
Refresh Strategies in Continuous
Active Learning

by

Nimesh Ghelani

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master in Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

© Nimesh Ghelani 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/160745768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

High recall information retrieval is crucial to tasks such as electronic discovery and sys-
tematic review. Continuous Active Learning (CAL) is a technique where a human assessor
works in loop with a machine learning model; the model presents a set of documents likely
to be relevant and the assessor provides relevance feedback. Our focus in this thesis is
on one particular aspect of CAL: refreshing, which is a crucial and recurring event in the
CAL process. During a refresh, the machine learning model is trained with the relevance
judgments and a new list of likely-to-be-relevant documents is produced for the assessor
to judge. It is also computationally the most expensive step in CAL. In this thesis, we
investigate the effects of the default and alternative refresh strategies on the effectiveness
and efficiency of CAL. We find that more frequent refreshes can significantly reduce the
human effort required to achieve certain recall. For moderately sized datasets, the high
computation cost of frequent refreshes can be reduced through a careful implementation.
For dealing with resource constraints and large datasets, we propose alternative refresh
strategies which provide the benefits of frequent refreshes at a lower computation cost. In
this thesis, we also discuss the design of a modern implementation of the CAL algorithm
which is efficient and extensible. Our implementation can be used as a research tool as
well as for practical applications.

iii

Acknowledgements

I would like to thank my supervisor Dr. Mark D. Smucker for his effort and guidance
throughout my time here. Mark gave me the freedom and support to work on problems I
was interested in, for which I am very grateful.

I thank Dr. Gordon V. Cormack and Dr. Maura R. Grossman for agreeing to be
the readers of this thesis. Their course on “High Stakes Information Retrieval” played a
significant role in defining my research interests. Gordon’s feedback and suggestions were
crucial for the content in this thesis.

I had the privilege of being part of an amazing research group; Mustafa Abualsaud
and Haotian Zhang were a joy to work with. I am also very thankful to the members of
the Data System Group: Dr. Jimmy Lin, Amine Mhedhbi, Angshuman Ghosh, Chathura
Kankanamge, Royal Sequeira, Shahin Rahbariasl, Siddhartha Sahu and Vineet John; who
enriched my time in University of Waterloo in many different ways.

Finally, I would like to thank my parents and brother for their constant support. Their
presence, despite being thousands of miles away, was a great source of encouragement.

iv

Dedication

This thesis is dedicated to everyone who directly or indirectly, made it possible.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Thesis Organization . 3

2 Background and Related Work 4

2.1 High Recall Information Retrieval . 4

2.2 Continuous Active Learning . 6

2.3 Related Work . 8

3 Implementation 10

3.1 Auto-TAR BMI . 10

3.2 A modern CAL implementation . 11

3.2.1 Motivation and Goals . 11

3.2.2 Design . 11

4 Experimental Setup 15

4.1 Dataset . 15

4.2 Evaluation . 16

4.3 Runtime Environment . 17

4.4 Secondary Experiments . 17

vi

5 Refresh Strategies 21

5.1 Basic Concepts . 21

5.2 Exponential Batch Refresh Strategy . 22

5.3 Static Batch . 23

5.3.1 Responsiveness . 23

5.4 Partial Refresh . 25

5.5 Precision Based Refreshing . 28

5.6 Recency Weighting Strategy . 29

5.6.1 Weighted Random Sampling . 30

5.6.2 Number of Training Iterations . 31

6 Results and Discussion 33

7 Conclusion 43

7.1 Future Work . 44

References 45

vii

List of Tables

4.1 List of athome1 topics . 18

4.2 List of athome2 topics . 19

4.3 List of athome3 topics . 19

4.4 List of athome4 topics . 20

5.1 List of the refresh strategies and their parameters. 32

6.1 Summary of results for bmi refresh, static batch, partial refresh and
precision strategy . 34

6.2 Summary of results for recency weighting 38

6.3 Summary of results for bmi refresh, static batch, partial refresh and
precision strategy − athome1 collection 40

6.4 Summary of results for bmi refresh, static batch, partial refresh and
precision strategy − athome2 collection 40

6.5 Summary of results for bmi refresh, static batch, partial refresh and
precision strategy − athome3 collection 41

6.6 Summary of results for bmi refresh, static batch, partial refresh and
precision strategy − athome4 collection 41

6.7 Summary of results for recency weighting − athome1 41

6.8 Summary of results for recency weighting − athome2 42

6.9 Summary of results for recency weighting − athome3 42

6.10 Summary of results for recency weighting − athome4 42

viii

List of Figures

2.1 A simplified view of the relevance feedback loop in Continuous Active Learning 8

3.1 Preprocessing pipeline for the New York Times collection 12

3.2 Description of the binary file outputted by the corpus preprocessor 13

5.1 Avg. fraction of currently second-ranked documents vs the rank below which
they were placed after the background refresh 24

5.2 Partial Refresh Strategy . 26

5.3 Average similarity between two ranked lists (truncated at 1000) separated
by various number of judgments. Similarity between two lists is computed
as the fraction of common documents between them. 27

5.4 Precision Based Refreshing . 29

6.1 Effectiveness vs Efficiency plot for selected refresh strategies 35

6.2 Comparison of various refresh strategies 37

6.3 Number of refreshes required to achieve a certain recall − athome1 38

6.4 Gain curves comparing the effect of training iterations and recency weighting 39

ix

Chapter 1

Introduction

High Recall Information Retrieval is crucial for applications where the goal is to find all
or nearly all relevant documents using minimal human effort. In information retrieval,
recall is defined as the fraction of relevant documents retrieved, and precision is defined
as the fraction of retrieved documents which were relevant. High recall retrieval systems
are designed to achieve high recall (finding all or nearly all relevant documents) while
maintaining a high precision (using minimal human effort on non-relevant documents).
This is in contrast to popular web-based search engines which are optimized for early
precision. Such retrieval systems are built to deliver a small set of highly precise (but not
necessarily high recall) results to its users.

High recall retrieval systems are useful in tasks such as (but not limited to) elec-
tronic discovery, systematic review, patent search and literature review. In evidence based
medicine, systematic review is the process of summarizing all the evidence pertaining to a
research question. This often involves performing an exhaustive literature review of rele-
vant biomedical research and studies done in the past. Finding all the relevant citations
from a vast biomedical literature is a high recall problem. eDiscovery is another such
high recall problem. In the legal domain, eDiscovery refers to the process followed by a
party which is required to find and present a (practically) complete set of documents rel-
evant to a particular matter. Finding and reviewing documents from potentially millions
of documents can become very expensive in absence of specialized retrieval systems. The
requirements of retrieval tasks in eDiscovery and systematic review share various similar-
ities [22, 28]. Both these tasks have traditionally relied on extensive manual review with
limited computer assistance. The search space these retrieval tasks operate on has been
expanding at a massive rate [3, 29]. As a result, systems which help achieve high recall
while reducing the work of human reviewers are becoming more desirable.

1

Various approaches addressing the problem of high recall information retrieval under
various applications exist [5, 20, 23]. Technical Assisted Review (TAR) is an umbrella
term for computer assisted techniques used to perform eDiscovery. In a TAR method, a
computer system works alongside humans to classify documents as either relevant or non-
relevant. TAR methods usually incorporate some form of relevance feedback mechanism
to gain a better understanding of the search task. An effective TAR process would require
the human assessor to process a small fraction of the entire document set and use that
information to precisely predict the relevance of the remaining documents. TAR methods
have shown to outperform manual review in legal eDiscovery by reducing the cost spent
on human assessors [14, 33]. Continuous active learning (CAL) [5, 6] is a TAR protocol
where a machine learning algorithm suggests most likely relevant documents for human
assessment and continuously incorporates relevance feedback to improve its understanding
of the search task. In a previous study, Cormack and Grossman [5] showed that CAL
outperforms other TAR protocols on review tasks from actual legal matters and TREC 2009
Legal Track. The Total Recall track in TREC 2015 and 2016 evaluated different systems
under a simulated TAR setting [17, 32]. Baseline Model Implementation (BMI) based
on CAL was used as the baseline in these tracks. None of the participating systems were
able to consistently outperform the baseline. BMI implements the AutoTAR (Autonomous
TAR) algorithm [6], which enhances the autonomy of CAL by requiring only a single seed
relevant document or query to bootstrap the TAR process.

In this thesis, we modify and extend the AutoTAR CAL algorithm. We isolate an
important step of the algorithm and call it refreshing. During a refresh, the relevance
judgments from the assessor are used to train a new classifier. This classifier generates
an ordered list of documents most likely to be relevant, which is later processed by the
assessor. Apart from being a crucial factor in the effectiveness of the retrieval algorithm,
this step also has a high computation cost because it involves training a classifier and
computing relevance likelihood scores for potentially all the documents in the corpus. A
refresh strategy determines when and how to perform the refresh. For example, in the
AutoTAR algorithm, refreshing is done after a certain number of documents are assessed.
This number increases exponentially over time. During a refresh, a classifier is trained
using all the available relevance judgments, and the entire document collection is scored to
produce an ordered set of most-likely-to-be-relevance documents for human assessment.

We propose various refresh strategies and compare their impact on the effectiveness and
efficiency of CAL. Following are the contributions we made through the work described in
this thesis:

• Effectiveness of CAL (specifically, its ability to achieve higher recall with less effort)

2

can be improved by performing more frequent refreshes. We found that refreshing
after every assessment can consistently outperform other refresh strategies.

• Frequent refreshing can be computationally expensive for large datasets or low re-
source environment. We propose strategies which perform refresh on a smaller subset
of data or use precision as a refresh criteria. These strategies achieve similar effec-
tiveness as the most effective strategy (i.e., refreshing after every assessment), while
being efficient with computation.

• We investigated prioritization of recently judged documents as a way to enhance the
training of the classifier. While recency weighting didn’t result in any improvements,
it did help recover a fraction of the lost effectiveness when used with a weak but
faster setting of the training algorithm.

• The work described in this thesis required a suitable implementation of CAL. We
designed a modern and efficient implementation of CAL which can support aggressive
refresh strategies. Our tool is open source 1 and designed to be used both as a research
tool and in real world applications.

1.1 Thesis Organization

The organization of the remainder of this thesis is described below.

In Chapter 2, we introduce prerequisites to understanding the subsequent chapters of
this thesis. We discuss the Continuous Active Learning algorithm and define the concept
of refresh and refresh strategy. We then review related work approaching similar problems
and work which can be potentially applied to the problem addressed in this thesis.

In Chapter 3, we describe the design and features of the implementation using which
all the experiments in this thesis were performed.

In Chapter 4, we discuss the design of our experiments, along with the dataset and
evaluation metrics used.

In Chapter 5, we define and explain various refresh strategies. In Chapter 6, we evaluate
and compare the performance of these refresh strategies.

In Chapter 7, we discuss the conclusions of our work and the future work addressing
various practical applications.

1https://github.com/HiCAL/HiCAL/tree/master/CALEngine

3

https://github.com/HiCAL/HiCAL/tree/master/CALEngine

Chapter 2

Background and Related Work

2.1 High Recall Information Retrieval

High Recall Information Retrieval deals with retrieval problems where the goal is to find all
or nearly all relevant documents while maintaining a high precision. Recall of a retrieval
system is defined as the fraction of relevant documents it retrieved, while precision is
defined as the fraction of retrieved documents which were relevant. Legal eDiscovery is
one such high-recall problem where all the evidence related to some matter is required
to be retrieved from a digital collection of information [27, 28]. The eDiscovery process
involves lawyers reviewing documents and it is desirable to keep the review costs reasonable
by minimizing the amount of non-relevant documents reviewed. High recall problems also
extend to patent retrieval [25] and systematic reviews [40] in the medical/health space. In
information retrieval, test collections are used to evaluate and compare different retrieval
systems. A test collection comprises of a document corpus, a set of queries (or information
needs) and for each query, relevance judgments on a set of documents. To build test
collections, conferences such as the Text REtrieval Conference (TREC) employ human
assessors to manually label a fixed number of documents retrieved by multiple retrieval
systems. Building test collections can also be interpreted as a high-recall problem because
it is desirable to find all relevant documents using fixed amount of assessor effort.

Traditional web search systems address a different set of information retrieval prob-
lems where the goal is to deliver a small ordered list of highly relevant documents, which
are preferably at top. Evaluation of such systems is usually done using the Cranfield
paradigm [38], using metrics such as precision at certain ranks, MAP (Mean Average Pre-
cision), nDCG (Discounted Cumulative Gain), and so on. Such retrieval systems and

4

evaluation techniques usually favour early precision and cannot be directly used in the
context of high recall retrieval [26, 31]. In addition to measuring recall, it is important
to factor in the effort spent by the user when evaluating high recall systems. The search
tasks in many high recall applications are complex and even the user’s understanding of
the task requirements may change during the search process. Some systems used for high
recall tasks allow the users to perform series of complex queries to express their information
needs while some systems automatically try to learn and adapt to the information needs
of the user.

Earlier retrieval systems such as IBM STAIRS relied on keyword queries provided by
the assessor along with various options (such as boolean combinations) to retrieve doc-
uments [4]. Cormack et al. [10] proposed Interactive Search and Judging (ISJ) where
multiple searchers used an ad-hoc search engine to build a test collection using a fraction
of assessor cost when compared to the traditional NIST pooling [19]. In the traditional
NIST pooling, human assessors judged a pool of documents formed by taking fixed number
of top ranked documents from multiple retrieval systems.

Technology Assisted Review (TAR) is a set of computer assisted techniques used to
perform eDiscovery. TAR systems typically uses judgments made by human assessors
to classify documents as either relevant or non-relevant [15]. The classifier can control
the documents which should be assessed during a TAR process. TAR methods outperform
manual review or traditional keyword based search methods in legal eDiscovery by reducing
the cost spent on human assessors [14, 33]

Cormack and Grossman [5] compared three TAR protocols, namely Continuous Ac-
tive Learning (CAL), Simple Active Learning (SAL), and Simple Passive Learning (SPL).
During a CAL process, a machine learning algorithm suggests most-likely-to-be-relevant
documents for review and continuously incorporates relevance feedback to improve its un-
derstanding of the search task. SAL differs from CAL by having a separate training and
review phase. During the training phase, SAL uses uncertainty sampling to select docu-
ments to be reviewed until a stable classifier is obtained. In the second phase, the classifier
is used to produce a ranked list of documents for review. SPL relies on the user or random
sampling to select documents for training a classifier. Cormack and Grossman [5] showed
that CAL outperforms other TAR protocols on review tasks from actual legal matters and
TREC 2009 Legal Track. The Total Recall track in TREC 2015 and 2016 evaluated differ-
ent systems under a simulated TAR setting [17, 32]. None of the participating teams were
able to consistently beat the BMI (Baseline Model Implementation), which implemented
the AutoTAR CAL algorithm [6]. The AutoTAR (Autonomous TAR) CAL algorithm dif-
fers from the previous flavours of CAL by only requiring the user to provide a relevant seed
document or seed query to bootstrap. AutoTAR also samples random documents as neg-

5

ative examples for training and processes relevance judgments in exponentially increasing
batch sizes.

Li et al. proposed a double loop process [23] where an outer loop uses a set of queries
to retrieve a pool of documents and an inner loop uses a classifier to select documents from
the pool for assessment. The classifier uses the relevance feedback from the assessor to
update itself. Once the classifier is stable, a new set of queries are added to the outer loop
based on the newly retrieved relevant documents. Their work is very similar to how CAL
approaches the TAR problem.

Scalable Continuous Active Learning (or “S-CAL”) [8] was designed to work with large
document collections where it is desirable to build an effective classifier using minimal
labelling effort or estimate metrics like recall and precision. It is a modification to the
AutoTAR algorithm where only a sample from a larger batch is assessed by a human.

HiCAL1 [1] is a “system for efficient high-recall retrieval” which combines ISJ and CAL.
It allows assessors to find relevant documents by switching between an ad-hoc search engine
and a CAL-powered review interface. To improve assessment throughput, the system by
default only presents a summary of the document and assessors can optionally click an
extra button to view the full document.

2.2 Continuous Active Learning

A general version of the AutoTAR CAL algorithm is described in Algorithm 1. The CAL
process bootstraps using a user provided query and 100 randomly sampled documents from
the document collection. The former is treated as a relevant document and the rest are
treated as non-relevant in the training set. The training set is then used to train a Logistic
Regression classifier. Using the classifier, relevance likelihood scores are computed for
unjudged documents in the collection and top documents are pushed to the review queue.
The assessor judges documents from the review queue as relevant or non-relevant. These
judgments are added to the training set. This feedback loop continues until some stopping
criteria is met. The stopping criteria could be the assessor time allotted for the task, some
target number of relevant documents or reaching an estimated value of recall [7]. In the
experiments reported in this thesis, we simulate human assessors using a set of existing
relevance judgments (Step 8). Unlabelled documents are considered non-relevant during
the simulation.

1https://hical.github.io/

6

https://hical.github.io/

We define the term refresh as the set of steps in the CAL process which deals with
processing user judgments. This includes training the classifier, scoring documents and
selecting documents for review. The choice of refresh strategy can control when to perform
a refresh (step 10), as well as the behaviour of training (step 4) and scoring (step 7).
Figure 2.1 shows a simplified view of the relevance feedback loop in CAL, highlighting
the steps in a refresh. In the AutoTAR algorithm, refresh is performed after a batch of
judgments is received. The size k of the batch is initially set to 1. After each refresh, this
size is updated using

k ← k + bk + 9

10
c

Algorithm 1: AutoTAR CAL Algorithm (assuming an arbitrary refresh strat-
egy). A refresh strategy can alter/control behaviour of steps 4, 7 and 10

1 Construct a seed document whose content is a user provided query
2 Label the seed document as relevant and add it to the training set
3 Add 100 random documents from the collection, temporarily labeled as “not

relevant”
4 Train a Logistic Regression classifier using the training set
5 Remove the random documents from the training set added in step 3
6 Flush the review queue
7 Using the classifier, order documents by their relevance scores and put them into a

review queue
8 Review a document from the review queue, coding it as “relevant” or “not

relevant”
9 Add the document to the training set

10 Repeat steps 8-9 until a refresh is needed (defined by the refresh strategy)
11 Repeat steps 3-10 until some stopping condition is met.

The organizers of the TREC 2015 Total Recall Track distributed the Baseline Model
Implementation (BMI) of AutoTAR as a virtual machine. The implementation was a
collection of C++ programs invoked and orchestrated using few BASH scripts. In BMI,
documents are represented as a vector of unigram tf-idf features which are used for training
the classifier and calculating relevance likelihood scores. BMI relies on sofia-ml2 [36] to train
a logistic regression classifier using the logreg-pegasos learner with 200000 iterations of roc
sampling. A training iteration involves randomly sampling a relevant and a non-relevant

2https://code.google.com/archive/p/sofia-ml/

7

Relevance Judgments

Assessor

Train
Training

Set
Classifier

Corpus

Doc 1

Doc 2

...

Doc N

Sc
or
e

Refresh
Top K documents

Figure 2.1: A simplified view of the relevance feedback loop in Continuous Active Learning

document from the training set, computing the loss and adjusting the classifier weights
accordingly. The relevance likelihood score for any document is obtained by computing
the dot product of the classifier weights and document feature vector.

2.3 Related Work

The Baseline Model Implementation (BMI) was made available to the participants by the
organizers of the Total Recall Track in TREC 2015. We take a look at few approaches of
participants which are relevant to our interest.

The UvA.ILPS team [37] modified the way batch sizes were set in BMI. They started
with a batch size of 100. After a batch was assessed, the batch size was set to some value
proportional to the number of relevant documents assessed in the previous batch.

The Webis team [18] used BM25 using the topic description as query to get an initial set
of documents which were used to train a SVM classifier. The batch size of to-be-assessed-
documents was initially set to 32. After every iteration, it was either halved, doubled,
or untouched depending on the ratio of documents assessed relevant and non-relevant.
Another run submitted by this team used keyphrase extraction from document assessed as
relevant to perform ad-hoc searches at every step and use it to enhance the SVM classifier.

8

The TUW team [24] tweaked the term weighting in the document feature vectors used
by the BMI. In another run, they used all the learners available in sofia-ml separately and
then used voting to select relevant documents.

There is a vast literature which separately addresses efficiency and scalability of various
steps in the AutoTAR algorithm. Online learning algorithms can significantly improve
the running times of the training step. Such algorithms have been investigated in detail
for spam filtering [9, 34, 35]. Cormack et al. [11] proposed an online logistic regression
based spam filter for large datasets. Crammer et al. [12] proposed a SVM-based Passive-
Aggressive algorithm for online binary classification. Both of these online learning methods
make a prediction for an incoming training examples and depending on the ground truth,
updates the classifier weights.

9

Chapter 3

Implementation

In this chapter, we discuss our implementation of CAL. We used this implementation
to perform all the experiments described in the future chapters. We start by reviewing
an early implementation of CAL, followed by our goals and expectations from the new
implementation. We then briefly discuss the design decisions, along with the capabilities
of our system.

The code for our system is open source and available with documentation online1.

3.1 Auto-TAR BMI

As mentioned in the previous chapter, BMI(Baseline Model Implementation) is an im-
plementation of CAL which was used as a baseline in the TREC 2015 and 2016 Total
Recall track. Most of BMI is written as a BASH script, which coordinates various exter-
nal C/C++ programs to perform more more specific tasks like training and scoring. The
intermediate data is stored in text files since BASH is not designed to support advanced
data structures.

The AutoTAR BMI was released by the Total Recall track organizers as a virtual
machine2. A local version of the tool also available3.

1https://hical.github.io/
2https://plg.uwaterloo.ca/~gvcormac/trecvm/
3https://github.com/HTAustin/CAL

10

https://hical.github.io/
https://plg.uwaterloo.ca/~gvcormac/trecvm/
https://github.com/HTAustin/CAL

3.2 A modern CAL implementation

3.2.1 Motivation and Goals

The design of BMI limit us from designing refresh strategies which require more computa-
tion or involve complex logic. Moreover, while BMI is suitable for simulation purposes, it
is difficult to use in real world applications.

As part of our TREC 2017 Core effort [41], we designed a CAL-powered review tool
called HiCAL [1]. We intended this tool to process relevance feedback as quickly as possible
(in other words, more frequent refreshes). For a smooth user experience, we wanted to
achieve this with minimum possible system delay. Due to these reasons, we decided to
implement CAL from scratch in C++. We chose C++ because it provides a good control
over efficiency and is usually easy to maintain/extend.

We wanted to build a system which could satisfy all the requirements of HiCAL, and
could be easily used for other applications and future research, such as the work presented
in this thesis. We designed this system to meet the following goals:

• Fast and efficient.

• Support parallel tasks (for parallel simulations and multiple users).

• Easy to use as a standalone tool or as a part of an external application.

• Easy to extend and modify any step of the CAL algorithm.

3.2.2 Design

In this section, we briefly discuss the design details of our CAL system.

Prior to using the CAL system, a one-time preprocessing step is required to convert a
given text collection to a machine readable set of feature vectors. The corpus processor
takes as input an archive (a tar.gz file) of text documents, computes the feature vectors for
every document, and writes them to a binary file. We use binary files over human-readable
svmlight files [21] to significantly improve the output file size and loading times. When
working with the athome1 test collection (see Chapter 4 for more details), the document
feature vectors when stored in the svmlight format took 734 megabytes of disk space and
8.6 seconds to process+load into the memory by the CAL system. On the same machine,

11

our binary file format took 341 megabytes of disk space and 2.7 seconds to process+load
into the memory. The athome1 collection has only 290k documents and these differences
become more significant when working with larger collections. For the New York Times
collection which has around 1.8 million documents, the svmlight format took 7.6 gigabytes
of disk space and 90.1 seconds to process+load into the memory, while our binary file
format took 3.5 gigabytes of disk space and 30.1 seconds to process+load into the memory.

Each document is assigned an ID which is its base filename in the input archive (filename
ignoring the directory structure). This ID is used to judge and retrieve documents in the
CAL system. The files are treated as plaintext files and are assumed to be cleaned as
per the needs of the user. Figure 3.1 shows a preprocessing pipeline example with the
New York Times collection. By default, the corpus preprocessor computes tf-idf unigram
features for every document as explained in Section 2.2.

nyt.tgz

1998/06/15/1024820.xml
1998/06/15/1024821.xml

<?xml version......
...................
...................
<p>J P Hayes wins
Buick Classic golf
tournament; photos
(M)</p>
...................
...................

Cleaning
and

xml processing

nyt_cleaned.tgz

1024/1024820
1024/1024821

...................

...................

...................
J P Hayes wins Buick
Classic golf
tournament; photos
(M)
...................
...................

Corpus
Preprocessor

nyt_features.bin

Figure 3.1: Preprocessing pipeline for the New York Times collection

The output binary file contains document frequency data followed by the document
feature data. The binary file format is described in Figure 3.2.

The CAL system takes as input the corpus features (the binary output file of the corpus

12

< dict_size : uint32 >
< word : char[] > \0 < doc_frequency : uint32 >

(Repeated dict_size times)

Corpus
Level Data

< num_docs : uint32 >
< doc_id : char[] > \0 < num_features : uint32 >

< feature_id : uint32 > < feature_weight : float32 >

(Repeated num_features times)

(Repeated num_docs times)

Document
Level Data

Legend
uint32 : 32bit unsigned int
char[] : character array
\0: null byte
float32: 32bit floating point

Figure 3.2: Description of the binary file outputted by the corpus preprocessor

preprocessor) and loads it in the memory. The document feature vectors are indexed
and stored in the memory throughout the lifetime of a CAL process in order to ensure
fast operations and reduce disk access. A review task is initiated by one or more seed
queries (such as the topic description) provided by the user. The user can also specify seed
document judgments and the choice of refresh strategy at the beginning of a task. Users
can restart the review task from any checkpoint by just specifying the relevance judgments
made until that time as the seed document judgments. The system handles all the review
tasks concurrently, so that multiple users can use the system at the same time.

Training and scoring all the documents constitutes the majority of the computation. For
training, we modified sofia-ml so that we can invoke its functions natively through our code
and make it compatible with our data structures. We also stripped away unneeded parts
from the sofia-ml source code. The weight vector obtained from training is used to fetch top
documents from a set (depending on the refresh strategy). The score for a single document
is obtained by computing the dot product of the document feature vector and the trained
weight vector. The scoring of all the documents is parallelized across multiple threads (8
by default). By default, the code compiles with the -O3 compiler optimisation flag, which
contributes to significant reductions in the running time of various computations.

The CAL system is designed such that it is easy to extend or modify parts of the
algorithm. Most of the refresh strategies mentioned in this thesis were implemented by
extending a class and overriding few methods.

There are multiple ways to interact with the CAL system. The robust and user-friendly
HTTP API should be used for most purposes. Python bindings for the CAL system is also

13

available (it is an abstraction over the HTTP API). The command line tool can be used
for testing and simulation purposes. Interacting with CAL is documented in detail in the
project’s repository4. We also provide docker configuration which automatically installs
all dependencies, configures the web server and spawn the required processes.

4https://github.com/HTAustin/HiCAL/blob/master/CALEngine/README.md

14

https://github.com/HTAustin/HiCAL/blob/master/CALEngine/README.md

Chapter 4

Experimental Setup

4.1 Dataset

Our experiments were performed using multiple athome test collections.

The athome1 and athome4 collections were used in the TREC 2015 and 2016 Total
Recall Track [17, 32], respectively. Both consist of 290,099 documents, which are redacted
emails from Jeb Bush’s eight year tenure as the Governor of Florida. athome1 has 10 topics
with an average 4398 documents labelled as relevant per topic. athome4 has 34 topics with
an average of 1059.44 documents labelled as relevant per topic. The topics for athome1

and athome4 are described in Table 4.1 and 4.4, respectively.

athome2 and athome3 collections were used in the TREC 2015 Total Recall Track [32] as
well as in the TREC 2015 Dynamic Domain Track [39]. athome2, or the Illicit Goods Col-
lection, consists of 465,147 web forum threads from BlackHatWorld1 and Hack Forums2. It
has 10 topics with an average of 2000.5 documents labelled as relevant per topic. athome3,
or the Local Politics Collection, consists of 902,434 news article from various sources in
United States and Canada. It has 10 topics with an average of 642.9 documents labelled as
relevant per topic. The topics for athome2 and athome3 are described in Table 4.2 and 4.3,
respectively.

The athome test collections are suitable for evaluating high recall systems due to the
extensive judgments available for their topics. They were used in the Total Recall tracks,

1https://www.blackhatworld.com/
2https://hackforums.net/

15

https://www.blackhatworld.com/
https://hackforums.net/

which evaluated participating systems similar to how we evaluate different refresh strate-
gies. Moreover, some of the athome collections were assessed (athome1) or re-assessed
(athome2 and athome3) using Continuous Active Learning based methods. These factors
make the athome collections a suitable choice of dataset to conduct our experiments on.

4.2 Evaluation

We describe the performance metrics we used to compare the effectiveness and efficiency
of refresh strategies in the following sections. For each refresh strategy, these metrics were
computed at the dataset level by averaging the topic-level metric for each topic in that
dataset. These dataset-level metrics were further averaged (macro average of topic-level
metrics) to compute the average metric for a refresh strategy.

Effectiveness

To measure the effectiveness of various refresh strategies, we ran a CAL simulation for each
topic and strategy. We can compare different strategies based on the recall values they
achieved at various values of effort. For each topic, the recall is defined as

Recall =
No. of relevant documents found by the system

Total no. of relevant documents in the corpus
(4.1)

Using absolute values of review effort can cause an imbalance among the recall values
of individual topics. This is due to uneven number of relevant documents present across
different topics (see Table 4.1-4.4). Instead of absolute effort, we use normalized effort
Enorm for analyzing results. Enorm is calculated by dividing the absolute review effort by
the total number of relevant documents.

The gain curve is a widely used method to evaluate high recall retrieval systems [16,
17, 32]. It is a plot of recall as a function of assessed documents. We use average recall
gain curves to compare the effectiveness of different refresh strategies. A gain curve for a
topic is a plot of recall (y-axis) against the normalized review effort (Enorm = E

R
), where E

is the number of judgments made since the beginning of the simulation and R is the total
number of relevant documents for that topic. We get the dataset-level average gain curve
by averaging the recall values over all its topics. We further average all the dataset-level
recall values to obtain the average gain curve for a refresh strategy.

16

For the sake of readability, we also report certain points of interest from the gain curve
in a tabular format. Specifically, we compare different refresh strategies based on their
recall values when Enorm ∈ {1, 1.5, 2}. We also report the effort required to reach 75%
recall.

To measure the statistical significance of performance difference between two strategies,
we use the Student’s paired t-test on a performance metric (such as recall at Enorm ∈
{1, 1.5, 2}). When comparing two refresh strategies, we perform statistical significance
tests separately for each dataset.

Efficiency

A combination of experiment conditions (such as refresh strategy and its parameters) and
a topic is referred as a “task”. We use review effort as the stopping criteria for each task
(step 11 of Algorithm 1). One judgment is equal to one unit of reviewer’s effort. The
CAL process for a task stops whenever the number of judgments processed by the system
is equal to the maximum effort. The maximum normalized review effort (Enorm) in our
efficiency experiments was set to 2.

To measure the computational efficiency, we record the running time of the simulation.
Different refresh strategies are compared based on the running time of the simulation
averaged over all the topics of a dataset. The dataset-level average running times are
averaged to obtain the average running time of a strategy.

4.3 Runtime Environment

We used the command line interface of the CAL implementation discussed in Chapter 3
to run our experiments. We ran our experiments on a google cloud instance with 11 GB
memory and twelve vCPUs (2.00 GHz Intel Xeon Processor). We ran a CAL process for
each strategy and parameter setting sequentially. A CAL process simulated a maximum
of twelve parallel tasks. For each task, we restricted the scoring of documents to a single
thread.

4.4 Secondary Experiments

We performed few additional experiments to support certain intuitions behind the de-
sign of refresh strategies discussed in Section 5.3.1 and Section 5.4. The questions these

17

experiments were designed to answer are:

• If a judgment causes a refresh, a new review queue is populated. In the new queue,
what is the position of the first unjudged document from the previous queue?

• To what extent does the classifier’s notion of relevance change across various number
of judgments?

The simulations were run across the 10 athome1 topics and the reported metrics were
averaged over them. The maximum review effort was set to 500.

Table 4.1: List of athome1 topics

Topic ID Description Relevant Documents

athome100 School and Preschool Funding 4542
athome101 Judicial Selection 5836
athome102 Capital Punishment 1624
athome103 Manatee Protection 5725
athome104 New medical schools 227
athome105 Affirmative Action 3635
athome106 Terri Schiavo 17135
athome107 Tort Reform 2375
athome108 Manatee County 2375
athome109 Scarlet Letter Law 506

18

Table 4.2: List of athome2 topics

Topic ID Description Relevant Documents

athome2052 paying for amazon book reviews 265
athome2108 CAPTCHA Services 661
athome2129 Facebook Accounts 589
athome2130 Surely bitcoins can be used 2299
athome2134 paypal accounts 252

athome2158
Using TOR for anonymous
browsing on the internet

1256

athome2225 Rootkits 182
athome2322 Web Scraping 9517
athome2333 article spinner spinning 4805
athome2461 Offshore Host Sites 179

Table 4.3: List of athome3 topics

Topic ID Description Relevant Documents

athome3089 pickton murders 255
athome3133 pacific gateway 113
athome3226 traffic enforcement cameras 2094
athome3290 rooster turkey chicken nuisance 26
athome3357 occupy vancouver 629
athome3378 rob mckenna gubernatorial candidate 66
athome3423 rob ford cut the waist 76
athome3431 kingston mills lock murders 1111
athome3481 fracking 2036
athome3484 paul and cathy lee martin 23

19

Table 4.4: List of athome4 topics

Topic ID Description Relevant Documents

athome401 Summer Olympics 229
athome402 Space 647
athome403 Bottled Water 1091
athome404 Eminent Domain 548
athome405 ewt Gingrich 122
athome406 Felon Disenfranchisement 131
athome407 Faith-Based Initiatives 1587
athome408 Invasive Species 116
athome409 Climate Change 206
athome410 Condominiums 1354
athome411 ”Stand Your Ground” 89
athome412 2000 Recount 1422
athome413 James V. Crosby 552
athome414 Medicaid Reform 841
athome415 George W. Bush 12106
athome416 Marketing 1452
athome417 Movie Gallery 5952
athome418 War Preparations 187
athome419 Lost Foster Child Rilya Wilson 1989
athome420 Billboards 742
athome421 Traffic Cameras 21
athome422 Non-Resident Aliens (NRA) 33
athome423 National Rifle Association (NRA) 286
athome424 Gulf Drilling 500
athome425 Civil Rights Act of 2003 718
athome426 Jeffrey Goldhagen 121
athome427 Slot Machines 246
athome428 New Stadiums and Arenas 466
athome429 Cuban Child, Elian Gonzales 828
athome430 Restraints and Helmets 999
athome431 Agency Credit Ratings 150
athome432 Gay Adoption 140
athome433 Abstinence 112
athome434 Bacardi Trademark Lobbying 38

20

Chapter 5

Refresh Strategies

In this chapter, we discuss some of the refresh strategies we investigated. Along with the
description of the strategies, we also describe the motivation which led us to designing them,
and their potential impact on the behaviour of the CAL algorithm, in terms of effectiveness
and efficiency. When applicable, we also report results of supporting experiments which
can help gain more insight into some refresh strategies.

5.1 Basic Concepts

Before discussing the refresh strategies, it is useful to define a few basic concepts.

Effectiveness

Effectiveness is the measure of utility the CAL system provides to its users. A more effective
system would let users find more relevant documents with less review effort. Chapter 4
defines in detail how we measure the effectiveness.

Efficiency

We use the term efficiency to indicate the computation costs of the CAL system. While
memory costs should also be a factor when evaluating efficiency, we are mostly concerned
with the CPU costs and running times in this thesis.

21

Responsiveness

Responsiveness of a CAL system becomes important in the context of live and interactive
systems. In a real world application, system delays in delivering documents for review can
be detrimental to user experience and waste valuable assessor time. A responsive system
should minimize all such delays without harming its effectiveness. One way to improve
responsiveness is through efficiency. Other ways include utilizing the idle time when the
reviewer is reading the document.

Full Refresh

We use the term full refresh to denote a refresh in which all available judgments are used
in training and relevance likelihood scores for all the documents are calculated.

A full refresh runs in O(t + n log n) time where n is the number of documents in the
corpus and t is the number of training iterations. The number of iterations t required for
convergence depends on the size of the training data (or number of judgments). We set
t to a high constant value (100000) for our dataset. Although the length of documents
(specifically, the number of non-zero features in a document feature vector) affect the
running time of training and scoring, we treat it as a constant to simplify our analysis.
Scoring all the documents takes O(n) time and sorting them takes O(n log n) time. In
most cases, only top k documents (where k << n) are needed. In such cases, complete
sorting is not required and the refresh can be performed in O(t + n log k) time.

5.2 Exponential Batch Refresh Strategy

In the original BMI AutoTAR, full refreshes are performed after receiving a batch of
judgments. The size of this batch increases exponentially with number of refreshes. The
batch size is initially set to k = 1 and after every refresh, is updated using

k ← k + bk + 9

10
c

The smaller batch size during the beginning of a task results in frequent refreshes and
thus allows the classifier to frequently update its understanding of relevance. This strategy
scales well with the number of judgments (E) made during the CAL process since only
O(logE) number of refreshes are done. According to Cormack and Grossman [6], the

22

motivation behind this strategy was to “reap the benefits of early precision, while avoiding
downside risk and excessive running time, by using exponentially increasing batch size”.

5.3 Static Batch

In static batch refresh strategy, full refreshes are performed after a fixed number of judg-
ments are received. When batch size is fixed to 1, a full refresh happens after every
judgment. The only parameter in this strategy is the judgment batch size.

This strategy incurs a high computation cost and introduces scalability issues since it
requires O(E) number of refreshes and each refresh takes Ω(n) time, where E is the number
of documents judged during the CAL process and n is the number of documents in the
dataset.

5.3.1 Responsiveness

If a judgment triggers a refresh, the system waits for the refresh to complete before return-
ing a fresh set of documents for the user to judge. For very small batch sizes (such as 1)
and large values of n, full refreshes will be frequent and expensive. Pauses as small as half
a second after every few judgments can disrupt the user experience.

One way to address this problem is to perform asynchronous refreshes and immediately
show the users documents from the old review queue [1]. During a refresh, we fill the review
queue with a few extra top documents in addition to the batch size. Whenever a judgment
triggers a refresh, we delegate the refreshing to a background process and continue serving
the user the aforementioned extra documents from the review queue. Meanwhile, when the
refresh in the background is finished, the review queue is replaced with a newer version.
This modification delays the effect of user feedback on the review queue by d tr

tu
e documents,

where tr is the time it takes to complete a refresh, and tu is the time a user takes to review
one document.

UWaterlooMDS in TREC 2017 Core Track [41] used CAL to power their manual review
tool. They used asynchronous static batch strategy with batch size of 1. The tool presented
summaries in addition to the full document to the reviewers. The authors and a group
of graduate students used the review tool to judge numerous documents in the New York
Times collection across 250 topics. The average and median time spent on a judgment
(tu) were 13 and 4.1 seconds respectively. We simulated their judgments using our system

23

and the average refresh time (tr) was 1.71 seconds. For both the average and median user
judgment times, the effect of user feedback would have been delayed by 1 document (d1.71

13
e

and d1.71
4.1
e).

0 10 20 30 40 50
Rank

0.4

0.5

0.6

0.7

0.8

0.9

Cu
m

ul
at

iv
e

Fr
ac

tio
n

of
 D

oc
um

en
ts

Figure 5.1: Avg. fraction of currently second-ranked documents vs the rank below which
they were placed after the background refresh

When the effect of user feedback is delayed by 1 document, the assessor ends up judging
the top two documents from the current review queue before the new review queue is ready.
To estimate the quality of the second document showed to the user, we obtained the rank
of that second document in the next review queue (the review queue populated by the
background refresh). The setup for this experiment is described in Section 4.4. We found
that 41.2% of these documents were top ranked after the background refresh. Moreover,
85% and 96.8% of these documents were ranked top 10 and top 50 respectively, after the

24

background refresh. Figure 5.1 plots the percentage of documents which were within a
given rank after the background refresh.

If the CAL system can perform two refreshes while the user is reading a document
(i.e. 2tr ≤ tu), we can achieve a responsive system without any delay in processing of
judgments. If the user is reading a document and his judgment will trigger a refresh, a
background process can just perform two refreshes; one assuming the upcoming judgment
will be relevant, and another assuming it will be non-relevant. The two possible future
review queues are therefore ready while the user is reading the document and the correct
one can be immediately served once the user judgment is received. For the numbers
provided in the previous paragraph, the constraint 2tr ≤ tu hold true.

5.4 Partial Refresh

In this strategy, a full refresh is performed after every fixed number of judgments, similar
to the static batch strategy. At the end of each full refresh, a small set of documents
with the highest relevance likelihood scores are stored in a partial refresh set. After every
judgment, a partial refresh is performed. During a partial refresh, all available judgments
are used in training but relevance likelihood scores are only calculated for the documents
in the partial refresh set. A single partial refresh runs in O(s log s) average time, where s
is the size of the partial refresh set. The logarithmic factor in running time is a result of
the partial set stored as a binary search tree and after every judgment, it takes O(log(s))
time to remove a document from that set. Since the scores for the document in this set
are recomputed after every judgment, only the document with maximum score is returned
to the user. Figure 5.2 demonstrates the CAL relevance feedback loop with partial refresh
strategy.

Partial refresh strategy has two parameters:

• k: number of judgments between two full refreshes

• s: size of the partial refresh set (s ≥ k)

Our motivation behind designing this strategy was to efficiently replicate the behaviour
of static batch strategy (batch size = 1). We hypothesized that the classifier’s notion of
relevance does not change dramatically between two nearby judgments and we can safely
avoid computing scores for low ranked documents. To get some evidence, we constructed
an experiment (the setup for this experiment is explained in Section 4.4). After each

25

Corpus

Doc 1

Doc 2

...

Doc N

Partial Set

TopDoc 1

...

TopDoc S

Relevance Judgment

Assessor

Train Training
Set

Classifier

Top S documents

Sc
or

e

Top document

Yes

No
Perform full

refresh?

Sc
or

e

Figure 5.2: Partial Refresh Strategy

26

1 100 200 300 400 500
Number of judgments between the two lists

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Si
m

ila
rit

y

Figure 5.3: Average similarity between two ranked lists (truncated at 1000) separated by
various number of judgments. Similarity between two lists is computed as the fraction of
common documents between them.

judgment, we stored the list of top 1000 unjudged documents scored by the classifier. Since
we employed the static batch strategy with batch size of 1, a refresh occurred after every
judgment. Similarity between two lists was computed as the fraction of documents present
in both lists. Figure 5.3 reports the average similarity of these document lists separated
by various number of judgments. 90.8% of the top documents remain the same across
consecutive judgments (i.e., separated by 1 judgment). For the any two lists separated
by 100 judgments, there were 70.3% common documents in the top 1000. The results of
the above experiment can also be qualitatively analysed to determine the parameters for
partial refresh strategy. For example, based on our results, setting partial set size to 1000
and full refreshing every 100 judgments looks like a reasonable starting point.

With some enhancements, this strategy can also help reduce the memory costs when

27

working with low physical memory or very large datasets (such as ClueWeb). As mentioned
in Section 3.2.2, the documents are loaded in memory to enable faster operations and
improve the responsiveness of the system. Partial refreshes are faster than full refreshes 1

and performed on a small set of data which can be stored in the memory. Full refresh
can be performed in the background, and can thus afford reads from the disk without
sacrificing the user experience or effectiveness of this strategy.

5.5 Precision Based Refreshing

The previous strategies we discussed use the elapsed number of judgments as a criteria to
determine when to refresh. Instead of number of judgments, we can perform a full refresh
when the “output quality” of the CAL system falls below some threshold. The output
quality of a CAL system is considered high if the user judges more documents as relevant.
There could be various ways to concretely define “output quality”. Our motivation behind
designing this strategy was to investigate a more meaningful criterion for triggering a
refresh. Figure 5.4 demonstrates the CAL relevance feedback loop with precision based
refreshing.

In precision based refreshing, we work with a very simple definition of “output quality”.
It is the fraction of relevant judgments in some fixed number of latest judgments made by
the reviewer. A full refresh is performed whenever this fraction falls below some threshold.
There are two parameters in this strategy:

• m: number of recent judgments to compute precision on

• p: the threshold below which a full refresh is triggered

Our aim is to find more meaningful factors which can help us better understand the
effectiveness of various refresh strategies, and as a result, help us design better refresh
strategies. For example, in certain cases, it is desirable to save computation by not refresh-
ing when the output quality is high and force more frequent refreshes when the output
quality is low. However, during later stages of a task when the output quality is always
low and the likelihood of finding relevant documents is very low, precision based refreshing
behaves similar to static batch refreshing with batch size of 1.

1In our experiments with athome1, scoring a partial set of 1000 documents and scoring the entire
collection took on average of 148ms and 1ms, respectively.

28

Corpus

Doc 1

Doc 2

...

Doc N

Relevance Judgment

Assessor

Train Training
Set

Classifier

Top documents
Sc

or
e

Top document

Yes

No

Output
quality below

threshold?

Review Queue

Figure 5.4: Precision Based Refreshing

5.6 Recency Weighting Strategy

This strategy modifies the training step (step 4 in Algorithm 1) in the CAL process by
favoring documents which were recently judged. As described in Section 2.2, training is
done over several iterations. In each iteration of the original training, a relevant and a
non-relevant document is randomly sampled from the training set. The loss computed
using them is used to update the classifier weights. To incorporate recency weighting, we
modified the uniform random sampling such that the probability of selecting a document
increases if it was judged recently.

Given a list of documents [D1, D2, ..., Dn] ordered by the time they were judged, our
modified random sampling will select a document Dx with probability P (Dx) where

P (Dx) = P (D1) +
P (D1)(x− 1)(w − 1)

N − 1

Therefore, P (Dx) is a linear function such that the latest judged document Dn is w
times more likely to be selected than the oldest judged document D1. A full refresh (with

29

modified training) is performed after every judgment. The only parameter for this strategy
is w.

Implementing the modified random sampling by computing the individual probabilities
of documents as shown in the above expression is inefficient. The probabilities will have
to be computed for all the documents in the training set before every refresh. To achieve
minimum overhead from the modified sampling, we use a transformation on the uniform
random number generator to achieve our desired distribution. In the next subsection, we
cover the implementation of our modified sampling in further detail.

5.6.1 Weighted Random Sampling

Our objective is to develop an efficient weighted random sampling method for the recency
weighting strategy. Given an integer N , we want to generate a random integer between 0
and N . Additionally, we want each integer to have a linearly increasing chance of getting
sampled, and N being w times more likely to be sampled than 0. The expression below
describes the probability of an integer x being sampled

P (x) = P (0) +
P (0)(x)(w − 1)

N
(5.1)

Rejection Sampling is a method to design such random number generators, but they
require the probabilities of each integer to be precomputed. We can instead apply Inverse
Transformation Sampling [13] to a uniform random number generator to efficiently generate
our desired distribution. Given a uniform random variable U in [0, N] and a cumulative
distribution function F over [0, N], F−1(U) has our desired distribution (which is F).

Equation 5.1 is also valid for any real number x ∈ [0, N]. Substituting p = P (0) and

m = p(w−1)
N

, we get P (x) = p + mx. The cumulative distribution function for P (x) is

F (x) =

∫ x

0

P (x)dx

=
mx2

2
+ px

(5.2)

Solving for the inverse, u ∈ U

F (F−1(u)) = u

mF−1(u)2

2
+ pF−1(u)− x = 0

(5.3)

30

To obtain the target random number F−1(u), we can solve the quadratic equation 5.3.
We implemented2 the sampling in recency weighting strategy using the above method.

5.6.2 Number of Training Iterations

Scoring can be made efficient by using strategies like partial refreshing or simply performing
it over multiple processes. The choice of training methods in the CAL algorithm makes
it difficult to parallelize. There are alternative training methods which are designed for
efficiency and scalability [2, 30], but that is a direction for future work. A parameter
in our training algorithm which can be easily controlled and has a significant impact on
performance is the number of training iterations. Reducing the training iterations by some
factor dramatically improves running time by sacrificing the effectiveness of the system.

Our initial motivation behind recency weighting was to improve the default training
by prioritizing newer judgments. However, we found no difference in effectiveness of CAL
between the original and modified training. We shifted our goal towards lowering the
number of training iterations while maintaining quality using recency weighting.

2https://github.com/HTAustin/HiCAL/blob/426955e7f1c88e450b05d3c8d42d58544f864b51/

CALEngine/src/classifier.h#L37

31

https://github.com/HTAustin/HiCAL/blob/426955e7f1c88e450b05d3c8d42d58544f864b51/CALEngine/src/classifier.h#L37
https://github.com/HTAustin/HiCAL/blob/426955e7f1c88e450b05d3c8d42d58544f864b51/CALEngine/src/classifier.h#L37

Table 5.1: List of the refresh strategies and their parameters.

Strategy Parameters

exponential None
static k = no. of judgments between full refreshes

partial

k = no. of judgments between full refreshes
s = no. of documents in the partial refresh

set

precision

m = no. of recent judgments to
compute precision on

p = full refresh is triggered if the precision of
last m documents fall below this value

recency

w = factor by which the latest judged
document is more likely to be sampled

than the oldest judged document

*
it = no. of training iterations

(global parameter, 100000 unless specified)

32

Chapter 6

Results and Discussion

In this chapter, we dive into the results of our experiments and compare all the refresh
strategies.

For sake of readability, we encode each strategy with their parameter settings as
strategy name(param1=x,. . .). For reference, Table 5.1 lists all the strategies and their
parameters. We summarize the average results obtained across all the datasets for dif-
ferent parameter settings of exponential, static, partial and precision in Table 6.1.
Table 6.3, 6.4, 6.5 and 6.6 reports the dataset-level results obtained when using athome1,
athome2, athome3 and athome4 , respectively. In these tables, we report the recall achieved
at certain values of effort, effort required to achieve 75% recall, and the average running
time. Instead of absolute effort, we use normalized effort Enorm as defined in Section 4.2.
For example, “Avg. recall@(Enorm = 1.5)” refers to the average recall achieved across all
the topics when 1.5 × R documents haven been assessed, where R is the total number of
relevant documents for a topic.

Figure 6.1 shows the effectiveness vs efficiency scatter plot for selected refresh strategies.
In this plot, we use “effort required to achieve 75% recall” as the effectiveness measure, and
“simulation running time until 75% recall is achieved” as the efficiency measure. Strategies
placed lower are more effective and the ones placed towards the right are more efficient.

Static Batch Refresh Strategy

Figure 6.2a compares the gain curves for exponential, static(k=1) and static(k=100).

With static(k=1), CAL achieves noticeably higher recall of 0.754 at Enorm = 1
than exponential which achieves 0.723 recall. static(k=100) performs worse than

33

Table 6.1: Summary of results for bmi refresh, static batch, partial refresh and
precision strategy

Strategy
Avg. Recall
@(Enorm=1)

Avg. Recall
@(Enorm=1.5)

Avg. Recall
@(Enorm=2)

Enorm for
75% recall

Running Time
(in min)

exponential 0.723 0.832 0.887 2.126 0.33

static(k=1) 0.754 0.856 0.900 1.962 34.19
static(k=100) 0.652 0.769 0.840 2.427 0.34

partial(k=10,s=1000) 0.753 0.855 0.899 1.961 18.22
partial(k=100,s=500) 0.731 0.839 0.893 1.998 16.50
partial(k=100,s=1000) 0.737 0.844 0.893 1.994 16.57
partial(k=100,s=5000) 0.747 0.852 0.896 1.948 17.34
partial(k=500,s=1000) 0.686 0.770 0.804 2.723 16.09

precision(p=0.4,m=25) 0.679 0.844 0.892 2.074 17.63
precision(p=0.6,m=25) 0.728 0.853 0.897 2.060 20.22
precision(p=0.8,m=25) 0.749 0.855 0.900 1.991 20.24
precision(p=1.0,m=25) 0.755 0.855 0.900 1.957 21.02

exponential, managing to achieve 0.652 recall at the same effort. These results es-
tablish that frequent refreshing improves the effectiveness of a CAL system. Although
the batch sizes in BMI increases exponentially with time, it still does frequent refreshes
during the early stages of the CAL process, thus performing better than static(k =

100). exponential is also extremely cheap in terms of total computation cost since it
only performs a logarithmic number of refreshes compared to the static strategies. The
exponential simulation finished in less than a minute while static(k=1) took little more
than a half hour.

Using Student’s paired t-test, we found that static(k=1) was significantly better than
exponential in terms of recall achieved at Enorm ∈ {1, 1.5} (p < 0.05 for athome1 and
athome3, p < 0.0001 for athome4). However, for the athome2 collection, the improvement
was negligible. When Enorm = 2, the difference in recall achieved by both the strategies
are insignificant for athome1 and athome3 (p > 0.1). As evident from the gain curve in
Figure 6.2a, the recall values at Enorm = 2 plateaus at a high value for these strategies.

We evaluate rest of the refresh strategies by comparing them to static(k = 1).

Partial Refresh Strategy

Figure 6.2b compares the gain curves for static(k=1), partial(k=100,s=1000) and
partial(k=500,s=1000).

34

0 2 4 6 8 10 12 14 16
Running Time (in min) for 75% recall

1.950

1.975

2.000

2.025

2.050

2.075

2.100

2.125

2.150

No
rm

al
ize

d
Ef

fo
rt

fo
r 7

5%
 re

ca
ll

static(k=1)

partial(k=100,s=1000)

precision(p=1.0,m=25)

exponential

partial(k=10,s=1000)

precision(p=0.8,m=25)

precision(p=0.6,m=25)

Figure 6.1: Effectiveness vs Efficiency plot for selected refresh strategies

By fixing the partial set size s=1000 and varying the full refresh period k in partial, we
observe that for k=10 and k=100, the difference in recall remains insignificant throughout
the CAL process. Their recall values are also very similar to static(k=1). They achieve
0.855 and 0.844 recall, respectively at Enorm = 1.5. For k=500, we observe 0.770 recall
at the same effort, which is worse than exponential (0.832). This is in agreement with
our previous observation that more frequent full refreshes increases CAL’s effectiveness.
static(k=100) consistently achieved lower recall when compared to static(k=1) while
partial(k=100,s=1000) is much closer to the latter. Based on this, it can be established
that partial refreshing contributes noticeable improvements to recall over plain static batch
refreshing with same frequency of full refresh.

Figure 6.2c shows the effect of varying partial set size s when the full refresh period k

is fixed to 100. We observe no changes to the recall values when the size of partial set is
500 or higher. At s = 100, the decrease in performance is noticeable.

partial simulations on average ran 50.44% faster than static(k=1). While achieving
similar effectiveness as static(k=1), partial(k=10,s=1000) ran 46.71% faster.

partial(k=10,s=1000) was the optimal setting across all our experiments. For any
dataset, there was no significant difference (p > 0.1) between the recall achieved by

35

partial(k=10,s=1000) and static(k=1) at Enorm ∈ {1, 1.5, 2}. For athome1, even
partial(k=100,s=1000) was an optimal setting as there was no significant difference (p >
0.45) between the recall achieved by partial(k=100,s=1000) and partial(k=10,s=1000)

at Enorm ∈ {1, 1.5, 2}.

Precision Based Refreshing

Figure 6.2d compares the gain curves for various settings of precision.

In this strategy, we fixed m=25 and varied p. For p=0.8 and p=1.0, precision achieves
0.75 recall at Enorm = 1 which is similar to static(k=1). This similarity of recall is also
seen at Enorm = 1.5 and Enorm = 2. For precision(p=1.0), CAL refreshes whenever a
non-relevant judgment is made, thus behaving very similar to static(k=1). For smaller
values of p, we observe lower recall values during the initial stages; 0.728 and 0.679 recall
at Enorm = 1 for precision(p=0.6) and precision(p=0.4), respectively. However, they
catch up to static(k=1) at higher Enorm, as relevant documents become rarer; 0.853 and
0.844 recall at Enorm = 1.5 for precision(p=0.6) and precision(p=0.4), respectively.

This strategy improved the running time of simulations by 42.15% on average when
compared to static(k=1). precision strategies triggers lower number of refreshes during
the beginning of the CAL process when relevant documents are easier to find. During the
later stages when the relevant documents are harder to find, precision strategies tend to
keep refreshing after every judgment. Figure 6.3 compares the precision strategies with
static(k=1) based on how many refreshes were performed to achieve a certain recall.
The precision strategies find a lot of relevant documents initially since they are easy to
find and the precision of CAL’s output is high. static(k=1) keeps refreshing steadily
irrespective of the output quality. As relevant documents become harder to find, we find
that the precision strategies start refreshing as frequently as static(k=1).

Effect of Training Iterations

In all the previously discussed strategies, the improvement in running time over static(k=1)
is either due to refreshing less often (exponential, precision) or by optimizing scoring
during a refresh (partial). The running time of scoring can be further improved by just
increasing the number of threads. However, training is another expensive step which can-
not be trivially distributed across multiple threads. One way to dramatically reduce the

36

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Effort

0.0

0.2

0.4

0.6

0.8

Av
g.

 R
ec

al
l

exponential
static(k=1)
static(k=100)

(a) Comparison of exponential and static.
static(k=1) consistently outperforms the
rest.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Effort

0.0

0.2

0.4

0.6

0.8

Av
g.

 R
ec

al
l

static(k=1)
partial(k=10,s=1000)
partial(k=500,s=1000)

(b) Comparison of partial and static(k=1).
We fix the partial set size to 1000 and ob-
serve that partial(k=10,s=1000) performs
very similar to static(k=1).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Effort

0.0

0.2

0.4

0.6

0.8

Av
g.

 R
ec

al
l

partial(k=100,s=1000)
partial(k=100,s=5000)
partial(k=100,s=100)

(c) Effect of partial set size on effectiveness.
We observe that increasing the partial set size
beyond 1000 doesn’t have any benefit.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Effort

0.0

0.2

0.4

0.6

0.8

Av
g.

 R
ec

al
l

precision(p=1.0,m=25)
precision(p=0.8,m=25)
precision(p=0.4,m=25)

(d) Comparison of various settings in
precision.

Figure 6.2: Comparison of various refresh strategies

37

0 100 200 300 400 500 600 700
of Refresh

0.0

0.2

0.4

0.6

0.8
A

v
g
.
R

e
ca

ll static(k=1)

precision(p=0.6,m=25)

precision(p=0.8,m=25)

precision(p=1.0,m=25)

Average Recall vs # of Refresh

Figure 6.3: Number of refreshes required to achieve a certain recall − athome1

Table 6.2: Summary of results for recency weighting

Strategy
Avg. Recall
@(Enorm=1)

Avg. Recall
@(Enorm=1.5)

Avg. Recall
@(Enorm=2)

Enorm for
75% recall

Running Time
(in min)

recency(w=1,it=1000) 0.708 0.810 0.859 2.471 15.51
recency(w=5,it=1000) 0.715 0.817 0.865 2.449 16.73
recency(w=10,it=1000) 0.713 0.817 0.867 2.435 15.99
recency(w=25,it=1000) 0.712 0.819 0.866 2.470 16.05

training time is by simply reducing the number of training iterations (it). In our experi-
ments, the average time to train a classifier for 100000 (default), 10000, and 1000 number
of iterations was 265ms, 33ms, and 4ms respectively.

Despite these massive improvements in the running time, reducing the number of iter-
ations it beyond a certain point will directly reduces the quality of the classifier, and thus
harming the effectiveness of CAL. Figure 6.4a shows the impact of it on the gain curves
of static(k=1). We find that reducing it from 100000 to 10000 didn’t do any noticeable
affect on the recall. This suggests that setting it=10000 for all our experiments might
have been enough for the classifier to converge. Beyond this, we observe noticeable loss in
performance.

38

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Effort

0.0

0.2

0.4

0.6

0.8

Av
g.

 R
ec

al
l

static(k=1,it=100000)
static(k=1,it=10000)
static(k=1,it=1000)
static(k=1,it=100)

(a) Effect of number of training iterations on
recall

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Effort

0.0

0.2

0.4

0.6

0.8

Av
g.

 R
ec

al
l

static(k=1,it=1000)
static(k=1,it=100000)
recency(w=25,it=1000)

(b) Effect of recency weighting on settings with
low number of training iterations

Figure 6.4: Gain curves comparing the effect of training iterations and recency weighting

Recency Weighting

During our initial experiments, recency weighting seemed to have no impact on the recall.
By reducing the number of training iterations to 1000, we introduced significant degrada-
tion in the system’s effectiveness. Reducing the number of training iterations also reduced
the running time of simulation by 54.64% when compared to static(k=1). We used re-
cency weighting to recover the lost effectiveness. recency(w=1,it=1000) is equivalent to
static(k=1,it=1000) and it achieves 0.708 and 0.810 recall when Enorm is equal to 1
and 1.5 respectively. For w > 1, we observe a negligible increase in recall. Moreover,
the recall is consistently lower when compared to static(k=1,it=100000). For exam-
ple, recency(w=10,it=1000) is only able to achieve 0.817 recall at Enorm = 1.5, while
static(k=1,it=100000) achieves 0.856 recall at the same effort. Table 6.2 reports the
effectiveness and efficiency measures averaged over all the datasets. Table 6.7-6.10 reports
the effectiveness and efficiency measures for individual datasets.

39

Table 6.3: Summary of results for bmi refresh, static batch, partial refresh and
precision strategy − athome1 collection

Strategy
Avg. Recall
@(Enorm=1)

Avg. Recall
@(Enorm=1.5)

Avg. Recall
@(Enorm=2)

Enorm for
75% recall

Running Time
(in min)

exponential 0.718 0.826 0.904 1.127 0.30

static(k=1) 0.751 0.865 0.925 1.020 59.59
static(k=100) 0.705 0.806 0.887 1.169 0.59

partial(k=10,s=1000) 0.753 0.863 0.926 1.008 38.72
partial(k=100,s=500) 0.753 0.855 0.923 1.022 36.62
partial(k=100,s=1000) 0.754 0.856 0.922 1.013 36.52
partial(k=100,s=5000) 0.756 0.855 0.921 1.015 37.19
partial(k=500,s=1000) 0.701 0.785 0.815 1.323 35.77

precision(p=0.4,m=25) 0.700 0.849 0.917 1.127 35.16
precision(p=0.6,m=25) 0.735 0.860 0.923 1.064 39.44
precision(p=0.8,m=25) 0.749 0.862 0.927 1.029 35.52
precision(p=1.0,m=25) 0.753 0.864 0.927 1.009 36.96

Table 6.4: Summary of results for bmi refresh, static batch, partial refresh and
precision strategy − athome2 collection

Strategy
Avg. Recall
@(Enorm=1)

Avg. Recall
@(Enorm=1.5)

Avg. Recall
@(Enorm=2)

Enorm for
75% recall

Running Time
(in min)

exponential 0.679 0.801 0.861 1.417 0.23

static(k=1) 0.685 0.809 0.862 1.403 28.88
static(k=100) 0.637 0.778 0.848 1.533 0.29

partial(k=10,s=1000) 0.686 0.809 0.862 1.405 12.08
partial(k=100,s=500) 0.669 0.806 0.861 1.429 9.74
partial(k=100,s=1000) 0.681 0.808 0.861 1.417 10.39
partial(k=100,s=5000) 0.686 0.810 0.861 1.402 12.10
partial(k=500,s=1000) 0.614 0.726 0.784 1.704 9.69

precision(p=0.4,m=25) 0.657 0.807 0.861 1.425 12.64
precision(p=0.6,m=25) 0.683 0.809 0.863 1.403 15.02
precision(p=0.8,m=25) 0.690 0.811 0.862 1.390 16.65
precision(p=1.0,m=25) 0.690 0.810 0.861 1.388 17.41

40

Table 6.5: Summary of results for bmi refresh, static batch, partial refresh and
precision strategy − athome3 collection

Strategy
Avg. Recall
@(Enorm=1)

Avg. Recall
@(Enorm=1.5)

Avg. Recall
@(Enorm=2)

Enorm for
75% recall

Running Time
(in min)

exponential 0.783 0.862 0.887 4.584 0.60

static(k=1) 0.827 0.878 0.899 4.244 32.45
static(k=100) 0.614 0.719 0.789 5.264 0.33

partial(k=10,s=1000) 0.818 0.878 0.895 4.247 11.99
partial(k=100,s=500) 0.769 0.848 0.889 4.286 10.51
partial(k=100,s=1000) 0.776 0.858 0.891 4.302 9.86
partial(k=100,s=5000) 0.800 0.877 0.899 4.135 10.72
partial(k=500,s=1000) 0.742 0.783 0.800 5.363 9.44

precision(p=0.4,m=25) 0.675 0.869 0.888 4.434 16.24
precision(p=0.6,m=25) 0.774 0.875 0.894 4.523 18.32
precision(p=0.8,m=25) 0.813 0.877 0.899 4.341 19.44
precision(p=1.0,m=25) 0.831 0.878 0.902 4.241 20.12

Table 6.6: Summary of results for bmi refresh, static batch, partial refresh and
precision strategy − athome4 collection

Strategy
Avg. Recall
@(Enorm=1)

Avg. Recall
@(Enorm=1.5)

Avg. Recall
@(Enorm=2)

Enorm for
75% recall

Running Time
(in min)

exponential 0.713 0.839 0.894 1.375 0.19

static(k=1) 0.754 0.872 0.913 1.181 15.85
static(k=100) 0.651 0.772 0.837 1.743 0.15

partial(k=10,s=1000) 0.754 0.871 0.913 1.185 10.07
partial(k=100,s=500) 0.733 0.847 0.898 1.254 9.16
partial(k=100,s=1000) 0.739 0.855 0.899 1.247 9.50
partial(k=100,s=5000) 0.746 0.864 0.903 1.239 9.34
partial(k=500,s=1000) 0.687 0.785 0.818 2.501 9.47

precision(p=0.4,m=25) 0.684 0.850 0.902 1.309 6.48
precision(p=0.6,m=25) 0.721 0.867 0.909 1.250 8.09
precision(p=0.8,m=25) 0.745 0.870 0.910 1.204 9.36
precision(p=1.0,m=25) 0.747 0.869 0.909 1.191 9.60

Table 6.7: Summary of results for recency weighting − athome1

Strategy
Avg. Recall
@(Enorm=1)

Avg. Recall
@(Enorm=1.5)

Avg. Recall
@(Enorm=2)

Enorm for
75% recall

Running Time
(in min)

recency(w=1,it=1000) 0.704 0.797 0.875 1.257 22.07
recency(w=5,it=1000) 0.705 0.813 0.887 1.191 26.71
recency(w=10,it=1000) 0.708 0.824 0.891 1.206 23.30
recency(w=25,it=1000) 0.708 0.827 0.893 1.193 23.15

41

Table 6.8: Summary of results for recency weighting − athome2

Strategy
Avg. Recall
@(Enorm=1)

Avg. Recall
@(Enorm=1.5)

Avg. Recall
@(Enorm=2)

Enorm for
75% recall

Running Time
(in min)

recency(w=1,it=1000) 0.630 0.749 0.806 1.829 15.36
recency(w=5,it=1000) 0.631 0.751 0.810 1.767 15.70
recency(w=10,it=1000) 0.633 0.751 0.812 1.745 15.46
recency(w=25,it=1000) 0.633 0.752 0.809 1.780 15.97

Table 6.9: Summary of results for recency weighting − athome3

Strategy
Avg. Recall
@(Enorm=1)

Avg. Recall
@(Enorm=1.5)

Avg. Recall
@(Enorm=2)

Enorm for
75% recall

Running Time
(in min)

recency(w=1,it=1000) 0.791 0.866 0.875 5.291 19.00
recency(w=5,it=1000) 0.808 0.869 0.880 5.413 18.87
recency(w=10,it=1000) 0.799 0.862 0.881 5.414 19.54
recency(w=25,it=1000) 0.800 0.864 0.879 5.426 19.52

Table 6.10: Summary of results for recency weighting − athome4

Strategy
Avg. Recall
@(Enorm=1)

Avg. Recall
@(Enorm=1.5)

Avg. Recall
@(Enorm=2)

Enorm for
75% recall

Running Time
(in min)

recency(w=1,it=1000) 0.709 0.830 0.881 1.508 5.59
recency(w=5,it=1000) 0.715 0.834 0.883 1.424 5.63
recency(w=10,it=1000) 0.711 0.831 0.885 1.375 5.65
recency(w=25,it=1000) 0.707 0.834 0.882 1.479 5.58

42

Chapter 7

Conclusion

The work described in this thesis is an attempt towards improving the AutoTAR algorithm,
which utilizes Continuous Active Learning in the TAR framework (Technology Assisted
Review). We explored various modifications to the original algorithm and measured their
impact on its performance. A modern implementation of this algorithm is proposed, which
increases the usability of Continuous Active Learning in real world eDiscovery and high
recall retrieval applications.

We investigated a crucial part of the Continuous Active Learning (CAL) process called
refreshing. We proposed and compared various modifications to it in form of refresh strate-
gies. Our results show that by refreshing more often, we can achieve higher recall using
less effort. Refreshing after every judgment (static(k = 1)) resulted in consistently bet-
ter effectiveness than the exponentially increasing batch sizes in the AutoTAR. However,
frequent refreshing is computationally more expensive. With an efficient implementation
and a reasonably modern hardware, refresh strategies relying on frequent refreshing can
be practically employed in real world applications. We also defined and analysed alterna-
tive refresh strategies which are as effective as static(k=1). In our experiments, various
settings of partial refresh strategy and precision strategy achieved recall scores similar to
static(k=1) but at a lower computation cost. For situations where computational re-
sources are limited or dataset is very large, partial refresh strategy can be used. Precision
based refreshing is efficient when the relevant documents are abundant and easier to find.

We also briefly explored a way reduce training costs. By reducing the number of training
iterations, we observed a significant improvement in running times of our simulation. How-
ever, it was also accompanied with noticeable loss of effectiveness. By prioritising recently
assessed documents in training, we were able to recover some of that lost effectiveness.

43

However, this recovery wasn’t enough to justify the use of this strategy.

Efficiency and effectiveness are important measures of a retrieval system. For interactive
systems in the TAR framework, responsiveness is also crucial. In eDiscovery tasks, it
is important to deliver a smooth and lag-free experience to the assessors. We discussed
modifications to the refresh strategies which can eliminate any user-perceptible delay during
documents assessment.

Finally, we provided an efficient C++ implementation of CAL and all the refresh strate-
gies mentioned in this paper as an open source tool1. The tool is designed to be used as a
research tool and in real world applications.

7.1 Future Work

There are many avenues for future work which this thesis can extend towards.

There are a many large scale datasets (ClueWeb, Twitter, etc) which far exceed the scale
of dataset used in this paper. It is desirable to run our system efficiently on these datasets.
We described an enhancement to the partial refresh strategy which could potentially achieve
this. Additional strategies which deal with large amount of data could also be designed.
In addition to runtime efficiency, these strategies will also need to optimize for memory
efficiency.

There is a vast amount of literature which deal with scaling and optimizing various
steps in the AutoTAR algorithm. Various work approach problems like online training,
distributed and large-scale classification. The knowledge gained from exploring these works
can be used to design better refresh strategies and enable the use of CAL in wider range
of real world applications.

1https://github.com/HTAustin/CoreTrec/tree/master/CALEngine

44

https://github.com/HTAustin/CoreTrec/tree/master/CALEngine

References

[1] Mustafa Abualsaud, Nimesh Ghelani, Haotian Zhang, Mark D. Smucker, Gordon V.
Cormack, and Maura R. Grossman. A system for efficient high-recall retrieval. In The
41st International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 1317–1320. ACM, 2018.

[2] Galen Andrew and Jianfeng Gao. Scalable training of l1-regularized log-linear models.
In Proceedings of the 24th International Conference on Machine Learning, pages 33–
40. ACM, 2007.

[3] Hilda Bastian, Paul Glasziou, and Iain Chalmers. Seventy-five trials and eleven sys-
tematic reviews a day: how will we ever keep up? PLoS medicine, 7(9):e1000326,
2010.

[4] David C Blair and Melvin E Maron. An evaluation of retrieval effectiveness for a full-
text document-retrieval system. Communications of the ACM, 28(3):289–299, 1985.

[5] Gordon V. Cormack and Maura R. Grossman. Evaluation of machine-learning proto-
cols for technology-assisted review in electronic discovery. In Proceedings of the 37th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 153–162. ACM, 2014.

[6] Gordon V Cormack and Maura R Grossman. Autonomy and reliability of continuous
active learning for technology-assisted review. arXiv preprint arXiv:1504.06868, 2015.

[7] Gordon V. Cormack and Maura R. Grossman. Engineering quality and reliability in
technology-assisted review. In Proceedings of the 39th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages 75–84. ACM,
2016.

[8] Gordon V Cormack and Maura R Grossman. Scalability of continuous active learning
for reliable high-recall text classification. In Proceedings of the 25th ACM International

45

on Conference on Information and Knowledge Management, pages 1039–1048. ACM,
2016.

[9] Gordon V Cormack and Thomas R Lynam. Online supervised spam filter evaluation.
ACM Transactions on Information Systems (TOIS), 25(3):11, 2007.

[10] Gordon V. Cormack, Christopher R. Palmer, and Charles L. A. Clarke. Efficient con-
struction of large test collections. In Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 282–
289. ACM, 1998.

[11] Gordon V Cormack, Mark D Smucker, and Charles LA Clarke. Efficient and effective
spam filtering and re-ranking for large web datasets. Information retrieval, 14(5):
441–465, 2011.

[12] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer.
Online passive-aggressive algorithms. Journal of Machine Learning Research, 7(Mar):
551–585, 2006.

[13] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York,
1986.

[14] Maura R Grossman and Gordon V Cormack. Technology-assisted review in e-discovery
can be more effective and more efficient than exhaustive manual review. Rich. JL &
Tech., 17:1, 2010.

[15] Maura R Grossman and Gordon V Cormack. Grossman-cormack glossary of
technology-assisted review, the. Fed. Cts. L. Rev., 7:85, 2014.

[16] Maura R Grossman, Gordon V Cormack, Bruce Hedin, and Douglas W Oard.
Overview of the TREC 2011 legal track. In TREC, volume 11, 2011.

[17] Maura R Grossman, Gordon V Cormack, and Adam Roegiest. TREC 2016 total recall
track overview. In TREC, 2016.

[18] Matthias Hagen, Steve Göring, Magdalena Keil, Olaoluwa Anifowose, Amir Othman,
and Benno Stein. Webis at TREC 2015: tasks and total recall tracks. In TREC, 2015.

[19] Donna Harman. Overview of the first TREC conference. In Proceedings of the 16th
Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, pages 36–47. ACM, 1993.

46

[20] Christopher Hogan, Robert S Bauer, and Dan Brassil. Automation of legal sensemak-
ing in e-discovery. Artificial Intelligence and Law, 18(4):431–457, 2010.

[21] Thorsten Joachims. Svmlight: Support vector machine. SVM-Light Support Vector
Machine http://svmlight. joachims. org/, University of Dortmund, 19(4), 1999.

[22] Matthew Lease, Gordon V Cormack, An T Nguyen, Thomas A Trikalinos, and By-
ron C Wallace. Systematic review is e-discovery in doctor’s clothing. In Proceedings
of the 2nd SIGIR workshop on Medical Information Retrieval (MedIR), 2016.

[23] Cheng Li, Yue Wang, Paul Resnick, and Qiaozhu Mei. Req-rec: High recall retrieval
with query pooling and interactive classification. In Proceedings of the 37th Inter-
national ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 163–172. ACM, 2014.

[24] Mihai Lupu. Tuw at the first total recall track. Technical report, Vienna University
of Technology Vienna Austria, 2015.

[25] Mihai Lupu, Allan Hanbury, et al. Patent retrieval. Foundations and Trends® in
Information Retrieval, 7(1):1–97, 2013.

[26] Walid Magdy and Gareth J.F. Jones. Pres: A score metric for evaluating recall-
oriented information retrieval applications. In Proceedings of the 33rd International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 611–618. ACM, 2010.

[27] Douglas W Oard, Jason R Baron, Bruce Hedin, David D Lewis, and Stephen Tom-
linson. Evaluation of information retrieval for e-discovery. Artificial Intelligence and
Law, 18(4):347–386, 2010.

[28] Douglas W Oard, William Webber, et al. Information retrieval for e-discovery. Foun-
dations and Trends® in Information Retrieval, 7(2–3):99–237, 2013.

[29] George L Paul and Jason R Baron. Information inflation: Can the legal system adapt.
Rich. JL & Tech., 13:1, 2006.

[30] Haoruo Peng, Ding Liang, and Cyrus Choi. Evaluating parallel logistic regression
models. In Big Data, 2013 IEEE International Conference on, pages 119–126. IEEE,
2013.

[31] Adam Roegiest. On design and evaluation of high-recall retrieval systems for electronic
discovery. 2017.

47

[32] Adam Roegiest, Gordon V Cormack, Maura R Grossman, and Charles Clarke. TREC
2015 total recall track overview. Proc. TREC-2015, 2015.

[33] Herbert L Roitblat, Anne Kershaw, and Patrick Oot. Document categorization in
legal electronic discovery: computer classification vs. manual review. Journal of the
Association for Information Science and Technology, 61(1):70–80, 2010.

[34] D Sculley. Online active learning methods for fast label-efficient spam filtering. In
CEAS, volume 7, page 143, 2007.

[35] D. Sculley and Gabriel M. Wachman. Relaxed online svms for spam filtering. In
Proceedings of the 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 415–422. ACM, 2007.

[36] David Sculley. Combined regression and ranking. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
979–988. ACM, 2010.

[37] David van Dijk, Zhaochun Ren, Evangelos Kanoulas, and Maarten de Rijke. The
University of Amsterdam (ILPS) at TREC 2015 total recall track. In TREC, 2015.

[38] Ellen M Voorhees. The philosophy of information retrieval evaluation. In Workshop of
the cross-language evaluation forum for european languages, pages 355–370. Springer,
2001.

[39] Hui Yang, John Frank, and Ian Soboroff. Overview of the trec 2015 dynamic domain
track. In Proc. TREC, 2015.

[40] Zhe Yu, Nicholas A Kraft, and Tim Menzies. How to read less: Better machine assisted
reading methods for systematic literature reviews. CoRR, abs/1612.03224, 2016.

[41] Haotian Zhang, Mustafa Abualsaud, Nimesh Ghelani, Angshuman Ghosh, Mark D
Smucker, Gordon V Cormack, and Maura R Grossman. UWaterlooMDS at the TREC
2017 common core track. TREC, 2017.

48

	List of Tables
	List of Figures
	Introduction
	Thesis Organization

	Background and Related Work
	High Recall Information Retrieval
	Continuous Active Learning
	Related Work

	Implementation
	Auto-TAR BMI
	A modern CAL implementation
	Motivation and Goals
	Design

	Experimental Setup
	Dataset
	Evaluation
	Runtime Environment
	Secondary Experiments

	Refresh Strategies
	Basic Concepts
	Exponential Batch Refresh Strategy
	Static Batch
	Responsiveness

	Partial Refresh
	Precision Based Refreshing
	Recency Weighting Strategy
	Weighted Random Sampling
	Number of Training Iterations

	Results and Discussion
	Conclusion
	Future Work

	References

