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Abstract—Here, we present the latest improvements and appli-
cations of the Tübingen-Vienna Smooth Particle Hydrodynamics
(SPH) code. By the use of modern graphics processing units
(GPUs), we have increased the performance of astrophysical
simulations in the field of hydrodynamics and solid mechanics by
porting an OpenMP code to the GPU with CUDA™. Recently, we
have added a porosity module and a soil module to our existing
framework. The code is freely available upon request.

Index Terms—smooth particle hydrodynamics, modelling, com-
putational astrophysics

I. INTRODUCTION

SPH was firstly introduced as a grid-free Lagrangian particle
method for solving the system of hydrodynamic equations
for compressible and viscous fluids by [7] and [13]. SPH is
especially suited for boundary-free problems with high density
contrasts. Rather than being solved on a grid, the equations
are solved at the positions of the so-called particles, each
of which represents a volume of the fluid with its physical
quantities like mass, density, temperature, etc. and moves with
the flow according to the equations of motion. The method was
extended to solid mechanics in the beginning of the nineties
by [10] and improved extensively in the following years [11],
[12], [14]. The extension to model granular media and soil has
been successfully added to SPH in the last years [2].

A recent development in high performance computing is to
harness the power of GPUs for massive parallel applications.
The most advanced interface for general purpose GPU pro-
gramming is CUDA from Nvidia. We have successfully used
the CUDA framework to accelerate our existing SPH code [16]
and present here new modules that have been added to the
framework lately. In the subsequent section, we will describe
the physical models and equations and the numerical scheme
to solve them. We will present three recent applications of our
numerical framework in its subsequent section. Eventually, we
will conclude in the last section.

II. PHYSICAL AND NUMERICAL MODELS

A. Basic equations

The system of partial differential equations that describe the
dynamics of an elastic solid body is given by the three equa-
tions for the conservation of mass, momentum and (internal)

energy, respectively. The conservation of mass is given by the
continuity equation, which reads

d%

dt
+ %

∂vα

∂xα
= 0, (1)

where % denotes the density and v the velocity and the Einstein
summation rule is applied. Greek indices denote the spatial
coordinates and run from 1 to 3. The second equation in the
system accounts for the conservation of momentum

dvα

dt
=

1

%

∂σαβ

∂xβ
. (2)

The stress tensor σ is given by the pressure p and the deviatoric
stress tensor Sαβ

σαβ = −pδαβ + Sαβ . (3)

In contrast to fluid dynamics, this set of partial differential
conservation equations is not sufficient to describe the elastic
body. Additionally the time evolution of the deviatoric stress
tensor has to be specified. The missing relations are called
the constitutive equations which describe the rheology of the
body and relate the kinematic states of the body to the dynamic
states. The time evolution of the deviatoric stress tensor can
be expressed as

dSαβ

dt
= 2µ

[
ε̇αβ − 1

3
δαβ ε̇γγ

]
+ SαγRγβ + SβγRγα, (4)

where Rαβ denotes the rotation rate tensor

Rαβ =
1

2

(
∂vα

∂xβ
− ∂vβ

∂xα

)
, (5)

and ε̇αβ the strain rate tensor

ε̇αβ =
1

2

(
∂vα

∂xβ
+
∂vβ

∂xα

)
. (6)

The closure of this set of partial differential equations is
given by the equation of state (eos). The eos relates the
thermodynamic variables density %, pressure p, and specific
internal energy u. Currently, our framework allows to choose
between several eos, which are described in more detail in the
following.
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B. Equation of State

1) Murnaghan eos: The Murnaghan eos is often used to
model the behaviour of solids under high pressure conditions.
The pressure depends non-linearly on the density

p =
K0

n

[(
%

%0

)n
− 1

]
, (7)

with the zero pressure bulk modulus K0 and the constant n.
The Murnaghan eos is limited to isothermal compression.

2) Tillotson eos: The Tillotson eos distinguishes between
two different domains depending on the specific internal
energy u. In the case of compressed regions (% ≥ %0) and
u lower than the energy of incipient vaporization eiv pressure
is given by

p =

[
a+

b

1 + u/(e0η2)

]
%u+Aξ +Bξ2, (8)

with η = %/%0 and ξ = η − 1. In case of expanded material
(u greater than the energy of complete vaporization ecv) the
eos takes the form

p =a%u+

[
b%u

1 + u/(e0η2)

+ Aξ exp

{
−β
(
%0
%

− 1

)}]
× exp

{
−α

(
%0
%

− 1

)2
}
. (9)

The symbols %0, A, B, e0, a, b, α, and β are material
dependent parameters. In the partial vaporization regime eiv <
u < ecv, the pressure is linearly interpolated between the
pressures obtained via (8) and (9), respectively.

3) Ideal gas eos: For the simulation of gases, the frame-
work includes the ideal gas equation

p =

(
cp
cV

− 1

)
%u, (10)

where cp and cV denote the specific heat capacities at constant
pressure and volume, respectively.

C. Porosity model

In order to model subresolution porosity, we have imple-
mented the p-α model. The basic idea of this porosity model
is the separation of the volume change in a porous material into
the collapse of the pores and the compression of the matrix
material. The distention is a measure for the porosity of the
material and defined as follows

α =
%s
%
, (11)

where % is the density of the porous material and %s the
density of the corresponding matrix material. The pressure of
the porous material is then determined by the experimentally
found relation between the pressure ps of the solid material
and the porosity or distention [6]

p =
1

α
ps(%s, us) =

1

α
ps(α%, u). (12)
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Figure 1. Sampling process on Phobos’ surface for different material
properties of regolith: The angle of internal friction is φ = 42deg and the
cohesion c varies with 0Pa, 500Pa, 1000Pa and 3000Pa.

Here, us denotes the specific internal energy of the solid matrix
material. In addition to the basic conservation equations, the
evolution of the distention is also integrated to determine the
change of porosity during compaction [18].

D. Rheology model for regolith

The plastic flow of regolith can be modelled by the Drucker-
Prager yield criterion. In the Drucker-Prager model, the yield
function f is given by the relation between the first and second
invariant of the stress tensor

f(I1, J2) =
√
J2 + αφI1 − kc = 0. (13)

The invariants are given by the following terms

I1 = tr(σ) = σγγ and J2 =
1

2
SαβSαβ . (14)

The two material constants αφ and kc are called Drucker-
Prager constants and are related to the material constants
cohesion c and angle of internal friction φ in the following
way (for plane strain conditions)

αφ =
tanφ√

9 + 12 tan2 φ
and kc =

3c√
9 + 12 tan2 φ

. (15)

E. Self-gravity

The code implements a Barnes-Hut tree that allows for treat-
ment of self-gravity. We follow the efficient implementation
by [5].

III. APPLICATIONS

In this section, we summarize three recently presented appli-
cations of the computational framework: modelling a possible
sampling process on Phobos, collisions between planetary
embryos and impacts of smaller objects into asteroids.
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Figure 2. Chain forming simulation of two planetary embryos. The total
mass of the system is 1023 kg and the mass ratio between projectile and
target object is 1:9. The impact angle of this simulation is 30 deg and the
impact speed was 2.5 × the mutual escape velocity. The upper panel shows
the initial setup of the collision and the lower panel the formed chain.

A. Sampling on Phobos

The surface of the Mars moon Phobos is covered with
regolith and the thickness of the layer varies between 5m
and 100m. The European Space Agency (ESA) currently
investigates the implementation of a sample return mission to
Phobos. We developed a SPH model for one specific sampling
tool design and performed several simulations with different
conditions regarding the material properties of the regolith.
Our implementation is based on the model developed by
[2], a model for granular flow using SPH in the context
of solid mechanics combined with a Drucker-Prager yield
criterion for plastic flow. The sampling speed for different
material properties of regolith is shown in figure 1. A detailed
description of the project and the results of more simulations
can be found in [17].

B. Collisions between planetary embryos

The Tübingen-Vienna SPH code has been successfully
applied to the simulation of collisions between planetary
embryos. Each of the two colliding planetary embryos consists
of an iron core with a basaltic mantle and an outer ice shell as
described in [3] and [4]. We trace the fate of the ice and water
in these collisions. The outcome of a special chain-forming
collision is shown in Figure 2.

C. Impacts of smaller objects into asteroids

Active asteroids are objects in the asteroid belt that are
dynamically similar to asteroids, but show activity and mass
loss like comets. The mass loss is triggered by impacts of
meter-sized objects in these asteroids that can form craters up
to 12m in diameter [8]. The crater shaped by such an impact
is shown in Figure 3.

Figure 3. Impact crater formation on a Main-belt comet. Simulational
outcome of a typical impact simulation. The diameter of the impactor was
1m and the impact speed was 4.4 km s−1 [8].

IV. CONCLUSION

We presented three recent applications of the Tübingen-
Vienna SPH code, where two of them featured our newly
implemented porosity and regolith/soil modules. The bwFor-
Cluster BinAC is specially suited for our purposes since it
enables us to cover a vast material parameter space with high
resolution. Often, in our kind of simulations, the material
data is scarce and many different properties of the material
have to be varied and respected, leading to a high number of
simulations. The code is freely available to the astrophysical
and geophysical community upon request by email to the
authors.

Our intention is to extend the existing code to multi GPUs
support, which will allow for even higher resolutions. The
demand for higher resolution is prevailing in the field of planet
formation, since collisions between planetary cores indicate
that the existing simulations do not show convergence yet [15].
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