the change in &.\1SE between the type-l model 

derived with NEFPROX and the interval type-2 FIS. The &.\fSE has increased from 

0.110 to 0.156 in the case of estimation of cross sectional areas and from 0.096 to 0.123 

for second moments of area. 

TABLE 7.2: Performance assessment of the interval type-2 fuzzy logic framework applied to 
the sizing and weight estimation of spoiler attachment ribs. 

A IT2 IIT2 W IT2 
No. of Inputs 4 4 6 

Training 59 59 59 
Testing 18 18 20 
RMSE 0.156 0.123 0.108 
MPE -2.27 -0.50 -4.63 

MAPE 14.39 12.72 11.12 

Despite being characterised by lower approximation accuracy, compared to both 

the ANFIS the NEFPROX-derived FIS, the interval type-2 fuzzy inference system, 

shows satisfactory generalisation capabilities when applied to the beam sizing problem. 

The overall approximation performance shows a mean absolute error of prediction of 

approximately 14.4 percent and 12.7 percent in the estimation of beam cross section 

area and second moment of area respectively, which still represents a satisfactory level 
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FIGURE 7.2: Performance of t he type-2 fuzzy logic sizing module for spoiler attachment ribs 
on testing database for A and 1. 

of approximation for a preliminary design tool (Table 7.2). As opposed to the previ­

ously derived FIS where both sizing parameters were noticeably underestimated , the 

approximation obtained by the IT2 network is only approximately 2 percent lower than 

the expected values for cross sectional areas, whilst no clear trend in the estimation of 

second moment of area (Figure 7.2). 

7.3.2 Weight m odule performance 

The derivation of the IT2 fuzzy weight module was conducted in a similar man­

ner to the development of t he sizing module. In terms of model initialisation , the 

network was firstly derived from the FIS structure opt imised by NEFPROX, where 

the 6 input variables as well as the final output were defined by 15 Gaussian fuzzy 

partitions and the overall FIS structure was based on a system of 34 rules. The fuzzy 

partit ions were then converted into interval type-2 with Gaussian primary membership 

function with uncertain mean [ml ' m2 ], following the same procedure as for the sizing 
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module. The same reference database used for the deriva tion of both the ANFIS and 

NEFPROX FIS was adopted for the IT2 network optimisation procedure. Of the 79 

examples of spoiler attachment rib structure, 59 were selected for training and 20 for 

t he p erformance assessment of the fuzzy inference system. 
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FIG URE 7.3: Performance of the type-2 fuzzy logic weight module for spoiler attachment ribs 
on testing database. 

As in t he case of the sizing module, the iterative design process was able to 

produce a substant ially simpler and more transparent network t ructure. The init ial 

34 rules used within t he type-1 system derived through NEFPROX were reduced to a 

total of 4, with input and out put variables being described by 4 fuzzy partitions each 

instead of 7 (Table 7.1). onetheless, the overall generalisation capability of the IT2 

FIS appear only marginally inferior to that of the equivalent NEFPROX-derived model, 

although still highly sat isfactory. The R..V1SE has increased from 0.102 in the case of 

t he NEFPROX FIS to 0.108, in parallel with just over a 2 p ercent increase in t he mean 
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absolute percentage error between the two models (Table 7.2). Results also highlight 

the noticeable tendency to provide a lower estimate of structural weight for the exam­

ples provided, however the IT2 model appear to have the same level of accuracy across 

both hinge and intermediate rib types, as opposed to the previous fuzzy models which 

demonstrated greater generalisation capabilities in the case of hinge ribs (Figure 7.3). 

This further confirms the importance of embedding within the fuzzy definition of the 

design additional considerations related to specific features, manufacturing process or 

rib function to allow to both improve model approximation and enhance its ability to 

discriminate between different design solutions. 
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FIGURE 7 .4: Effect of variable removal on t he accuracy of the type-2 fuzzy logic weight module 
for spoi ler attachment ribs. 

Variable selection was used also in this case in order to both assess the impor­

tance of the individual variable in terms of the quality of the model approximation and 

to identify the optimum combination of variables for an exhaustive problem definition. 

The results of t he variable selection process validate those obtained from both ANFIS 

and NEFPROX network design. Figure 7.4 illustrates how the process continues to 

identify the full set of variables as t he optimum in terms of model performance, with 

the removal of any of the input parameters causing a noticeable deterioration in the ac-
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curacy of the final weight estimate. The variables themselves appear to show the same 

order of importance as in the previous fuzzy models. Global geometrical variables and 

rib function still have the greatest impact on model accuracy, being the last ones re­

moved in the process. The selection process also highlights that both NEFPROX-based 

type-1 and IT2 FIS have comparable accuracy when it comes to RMSE performance 

assessment, reiterating how Mamdani fuzzy systems are still a more appropriate choice 

when it comes to accuracy in weight estimation applications. 

7.3.3 Interval type-2 function approximation and decision boundaries 

The previous results have indicated that interval type-2 fuzzy modelling does not 

match type-1 approximations obtained with both TSK and Mamdani fuzzy systems. 

This was expected since the main purpose of IT2 FLS is that of understanding the 

impact of uncertainty propagation within the modelling process. For this reason, a 

more compact and concise rulebase and fuzzy system architecture for both sizing and 

weight estimation modules takes priority on modelling accuracy. However, the results 

also indicate that a considerable reduction in the size of the rulebase is mirrored only 

within a marginal increase in the approximation error. 

This can also be seen in the functional relationships between the different vari­

ables of interests that the system is able to produce. The trends that the system was 

able to learn from the dataset of reference match those produced by ANFIS and NEF­

PROX in terms of both profile and correlation of variables. In addition to this, the 

use of type-2 fuzzy theory allows to establish confidence boundaries across the different 

functional relationships derived. This is possible thanks to the way of formalising the 

variables of interest, using intervals to describe the means of the input fuzzy mem­

bership functions as well as left and right boundaries for the estimation of the output 

centroids. This particular approach leads to the computation of two separate curves 

for each variable relationship: they represent the boundaries for the approximation and 

delimit the confidence region for the estimation of the output, given a particular set of 

inputs. 

The trends derived by interval type-2 fuzzy models are highly nonlinear, but the 

different dependencies between the variables of interest highlighted within the approx-
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imations are strongly validated by the previous models. In the case of the impact of 

global geometry on the final structural weight, the overall trend is dominated by direct 

proportionality between the two inputs and the output variables. The functional rela­

tionship derived by the IT2 for spoiler hinge ribs indicates a higher proportion of the 

weight being linked to the location of the spoiler attachment rib along the trailing edge, 

identified by the spar height h, compared to the outputs of the previous fuzzy models 

(Figure 7.5(a)). In addition to this, the IT2 FIS shows a smoother profile between 

global geometrical parameters and structural weight, with a steady direct proportion­

ality between the variables and without displaying anomalous decrease in weights at 

higher values of L and h. The confidence region, in this case, is quite narrow, indicat­

ing a low level of uncertainty in the estimation of the weight of this particular type of 

spoiler attachment rib. 

Figure 7.5 (b) on the other hand, shows a much larger confidence region in the 

case of intermediate ribs, in particular for those located further outboard (Le. low 

values of L and h). This can be related to the limited number of these ribs at such 

locations, which is due to the smaller span of the spoilers at this location, and thus 

the limited number of training examples within the database of reference. The system, 

in this case, is forced to largely interpolate between the difference numerical instances, 

which results in added uncertainties within the final estimate. In terms of functional 

relationship, the trend is also highly more non linear in the case of intermediate ribs. 

The profile appears to match closely that of the function derived by the NEFPROX­

based FIS, with an initial steep increase in weight at low values of L and h followed by 

a flatter profile towards the boundaries of the domain. This indicates that, for those 

ribs located further outboard, global geometry is the major source of structural weight, 

whilst, for inboard intermediate ribs, weight penalties will be more affected by other 

parameters such as local geometry. 

This is confirmed by figure 7.6(b). From the functional representation of the 

relationship, it is apparent that a larger proportion of the weight of intermediate spoiler 

attachment ribs can be attributed to local geometry parameters, in particular from the 

cross sectional area of the top beam section ATOP. The confidence region is still large, 

however, in this case, the reliability of the estimation is higher for intermediate ribs 
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located further outboard as opposed to the inboard ones. As a result. in a context where 

the design information is scarce, the model will havc focus more on global geometry 

parameter for those ribs located inboard, in an attempt to improve the reliability of the 

estimates. In terms of hinge ribs, the model till confirm a lower weight penalty coming 

from the inclusion of the vertical beam section compare to the top onc, especially when 

considering the lower boundary of the confidence region (Figure 7.6(a)) . 
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7.4 Structural sizing and weight analysis using interval 

type-2 fuzzy systems: aileron attachment ribs 

The same illustrative framework for structural sizing and weight estimation for 

aileron attachment ribs was translated into an interval type-2 fuzzy based model in 

a similar way as for the NEFPROX testcase. For the structural sizing and weight 

estimation of aileron attachment ribs, the model framework follows an equivalent 3-

layered architecture, comprising of a module for loading computation, a multiple output 

IT2 fuzzy logic-based sizing module for the computation of the cross sectional areas 

and second moment of area for the individual beam components and an IT2 fuzzy 

logic-based weight module combining information on both global and local geometry 

with rib function for the computation of weight estimates. 

As for the spoiler attachment rib case, both the IT2 FIS based sizing and weight 

module have been initiated with the NEFPROX-derived network structure. The initial 

type-1 Mamdani FIS structure optimised using NEFPROX was converted into an inter­

val type-2 fuzzy logic system and consequently used as a starting point for the network 

design and optimisation process. The number and size of antecedent and consequents 

as well as number and structure of the individual rules was therefore maintained the 

same as in the NEFPROX-derived FIS. 

7.4.1 Sizing module performance 

The design and optimisation of the IT2 FIS for sizing derivation of the beam 

components of aileron attachment ribs followed the same iterative process as for the 

spoiler attachment rib example. The network was initialised using the Mamdani fuzzy 

inference structure derived by NEFPROX in Chapter 6, where input and output vari­

ables were defined by 5 Gaussian fuzzy partitions and the overall FIS structure was 

built on a system of 11 rules. This fuzzy system structure was then translated into 

an IT2 FIS, with the conversion of individual variable definition from Gaussian type-1 

into type-2 fuzzy partitions based on Gaussian primary membership functions with 

uncertain mean. 
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The same database of reference used for the development of the NEFPROX 

framework was employed in the testing and training of the IT2 sizing module. Data 

for a total of 63 beam components of aileron attachment ribs was collected, of which 

44 were used for training and 19 for module testing. 

TABLE 7.3: Comparison of results for the architecture of sizing and weight fuzzy inference 
systems of type-l built with NEFPROX and interval type-2 for aileron attachment ribs. 

AILERON 

NEFPROX IT2 FIS 

RMSE 0.088 0.162 
A No. of Rules 11 5 

MFs* 5 5 

RMSE 0.081 0.188 
I No. of Rules 11 5 

MFs* 5 5 

RMSE 0.073 0.118 
W No. of Rules 34 5 

MFs* 7 5 

In a similar way as for the case of spoiler attachment ribs, the combination of 

backpropagation for model design and training and SVD-QR for rule reduction was able 

to generate a substantially more concise and compact fuzzy system, with the rule base 

reduced from 11 to 5 individual rules compared to the NEFPROX-based FIS and a 

description of both input and output variables using only 5 fuzzy partitions (Table 

7.3). Even in this case, however, the simplification of the FIS structure translates into 

a reduction in the quality of the approximation compared to the equivalent type-l FIS. 

This is apparent by analysing the RMSE of the estimation, which has deteriorated from 

0.088 in the case of the NEFPROX-derived FIS to 0.162 for the estimation of beam 

cross sectional areas from the 0.081 to 0.188 for second moments of area. 

The overall approximation performance shows a mean absolute error of predic­

tion of approximately 16.8 percent and 13.4 percent in the estimation of beam cross 

section area and second moment of area respectively, which still represent suitable gen­

eralisation capabilities displayed by the model are still suitable for the type of analysis 

conducted at preliminary design stages (Table 7.4). As for the NEFPROX-based ex-
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ample, the results show no clear tendency of the model to either over or under estimate 

the value of cross sectional areas; on the contrary, in this case, the IT2 FIS appears 

to provide an approximation which exceeds the expected value of second moment of 

area by approximately 2 percent on average, up to a maximum of 22 p ercent in certain 

cases (Figure 7.7). 

TABLE 7.4: Performance assessment of the type-2 fuzzy logic framework applied to the sizing 
and weight estimation of aileron attachment ribs. 

A TYPE-2 I TYPE-2 W TYPE- 2 
No. of Inputs 4 4 6 

Training 44 44 46 
Testing 19 19 20 
Rl\1SE 0.162 0.188 0.118 
MPE -0.72 2.23 -1.08 

MAPE 16.83 13.49 11.31 
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FIG URE 7.7: Performance of the type-2 fuzzy logic sizing module for aileron attachment ribs 
on testing database for A and I. 
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7.4.2 Weight module performance 

The derivation of the IT2 fuzzy weight module for aileron attachment ribs was 

conducted in a similar manner to the development of the sizing module. The initial 

model structure was firstly derived from type-l FIS optimised by NEFPROX, where the 

7 input variables as well as the final output were defined by 7 Gaussian fuzzy partitions 

and the overall FIS structure was based on a system of 34 rules. The fuzzy partitions 

were then converted into interval type-2 with Gaussian primary membership function 

with uncertain mean [ml,m2], following the same procedure as for the sizing module. 

The system was then trained and validated through the same reference database used 

for both ANFIS and NEFPROX FIS optimisation, with a total of 66 examples of aileron 

support ribs, 46 of which were selected for training and 20 for performance assessment. 

As in the case of the sizing module, the iterative design process was able to 

produce a substantially simpler and more transparent network structure. The initial 

34 rules used within the type-l system derived through NEFPROX were reduced to 

a total of 5, with input and output variables being described by 5 fuzzy partitions 

each instead of 7 (Table 7.3). The consequence of network simplification was, even in 

this case, a reduction in model approximation performance. The RMSE has increased 

from 0.073 in the case of the NEFPROX FIS to 0.118, in parallel with an decrease in 

approximation performance of just over a 5 percent with respect to the mean absolute 

percentage error between the two models (Table 7.4). 

A closer look at the results from the validation process shows that the IT2 model 

presents a clear tendency of underestimating the structural weight of the aileron at­

tachment ribs belonging to the Design C category, whilst no clear approximation trend 

appears within the weight analysis of Designs A and B (Figure 7.8). This highlights 

the needs to further improve the definition of the design when it comes to structural 

solutions, such as the ribs belonging to Design C, which have less distinguishing fea­

tures or components in the situation when different design alternatives are evaluated 

within the same framework. This will ensure that the model is consistent and the same 

level of generalisation is maintained across the individual design variations. 
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FIGURE 7.8 : Performance of the type-2 fuzzy logic weight module for a ileron at tachment ribs 
on testing database . 

The model is further validated by the results of the variable selection process. 

As in the case of both the ANFIS and NEFPROX-derived weight models, the best 

performing FIS is achieved by describing the structure through the full set of variables 

(Figure 7.9), with noticeable decrease in effectiveness in parallel with each individual 

variable elimination . The removal pat tern is maintained across all the fuzzy weight 

models, with hinge line datum L and top beam local geometry having the greatest 

influence on the final quality of the approximation. The deterioration in performance 

shown by the IT2 FIS is also comparable in t erms of magnitude to that experienced 

by the NEFPROX model at each individual stage of the removal process which helps 

corroborating both models. 
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FIG uRE 7.9: Effect of variable removal on the accuracy of the type-2 fuzzy logic weight module 
for aileron attachment ribs. 

7.4 .3 Interval type-2 function approximation and decision boundaries 

As for the modelling example of spoiler attachment r ibs, the results so far have 

highlighted that the approximation provided by the interval type-2 sizing and weight 

models is of lower quality compared to that provided by the fuzzy systems designed 

by both AKFIS and NEFPROX. It is to be noted , however , that the deterioration 

in modelling performance is minimal if compared to the considerable consolidation of 

both the final network structure and rulebase. The system, is therefore, still able to 

provide great generalisation in the case of unseen structural examples even on the basis 

of a much more concise fuzzy variable representation and interpretable system of rules . 

This is of primary importance from the point of view of providing the designer with 

a ready to use and intuitive system to aid the design and decision making within the 

preliminary phases of concept definition. 

In addition to this, the most important achievement in this case is st ill the 

derivation of reliable uncertainty information when it comes to both the definition of 

the variable and the computation of the final output. Overall , the results corrob orate 
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the findings obtained via both the ANFIS and the NEFPROX-derived fuzzy models. 

The IT2 FIS weight model was still able to represent the nonlinearities present in the 

relationships between the different variables of interest and the overall trends learnt 

from the database of reference mirror those derived in previous stages. 

A more in depth analysis of the results reveals how the weight penalty coming 

from an increase in the height of the structure and, therefore, from its location along the 

OFTE, is higher than that resulting from a change in hinge line location. Once again, 

the general shape of the dependencies between the weight of the aileron attachment 

rib and its global geometrical definition is maintained across the three different designs 

being analysed, as shown by figures 7.10 (a), (b) and (c). It is interesting to note the 

different levels of confidence within the approximation for the three designs. The largest 

confidence region appears in Design A (Figure 7.10 (a)) highlighting a higher level of 

uncertainties within this estimate, as opposed to the Design C which displays more 

compact confidence boundaries (Figure 7.10 (c)). The justification for this lays in the 

way the designs are defined. Since all three types of ribs are idealised as a combination 

of individual beam components, the discrete uncertainties associated with each of them 

are then cumulated into the final assembly. For this reason, confidence within the 

weight estimate for Design C which is designed around a single beam structure, will be 

higher compared to that for a structure designed around multiple beam components. 

By looking at the impact of local geometry on the overall structural weight of 

the rib, the top beam section is still the source of the highest weight penalties, thus 

cross validating both the results from the variable removal process and the previous 

fuzzy models (Figure 7.11). Even in this case, ATOP appears to impact the weight of 

both Design A and B by a comparable magnitude, which is also in agreement with the 

trends derived by the NEFPROX model. In particular in the case of Design A, the 

profile of graph support the findings from the NEFORX-derived model with regards to 

the impact of the bottom beam geometry on the final weight of the rib. As opposed 

to the results from the TSK FIS built with ANFIS, which established an inverse pro­

portionality between the cross sectional area of the bottom beam and the structural 

weight of Design A ribs, both type-1 and type-2 Mamdani FIS derived a more realistic 

relationship profile between the two variables. In addition to this, for both Design A 
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FIG lJRE 7 .10: Confidence boundaries in Lhe estimaLioll of spoiler attachment rib weight de­
pending on hinge line datum (L ) a nd spar height (h) for hinge r ibs (a) and intcrm diatc ribs 

(b). 

and B, :\EFPROX and IT2 FrS highlight a plateau within the trend located at higher 

values of A TOP and ABOT which indicating that a noticeable proportion of the weight 

of larger ribs can be related to the addition of ad ditional vertical beam . With regards 

to the reliability of the estimates, the model highlights substantial uncertainties in 

both the design - olutions in particular in the region of larger A TOP, which suggests 

a lower confidence level for the weight estimat of rib structures located toward the 

inboard side of the trailing edge, which are characterised by considerably larger top 

beam sections due to the larger aerodynamic loads to be sustained . 

As opposed to the results from XEFPROX, however , the additional weight penal­

ties incurred by larger aileron attachment ribs are shared in equal proportion by both 

front and back vertical beam components in the case of Design A. Figure 7.12 highlights 

a comparable gradient in the profile of both AVERTb and AV ERT! as well as similar 

weight contr ibution from both beam sections even in the case of larger rib tructures. 

18 



Chapter 7 

o • .r-_ _ 

l: 06 

., 
A,-oP 
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FIGCRE 7 . 11: Confidence boundaries in the estimation of aileron attachment rib weight de­
pending on the cross sectional areas of top (ATOP) and bottom (ABOT) beam section for Design 

1 (a) and Design 2 (b) . 

\"onetheless. the results from IT2 and \"EFPROX validate each other with regards to 

the profile of the relat ion hip with the analysis of local geometry. In both ases, the 

;,Iamdani fuzzy inference systems have been able to ident ify substantial nonlinearites 

associated with the inclusion of a front beam section in the fin al design. This is also 

combined with a marked degree of uncertainties in the estimat ion , as highl ighted by 

the large confidence r gion displayed figure 7.12 (b) . The analysis of these two factors 

reiterates the need to improve the design definition of the vertical beam sections with 

the inclusions of parameter related to specific f ature which contribute with some of 

the higher weight penalties . 

(a ) (b) 

FIG CRE 7.12: Confidence boundaries in the estimation of aileron attachment rib weight de­
pending on the presence of back (AI'ERTb ) (a) and front (AVERT!) vertical beam s tions 

(b) . 

In the case of Design C, where the structure is designed around a single beam 
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L '\OP 

FIGURE 7.13: Confidence boundaries in the estimation of aileron attachment ri b weight de­
pending on the location of hinge line datum (L) and top beam cross sectional area (ATOP) ' 

component, the results are consistent with both type-1 TSK and :"1amdani fuzzy mod­

els . Hinge line datum L st ill accounts for the majority of the weight penalties within 

the design, although in a lower proportion than that derived by ANFIS and NEFPROX 

compared to the contributions from ATOP (Figure 7.13). In particular, the surface pro­

file derived by the IT2 FIS closely match that of the ::\EFROX-derived FIS . As in the 

case of the type-1 yIamdani model, IT2 FIS displays much more realistic dependencies 

between the variables, especially at higher values of L and A TO P , compared to the 

TSK model which tends to misinterpret correlations between variables especially in 

the boundary regions of the design domain. As with previous cases, the uncertainties 

are focused at higher values of L and , in particular , at larger cross sectional areas . 

This, combined with previous findings, highlights the importance of both improving 

the computational definition of t he designs located fur ther inboard as well as taking 

into account the variability in weight of these sp ecifi c ribs when approaching individual 

design decisions. 

7.5 The uncertain rule base 

The relationship between the variables of interest which have been derived by 

type 1 and type 2 fuzzy logic systems appear to be comparable when it comes to both 

magnitude and profile. Results have also shown that, although the modelling accuracy 
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has suffered a minor deterioration in the translation from type 1 to type 2 systems, 

the structure and definition of the FLS has vastly improved. The number of governing 

rules has noticeably decreased for both the spoiler and aileron attachment rib examples, 

with up to an 85 percent reduction within the rulebase in particular within the weight 

estimation modules. 

Similarly, the definition of the variables of interest has become more streamlined, 

concise and, as a result, more interpretable. Figure 7.14 highlights the definition of 

the loading input variables and the two outputs within the sizing module for spoiler 

attachment ribs. In each case, the system was able to provide both a uniform and 

complete definition of the design space. The entire domain of interest is fully covered 

by the 4 membership functions which are both clearly distinguishable and complemen­

tary to each other, without any substantial duplication of information. This clearly 

reiterates the overall advantage of Mamdani over TSK systems in the derivation of a 

noticeably more intuitive and readily applicable rulebase. 

In addition to this, the fuzzy variable definition obtained via the type-2 FLS 

includes both a visual and quantitative definition of the uncertainties within the inputs 

as well as a definition of how these translate into possible variability across the desired 

outputs. In the case of the sizing module for spoiler attachment ribs, the footprints of 

uncertainty (FOUs) appear analogous in terms of shape and dimensions across both 

input and output variables. The areas enclosed by upper and lower membership func­

tions for each partition is reasonably large, indicating a noticeable variability within 

the means of the MFs. In particular, it is evident from the size of the FOUs that the 

highest level of uncertainty in the inputs lies in the definition of the applied axial force, 

whose footprints of uncertainty are much larger, both in terms of variability of means 

and standard deviation. The effect of these uncertainties is propagated through the 

network and its effect can be visually assessed on the outputs. In the case of both 

cross sectional area A and second moment of area I, the region within the domain of 

interest with the most variability is across that of larger beams. The FOUs describing 

the higher values of both variables are characterised by a much larger variability in 

the mean as well as a larger standard deviation, as opposed to the lower end of the 

scale. This represents a clear warning for the designer to account for a different level 
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(b) 

(d) 

FIGURE 7.14: Type-2 fuzzy partitions used to define bending moment (a), axial force (b), cross 
sectional area (c) and second moment of area (d) within the spoiler sizing module. 

The large variability within the inputs and, in particular, in the applied axial 

force, is also noticeable when it comes to the quantitative definition of the uncertainties 

within the variables of interest. By looking at the difference between the means in the 

four partitions used to define Fx, Table 7.5 highlights a significant variation of up to 2 

nondimensional units among the values of ml and m2 used to describe the same parti­

tion. This translates into an even more substantial variability within the two outputs, 

reaching values of over 4.50 in specific partitions used for the definition of beam cross 

sectional area and second moment of area. The larger variations in the means within 

the outputs are due to the cumulative uncertainties in the input parameters. Although 

the means suffer quite noticeably from the uncertainties permeating the problem at 

hand, the partitions used in the definition of the variables show an acceptable level of 
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spread. The standard deviation of the individual partitions oscillates around the 0.5 

level, with higher values of up to 0.85 in the case of some partitions used within the 

definition of bending moment M. 

TABLE 7.5: Uncertainty characteristics for the type-2 fuzzy partitions of input and output 
variables within the spoiler sizing module. 

VARIABLE ml m2 a 

-1.28 0.66 0.67 
Fx -2.35 -0.32 0.51 

-1.32 0.68 0.50 
1.13 2.66 0.32 

-0.67 0.12 0.74 
M 2.03 3.21 0.74 

2.76 3.82 0.85 
1.14 1.65 0.85 

-0.18 1.83 0.58 
E -2.20 -0.27 0.36 

-0.19 1.83 0.50 
-0.07 1.83 0.35 

-0.23 1.81 0.56 
aULT -2.26 -0.30 0.35 

-0.22 1.81 0.51 
-0.10 1.81 0.35 

-2.03 -2.63 0.53 
A -0.77 2.71 0.74 

-2.73 1.94 0.35 
-1.99 2.30 0.46 

-2.99 1.51 0.69 
I -0.44 3.44 0.64 

.-1.67 1.46 0.56 
-2.38 1.33 0.44 

In the case of variable definition within the weight estimation module, the picture 

is more varied. In a similar way as for the sizing module, the variable partitioning has 

been much more streamlined with a considerable reduction of fuzzy partitions from 15 

to 4 per variable. From a general perspective this considerably enhances the overall 

interpretability of the system, however in the case of hinge line datum L (Figure 7.15(a)) 

and top beam cross sectional area ATOP (Figure 7.15(c)) this has resulted in a slight 

loss of information. In the case of hinge line datum, in particular, it is possible to 

193 



Chapter 7 

note that the extreme regions of the domain of interest are not fully defined by the 

fuzzy partitions, in a similar way as higher values of cross sectional areas for top beam 

sections. The variable definition, nonetheless, appears uniform and comprehensive 

across the remaining inputs as well as for the final output variable. 

TABLE 7.6: Uncertainty characteristics for the type-2 fuzzy partitions of input and output 
variables within the spoiler weight module. 

VARIABLE ml m2 (J' 

-0.25 0.62 0.31 
L -0.45 1.25 0.46 

0.72 2.35 0.39 
-0.34 1.46 0.51 

1.25 1.37 0.48 
h 0.33 1.43 0.48 

-0.26 -0.20 0.49 
-1.08 -0.04 0.56 

-1.60 -0.65 0.62 
ATOP -1.87 -0.81 0.40 

0.50 1.61 0.43 
-1.62 0.58 0.32 

-1.86 -1.01 0.62 
ABOT -1.50 -0.19 0.49 

0.02 1.28 0.64 
-2.02 0.15 0.45 

-0.95 0.26 0.43 
AVERT -0.95 0.33 0.32 

-0.98 1.35 0.61 
-0.96 1.23 0.34 

0.40 2.15 0.49 
rtype 0.50 1.89 0.34 

-0.08 1.43 0.49 
0.13 0.68 0.60 

-0.54 2.62 0.48 
W -2.74 0.56 0.49 

2.80 0.36 0.31 
-3.52 -1.51 0.57 

In terms of definition of uncertainty, the system identifies smaller spoiler attach­

ment ribs as most affected. This is clearly visible especially in the fuzzy definition of the 

global geometrical parameters Land h (Figure 7.15 (a) and (c)) where the definition of 

the lower values within the domain is characterised by considerably larger FOUs and, 
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as a consequence, higher variability. It is important to note that these have also been 

identified as the focal variables across the design of the fuzzy logic systems explored 

in this research. This highlights the importance from a designer's perspective to in­

clude the consideration of uncertainties and their effect within the design and weight 

estimation process otherwise erroneous and misleading results will be produced. 

As opposed to the results from the sizing module, both the visual and quantita­

tive assessment of the weight estimation module show a lower level of uncertainty across 

the variables of interest. Table 7.6 highlights a less prominent variation between the 

means of the fuzzy partitions than those characterising the sizing module. Although L 

and h are characterised by larger FOUs at the lower values within the domain and, in 

turn, by a higher level of variability compared to the other variables in the problem, the 

difference between ml and m2 across their partitions never reaches values over 1.7, as 

across the fuzzy definition of the other input variables in the system. The cumulative 

impact of the uncertainty within the mean that propagates to the final weight estimate 

is also lower than that experienced in the sizing module, with a maximum of 3.30. It 

is possible to identify an overall lesser level of uncertainty in the weight estimation 

process compared to the sizing one also when examining the characteristic standard 

deviation across the different variables. In the weight estimation module in particular, 

(j never exceeds 0.65 across the inputs, with a maximum value of 0.57 in the definition 

of the output partitions. 

As with the spoiler attachment rib case, the use of type-2 FLS as a basis for the 

network allowed a much more concise representation of the variables of interests within 

the sizing module for aileron attachment ribs. All input and output variables were 

successfully defined with 4 fuzzy partitions providing a full and exhaustive coverage 

of the design space (Figure 7.16). As highlighted in figure 7.16 (c) and (d), in the 

case of the output variables A and I in particular, the system was able to structure 

the partitions within the domain with a clear and distinguishable configuration. On 

the contrary, the definition of the applied axial force Fx appears to some extent more 

imprecise, with partitions which considerably overlap one another. 

This, combined with the overall shape of the FOUs for Fx , highlights a higher 

level of uncertainty in the definition and description of the variable itself. It is par-
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ticularly evident that the footprints of uncertainty for the partitions in this case are 

considerably large compared to those derived for the other variables in the module. 

The large areas covered by them, caused by the significant variation in the means, 

combined with the larger standard deviations is a distinct indication of the fact that 

this particular variable is both subjected to considerable variability and represents the 

major contributor to the uncertainties within the system itself. 

TABLE 7.7: Uncertainty characteristics for the type-2 fuzzy partitions of input and output 
variables within the aileron sizing module. 

VARIABLE ml m2 a 

-0.96 1.89 0.51 
Fx -2.27 0.35 0.53 

-0.26 1.88 0.42 
-2.77 0.15 0.67 

-4.55 -3.15 0.42 
M -1.28 0.47 0.62 

2.57 3.47 0.63 
5.39 6.74 0.52 

-1.74 0.52 0.56 
E -1.74 0.36 0.27 

0.25 2.35 0.57 
0.55 2.85 0.58 

-1.39 0.01 0.35 

aULT -1.11 0.91 0.41 
0.39 2.16 0.59 
0.19 2.86 0.59 

-3.74 -1.00 0.51 
A -3.01 0.65 0.68 

-2.75 -1.07 0.51 
-0.44 2.07 0.64 

-1.09 2.51 0.69 
I -3.44 -2.44 0.44 

-2.67 0.46 0.56 
-2.38 0.14 0.44 

As opposed to the sizing module for spoiler attachment ribs, the uncertainties 

within the example of aileron attachment ribs appear smaller from both a visual and 

quantitative perspective. Table 7.7 readily highlights overall lower values of a across 

both inputs and outputs, with a noticeably lower upper threshold of 0.69 even in the 
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case of lesser defined inputs. The large variability within the inputs and, in particular, 

in the applied axial force, is also noticeable when it comes to the quantitative definition 

of the uncertainties within the variables of interest. This is mirrored by a considerably 

lower variation within the means of the individual partitions, which are characterised by 

a maximum value of 3.05 across the inputs and 3.66 within the fuzzy characterisation of 

the outputs. This also strongly highlights a much lower level of uncertainty propagation 

in the aileron sizing analysis compared to the spoiler one, which can be attributed to 

both the type of analysis and how well it fits the structural example, as well as to the 

quality of data available for the analysis in the two cases. 

The type-2 FLS proved to be a particularly suitable tool for the derivation of 

weight estimation architecture which is both simple and reliable. In the specific case 

of aileron attachment ribs, the network structure derived necessitated only 5 member­

ship functions for the full definition of all input and output variables, compared to 

the 18 and 7 obtained via the type-l FLS derived through ANFIS and NEFPROX 

respectively (Figure 7.17). This greatly contributes to the definition of a much more 

interpretable system, especially when combined with partitions which are, at the same 

time, descriptive of the overall design space and defining discernible sections within it. 

As opposed to the spoiler attachment rib example, however, in this case the variables 

illustrating a less intuitive fuzzy definition appear to be the cross sectional areas of 

back (AVERTb) and front (AVERTf) beam sections (Figures 7.17(e) and (f)). In line 

with the results from previous models, these are the variables which are both the least 

influential on the approximation in terms of accuracy and those with the highest level 

of uncertainty. This is understandable since only a limited number of the structural 

examples within the reference data set present these beam components in their design 

and, as a consequence, the system is faced with noticeably higher need to interpolate 

when deriving specific modelling rules for these instances. 

This translates into a higher level of uncertainties especially within the definition 

of the front vertical beam section AVERTf. The footprints of uncertainty are much 

larger compared to those derived for the other variables within the systems and, in 

particular, the standard deviation for the partitions is particularly substantial. As 

previously derived within the variable selection process, however, Av ERTf is the least 
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influential variable on the accuracy of the final approximation provided by the system. 

It is clearly visible in figure 7.17(h) that the large uncertainties within AVERT! only 

marginally affect the final output. The fuzzy definition of the output W appears 

particularly clear with distinguishable partitions, all of them characterised with realistic 

levels of variability within the means and standard deviation. 

This transpires also in the quantitative definition of the variables within the 

weight estimation problem (Table 7.8). AVERT! is characterised by the highest varia­

tion between ml and m2 of 2.75; it is closely followed, however, by L with a value of 

2.42. This reiterates the need of including uncertainty analysis from the beginning of 

the design process. As shown in previous results, L is the variable with the greatest 

impact on the final accuracy of the estimation, and neglecting such a variability in 

the parameter will results in strongly misleading and erroneous results. The results 

also restate how the uncertainties within the sizing problem are considerably higher 

than those within weight estimation. This is confirmed by both the lower variability 

in the means of the fuzzy partitions as well as by the smaller values of their standard 

deviation. Apart from the fuzzy definition of L which displays the higher end of the 

spectrum of cr, the remaining variables are characterised by standard deviations which 

do not exceed 0.55, which much lower values in the definition of the output W. 

1.6 Summary 

This chapter investigated the issue of combining transparency and interpretabil­

ity within a fuzzy system with a comprehensive visualisation and accounting of the 

uncertainties in the problem at hand. In particular, the analysis focused on the appli­

cation of interval type-2 Mamdani fuzzy inference systems as an aid to include a more 

rigorous assessment of the uncertainties permeating both sizing and weight estimation 

of aircraft structural components. The chapter provided a theoretical overview and 

definition of the mathematical foundations of interval type-2 fuzzy systems, a criti­

cal comparison with type-l in terms of structure, analysis and capabilities as well as 

how these characteristics could prove extremely beneficial when dealing with weight 

estimation at the preliminary design stages of aircraft structural components. 
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Moreover, additional tools were introduced to further optimise the performance 

of IT2 FIS in this type of problem. A combination of iterative design, network op­

timisation through an SVD-QR routine and variable selection process was adopted 

throughout the development of both sizing and weight estimation modules for spoiler 

and aileron attachment ribs, in order to both enhance their performance and increase 

their final interpretability. 

Thanks to this process, the final FIS obtained were able to provide a good com­

bination of modelling accuracy and transparency in the final rulebase. The accuracy 

of the estimation within the results is marginally lower than the approximation capa­

bilities displayed by NEFPROX in particular. A minor increase in the final estimation 

error is counteracted by a much simpler network structure and rulebase. In both struc­

tural examples, sizing and weight estimation modules achieved a dramatic reduction 

in the overall size of the rulebase and in the number of fuzzy partitions necessary to 

describe the individual variables. In turn, this resulted in a much more streamlined 

network structure and in an overall more interpretable rulebase which could be easily 

integrated within the preliminary design of the structural component. 

In addition to this, the results were much more comprehensive in the information 

they were able to translate about the design of the various components. Visually, the 

relationships between the variables provided a cross-validation with results obtained 

with type-l FIS developed using both ANFIS and NEFPROX. The trends computed 

by the systems also showed an additional level of insight in the understanding of the 

problem itself through the derivation of confidence regions and boundaries, which pro­

vide a first stage assessment of the variability in the final solution. Moreover, the final 

interval type-2 FIS provide means of assessing the quality of the solution and the un­

certainties within it both quantitatively and qualitatively within the rulebase derived. 

The representation of the fuzzy partitions for the individual variables in the systems 

through their footprint of uncertainties represents an exceptionally intuitive way of 

visualising the resolution of the model in terms of variable definition, coverage of the 

design space and management of the uncertainties in the problem. 

The next chapter will focus on the definition of a formal framework for the design 

and weight estimation of aircraft structures at early project phases. In particular, 
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the final methodology will aim at combining the various fuzzy techniques and tools 

described so far in order to fully exploit their capabilities, with the aim of establishing 

a structured approach for the application of fuzzy methods to the problem of weight 

estimation. 
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Figure 7.15(g) 

FIGURE 7.15: Type-2 fuzzy partitions used to define input and output variables within the 
spoiler weight estimation module. 
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FIGURE 7.16: Type-2 fuzzy partitions used to define bending moment (a), axial force (b), cross 
sectional area (c) and second moment of area (d) within the ai leron sizing module. 
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FIGURE 7.17: Type-2 fuzzy partitions used to define input and output variables within the 
aileron weight estimation module. 
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TABLE 7.8: Uncertainty characteristics for the type-2 fuzzy partitions of input and output 
variables within the aileron weight module. 

VARIABLE ml m2 u 

-0.05 2.37 0.65 
-1.11 1.68 0.60 

L 0.71 3.07 0.63 
0.50 2.07 0.64 
-2.18 0.32 0.53 

0.65 2.62 0.54 
-0.96 1.46 0.55 

h 0.64 2.62 0.49 
0.23 2.12 0.46 
-1.95 0.52 0.53 

0.90 2.40 0.51 
-1.81 0.08 0.44 

ATOP -0.11 1.96 0.49 
1.53 3.07 0.50 
-1.80 0.09 0.48 

-0.67 1.47 0.52 
-1.23 0.41 0.49 

ABOT -1.67 0.48 0.54 
-1.97 -0.34 0.54 
-0.29 2.35 0.47 

-1.54 0.64 0.54 
2.29 3.47 0.49 

AVERTb -1.24 0.49 0.57 
-1.73 -0.64 0.56 
-0.51 0.90 0.54 

-3.76 -1.01 0.49 
-1.31 -0.19 0.44 

AVERT! -0.06 1.99 0.29 
-1.76 -0.09 0.39 
-2.80 -0.22 0.74 

0.84 2.32 0.33 
-1.86 -0.38 0.34 

Ttype 0.98 2.02 0.36 
-0.82 1.31 0.35 
-0.47 1.00 0.27 

-0.02 2.64 0.33 
-2.20 -1.64 0.44 

W 1.31 3.64 0.48 
-0.61 1.72 0.33 
-1.90 1.40 0.51 
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8.1 Introduction 

The design of a weight estimation model for structural components is usually 

driven by two factors: accuracy and the ability to incorporate the physics behind the 

design of the structure within the model itself, in a way that is both interpretable and 

representative of the real design process. In addition to this, it is desirable to have a 

model which is flexible and can adapt to different levels of quality in the input as well 

as output information required from the approximation. 

The benefit from this is especially crucial at preliminary design stages, where the 

information about the design of the component is continually evolving. The quality of 

the input data is always refined within this phase of the design, with new information 

being added to the model or improved, from the point of view of uncertainty measures 

and variability of the data. 

Previous chapters have described three different adaptive fuzzy systems, namely 

the Takagi-Sugeno-Kang derived through ANFIS, the Mamdani-type FIS obtained 

through KEFPROX and Interval Type-2 FIS, as well as their potential applications 

to the field of weight estimation. In particular, the sample problems presented have 

highlighted benefits and limitations of each of the proposed approaches, when used to 

produce approximations for weight estimation applications. With the ability of repre­

senting the problems through a combination of fuzzy partitions and a comprehensive 

rulebase, all the three methods were able to provide extremely satisfactory performance, 

both in terms of problem formalisation and interpretability as well as in the accuracy 

of the approximation. The analysis of the results, however, highlighted noticeable dif­

ferences in the way the three methodologies represent the knowledge derived in the 

adaptive process, as well as in the details of the problem which can be extrapolated 

from the final model. 

This chapter aims at defining an overall framework for the application of fuzzy 

methodologies in structural weight estimation problems. The chapter will approach the 

problem from two different angles. Initially, the three fuzzy methodologies explored 

through this thesis will be analysed in terms of their individual contributions to the 

derivation of both weight estimates and a comprehensive rulebase. The problem of 
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"level of granularity" in the definition of a weight model will also be explored in re­

lation to the assessment of the different FIS and their performance. In parallel, this 

will lead to both the definition of a framework as well as general guidelines for the 

implementation of a fuzzy model in weight estimation problems. This will focus on 

combining the potential of the three methodologies together and using them to coun­

teract their specific pitfalls, to obtain a versatile, coherent and self-sufficient method 

of approaching weight estimation at the preliminary phase of the design of aircraft 

structures. 

8.2 Fuzzy systems for weight estimation applications 

Fuzzy systems have, so far, proven to be very useful modelling tools for various 

approximation applications. In particular, this research has been trying to investigate 

their capabilities and potential in the field of structural weight estimation. Results, 

however, have brought light to some specific issues in the application of these modelling 

tools in this particular field. 

More specifically, when designing a weight estimation approach around fuzzy 

methodologies, it is vital to assess the problem by focussing on the following: 

1. The desired level of granularity to be achieved in the estimate; 

2. The level of transparency and interpretability of the final rulebase; 

3. The integration and preservation of knowledge of the design; 

4. The required level of flexibility and adaptability to be achieved by the final frame­

work. 

8.2.1 Granularity and interpretability in adaptive fuzzy systems 

The research presented in this thesis has highlighted the potential of adopting 

different fuzzy approaches to the problem of estimating the structural weight of aircraft 

components early in the design process. Fuzzy approaches have proven very suitable 

overall. In terms of approximation capabilities, the modelling accuracy shown by the 
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fuzzy systems used was very satisfactory, with some of the approaches even reaching 

estimates of just over 5 percent of the" as built" value. 

The additional benefit is connected to the choice of fuzzy logic as a modelling 

methodology. All of the fuzzy systems employed demonstrated the capability of de­

composing the design space into fuzzy patches in a way that not only contributes to 

the overall accuracy of the model, but which also strengthened its transparency and 

interpretability. This allowed the definition of individual sets of rules which were able 

to characterise both the problem arid the design of the sample structural components 

with substantial depth. 

The analysis of the results from the three fuzzy methodologies adopted, however, 

revealed significant differences between them, both from a performance perspective 

as well as from the point of view of their individual capabilities and strengths. By 

looking at the Takagi-Sugeno-Kang, the Mamdani and Interval Type-2 FIS in parallel, 

it is possible to highlight a noticeable difference in the way they are able to solve the 

problem at hand. In other words, the three fuzzy approaches differ among themselves 

in the "level of granularity" of the approximations they are able to produce. 

Granularity, in this particular case, is associated with the both the level of 

detail of the approximation produced by the model as well as with the information 

about the design itself that the final solution is able to embody. Figure 8.1 highlights 

how TSK, Mamdani and IT2 FIS differ in terms of their detailed exemplification of 

the problem. Takagi-Sugeno-Kang fuzzy systems, although having demonstrated the 

ability of producing highly representative results across the case studies in this research, 

have also highlighted certain limitations in the quality of the rulebase derived from 

the data of reference. From a fuzzy system benchmark perspective, the case studies 

have shown that TSK systems are undeniably successful in providing great quality 

approximations and deriving an effective network structure for a preliminary analysis 

of the design space of interest. The analysis produced by this system, however, would 

only be of a baseline nature, since the rulebase extracted by the TSK FIS is still 

limited in its ability to capture representative relationship between the variables at 

the boundaries of the design domain. In addition to this, the transparency of the final 

model is very limited, from both rulebase and network perspective. This is due, one one 
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FIG URE 8.1: Diagram showing the variou levels of granularity achieved wi th the different 
fuzzy systems. 

hand. to the derivation of input membership funct ions, which tend to be noticeably 

irregular in both shape and overall distribution across the domain of reference. In 

addition to this, the definition of the outputs as singletons only increases the overall 

lack of interpretability of the final model, in term of both structure and rulebase. 

The next level of granularity is embodied by \ 1amdani-type fuzzy model. In this 

case, results have established a higher capability of generalisa tion within FrS derived 

through ::\EFPROX, whose p erformance h as proven higher in terms of both accuracy 

and quality of rulebase compared to T I\: FIS. ::\EFPROX allow \ hmclani ystems 

to achieve a more streamlined network architecture, which is able to outp erform TSK 

FIS also from the point of view of the analysis of the de ign domain. Variable d fini­

tion is greatly enhanced , with membership functions that are able to fully define the 

design space in a homogeneous and transparent way. This, combined with a higher 

resolution in the definition of the outpnts, C'ontrihutps to a mod el which is overall more 

interpretable and provides a higher fidelity approximat ion. 

The highe t granularity level, however, is achieved through interval type-2 FIS. 
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From the point of view of accuracy, the performance is only marginally lower compared 

to the other two FIS types. Its overall effectiveness for weight estimation, however, is 

much greater. The final network and model structures produced by the fuzzy system are 

considerably simpler, with a much lower number of rules and network parameters. This 

also results in a considerably improved knowledge base, where the individual variables 

are fully defined by membership functions which are highly interpretable and which 

complement each other exhaustively, for an effective definition of the design domain. 

In addition to this, IT2 FIS are also able to achieve a superior level of analysis by the 

evaluation of the uncertainties across the variables within the problem, their combined 

effect and their propagation through the network, all the way down to output level 

uncertainty assessment. 

8.2.2 The problem of preservation of information 

When it comes to aircraft design, it is important t.o acknowledge the value of 

the experience of the designers and their knowledge of both the structures and their 

specific behaviour. Due to the multidisciplinary nature and the overall scale of the 

design, however, it is very common to rely on computational and modelling tools at 

the expense of the designer's insight. The major problems within the aircraft design 

process in the present day are both the ability to effectively combine the potential 

of the computational models with the knowledge embodied by the design team. In 

addition to this, there are also numerous challenges in the sequential integration of the 

results from the mathematical approximations and their experimental assessment back 

into the collective mindset and, ultimately, in the design process. 

In terms of fuzzy logic, adaptive data-driven FIS are widely spread due to their 

ability to "discover" knowledge within the data that might have been precedently 

unrecognised and unaccounted for. The additional benefit of fuzzy systems is the 

possibility of combining the knowledge gathered through the data with that coming 

from experts. The subject of knowledge integration and preservation is a topic of 

continuos analysis from the research community (Cornelissen et al., 2003; Larichev, 

2002; Pedrycz and Vukovich, 2002). The fusion of separate knowledge bases into a 

single, transparent and interpretable set of rules can be a labourious process subjected 
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by strict constraints. 

The main issue lays in the fact that both sets of knowledge, expert-bas d and 

data-driven , are not sufficient on their own to achieve a comprehensive view of the 

problem at hand. In order to create an exhaustive fuzzy model, it is vital to define a 

shared input domain between the expert knowledge and the data pace and analyse 

the compatibility of the two according to: 

1. Granularity; 

2. Range; 

3. Interpretation of fuzzy partit ions. 

FUZZY PARTITIONS I RULES 

EXPERT ------
DATA 

Fuzzy 
partitions 

Common 
fuzzy 

partitioning 

I 
I 
I 
I 

Merged 
knowledge 

base 

FIGURE 8.2: Diagram showing the process of knowledge extraction and amalgamation for fuzzy 
systems (Guillaume and Magdalena, 2006). 

Figure .2 defines the overall proces for the concurrent rule extraction and in­

tegration from both data and experts (Guillaume and Magdalena, 2006). The m thod­

ology it elf can be analysed from the point of view of both fuzzy partitions and fuzzy 

rules. The initial part of the process focuses on the definition of a shared fuzzy parti-
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tioning system between experts and data. The two types of information are different in 

their nature. Expert partitions are qualitative and their definition is somewhat limited 

to the overall number used in the definition of each individual variable considered, their 

range as well as linguistic definition. On the other end of the spectrum, the results 

of the data-driven analysis will help in expanding the quantitative definition of the 

individual partitions. 

The process is driven by six tasks: 

1. Expert definition of fuzzy partitions; 

2. Derivation of fuzzy partitions from data; 

3. Integration of partitions; 

4. Rule elicitation from experts; 

5. Derivation of rules from data; 

6. Integration of the two sets of rulebase. 

Only once the common domain has been established and rules are extracted 

from both expert and the dataset, it is possible to compare the two knowledge bases, 

since they are both rooted in the same common fuzzy infrastructure. The integration 

process itself is then conducted on the basis of the number of fuzzy partitions, their 

complementarity and interpretability, the coverage of the domain of interest and their 

overlapping (Guillaume and Magdalena, 2006). Any discrepancies between data and 

expert-derived rules or fuzzy partitions should be corrected by giving priority to expert 

knowledge, which is the most reliable. Ultimately, the conflict between the two knowl­

edge sets will help expand and update expert knowledge in a controlled and verifiable 

manner. 

8.3 Towards a general fuzzy logic-based framework for 

weight estimation 

The design and weight estimation of aircraft structures is an iterative process, 

which involves many disciplines concurrently over large timescales. In addition to this, 
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the level of detail required at different stages of the process varies greatly. Each design 

stage on its own is a mirror image of the overall process for the component under 

study, but on a smaller scale. For instance, the preliminary design stage of an aircraft 

structural part or subassembly will involve the design of the component itself initially 

only from an empirical to semi-analytical perspective, with a level of detail relative 

only to the general layout definition of the component itself. This will then mature 

into a more comprehensive physics-based analysis of the structure through a series of 

process iterations where increasingly more detail will be added to the definition of the 

part producing, in turn, a higher fidelity definition and assessment of the design. 

The key within this interpretation of the evolution of the design of aircraft 

structures is the idea of flexibility. When designing a weight estimation model for 

aircraft structural components, it is important to keep this image in mind and try and 

define a framework which can accommodate both the iterative nature of the process 

as well as different levels of information quality needed, within both input and output 

definition. 

The choice of fuzzy logic as the foundation of the modelling process was taken 

based on the ability of FIS to be modular and modifiable, to help with the handling of 

a variety of modelling scenarios as well as different levels of granularity in the approx­

imation. The fuzzy tools explored have all shown different capabilities and potential. 

The next step is the creation of a framework, which can fully exploit and benefit from 

these different resources. 

8.3.1 Integration in the design process 

Mass properties teams in charge of weight estimation of aircraft structure through­

out the design process face four major problems: 

1. Lack of data/information; 

2. Delays in the knowledge sharing process across the different departments involved 

in the design; 

3. Strict timelines for deliver abies; 

4. Model validation. 
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Most of the time mass properties teams have to produce weight estimates with 

missing data or lacking the full knowledge behind the design of the component. At 

the same time, usually they are not equipped with numerical models or tools which 

can derive the required data on a smaller scale. Coarser models, in fact, could help 

in producing weight approximations with a lower level of granularity to be used as 

a basis for higher fidelity analysis at later stages, or to act as validation tools when 

the necessary data is received. In addition to providing weight estimation capabilities, 

modelling frameworks for the development of weight approximations at preliminary 

design stages need to allow for the integration of structural design principles within 

their architecture. 

The flowchart in figure 8.3 highlights the layout of a general framework for 

the weight estimation of structural components from first principles, based on the 

combined use of the three fuzzy modelling methodologies analysed within this thesis. 

The reasoning behind the integration of all three approaches within a single framework 

stems from the need to try and combine their specific potential and areas of excellence 

as the foundation of the modelling approach. 

As with the examples analysed in previous chapters, the process begins with the 

analysis of the structure from first principles. The analysis of the requirements that 

the structure has to satisfy follows naturally into the initial definition of the design 

on a feature-base level. The problem is then structured and analysed on the basis of 

the leading features which uniquely define the structure at hand. Input parameters are 

agreed upon based on governing structural features and they will be driving the prelim­

inary structural analysis. This can be designed around several modelling approaches, 

according to the relevant stage of the design the methodology will be applied in. Within 

this research, a combination of semi-analytical formulations and beam bending theory 

was adopted for the derivation of the structural properties of interest for the study. 

Alternatively, results from in house tools or higher fidelity models can also be used 

depending on the level of granularity required by the analysis. 

This approach closely mimics feature-based methods typically used in the weight 

estimation applications (Baker and Smith, 2003), but with the additional benefits stem­

ming from the use of the physics:-based perspective on structural design, which is dis-
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tinctive of analytical weight estimation methodologies. The input variables relative to 

structural and feature parameters as well as the outputs of the structural analysis are 

then used as the basis of the structural and weight modelling in the first level of fuzzy 

approximation. The core of this level is the ANFIS modelling framework. From this 

first stage approximation, the user will be able to derive an initial fuzzy network archi­

tecture which will produce a first stage approximate rulebase, based on a preliminary 

fuzzy definition of both input and output variables. At this point in the process, the 

analysis at this stage will only be of a basic level, due to the specific capabilities of 

the Takagi-Sugeno-Kang FIS at the basis of ANFIS. If the generalization capabilities 

of the model and the final approximation accuracy fall within the limits established 

by the user, the process can continue. Alternatively, the weight engineer can go back 

and re-define the initial problem definition or verify the reliability of the database of 

reference used for the training and testing of the fuzzy model. 

The second stage is based on Mamdani FIS optimized through NEFPROX. The 

initial input and output variable definition optimised through ANFIS is used as a foun­

dation of the level-2 NEFPROX-based fuzzy system optimization. Within this stage, 

the network would be further streamlined in order to derive an improved and more 

interpretable rulebase. Input and output variables will also be enhanced in their fuzzy 

definition, with improved membership functions and more intuitive characterisation. 

As for the first stage, the process can be reiterated from level 1 definition until the· 

required performance is achieved. 

The third and final level of fuzzy abstraction is represented by Interval Type-2 

fuzzy systems. Even in this case, the fuzzy model definition obtained through the 

optimization process in level 2 is used as a basis of the analysis, as a way of reducing 

computational effort needed in the process. At this stage, the fuzzy input and output 

domains are further streamlined and stabilized, while the rulebase achieves the opti­

mum compromise between interpretability and final modelling accuracy. In addition to 

this, the model is further enhanced by the introduction of an additional level of analysis, 

through the formalization of uncertainty estimates and their propagation from input to 

output levels across the fuzzy network. This information can then be fed back across 

the initial design definition, as well as to the previous two levels of fuzzy abstraction 
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(ANFIS and NEFPROX) for further model optimization and knowledge extraction. 

Alternatively, the modelling outputs from the IT2 FIS can be utilized within separate 

structural and weight estimation models for enhanced analysis from the point of view 

of uncertainty and system reliability. 

8.4 Summary 

This chapter explored the problem of defining a general framework for weight 

estimation of aircraft structural components in the preliminary phases of the design 

process, through the use of fuzzy logic methodologies. In particular, the overall aim was 

that of producing both a flexible and comprehensive approach which could be adapted 

to different structures as well as at different levels of design granularity. 

The chapter analysed the different fuzzy methodologies presented through the 

previous case studies in terms of the different requirements posed by the design of a 

framework for weight estimation. Within this context, the concept of granularity was 

introduced, which was formalised from the point of view of the analysis and derivation 

of structural weight, as well as with reference to the three fuzzy approaches anal­

ysed within this research. Takagi-Sugeno-Kang fuzzy systems developed using ANFIS, 

Mamdani FIS designed through NEFPROX and Interval Type-2 fuzzy logic have been 

critically assessed side by side in the light of the results produced by the case studies 

and assessed according to the general requirements of a weight estimation methodology 

and the various output levels expected from it. 

In addition to this, the issue of knowledge completeness and integrity within the 

design and weight estimation of aircraft structures was examined. A general approach 

for the synthesis of the knowledge from experts and designers with that derived through 

the use of adaptive fuzzy techniques was presented and put into context. The aim of 

the process was that of ensuring the derivation of a framework able to provide a weight 

picture which benefits from both the experience of the design team as well as from the 

inter-variable relationships existing within the design, but which are hidden within the 

data. 

From this analysis, it was possible to define the necessary steps and processes 
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for the definition of a comprehensive and stand alone weight estimation process. The 

approach itself builds on the different capabilities and potential offered by the three 

fuzzy methodologies examined. Overall, it integrates them into a multi-layered process 

structure which is sufficiently flexible to accommodate the changing requirements and 

needs of the design process, but which is still able to provide a comprehensive weight 

picture, with complete traceability of the different sources of weight penalties in parallel 

with exhaustive uncertainty analysis. 
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9.1 Achievements and contributions 

This thesis outlines the development and analysis of a weight estimation method­

ology for aircraft structures suitable for the preliminary stages of the aircraft design 

process. In particular, the research conducted explores the potential of adopting fuzzy 

logic as foundation of a more comprehensive and reliable weight assessment of aircraft 

structural components. The material in the thesis follows the evolution of the frame­

work through the various stages of its development and the adaptation of the different 

fuzzy logic techniques to the requirements of the problem. 

Each chapter, with the exception of the critical review of current weight esti­

mation methodologies and the introduction to the field and the theory of fuzzy logic, 

presents original contributions from the author. These include the formalisation of the 

problem of weight estimation for selected structural components, the identification of 

problematic areas within the solution, the adaptation and implementations of different 

adaptive fuzzy logic techniques, as well as the optimisation of the approaches to suit 

the specific requirements of the problems. The process culminated in the definition 

of an overall framework structure for the optimal implementation of the fuzzy logic 

approach for the weight estimation of aircraft structures. 

The individual achievements of this research and its specific contributions to the 

field of weight estimation are presented below: 

1. The field of weight estimation for the aircraft industry has never received con­

siderable interest within the academic community. Being more of an industrial 

problem, the majority of the advancements and developments in the field have 

been restricted to the private sector. This thesis has managed to provide a com­

prehensive and critical overview of the state-of-the-art in field, from the tradi­

tional academic-based approaches to specific industry-led techniques, for a more 

comprehensive understanding of commonalities and differences between the two 

spheres, their relative contributions and the problems they share which have still 

not been resolved. 

2. The identification of fuzzy logic as a suitable tool for the development of a weight 

223 



Chapter 9 

estimation approach, which is able to provide a solution to the problems within 

the weight estimation of structural components at the preliminary phases of the 

design process. In particular, adaptive fuzzy inference systems have been success­

fully applied in a variety of research problems characterised by similar require­

ments and constraints as that of weight estimation, demonstrating to be suitable 

and have the potential to provide an efficient solution to the drawbacks of current 

methodologies. 

3. The creation of an approach for weight estimation with the potential for a range 

of applications, from a simple feature-based weight derivation to a more physics­

based weight analysis of structural components. 

4. The formalisation of the problem of weight estimation of aircraft structural com­

ponents for implementation more robust methodology to be applied at prelimi­

nary design phases. In comparison to the majority of weight estimation methods 

for early project phases which are of a purely empirical nature, the approach pre­

sented in this thesis provides a weight analysis which mimics the actual design 

process of the components. The approach is built on an analytical component­

based load derivation from first principles, which forms the basis of a fuzzy logic­

based structural sizing and weight estimation of the component. 

5. The creation of a weight estimation methodology for preliminary design phases 

which is also able to incorporate the effects of system installation as well as inputs 

relative to the installation of the component in the final assembly. 

6. The successful application of adaptive fuzzy logic techniques to the weight es­

timation of real aircraft structural components. In particular, three different 

fuzzy tools were tested, namely Adaptive Network-Based Fuzzy Inference Sys­

tems (ANFIS), Neuro-Fuzzy Function Approximation (NEFPROX) and Interval 

Type-2 fuzzy systems. All three techniques were used for the sizing and weight 

of spoiler and aileron attachment ribs, with data related to loads and geometries 

of as-built structures from both categories provided by Airbus UK. 
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7. The derivation of a method for the creation of a usable and modifiable knowl­

edge base for the component being analysed. The use of fuzzy logic as a basis of 

the methodology presented in this research, allows the creation of a set of rules 

governing the relationship between the different variables for both the structural 

sizing and weight derivation of the component. The structure of the rulebase 

combines a computational base with a graphical structure for ease of interpre­

tation through the visual representation of the causalities between the different 

variables and their impact on the final output. This will enable the designer 

with concrete ways of improving the decision making process from the very early 

stages, by evaluating not only the impact of the individual design decisions but 

also their combined effect on the final structural weight. 

8. The development of a method which can be used both as a stand alone weight 

estimation approach, by providing detailed and reliable results based on physics­

based sizing derivation, as well as a validation tool for higher fidelity computa­

tional models. In addition to this, the tool represents a fast and computationally 

inexpensive way to obtain reliable and traceable estimates, which can act as safety 

checks for the results of models in later design phases. 

9. The development and implementation of uncertainty analysis and propagation 

across the sizing and weight estimation process. This was achieved though the 

use of Interval Type-2 fuzzy logic within the framework. The use of footprints 

of uncertainty (FODs) within the knowledge base derived by the system allows 

for a both quantitative and visual assessment of the effects of the uncertainties 

within the problem on the quality of the analysis. 

10. The formalisation of an overall framework for the weight estimation of aircraft 

structural components, which is sufficiently flexible as well as easily adaptable to 

conform to different levels of granularity that may be required in the analysis at 

preliminary design stages. 
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11. A general approach for the successful synthesis of the knowledge from experts 

and designers with that discovered from the data through the use of adaptive 

fuzzy techniques was presented and integrated within the framework, to ensure 

the derivation of a more complete and exhaustive weight picture. 

9.2 Conclusions 

The research presented in this thesis has provided many significant contribu­

tions to the field of weight estimation of aircraft structures. In particular, the greatest 

achievement was proving the applicability of fuzzy logic theory and tools as foundation 

for the development of successful and reliable computational models for weight estima­

tion. A number of valuable conclusions can be drawn from the material presented. 

1. The relationships between the different variables, both within the sizing and 

weight analysis, are highly non-linear. The use of traditional statistical linear 

relationships for the weight prediction of structural components at preliminary 

design stages will result in erroneous and misleading estimates. 

2. The results from all the different fuzzy logic approaches for both structural case 

studies presented in this thesis highlight the importance of the inclusion of system 

installation considerations as an integral part of the weight estimation process. 

The impact of system loading on the structural weight, although not as consider­

able as that resulting from other primary loading conditions, is still considerably 

noticeable and neglecting it would result in an incomplete and unrepresentative 

estimation of the component weight. 

3. The results from the three fuzzy methods examined in this research, although 

different amongst themselves in terms of accuracy, have provided a way of cross­

validating the models, by highlighting closely similar trends across the variables 

of interest. 
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4. This research also provided evidence of the superiority of Mamdani over TSK 

FIS when applied to the derivation of weight estimates. Mamdani-type fuzzy 

systems proved to derive higher quality approximations from the point of view of 

accuracy, interpretability, simplicity of the final network structure and rulebase. 

5. Results have demonstrated the ability to achieve a reliable uncertainty analysis 

by using interval type-2 fuzzy logic in environments, like weight estimation at 

preliminary design phases, which are characterised by lack of information and a 

high degree of uncertainty and variability in the definition of their parameters. 

6. In addition to accurate approximations, the fuzzy approaches presented were 

able to successful derive reliable trends and to identify of principal causalities 

between the numerous variables of interest. By idealising the both spoiler and 

aileron support ribs as aggregations of beam structures, the results were also 

able to highlight the possible weight penalties resulting from the selection of a 

particular design solution instead of another, or from the possible integration of 

system routing within the structural assembly itself. 

9.3 Recommendations for future work 

Being the first attempt at the application of fuzzy logic theory in the field of 

weight estimation for aircraft structures, there is plenty of scope to expand the research 

presented in this thesis. Firstly, there is a great potential in the methodologies analysed 

to provide full weight estimation capabilities for the entire wing leading and trailing 

edges. The 3-level sizing and weight estimation approach used for the application of 

ANFIS, NEFPROX and Interval Type-2 fuzzy inference systems on spoiler and aileron 

attachment ribs could be easily modifiable for the analysis of other fixed secondary 

structures, such as leading edge ribs and falsework, as well as for the movables (e.g. 

flaps, slats, ailerons, etc.). In addition to this, the same basic design approach could also 

be extended to other secondary structures, as well as to primary structural components. 

Ideal examples could be the wing ribs, where the fuzzy logic approach could explore 
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the weight inefficiencies in the structures resulting from loading considerations, system 

routing as well as integration of the structure within the main assembly. 

Fuzzy logic could be a very powerful tool in the preliminary phases of the de­

sign of structures. The framework as well as the individual approaches presented in 

this thesis could be modified to provide the designer with insight on how different 

manufacturing processes or design philosophies can affect the final weight of the struc­

ture under consideration. The main steps that will have to be taken in approaching 

the problem from this angle will have to focus on the definition of a successful way 

to parametrise the problem, in order to link the necessary information about the to 

specific manufacturing, fabrication or assembly processes. 

The research has also highlighted the potential of using Interval Type-2 fuzzy 

logic as tool to conduct more comprehensive and intuitive uncertainty analysis at the 

preliminary phases of the design. At this point in the design, the lack of information 

and data make the results of methods traditional probability theory unreliable and 

unrepresentative. IT2 FIS could be applied in weight estimation, as well as in other 

areas within the design, to improve the understanding of the impact of individual 

decisions on the final product . 

The results have also highlighted the potential of integration fuzzy logic weight 

estimation in computational tools for the design and analysis of structural components 

at the preliminary stages of the process. From a larger scale perspective, there is 

scope for the integration of the proposed framework within a multidisciplinary design 

environment. The use of fuzzy logic could allow for an easier transfer of information 

between the different disciplines, as well as ensure the preservation of the information 

extracted from both experts and data during the design process across the various 

design domains. 

The value of this work is emphasised by the long term research scope that it 

has brought to light. The hope is for the engineering community to realise the value 

and the importance of weight estimation, both in the aircraft sector as well as in the 

automotive field, in order to further the research in the area and move towards a truly 

multidisciplinary design. 
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