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Global climate change will alter the water, nitrogen and 

carbon cycles of agroecosystems. To predict future agricultural 

production under climate change, numerical soil-crop models 

are used. These soil-crop models can represent the complex 

and coupled processes of agroecosystems in a deterministic 

manner for a given environment. The projections made by soil-

crop models suffer from two kinds of uncertainty: (1) epistemic 

uncertainty and (2) parameter uncertainty. Additionally, it is 

assumed that the parameterization is applicable to other 

environments. Therefore, this study has two major aims. The 

first aim is to quantify the above-mentioned uncertainties 

simultaneously by combining two methods: multi-model 

ensemble modeling and Bayesian statistics. The multi-model 

ensemble allows to quantify epistemic uncertainty by 

comparing individual model outputs. This has been 

demonstrated in many studies. Bayesian methods are common 

to assess credible parameter intervals for highly nonlinear 

process models. The second aim of this study is to provide a 

framework for assessing the robustness of the parametrization 

of soil-crop models. Therefore, a preliminary numerical study 

was conducted to test different calibration schemes and to 

investigate parameters sensitivities in dependence of the 

environment. The soil-crop modelling software ExpertN 3.0 

will be used to set up a multi-model ensemble with eight soil-

crop models. The model output will be analyzed by comparison 

with data from two sites, five soil types and two crops gathered 

by the DFG Research Unit 1695 since 2010. To achieve the 

second aim a global sensitivity analyses was conducted to rank 

the input factors for each soil-crop model. The result of the 

global sensitivity analyses will clarify the impact of model input 

on model output in regard to environment, model 

combinations, and extent. Additionally, different calibration 

schemes will be tested to identify the method yielding the most 

robust parametrization. We used a Latin Hypercube sampling 

scheme. In total, the whole study requires 1,000,000 CPU 

hours. We expect that the results will enable us to develop a 

generally applicable and feasible strategy of how soil-crop 

models have to be set up to produce reliable predictions of 

agroecosystem behavior under climate change. 
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I.  INTRODUCTION  

Soil-Crop models have been designed to coherently 

simulate crop growth, water and nitrogen dynamics in a 

given environment. The typical model outputs are soil water 

content, yield, evapotranspiration, groundwater recharge and 

nitrogen leaching. However, the state-of-the-art soil-crop 

models differ in complexity and representations of the 

various processes of plant growth and water regime as well 

as solute turnover and transport. Furthermore, these 

processes depend on environmental conditions such as 

climate, crop management and soil properties.  

Soil-crop models represent the complex, coupled processes 

in agroecosystems in a deterministic manner. While they 

have been traditionally used to forecast yields and, later, 

nitrogen concentrations in seepage and ground water, they 

are now often used to predict the impact of environmental 

changes on agroecosystems. In the context of food security 

for a growing world population the Agricultural Model 

Intercomparison Project (AgMIP) set itself the goal to 

predict how global agricultural production will be affected 

by climate change [1]; [15]. Among others, [4]; [3] used a 

set of 30 crop models to predict how the grain yield of 

wheat - one of the world population’s staple crops - will 

change with rising temperature in the future.  

Taking a different approach, the DFG Research Unit 1695 

has incorporated a soil-crop model into a land surface model 

[9]. The aim is to improve the accuracy of regional climate 

projections by capturing the dynamic feedbacks between the 

soil-crop system and the atmosphere. This is not possible 

with current climate models. It can be expected that the new 

approach will also lead to improved yield predictions. 

In practice, soil-crop models are often used to assess the 

impacts of agricultural management in regard to fertilization 

or irrigation. This is especially important in regions where 

water is scarce or where the groundwater gets polluted by 

nitrate and pesticides - which is the case in some regions in 

Germany [7]. 

Because, as in the application areas listed above, soil-crop 

modeling serves as a building block for decision making, it 

is of utmost importance to achieve highest levels of 

confidence regarding both kinds of model uncertainty, i.e., 

(1) epistemic uncertainty and (2) parameter uncertainty [18]. 
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Epistemic uncertainty emerges from differences in the 

representation of the underlying processes in different 

models. Parameter uncertainty provides information about 

credible parameter intervals. This is especially important 

when true parameter values are non-existent due to spatial 

and temporal natural heterogeneity and measurement 

inaccuracy. To quantify these uncertainties simultaneously it 

is planned to combine two methods: multi-model ensemble 

and Bayesian methods as suitable tools demonstrated by 

recent studies [11]; [3]; [20].  

Equally important to the uncertainty quantification is the 

robustness of the models’ parametrization. Put simply, 

robustness means that simulation results for environments 

the model was not trained in, are still in good agreement 

with additional measurements. As a first step in the 

quantification of the parameter uncertainty and the 

parameterizations’ robustness, a global sensitivity analysis 

will be conducted.  This will identify the influential model 

parameters for a set of different environments. Afterwards 

we plan to test different calibration schemes differing in the 

size of the training data sets (i.e., different sites and climate 

conditions) and in the targeted output variables being trained 

on. The drawback of all these methods is their 

computational cost. Soil-crop models easily depend on 50 

parameters. To sample the parameter space representatively 

up to 1,000,000 model runs per method and environment are 

necessary.  

In the next sections preliminary results are presented for the 

global sensitivity on a subset of the available data and for 

one model combination.   

II. MATERIAL AND METHODS 

A. Study Site and measurements 

The data used in this study were measured in two 

agricultural fields - one located on Swabian Alb (EC6, 13 

ha), the other one in Kraichgau (EC1, 15 ha). The sites are 

contrasting in climate and soils. The Swabian Alb (48.5°N 

9.8°E, 690 m a.s.l.) has a cold, harsh climate with average 

temperature of 6.5 °C and annual precipitation of 962 mm. 

Mean temperature in Kraichgau (48.9°N 8.7°E, 319 m a.s.l.) 

is 9.3°C and annual precipitation 777 mm. At the EC1 site 

the soil is deeply developed and fertile (depth >165 cm) with 

a high storage capacity of plant available water. In contrast, 

at the EC6 site the soil profile is very shallow and clay rich 

(depth < 30 cm) why the storage capacity of plant available 

water is very low.  

All measurements have been carried out within the DFG 

Research Unit 1695 since 2009. The fields are managed and 

cropped by local farmers (best practice). In this study we 

only used years when winter wheat was grown. Winter wheat 

is usually sown in October and harvested between the end of 

July and mid-August, depending on weather. At EC1 this 

was the case in the vegetation periods 2010/11, 2012/13 and 

2014/15 and at EC6 in 2010/11 and 2013/14. At each site the 

energy and water fluxes are measured with the eddy-

covariance technique. Volumetric soil water content is 

measured using FDR probes in 5, 15, 30, 45 and 75 cm depth 

at EC1 and in 5 and 15 cm depth at EC6. Nitrate and 

ammonium concentration in the soils are measured 2-4 times 

during the vegetation period, depending on the year under 

consideration, in 0-30 cm depth at both sites and in 

Kraichgau additionally in 30-60 cm and 60-90 cm. Leaf Area 

Index (LAI), vegetative and generative biomass, nitrogen 

content of the plant and development stage (BBCH) are 

measured as common plant characteristics in regular 

intervals. Weather stations record net radiation, rainfall, 

temperature, relative humidity and wind speed. For a detailed 

description of the measurement instruments and data 

processing see [8] and [19]. 

B. Model 

Models were set up and run in the framework of the soil-

crop modeling software ExpertN 3.1. As a first model 

combination we tested the CERES crop model [14], the 

SOILN [10] carbon and nitrogen turnover model and the 

Hydrus1D [17] model for the soil water regime. The FAO-

Penman-Monteith [2] approach is used to estimate potential 

crop-specific evapotranspiration.  

The CERES - SOILN model combination uses a diverse set 

of ordinary differential equations to simulate the crop e.g. 

growth, development stage and yield and the carbon and 

nitrogen turnover in the soil, e.g., nitrification and 

mineralisation. The soil water regime is described by the 

Richards equation (partial differential equation, PDE). Soil 

nitrogen dynamics are described by the Advection-

Dispersion Equation (also a PDE). ExpertN 3.1 solves the set 

of coupled ordinary and partial differential equations using a 

fully implicit finite difference scheme with time step control. 

The CERES model has eight parameters which are typically 

adjusted (PD, PV, P1, P4, P5, PHINT, G1, and G2). The van 

Genuchten parameterization for the hydraulic functions was 

used to simulate the water regime. Since the hydraulic 

properties vary over the profile depth several sets of van 

Genuchten parameters are needed (n1, n2, a1, a2, KS1, KS2, 

l1 and l2). For assessing potential evapotranspiration we 

consider the crop factors (ki (kcini), km (kcmid), ke (kcend)). 

Nitrification and denitrification rates in the topsoil (Ni, Dn) 

are parameters of the SOILN model. Additionally, the 

maximum root water uptake rate and the maximum root 

nitrogen uptake as parameters for the interrelations of the 

different submodels are considered.      

C. Global Sensitivity Analyses 

A global sensitivity analysis answers the question of 

what model input - if fixed - reduces the variance of the 

model output most [16]. The first-order sensitivity indices 

(S1) quantify how much of the total model output variance 

can be directly related to a specific parameter.  

To calculate the S1 values for each parameter we conducted 

Latin Hypercube samples [12] with sizes ranging from 

100,000 to 1,000,000 and followed the approach of [13]; [5] 
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as implemented in the python package SALib [7]. The 

approach has the advantage of not depending on a certain 

sampling design. Therefore, S1 can be estimated also in 

cases when the model sometimes crashes. Since this method 

needs a scalar as input and model outputs are time series we 

used the sum of squares (ssq) as a summarizing criteria. The 

ssq was calculated for each measurement point individually 

and then summed up separately for the four target model 

outputs (target variable): soil water content, nitrogen content 

in the soil and crop characteristics, and evapotranspiration. 

Based on ssq, we calculated S1 for each parameter, site, 

year and target variable. Replacing the model output 

through the ssq in the sensitivity analysis yields S1 values 

that give information on how the model performance 

changes with respect to one parameter. Notice that this is 

different from the traditional sensitivity analysis which 

quantifies how changes in the model output depend on 

changes in parameters.  

All simulations and calculations are performed on the 

bwUniCluster. The big Latin Hypercube samples (1,000,000 

model runs) are distributed among 560 cores and take 10-12 

hours to finish. The resulting 150 GB of model output per 

sample are also analyzed in parallel on the bwUniCluster.  

III. RESULTS &DISCUSSION 

Figure 1 shows the S1 values for the different years and 

study sites for each target variable calculated for a sample 

size of 100,000. Depending on the site and year, 30 % to 80 

% of the original sample can be used for the analysis. The 

other samples lead to crashes of ExpertN for numerical 

reasons.  

The parameters shown in figure 1 have an S1 greater than 

0.05. Hence, each parameter explains > 5 % of the variance 

in the output variable. Note that, across target variables, the 

van Genuchten parameters a1, a2, and l1, the interaction 

parameter mW, P1 as a crop parameter and the km 

parameter, related to evapotranspiration explain most of the 

models output variance.  

The sum of first-order sensitivities (S1 values) of all 

parameters shown ranges between 0.65 and 0.81 for the 

different output variables. This means that 65% - 81% of the 

variance can be explained by first-order effects. Only in 

2014 at EC6 for the output variable N the sum is only 0.45.  

Upon comparison of the two sites, one can see that at EC6 

the simulated soil nitrogen content and the 

evapotranspiration also depend on a crop model specific 

parameter. In 2011 and 2015 the crop model performance is 

 

Figure 1. First order sensitivity indices (S1) for the two sites (EC1 and EC6) and the four years (2011, 2013, 2014 and 2015). 

Each circle plots the S1 for one year x site combination and the four target variables Nitrogen, Evapotranspiration, Plant and 

Water Content. The labels refer to parameters which have a S1 of higher than 0.05. 
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also related to crop specific parameters at EC1.  

Rainfall during the vegetation period in these two years was 

20-30% lower than in 2013 indicating that the amount of 

water entering the system affects the parameter sensitivities. 

In 2014 and 2015, vegetation periods were warmer than in 

2011 and 2013, (+15% at EC1, 2015; +20% at EC6, 2014). 

Especially the winters were mild with mean temperatures 

over 0°C. However, this is apparently not affecting the 

parameter sensitivities. The shallower soil profile of EC6 

results in an insensitivity to the van Genuchten parameter n 

as well as an insensitivity to the van Genuchten parameters 

in the first soil layers. 

IV. CONCLUSIONS & OUTLOOK 

We identified 6 parameters that explain most of the variance 

in soil-crop model performance. This result is independent 

from the targeted model output. However, the target variable 

affected the most by these six parameters is different 

between the two sites. Specific crop and carbon-nitrogen 

model parameters play a minor role although this result 

seems to be site- and year-specific. We conclude that the 

parameters belonging to the soil water regime are the most 

important for the overall model performance. Our planned 

next step is to calculate S1 independently from the 

measurements. S1 will be calculated for each simulation 

point and afterwards averaged in accordance with [6]. 

Besides, we will investigate if the S1s are affected by 

within-sample dependencies originating from the crashed 

simulations. Further, S1 values will be calculated for more 

sites and years to evaluate inasmuch the differences in the 

S1 values depend on year and site. We will also evaluate if 

our findings hold true with other popular crop models. We 

think that it is important to test to what extent parameters 

that control overall model performance affect also single 

target variables. The underlying hypothesis is that training 

soil-crop models with more comprehensive sets of target 

and non-target variables makes them more robust.   
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