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Abstract—In recent decades biomedical studies with living 

probands (in vivo) and artificial experiments (in vitro) have been 

complemented more and more by computation and simulation 

(in silico). In silico techniques for medical engineering can give 

for example enhanced information for the diagnosis and risk 

stratification of cardiovascular disease, one of the most occurring 

causes of death in the developed countries. Other use cases for in 

silico methods are given by virtual prototyping and the 

simulation of possible surgery outcomes. High reliability is a 

requirement for cardiovascular diagnosis and risk stratification 

methods especially with surgical decision-making. Given 

uncertainties in the input data of a simulation, this implies a 

necessity to quantify the uncertainties in simulation results. 

Uncertainties can be propagated within a numerical simulation 

by methods of Uncertainty Quantification (UQ). 

For many cardiovascular applications, such as the simulation 

of blood flow through the aorta, the physiological understanding 

and mathematical modeling has still challenging aspects. 

Modeling the biomechanics of aortic blood flow by means of a 

three-dimensional fluid-structure interaction (FSI) problem, the 

simulation becomes computationally highly expensive. UQ 

usually multiplies the computational costs even further. We 

present an approach to compute patient-specific aortic FSI 

simulations incorporating UQ based on parallel computing. The 

coupled fluid- and elasto-mechanical problem is computed with a 

monolithic finite element (FEM) solver. The quantification of 

uncertainties is realized by a collocation method based on 

polynomial chaos (PC). 

For validation purposes we consider an in vitro prototypical 

silicon phantom experiment and compare the simulation results 

with flow magnetic resonance images (MRI) of the phantom. 

Flow MRI is capable of visualizing the velocity field of the fluid 

flow. Taking the uncertainty into account, the simulation results 

are in well accordance with the MRI-measured velocity field. 

Furthermore, we present a patient-specific simulation method for 

simulating blood flow through the aortic bow based on high 

performance computing. Possible risk parameters can be 

evaluated in consideration of the uncertainty in the input data. 

Keywords—Uncertainty Quantification, Fluid-Structure 

Interaction, Numerical Simulation, Blood Flow 

I.  INTRODUCTION 

Cardiovascular diseases are one of the most occurring 
causes of death in the developed countries. Investigating the 
physiology of the cardiovascular system and the pathogenesis 

of its diseases leverages medical diagnosis and therapeutic 
possibilities.  Greater knowledge can be acquired from medical 
studies with living patients and probands in vivo. Furthermore, 
investigations with artificial, i.e. in vitro experiments have been 
complemented more and more with virtual, so called in silico 
methods by means of computations and simulations. 
Overviews on the application of numerical simulations for 
investigating cardiovascular dynamics are given by [1,2,3]. For 
example, dynamics that are hard to be assessed non-invasively 
can be simulated supplementing pre-operative risk parameters. 
The outcome of different surgical procedures can be evaluated 
beforehand by means of simulations. 

For the verification of cardiovascular numerical 
simulations, aortic phantom experiments can be used. In [4] a 
prototypical aortic phantom is presented. Fully consisting of 
non-metallic materials, the three-dimensional flow field can be 
measured in time by phase contrast magnetic resonance 
imaging (MRI) and compared to simulations of the same. 
Using a silicon material, the movement of the elastic vessel 
wall can also be observed in the phantom. As to the aorta, the 
elasticity of the complex vessel wall structure is crucial for 
damping the pressure waves induced by each heart beat. 
Though the layers of vessel wall soft tissue have been 
examined with respect to their biomechanics [5], it remains a 
challenging effort to simulate blood flow in elastic vessels in 
detail. One factor is given by the lack of non-invasive 
measurability of structural material parameters of a specific 
patient. The arising uncertainty in the soft tissue structure can 
be modeled by Uncertainty Quantification (UQ). In particular, 
UQ can provide a measure of the reliability of simulation 
results. 

An overview on the modeling and numerical simulation of 
blood flow is given in  [6]. Methods of UQ for flow 
simulations are reviewed in [7]. This work describes new 
developments in the simulation of blood flow coupled with 
elastic vessel wall movement by means of fluid-structure 
interaction (FSI) taking the uncertainty of input parameters into 
account. The presented framework is verified by means of MRI 
measurements of an aortic phantom experiment. 

The paper is structured as follows: First, the underlying 
mathematical model is described. Section III gives an overview 
on the discretization and the utilized numerical methods. The 
simulation results for the phantom and a patient-specific aortic 
bow are presented in section IV. The conclusion gives a 
summary and an outlook to future work. 

24



bwHPC Symposium 2017, Tübingen, October 4th 2017 

 

 

Fig. 1: Schematic overview on the aortic phantom used in 
[4]. A pulsatile flow is pumped through the inflow of the 
elastic vessel tube. The outflow is followed by a flow 
resistor. The flow was measured by phase contrast MRI at 
the cross-sectional planes of the marker levels. 

II. MATHEMATICAL MODELING 

Figure 1 gives an overview on the considered prototypical 
aortic phantom. The general configuration is in accordance 
with a human aorta except for the presence of branching 
vessels and the complexity of the soft tissue structure. 

A. Fluid flow 

The flow dynamics of the glycerin-water mixture as used in 
the phantom experiment can be modeled by the incompressible 
Navier Stokes equations (NSE) for a Newtonian fluid. The 
NSE can also be used for modeling blood flow in large arteries, 
in which the shear-thinning influence of the red blood cells is 
relatively small. 

 ∂tv +( v · ∇ )v – ∇ · ( ∇v + ∇vT ) + 1/∇p =  () 
 v · ∇ = 0. ()  

Equation (1) refers to the momentum conservation in the 
three-dimensional velocity and the one-dimensional pressure 
field v and p, respectively. (2) is derived from the conservation 
of mass. The glycerin (40%) to water (60%) proportions were 

chosen, such that the density  and kinematic viscosity  is 
similar to blood. The inflow velocity of the simulation is set by 
means of a Dirichlet Poisseuille boundary condition scaled by 
the pulsatile flow rate measured at the marker plane L1. The 
inflow rate is modeled as an uncertain parameter of a uniform 
distribution with a maximal deviation of 15% from the 
measured value. 

B. Elastic vessel wall structure 

Aortic vessel wall soft tissue consists of three layers of 
cellular structures with different anisotropic biomechanical 
behavior. The phantom, however, can be modeled as a 
homogeneous hyperelastic Saint-Venant Kirchhoff material 
given by: 

 ∂ttu – ∇ · ( tr( E ) I + 2E ) =  () with E = 0.5( ∇uT ∇u + ∇uT + ∇u ). ()  

The conservation of momentum, equation (3), governs the 
strain tensor E of the material which is defined by the three-
dimensional displacement field u. Compressibility and stiffness 

are determined by the Poisson ratio  and Young’s modulus Y, 

respectively. They define the Lamé-constants  = Y(1 + )-1 (1 

– 2)-1 and  = 0.5Y(1 + )-1. The trace operator is denoted by 
tr and I is the identity matrix. To address the uncertainty in the 
generally hard to measure stiffness of vessel wall material, we 
model the Young’s modulus Y as uncertain parameter of a 
uniform distribution with a maximal deviation of 30%. 

C. Coupling of fluid flow and wall elasticity 

In the mathematical problem formulation, coupling 
conditions model the interaction between fluid flow and vessel 
wall elasticity. At the interface, the displacement and the 
tension forces are assumed to coincide. The flow equations 
(1,2) are stated in the Eulerian frame of reference and the 
elasticity equations (3,4) in the Lagrangian frame of reference. 
A standard approach to couple these two perspectives is given 
by the Arbitrary Lagrangian-Eulerian (ALE) method. The ALE 
method introduces a mapping of the fluid domain from a 
reference state to the current configuration in time [8].  

III. HPC SIMULATION 

In order to numerically solve a complex stochastical 
boundary value problem as stated in section II, computationally 
efficient and parallel scalable methods have to be utilized. The 
large number of discrete unknowns requires the computation 
on high performance computing (HPC) clusters. 

The FSI problem is solved in a monolithic way, resulting in 
a strong coupling of the fluid flow and vessel wall elasticity. 
The non-linearities in the mathematical problem are linearized 
by exact Newton-linearization. Finite elements of Taylor-Hood 
type discretize the spatial dimensions. The time steps are 
allocated by the one-step-θ-scheme. See for example [9] for 
details on the numerical methods. For the quantification of 
uncertainties, we use the generalized polynomial chaos 
expansion [10] with Legendre polynomials as a basis for the 
stochastic space. As a collocation method we use the Gauss-
Legendre quadrature [11]. Each collocation point represents a 
single deterministic simulation run. This way, the code for the 
deterministic simulation does not have to be altered for the UQ 
study. 

To numerically solve the discretized systems of equations, 
the open-source FEM framework HiFlow³ [12] is utilized on 
the HPC bwForCluster MLS&WISO production. Sufficient 
numerical accuracy is obtained with a polynomial chaos 
expansion degree of 3 resulting in 36 collocation points. Each 
collocation point is given by a number of approximately 1.6m 
FEM degrees of freedom for the aortic phantom and 1500 time 
steps. With a wall time of 32 hours on 64 CPU cores for each 
deterministic simulation, this leads to an overall computational 
demand of approximately 74k core hours. 
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(a) Mean value. 

(b) Standard deviation. 

Fig. 2: Visualization of the aortic phantom simulation at the 
time step of highest inflow. The flow field is illustrated by 
streamlines and at cross-sectional planes. The vessel wall 
displacement is shown by the resulting von Mises stress. 

Fig. 4: MRI-measured volume flow rate through marker 
level 2 together with the simulated mean and standard 
deviation from the mean. 

Fig. 3: Visualization of the flow through the cross-sectional 
planes at the marker levels depicted in figure 1 at the time 
of highest inflow. The corresponding MRI measurements 
and FSI simulation results are shown for comparison. 

IV. NUMERICAL RESULTS 

A. Prototypical aortic phantom 

Figure 2 shows a visualization of the aortic phantom 
simulation results. One can say that, with high standard 
deviation, the uncertainty of the results is highest at the time 
and location of maximal flow. The load stress in the vessel wall 
can be indicated by the von Mises stress as a comparative 
scalar field [13]. 

The flow mean values in the cross-sectional planes 
indicated in figure 1 are compared to the MRI measurement in 
figure 3. The flow amplitude decreases with the distance to the 
inflow, which is an effect of the elasticity of the vessel wall. 
This effect cannot be observed in pure flow simulations with a 
rigid wall assumption, c.f. [14]. 

With regards to the volume flow rates through the cross-
sectional planes, the simulation is in well accordance with the 
MRI measurement as can be seen in Figure 4. 

B. Patient-specific aortic bow 

We developed the framework for the simulation of an aortic 
phantom in a generic way, such that it can be directly applied 
to patient-specific geometries. Figure 5 shows a simulation 
result for the aortic bow of a healthy proband. Though the 
material models have to be adapted to human blood and to an 

approximation of the complex structure of the vessel wall, the 
results reveal the feasibility and potential of uncertainty 
quantification for cardiovascular simulations. Hereby, the 
discrete geometry leads to 1.8m FEM degrees of freedom. The 
computational demand for a UQ simulation was 147k core 
hours. 

V. CONCLUSION 

This work presents a numerical framework for the patient-
specific simulation of the fluid-structure interaction dynamics 
of aortic blood flow. The framework is verified by means of 
phase contrast MRI measurements of the flow field in a 
prototypical aortic phantom. Taking uncertainties into account, 
the simulation results obtain a measure of reliability, which is 
crucial for clinical decision-making. 

Future work can concentrate on the incorporation of more 
realistic material properties of blood and vessel walls. 
Modeling the soft tissue as inhomogeneous structure, methods 
can be developed to include a spatially varying stochastic 
distribution of the material parameters. Furthermore the MRI-
based flow measurements can be used not only to define 
boundary conditions but also to be assimilated by the 
simulation in order to utilize the simulation as enhancement of 
the medical imaging modality. The developed framework 
could finally be used in clinical trials to investigate risk factors 
for aortic diseases such as aortic stenosis, aneurysm 
development and vessel rupture. 
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(a) Mean value.             (b) Standard deviation. 

Fig. 5: Visualization of the FSI simulation of an human aortic bow at mid-systole. The flow field is illustrated by streamlines and 
at cross-sectional planes. The vessel wall displacement is shown by the resulting von Mises stress. 
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