
JOURNAL OF APPLIED PHYSIOLOGY 1

Measures of Sympathetic and Parasympathetic
Autonomic Outflow from Heartbeat Dynamics
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Abstract

Rationale: Reliable and effective non-invasive measures of sympathetic and parasympathetic peripheral outflow are of crucial
importance in cardiovascular physiology. Although many techniques have been proposed to take up this long-lasting challenge,
none has proposed a satisfying discrimination of the dynamics of the two separate branches. Spectral analysis of heart rate
variability is the most currently used technique for such assessment. Despite its widespread use, it has been demonstrated that the
subdivision in the low frequency (LF) and high frequency (HF) bands does not fully reflect separate influences of the sympathetic
and parasympathetic branches, respectively, mainly due to their simultaneous action in the LF.

Objective: Two novel heartbeat-derived autonomic measures, the Sympathetic Activity Index (SAI) and Parasympathetic
Activity Index (PAI), are proposed to separately assess the time-varying autonomic nervous system (ANS) synergic functions.
Their efficacy is validated in landmark autonomic manoeuvres generally employed in clinical settings.

Methods and Results: The novel measures move beyond the classical frequency domain paradigm through identification of a
set of coefficients associated with a proper combination of Laguerre base functions. The resulting measures were compared to the
traditional LF and HF power. A total of 236 ECG recordings were analyzed for validation, including autonomic outflow changes
elicited by procedures of different nature and temporal variation, such as postural changes, lower body negative pressure, and
handgrip tests.

Conclusions: The proposed SAI-PAI measures consistently outperform traditional frequency-domain indices in tracking ex-
pected instantaneous autonomic variations, both vagal and sympathetic, and may aid clinical decision making showing reduced
inter-subject variability and physiologically-plausible dynamics.

Index Terms

Heart Rate Variability (HRV), Autonomic Nervous System, Sympatho-Vagal Balance, Laguerre expansion, Sympathetic
Activity Index (SAI), Parasympathetic Activity Index (PAI).

I. NEW & NOTEWORTHY

While it is possible to obtain reliable estimates of parasympathetic activity from the ECG, a satisfying method to disentangle
the sympathetic component from HRV has not been proposed yet. To overcome this long-lasting limitation, we propose two
novel HRV-based indices, the Sympathetic and Parasympathetic Activity Index.
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II. INTRODUCTION

Heartbeat dynamics and its spontaneous fluctuations are directly controlled by autonomic nervous system (ANS) outflow
to the heart [26]. Specifically, the multi-path feedback system for neural control of the heart is manifested by the complex
interaction between the sympathetic and parasympathetic (vagal) limbs of the ANS [43]. Typically, for cardiovascular control,
the sympathetic system is activated during the so-called “fight-or-flight” reactions, when there are drops in arterial pressure
due to gravitational changes and during exercise, whereas the parasympathetic system is predominates during a variety of
resting conditions. The two systems generally act complementary, i.e. the increase of one usually corresponds to a decrease of
the other; however, they present quite different temporal dynamics mainly due to the different response properties of the two
systems.

Sympathetic and parasympathetic activity interact to modify sinus node activity and produce the time-varying spontaneous
variability of heart rate (HR), which is modulated by three major physiological factors: blood-pressure control, thermal
regulation, and respiration. Indeed, the cardiovascular homeostatic control is directed at maintaining arterial blood pressure
according to peripheral blood flow demand.

Accordingly, in many cardiovascular diseases, abnormalities of autonomic cardiac control play an important role in the
development and/or in the progression of the underlying pathological process. Examples include hypertension [18], [31], major
depression [57], cirrhosis and ascites [16], obesity [15], [56], diabetes [13], [15], and heart failure [25], [35]. Because the two
systems might be differently affected by pathological outcomes, significant cardiovascular research has been focused on the
reliable and effective assessment of the separate influences of parasympathetic and sympathetic neural pathways [2], [3], [19],
[27], [33], [36], [38], [40], [47].

In this study we present a novel parametric model of cardiovascular control, based on a specific combinatorial use of
orthonormal Laguerre Functions. This unique representation is able to separately characterize sympathetic and parasympathetic
activity by using only the timing of heartbeats. The rationale behind the proposed SAI-PAI approach starts from the observation
that the cholinergic and adrenergic drives have different temporal dynamics, partly overlapping in the frequency domain. For
this reason, instead of base functions defined in limited frequency ranges (like the sinusoids for a simple frequency transform), a
proper weighted sum and/or subtraction of primitives unselectively spanning the frequency domain would be able to decompose
the heartbeat variability due to ANS activity by disentangling the unique contribution of each autonomic branch. Such primitives
can be defined from discrete-time orthonormal Laguerre bases, which for a given α have equal magnitude and different phase
spectra in the frequency domain [32], [34], [53].

Technically, heartbeat series are convolved through the Laguerre Functions in order to identify personalized time-varying
Laguerre coefficients which are embedded in an autoregressive model combining the input data. Finally, a specifically tailored
combination of the Laguerre coefficients defines two independent measures: the Sympathetic Activity Index (SAI) and the
Parasympathetic Activity Index (PAI). According to the estimation method chosen to derive the Laguerre coefficients, it is
possible to obtain finite SAI and PAI estimates within a given observation in time, e.g. by using least square and maximum
likelihood estimation methods, to obtain beat-to-beat SAI and PAI estimates in time, e.g. by using, Kalman filtering, or to
obtain instantaneous SAI and PAI estimates in time by using point-process modeling [7], [53].

The presented results are aimed at comparing the new definitions of ANS activity with current frequency-based methods in
several ECG studies involving sympatho-vagal modulations induced by postural changes (standing, slow tilting and fast tilting)
[53], selective autonomic blockade [41], lower body negative pressure [61], [62], and handgrip [61], [62].

We show experimental results on SAI, PAI, as well as LF and HF powers using time-varying estimates gathered from
Kalman and point-process methods. When possible, we emphasize the use of point-process statistics for the SAI and PAI
estimates because of several advantages [7], [53]: i) from the event-related structure of the R-waves, this approach provides
instantaneous heartbeat estimates in the time and frequency domains; ii) it assesses the model goodness-of-fit [7], [53], i.e.
how well a given model describes the observed R-R interval series; and iii) there is no need for interpolation methods to
be applied on the original RR interval series. Note that our point-process modeling is based on a physiological plausible,
history-dependent inverse Gaussian probability functions [7], [14], [53].

The manuscript is organized as follows: Section III briefly describes the fundamental physiology of the sympathetic and
parasympathetic nervous systems, Section IV reports on the current state of the art of estimation of ANS dynamics from
heartbeats, Section V explains technical details on the SAI and PAI estimation based on Laguerre functions, Sections VI and
VII describe data and results, respectively, related to the several experimental protocols employed for the measures validation,
and Section VIII contains the discussion and conclusions.

III. PHYSIOLOGY OF THE SYMPATHETIC AND PARASYMPATHETIC SYSTEMS AT A GLANCE

The sympathetic and parasympathetic nervous systems are quite different functionally, anatomically and physiologically.
Both systems carry sensory (afferent) signals to the brain and spinal cord, and efferent signals from the brain to the target
organs. The Central Nervous System (CNS) control comes mostly from the hypothalamus, with inputs also from the limbic
system and the reticular activating system [46]. The nucleus of the solitary tract in the medulla is the primary site of termination
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of cardiopulmonary afferents from cranial nerves involved in brainstem reflex control. Here, the connection between the CNS
and its effector consists of two kinds of neurons: the pre-ganglionic neuron and the post-ganglionic neuron. The synapses
between these two neurons lie outside the CNS, in autonomic ganglia.

The parasympathetic system originates in the brainstem (cranial nerves III, VII, IX, and X) and sacral region of the
spinal cord (S2 − S4). The functions associated with this system are basically related to rest and digestive activity. Non-
cardiopulmonary parasympathetic control is involved in salivation, production of digestive enzymes, peristalsis, urination and
defecation. Cardiopulmonary actions include reducing HR and blood pressure, reducing the respiratory rate, and conserving
energy through relaxation and rest. The principal neurotransmitter is acetylcholine, released from both the preganglionic and
the postganglionic neurons, and binding to cholinergic receptors. For the organism as a whole, the most important part of this
system is the vagus nerve, which supplies parasympathetic signals to almost all the organs of the thorax and abdomen.

The sympathetic system originates in the thoracic and lumbar regions of the spinal cord (T1 − L2). The role of this
system is related to the so called ’fight-or-flight’ response. Thus, the sympathetic system prepares the body for situations
requiring alertness or strength, or situations that arouse fear, anger, excitement, or embarrassment. In these kind of situations,
the sympathetic nervous system may increase the HR, causes dilation of the bronchioles of the lungs (increasing oxygen
intake), and contributes to dilation of blood vessels that supply the heart and skeletal muscles (increasing blood supply)
while decreasing blood supply to organs not involved in the response (e.g., gut). The adrenal medulla is stimulated to release
epinephrine (adrenaline) and norepinephrine (noradrenalin), which in turn increases the metabolic rate of cells and stimulates
the liver to release glucose into the blood. Sweat glands are stimulated to produce sweat. The sympathetic nervous system
afferents are also responsible for the transmission of visceral pain from organs such as the gut, bladder and uterus.

Many functions of the sympathetic nervous system oppose those of the parasympathetic nervous system. Although it is
noteworthy that not all organs receive innervation from both components of the ANS, it is quite often the case that multiple
interactions between the two systems result in a nonlinear transmission of neural information to the organ of interest. A good
example of such interaction is evident in considering the autonomic outflow to the heart.

In fact, the sympathetic and parasympathetic branches, through their continuous dynamic interaction, modulate the HR
response by means of the so-called bidirectional augmentation [45]: during a predominant sympathetic control, a concomitant
tonic vagal signal increases the gain of the transfer function relating dynamic sympathetic stimulation to HR, and viceversa
(during a predominant parasympathetic control, a concomitant tonic sympathetic signal increases the gain of the transfer
function relating dynamic vagal stimulation to HR). Such a bidirectional augmentation is mediated by cytosolic adenosine
3’,5’-cyclic monophosphate (cAMP), which constitutes a component of the biological basis of nonlinear autonomic control on
heartbeat dynamics.

IV. ESTIMATION METHODS OF SYMPATHETIC AND PARASYMPATHETIC PERIPHERAL OUTFLOW IN HUMANS

Several methodologies for the assessment of sympathetic and parasympathetic activity in humans have been proposed through-
out the past decades. Historically, measurement of plasma noradrenaline have represented a gold standard for the quantification
of sympathetic neural functions [19]. More recently, direct recording of sympathetic nerve activity via microneurography,
direct catecholamine measurements, and noradrenaline radiotracer have largely supplanted the plasma noradrenaline approach
[19]. Neural imaging techniques also allow for direct visualization of sympathetic innervation of human organs, providing
information on the in vivo metabolism of noradrenaline in different cardiovascular regions [19]. However, such techniques
require expensive equipment and technical support, and are not useful for assessing daily activities as do devices such as a
Holter monitor or other miniaturized wearable devices. Furthermore, power spectral density analysis of electrodermal activity
has been recently proposed for the assessment of sympathetic functions [37].

A. Current Autonomic Estimates using Heart Rate Variability and the Frequency Domain Paradigm

Despite being widely introduced into the scientific practice and literature, the methods of autonomic activity evaluation
noted above are not commonly used in clinical settings [19]. Conversely, processing of heart rate data, commonly measured by
detecting R-waves from the electrocardiogram (ECG), and the superimposed instantaneous heartbeat variations, referred to as
Heart Rate Variability (HRV) has been of growing importance in the attempt to develop real-time applications which use simple,
non-invasive sensors in clinical and non-clinical settings [38], [44], [47]. In fact, monitors of cardiovascular variability based
on standard clinical multichannel signal acquisition equipment, single-channel miniature devices, smartphones, or wearable
technology for ambulatory monitoring, have been effectively used in numerous settings, including the intensive care unit, the
operating room, during normal daily activities, sleep, exercise and during changes in emotional state, or well-being states (see
[38], [40], [47] for reviews including many other applications).

From a technical point of view, the most widely used methodology to quantitatively assess ANS dynamics is based on a
frequency-domain analysis, i.e. computing the HRV power spectral density [2], [3], [27], [36], [38], [47]. Specifically, power
in the high frequencies (HF: 0.15-0.4 Hz) of the HRV comprises respiratory-associated oscillations, which are mediated via
the vagus nerve. Of note, the modulation of HR due to respiratory drive to cardiac vagal motor neurons refers to the so-called
respiratory sinus arrhythmia [3], [38], [47], [65]. Slower oscillations in the low frequencies (LF: 0.04-0.15 Hz) reflect to some
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extent slower closed-loop compensatory changes of blood pressure and HR mediated through the baroreflex, and involving
both autonomic branches (sympathetic and parasympathetic drive) [2], [3], [27], [36], [38], [47].

Specifically, the LF rhythm (centered at 0.1 Hz) of HRV is mainly due to arterial baroreflex modulation. It is also dramatically
affected by the presence of vasomotor noise, which is amplified by the resonance in the baroreflex loop, placed around 0.1
Hz. Previous studies [1], [28], [30] suggested that the LF component of the power spectrum of HRV is strongly affected by
the sympathetic system as changes in the sympathetic gains cause a significant alteration in this component of the spectrum.
However, it is clear that changes below 0.15 Hz can be and are mediated by both cardiac vagal and sympathetic activity
[41]. Furthermore, recent evidences and meta-analyses point out that how the HRV-LF band can be dramatically affected by
parasympathetic dynamics [17], [39].

The HRV-HF components (>0.15 Hz) are determined by two concurrent mechanisms. The first is the effect of systemic
arterial pressure changes mediated by the baroreflex. Such a pressure exhibits respiratory fluctuations caused by the intrathoracic
and abdominal pressure changes (mechanical effect) and by the lung stretch receptor reflex working on resistance (neurogenic
effect). These fluctuations systematically stimulate the baroreflex at the respiratory period. In this high frequency band, however,
the baroreflex works entirely through its strong and fast vagal component, whereas the sympathetic component is almost
completely suppressed because of its low-pass filtering dynamics. The second mechanism, is due to a combination of the lung
stretch receptor reflex effect on vagal activity and respiratory related brain stem gating of vagal outflow. A common and widely
accepted viewpoint in the literature is that the HF peak and power in the HRV-HF band can always be considered as a reliable
index of vagal activity [17], [38], [39], [47], [50]. Nevertheless, the HF peak is modulated by all factors affecting the input to
baroreflex and the lung stretch reflex (such as the depth and frequency of breathing [22], venous compliances in the thoracic
and abdominal cavity, posture changes [48], etc.) and depends strongly on the sensitivity of the cardiac pacemaker to efferent
activity. Hence, as suggested by Akselrod [1] and Malpas [30], in different subjects and/or under different breathing conditions,
the HF spectral component may be largely different even in the presence of an equivalent vagal gain. Importantly, due to the
mentioned ambiguity of the LF and HF power indices, Malliani et al. [29] proposed the ratio of the LF power to HF power
(hereinafter LF/HF) as an index of sympatho-vagal balance. Note that the use of LF/HF ratio to assess the sympathetic and
parasympathetic balance has also been challenged [17], [39].

Despite the mentioned references and its widespread use, HRV spectral analysis is far from being a definitive, reliable
methodology for the non-invasive assessment of ANS functions. This has been known since more than twenty years. As a
matter of fact, a review on how to assess sympathetic activity in humans from Grassi et al. in 1999 [19] reports: “[...] the
approach based on spectral analysis of HR and blood pressure signals has been shown to have important limitations which
prevent the method from faithfully reflecting sympathetic cardiovascular drive.”

To date, standard HRV-based approaches have not been able to provide measures of autonomic activity which overcome
the large variability between normal subjects, thus limiting their use in clinical settings. A few investigations have attempted
to overcome this significant limitation. Specifically, Vetter et al. proposed to quantify the ANS activity using a blind source
separation technique of HR and blood pressure variability [58], as well using HR and QT waves intervals variability [59],
whereas, more recently, Chen et al. [10] derived ANS activity indices based on a multi-signal analysis of the R-R variability by
processing the HR, blood pressure, and the instantaneous lung volume. Similarly, Xiao et al. [63], [64] represented sympathetic
and parasympathetic functions modeling the coupling mechanism between lung volume and HR. Although these sophisticated
methods might have been successful in separating sympathetic and parasympathetic dynamics, they do require recordings of
multiple physiological parameters to obtain the estimations.

Concerning the use of RR interval series exclusively, Chon et al. introduced a principal dynamic mode analysis of HRV
to separately characterize the sympathetic and the parasympathetic activity [66], [67]. However, the authors reported that the
algorithm requires proper calibration and that a broadband HR spectrum is a strict requirement of such principal dynamic
modes, a condition which may not be satisfied in some subjects [66].

To summarize, despite a few encouraging attempts, no methodology to date has been able to provide a separate, simultaneous,
independent assessment of sympathetic and vagal instantaneous dynamics that can be (a) obtained exclusively from the heartbeat,
(b) applied to a wide range of subjects, (c) specifically tailored to the individual, and (d) allowing for time-varying/instantaneous
quantification (see [8] for review).

V. DERIVATION OF THE NOVEL SYMPATHETIC AND PARASYMPATHETIC ACTIVITY MEASURES

The ‘classic’ frequency-domain characterization is based on the Fourier transform, an operator which represents HRV in the
frequency-space. The base functions of this space are defined by each sample along frequency. In the HRV case, these values
are ’grouped’ by frequency range (VLF, LF, HF) as recommended in a 1996 guidelines document [47]. The Autoregressive
formulation has the property of reducing the dimensionality of the frequency-space by defining a limited number of preferred
oscillations (associated with the poles of the transfer function) dependent on the autoregression order. The variability related to
each pole is then univocally associated to a specific frequency, and can only be accounted for within each respective frequency
range (again VLF, LF, HF). This model has been of great success in many applications for autonomic assessment, as the
frequencies/poles within the HF frequency range have been directly associated with vagal dynamics in several instances. On
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Fig. 1. Laguerre polynomials of order 8 for α = 0.2 plotted over the first 40 lags.

the other hand, important limitations of such frequency subdivision have been recently pointed out [17], [19], [39], the most
important being related to the fact that the LF range contains both vagal and sympathetic dynamics, and that respiratory
dynamics shifts to the LF range would consequently affect the HF quantification of vagal influence. The primary rationale of
this study is to overcome limitations imposed by the artificial separation of frequency ranges by defining a model whose base
functions are not defined in the frequency domain, Laguerre functions, which are a set of mathematical functions of time.
Laguerre functions are characterized by a specific “order" (which can vary from zero to any other positive integer number),
and a specific value “α" which characterizes fine modulation of the number of oscillations across zero, as well as very specific
time responses. If we multiply two Laguerre functions of any order, the area under the curve is zero, a function of the property
of “orthogonality". These functions are adopted as the base functions of a “new" Laguerre-space.

The proposed SAI and PAI measures are derived characterizing and predicting each heartbeat event given a combination
of past information expressed as cardiovascular variability. Such formulation has been shown to improve the model parameter
identification and reduce the number of parameters to be estimated [32], [34], [53].

Since the RR intervals constitute the observation values used to estimate the model, the Laguerre-based characterization and
prediction of heartbeat events by definition embed both sympathetic and parasympathetic information. Most importantly, the
SAI collects a combination of Laguerre functions with slow responses (reflecting the slower conduction velocity associated with
the sympathethic nerve), whereas the PAI combines contributions from Laguerre functions of higher order, thus representing
responses along the entire frequency range (and not only HF as in the standard spectral identification). As described below, a
pharmacological autonomic blockade protocol was used as the training set to identify isolated dynamics. In this stage, extensive
analysis was performed in confirming the effectiveness of the Laguerre-derived dynamics to separate the two cardiovascular
autonomic outflows, and consequently identify the best combinatorial coefficients.

A. Derivation Methodology

As noted in the Introduction, the scientific rationale behind the hereby proposed measures of autonomic activity, SAI and
PAI, relies on a proper combination of the so-called Laguerre coefficients, derived from the use of Laguerre functions, which
have unique properties in the time and frequency domains, as well as in their high-order statistics [32], [34], [53].

Block schemes of all the methodological stages involved in the SAI-PAI estimation are described in Figs 3 and 4 of the
Supplementary Materials.

The jth-order discrete-time orthonormal Laguerre function is defined as follows:

φj(n) = α
n−j
2 (1− α)

1
2

j∑

i=0

(−1)i
(
n

i

)(
j

i

)
αj−i(1− α)i, (n ≥ 0)

Figure 1 shows the first Laguerre Functions for a given α value (0 < α < 1), which determines the rate of exponential
asymptotic decline of these functions.

Given a set of K heartbeat events {uk}Kk=1 (e.g., R-waves from the ECG), let RRk = uk − uk−1 > 0 denote the kth RR
interval, or equivalently, the waiting time until the next R-wave event.
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Here, we propose to model heartbeat dynamics with µRR(t,Ht, ξ(t)) at each time t as function of past RR intervals along
with the Laguerre expansion. We take one step further and try to separate the influence of the sympathetic and parasympathetic
system to the µRR(t,Ht, ξ(t)) estimation. Hence:

µRR(t,Ht, ξ(t)) = g0(t) +

PSymp∑

j=0

g1(j, t) lj(t)

︸ ︷︷ ︸
Sympathetic

+

PParSymp∑

j=PSymp+1

g1(j, t) lj(t)

︸ ︷︷ ︸
Parasympathetic

(1)

where

lj(t) =

Ñ(t)∑

n=1

φj(n)RRÑ(t)−n (2)

is the jth-order Laguerre filter output, and Ñ(t) denotes the index of the previous R-wave event occurred before time t,
Ht = (uk, RRk, RRk−1, ..., RRk−K+1) is the history of all previous RR intervals before time t, and ξ(t) = {g0(t), g1(t)} is
the vector of the time-varying Laguerre coefficients to be estimated.

In an attempt to match the frequency response of the Laguerre filters with the dynamic response of the sympathetic and the
parasympathetic systems [2], [3], [27], [36], [38], [41], [47], we have chosen PSymp = 1 and PParSymp = 8. After preliminary
testing on synthetic and experimental data (not shown), α = 0.2 was chosen for the SAI and PAI derivation.

Finally, the definition of the SAI and PAI as a combination of disentangled Laguerre coefficients {g1} is as follows:

SAI(t, ξ(t)) = ΨS0
+

N1∑

j=1

ΨSj
g1(j − 1, t) (3)

PAI(t, ξ(t)) = ΨP0
+

N2∑

j=1

ΨPj
g1(j + (PSymp + 1), t) (4)

with N1 = PSymp + 1 and N2 = PParSymp − (PSymp + 1).
Thanks to its parametric structure, the model-defined parameters can be updated along time using the most efficient and

popular methods reported in recent literature for recursive parameter estimation.
However, by using the point-process modeling, the Laguerre coefficients and, consequently, µRR(t,Ht, ξ(t)), SAI(t, ξ(t)),

and PAI(t, ξ(t)) can be defined in a continuous-time fashion, thus obtaining instantaneous autonomic activity measures at a
very fine timescale with no interpolation between the arrival times of two beats.

In this study, the estimation of all model coefficients, including Laguerre coefficients {g1}, was performed using a local
maximum-likelihood estimation method. Additionally, model goodness-of-fit was based on the Kolmogorov-Smirnov (KS)
tests and associated KS statistics [7]. Particularly, the recursive, causal nature of the estimation allows for prediction of each
new observation, given the previous history, independently at each iteration. The model and all its parameters are therefore
also updated at each iteration without priors. Autocorrelation plots were also utilized to test the independence of the model-
transformed intervals [7]. Exhaustive mathematical details on this matter are reported in the Supplementary Materials.

Optimal estimation of the ΨS and ΨP coefficients is a critical aspect in the proposed methodology. In fact, these values
determine the capability of the algorithm to separate the sympathetic and parasympathetic components, both embedded in
the disentangled Laguerre coefficients g1. The ΨS and ΨP coefficients were obtained from respective sympathetic and
parasympathetic blockades. Then, averaged values from subjects were fixed and used to obtain the linear impulse response
functions from the Laguerre expansion approach.

In order to find unique ΨS and ΨP coefficients of broad applicability, i.e. suitable for a generic human subject, a specific a
priori estimation was performed using a multiple linear regression technique on data involving selective autonomic blockade
during postural changes (see [41] for experimental details). This dataset was used as a training set by following the procedure,
which is summarized as follows:
• ECG data was utilized from 7 healthy subjects with atropine-induced parasympathetic blockade during a supine resting

state and after a postural change by standing test.
• These data from each subject were used to derive the “purely” sympathetic coefficients {ΨS(j, n)}Nn=1 by means of

multiple linear regression considering a step function template having low value throughout the supine resting state, and
high value throughout the standing phase after standing.

• Coefficients of general applicability for the sympathetic activity were then obtained through the average among subjects:
{ΨSj

} = 〈{ΨS(j, n)}Nn=1〉N .
Likewise, the “purely” parasympathetic coefficients {ΨPj

} were obtained by averaging among 7 subjects using data gathered
during sympathetic blockade, which was induced through a bolus of propranolol, and performing a multiple linear regression
of a step function template having high value throughout the supine resting state, and low value throughout the standing phase
after standing. Estimated coefficients are reported in Section VII-A. Further test and validation datasets follow below.
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VI. EXPERIMENTAL SETUP

Autonomic activity measures were validated by analysing an extensive collection of experimental ECG data, and comparing
SAI, PAI, and their ratio SAI/PAI with LF and HF power, and their ratio LF/HF derived from standard frequency domain
analyses. Experimental recordings were gathered during maneuvers which are well known in the literature to induce strong
sympatho-vagal changes. These ’gold-standard’ studies for assessing autonomic activity are as follows: tilt-table protocols
including i) stand-up, ii) slow tilt (i.e. 50 s from 0 to 70 degrees) and iii) fast tilt (i.e. 2 s from 0 to 70 degrees); iv) supine
and standing during full autonomic blockade; v) lower body negative pressure test; vi) and handgrip test.

Details on these experimental protocols follow below.

A. Tilt-table protocol

A single-lead ECG was continuously recorded from 10 healthy subjects undergoing a tilt-table protocol. Each subject was
first placed horizontally in a supine position, with restraints used to secure him/her at the waist, arms, and hands. The subject
was then tilted from the horizontal to the vertical position and returned to the horizontal position either through a “slow” tilt
(50 s from 0 to 70 degrees), or “fast” (i.e. 2 s from 0 to 70 degrees). Stand-up sessions were also included.

The study was conducted at the Massachusetts Institute of Technology (MIT) General Clinical Research Center (GCRC)
and was approved by the MIT Institutional Review Board and the GCRC Scientific Advisory Committee. Subjects were five
men and five women: age (mean±SD) 28.7±1.2 yr. Each subject performed six sessions (two stand-up, two slow tilt, and two
fast tilt) remaining in each upright state for 3 min. The protocol lasted 55–75 min (3,300–4,500 s).

Resting state is known to be associated with a dominant vagal activity, whereas states after tilting are known to be associated
with a dominant sympathetic activity.

Full details on this experimental protocol can be found in [7], [20], [21], [53].

B. Lower Body Negative Pressure (LBNP)

Fifty-eight healthy controls between 12 and 18 years volunteered from schools in Oslo, Norway. Controls having a chronic
disease (such as allergy) or using drugs (including contraceptive pills) on a regular basis were excluded for the study. One
week before the experiments, all participants were instructed not to drink beverages containing alcohol or caffeine, not to take
any drugs, and not to use tobacco products. They were instructed to fast overnight the day before the experiments. Written,
informed consent was obtained from all participants and their parents. The study complied with the Declaration of Helsinki
and was approved by the regional committee for ethics in medical research. Experiments started at 11 a.m. The participants
had been offered a light meal 2 hours before, but were not allowed to eat or drink otherwise. They lay supine with their
lower body in a plastic chamber from which air could be evacuated very rapidly, reaching a predefined negative pressure
within milliseconds. They were familiarized with the test situations in 2 pilot experiments. Five minutes were used for baseline
recording (resting state). Then, LBNP of -20 mm Hg was applied for 6 minutes. All subjects but one performed this procedure
twice with continuous ECG recordings. Eight additional recordings were excluded from the analyses due to low technical
quality, therefore the total number of recordings used for this study was 106.

It is known that the resting state is associated with a dominant vagal activity, whereas the LBNP state is associated with a
dominant sympathetic activity. Full details on this experimental protocol can be found in [61], [62].

C. Handgrip

The same subjects who performed the LBNP described in the previous paragraph also underwent a handgrip experimental
procedure. Handgrip is a common test for studies of cardiovascular adjustments during isometric exercise. During handgrip,
the cardiovascular adjustments are mainly due to CNS input to the baroreflex, thereby enhancing sympathetic neural activity.

Data used for this study included, for each subject, a 1 minute segment before each handgrip (baseline) and a 1 minute sub-
sequent segment during handgrip with 30% of maximal voluntary contraction force (handgrip). Full details on this experimental
protocol can be found in [61], [62].

D. Heartbeat Correction and Statistical Analysis

In order to provide reliable results, all RR-interval series must be free of algorithmic (e.g., from automatic peak detection
procedure) errors and ectopic beats in order to avoid potential biases in statistical outcomes. To eliminate such anomalies, we
preprocessed all heartbeat data with a previously developed real-time R-R interval error detection and correction algorithm
based on the point process statistics (local likelihood) [14]. Visual inspection analysis of all HRV series was also carried out.

All analyses were performed using the Matlab software suite. Concerning descriptive statistics, for every subject and for
every feature (SAI, PAI, SAI/PAI, LF power, HF power, and LF/HF) we condensed the information about the time-varying
dynamics of feature through its median across time. Then, for each feature, we evaluated between-group differences using
bivariate non parametric statistics (Mann-Whitney or Wilcoxon test in case of unpaired or paired samples, respectively) under
the null hypothesis that the between-subject medians of the two groups were equal.
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Experimental results related to feature dynamics, presented in all of the figures and summary Tables below, are condensed
as median and its respective standard error based on the median absolute deviation (MAD) across subjects/recordings. This
is consistent with the Non-Gaussian distribution of some data samples (p < 0.05 from a Kolmogorov-Smirnov Normality
test with null hypothesis of Gaussian distribution of data). Specifically, standard error was estimated as 1.4826MAD(X)/

√
n,

where MAD(X) = Median(|X −Median(X)|)), where X is the variable of interest (e.g., SAI, PAI, LF, HF, etc.), and n is
the number of subjects in the dataset of interest.

A p-value of 0.05 was considered statistically significant.

VII. EXPERIMENTAL RESULTS

From each single ECG recording, the RR intervals were extracted using a curve length-based QRS detection algorithm [68].
Then, the resulting RR interval series was visually inspected and eventually corrected through a previously developed error
detection and correction algorithm [14]. All recordings showed less than 5% of ectopic beats, and no significant algorithmic
artifacts were detected.

The SAI-PAI validation was performed using the six experimental datasets described in Section VI. Beat-to-beat SAI-PAI
estimates were derived from the double blockade dataset using Kalman filtering, whereas in all of the other datasets instantaneous
SAI-PAI estimates with a 5ms temporal resolution were calculated using the point-process modeling. Full methodological details
can be found in the Supplementary Materials.

In order to allow the reader to reproduce the methodology, in the following section generic Ψ values gathered from a multiple
linear regression are reported using data from all of the available data/subjects undergoing autonomic blockade.

A. Working Model Coefficients ΨS and ΨP

Following are generalized values of sympathetic kernels ΨS gathered from multiple linear regression performed on data from
all of the available data/subjects undergoing autonomic blockade (i.e., parasympathetic suppression), as well as parasympathetic
kernels ΨP gathered from multiple linear regression performed on data from all of the available data/subjects undergoing
autonomic blockade (i.e., sympathetic suppression).

The use of these coefficients, although with limited generality, is the first working attempt to estimate sympathetic and
parasympathetic dynamics from ECG without the need of any calibration procedure at a single subject level.

Particularly, results reported in the following sections were obtained using the following realizations of ΨS and ΨP

coefficients:

ΨS = {39.2343, 10.1963,−5.9242}
ΨP = {28.4875,−17.3627, 5.8798, 12.0628, 5.6408,−7.0664,−5.6779,−3.9474}

Considering also the standard deviation among realizations of ΨS and ΨP coefficients, statistical inference on healthy
subjects is reported here (95% t-Student-based Confidence Interval):

TABLE I
CONFIDENCE INTERVAL OF SYMPATHETIC AND PARASYMPATHETIC COEFFICIENTS Ψ

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

ΨSj
39.2343±16.9821 10.1963±9.9895 -5.9242±6.0936 - - - - -

ΨPj
: 28.4875±11.4879 -17.3627±8.4911 5.8798±7.9916 12.0628±7.2923 5.6408±6.7928 -7.0664±4.8948 -5.6779±5.1945 -3.9474±5.8938

B. Validation 1: Tilt-table protocols

A first extensive validation was performed using data gathered from the tilt-table protocol, including stand-up, slow and
fast tilting manoeuvres. Instantaneous estimates of all of the features were obtained using the point-process modeling with
Laguerre expansion [7], [53]. To this extent, all KS plots and more than 98% of the autocorrelation samples fell within 95%
confidence intervals, indicating that our modeling always provides a good characterization of the RR series, thus predicting
heartbeats with satisfactory accuracy. Overall, KS distances were as low as 0.0220± 0.0056 (median ± MAD). Results from
a comprehensive goodness-of-fit analysis are reported in the Supplementary Material.

Instantaneous estimates from a single subject are reported in Fig. 2. From this exemplary visual comparison between LF
vs. SAI, HF vs. PAI, and LF/HF vs. SAI/PAI, it is of striking evidence how responses from the gravitational changes are
clearly tracked at the individual level by the new indices (note the pattern corresponding to the red vertical lines indicating
the postural transitions for SAI, PAI and SAI/PAI). Importantly, the old frequency band quantification has been effective at the
group level, but (as clear from the figure) has never been able to work at the individual level. Results from other subjects confirm
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Fig. 2. Instantaneous heartbeat statistics computed from an exemplary subject of the Tilt-Table protocol. In the top-left panel, the estimated µRR(t),
superimposed on the recorded R-R series, and the instantaneous heartbeat standard deviation σRR(t) are shown. Instantaneous sympathetic and parasympathetic
activity, and sympatho-vagal balance as estimated through SAI and PAI, and SAI/PAI ratio measures, along with the LF, HF and LF/HF ratio are shown in
the other panels. Vertical dotted red lines indicate the beginning and end of each experimental transition. For this subject, the first transition is from rest (R)
to stand-up (SU) and back, the second is from R to fast tilt (FT) and back, the third from R to SU, then R to FT, and the final two are from R to slow tilt
(ST) and back.. Transitions are randomized for each subject.

Fig. 3. TILT-TABLE PROTOCOL: FAST-TILT. Instantaneous point-process estimates averaged along all subjects, aligned with the transitions before and after
fast-tilt. In the left panels the estimated instantaneous power LF (t) and the SAI(t) can be compared. At each time, the median value is superimposed (black
line) on the standard error of the median (gray area). Vertical red line indicates the beginning of the fast-tilt maneuver. Likewise, the estimated instantaneous
power HF (t) and the PAI(t) are shown in the central panels, whereas the estimated instantaneous LF/HF (t) and the SAI/PAI(t) can be compared in the
right panels.

this example, and a few more examples are reported in the Supplemental Material. Instantaneous series averaged among all
subjects are shown in Figs. 3-5 aligned for each gravitational change: fast-tilt, slow-tilt, and stand-up. Several other instantaneous
estimates at a single subject level are reported in the Supplementary Materials for further validation. Results give evidence that
the proposed SAI and PAI measures, as well as the SAI/PAI ratio outperform the traditional autonomic characterization given
by standard HRV instantaneous spectral analysis [7]. From the figures, it is possible to visually appreciate how the response
from the proposed Sympathetic Activity Index (SAI), differently from the LF power, increases after gravitational stress (with
a further delay after slow tilt) and remains at higher levels than the baseline session, thus reflecting sustained sympathetic
activation. Conversely, the LF sharply increases with stimulation after fast tilt (Fig. 3), behaves erratically with stand up (Fig.
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5), and even decreases after slow-tilt (Fig. 4), possibly mirroring vascular-related blood pressure dynamic responses. Note the
sharper step responses tracked by the PAI index as compared with the HF measure.

Overall, we performed a comprehensive comparison of autonomic measures on the stand-up, slow, and fast tilt transitions
including: standard estimates defined in the time and frequency domains from a traditional linear autoregressive model (AR);
instantaneous standard estimates defined in the time and frequency domains from a traditional linear autoregressive point-process
model (ARPP) [7]; instantaneous standard estimates defined in the time and frequency domains from a linear autoregressive
point-process model using the Laguerre expansion (ARLPP) [53]; instantaneous SAI and PAI estimates from a point-process
model having the kernels, ΨS and ΨP , calculated through:

Fig. 4. TILT-TABLE PROTOCOL: SLOW-TILT. Instantaneous point-process estimates averaged along all subjects, aligned with the slow-tilt transitions.
In the left panel, the estimated instantaneous power LF (t) and the SAI(t) can be compared. At each time, the median value is superimposed (black line)
on the standard error of the median (gray area). The two vertical red lines indicate the start and end of the slow tilting manoeuver. Likewise, the estimated
instantaneous power HF (t) and the PAI(t) can be compared in the central panels, whereas the estimated instantaneous LF/HF (t) and the SAI/PAI(t) can
be compared in the right panels.

• NEW(0): a multiple linear regression using subject specific (i.e. performed for each subject) recording from one rest-upright
condition;

• NEW(1): a multiple linear regression using subject specific (i.e. performed for each subject) recording averaging ΨS and
ΨP estimates from stand-up, slow and fast tilting conditions.

• NEW(2): a multiple linear regression using general values (i.e. calculated over all of the subjects), averaging ΨS and ΨP

estimates from stand-up, slow and fast tilting conditions, following a leave one subject out procedure.
• NEW(3): a multiple linear regression using general values (i.e. calculated over all of the subjects) averaging ΨS and ΨP

estimates from the rest-tilt control session of an independent dataset.
• NEW(4): a multiple linear regression using general values (i.e. calculated over all of the subjects) averaging ΨS and ΨP

from subjects of an independent dataset undergoing autonomic blockade (parasympathetic suppression → sympathetic
kernels ΨS ; sympathetic suppression → parasympathetic kernels ΨP . See Section V for details.)

Standard HRV measures, i.e. RMSSD, pNN50(%), HRV triangular index (HRV _tri_ind), and TINN, are also calculated and
reported.

Numerical results using the NEW(4) estimation method are shown in Tables II, III, and IV. All other results are included
in the Supplementary Materials.

Concerning sympathetic activity, results show that SAI estimates are always able to effectively discern between resting
and upright conditions. Using ΨS and ΨP kernels of general applicability, increased sympathetic activity after stand-up is
significantly revealed, with p < 4 · 10−5, as well as after slow tilt (p < 0.007) and fast tilt p < 9 · 10−4. No significant results
are reported using indices of LF power (p > 0.05). Likewise, for parasympathetic activity, results show that PAI estimates are
always able to effectively discern between resting and upright conditions. Using ΨS and ΨP kernels of general applicability,
decreased parasympathetic activity after stand-up was revealed with p < 6 ·10−4, as well as after slow tilt (p < 0.011) and fast
tilt (p < 0.002). Significant results are achieved using indices of HF power, as estimated through standard AR modeling on
the slow tilt (p < 0.03). Statistical analysis for all other indices yielded no significant results (p > 0.05). Finally, group-wise
statistics of sympatho-vagal balance show that SAI/PAI estimates were always able to effectively discern between resting and
upright conditions. Using ΨS and ΨP kernels of general applicability, increased sympatho-vagal balance after stand-up was
revealed with p < 4 · 10−6, as well as after slow tilt (p < 0.001) and fast tilt (p < 2.629 · 10−4). No significant results were
achieved using indices of LF/HF ratio (p > 0.05).
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Fig. 5. TILT-TABLE PROTOCOL: STAND UP. Instantaneous point-process estimates averaged along all subjects, aligned with the stand-up transitions. In
the left panels, the estimated instantaneous power LF (t) and the SAI(t) can be compared. At each time, the median value is superimposed (black line) on
the standard error of the median (gray area). Vertical red lines indicate the beginning of the stand-up maneuver. Likewise, the estimated instantaneous power
HF (t) and the PAI(t) can be compared in the central panels, whereas the estimated instantaneous LF/HF (t) and the SAI/PAI(t) can be compared in the
right panels.

TABLE II
RESULTS FROM THE REST - STAND UP EXPERIMENTAL DATASET

Autonomic Index Rest Stand-Up p-value
LF 516.16 ± 311.31 152.33 ± 379.46 0.270000

Sympathetic Activity SAI 30.03 ± 3.17 39.05 ± 2.05 0.000031
HF 337.17 ± 247.07 155.23 ± 73.60 0.408000

Parasympathetic Activity PAI 35.91 ± 1.84 29.63 ± 3.25 0.000570
LF/HF 1.88 ± 1.36 3.25 ± 2.59 0.242000

Sympatho-Vagal Balance SAI/PAI 0.85 ± 0.14 1.29 ± 0.13 0.000003
p-values are obtained from the rank-sum test between the Rest and Stand-up sessions.

TABLE III
RESULTS FROM THE REST - SLOW TILT-TABLE EXPERIMENTAL DATASET

Autonomic Index Rest Titl-Table Slow p-value
LF 552.42 ± 388.69 368.13 ± 220.38 0.715000

Sympathetic Activity SAI 33.50 ± 3.17 36.05 ± 1.59 0.007000
HF 295.12 ± 192.60 128.92 ± 77.27 0.060000

Parasympathetic Activity PAI 36.42 ± 2.92 31.96 ± 3.15 0.011000
LF/HF 1.39 ± 1.071 3.00 ± 1.43 0.126000

Sympatho-Vagal Balance SAI/PAI 0.95 ± 0.13 1.15 ± 0.13 0.001000
p-values are obtained from the rank-sum test between the Rest and Slow-Tilt sessions.

TABLE IV
RESULTS FROM THE REST - FAST TILT-TABLE EXPERIMENTAL DATASET

Autonomic Index Rest Titl-Table Fast p-value
LF 568.28 ± 299.64 504.37 ± 269.77 0.704000

Sympathetic Activity SAI 31.80 ± 2.21 36.79 ± 1.85 0.000870
HF 239.12 ± 177.12 203.04 ± 102.98 0.815000

Parasympathetic Activity PAI 35.89 ± 2.95 30.62 ± 1.58 0.002000
LF/HF 1.82 ± 1.43 1.56 ± 0.65 0.977000

Sympatho-Vagal Balance SAI/PAI 0.87 ± 0.13 1.21 ± 0.13 0.000263
p-values are obtained from the rank-sum test between the Rest and Fast-Tilt sessions.
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C. Validation 2: Lower Body Negative Pressure

A second validation of our SAI-PAI estimates was performed using data gathered from the Lower Body Negative Pressure
(LBNP) protocol. Instantaneous estimates of all of the features were obtained using point-process modeling with Laguerre
expansion [7], [53]. All KS plots but 3, and more than 98% of the autocorrelation samples fell within 95% confidence
intervals, indicating a very good fit. Considering all the 108 recordings, KS distances were as low as 0.0366±0.0082 (Median
± MAD). Results from a comprehensive goodness of fit analysis are reported in the Supplementary Material. Instantaneous
series averaged among all 58 subjects are shown in Fig. 6. Results of the statistical comparison are reported in Tab. V.
From the figure, it is possible to visually appreciate how the proposed Sympathetic Activity Index (SAI), differently from
the LF power, increases after gravitational stress by tracking a clear exponential-like step response, thus reflecting sustained
sympathetic activation. Conversely, the LF sharply increases with stimulation right after the step pressure change, and then
behaves erratically along time. Also here, note the sharper step responses tracked by the PAI index as compared with the HF
measure.

Fig. 6. LBNP PROTOCOL. Instantaneous point-process estimates averaged along all subjects, aligned with the LBNP transitions. In the left panel the
estimated instantaneous power LF (t) and the SAI(t) are shown. At each time, the median value is superimposed (black line) on the standard error of the
median (gray area). Vertical red line indicates the beginning of the LBNP maneuver. Likewise, the estimated instantaneous power HF (t) and the PAI(t) are
shown in the central panel, whereas the estimated instantaneous LF/HF (t) and the SAI/PAI(t) are shown in the right panel.

TABLE V
COMPARISON OF AUTONOMIC INDICES BETWEEN REST AND LBNP.

Autonomic Rest LBNP p-valueIndex
LF [ms2] 875.530 ± 525.734 964.204 ± 402.282 0.440

*SAI [a.u.] 29.890 ± 3.828 34.353 ± 2.708 3.950·10−16

*HF [ms2] 766.415 ± 602.566 457.434 ± 324.865 9.248·10−8

*PAI [a.u.] 38.218 ± 3.586 32.647 ± 2.712 1.665·10−12

*LF/HF 1.043 ± 0.578 1.542 ± 0.878 1.614·10−8

*SAI/PAI 0.774 ± 0.146 1.067 ± 0.151 7.496·10−16

p-values from the signrank non-parametric test for paired data.
* indicates significant differences between Rest and LBNP sessions.

It should be noted that, based on the p-values for this paradigmatic case, the proposed SAI and PAI measures, as well as the
SAI/PAI ratio, outperform the traditional autonomic characterization given by standard HRV instantaneous spectral analysis
[7]. Once again, the increase of sympathetic activity as identified by the SAI index presents a slower time constant than the
parasympathetic one, which is identified by the PAI index.

Concerning sympathetic activity, results show that SAI estimates are able to effectively identify expected increases during
LBNP conditions with respect to resting state with p < 5 ·10−16, despite no significant statistics were obtained through indices
of LF power (p > 0.05).

Moreover, expected decreases in parasympathetic activity during LBNP are effectively revealed through PAI estimates with
p < 2 · 10−12, as well as indices of HF power (p < 10−8), whereas increases in the sympatho-vagal balance during LBNP are
identified through SAI/PAI estimates with p < 8 · 10−16, as well as indices of LF/HF ratio (p < 2 · 10−8).
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D. Validation 3: Handgrip

A further validation of our SAI-PAI estimates was performed using data gathered from the handgrip protocol. Instantaneous
estimates of all of the features were obtained using point-process modeling with Laguerre expansion [7], [53]. All KS plots but 7,
and more than 98% of the autocorrelation samples fell within 95% confidence intervals, indicating a very good fit. Considering
all 108 recordings, KS distances were as low as 0.0647± 0.0102 (Median ± MAD). Results from a comprehensive goodness
of fit analysis are reported in the Supplementary Material. Instantaneous series from all subjects are shown in Fig. 7. Results
of the statistical comparison are reported in Tab. VI.

Fig. 7. HANDGRIP PROTOCOL. Instantaneous point-process estimates averaged along all subjects, aligned with the handgrip transitions. In the left panel
the estimated instantaneous power LF (t) and the SAI(t) are shown. At each time, the median value is superimposed (black line) on the standard error of
the median (gray area). Vertical red line indicates the beginning of the handgrip task. Likewise, the estimated instantaneous power HF (t) and the PAI(t) are
shown in the central panel, whereas the estimated instantaneous LF/HF (t) and the SAI/PAI(t) are shown in the right panel.

TABLE VI
COMPARISON OF AUTONOMIC INDICES BETWEEN BASELINE AND HANDGRIP

Autonomic Baseline Handgrip p-valueIndex
LF [ms2] 982.257 ± 579.178 924.135 ± 479.580 0.135

*SAI [a.u.] 34.569 ± 2.946 35.719 ± 3.022 0.006
*HF [ms2] 414.418 ± 324.917 416.781 ± 332.342 0.009
*PAI [a.u.] 33.055 ± 2.979 31.527 ± 2.744 0.002

LF/HF 2.059 ± 1.438 2.465 ± 1.636 0.302
*SAI/PAI 1.052 ± 0.179 1.130 ± 0.153 8.584·10−4

p-values from the signrank non-parametric test for paired data
* indicates significant differences between Rest and LBNP sessions.

Once again, the proposed SAI and PAI measures, as well as the SAI/PAI ratio, outperform the traditional autonomic
characterization given by standard HRV instantaneous spectral analysis [7]. The increase in sympathetic activity during the
handgrip task, with respect to baseline, is effectively identified by the SAI index, both visually (Fig.6) and with statistical
significance (p < 0.006). No significant statistics are reported through indices of LF power (p > 0.05).

Furthermore, decreases in parasympathetic activity during handgrip are effectively revealed through PAI estimates with
p < 0.002, as well as indices of HF power (p < 0.009), whereas increases in sympatho-vagal balance during handgrip are
identified through SAI/PAI estimates exclusively, with p < 9 · 10−4. No significant statistics are obtained through LF/HF ratio
indices (p > 0.05).

VIII. DISCUSSION AND CONCLUSION

Despite widespread use during the last two decades, HRV analyses based on frequency domain techniques have faced
significant challenges in assessing cardiac autonomic activity [17], [19], [39]. Several pharmacological studies have confirmed
the intrinsic ambiguity of this approach, as HRV-related changes below 0.15 Hz are mediated by both cardiac vagal and
sympathetic nerves [9], [23], [24], [41]. In addition, changes in the LF power of HR variability often occur in response
to arterial blood pressure fluctuations, which cause HR fluctuations through the baroreflex [2]. A variety of sophisticated
methodologies have been proposed to address these issues [10], [58], [59], [63], [64], [66], [67]. However, their impact in
cardiovascular research has been limited due to methodological (e.g., stationarity, the need of a broadband HR spectrum)
or practical shortcomings (e.g., the need of multivariate autonomic recordings such as ECG and respiration). The issues are
even more challenging for clinical monitoring, where relatively rudimentary concepts and simple computational algorithms for
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HRV analysis have been used for clinical monitoring. Moreover, using HRV spectra, several commercially available mobile
applications have not been able to provide precise, reliable assessments of stress levels, sleep quality, or recovery from athletic
activity [49], [60]. These shortcomings in current autonomic measures are due in part to high inter-individual variability. Current
techniques have not been accurate enough to provide meaningful autonomic measures that are valid for group analysis, while
simultaneously being tailored to the individual subject, particularly for sympathetic activity.

This manuscript introduces a set of autonomic measures which differ from those used previously. PAI and SAI provide: 1)
independent parasympathetic and sympathetic dynamics, 2) exclusively use heartbeat intervals, 3) can be computed continuously
in real time without concerns of stationarity, and 4) appear to be reliable for both group and individual assessment. The novel
identification procedure is a simple non-trivial way to calculate non-invasive, time-resolved autonomic markers having features
of effectiveness, reliability, and high resolution in time. Importantly, the metrics offer the potential to continuously track cardiac
autonomic control in both clinical and research settings. The methodology is also applicable to any sequence of heartbeat events
- e.g. ECG, echocardiographic parameters, arterial pressure parameters, video signals, ballistogram, ultra wideband cardiogram
etc. The time-varying estimates of SAI and PAI were shown to provide instantaneous features consistent with a wide range of
individual subject’s conditions in a variety of autonomic states. Several estimation techniques can be used to obtain beat-to-beat
or finite estimates in time using, e.g., Kalman or least square methods, respectively. In addition, instantaneous SAI and PAI
estimates can be obtained through point-process modeling [7], [53].

These novel measures were validated using datasets collected in controlled physiological conditions, and involving well-
known sympatho-vagal changes, including: orthostatic changes from standing; slow tilting and fast tilting; autonomic blockade
during postural changes; lower body negative pressure; and handgrip. In all the cases evaluated, the results of the new technique
demonstrated superiority at separating the sympathetic and parasympathetic components using the SAI and PAI signals, as
compared to existing methods.

By using comprehensive inter-subject statistics computed every 5 ms, the SAI index correctly demonstrated the expected
increases of sympathetic activation and vagal withdrawal in all the autonomic scenarios that have been tested. The analyses
are scientifically thorough with time-varying estimates, avoiding the loss of information inherent in the static metrics typically
reported in the literature. The results were also compared to three different reported methodologies: 1) a simple window-
based autoregressive model demonstrating comparison to the published HRV guidelines [47], 2) a time-varying point-process
autoregressive model providing a comparison which accounts for nonstationary [7], and 3) a time-varying point-process model
using Laguerre functions [53]. For assessment of sympathetic and parasympathetic activity, SAI, PAI, and SAI/PAI appear
to track expected physiological responses much more closely than LF, HF or LF/HF in all the datasets evaluated. The new
parameters showed particular improvement in inter-subject variability, reflected in lower standard errors, and more significant
difference in the statistical comparisons (see details in Tables VIII, IX, and X).

Importantly, the SAI and PAI measures are derived in a non-obvious and original way. Although the methodological
framework may share relevant features adopted in the past, such as the use of Laguerre expansion [5], the derivation is
the first attempt at proposing a proper combination of coefficients derived by Laguerre functions, which yield very specific
features in the time and frequency domains [32], [34], [53]. It is also noteworthy that once a standard autoregressive model
has been identified along the Laguerre bases (i.e. after convolving the original RR interval series with the Laguerre bases), the
use of SAI and PAI measures does not need calibration. The derivation of pre-estimated kernels of general applicability for
the SAI and PAI estimation take of data gathered from selective sympathetic and parasympathetic blockade.

The overall approach stems from the intuitive hypothesis that the cholinergic and adrenergic systems have different temporal
dynamics which overlap in the frequency domain. Thus, a proper weighted sum and/or subtraction of primitives derived
from orthonormal Laguerre bases is able to reflect the actual autonomic activity, disentangling the specific sympathetic and
parasympathetic contributions. In the frequency domain, for a given α, the spectra of Laguerre functions have equal magnitude
and different phase spectra. The classic HRV analysis is limited by the pre-defined frequency ranges (VLF, LF and HF) ,
whereas the Laguerre functions do not define a space in the frequency domain but constitute a set of mathematical functions
characterizing a specific fine modulation of the number of oscillations across zero, as well as very specific time responses.

An important limitation of the study is that the identification of kernels of general applicability has been performed using
data coming from a limited number of subjects. Consequently, non-parametric paired comparisons using data from selective
parasympathetic and sympathetic blockade resulted in non-significant p-values; however, central trends were as expected.
Although an extensive validation was performed of the proposed SAI and PAI through more than 230 ECG recordings, all the
data was from healthy volunteers. Therefore, it cannot be excluded that a more accurate identification of ΨS and ΨP kernels of
general applicability may be necessary when dealing with data from subjects with various cardiovascular pathologies or subjects
with peculiar heartbeat dynamics (e.g., infants and newborns). Likewise, it cannot be excluded that the ΨS and ΨP kernels
estimation could be improved by considering cases where subjects elicit peculiar respiratory patterns. Also, the absolute value
of SAI and PAI estimates is currently dependent on the arbitrary ranges chosen for the fitting procedure described in paragraph
V-A. A proper study on the scalability of SAI and PAI estimates should be performed in order to obtain normalized indices
with improved interpretability. Finally, depending on the estimation method used to identify the Laguerre coefficients, the initial
part of the recording is left without actual SAI and PAI estimates because the point-process modeling needs at least the first 70
s of ECG must be used for model initialization [7], [53]. There is also likely room to improve the proposed identification using
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data from a more diverse pool of subjects undergoing selective autonomic blockade while undergoing significant orthostatic
changes. Moreover, given the ability of our model to characterize the probabilistic structure of RR intervals generation as
related to mean heart rate, future studies might consider more detailed analyses on the relationship between these two variables
as linked to other cardiovascular correlates (e.g., respiration, blood pressure, etc.). Future studies might include a variety of
different manipulations of cardiovascular control.

Despite the above limitations, the strength of the algorithm lies in estimating SAI-PAI values through an appropriate
combination of orthonormal Laguerre bases. When applied to physiological data, there has been strong statistical support
for demonstrating changes in sympatho-vagal balance in all the experimental settings. Note that the proposed framework has
been particularly successful in significantly reducing inter-subject variability with respect to HRV frequency domain analysis.
These improvements enhance the statistical power of the SAI and PAI measures when compared with standard measures using
LF and HF powers (in some instances by as much as 1016).

By definition, SAI and PAI are dimensionless numbers. Moreover, SAI and PAI estimates are relative to “reference levels" of
sympathetic and parasympathetic activity during supine resting state, and upright position after postural change. By definition,
the actual value of such “reference levels" is arbitrary, as long as prior constraints from physiological dynamics are taken into
account (dominant parasympathetic activity during supine resting state, dominant sympathetic activity during upright position
after postural change).

From a methodological point of view, extension of the SAI-PAI derivation with nonlinear modeling could open new avenues
for the estimation of sympathetic and parasympathetic nonlinear dynamics, as well as effective quantification of nonlinear
sympathetic-parasympathetic interactions, which may be based on bi-spectral and other higher order spectral analyses. There
are a variety of major clinical and non-clinical applications using SAI-PAI estimates. Finally, since the SAI and PAI measures
are derived from heartbeats exclusively, so it is possible to calculate them through any portable, possibly wearable device
carrying heart beat event information.
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SUPPLEMENTARY MATERIAL / APPENDIX

Autoregressive models and Laguerre Expansion

Let us consider a general formulation of a Autoregressive Model (AR):

y(k) = F(y(k − 1), y(k − 2), ..., y(k −M)) + ε(k). (5)

By taking into account a linear combination of the past events, the AR model can be can be written as following:

y(k) = γ0 +

M∑

i=1

γ1(i)y(k − i) + ε(k). (6)

where ε(k) are independent, identically distributed Gaussian random variables and M is the memory of the model. Due to the
autoregressive structure of (6), the system can be identified with only exact knowledge of the output data and with only few
assumptions on the input data. To improve the system identification process (i.e. γ0, γ1 estimations) and to reduce the number
of required parameters, it is possible to expand the AR kernels by means of orthonormal bases. A widely used expansion uses
the Laguerre functions [32], [34], [53]. Specifically, let define the jth-order discrete time orthonormal Laguerre function (see
fig. 8):

φj(k) = α
k−j
2 (1− α)

1
2

j∑

i=0

(−1)i
(
k

i

)(
j

i

)
αj−i(1− α)i, (k ≥ 0)

where α is the discrete-time Laguerre parameter (0 < α < 1) which determines the rate of exponential asymptotic decline of
these functions.

Given the Laguerre function, φj(k), and the signal, y(k), the jth-order Laguerre filter output is:

lj(k) =

∞∑

i=0

φj(i) y(k − i− 1) (7)
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Fig. 8. (Left) First 4 Laguerre Functions for α = 0.2 plotted over the first 25 lags. The order of each Laguerre basis is indicated under brackets. (Right)
The 3rd Laguerre functions for α = 0.1, 0.2, 0.3, 0.4. The corresponding α value is indicated under brackets.

The computation of the Laguerre Filter output can be accelerated significantly by use of the following recursive relation [32],
[34], [53]:

l0(k) =
√
α l0(k − 1) +

√
1− α y(k − 1) (8)

lj(k) =
√
α lj(k − 1) +

√
α lj−1(k) + (9)√

α lj−1(k − 1), j ≥ 1 (10)

Since the {φi(t)} form a complete orthonormal set in functional space L2, we can write [42]:

γ0 = g0 (11)

γ1(i) =

P∑

j=0

g1(j)φj(i) . (12)

Here g0, and g1(j) are constant coefficients. The expansion goes to zero as i goes to infinity. Using (7) and (11)–(12), the
model in eq. 6 becomes:

y(k) = g0 +

P∑

j=0

g1(j) lj(k) + ε(k) . (13)

hereinafter called Autoregressive with Laguerre expansion (ARL) model. The number of parameters to estimate is N =
1 + (P + 1). Although the Laguerre filters have infinite memory, the AR model corresponding to the ARL representation can
be truncated to an order M which depends on how fast the Laguerre functions decade to zero. It is also noteworthy that when
α = 0 the filter output becomes lj(k) = (−1)jy(k − j − 1) and the ARL model corresponds to the AR model apart for the
sign.

Time-varying implementation

The iterative estimation along time of the novel SAI-PAI measures can be performed using several signal processing methods.
For example, a simple Kalman filtering can be used to track the SAI-PAI dynamics at each heartbeat, whereas an instantaneous
estimation (i.e., at each moment in time) can be performed using the point-process modeling. Of note, traditional recursive
least-square and window-based methods can also be applied.

Heartbeat Interval Point-Process Model : A random point process is a stochastic process which can be thought of as
registering the occurrence in time of discrete events [4]. Point process theory has been widely used in modeling various types
of random events (e.g., eruptions of earthquakes, queueing of customers, spiking of neurons, etc.) where the timing of the
events are of central interest. Bearing a similar spirit, the point process theory has been used for modeling human heartbeats
[7], [12], [51]–[54]. The point process framework primarily defines the probability of having a heartbeat event at each moment
in time (see Figure 9).

A parametric formulation of the probability function allows for a systematic, parsimonious estimation of the parameter vector
in a recursive way and at any desired time resolution. Instantaneous indexes can then be derived from the parameters in order
to quantify important features as related to cardiovascular control dynamics. Mathematically, let (0, T ] denote the observation
interval and 0 ≤ u1 < · · · < uk < uk+1 < · · · < uK ≤ T the times of the events. For t ∈ (0, T ], let N(t) = max{k : uk ≤ t}
be the sample path of the associated counting process. Its differential, dN(t), denotes a continuous-time indicator function,
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Fig. 9. A graphical representation of point-process modeling of heartbeat dynamics. The horizontal axis represents the counting process along the number of
heartbeats, whereas the vertical axis represents the duration of heartbeat intervals. Inverse-Gaussian (IG) distributions (green lines on the right) characterize
the prediction of the future heartbeat event along the time (from [55]).

where dN(t) = 1, when there is an event (such as the ventricular contraction) or dN(t) = 0, otherwise. Let define also a left
continuous function Ñ(t) = limτ→ t− N(τ) = max{k : uk < t} which will be useful in the following definitions.

By treating the R-waves as discrete events, we may develop a point process probability model in the continuous time domain
[7]. Assuming history dependence, the probability density of the waiting time t−uj until the next R-wave event follows an
inverse Gaussian model:

f(t|Ht, ξ(t)) =

[
ξ0(t)

2π(t− uj)3

] 1
2

exp

{
−1

2

ξ0(t)[t− uj − µRR(t,Ht, ξ(t))]2
µRR(t,Ht, ξ(t))2(t− uj)

}
(14)

where j = Ñ(t) denotes the index of the previous R-wave event occurred before time t,Ht = (uj , RRj , RRj−1, ..., RRj−M+1),ξ(t)
is the vector of the time-varing parameters, µRR(t,Ht, ξ(t)) represents the first-moment statistic (mean) of the distribution,
and ξ0(t) = θ > 0 denotes the shape parameter of the inverse Gaussian distribution, (as θ/µ → ∞, the inverse Gaussian
distribution converges to a Gaussian distribution). The function f(t|Ht, ξ(t)) indicates the probability of having a beat at time
t given that a previous beat has occurred at uj and µRR(t,Ht, ξ(t)) can be interpreted as signifying the prediction of the time
when the next beat is expected to occur. By definition, f(t|Ht, ξ(t)) is characterized at each moment in time, at the beat as
well as in-between beats.

The use of an inverse Gaussian distribution to characterize the R-R intervals occurrences is motivated by the fact that if
the rise of the membrane potential to a threshold initiating the cardiac contraction is modeled as a Gaussian random walk
with drift, then the probability density of the times between threshold crossings (the R-R intervals) is indeed the inverse
Gaussian distribution [7]. In [11], we have compared heartbeat interval fitting point process models using different probability
distributions, and found that the inverse Gaussian model achieved the overall best fitting results. The parameter µRR(t,Ht, ξ(t))
denotes the instantaneous R-R mean that can be modeled as a generic function of the past (finite) R–R values µRR(t,Ht, ξ(t)) =
g(RRÑ(t), RRÑ(t)−1, ..., RRÑ(t)−h+1), where RRÑ(t)−j+1 denotes the previous jth R–R interval occurred prior to the present
time t. In our previous work [6], [11], the history dependence is defined by expressing the instantaneous mean µRR(t,Ht, ξ(t))
as a linear combination of present and past R-R intervals (in terms of an AR model), i.e., function g is linear.

Concerning the parameter estimation, we used a Newton-Raphson procedure to maximize the local log-likelihood and
compute the local maximum-likelihood estimate of ξ(t) [7], [53] within W = 90s. Because there is significant overlap between
adjacent local likelihood intervals, we started the Newton-Raphson procedure at t with the previous local maximum-likelihood
estimate at time t− δ in which δ defines how much the local likelihood time interval is shifted to compute the next parameter
update. The model goodness-of-fit is based on the Kolmogorov-Smirnov (KS) test and associated KS statistics (see details in
[7], [53]). Autocorrelation plots were considered to test the independence of the model-transformed intervals [7], [53]. Once
the model order is determined, the initial model coefficients were estimated by the method of least squares [7], [53].

Block schemes

Block schemes of all the stages involved in the SAI-PAI estimation are described in Figs 10 and 11. A modeling stage
has been devised in order to establish the combination and structure of the base functions attributed either to the sympathetic
or parasympathetic activity. On a real set of heartbeats, given such a modeling structure as specified in eq. 1, the estimation
of model-defined parameters (g1s, g1p) can be updated along the time using the most efficient and popular methods reported
in the literature for recursive parameter estimation (Kalman filtering, point processes, recursive least square, etc.). A final
step linearly combines the time-varying estimation using the disentangling coefficients Ψs,Ψp to yield the final SAI and
PAI measures. The block scheme reported in Fig. 11 has to be considered as an in-depth look of the block “Modeling and
Multiple Regression" in Fig. 10. Here, heartbeat data gathered during sympathetic activity only (parasympathetic blockade),
and during sympathetic activity only (parasympathetic blockade) both in a supine resting phase and a standing tilting phase
were considered as reference heartbeat data. For each of these datasets, after fitting an AR model with Laguerre expansion of
the terms, a multiple regression stage considering desired changes (e.g., increase of the sympathetic activity during tilt with
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in
g
a
m
ul
tip
le
lin
ea
rr
eg
re
ss
io
n
(M
LR
)

te
ch
ni
qu
e.
Th
er
ef
or
e,
as
tra
in
in
g
ph
as
e,
th
e

Ψ
co
ef
fic
ie
nt
s

ha
ve
to
be
es
tim
at
ed
by
M
LR

ap
pl
ie
d
on
a
co
nt
in
uo
us
si
g-

na
lh
av
in
g
as
st
ro
ng
A
N
S
ch
an
ge
s(
bo
th
in
th
es
ym
pa
th
et
ic

an
d
pa
ra
sy
m
pa
th
et
ic
sy
st
em
s)
as
po
ss
ib
le
.

E
st

im
at

io
n 

• 
K

al
m

an
 

• 
P

oi
nt

-P
ro

ce
ss

 
• 

R
ec

ur
si

ve
 L

ea
st

 
   

  S
qu

ar
e 

• 
W

in
do

w
-b

as
ed

 

g 1
S

 

g 1
P 

Di
se
nt
an
gl
in
g	

	A
N
S	
dy
na
m
ic
s	 	

S
A

I  

PA
I  

M
od

el
in

g 
an

d 
 

M
ul

tip
le

  
R

eg
re

ss
io

n  

Ψ
s 

Ψ
p 

H
ea

rtb
ea

ts
 

ch
ara
cte
riz
et
he
be
hav
ior
of
the

tw
oA

NS
bra
nc
he
s.

2.
De
riv
ati
on

of
the

Sy
mp
ath
eti
c
an
d

Pa
ras
ym
pa
the
tic
Ac
tiv
ity
Ind
ex

Th
ed
eri
vat
ion

of
the

SA
Ia
nd
PA
Id
eal
sw
ith
the

de
fi-

nit
ion

of
the

po
int
-pr
oc
ess

fra
me
wo
rk,
ap
pli
ed
to
the

RR
int
erv
als
,a
nd
al
ine
ar
co
mb
ina
tio
no
fth
eL
ag
ue
rre
po
ly-

no
mi
als
ba
sis
fun
cti
on
.

Sta
rtin
gf
rom

an
ord
ere
ds
et
of
R-
wa
ve
eve
nts

{u j
}J j=

1,
ob
ser
ve
dw

ith
in
the

int
erv
al

t
∈(

0,
T

],w
ed
efi
ne

R
R

j
=

u j
−u

j−
1

>
0,
as
the

jth
R–
Ri
nte
rva
l.L
et
als
od
efi
ne
al
eft

co
nti
nu
ou
sf
un
cti
on

Ñ
(t

)
=

lim
τ→

t−
N

(τ
)

=
m

ax
{k

:
u k

<
t},

wh
ere

N
(t

)
rep
res
en
ts
the

co
un
tin
gp
roc
ess
.

As
sum

ing
ap
hy
sio
log
ica
lh
ist
ory

de
pe
nd
en
ce,
an
Inv
ers
e-

Ga
uss
ian

dis
trib
uti
on

f(
t|H

t,
ξ(

t)
)c
an
be
use
da
sth
ec
on
-

tin
uo
us
pro
ba
bil
ity
dis
trib
uti
on
of
the

wa
itin
gt
im
et
−u

j

un
til
the

ne
xt
R-
wa
ve
eve
nt
ap
pe
ars
[11
]:

f(
t|H

t,
ξ(

t)
)=

[
ξ 0

(t
)

2π
(t

−u
j)

3

]1 2

×e
xp

{ −1 2

ξ 0
(t

)[t
−u

j
−µ

R
R
(t

,H
t,

ξ(
t)

)]2

µ R
R
(t

,H
t,

ξ(
t)

)2
(t

−u
j)

}
(1)

wh
ere

j
=

Ñ
(t

)
the

ind
ex
of
the

pre
vio
us
R-
wa
ve
eve
nt

be
for
et
im
et
,H

t
=

(u
j,

R
R

j,
R

R
j−

1,
...

,R
R

j−
M

+
1)
,

ξ(
t)
the

ve
cto
ro
fth
et
im
e-v
ari
ng
pa
ram

ete
rs,
an
dξ

0(
t)

>
0
the

sha
pe
pa
ram

ete
ro
fth
ei
nv
ers
eG
au
ssi
an
dis
trib
uti
on
.

He
re,
we
pro
po
se
to
mo
de
lµ

R
R
(t

,H
t,

ξ(
t)

)a
sf
un
cti
on
of

lin
ear
de
riv
ati
ve
ter
ms
of
pa
stR

-R
int
erv
als
,p
rop
erl
yc
om
-

bin
ed
wi
th
La
gu
err
eb
ase
s.W

ith
the
pu
rpo
se
of
dis
tin
gu
ish

the
sym

pa
the
tic
fro
m
the

pa
ras
ym
pa
the
tic
co
ntr
ibu
tio
no
f

the
AN

S
mo
du
lat
ion

on
the

RR
ser
ies
,t
he
reg
res
sio
ni
s

spl
iti
nt
wo

pa
rts
.M

ath
em
ati
cal
ly,
the

po
int
-pr
oc
ess

au
-

tor
eg
res
siv
em

od
el
usi
ng
the

LF
s(

A
R

L p
p)
is
de
fin
ed
as

fol
low

s:

µ R
R
(t

,H
t,

ξ(
t)

)=
R

R
Ñ

(t
)+

g 0
(t

)+

p s ∑ j=
0

g 1
(j

,t
)l

j(
t)

︸
︷︷

︸
Sy

m
pa

th
et

ic

+

p p ∑

j=
p s

+
1

g 1
(j

,t
)l

j(
t)

︸
︷︷

︸
P

ar
as

ym
pa

th
et

ic

(2)

wh
ere l j

(t
)=

Ñ
(t

)
∑ n=

1

φ j
(n

)(
R

R
Ñ

(t
)−

n
−R

R
Ñ

(t
)−

n−
1)

(3)

ist
he
ou
tpu
to
fth
eL
ag
ue
rre
filt
ers
an
d

φ i
(n

)=
α

n
−i 2

(1
−α

)1 2

i ∑ j=
0(−

1)
j( k j)(

i j) αi−
j (1

−α
)j

is
the

ith
-or
de
rd
isc
ret
et
im
eo
rth
on
orm

al
La
gu
err
ef
un
c-

tio
n,
wi
th
(n

≥
0)
an
dα

the
dis
cre
te-
tim
eL
ag
ue
rre

pa
-

ram
ete
r[1
0].
W
he
nα

isc
ho
sen

in
the

op
en
int
erv
al
(0,

1),
itd
ete
rm
ine
sth
er
ate
of
ex
po
ne
nti
al
asy
mp
tot
ic
de
cli
ne
of

the
se
fun
cti
on
s.B

ys
ub
sti
tut
ing

(3)
in
(2)
,th
ec
orr
esp
on
d-

ing
sta
nd
ard

po
int
-pr
oc
ess

au
tor
eg
res
siv
em

od
el
(A

R
pp
)

wi
th
lon
g-t
erm

me
mo
ry
can

be
ob
tai
ne
d.

Ev
en
wi
th
an

eq
ua
ld
eg
ree

of
the

reg
res
sio
n,
the

AR
Lm

od
el
ret
ain
si
n-

for
ma
tio
na
bo
ut
an
infi
nit
ea
mo
un
to
fp
ast
sam

ple
s.I
nf
act
,

the
mo
de
l’s
nu
mb
er
of
pa
ram

ete
rs
de
pe
nd
so
nt
he
nu
m-

be
ro
ft
he
La
gu
err
ef
un
cti
on
sc
on
sid
ere
dr
ath
er
tha
no
n

the
nu
mb
er
of
reg
res
sio
ns
on
the

pa
st
ob
ser
vat
ion
.T
he
re-

for
e,
giv
en
the

(A
R

L p
p)
mo
de
l,
the

ins
tan
tan
eo
us
au
to-

no
mi
cs
ym
pa
the
tic
ind
ex
(SA

I)a
nd
pa
ras
ym
pa
the
tic
ind
ex

(PA
I)w

ill
be
de
fin
ed
as
at
im
e-v
ary
ing

fun
cti
on
of
the

pa
-

ram
ete
rs

ξ(
t)

=
[ξ

0(
t)

,g
0(

t)
,g

1(
0,

t)
,.

..,
g 1

(p
p,

t)
],w

hic
h

we
re
est
im
ate
db
yu
sin
gt
he
Ne
wt
on
-R
ap
hso
np
roc
ed
ure

to
ma
xim

ize
the

loc
al
log
-lik
eli
ho
od
de
fin
ed
in
[11
].
Th
e

est
im
ati
on
pro
ced
ure

is
pe
rfo
rm
ed
by
usi
ng
as
lid
ing

tim
e

wi
nd
ow

W
=

90
sec
.T
he
tw
oi
nd
ice
sc
an
be
ex
pre
sse
di
n

ma
trix

for
m
as:

SA
I(

t,
H t

,ξ
(t

))
=

Ψ
S 0

+

N
1 ∑ j=
1

Ψ
S

j
g 1

(j
−1

,t
)

(4)

P
A

I(
t,

H t
,ξ

(t
))

=
Ψ

P
0
+

N
2 ∑ j=
1

Ψ
P

j
g 1

(j
+

(p
s
+

1)
,t

) (5)
wi
th

N
1

=
p s

+
1
an
dN

2
=

p p
−(

p s
+

1)
.

In
an
att
em
pt
to
ma
tch

the
fre
qu
en
cy
res
po
nse

of
the

La
gu
err
efi
lte
rs
wi
th
the

fre
qu
en
cy
res
po
nse

of
the

sym
-

pa
the
tic
an
dp
ara
sym

pa
the
tic
sys
tem

s[
3],

we
hav
ec
ho
-

sen
p s

=
1
an
dp

p
=

8.
Sin
ce

µ R
R
(t

,H
t,

ξ(
t)

)
is
de
-

fin
ed
in
ac
on
tin
uo
us-
tim
ef
ash
ion
,w
ec
an
ob
tai
na
ni
n-

sta
nta
ne
ou
sR
–R

est
im
ate
sa
ta
ve
ry
fin
et
im
esc
ale

(w
ith

an
arb
itra
rily

sm
all
bin

siz
e∆

),
wh
ich

req
uir
es
no
int
er-

po
lat
ion

be
tw
een

the
arr
iva
lt
im
es
of
tw
ob
eat
s.
Mo
de
l

go
od
ne
ss-
of-
fit
isb
ase
do
nt
he
Ko
lm
og
oro
v-S
mi
rno
v(
KS
)

tes
tan
da
sso
cia
ted
KS

sta
tis
tic
s[1
1].
Au
toc
orr
ela
tio
np
lot
s

are
als
oc
on
sid
ere
dt
ot
est
the

ind
ep
en
de
nc
eo
fth
em

od
el-

tra
nsf
orm

ed
int
erv
als
[11
].
Th
eo
pti
ma
le
sti
ma
tio
no
fth
e

Ψ
co
effi
cie
nts
isa

cru
cia
lp
oin
to
fth
isw

ork
.In

fac
t,t
he
se

val
ue
sd
ete
rm
ine

the
sep
ara
tio
nc
ap
ab
ilit
yo
ft
he
sym

pa
-

the
tic
an
dp
ara
sym

pa
the
tic
co
mp
on
en
ts,
bo
th
em
be
dd
ed

in
the

g 1
co
effi
cie
nts
.
As

pre
lim
ina
ry
me
tho
do
log
y,
we

hav
ec
ho
sen

to
pe
rfo
rm
an
int
ra-
sub
jec
te
sti
ma
tio
no
fth
e

Ψ
co
effi
cie
nts
by
usi
ng
am

ult
ipl
eli
ne
ar
reg
res
sio
n(
ML

R)
tec
hn
iqu
e.
Th
ere
for
e,a
str
ain
ing

ph
ase
,th
eΨ

co
effi
cie
nts

hav
et
ob
ee
sti
ma
ted

by
ML

Ra
pp
lie
do
na
co
nti
nu
ou
ss
ig-

na
lh
avi
ng
as
str
on
gA
NS

ch
an
ge
s(b
oth

in
the
sym

pa
the
tic

an
dp
ara
sym

pa
the
tic
sys
tem

s)
as
po
ssi
ble
.

cha
rac
teri
ze
the

beh
avi
oro

fth
etw

oA
NS

bra
nch

es.

2.
De
riv
atio

n
of
the

Sym
pat
het
ic
and

Par
asy
mp
ath
etic

Ac
tivi
tyI
nde
x

Th
ed
eriv

atio
no
fth
eS
AI
and

PA
Id
eal
sw
ith
the

defi
-

niti
on
of
the

poi
nt-
pro
ces
sfr
am
ew
ork
,ap

plie
dto

the
RR

inte
rva
ls,
and

ali
nea
rc
om
bin
atio

no
fth
eL
agu

err
ep
oly
-

nom
ials

bas
isf
unc

tion
.

Sta
rtin
gfr
om

an
ord
ere
ds
eto

fR
-wa

ve
eve
nts

{u j
}J j=

1,
obs
erv
ed
wit
hin

the
inte

rva
lt

∈(
0,

T]
,w
ed
efin

eR
R j

=
u j
−u

j−1
>

0,a
sth
ej

th
R–
Ri
nte
rva
l.L
eta
lso
defi

ne
ale
ft

con
tinu

ous
fun
ctio

nÑ
(t)

=
lim

τ→
t−

N
(τ

)=
ma

x{k
:

u k
<

t},
wh
ere

N
(t)

rep
res
ent
sth

ec
oun

ting
pro
ces
s.

As
sum

ing
ap
hys
iolo

gic
alh

isto
ryd

epe
nde

nce
,an

Inv
ers
e-

Ga
uss
ian

dis
trib
utio

nf
(t|H

t,ξ
(t)

)ca
nb
eu
sed

ast
he
con

-
tinu

ous
pro
bab

ilit
yd
istr
ibu
tion

of
the

wa
itin
gt
ime

t−u
j

unt
ilth

en
ext

R-w
ave

eve
nta

ppe
ars
[11
]:

f(
t|H

t,ξ
(t)

)=

[
ξ 0

(t)

2π
(t

−u
j)3]1 2

×e
xp

{ −1 2ξ 0
(t)

[t
−u

j
−µ

RR
(t,

H t,
ξ(

t))
]2

µ R
R
(t,

H t,
ξ(

t))
2 (

t−
u j

)

}
(1)

wh
ere

j
=

Ñ
(t)

the
ind
ex
of
the

pre
vio
us
R-w

ave
eve
nt

bef
ore

tim
et
,H

t
=

(u
j,

RR
j,

RR
j−

1,
...,

RR
j−M

+
1),

ξ(
t)
the

vec
tor
oft
he
tim
e-v
arin

gp
ara
me
ters

,an
dξ

0(t
)>

0th
esh

ape
par
am
ete
rof

the
inv
ers
eG
aus
sia
nd
istr
ibu
tion

.
He
re,
we
pro
pos
eto

mo
del

µ R
R
(t,

H t,
ξ(

t))
asf
unc

tion
of

line
ard

eriv
ativ

ete
rm
sof

pas
tR
-R
inte

rva
ls,
pro
per
lyc
om
-

bin
ed
wit
hL
agu

err
eb
ase
s.W

ith
the
pur
pos
eo
fdi
stin

gui
sh

the
sym

pat
het
icf
rom

the
par
asy
mp
ath
etic

con
trib
utio

no
f

the
AN

Sm
odu

lati
on
on
the

RR
ser
ies
,th

er
egr
ess
ion

is
spl
iti
nt
wo

par
ts.

Ma
the
ma
tica

lly,
the

poi
nt-
pro
ces
sa
u-

tor
egr
ess
ive

mo
del

usi
ng
the

LF
s(A

RL
pp
)is

defi
ned

as
fol
low

s:

µ R
R
(t,

H t,
ξ(

t))
=

RR
Ñ

(t
)+g

0(t
)+

p s ∑ j=
0

g 1
(j,

t)
l j(

t)

︸
︷︷

︸
Sy

m
pa

th
eti

c

+

p p ∑

j=
p s

+
1g 1

(j,
t)

l j(
t)

︸
︷︷

︸
Pa

ra
sy

m
pa

th
eti

c

(2)

wh
ere l j(

t)
=

Ñ
(t

) ∑ n=
1

φ j
(n

)(R
R Ñ

(t
)−

n
−R

R Ñ
(t

)−
n−

1)
(3)

ist
he
out
put

oft
he
Lag

uer
refi

lter
san

d

φ i
(n

)=
αn

−i 2
(1

−α
)1 2

i ∑ j=
0(−1

)j( k j)(
i j) αi−j

(1
−α

)j

ist
he

ith
-or
der

dis
cre
tet
ime

ort
hon

orm
alL

agu
err
efu

nc-
tion

,w
ith
(n

≥0
)a
nd

α
the

dis
cre
te-t
ime

Lag
uer
re
pa-

ram
ete
r[1
0].
Wh

en
α
isc
hos
en
int
he
ope

nin
terv

al(
0,

1),
itd
ete
rm
ine
sth
era

teo
fex

pon
ent
ial
asy
mp
toti
cd
ecl
ine

of
the
sef
unc

tion
s.B

ys
ubs
titu
ting

(3)
in(
2),
the

cor
res
pon

d-
ing

sta
nda

rd
poi
nt-
pro
ces
sa
uto
reg
res
siv
em

ode
l(A

R p
p)

wit
hl
ong

-ter
m
me
mo
ry
can

be
obt
ain
ed.

Ev
en
wit
ha
n

equ
ald

egr
ee
of
the

reg
res
sio
n,t
he
AR
Lm

ode
lre
tain

sin
-

for
ma
tion

abo
uta
nin

fini
tea
mo
unt

ofp
ast
sam

ple
s.I
nfa

ct,
the

mo
del
’sn

um
ber

of
par
am
ete
rsd

epe
nds

on
the

num
-

ber
of
the

Lag
uer
re
fun
ctio

ns
con

sid
ere
dr
ath
er
tha
no
n

the
num

ber
of
reg
res
sio
ns
on
the

pas
tob

ser
vat
ion
.T
her
e-

for
e,
giv
en
the

(AR
L p

p)
mo
del
,th

ei
nst
ant
ane
ous

aut
o-

nom
ics
ym
pat
het
ici
nde

x(S
AI)

and
par
asy
mp
ath
etic

ind
ex

(PA
I)w

illb
ed
efin

ed
asa

tim
e-v
ary
ing

fun
ctio

no
fth
ep
a-

ram
ete
rsξ

(t)
=

[ξ 0
(t)

,g
0(t

),g
1(

0,
t),

...,
g 1

(p
p,

t)]
,w
hic
h

we
re
est
ima

ted
by
usi
ng
the

Ne
wto

n-R
aph

son
pro
ced
ure

tom
axi
miz

eth
elo

cal
log
-lik
elih

ood
defi

ned
in[
11]
.T
he

est
ima

tion
pro
ced
ure

isp
erf
orm

ed
by
usi
ng
as
lidi
ng
tim
e

win
dow

W
=

90
sec
.T
he
two

ind
ice
sca

nb
ee
xpr
ess
ed
in

ma
trix

for
ma

s:

SA
I(

t,H
t,ξ

(t)
)=

Ψ S
0
+

N
1 ∑ j=
1

Ψ S
j

g 1
(j

−1
,t)

(4)

PA
I(

t,H
t,ξ

(t)
)=

Ψ P
0
+

N
2 ∑ j=
1

Ψ P
j

g 1
(j

+
(p

s
+

1)
,t) (5)

wit
hN

1
=

p s
+

1a
nd

N 2
=

p p
−(

p s
+

1)
.

In
an
atte

mp
tto

ma
tch

the
fre
que

ncy
res
pon

se
of
the

Lag
uer
re
filt
ers

wit
ht
he
fre
que

ncy
res
pon

se
of
the

sym
-

pat
het
ica

nd
par
asy
mp
ath
etic

sys
tem

s[
3],

we
hav
ec
ho-

sen
p s

=
1
and

p p
=

8.
Sin
ce

µ R
R
(t,

H t,
ξ(

t))
isd

e-
fine

di
na

con
tinu

ous
-tim

efa
shi
on,

we
can

obt
ain

an
in-

sta
nta
neo

us
R–
Re

stim
ate
sa
ta
ver
yfi
ne
tim
esc
ale

(wi
th

an
arb
itra
rily

sm
all
bin

siz
e∆

),w
hic
hr
equ

ires
no
inte

r-
pol
atio

nb
etw

een
the

arr
iva
lti
me
so
ftw

ob
eat
s.
Mo
del

goo
dne

ss-
of-
fiti
sb
ase
do
nth

eK
olm

ogo
rov
-Sm

irn
ov
(KS

)
tes
tan
da
sso
cia
ted
KS

sta
tist
ics
[11
].A

uto
cor
rela

tion
plo
ts

are
als
oc
ons
ide
red

tot
est
the

ind
epe
nde

nce
oft
he
mo
del
-

tran
sfo
rm
ed
inte

rva
ls[
11]
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Fig. 10. Block scheme of the modeling and estimation stages involved in the SAI-PAI calculation.

respect to rest) has been performed for each subject. Then, coefficients of general applicability Ψs,Ψp were obtained through
the average among subjects.



JOURNAL OF APPLIED PHYSIOLOGY 19

S
ym

pa
th

et
ic

  
A

ct
iv

ity
 o

nl
y 

P
ar

as
ym

pa
th

et
ic

  
A

ct
iv

ity
 o

nl
y 

R
es

tin
g 

(s
up

in
e)

 

Ti
lti

ng
 (s

ta
nd

in
g)

 

R
es

tin
g 

(s
up

in
e)

 

Ti
lti

ng
 (s

ta
nd

in
g)

 

Li
ne

ar
 A

R
 

m
od

el
in

g 
 

w
ith

 L
ag

ue
rr

e 
ex

pa
ns

io
n 

g 1
S

 

g 1
P 

M
ul

tip
le

  
R

eg
re

ss
io

n 

M
ul

tip
le

  
R

eg
re

ss
io

n 

Ψ
s 

Ψ
p 

R
ef

er
en

ce
 H

ea
rtb

ea
t  

D
at

as
et

 
M

od
el

in
g 

E
st

im
at

io
n 

of
 th

e 
D

is
en

ta
ng

lin
g 

C
oe

ffi
ci

en
ts

 

Li
ne

ar
 A

R
 

m
od

el
in

g 
 

w
ith

 L
ag

ue
rr

e 
ex

pa
ns

io
n 

Fig. 11. Scheme detail of the "Model and Multiple Regression" block included in Figure 10.
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Experimental results

Goodness of fit analysis: Table VII shows results from a comprehensive goodness of fit analysis performed on the Tilt-table
protocol, as well as the Lower Body Negative Pressure and Handgrip protocols. Specifically, we show inter-subject statistics
summarized as interval (Median±MAD), minimum and maximum values on the Sum of the Squared Distances of the points
outside the confidence interval of the autocorrelation plot, as well as KS distance.

TABLE VII
COMPARISON OF AUTONOMIC INDICES BETWEEN BASELINE AND HANDGRIP

Autonomic ACP-SSD ACP-SSD ACP-SSD KS Distance KS Distance KS Distance
Index Squared Distances (SSD) Interval Min. (%) Max. (%) Interval Min. Max.

Tilt-Table 0.024±0.0060 0.0042 0.0459 0.022±0.0056 0.0078 0.0412
Lower Body Negative Pressure 0.0891±0.066 0.001 0.336 0.0366±0.0082 0.0146 0.0797

Handgrip 0.0228±0.0207 0.002 0.160 0.0647±0.0102 0.0373 0.1091

ACP-SSD: Autocorrelation Plot - Sum of the Squared Distances
KS Distance: Kolmogorov-Smirnov Distance

Intervals are expressed as Median±Median absolute deviation

Figure 12 shows exemplary goodness of fit plots (KS and Autocorrelation plots) from data gathered from the Tilt-table and
Lower Body Negative Pressure protocols.
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Fig. 12. Exemplary KS (left column) and Autocorrelation (right column) plots from data gathered from the Tilt-table (top row) and Lower Body Negative
Pressure (bottom row) protocols. CDF: Cumulative Density Function.
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Tilt-table protocol: In order to demonstrate how the proposed SAI and PAI measures are able to follow sympathetic and
parasympathetic changes, respectively, at a single-subject level, SAI-PAI estimates along with their LF-HF counterpart, as well
as standard instantaneous heartbeat statistics in the time domain are reported here (Median±MAD).
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Fig. 13. Instantaneous heartbeat statistics computed from an exemplary subject of the Tilt-Table protocol. In the top-left panel, the estimated µRR(t),
superimposed on the recorded R-R series, and the instantaneous heartbeat standard deviation σRR(t) are shown. Instantaneous sympathetic and parasympathetic
activity, and sympatho-vagal balance as estimated through SAI and PAI, and SAI/PAI ratio measures, along with the LF, HF and LF/HF ratio are shown in
the other panels. Vertical dotted red lines indicate the beginning and end of each experimental transition. For this subject, the first transition is from rest (R)
to slow tilt (ST) and back, the second is from R to fast tilt (FT) and back, the third and fourth are from R to stand-up (SU) , then R to ST, and the final R
to FT and back.. Transitions are randomized for each subject.
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Fig. 14. Instantaneous heartbeat statistics computed from an exemplary subject of the Tilt-Table protocol. In the top-left panel, the estimated µRR(t),
superimposed on the recorded R-R series, and the instantaneous heartbeat standard deviation σRR(t) are shown. Instantaneous sympathetic and parasympathetic
activity, and sympatho-vagal balance as estimated through SAI and PAI, and SAI/PAI ratio measures, along with the LF, HF and LF/HF ratio are shown in
the other panels. Vertical dotted red lines indicate the beginning and end of each experimental transition. For this subject, the first transition is from rest (R)
to fast tilt (FT) and back, the second is from R to slow tilt (ST) and back, the third is from R to stand-up (SU) , then R to ST, R to SU and R to FT and
back.. Transitions are randomized for each subject.
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Fig. 15. Instantaneous heartbeat statistics computed from an exemplary subject of the Tilt-Table protocol. In the top-left panel, the estimated µRR(t),
superimposed on the recorded R-R series, and the instantaneous heartbeat standard deviation σRR(t) are shown. Instantaneous sympathetic and parasympathetic
activity, and sympatho-vagal balance as estimated through SAI and PAI, and SAI/PAI ratio measures, along with the LF, HF and LF/HF ratio are shown in
the other panels. Vertical dotted red lines indicate the beginning and end of each experimental transition. For this subject, the first transition is from rest (R)
to fast tilt (FT) and back, the second is from R to slow tilt (ST) and back, the third and fourth are from R to stand-up (SU) , then R to ST, and the final R
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Tables VIII, IX, and X show comprehensive results gathered from three estimation methodologies: linear point-process
method (ARPP ), linear point-process method with Laguerre expansion (ARLPP ), and standard linear autoregressive modeling
(AR). Through each of these methods, considering rest-to-stand up (Table VIII), rest-to-slow tilt (Table X), and rest-to-fast tilt
(Table IX) procedures, the following heartbeat dynamics measures were evaluated: mean RR interval (µRR), standard deviation
of the RR intervals (σRR), sympathetic and parasympathetic activity, and sympatho-vagal balance.

Table VIII shows similar performances between the three modeling methods while discerning rest from stand up sessions
using µRR and σRR estimates. The same applies for the estimation of LF, HF, and LF/HF ratio. Nevertheless, the use of
ARLPP modeling for the estimation of SAI, PAI, and SAI/PAI measures significantly outperform the use of ARPP and AR
modeling for the identification of sympathetic and parasympathetic activities. All SAI and PAI estimates are associated with
significant differences between rest and stand up sessions with p-values as low as < 10−5.

TABLE VIII
RESULTS FROM THE REST - STAND UP EXPERIMENTAL DATASET

Statistical Index Model Rest Stand-Up p-value

µRR(ms)

ARPP 906.17 ± 116.21 774.48 ± 80.41 0.015907
ARLPP 914.94 ± 122.70 773.46 ± 80.67 0.011924

AR 910.94 ± 123.08 781.92 ± 55.96 0.013141

σRR(ms)

ARPP 19.69 ± 9.37 15.84 ± 5.06 0.406973
ARLPP 19.72 ± 9.37 16.57 ± 4.89 0.521672

AR 47.48 ± 18.59 48.65 ± 16.42 0.998264

Sympathetic Activity

LF(ARPP ) 328.54 ± 260.34 410.03 ± 305.24 0.986259
LF(ARLPP ) 516.16 ± 311.31 152.33 ± 379.46 0.270000

LF(AR) 349.86 ± 331.22 514.13 ± 506.35 0.947366
SAINEW (0) 8.78 ± 1.21 12.55 ± 0.87 0.000078
SAINEW (1) 8.52 ± 2.08 12.83 ± 0.34 0.000155
SAINEW (2) 9.14 ± 0.87 10.11 ± 1.17 0.027497
SAINEW (3) 33.05 ± 5.59 43.56 ± 5.15 0.000256
SAINEW (4) 30.03 ± 3.17 39.05 ± 2.05 0.000031

Parasympathetic Activity

HF(ARPP ) 179.39 ± 149.43 76.13 ± 51.63 0.125312
HF(ARLPP ) 337.17 ± 247.07 155.23 ± 73.60 0.408000

HF(AR) 234.17 ± 150.02 121.52 ± 71.68 0.088179
PAINEW (0) 10.83 ± 1.01 7.16 ± 1.97 0.001805
PAINEW (1) 11.37 ± 0.84 8.93 ± 1.56 0.028127
PAINEW (2) 11.42 ± 1.09 10.00 ± 0.38 0.002437
PAINEW (3) 38.39 ± 3.20 32.03 ± 3.74 0.002631
PAINEW (4) 35.91 ± 1.84 29.63 ± 3.25 0.000570

Sympatho-Vagal Balance

LF/HF(ARPP ) 1.37 ± 0.78 2.58 ± 2.41 0.221391
LF/HF(ARLPP ) 1.88 ± 1.36 3.25 ± 2.59 0.242000

LF/HF(AR) 0.87 ± 0.66 0.89 ± 0.89 0.597419
SAI/PAINEW (0) 0.86 ± 0.30 1.49 ± 0.17 0.002463
SAI/PAINEW (1) 0.81 ± 0.19 1.35 ± 0.29 0.001088
SAI/PAINEW (2) 0.80 ± 0.14 1.12 ± 0.11 0.000650
SAI/PAINEW (3) 0.83 ± 0.18 1.38 ± 0.23 0.000014
SAI/PAINEW (4) 0.85 ± 0.14 1.29 ± 0.13 0.000003

RMSSD(ms) 26.28 ± 9.78 19.46 ± 4.41 0.144596
pNN50(%) 5.98 ± 5.89 2.18 ± 2.18 0.098656

HRV_tri_ind 8.10 ± 1.71 7.61 ± 2.01 0.605398
TINN (ms) 147.50 ± 40.00 185.00 ± 25.00 0.563922

p-values are obtained from the rank-sum test between the Rest and Stand-up sessions. ARPP : estimates from linear point-process method.
ARLPP : estimates from linear point-process method with Laguerre expansion.

AR: estimates from linear autoregressive model.
NEW(0): a multiple linear regression using subject specific (i.e., performed for each subject) recording from one rest-upright condition.

NEW(1): a multiple linear regression using subject specific (i.e., performed for each subject) recording averaging ΨS and ΨP estimates from stand-up, slow and fast tilting
conditions.

NEW(2): a multiple linear regression using general values (i.e., calculated over all of the subjects), averaging ΨS and ΨP estimates from stand-up, slow and fast tilting
conditions, following a leave one subject out procedure.

NEW(3): a multiple linear regression using general values (i.e., calculated over all of the subjects) averaging ΨS and ΨP estimates from the rest-tilt control session of an
independent dataset.

NEW(4): a multiple linear regression using general values (i.e., calculated over all of the subjects) averaging ΨS and ΨP from subjects of an independent dataset undergoing
autonomic blockade (parasympathetic suppression -> sympathetic kernels ΨS ; sympathetic suppression -> parasympathetic kernels ΨP .
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Table IX also shows similar performances between the three modeling methods while discerning rest from slow tilt sessions
using µRR, σRR, LF, HF, and LF/HF ratio. All SAI and PAI estimates are associated with significant differences between rest
and stand up sessions with p-values as low as < 10−3.

TABLE IX
RESULTS FROM THE REST - SLOW TILT-TABLE EXPERIMENTAL DATASET

Statistical Index Model Rest Titl-Table Slow p-value

µRR(ms)

ARPP 875.25 ± 73.14 765.03 ± 58.91 0.000512
ARLPP 877.80 ± 72.50 764.79 ± 56.81 0.000412

AR 879.59 ± 75.09 772.82 ± 46.10 0.001063

σRR(ms)

ARPP 21.51 ± 6.07 15.13 ± 4.95 0.057883
ARLPP 22.29 ± 5.92 15.11 ± 4.62 0.057883

AR 52.57 ± 17.69 62.80 ± 16.30 0.843425

Sympathetic Activity

LF(ARPP ) 417.76 ± 240.68 332.88 ± 162.72 0.438254
LF(ARLPP ) 552.42 ± 388.69 368.13 ± 220.38 0.715000

LF(AR) 465.03 ± 241.99 394.37 ± 310.24 0.661443
SAINEW (0) 8.18 ± 1.50 11.14 ± 1.48 0.000965
SAINEW (1) 9.22 ± 0.80 10.00 ± 1.16 0.052808
SAINEW (2) 9.26 ± 0.56 10.52 ± 0.72 0.000970
SAINEW (3) 30.78 ± 5.19 35.54 ± 5.45 0.011087
SAINEW (4) 33.50 ± 3.17 36.05 ± 1.59 0.007000

Parasympathetic Activity

HF(ARPP ) 235.59 ± 166.53 88.15 ± 68.42 0.046554
HF(ARLPP ) 295.12 ± 192.60 128.92 ± 77.27 0.060000

HF(AR) 263.67 ± 141.88 150.51 ± 74.30 0.050001
PAINEW (0) 11.96 ± 2.00 7.27 ± 2.58 0.000177
PAINEW (1) 14.09 ± 0.41 9.13 ± 2.40 0.001355
PAINEW (2) 11.66 ± 0.93 10.25 ± 0.65 0.000708
PAINEW (3) 39.14 ± 2.67 36.02 ± 1.01 0.066003
PAINEW (4) 36.42 ± 2.92 31.96 ± 3.15 0.011000

Sympatho-Vagal Balance

LF/HF(ARPP ) 1.03 ± 0.74 2.73 ± 1.64 0.209343
LF/HF(ARLPP ) 1.39 ± 1.071 3.00 ± 1.43 0.126000

LF/HF(AR) 0.66 ± 0.23 1.21 ± 0.68 0.168735
SAI/PAINEW (0) 0.66 ± 0.19 1.51 ± 0.69 0.000189
SAI/PAINEW (1) 0.63 ± 0.09 1.18 ± 0.33 0.000376
SAI/PAINEW (2) 0.82 ± 0.12 0.95 ± 0.07 0.004746
SAI/PAINEW (3) 0.81 ± 0.20 1.05 ± 0.21 0.007233
SAI/PAINEW (4) 0.95 ± 0.13 1.15 ± 0.13 0.001000

RMSSD(ms) 32.10 ± 12.56 19.68 ± 4.52 <0.05
pNN50(%) 10.20 ± 9.47 1.74 ± 1.37 <0.02

HRV_tri_ind 8.03 ± 1.41 7.31 ± 1.61 >0.05
TINN (ms) 195.00 ± 70.00 150.00 ± 45.00 >0.05

p-values are obtained from the rank-sum test between the Rest and Slow-Tilt sessions. ARPP : estimates from linear point-process method.
ARLPP : estimates from linear point-process method with Laguerre expansion.

AR: estimates from linear autoregressive model.
NEW(0): a multiple linear regression using subject specific (i.e., performed for each subject) recording from one rest-upright condition.

NEW(1): a multiple linear regression using subject specific (i.e., performed for each subject) recording averaging ΨS and ΨP estimates from stand-up, slow and fast tilting
conditions.

NEW(2): a multiple linear regression using general values (i.e., calculated over all of the subjects), averaging ΨS and ΨP estimates from stand-up, slow and fast tilting
conditions, following a leave one subject out procedure.

NEW(3): a multiple linear regression using general values (i.e., calculated over all of the subjects) averaging ΨS and ΨP estimates from the rest-tilt control session of an
independent dataset.

NEW(4): a multiple linear regression using general values (i.e., calculated over all of the subjects) averaging ΨS and ΨP from subjects of an independent dataset undergoing
autonomic blockade (parasympathetic suppression -> sympathetic kernels ΨS ; sympathetic suppression -> parasympathetic kernels ΨP .
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Table X also shows similar performances between the three modeling methods while discerning rest from fast tilt sessions
using µRR, σRR, LF, HF, and LF/HF ratio. All SAI and PAI estimates are associated with significant differences between rest
and stand up sessions with p-values as low as < 10−3.

TABLE X
RESULTS FROM THE REST - FAST TILT-TABLE EXPERIMENTAL DATASET

Statistical Index Model Rest Titl-Table Fast p-value

µRR(ms)

ARPP 881.03 ± 94.55 776.18 ± 66.49 0.004627
ARLPP 883.03 ± 95.78 774.62 ± 54.46 0.005068

AR 860.50 ± 80.48 777.18 ± 51.58 0.009375

σRR(ms)

ARPP 21.68 ± 8.02 16.33 ± 4.00 0.064190
ARLPP 22.18 ± 8.31 16.92 ± 4.51 0.073844

AR 48.20 ± 9.40 46.00 ± 15.01 0.318951

Sympathetic Activity

LF(ARPP ) 476.41 ± 285.63 349.72 ± 203.75 0.303830
LF(ARLPP ) 568.28 ± 299.64 504.37 ± 269.77 0.704000

LF(AR) 401.86 ± 330.31 338.33 ± 278.42 0.739734
SAINEW (0) 10.14 ± 1.30 12.21 ± 1.43 0.002616
SAINEW (1) 9.51 ± 0.50 12.95 ± 2.07 0.013986
SAINEW (2) 9.33 ± 0.50 10.70 ± 0.49 0.000156
SAINEW (3) 33.70 ± 5.42 41.42 ± 3.33 0.002173
SAINEW (4) 31.80 ± 2.21 36.79 ± 1.85 0.000870

Parasympathetic Activity

HF(ARPP ) 214.90 ± 159.75 123.14 ± 79.59 0.103231
HF(ARLPP ) 239.12 ± 177.12 203.04 ± 102.98 0.815000

HF(AR) 296.05 ± 153.27 136.80 ± 59.81 0.023688
PAINEW (0) 10.77 ± 0.81 8.17 ± 1.90 0.001019
PAINEW (1) 11.59 ± 0.91 8.56 ± 1.48 0.002331
PAINEW (2) 11.69 ± 1.39 10.46 ± 0.67 0.027591
PAINEW (3) 39.13 ± 3.15 34.12 ± 1.84 0.002259
PAINEW (4) 35.89 ± 2.95 30.62 ± 1.58 0.002000

Sympatho-Vagal Balance

LF/HF(ARPP ) 2.05 ± 1.57 1.96 ± 1.26 0.753865
LF/HF(ARLPP ) 1.82 ± 1.43 1.56 ± 0.65 0.977000

LF/HF(AR) 0.93 ± 0.46 1.51 ± 1.10 0.116943
SAI/PAINEW (0) 0.83 ± 0.35 1.74 ± 0.47 0.000612
SAI/PAINEW (1) 0.85 ± 0.18 1.57 ± 0.31 0.011072
SAI/PAINEW (2) 0.84 ± 0.16 1.03 ± 0.07 0.000977
SAI/PAINEW (3) 0.94 ± 0.22 1.25 ± 0.13 0.000704
SAI/PAINEW (4) 0.87 ± 0.13 1.21 ± 0.13 0.000263

RMSSD(ms) 28.70 ± 11.32 18.10 ± 3.60 0.038235
pNN50(%) 6.54 ± 6.18 1.14 ± 1.14 0.018120

HRV_tri_ind 8.49 ± 2.00 6.50 ± 0.93 0.062213
TINN (ms) 182.50 ± 60.00 140.00 ± 45.00 0.160440

p-values are obtained from the rank-sum test between the Rest and Fast-Tilt sessions. ARPP : estimates from linear point-process method.
ARLPP : estimates from linear point-process method with Laguerre expansion.

AR: estimates from linear autoregressive model.
NEW(0): a multiple linear regression using subject specific (i.e., performed for each subject) recording from one rest-upright condition.

NEW(1): a multiple linear regression using subject specific (i.e., performed for each subject) recording averaging ΨS and ΨP estimates from stand-up, slow and fast tilting
conditions.

NEW(2): a multiple linear regression using general values (i.e., calculated over all of the subjects), averaging ΨS and ΨP estimates from stand-up, slow and fast tilting
conditions, following a leave one subject out procedure.

NEW(3): a multiple linear regression using general values (i.e., calculated over all of the subjects) averaging ΨS and ΨP estimates from the rest-tilt control session of an
independent dataset.

NEW(4): a multiple linear regression using general values (i.e., calculated over all of the subjects) averaging ΨS and ΨP from subjects of an independent dataset undergoing
autonomic blockade (parasympathetic suppression -> sympathetic kernels ΨS ; sympathetic suppression -> parasympathetic kernels ΨP .
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Autonomic Blockade: For the sake of completeness, we here report results and related statistics (Median±MAD) consid-
ering postural changes during control and sympathetic/parasympathetic blockades, following a previously validated approach
described in [41].

During the control postural changes, SAI and PAI estimates, along with their ratio, follow physiologically plausible trends (i.e.,
SAI increases after standing with respect to rest; PAI decreases after standing with respect to rest). As expected, autonomic
blockades make SAI and PAI reaching relative minimum and maximal values. Specifically, the PAI is at a minimum in
the upright+atropine case (i.e., parasympathetic blockade after standing) and at maximum in the supine+propanolol case
(i.e., resting state during sympathetic blockade), whereas the SAI is at a maximum in the control standing case, and at
a minimum in the supine+propranolol case (i.e., resting state during sympathetic blockade). Consistently, the sympathovagal
balance SAI/PAI is at minimum in the supine+propanolol case (i.e., resting state during sympathetic blockade), and at maximum
in the upright+atropine case (i.e., parasympathetic blockade after standing).

TABLE XI

Autonomic Index
Control Test (14 Subjects) Control and Autonomic Blockade (7+7 Subjects)

No Drugs Control/Propranorol Control/Athropine
Rest Standing p-val Rest Standing

SAI [a.u.] 40.010 ± 2.046 42.569 ± 1.339 0.001 34.921 ± 1.086 43.668 ± 2.342
PAI [a.u.] 30.308 ± 1.243 28.544 ± 1.218 0.048 30.825 ± 1.08 23.469 ±4.689
SAI/PAI 1.357 ± 0.156 1.514 ± 0.079 0.024 1.129 ± 0.099 1.667 ± 0.229

p-values are from the signrank non-parametric test for paired data
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IX. FIGURE LEGEND

Figure 1: Laguerre polynomials of order 8 for α = 0.2 plotted over the first 40 lags

Figure 2: Instantaneous heartbeat statistics computed from an exemplary subject of the Tilt-Table protocol. In the top-left
panel, the estimated µRR(t), superimposed on the recorded R-R series, and the instantaneous heartbeat standard deviation
σRR(t) are shown. Instantaneous sympathetic and parasympathetic activity, and sympatho-vagal balance as estimated through
SAI and PAI, and SAI/PAI ratio measures, along with the LF, HF and LF/HF ratio are shown in the other panels. Vertical
dotted red lines indicate the beginning and end of each experimental transition. For this subject, the first transition is from rest
(R) to stand-up (SU) and back, the second is from R to fast tilt (FT) and back, the third from R to SU, then R to FT, and the
final two are from R to slow tilt (ST) and back.. Transitions are randomized for each subject.

Figure 3: TILT-TABLE PROTOCOL: FAST-TILT. Instantaneous point-process estimates averaged along all subjects, aligned
with the transitions before and after fast-tilt. In the left panels the estimated instantaneous power LF (t) and the SAI(t) can
be compared. At each time, the median value is superimposed (black line) on the standard error of the median (gray area).
Vertical red line indicates the beginning of the fast-tilt maneuver. Likewise, the estimated instantaneous power HF (t) and the
PAI(t) are shown in the central panels, whereas the estimated instantaneous LF/HF (t) and the SAI/PAI(t) can be compared
in the right panels.
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Figure 4: TILT-TABLE PROTOCOL: SLOW-TILT. Instantaneous point-process estimates averaged along all subjects, aligned
with the slow-tilt transitions. In the left panel, the estimated instantaneous power LF (t) and the SAI(t) can be compared. At
each time, the median value is superimposed (black line) on the standard error of the median (gray area). The two vertical
red lines indicate the start and end of the slow tilting manoeuver. Likewise, the estimated instantaneous power HF (t) and
the PAI(t) can be compared in the central panels, whereas the estimated instantaneous LF/HF (t) and the SAI/PAI(t) can be
compared in the right panels.

Figure 5: TILT-TABLE PROTOCOL: STAND UP. Instantaneous point-process estimates averaged along all subjects, aligned
with the stand-up transitions. In the left panels, the estimated instantaneous power LF (t) and the SAI(t) can be compared. At
each time, the median value is superimposed (black line) on the standard error of the median (gray area). Vertical red lines
indicate the beginning of the stand-up maneuver. Likewise, the estimated instantaneous power HF (t) and the PAI(t) can be
compared in the central panels, whereas the estimated instantaneous LF/HF (t) and the SAI/PAI(t) can be compared in the
right panels.

Figure 6: LBNP PROTOCOL. Instantaneous point-process estimates averaged along all subjects, aligned with the LBNP
transitions. In the left panel the estimated instantaneous power LF (t) and the SAI(t) are shown. At each time, the median
value is superimposed (black line) on the standard error of the median (gray area). Vertical red line indicates the beginning
of the LBNP maneuver. Likewise, the estimated instantaneous power HF (t) and the PAI(t) are shown in the central panel,
whereas the estimated instantaneous LF/HF (t) and the SAI/PAI(t) are shown in the right panel.

Figure 7: HANDGRIP PROTOCOL. Instantaneous point-process estimates averaged along all subjects, aligned with the
handgrip transitions. In the left panel the estimated instantaneous power LF (t) and the SAI(t) are shown. At each time, the
median value is superimposed (black line) on the standard error of the median (gray area). Vertical red line indicates the
beginning of the handgrip task. Likewise, the estimated instantaneous power HF (t) and the PAI(t) are shown in the central
panel, whereas the estimated instantaneous LF/HF (t) and the SAI/PAI(t) are shown in the right panel.

Figure 8: (Left) First 4 Laguerre Functions for α = 0.2 plotted over the first 25 lags. The order of each Laguerre basis is
indicated under brackets. (Right) The 3rd Laguerre functions for α = 0.1, 0.2, 0.3, 0.4. The corresponding α value is indicated
under brackets.

Figure 9: A graphical representation of point-process modeling of heartbeat dynamics. The horizontal axis represents the
counting process along the number of heartbeats, whereas the vertical axis represents the duration of heartbeat intervals.
Inverse-Gaussian (IG) distributions (green lines on the right) characterize the prediction of the future heartbeat event along the
time (from [55])

Figure 10: Block scheme of the modeling and estimation stages involved in the SAI-PAI calculation.

Figure 11: Scheme detail of the "Model and Multiple Regression" block included in Figure 10.

Figure 12: Exemplary KS (left column) and Autocorrelation (right column) plots from data gathered from the Tilt-table
(top row) and Lower Body Negative Pressure (bottom row) protocols. CDF: Cumulative Density Function.

Figure 13: Instantaneous heartbeat statistics computed from an exemplary subject of the Tilt-Table protocol. In the top-left
panel, the estimated µRR(t), superimposed on the recorded R-R series, and the instantaneous heartbeat standard deviation
σRR(t) are shown. Instantaneous sympathetic and parasympathetic activity, and sympatho-vagal balance as estimated through
SAI and PAI, and SAI/PAI ratio measures, along with the LF, HF and LF/HF ratio are shown in the other panels. Vertical
dotted red lines indicate the beginning and end of each experimental transition. For this subject, the first transition is from rest
(R) to slow tilt (ST) and back, the second is from R to fast tilt (FT) and back, the third and fourth are from R to stand-up
(SU) , then R to ST, and the final R to FT and back.. Transitions are randomized for each subject.

Figure 14: Instantaneous heartbeat statistics computed from an exemplary subject of the Tilt-Table protocol. In the top-left
panel, the estimated µRR(t), superimposed on the recorded R-R series, and the instantaneous heartbeat standard deviation
σRR(t) are shown. Instantaneous sympathetic and parasympathetic activity, and sympatho-vagal balance as estimated through
SAI and PAI, and SAI/PAI ratio measures, along with the LF, HF and LF/HF ratio are shown in the other panels. Vertical
dotted red lines indicate the beginning and end of each experimental transition. For this subject, the first transition is from rest
(R) to fast tilt (FT) and back, the second is from R to slow tilt (ST) and back, the third is from R to stand-up (SU) , then R
to ST, R to SU and R to FT and back.. Transitions are randomized for each subject.
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Figure 15: Instantaneous heartbeat statistics computed from an exemplary subject of the Tilt-Table protocol. In the top-left
panel, the estimated µRR(t), superimposed on the recorded R-R series, and the instantaneous heartbeat standard deviation
σRR(t) are shown. Instantaneous sympathetic and parasympathetic activity, and sympatho-vagal balance as estimated through
SAI and PAI, and SAI/PAI ratio measures, along with the LF, HF and LF/HF ratio are shown in the other panels. Vertical
dotted red lines indicate the beginning and end of each experimental transition. For this subject, the first transition is from rest
(R) to fast tilt (FT) and back, the second is from R to slow tilt (ST) and back, the third and fourth are from R to stand-up
(SU) , then R to ST, and the final R to FT and back.. Transitions are randomized for each subject.


