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Abstract

Let H be a graph. A graph G is H-critical if every proper subgraph of G admits a
homomorphism to H, but G itself does not. In 1981, Jaeger made the following conjecture
concerning odd-cycle critical graphs: every planar graph of girth at least 4t admits a homo-
morphism to C2t+1 (or equivalently, has a 2t+1

t
-circular colouring). The best known result

for the t = 3 case states that every planar graph of girth at least 18 has a homomorphism
to C7. We improve upon this result, showing that every planar graph of girth at least
16 admits a homomorphism to C7. This is obtained from a more general result regarding
the density of C7-critical graphs. Our main result is that if G is a C7-critical graph with
G 6∈ {C3, C5}, then e(G) ≥ 17v(G)−2

15
. Additionally, we prove several structural lemmas

concerning graphs that are H-critical, when H is a vertex-transitive non-bipartite graph.
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Chapter 1

Introduction

1.1 Introduction and Notation

Let G be a graph, and let k be a positive integer. A k-colouring of G is a function φ
that assigns to each vertex of G a value in the set {1, . . . , k} such that for each edge uv
in G, φ(u) 6= φ(v). The chromatic number of G, χ(G), is the least k such that G has
a k-colouring. For graphs G and H, a graph homomorphism φ : G → H is a function
that maps V (G) to V (H) such that for each edge uv ∈ E(G), we have φ(u)φ(v) ∈ E(H).
Note a graph G has a k-colouring if and only if it has a homomorphism to Kk, and so the
question of whether or not a given graph has a k-colouring is in fact a graph homomorphism
problem.

Dirac introduced the concept of colour-criticality in 1951 [4], and since then, colour-
critical graphs have been widely studied. A graph G is k-critical if its chromatic number
is k, and the chromatic number of every proper subgraph of G is strictly less than k. As
every graph with chromatic number k contains a k-critical subgraph, it is useful to study
k-colourability via colour-critical graphs. In the same vein, it is useful to study graph
homomorphisms through homomorphism-critical graphs, which we define as follows.

Definition 1.1.1. Let H be a graph. A graph G is H-critical if every proper subgraph of
G admits a homomorphism to H, but G itself does not.

For instance, every odd cycle is K2-critical, and the graphs found in Figure 4.1 are
C7-critical. Furthermore, if both m and n are odd positive integers and m < n, then Cm
is Cn-critical.
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In the following pages, we will focus the bulk of our attention on graphs that are C2t+1-
critical for some integer t ≥ 1. Much as a graph is Kk−1-critical if and only if it is k-critical,
graphs that are C-critical for some cycle C are also colour-critical for a variant on ordinary
vertex colouring called circular colouring. A short introduction to circular colouring can
be found in Section 1.2.

Our main motivation for studying odd-cycle critical graphs is the dual of a conjecture
made by Jaeger in 1981. The original conjecture is known as the circular flow conjecture; it
states that every 4t-edge-connected graph admits a modulo (2t+ 1)-orientation1. Though
the conjecture was shown to be false in early 2018 [6], all counterexamples found are non-
planar. As such, the conjecture’s dual for planar graphs is still open. The dual conjecture
is the following

Conjecture 1.1.2. If G is a planar graph of girth at least 4t, then G admits a homomor-
phism to C2t+1.

(Equivalently, if G is a planar graph of girth at least 4t, then G admits a 2t+1
t

-circular
colouring.) The conjecture has only been confirmed in the t = 1 case: this case is equivalent
to Grötszch’s theorem that every triangle-free planar graph can be 3-coloured. Though
considerable progress has been made in the general t case, the girth bound of 4t remains
elusive. In 1996, Nešetřil and Zhu [11] showed that every planar graph of girth at least
10t − 4 admits a homomorphism to C2t+1. In 2000, Klostermeyer and Zhang [7] showed
that it was sufficient to bound the odd girth of the graph as being at least 10t − 4. A
year later, Zhu [15] showed that a girth bound of at least 8t − 3 was sufficient, and in
2003, Borodin et al. [2] improved upon this by showing a girth of at least 20t−3

3
sufficed.

Progress stalled for a decade until in 2013, in a much more general paper regarding the
primal version of the conjecture, Lovász et al. [10] showed that every planar graph with
girth at least 6t admits a homomorphism to C2t+1. This is the best known general bound,
though in the t = 2 case Dvořák and Postle [5] showed that it is enough to bound the odd
girth of the graph as being at least 11. These results are summarized in Tabel 1.1. We
will show in the following pages that in the t = 3 case, it suffices to bound the odd girth
of the graph as being at least 17.

For a graph G, we use e(G) and v(G) to refer to the number of edges and vertices,
respectively, of G. The degree of a vertex v will be denoted by deg(v). Our main result is
the following:

Theorem 1.1.3. Let G be a C7-critical graph. If G 6∈ {C3, C5}, then e(G) ≥ 17v(G)−2
15

.

1That is, an orientation of its edges such that for each vertex, the difference of the in-degree and the
out-degree is congruent to 0 modulo 2t + 1.
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Year Authors t Girth Bound
1958 Grötszch t = 1 girth ≥ 4t
1996 Nešetřil & Zhu [11] t ≥ 2 girth ≥ 10t− 4
2000 Klostermeyer & Zhang [7] t ≥ 2 odd girth ≥ 10t− 4
2001 Zhu [15] t ≥ 2 girth ≥ 8t− 3
2003 Borodin, Kim, Kostochka, & West [2] t ≥ 2 girth ≥ 20t−3

3

2013 Lovász, Thomassen, Wu, & Zhang [10] t ≥ 2 girth ≥ 6t
2017 Dvořák & Postle [5] t = 2 odd girth ≥ 11

Table 1.1: Towards Jaeger’s conjecture for planar graphs.

This, together with Euler’s formula for graphs embedded in surfaces, gives us the fol-
lowing theorem which improves upon the best known result for Conjecture 1.1.2 in the
t = 3 case, bringing the girth bound down from 18 to 17:

Theorem 1.1.4. If G is a planar or projective-planar graph with girth at least 17, then G
admits a homomorphism to C7.

Proof. Suppose not, and let G be a counterexample embedded either in the plane or the
projective plane. Note that we may assume that G is connected, as the following argument
holds for each component of G. Since G has no homomorphism to C7, it contains a C7-
critical subgraph G′. Let f(G′) denote the number of faces in the embedding of G′. By
Euler’s formula for graphs embedded on surfaces, if G′ is a graph embedded in a surface
of Euler genus g, then v(G′)− e(G′) + f(G′) ≥ 2− g.

Note if G′ has girth 17, then 2e(G′)
17
≥ f(G′), and so Euler’s formula becomes v(G′) −

e(G′)+ 2e(G′)
17
≥ 2−g. Multiplying this by 17 and rearranging, we obtain 17v(G′)−15e(G′) ≥

34− 17g. Since g ≤ 1, we have 17v(G′)− 15e(G′) ≥ 17. But this is a contradiction, as by
Theorem 1.1.3, we have 17v(G′)− 15e(G′) ≤ 2.

The odd girth of a graph is the length of a shortest odd cycle. The following lemma,
known as the Folding Lemma, will be used to bring the girth requirement in Theorem 1.1.4
down to 16 for planar graphs.

Folding Lemma (Klostermeyer and Zhang [7]) Let G be a planar graph with odd
girth k. If C = v0 . . . vr−1v0 is a cycle in G that bounds a face and r 6= k, then there is
an integer i ∈ {0, ..., r− 1} such that the graph G obtained from G by identifying vi−1 and
vi+1 (mod r) is of odd girth k.

Using this, we obtain the following theorem:
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Theorem 1.1.5. If G is a planar graph with odd girth at least 17, then G admits a
homomorphism to C7.

Proof. Suppose not. Let G be a counterexample chosen with v(G) minimum and subject
to that, with e(G) minimum. Thus G is C7-critical, and hence G is 2-connected2. It follows
that all faces of G are bounded by cycles. Suppose there exists a cycle C = v0 . . . vk−1v0
with k < 17 such that C bounds a face of G. Since the odd girth of G is at least 17, by the
Folding Lemma there exists an integer i ∈ {0, . . . , k − 1} such that the graph G′ obtained
from G by identifying vi−1 and vi+1 (mod k) to a new vertex z is of odd girth at least 17.
Since v(G′) < v(G) and G is a minimum counterexample, G′ admits a homomorphism φ to
C7. But φ extends to G by setting φ(vi−1) = φ(vi+1) = φ(z), contradicting the fact that G
is C7-critical. Thus we may assume that every face of G has length at least 17. Therefore
f(G) ≤ 2e(G)

17
. By Euler’s formula for planar graphs, v(G)− e(G) + 2e(G)

17
≥ 2. Multiplying

by 17 and simplifying, we have that 17v(G)− 15e(G) ≥ 34. But this contradicts Theorem
1.1.3, as G 6∈ {C3, C5} is C7-critical and so 17v(G)− 15e(G) ≤ 2.

We are thus able to bring the girth bound obtained in Lemma 1.1.4 from 17 down to 16
in the planar case: we obtain as a corollary to Theorem 1.1.5 the following improvement
for the t = 3 case of Conjecture 1.1.2.

Corollary 1.1.6. If G is a planar graph with girth at least 16, G admits a homomorphism
to C7.

1.2 Outline

The remainder of Chapter 1 will provide an overview of the history of the study of circular
colouring, and the two main techniques used in the proof of Theorem 1.1.3: the poten-
tial method and discharging. In Chapter 2, we will present some general results regarding
graphs that are H-critical, where H is any vertex-transitive, non-bipartite graph. In Chap-
ter 3, we will give a proof of the following theorem: if G 6= C3 is a C5-critical graph, then
e(G) ≥ 6v(G)

5
. This is included for the sake of exposition: the proof is short and relatively

simple as compared to that of Theorem 1.1.3, but nevertheless it serves to illustrate the
structure and main techniques used in the proof of Theorem 1.1.3 well. We note a stronger
theorem regarding the density of C5-critical graphs is proved in [5]. The proof of Theorem
1.1.3 will fill the remaining two chapters: Chapter 4 presents the structural properties of
a minimum counterexample to the theorem, which will then be used in the discharging
portion of the proof, found in Chapter 5.

2For a proof of this, see Lemma 2.1.3.
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1.3 History

In this section, we will present a brief overview of circular colouring and how it relates
to graph homomorphisms. We will then survey the two main techniques used in proving
Theorem 1.1.3: the potential method and discharging.

Circular colouring was introduced by Vince in 1988 [13] as a variant of ordinary vertex
colouring. Whereas in k-colouring we require adjacent vertices to have colours that differ by
at least one, in circular colouring we require the colours of adjacent vertices to differ by at
least a given value. Formally, for integers 1 ≤ b ≤ a, an a

b
-circular colouring of a graph G is

a mapping φ of the vertices to the elements of the set Z/aZ such that for each edge uv in G,
b ≤ |φ(u)−φ(v)| ≤ a− b. To see how this relates to graph homomorphisms, let Ka:b be the
graph given by V (Ka:b) = {v0, ..., va−1} and E(Ka:b) = {vivj : b ≤ |i−j| ≤ a−b}. Much as a
graph G has a k-colouring if and only if G admits a homomorphism to Kk = Kk:1, the graph
G has a a

b
-circular colouring if and only G admits a homomorphism to Ka:b. In particular,

for t ∈ Z+, G has a 2t+1
t

-circular colouring if and only if G admits a homomorphism to
K2t+1:t = C2t+1. Note every circulant clique of the form Ka:b is vertex-transitive, and if
a
b
> 2, Ka:b is non-bipartite. The circular chromatic number of a graph G (which we will

denote by χc(G)) is the infimum over all rational numbers a
b

such that G has an a
b
-circular

colouring. The circular chromatic number of a graph differs from its chromatic number by
at most one, and so χc is a refinement of the traditional chromatic number. Indeed, we
have the following theorem.

Theorem 1.3.1. If G is a graph, then χ(G) = dχc(G)e.

Proof. Let χc(G) = a
b
, with gcd(a, b) = 1. Note that G admits a homomorphism to Ka:b.

We will first show that Ka:b admits a homomorphism to Kda
b
e, thus showing χ(G) ≤ da

b
e.

We may assume that χc(G) is not integral, as otherwise Ka:b is isomorphic to Kda
b
e and we

are done.

Let V (Ka:b) = {v0, ..., va−1}, with E(Ka:b) = {vivj : b ≤ |i − j| ≤ a − b}, and let
Kda

b
e be the complete graph with vertices {u0, ..., uda

b
e−1}. We define a homomorphism

φ : V (Ka:b)→ V (Kda
b
e) as follows: for each i ∈ {0, ..., a− 1}, let φ(vi) = ub i

b
c. We claim φ

is a homomorphism. To see this, let vivj be an edge in E(Ka:b) with j < i. Since vivj is
an edge, we have that b ≤ i− j ≤ a− b, and so i ≥ j + b. It follows that b i

b
c 6= b j

b
c. Thus

φ(vi) 6= φ(vj) and so φ(vi)φ(vj) is an edge in Kda
b
e. Since Ka:b admits a homomorphism to

Kda
b
e, it follows that χ(G) ≤ dχc(G)e.

Suppose now χ(G) ≤ da
b
e − 1. Since G admits a homomorphism to Kχ(G) and Kχ(G) is

isomorphic to Kχ(G):1, there exists a mapping φ of the vertices of G to the set {0, ..., χ(G)−

5



1} such that for each edge uv ∈ E(G), we have 1 ≤ |φ(u) − φ(v)| ≤ χ(G) − 1. Thus

χc(G) ≤ χ(G)
1

. But this is a contradiction, since χ(G)
1

< a
b

= χc(G).

For the remainder of this thesis, we will speak only of circular colouring via homomor-
phisms to circulant graphs.

The proof of Theorem 1.1.3 uses two main techniques: the potential method and dis-
charging. In this section, we will give a brief overview of the ideas behind the two.

The potential method is used to gain insight into the structure of subgraphs of
homomorphism-critical graphs. Our proofs using the potential method will be structured
in the following way. The first step is to define the potential of a graph G as being
p(G) = αv(G) − βe(G), for suitably chosen α, β ≥ 0. Next, we make a hypothesis
concerning the potential of the homomorphism-critical graphs. To prove our hypothesis,
we suppose the existence of a minimum counterexample to the hypothesis. Using the fact
that our graph is critical and a minimum counterexample, we are able to bound the
potential of subgraphs of the graph. This allows us to uncover the graph’s structure, and
this structure eventually enables us to dispel the existence of the counterexample through
discharging.

The potential method was popularized by Kostochka and Yancey [9, 8], who used it
amongst other things used to establish lower bounds for the number of edges in k-critical
graphs. Later, Dvořák and Postle [5] used the potential method to show that if G 6= C3 is

a C5-critical graph, then e(G) ≥ 5v(G)−2
4

. This together with Euler’s formula shows that if
G is a planar graph with odd girth at least 11, then G admits a homomorphism to C5.

Discharging is a much more widely known technique than the potential method. It is
typically used for proofs in structural graph theory, perhaps most notably in Appel and
Haken’s proof of the Four Colour Theorem [1]. Discharging is routinely used to either
dispel the existence of —or gain structural insight into —a minimum counterexample to a
proposed theorem. The method works in stages: in the first stage, a number (called charge)
is assigned to substructures of a graph in such a way that the total sum of the charges is
known. In the following stages, the charge is redistributed amongst the substructures of
the graph according to a set of rules. By examining the resulting charges, relationships
between global and local properties of the graph may be inferred.

Our main result concerns the density of C7-critical graphs. A natural question to wonder
is whether or not the density bound obtained is best possible. We suspect not. Kostochka
and Yancey [9] showed that if G is k-critical and k ≥ 4, then e(G) ≥ (k

2
− 1

k−1)v(G)− k(k−3)
2(k−1) .

Later, they showed this is tight for graphs3 obtained via a construction given by Ore in

3Note: they showed further that this bound is tight only for the graphs obtained via Ore’s construction.
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[12]. A k-critical graph given by Ore’s construction is called a k-Ore graph.

Given a (2t+2)-critical graph, there is a seemingly natural way to obtain a C2t+1-critical
graph by edge subdivisions. Indeed, we have the following:

Proposition 1.3.2. If G is a (2t + 2)-critical graph, then the graph G′ obtained from G
by subdividing every edge (2t− 2) times is C2t+1-critical.

The proof of this proposition will be delayed until we have built up the necessary ma-
chinery in Chapter 2. The general idea is the following: for each edge uv ∈ E(G), let
Puv ⊂ G′ be the (u, v)-path obtained by subdividing uv (2t− 2) times. If φ is a mapping
from u to a vertex c in C2t+1, then there exists an extension of φ : Puv → C2t+1 with
φ(v) = c′ for precisely the set {c′ : c′ ∈ V (C)− c}. In this way, Puv restricts colourings of
its endpoints in the same manner as an edge does in ordinary vertex colouring4. Thus if φ
is a proper vertex colouring of some subgraph H of G, then φ can be extended to the corre-
sponding subgraph H ′ of G′. Furthermore, note that G′ does not admit a homomorphism
to C2t+1; if such a homomorphism (or equivalently, colouring) φ exists, the restriction of φ
to V (G) is a (2t+ 1)-colouring, contradicting the fact that G cannot be (2t+ 1)-coloured.

Since the edge-density obtained by Kostochka and Yancey for k-critical graphs is tight
for k-Ore graphs, it seems reasonable that the corresponding density obtained from sub-
dividing a (2t + 2)-Ore graph could be best possible for C2t+1-critical graphs. This idea
motivates the following:

Proposition 1.3.3. Let t ≥ 1 be an integer, and let G be a (2t + 2)-Ore graph. Let
G′ be the graph obtained from G by subdividing each edge in E(G) (2t − 2) times. Then

e(G′) = t(2t+3)v(G′)−(t+1)(2t−1)
2t2+2t−1 .

Proof. Since G′ is obtained from G by subdividing each edge (2t− 2) times we have that
e(G′) = (2t − 1)e(G) and v(G′) = v(G) + (2t − 2)e(G). Combining these two, we obtain
v(G′) = v(G) + 2t−2

2t−1e(G
′); or, rearranging, that v(G) = v(G′)− 2t−2

2t−1e(G
′).

By Kostochka and Yancey [9], we have that e(G) = (t+1− 1
2t+1

)v(G)− (t+1)(2t−1)
2t+1

. Since

e(G′) = (2t−1)e(G), we obtain e(G′) = (2t−1)(t+1− 1
2t+1

)v(G)− (t+1)(2t−1)2
2t+1

. Plugging in

our expression for v(G) above, we have e(G′) = (2t− 1)(t+ 2− 1
2t+1

)(v(G′)− 2t−2
2t−1e(G

′))−
(t+1)(2t−1)2

2t+1
. Simplifying, we obtain e(G′) = t(2t+3)v(G′)−(t+1)(2t−1)

2t2+2t−1 , as desired.

We therefore find it reasonable by setting t = 3 to conjecture that if G is a C7-critical
graph, then e(G) ≥ 27v(G)−20

23
.

4This idea is formalized in Lemma 2.1.11
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More generally, we ask the following question:

Question 1.3.4. Let t ≥ 3. Does there exist a C2t+1-critical graph G such that e(G) <
t(2t+3)v(G)−(t+1)(2t−1)

2t2+2t−1 ?

We note that the family of graphs described in Proposition 1.3.3 show that it is impossi-
ble to prove Jaeger’s conjecture for planar graphs using only a density bound. When t = 3
for example, the graphs in Proposition 1.3.3 have an asymptotic density of 27

23
. However,

using Euler’s formula for planar graphs, we have that if G is a planar graph of girth at least
g, then e(G) ≤ g

g−2(v(G) − 2) —or, asymptotically, that e(G)
v(G)
≤ g

g−2 . In order to obtain
a density argument that implies a relaxation of Jaeger’s conjecture for planar graphs, it
follows that the girth bound g chosen in the relaxation will satisfy g

g−2 ≤
27
23

—or in other
words, that g ≥ 14. To give a further example: when t = 2, the graphs in Proposition
1.3.3 have an asymptotic density of 14

11
, and so the girth bound g chosen in the relaxation

will satisfy g ≥ 11. A proof of Jaeger’s conjecture will thus not be a purely density-based
argument: it will require additional tools (for instance planarity).

More generally, we note that a negative answer to Question 1.3.4 implies that if G is
a planar graph with girth at least 4t + 2, then G admits a homomorphism to C2t+1. To
see this, note that by Euler’s formula if G is a planar graph of girth at least 4t + 2, then
e(G) ≤ 4t+2

4t
(v(G)− 2).

If Question 1.3.4 is answered in the negative, then we have that every C2t+1-critical
graph G satisfies e(G) ≥ t(2t+3)v(G)−(t+1)(2t−1)

2t2+2t−1 . But for all values of t ≥ 1, we have that
t(2t+3)v(G)−(t+1)(2t−1)

2t2+2t−1 > 4t+2
4t

(v(G)− 2).

The girth bound of 4t+ 2 is of particular interest as no counterexamples to the primal
version of the conjecture5 with edge-connectivity 4t + 2 have been found. Indeed, all
counterexamples found in [6] are at most (4t+ 1)-edge connected.

5Recall: every 4t-edge connected graph admits a modulo (2t+1)-orientation.
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Chapter 2

H-Critical Graphs

2.1 General Homomorphism-Critical Graphs

In this chapter, we will present several results concerning general homomorphism-critical
graphs.

Definition 2.1.1. Let H be a graph. A graph G is H-critical if every proper subgraph of
G admits a homomorphism to H, but G itself does not.

Chapter 2 will be divided into two sections. In the first section, we will focus on the
structure of graphs that are H-critical when H is a vertex-transitive, non-bipartite graph.
In the second section, we will turn our attention to graphs that are odd cycle-critical.

We note that the study of H-critical graphs where H is bipartite is not of interest,
as a graph G admits a homomorphism to a bipartite graph if and only G admits a ho-
momorphism to K2 (in other words, if and only if G is bipartite itself). In general, it is
not interesting to study H-critical graphs when H admits a homomorphism to a proper
subgraph H ′ of itself. The reason for this is that if H ⊃ H ′ admits a homomorphism to
H ′, then the graphs that admit a homomorphism to H ′ are precisely those that admit a
homomorphism to H. If H does not admit a homomorphism to any proper subgraph of
itself, H is called a core. In addition to restricting our study to graphs that are H-critical
when H is a core, we will furthermore limit our study to graphs that are H-critical when H
is vertex-transitive. As we will see in Lemma 2.1.3, this ensures that the H-critical graphs
are 2-connected.

For a set S ⊂ V (G), the neighbourhood of S, denoted N(S), is the set of vertices that
share an edge with a vertex in S. The path with t edges is denoted Pt, and will be referred
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to as the path of length t. The internal vertices of a path are the vertices of the path that
are not endpoints. We will also need the following definition:

Definition 2.1.2. Let H be a graph. We denote by Pt(H) the set of graphs obtained from
H by adding a path P of length t joining two distinct vertices of H, such that the internal
vertices of P are disjoint from V (H).

Our first result concerns the connectivity of graphs that are H-critical for a vertex-
transitive graph H. It will be useful in Chapters 3 and 4 for establishing the local structure
around vertices in odd cycle-critical graphs.

Lemma 2.1.3. Let H be a vertex-transitive graph, and let G be an H-critical graph. Then
G is 2-connected.

Proof. Suppose not. First, assume G is disconnected. Then G contains two components G′

and G′′. Let v′ be a vertex in V (G′), and let v′′ be a vertex in V (G′′). Since G is H-critical,
G− v′ admits a homomorphism φ to H. Symmetrically, G− v′′ admits a homomorphism
φ′ to H. But then φ(G \G′)∪φ′(G′) is a homomorphism of G to H, contradicting the fact
that G is H-critical. Therefore G is connected.

Suppose now G contains a cut vertex. Let (G1, G2) be a proper separation of G with
G1∩G2 = v. Since G is H-critical and for each i ∈ {1, 2}, Gi ( G, the subgraph Gi admits
a homomorphism φi to H. Since H is vertex-transitive, there exists an automorphism
φ3 : H → H with φ3(φ2(v)) = φ1(v). But then φ1(G1)∪ φ3(φ2(G2)) is a homomorphism of
G to H, contradicting the fact that G is H-critical.

We note that if G is H-critical for a graph H that is not vertex-transitive, G may
contain a cut vertex. To see this, let H be the graph obtained from a 5-cycle C = abcdea
by adding a vertex v adjacent to all vertices in C. Note since deg(a) = 3 and deg(v) = 5,
there does not exist an automorphism φ : H → H with φ(a) = v. Let H ′ be a copy of H,
where for each vertex u ∈ V (H), the corresponding vertex in V (H ′) is denoted by u′. Let
G be formed from H and H ′ by identifying v ∈ V (H) and a′ ∈ V (H ′) to a new vertex z
(see Figure 2.1). We claim G is H-critical: to see this, we first note that G does not admit
a homomorphism to H, since every mapping φ : H → H has φ(v) = v, and every mapping
φ′ : H ′ → H has φ(a′) 6= v.

To complete our argument, let G′ be the graph obtained from G by removing an edge e.
We claim G′ admits a homomorphism to H. Let G′1 = G′[V (H)+z] and G′2 = G′[V (H ′)+z].
Suppose first that e ∈ E(G) is an edge in E(G′1). Then G′1 admits a homomorphism φ
to C3 = zxyz. But then φ enables a homomorphism φ′ from the resulting graph to H by

10



H

z

G

Figure 2.1: The graphs H and G.

setting φ(x) = b′ ∈ V (G′2) and φ(y) = v′ ∈ V (G′2). Since G′2 is isomorphic to H, φ′ is
indeed a homomorphism to H. The case where e ∈ E(G′2) is treated similarly.

More generally, we provide the following construction. Let H be a core that is not
vertex transitive and let u and v be two vertices of H that are not in the same orbit under
the automorphism group of H. Let H ′ be a copy of H, and let G be the graph obtained
by identifying u ∈ V (H) and v′ ∈ V (H ′) to a new vertex z. Then by the same argument
as above, G contains an H-critical subgraph that contains z —and so, there exists an
H-critical graph that contains a cut vertex.

A lot of the analysis in our study of graph homomorphisms will consist of examining
the ways in which partial homomorphisms can be extended to an entire graph. Paths with
internal vertices of degree 2 will play an important role in our investigation, as it is easy to
see the ways in which a partial homomorphism of a graph can extend along such a path.
We therefore define the following terms:

Definition 2.1.4. Let G be a graph. A string in G is a path with internal vertices of degree
two and endpoints of degree at least three. A k-string is a string with k internal vertices.
We say a vertex is incident with a string if it is an endpoint of the string. Let v ∈ V (G)
be a vertex of degree d ≥ 3, and let k1, k2, . . . , kd be integers with k1 ≥ · · · ≥ kd. If v is
incident with d distinct strings S1, . . . , Sd where Si is a ki-string for each 1 ≤ i ≤ d, we
say v is of type (k1, . . . , kd). If v is a vertex of type (k1, ..., kd), we define the weight of v
as wt(v) =

∑d
i=1 ki. Two vertices share a string if they are the endpoints of that string.

Note if v is both endpoints of a given string, then the type of v is not defined. This will
not be an issue: whenever we will speak of vertex types in the following pages, we will speak
of the vertices in an odd cycle-critical graph G. Since odd cycles are vertex-transitive, G
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does not contain a cut vertex by Lemma 2.1.3. It follows that each vertex in V (G) has a
defined type.

Our analysis will also rely heavily on the insights gained from identifying vertices in
a critical graph and examining the resulting graph. Note that we only ever identify non-
adjacent vertices, so no loops are created during vertex identifications. It is useful to be
able to speak of undoing the identification process; to that end, we define the following
term.

Definition 2.1.5. Let u and v be non-adjacent vertices in a graph G. Let G′ be the graph
obtained from G by identifying u and v to a new vertex z. Let H be a subgraph of G′ that
contains z. Given the identification of u and v to z, splitting z back into u and v refers
to deleting z and adding new vertices u and v to V (H), and for each x ∈ {u, v}, adding to
E(H) all edges of the form xy such that y ∈ V (H) and xy ∈ E(G).

In both Chapters 3 and 4, we will use the potential method to learn about the density
of subgraphs of minimum counterexamples to Theorems 3.0.1 and 1.1.3. To that end, we
define the following:

Definition 2.1.6. Let α, β > 0 and let G be a graph. The (α, β)-potential of G is given
by pα,β(G) = αv(G)− βe(G).

Note that when α and β are clear from the context, we will omit them and speak only
of the potential of a graph and its subgraphs.

In the following paragraphs, we will require the following definition.

Definition 2.1.7. Let φ : G → H be a homomorphism, and let F ⊆ G. Then φ(F ) ⊆ H
is the graph with V (φ(F )) = {φ(v) : v ∈ V (F )} and E(φ(F )) = {φ(u)φ(v) : uv ∈ E(F )}.

Let G be an H-critical graph, and let F be a proper subgraph of G. Since G is critical,
F has a homomorphism φ : F → H.

Let G′ be the graph with V (G′) = (V (G) \ V (F ))∪ V (φ(F )), and E(G′) = E(G \F )∪
E(φ(F )).

For each u ∈ φ(F ), let φ−1(u) be the set of vertices of F with image u under φ.

Let GF [φ] be the graph obtained from G′ by adding an edge vu for each u ∈ φ(F ) and
v ∈ V (G) \ V (F ) such that there exists w ∈ φ−1(u) with vw ∈ E(G).

Note GF [φ] has no homomorphism to H, as such a homomorphism φ′ admits an ex-
tension to a homomorphism φ′′ : V (G) → V (H) by setting φ′′(v) = φ′(φ(v)) for each
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v ∈ V (F ), and φ′′(v) = φ′(v) for each v ∈ V (G)\V (F ). Thus GF [φ] contains an H-critical
subgraph W . Note if F is not isomorphic to a subgraph of H, then GF [φ] contains fewer
vertices than F , and hence W contains fewer vertices than G. Furthermore, W ∩φ(F ) 6= ∅
as otherwise W ⊂ G and so G contains a proper H-critical subgraph, contradicting the
fact that G is H-critical. This motivates the following definitions:

Definition 2.1.8. The graph F ′ is an extension of F ( G if there exists a homomorphism
φ : F → H and an H-critical subgraph W in GF [φ] such that F ′ = (W \ φ(F )) ∪ F . We
call W an extender of F , and W [φ(F )] the source of the extension.

In order to establish certain structural properties of odd cycle-critical graphs in the
following chapter, we will make extensive use of the following lemma.

Lemma 2.1.9. Let G be an H-critical graph with potential p(G). Let F be a proper
subgraph of G that is not isomorphic to H. If F ′ is an extension of F with extender W
and source X, then p(F ′) = p(F ) + p(W )− p(X).

Proof. By the definitions of F ′, W ′, and X given in 2.1.8, v(F ′) = v(F ) + v(W ) − v(X).
Furthermore, e(F ′) = e(F ) + e(W )− e(X). Therefore since p(F ′) = αv(F ′)− βe(F ′) and
both α and β are greater than 0, p(F ′) = p(F ) + p(W )− p(X).

In order to effectively qualify the extension of partial homomorphisms of graphs along
strings, we will use the following lemma:

Lemma 2.1.10. Let G be a connected k-regular graph with V (G) ≥ 2. If S is a proper,
nonempty subset of V (G), then exactly one of the following hold:

(i) |N(S)| > |S|, or

(ii) |N(S)| = |S| and G is a bipartite graph with bipartition (S,N(S)).

Proof. Let S be a proper, nonempty subset of V (G). If two vertices in S are adjacent,
they are both also in N(S). Therefore for every vertex v in S \ N(S), we have that
N(v) ⊆ N(S) \ S. Since G is k-regular, there are exactly k|S \ N(S)| edges with one
endpoint in S \N(S) and the other in N(S) \ S. Similarly, there are at most k|N(S) \ S|
edges with one endpoint in N(S) \ S and the other in S \N(S). We have, therefore, that

k|S \N(S)| = |E(S \N(S), N(S) \ S)| ≤ k|N(S) \ S|. (2.1)

We conclude, dividing by k, that |S \ N(S)| ≤ |N(S) \ S|; or equivalently that |S| ≤
|N(S)|. If |S| < |N(S)|, (i) holds as desired.
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We may therefore suppose that |S| = |N(S)| (equivalently, that |S\N(S)| = |N(S)\S|).
Thus equality holds throughout Equation 2.1, and hence we have that |E(S \N(S), N(S)\
S))| = k|N(S) \ S|. In other words, for each vertex v in N(S) \ S, N(v) ⊆ S \N(S), and
as remarked earlier, for every vertex v in S \N(S), N(v) ⊆ N(S) \S. Therefore S ∪N(S)
induces a bipartite component H of G with bipartition (S \ N(S), N(S) \ S). Since G is
connected, G = H. Hence S ∩N(S) = ∅, and so G is bipartite with bipartition (S,N(S)).
Finally, since |S \N(S)| = |N(S) \ S|, (ii) holds as desired.

The following lemma will be used to restrict the length of strings in an H-critical graph
G. We will also use it in order to give a more formal proof of Proposition 1.3.2. Let u and
v be vertices on a path P in G such that the internal vertices of P have degree 2 in G.
Let φ : u → H be a homomorphism. Let Φ be the set of extensions of φ to P . We define
Bφ(v|u, P ) := {φ′(v) : φ′ ∈ Φ}. If the choice of φ is irrelevant (for instance if we only wish
to speak of |Bφ(v|u, P )|), we will sometimes write B(v|u, P ).

Lemma 2.1.11. Let G and H be graphs, and suppose H is connected, regular, and
non-bipartite, with v(H) ≥ 2. Let P = v0v1...vk+1 be a path with k + 1 edges, with
degG(v) = 2 for each v ∈ V (P ) \ {v0, vk+1}. Let φ : v0 → H be a homomorphism.
Then |Bφ(vk+1|v0, P )| ≥ min(k + 2, v(H)).

Proof. We proceed by induction on k.

Suppose first k = 0. Note Bφ(v1|v0, P ) = NH(φ(v0)). Let S = {φ(v0)} ⊂ V (H).
Since H is connected, regular and non-bipartite, Lemma 2.1.10 (i) applies to S, and so
|Bφ(v1|v0, P )| = |N(φ(v0))| ≥ 2.

Thus we may assume k ≥ 1. Let Pv0v1...vk+1 be a path with deg(v1) = · · · =
deg(vk) = 2. By induction, |Bφ(vk|v0, P )| ≥ min(k+ 1, v(H)). Let S = Bφ(vk|v0, P ). Note
Bφ(vk+1|v0, P ) = NH(S). Since H is connected, regular, and non-bipartite, again Lemma
2.1.10 (i) applies to S. Thus either N(S) = S = V (H) or |NH(S)| ≥ |S|+ 1 ≥ k + 2, and
so |Bφ(vk+1|v0, P )| ≥ min(k + 2, v(H)) as desired.

We now give a more formal proof of Proposition 1.3.2. Recall it said the following.

Proposition 1.3.2. If G is a (2t + 2)-critical graph, then the graph G′ obtained from G
by subdividing every edge (2t− 2) times is C2t+1-critical.

Proof. For each edge uv ∈ E(G), let Puv ⊂ G′ be the (u, v)-path obtained by subdividing
uv (2t−2) times. Let uv be an edge in E(G), and let φ : u→ C2t+1 be a homomorphism. By
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Lemma 2.1.11, |Bφ(v|u, Puv)| ≥ 2t. Furthermore, |Bφ(v|u, Puv)| ≤ 2t since Bφ(v|u, Puv) ⊆
V (C2t+1) \ {u}. It follows that |Bφ(v|u, Puv)| = 2t.

Thus if φ is a (2t + 1)-vertex colouring of a proper subgraph H of G, then φ extends
to a homomorphism of the corresponding graph H ′ ( G′, where H ′ = ∪uv∈E(H)Puv.

Finally, we note that G′ does not admit a homomorphism to C2t+1. To see this, suppose
to the contrary that there exists a homomorphism φ : G′ → C2t+1. Then φ(G′[V (G)]) is a
(2t+ 1)-colouring of V (G), contradicting the fact that G is (2t+ 2)-critical.

We are now equipped to restrict the length of strings in H-critical graphs.

Lemma 2.1.12. Let H be a connected, regular, non-bipartite graph. If G is an H-critical
graph, then G does not contain a k-string with k ≥ v(H)− 2.

Proof. Suppose not: that is, suppose P = v0v1v2 · · · vv(H)−1 is a subpath of a string in G.
Since G is H-critical, G − {v1, · · · vv(H)−2} admits a homomorphism φ to H. By Lemma
2.1.11, |Bφ(vv(H)−1|v0, P )| ≥ min(v(H), v(H)) = v(H). Hence φ(vv(H)−1) ∈ Bφ(vv(H)−1|v0, P ),
and so φ extends to G. This contradicts the fact that G is H-critical.

The following lemma will be used in the following section to provide some insight into
the local structure around a vertex in a C2t+1-critical graph.

Lemma 2.1.13. Let H be a non-bipartite, vertex-transitive graph. Let G be an H-critical
graph. If v is a vertex of G, then wt(v) ≤ (v(H)− 2) deg(v)− v(H).

Proof. Note since H is vertex-transitive, G does not contain a cut vertex by Lemma 2.1.3.
Thus each string in G has two distinct endpoints. Let v be a vertex of type (k1, . . . , kd),
incident with a ki-string Si with other endpoint vi, for 1 ≤ i ≤ d. Note since G is H-
critical, it does not admit a homomorphism to H, and thus if φ is a homomorphism from
G \ (∪di=1(Si − vi)) to H, we have that V (H) \ (∩di=1Bφ(v|vi, Si)) = V (H). Therefore∑d

i=1(v(H) − |Bφ(v|vi, Si)|) ≥ v(H). By Lemma 2.1.11, for each 1 ≤ i ≤ d we have
|Bφ(v|vi, Si)| ≥ min(ki + 2, v(H)). By Lemma 2.1.12, ki + 2 < v(H) for each 1 ≤ i ≤ d,

and hence |Bφ(v|vi, Si)| ≥ ki + 2. Thus
∑d

i=1(v(H) − (ki + 2)) ≥ v(H). Using the fact

that
∑d

i=1 ki = wt(v) and rearranging, we get d(v(H) − 2) − wt(v) ≥ v(H). Therefore
wt(v) ≤ (v(H)− 2) deg(v)− v(H), as desired.
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2.2 Odd Cycle-Critical Graphs

We now present several results and definitions pertaining to graphs that are H-critical
when H is an odd cycle.

The following corollary to Lemma 2.1.13 will be used extensively in Chapters 4 and 5.

Corollary 2.2.1. Let G be a C2t+1-critical graph. If v is a vertex in G, then wt(v) ≤
(2t− 1) deg(v)− (2t+ 1).

Definition 2.2.2. A (2t + 1)-cycle in a C2t+1-critical graph is called a cell. A cell C
is incident with a string S 6⊆ C if one of the endpoints of the string is contained in the
cell. The degree of C is the number of strings incident with C. Let deg(C) = d, and let
k1, k2, ..., kd be integers with k1 ≥ ... ≥ kd. If C is incident with d distinct strings S1, . . . , Sd
where for 1 ≤ i ≤ d Si is a ki-string, we say C is a cell of type (k1, . . . , kd). If C is a
vertex of type (k1, ..., kd), we define the weight of C as wt(C) =

∑d
i=1 ki.

We caution the reader that in defining cells, we do not mean to suggest that there is an
intrinsic property of (2t+ 1)-cycles that makes them a vital part of the structural analysis
for general C2t+1-critical graphs. For C5- and C7-critical graphs, cells as defined proved
a useful tool in our analysis. For values of t larger than 3, it seems likely that (2t + 3)-
cycles and perhaps (2t+ 5)-cycles will prove equally useful in establishing the structure of
C2t+1-critical graphs.

Note the definition does not preclude a cell C from containing both endpoints of a
string S with S 6⊂ C. We claim, however, that this does not happen. This is addressed in
the following lemma.

Lemma 2.2.3. Let t ≥ 1 be an integer, and let C be a cell in a C2t+1-critical graph G. Let
S 6⊆ C be a string. At most one of the endpoints of S is contained in V (C).

Proof. Suppose not: that is, suppose both endpoints u and v of S are contained in V (C).
Let P1 and P2 be the two distinct (u, v)-paths contained in C. Note since v(C2t+1) is odd,
exactly one of P1 and P2 has an odd number of edges. Without loss of generality, we may
assume e(P1) ≡ e(S) mod 2. Note since G is C2t+1 critical, G does not contain an odd
cycle with fewer than 2t + 1 edges, as such a cycle is C2t+1-critical itself. It follows that
e(S) ≥ e(P1). Since G is C2t+1-critical, G \ (S \ {u, v}) has a homomorphism φ to C2t+1.
But then φ extends to G, since S has a homomorphism ϕ to P1 with φ(u) = ϕ(u) and
φ(v) = ϕ(v).
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In the spirit of Corollary 2.2.1, the following lemma provides some restriction on the
local structure surrounding a cell in a C2t+1-critical graph.

Lemma 2.2.4. Let G be a C2t+1-critical graph. If C is a cell of G, then wt(C) ≤ (2t −
1) deg(C)− (2t+ 1).

Proof. Let C be a cell of G with deg(C) = d. By Lemma 2.2.3, C is a cell of type (k1, ..., kd),
incident with a ki-string Si for each 1 ≤ i ≤ d. We will denote by ci and vi the endpoints
of each Si, with vi 6∈ V (C).

Note first there are 2(2t + 1) homomorphisms of a cell to C2t+1. To see this, choose a
vertex v ∈ V (C) and a vertex x ∈ V (C)∩N(v). Note v has 2t+1 possible images in C2t+1,
and for each of those images y, the vertex x has two corresponding possible images: the
two vertices in NC2t+1(y). The rest of the vertices in C are determined by the mappings
of v and x. Given a homomorphism φ : vi → C2t+1, we denote by Bφ(C|vi, Si) the set
of possible extensions of φ to Si ∪ C. Note that |Bφ(C|vi, Si)| = 2|Bφ(ci|vi, Si)|. Since
G does not admit a homomorphism to C2t+1, we have ∩di=1B(C|vi, Si) = ∅. Therefore∑d

i=1(2(2t+ 1)− |B(C|vi, Si)|) ≥ 2(2t+ 1). By Lemma 2.1.11, for each 1 ≤ i ≤ d we have
|B(ci|vi, Pi)| ≥ min(ki + 2, 2t+ 1). From Lemma 2.1.12, since G is C2t+1-critical, ki + 2 <
2t+1. Therefore |B(ci|vi, Pi)| ≥ ki+2, and since |B(C|vi, Si)|)| = 2|B(ci|vi, Pi)| for each i,
it follows that

∑d
i=1(2(2t+1)−2(ki+2)) ≥ 2(2t+1). Using the fact that

∑d
i=1 ki = wt(C),

dividing by 2, and reorganizing, we obtain wt(C) ≤ (2t−1) deg(C)−(2t+1), as desired.

In Chapters 3 and 4, we will make use of the following lemma concerning theta graphs.
A theta graph is a graph formed by two vertices of degree 3 that share three distinct strings.

Lemma 2.2.5. If G is a theta graph and t is an integer with t ≥ 1, then G is not C2t+1-
critical.

Proof. Suppose not, and let t be the least integer such that G is C2t+1-critical. Let u and v
denote the two degree 3 vertices in G, and let the three strings incident to v be S1, S2, and
S3. If G is bipartite, then G has a homomorphism to e ∈ E(C2t+1), a contradiction. We
may therefore assume G contains at least one odd cycle. Let C be a shortest odd cycle in
G. Without loss of generality, we may assume C = S1∪S2 and that S1 has an odd number
of edges. For some i ∈ {1, 2}, we have that e(S3) ≡ e(Si) mod 2. Note that S3 has at least
as many edges as Si as otherwise S3 ∪ ({S1, S2} \ Si) contradicts our choice of C. Thus S3

has a homomorphism φ to Si such that φ(u) = u and φ(v) = v. But this is equivalent to
a homomorphism of G to C. Since C ( G and G is C2t+1-critical, it follows that C has a
homomorphism to C2t+1. Hence G has a homomorphism to C2t+1, contradicting that G is
C2t+1-critical.
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Finally, we show that homomorphism-critical graphs do not contain two vertices that
shares distinct strings with the same number of vertices modulo 2.

Lemma 2.2.6. Let H and G be graphs such that G is H-critical. Let k1 and k2 be integers
with k1, k2 ≥ 0. If u, v ∈ V (G) are the endpoints of distinct strings S1 and S2, where S1 is
a k1-string and S2 is a k2-string, then k1 6≡ k2 mod 2.

Proof. Suppose not. Without loss of generality, we may assume k2 ≥ k1. Let S1 =
ua1 . . . ak1v and S2 = ub1 . . . bk2v. Let G′ be the graph obtained from G by deleting
b1 . . . bk2 . Since G is H-critical and G′ ⊂ G, G′ admits a homomorphism φ to H. But φ
extends to G in the following way: for each 1 ≤ i ≤ k1, we set φ(bi) = φ(ai). For each
k1 < i ≤ k2 with i ≡ k1 mod 2, we set φ(bi) = φ(ak1). For each k1 < i ≤ k2 with i ≡ k1−1
mod 2, we set φ(bi) = φ(ak1−1). This is a contradiction, since G admits no homomorphism
to H.
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Chapter 3

C5-Critical Graphs

In this chapter, we will present a similar result to Theorem 1.1.3 concerning the density
of C5-critical graphs. The proof will serve as an introduction to the proof techniques used
in Chapters 4 and 5. We note a stronger theorem is proved by Dvořák and Postle in [5]
but as we aim only to demonstrate the proof method, this weaker version will suffice. The
theorem we prove is the following:

Theorem 3.0.1. If G 6= C3 is a C5-critical graph, then e(G) ≥ 6v(G)
5

.

In order to prove Theorem 3.0.1, we will assume the existence of a minimum counterex-
ample G. For the rest of this chapter, a minimum counterexample will be a counterexample
to Theorem 3.0.1, minimal with respect to v(G) and subject to that, minimal with respect
to e(G). The potential1 of a graph H, denoted p(H), will be defined as 6v(H) − 5e(H).
In the language of potentials, Theorem 3.0.1 can be restated as follows: if H 6= C3 is a
C5-critical graph, then p(H) ≤ 0. We will begin by establishing some of the structure of G
through what we know of homomorphism-critical graphs and the potential of subgraphs of
G. Once we have established enough of the structure of G to complete the proof, we will
proceed via discharging.

First, we present a lemma used to uncover lower bounds on the potential of subgraphs
of G. Recall from Definition 2.1.2 that if H is a graph, we denote by P3(H) the set of
graphs obtained from H by adding a path P of length 3 joining two distinct vertices of H,
such that the internal vertices of P are disjoint from V (H).

Lemma 3.0.2. Let H be a subgraph of a minimum counterexample G. The following all
hold:

1In Chapter 3, potential denotes the (6, 5)-potential.
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H H

Figure 3.1: G contains a path P of length either 2 or 3, such that the endpoints of P are
in H and the internal vertices of P are in G \ V (H).

(i) p(H) ≥ 1 if H = G,

(ii) p(H) ≥ 4 if G ∈ P3(H), and

(iii) p(H) ≥ 5 otherwise.

Proof. Suppose not. Let H ⊆ G be a counterexample to the lemma, maximal with respect
to v(H) and, subject to that, maximal with respect to e(H). If H = G, then (i) holds, a
contradiction. Thus we may assume H 6= G and that neither (ii) nor (iii) hold for H. If
H ⊆ C5, (iii) holds since p(C5) = 5 and p(G′) = t + 6 if G′ = Pt is a path with t edges.
We may therefore assume H is not a subgraph of C5. Since H is a counterexample to the
lemma, it follows that p(H) ≤ 4.

Suppose first H is not induced. Then p(G[V (H)]) = p(H)−5(e(G[V (H)])−e(H)), and
since e(G[V (H)])− e(H) ≥ 1, we have that p(H)− 5 ≥ p(G[V (H)]). Thus it follows that
p(H) ≥ p(G[V (H)]) + 5. Since p(H) ≤ 4, we therefore have that G[V (H)] has potential at
most −1, and so none of (i)-(iii) hold for G[V (H)]. But this is a contradiction, as G[V (H)]
contradicts our choice of H.

Thus we may assume H is induced. Since H ( G and G is C5-critical, H admits a
homomorphism φ to C5. Let W be a C5-critical subgraph of GH [φ]. Note W contains at
least one vertex from φ(H) since G contains no proper subgraph that is C5-critical.

Suppose first that W is a triangle. Since W contains at least one vertex from G \φ(H)
and at least one vertex from φ(H), we have that G contains a path P with t edges, where
t ∈ {2, 3}, such that the endpoints of P are in H and the internal vertices of P are in
G\V (H) (see Figure 3.1). Note p(H∪P ) = p(H)+6(t−1)−5t, so p(H∪P ) = p(H)+t−6.
If t = 2, then p(H ∪P ) = p(H)− 4. Since p(H) ≤ 4, we therefore have that p(H ∪P ) ≤ 0.
But then none of (i)-(iii) hold for H ∪ P , and so H ∪ P contradicts our choice of H. We
may therefore assume t = 3, and so p(H ∪ P ) = p(H) − 3 ≤ 1. Note by our choice of H,
we have that H ∪ P is not a counterexample to Lemma 3.0.2, and so (i) holds for H ∪ P
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and H ∪ P = G. But then p(H ∪ P ) = 1, and so p(H) = 4. Since (ii) holds for H, this is
a contradiction. We may therefore assume H is not a triangle.

Let H ′ be an extension of H with extender W and source X (see Definition 2.1.8). By
Lemma 2.1.9, we have that p(H ′) = p(W ) − p(X) + p(H). Since H is not a subgraph of
a 5-cycle, it follows that v(φ(H)) < v(H) and so that v(W ) < v(G). Since W is not a
triangle and G is a minimum counterexample to Theorem 3.0.1, we have that p(W ) ≤ 0.
Thus it follows that p(H ′) ≤ p(H) − p(X). Since X is a subgraph of a 5-cycle, we have
that p(X) ≥ 5 and so p(H ′) ≤ p(H)− 5. But since p(H) ≤ 4, it follows that p(H ′) ≤ −1.
But then none of (i)-(iii) hold for H ′, contradicting our choice of H.

We now proceed with establishing the structure of G.

Lemma 3.0.3. G has girth at least 5.

Proof. Suppose not. Since 3-cycles are C5-critical and G 6= C3, it follows that G contains
no 3-cycle. We may assume therefore that G contains a cycle C of length 4. Since p(C) = 4,
by Lemma 3.0.2 G ∈ P3(C) and so G is a theta graph. But by Lemma 2.2.5, no theta
graph is C5-critical —a contradiction.

Lemma 3.0.4. If C and C ′ are distinct cells in G, then C and C ′ are vertex disjoint.

Proof. Suppose not, and let H = C ∪ C ′ be a subgraph of G. By Lemma 3.0.3, C and
C ′ intersect in a single path P of length k, where k ∈ {0, 1, 2}. Note p(H) = p(C) +
p(C ′)− p(Pk) = 2(6(5)− 5(5))− (6(k + 1)− 5k) = 4− k. Since k ≥ 0, we have p(H) ≤ 4.
Furthermore, H is a theta graph and so by Lemma 2.2.5, H 6= G. Thus by Lemma 3.0.2,
p(H) ≥ 4 and so it follows that k = 0, Lemma 3.0.2 (ii) holds and G ∈ P3(H).

Let w = C ∩ C ′, and let Q be the path such that G = Q ∪ H. Let u and v be the
endpoints of Q. Note that by Lemma 2.1.12, G contains no t-strings with t ≥ 3. Thus
{u, v} ∩ {w} = ∅. Without loss of generality, we may assume v ∈ V (C). Note since v and
w are the only vertices in V (C) of degree at least three, the cycle C contributes three to
the weight of v. Since Q is a 2-string incident with v, we have therefore that wt(v) = 5.
This contradicts Corollary 2.2.1.

The following lemma provides us with local structure for certain types of vertices of
degree 3.

Lemma 3.0.5. Let v be a vertex of degree 3 in G. Suppose that v is incident with strings
S1, S2 and S3 such that S1 is a 2-string. Then S2 ∪ S3 is contained in a cell.
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Proof. Suppose not. For i ∈ {1, 2, 3}, let vi ∈ V (Si)∩N(v). Let G′ be the graph obtained
from G by identifying v2 and v3 to a new vertex z. Note v2 and v3 are not adjacent since G
has girth at least 5 by Lemma 3.0.3, and so no loops are created. Furthermore, since the
path v2vv3 is not contained in a cell, G′ is triangle-free. If there exists a homomorphism φ
of G′ to C5, then φ extends to G by setting φ(v2) = φ(v3) = φ(z), contradicting the fact
that G is C5-critical. We may therefore assume that G′ contains a C5-critical subgraph
G′′. Note that G′′ is not contained in G, and hence it follows that z ∈ V (G′′). Suppose
that v ∈ V (G′′). Since C5-critical graphs have minimum degree at least 2 by Lemma 2.1.3,
then S1 is contained in G′′. This contradicts Lemma 2.1.12, as S1 is contained in a k-string
for some k ≥ 3. Thus we may assume that v 6∈ V (G′′). Since G′′ contains no vertices of
degree one, the internal vertices of S1 are also not contained in V (G′′). Since G′′ is not a
triangle, v(G′′) < v(G), and since G is a minimum counterexample to Theorem 3.0.1, it
follows that p(G′′) ≤ 0.

Let F be the graph obtained from G′′ by splitting z back into v2 and v3, and adding
the vertex v and the edges vv2 and vv3. Note that v(F )−v(G′′) = 2 and e(F )−e(G′′) = 2,
and so it follows that p(F ) = p(G′′) + 6(v(F )− v(G′′))− 5(e(F )− e(G′′)) = p(G′′) + 2 ≤ 2.
But since F ( G, this contradicts Lemma 3.0.2.

By Lemma 2.1.12, G contains no k-strings with k ≥ 3. We thus obtain the following
corollary to Lemma 3.0.5.

Corollary 3.0.6. If v ∈ V (G) is a vertex of degree 3 not contained in a cell, then wt(v) ≤ 3.

In order to proceed with discharging, we will need one final lemma regarding the degree
of cells in G.

Lemma 3.0.7. G does not contain a cell of degree at most three.

Proof. Suppose not, and let C = v1v2v3v4v5v1 be a cell of degree at most 3 in G. Note C
contains at most three vertices of degree at least 3. Note furthermore that C contains at
least two vertices of degree at least 3, since by Lemma 2.1.3 G contains no cut vertices.
Suppose C contains exactly two vertices of degree at least 3. By Lemma 2.1.12, C does not
contain a k-string with k ≥ 3, and so C contains a 1-string S1 and a 2-string S2. Since C
has degree 3, one endpoint of S2 has degree exactly 3. Without loss of generality, we may
assume this endpoint is v1. Let S3 6∈ {S1, S2} be a string incident with v1. By Lemma 3.0.5
applied to v1 and S2, we have that the path formed by S1S2 is contained in a cell C ′. But
then C and C ′ intersect in S1, contradicting Lemma 3.0.4. Therefore we may assume that
C contains exactly three vertices of degree 3. Without loss of generality, we may assume
these vertices are v1, v2, and v4.
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For i ∈ {1, 2, 4}, let ui 6∈ V (C) be a neighbour of vi. Note that u1 and u2 are distinct
since G is triangle-free, and u1u2 6∈ E(G) by Lemma 3.0.3. Furthermore, by Lemma 3.0.4
we have that N(u1)∩N(u2) = ∅ since every two distinct cells in G are vertex-disjoint and
v1v2 ∈ E(C). Let G′ be the graph obtained from G \ V (C) by adding the edge u1u2. Note
that G′ is triangle-free.

We claim that every homomorphism φ from G1 to C5 = c1c2c3c4c5c1 extends to G to
C5. To see this, we may assume without loss of generality that φ(u1) = c1 and φ(u2) = c2.
Choose φ(v4) ∈ {c3, c4, c5} adjacent to φ(u4). If φ(v4) = c3, then let φ(v1) = c5, φ(v2) = c1,
φ(v3) = c2 and φ(v5) = c4. If φ(v4) = c4, then let φ(v1) = c2, φ(v2) = c1, φ(v3) = c5 and
φ(v5) = c3. If φ(v4) = c5, then let φ(v1) = c2, φ(v2) = c3, φ(v3) = c4 and φ(v5) = c1. In all
cases, we obtain a homomorphism of G to C5.

We can assume, then, that G′ admits no homomorphism to C5, and thus G′ contains
a C5-critical subgraph G′′. Since G′′ 6= C3, G is a minimum counterexample and v(G′′) <
v(G), we have p(G′′) ≤ 0. Since G is C5-critical, G′′ is not a subgraph of G and so it
follows that u1u2 ∈ E(G′′). Let F be the graph obtained from G′′ − u1u2 by adding the
path u1v1v2u2. Note that v(F ) − v(G′′) = 2 and e(F ) − e(G′′) = 2, and so it follows that
p(F ) = p(G′′) + 6(v(F )− v(G′′))− 5(e(F )− e(G′′)) = p(G′′) + 2 ≤ 2. Furthermore, since
v4 6∈ V (F ), we have F 6= G. But since F ⊂ G, this contradicts Lemma 3.0.2.

Having established the required structure of G, we are now equipped to prove Theorem
3.0.1.

Proof of Theorem 3.0.1. We proceed via discharging. We assign to each vertex v ∈ V (G)
an initial charge ch0(v) = 12 − 5 deg(v). Hence

∑
v∈V (G) ch0(v) = 2p(G). Since G is a

minimum counterexample and potential is integral, 2p(G) ≥ 2.

We discharge in two steps according to the following rules to obtain a final charge ch1.

Rule 1. Vertices of degree two send 1 unit of charge to both endpoints of the strings that
contain them.

Rule 2. If v is a vertex of degree at least 3 that is contained in a cell, then v sends ch0(v)
units of charge to that cell.

Note by Lemma 3.0.4, cells are vertex disjoint and so Rule 2 is unambiguous.

After discharging, we thus obtain the following charges:

(i) For each v with deg(v) = 2 or such that v is contained in a cell, ch1(v) = 0.
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(ii) For each v with deg(v) ≥ 3 that is not contained in a cell, ch1(v) = 12− 5 deg(v) +
wt(v).

(iii) For each cell K, ch1(K) =
∑

v∈X(12−5 deg(v)+wt(v)) where X is the set of vertices
in K that have degree at least three.

We now prove that all cells and vertices have non-positive charge, thus arriving at a
contradiction.

Claim 3.0.8. If v ∈ V (G), then ch1(v) ≤ 0.

Proof. Suppose not. If v has degree 2, then ch1(v) = 0 by Rule 1, a contradiction. If v is
contained in a cell, then ch1(v) = 0 by Rule 2 —again, a contradiction. We may therefore
assume deg(v) ≥ 3 and that v is not contained in a cell. Suppose first deg(v) = 3. Then
ch1(v) = 12 − 5 deg(v) + wt(v) > 0, and so 0 < wt(v) − 3. Thus wt(v) ≥ 4. This is a
contradiction, since by Lemma 3.0.6 wt(v) ≤ 3.

We may therefore assume deg(v) ≥ 4. By (ii), we have ch1(v) = 12− 5 deg(v) + wt(v).
Note by Corollary 2.2.1, wt(v) ≤ 3 deg(v) − 5 and so it follows that 0 < ch1(v) = 12 −
5 deg(v) + wt(v) ≤ 7− 2 deg(v). Thus deg(v) ≤ 3, a contradiction.

Claim 3.0.9. All cells have non-positive charge.

Proof. Suppose not, and let K be a cell with positive charge. Let X be the set of vertices
of degree at least 3 in K. By (iii), we have

ch1(K) =
∑
v∈X

(12− 5 deg(v) + wt(v))

= 12|X| − 5
∑
v∈X

deg(v) +
∑
v∈X

wt(v)

= 12|X| − 5(2|X|+ deg(K)) + 2(5− |X|) + wt(K)

= 10 + wt(K)− 5 deg(K).

By Lemma 2.2.4, wt(K) ≤ 3 deg(K)− 5, and so 0 < ch1(K) ≤ 5− 2 deg(K). But this
is a contradiction, as by Lemma 3.0.7 deg(K) ≥ 4.

Since the sum of the charges in the graph is equal to 2p(G) and all charged elements
have non-positive charge, we conclude p(G) ≤ 0—a contradiction.
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Chapter 4

Structure of C7-Critical Graphs

We now attack a similar problem using the same general techniques.

Our main result is the following:

Theorem 1.1.3. Let G be a C7-critical graph. If G 6∈ {C3, C5}, then e(G) ≥ 17v(G)−2
15

.

As before, we will restate this theorem in terms of potentials. In this section, the
potential1 of a graph G will be defined as p(G) = 17v(G) − 15e(G). We aim to prove
that if G 6∈ {C3, C5} is a C7-critical graph, then p(G) ≤ 2. We note this bound is tight:
examples of C7-critical graphs with potential 2 can be found in Figure 4.1.

Originally, we constructed the proof without knowing the optimal bound for p(G). In
order to maintain the spirit of our original work and attempt to provide some intuition
of how this threshold of 2 was determined, we will instead show that if G is a C7-critical
graph not isomorphic to C3 or C5, then p(G) ≤ T . T will then be chosen to be the minimal
value for which the proof holds. Note since potential is integral, a counterexample to
Theorem 1.1.3 has potential at least T + 1. A minimum counterexample to Theorem 1.1.3
is a C7-critical graph G 6∈ {C3, C5} with p(G) ≥ T + 1, minimal with respect to v(G), and,
subject to that, with respect to e(G).

For the remainder of this thesis, G will be a minimum counterexample to Theorem
1.1.3. A k-string in G will be called short if k ≤ 2.

The following two sections concern the structure of a minimum counterexample to
Theorem 1.1.3. Section 4.1 contains general structural results, and Section 4.2 rules out
the presence of certain substructures in G.

1In Chapters 4 and 5, potential denotes the (17, 15)-potential.
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Figure 4.1: Examples of C7-critical graphs with potential 2.
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4.1 General Structure Results

The lemmas in this section provide us with a general framework for G. Lemma 4.1.1
concerns the potential of subgraphs of G, and will be useful in proving further structural
lemmas. Lemma 4.1.2 establishes a lower bound for the girth of G. The proofs of Lemmas
4.1.3, 4.1.4, and 4.1.3 will establish the neighbouring structure of vertices incident with long
strings. Finally, with Lemmas 4.1.6, 4.1.7, and 4.1.8 we will characterize the intersections
of distinct 7-cycles and 9-cycles in G.

Lemma 4.1.1. Let H be a subgraph of G. Then the following all hold:

(i) p(H) ≥ T + 1 if H = G,

(ii) p(H) ≥ T + 8 if G ∈ P5(H),

(iii) p(H) ≥ T + 10 if G ∈ P4(H),

(iv) p(H) ≥ T + 12 if G ∈ P3(H),

(v) p(H) = 14 if H = C7, and

(vi) p(H) ≥ 15 otherwise.

Proof. Suppose not. Let H be a counterexample to Lemma 4.1.1, maximal with respect to
v(H), and subject to that, with respect to e(H). Since G is a minimum counterexample to
Theorem 1.1.3 and potential is integral, if H = G, then (i) holds—a contradiction. If H is
isomorphic to C7, then (v) holds, a contradiction. We may therefore assume H 6∈ {C7, G}.

First suppose that H is not induced. Then p(G[V (H)]) = p(H) − 15(e(G[V (H)]) −
e(H)). As H is not induced, e(G[V (H)])− e(H) ≥ 1 and so it follows that p(G[V (H)]) ≤
p(H) − 15 ≤ −1. But then G[V (H)] is a counterexample to Lemma 4.1.1, contradicting
our choice of H.

We may therefore assume H is induced. Note every proper subgraph H of C7 has
potential at least 17, since p(H) = 2t + 17 if H is a path with t edges. Thus if H is a
proper subgraph of C7, (vi) holds, a contradiction. Since G is C7-critical and H ( G, H
has a homomorphism φ to a subgraph of C7. Let H ′ be an extension of H with extender
W and source X (see Definition 2.1.8). By Lemma 2.1.9, p(H ′) = p(H) + p(W )− p(X).

Suppose first that W is a triangle. Since W 6⊂ G, W contains at least one vertex in
φ(H) (see Definition 2.1.7). Similarly, since W 6⊂ φ(H), W contains at least one vertex in
V (G) \ V (H). This gives rise to at least two edges in E(H ′) from vertices in V (G) \ V (H)
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H H

Figure 4.2: G contains a path P of length either 2 or 3, such that the endpoints of P are
in H and the internal vertices of P are in G \ V (H).

to V (H). Thus G has a path Pk, k ∈ {2, 3}, with endpoints in H and internal vertices in
G\V (H) (see Figure 4.2). Since e(H∪Pk)−e(H) = k and v(H∪Pk)−v(H) = k−1, we have
that p(H∪Pk) = p(H)+17(k−1)−15k, and so p(H∪Pk) = p(H)+2k−17 ≤ 2k−3. Since
H is maximal, H∪Pk is not a counterexample to Lemma 4.1.1. Thus p(H∪Pk) ≥ 1+T and
so k = 3. As p(H∪P3) ≤ 3, we have G = H∪P3. But then T +1 ≤ p(H∪P3) = p(H)−11,
and so p(H) ≥ T +12. But now G = (P3∪H) ∈ P3(H) and so (iv) holds —a contradiction.

Suppose next that W is a 5-cycle. Since W 6⊂ G, W contains at least one vertex in
φ(H). Note there are at most two components in W \ V (H), since each such component
gives rise to at least two edges in W and e(W ) = 5. Thus each component in W \ V (H)
is a path, and so at least one of the following cases hold (see Figure 4.3):

(1) G contains a path Pk, k ∈ {2, 3, 4, 5}, joining two distinct vertices of H such that the
internal vertices of Pk are not in H, or

(2) G contains a path P2 joining two distinct vertices of H such that the internal vertex
of P2 is not in H, and a second path Qk, k ∈ {2, 3}, joining distinct vertices of H
such that the internal vertices of Qk are not in H.

Suppose that G contains a path P2 as described in (1) or (2). Note that p(H ∪ P2) =
p(H) − 13 ≤ 1. But since H is maximal and we may choose T ≥ 2, this contradicts our
choice of H. If G does not contain a path P2 as described, then it contains a path Pk,
with k ∈ {3, 4, 5} as described in (1). We have p(H ∪ Pk) = p(H) + 17(k − 1) − 15k =
p(H) + 2k − 17.

• If k = 3, then p(H ∪ Pk) = p(H) − 11 ≤ 3. Since H is maximal, H ∪ P3 is not a
counterexample and so H ∪ P3 = G. But then T + 1 ≤ p(H ∪ P3) = p(H)− 11, and
so p(H) ≥ T + 12. But then (iv) holds —a contradiction.
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H H

Figure 4.3: G contains a path Pk, k ∈ {2, 3, 4, 5}, joining two distinct vertices of H such
that the internal vertices of Pk are not in H, or G contains a path P2 joining two distinct
vertices of H such that the internal vertex of P2 is not in H, and a second path Qk,
k ∈ {2, 3}, joining distinct vertices of H such that the internal vertices of Qk are not in H.

• If k = 4, then p(H ∪ Pk) = p(H) − 9 ≤ 5. Since H is maximal, H ∪ P4 is not a
counterexample and so H ∪ P4 = G. But then T + 1 ≤ p(H ∪ P4) = p(H) − 9, and
so p(H) ≥ T + 10. But then (iii) holds —a contradiction.

• If k = 5, then p(H ∪ Pk) = p(H) − 7 ≤ 7. Since H is maximal, H ∪ P5 is not a
counterexample and so H ∪ P5 = G. But then T + 1 ≤ p(H ∪ P5) = p(H) − 7, and
so p(H) ≥ T + 8. But then (ii) holds —a contradiction.

We can therefore assume W 6∈ {C3, C5}. Recall H ′ is an extension of H with extender
W and source X. Note since H 6⊆ C7, we have that v(φ(H)) < v(H), and consequently
that v(W ) < v(G). Since G is a minimum counterexample to Theorem 1.1.3, and W is
neither a 3-cycle nor a 5-cycle, it follows that p(W ) ≤ T . Since X is a subgraph of a
7-cycle, p(X) ≥ 14. We have therefore that p(H ′) = p(W )+p(H)−p(X) ≤ T +p(H)−14.
Since p(H) ≤ 14 we have p(H ′) ≤ T . But then H ′ is a counterexample to Lemma 4.1.1,
contradicting our choice of H.

The following lemma gives a lower bound for the girth of G.

Lemma 4.1.2. G has girth at least 7.

Proof. Suppose not. Note G does not contain a 5-cycle or a triangle, as these are C7-critical
themselves and G 6∈ {C3, C5}. It follows that G contains a cycle C of length 2t, where
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t ∈ {2, 3}. But then p(C) = 17(2t)− 15(2t) = 2t ≤ 12, so G ∈ {P4(C), P5(C)} by lemma
4.1.1. But then G is a theta graph, and by Lemma 2.2.5, no such graph is C2t+1-critical
—a contradiction.

Note that by Lemma 4.1.2, there are no chords in cells or 9-cycles of G.

The following three lemmas are used to show that certain types of vertices of degree
three and four are contained either in cells or in cycles of length nine.

Lemma 4.1.3. If v is a vertex of degree three incident with strings S1, S2, and S3 such
that S3 is a 4-string, then S1 ∪ S2 is contained in a cell.

Proof. Let {a1, a2} = N(v) \ V (S3). It suffices to show that the path a1va2 is contained
in a cell, since the internal vertices of S1 and S2 (if they exist) have degree 2. Suppose
this is not the case. Let G′ be the graph obtained from G by identifying a1 and a2 to a
new vertex z. Note since a1va2 is not contained in a cell and G has girth at least 7 by
Lemma 4.1.2, G′ contains no triangle nor 5-cycle. Let x 6= v be an endpoint of S3 in G,
and let S = S3−x. If G′ admits a homomorphism φ to C7, then φ extends to G by setting
φ(a1) = φ(a2) = φ(z). Thus there does not exist a homomorphism of G′ to C7, and so G′

contains a C7-critical subgraph G′′. Since G′′ 6∈ {C3, C5}, since v(G′′) < v(G), and since
G is a minimum counterexample, we have that p(G′′) ≤ T . Since G′′ 6⊆ G, it follows that
z ∈ V (G′′). Furthermore, S is not contained in G′′, since by Lemma 2.1.12 G′′ does not
contain the 5-string S3z and the minimum degree of G′′ is at least 2. Let F be the graph
obtained from G′′ by splitting z back into vertices a1 and a2, and adding the path a1va2.
The potential of F is given by p(F ) = p(G′′) + 17(2) − 15(2) ≤ T + 4. By Lemma 4.1.1,
F = G. But this is a contradiction, since S − v is not contained in F .

Lemma 4.1.4. If v is a vertex of degree three incident with strings S1, S2, and S3 such
that S3 is a 3-string and both S1 and S2 contain at least two edges, then S1∪S2 is contained
in a cell or a 9-cycle.

Proof. Let {a1, b1} = N(v)\V (S3). It suffices to show the path a1vb1 is contained in a cell
or 9-cycle, since the internal vertices of S1 and S2 have degree 2. Suppose this is not the
case. Let a2 = N(a1)− v, and let b2 = N(b1)− v. Let G′ be the graph obtained from G by
identifying a1 and b1 to a new vertex z1, and identifying a2 and b2 to a new vertex z2. Note
since a1vb1 is not contained in a cell or 9-cycle, G′ contains no 3- nor 5-cycle. Let x 6= v
be an endpoint of S3 in G, and let S = (S3 ∪ z1) \ {x}. If G′ admits a homomorphism φ to
C7, then φ extends to G by setting φ(a1) = φ(b1) = φ(z1) and φ(a2) = φ(b2) = φ(z2). Thus
there does not exist a homomorphism of G′ to C7, and so G′ contains a C7-critical subgraph
G′′. Since G′′ 6∈ {C3, C5}, since v(G′′) < v(G), and since G is a minimum counterexample,
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it follows that p(G′′) ≤ T . Furthermore, S is not contained in G′′ since by Lemma 2.1.12
G′′ does not contain a 5-string S3z1z2 and the minimum degree of G′′ is at least 2. Since
G′′ 6⊆ G and z1 6∈ V (G′′), we have that z2 ∈ V (G′′).

Let F be the graph obtained from G by splitting z1 and z2 back into a1, b1 and a2, b2,
respectively, and adding the path b2b1va1a2. The potential of F is given by p(F ) = p(G′′)+
17(4) − 15(4) ≤ T + 8. By Lemma 4.1.1, either F = G or G ∈ P5(F ). Since S3 \ {x, v}
is not contained in F , we have that F 6= G and so G = F ∪ P for a path P of length 5.
But again since S3 \ {x, v} is not contained in F , P contains S3. But by definition, S3 is a
path of length 4 with endpoints of degree three —a contradiction.

Lemma 4.1.5. If v is a vertex of degree 4 incident with strings S1, S2, S3, and S4 such
that S4 is a 4-string, then there exists {i, j} ⊂ {1, 2, 3} with i 6= j such that Si ∪ Sj is
contained in a cell.

Proof. Let {u1, u2, u3} = N(v) \ V (S3). Note u1 6= u2 6= u3 by Lemma 4.1.2. It suffices
to show one of the paths u1vu2, u1vu3 or u2vu3 is contained in a cell, since the internal
vertices of S1, S2 and S3 (if they exist) have degree 2. Suppose this is not the case. Let
G′ be the graph obtained from G by identifying u1, u2 and u3 to a new vertex z. Note
G′ contains no 3- nor 5-cycle. Let x 6= v be an endpoint of S4 in G, and let S = S3 − x.
If G′ admits a homomorphism φ to C7, then φ extends to G by setting φ(u1) = φ(u2) =
φ(u3) = φ(z). Thus there does not exist a homomorphism of G′ to C7, and so G′ contains
a C7-critical subgraph G′′. Since G′′ 6∈ {C3, C5}, since v(G′′) < v(G), and since G is a
minimum counterexample, it follows that p(G′′) ≤ T . Since G′′ 6⊆ G, we have z ∈ V (G′′).
Furthermore, S is not contained in G′′, since by Lemma 2.1.12 G′′ does not contain a
5-string and the minimum degree of G′′ is at least 2. Let F be the graph obtained from
G′′ by splitting z back into vertices u1, u2 and u3, and adding the path u1vu2 and the edge
vu3. The potential of F is given by p(F ) = p(G′′) + 17(3) − 15(3) ≤ T + 6. By Lemma
4.1.1, F = G. But this is a contradiction, since S − v is not contained in F .

Finally, the last three lemmas in Section 4.1 characterize the intersection of distinct 7-
and 9-cycles in G. Together with Lemmas 4.1.3, 4.1.4, and 4.1.5, the following lemmas will
allow us to rule out the existence of certain types of vertices in Section 4.2.

Lemma 4.1.6. Let C and C ′ be distinct 7-cycles in G. Then C and C ′ are vertex-disjoint.

Proof. Suppose not, and let H = C ∪ C ′. First suppose C ∩ C ′ has two components P
and P ′. Since paths have potential at least 17, p(H) ≤ p(C) + p(C ′) − p(P ) − p(P ′) ≤
14 + 14− 17− 17 ≤ −6. This contradicts Lemma 4.1.1.
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Thus we may assume the cycles C and C ′ intersect in a single path P of length k.
Note 0 ≤ k ≤ 3, as otherwise H (and thus G) contains a cycle of length at most six,
contradicting Lemma 4.1.2. The potential of H is given by p(H) = p(C) + p(C ′)− p(P ) =
14 + 14− (2k + 17) = 11− 2k. Note H 6= G since no theta graph is C7-critical by Lemma
2.2.5. By Lemma 4.1.1 and since T ≥ 2, we have that p(H) ≥ 10. Since p(H) ≤ 11 we
have k = 0, and by Lemma 4.1.1 G ∈ P5(H). Since k = 0, P is a single vertex v. Let Q
be the path of length five such that G = H ∪ Q. Since G is C7-critical, Q ∩ (C − v) 6= ∅
and Q ∩ (C ′ − v) 6= ∅ as otherwise v is a cut vertex, and no C7-critical graph contains a
cut-vertex by Lemma 2.1.3. The cell C has degree three, and is incident with strings S1,
S2 and Q, where S1 ∪ S2 = C ′. Note Q is a 4-string, and S1 and S2 together contribute 5
to the weight of C. Thus wt(C) = 9. But this is a contradiction, since by Lemma 2.2.4
wt(C) ≤ 8.

Lemma 4.1.7. Let C and C ′ be cycles of length seven and nine, respectively, in G. Then
C and C ′ are edge-disjoint.

Proof. Suppose not. Let C and C ′ be the cycles of length 7 and 9, respectively, of G,
chosen such that their intersection is maximal. Let H = C ∪ C ′. First suppose C ∩ C ′
has at least two components P and P ′. Since paths have potential at least 17, p(H) ≤
p(C) + p(C ′)− p(P )− p(P ′) ≤ 14 + 18− 17− 17 = −2, contradicting Lemma 4.1.1.

Thus we may assume C ∩C ′ is a single path P of length k. Note since C and C ′ share
an edge, k ≥ 1. Furthermore, k ≤ 6, as otherwise H (and thus G) contains a cycle of
length at most six, contrary to Lemma 4.1.2. The potential of H is therefore given by
p(H) = p(C) + p(C ′)− p(P ) = 18 + 14− (2k + 17) = 15− 2k. Note H 6= G, since H is a
theta graph and no such graph is C7-critical by Lemma 2.2.5. By Lemma 4.1.1 and since
T ≥ 2, we have that p(H) ≥ 10. Since p(H) ≤ 15, we have k ∈ {1, 2}. We now break into
cases according to the value of k.

Case 1: k = 1. By Lemma 4.1.1, G ∈ P4(H) ∪ P5(H). Let Qi be the path of length
i ∈ {4, 5} with G = H ∪Qi. Note since G is C7-critical, Qi ∩ P = ∅. To see this, suppose
not. Then at least one of (C \V (P ))∩Qi and (C ′ \V (P ))∩Qi is the empty set. But then
C or C ′ contains a j-string with j ≥ 5, contradicting Lemma 2.1.12. Thus Qi ∩P = ∅ and
both Qi ∩ C 6= ∅ and Qi ∩ C ′ 6= ∅. The cycle C has degree three, and its incident strings
are S1, S2, and Qi, where S1∪S2∪P = C ′. Qi contributes i−1 to the weight of C, and S1

and S2 together contribute 6. Thus wt(C) = i + 5. Since i ≥ 4, we have that wt(C) ≥ 9,
contradicting Lemma 2.2.4.

Case 2: k = 2. By Lemma 4.1.1, G ∈ P5(H). Let Q be the path of length five with
G = H∪Q. Note (C ′\V (P ))∩Q 6= ∅ as otherwise C ′ contains a 6-string, contrary to Lemma
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2.1.12. Note therefore at least one vertex in P has degree exactly three in H, and hence at
least one of the endpoints of P is not in V (Q). Let v be an endpoint of P with v 6∈ V (Q).
Let u ∈ V (C ′)\V (C) be adjacent to v. Suppose (C\V (P ))∩Q = ∅. Then v is incident with
a 4-string of G contained in C, and so by Lemma 4.1.3, Pu is contained in a cell C ′′ 6= C.
Since P ⊂ C, this contradicts Lemma 4.1.6, since distinct 7-cycles in G are vertex-disjoint.
Thus we may assume Q ∩ P = ∅, and both Q ∩ C 6= ∅ and Q ∩ C ′ 6= ∅. Let w be the
endpoint of Q contained in C ′. By Lemma 4.1.3, since Q is a 4-string, the path formed
by w and w’s neighbours in C ′ is contained in a cell C ′′. Since every vertex in C ′ \ V (P )
except w has degree exactly 2, it follows that |E(C ′) ∩ E(C ′′)| ≥ |E(C ′)| − |E(P )| = 7.
But this is a contradiction, since C ′ and C were chosen to be the cycle of length 9 and 7
that have the largest intersection.

Lemma 4.1.8. Let C and C ′ be distinct 9-cycles in G, with V (C) ∩ V (C ′) 6= ∅. Their
intersection is a path of length at most 2.

Proof. Suppose not, and let H = C ∪ C ′. First suppose the cycles C and C ′ intersect
in at least two paths P and P ′. Since paths have potential at least 17, we have p(H) =
p(C) + p(C ′)− p(P )− p(P ′) ≤ 2, contradicting Lemma 4.1.1.

Thus we may assume the cycles C and C ′ intersect in a single path P of length k ≥ 3.
The potential of H is given by p(H) = p(C)+p(C ′)−p(P ) = 18+18−(2k+17) = 19−2k.
Note H 6= G since by Lemma 2.2.5 no theta graph is C7-critical. Thus by Lemma 4.1.1,
p(H) ≥ 10 since T ≥ 2. Since p(H) ≤ 19, we have k ≤ 4. Note by assumption k ≥ 3. By
Lemma 4.1.1, G ∈ P5(H) ∪ P4(H).

Suppose first G ∈ P5(H). Let Q5 be the path with G = H ∪ Q5. Let a and b be the
endpoints of the path P = C ∩C ′. Suppose first (C \ V (P ))∩Q5 = ∅. Let a1a2...a9−k−1 =
C \ V (P ), and let b1...b9−k−1 = C ′ \ V (P ), labeled so that aa1...a9−k−1bb9−k−1...b1a forms
a cycle of length 2(9 − k). Since G is C7-critical, C ′ ∪ Q5 has a homomorphism φ to
C7. But then φ extends to a homomorphism of G by setting φ(ai) = φ(bi) for each
i ∈ {1, . . . , 9− k − 1}.

Thus we may assume (C \ V (P )) ∩Q5 6= ∅, and symmetrically, (C ′ \ V (P )) ∩Q5 6= ∅.
Let q ∈ V (Q5 ∩ C). Let v1 6= v2 be neighbours of q such that {v1, v2} ⊂ V (C). Let G′ be
the graph obtained from G by identifying v1 and v2 to a new vertex v. Note if G′ admits a
homomorphism φ to C7, then φ extends to G by setting φ(v1) = φ(v2) = φ(v). Therefore
G′ contains a C7-critical subgraph G′′. Note there exists an edge in the 5-string formed
by Q5v that is not contained in E(G′′) by Lemma 2.1.12. Since C7-critical graphs have
minimum degree two by Lemma 2.1.3, it follows that E(Q5v) ∩ E(G′′) = ∅. Thus G′′ is a
subgraph of a theta graph H ′. By Lemma 2.2.5, no theta graph is C7-critical. Since H ′ has
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girth at least 7, we have that G′′ 6∈ {C3, C5}. But then H ′ does not contain a C7-critical
subgraph, a contradiction.

We may therefore assume G 6∈ P5(H), and so by Lemma 4.1.1, we have p(H) ≥ T + 10.
Since T ≥ 2 and p(H) = 19− 2k, it follows that k = 3. By Lemma 4.1.1, G ∈ P4(H). Let
Q4 = q0q1q2q3q4 be the path such that G = H ∪ Q4. As above, (C \ V (P )) ∩ Q4 6= ∅ as
otherwise a homomorphism φ : Q4∪C ′ → C7 extends to G, a contradiction. Symmetrically,
(C\V (P ))∩Q4 6= ∅. Let q ∈ V (C∩Q4), and let q′ ∈ V (C ′∩Q4). Let v1 and v2 neighbour q,
with {v1, v2} ⊂ V (C). Similarly, let u1 6= u2 be neighbours of q′ such that {u1, u2} ⊂ V (C ′).
Let G′ be the graph obtained from G by both identifying v1 and v2 to a new vertex v,
and identifying u1 and u2 to a new vertex u. Note if G′ admits a homomorphism φ
to C7, then φ extends to a homomorphism of G by setting φ(v1) = φ(v2) = φ(v), and
φ(u1) = φ(u2) = φ(u). Therefore G′ contains a C7-critical subgraph G′′. Note that there
exists an edge in the 5-string formed by uQ4v that is not contained in G′′ by Lemma
2.1.12. Since C7-critical graphs have minimum degree two by Lemma 2.1.3, it follows
E(uQ4v) ∩ E(G′′) = ∅. Thus G′′ is a subgraph of a theta graph H ′. By Lemma 2.2.5, no
theta graph is C7-critical. Since H ′ has girth at least 7, we have that G′′ 6∈ {C3, C5}. But
then H ′ does not contain a C7-critical subgraph, a contradiction.

4.2 Forbidden Structures

The lemmas in this section are used to rule out the existence of certain configurations in
G, and to establish the neighbouring structure of others. Lemmas 4.2.1, 4.2.2, and 4.2.3
rule out the existence of certain types of vertices of degree three. In Lemma 4.2.4, we
show that G does not contain cells of low degree. Finally, Lemmas 4.2.5, 4.2.6, and 4.2.7
establish the neighbouring structure of certain types of vertices not contained in cells.

Given the structure established in the previous section, we are now equipped to rule out
several types of degree three vertices. We note that in the discharging portion of the proof
of Theorem 1.1.3, the problematic structures will be degree three vertices with weight at
least six. In ruling out a subset of these types of vertices, we therefore shorten and simplify
the discharging portion of the proof of Theorem 1.1.3.

Lemma 4.2.1. G does not contain a vertex of type (4, 4, k), where 0 ≤ k ≤ 4.

Proof. Suppose not. Then there exists a vertex v of type (4, 4, k) with neighbours a, b,
and c, where a is contained in a 4-string Sa, and b is contained in a 4-string Sb 6= Sa by
Lemma 2.1.3. Lemma 4.1.3 applied to v and Sa implies the edge vc is contained in a cell C.
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Lemma 4.1.3 applied to v and Sb implies vc is contained in a cell C ′ 6= C. This contradicts
Lemma 4.1.6, since distinct cells are vertex-disjoint.

Lemma 4.2.2. G does not contain a vertex of type (4, 3, k), where 1 ≤ k ≤ 3.

Proof. Suppose not. Then for some k ∈ {1, 2, 3}, there exists a vertex v of type (4, 3, k).
Let a be a vertex in N(v) that is contained in a 4-string Sa, and let b be a vertex in N(v)
contained in a 3-string Sb. By applying Lemma 4.1.3 to the v and Sa, we have that the
path bvc is contained in a cell C. By applying Lemma 4.1.4 to v and Sb, we have that the
path avc is contained in a cycle C ′ of length either seven or nine. In particular, the edge
vc is contained in E(C ′ ∩C). First suppose C ′ is of length seven. This contradicts Lemma
4.1.6 as distinct cells are vertex-disjoint. Thus we may assume C ′ is of length nine. This
contradicts Lemma 4.1.7, since 7-cycles and 9-cycles are edge-disjoint.

Lemma 4.2.3. G does not contain a vertex of type (3, 3, 2).

Proof. Suppose not. Then there exists a vertex v of type (3, 3, 2). Let a be a neighbour of v
that is contained in a 3-string Sb. Let b 6= a be a neighbour of v contained in a 3-string Sb.
Finally, let c be the neighbour of v contained in a 2-string Sc. By applying Lemma 4.1.4 to
the v and Sa, we have that Sc is contained in a cycle C of length either seven or nine. By
applying Lemma 4.1.4 to v and Sb, we have that the path Sc is contained in a cycle C ′ 6= C
of length either seven or nine. Suppose first C and C ′ are both cells. Since Sc ∈ C ∩ C ′,
this contradicts Lemma 4.1.6 as cycles of length seven are vertex disjoint. Suppose next
that one of C and C ′ is a 9-cycle, and the other is a cell. Since Sc ∈ C∩C ′, this contradicts
Lemma 4.1.7 as 7-cycles and 9-cycles are edge disjoint. Thus we may assume both C and
C ′ are 9-cycles. But this contradicts Lemma 4.1.8, as distinct 9-cycles intersect in a path
of length at most two.

The following lemma is used to lower-bound the degree of cells in G. This will be useful
in the discharging portion of the proof.

Lemma 4.2.4. G does not contain a cell of degree at most two.

Proof. Suppose not. Note since G is C7-critical, G is not a cell. Thus if G contains a cell
of degree 0, we have that G is disconnected, contradicting Lemma 2.1.3. If G contains a
cell of degree one, then G contains a cut vertex, contradicting Lemma 2.1.3.

We may therefore assume G contains a cell C of degree two. Let P be a longest string
contained in C. Note P is a k-string with k ≥ 3 since deg(C) = 2. Note that k ≤ 4 by
Lemma 2.1.12. Suppose first that P is a 4-string, and let v be an endpoint of P . Note
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since C has degree 2, it follows that v has degree 3. Let u1 6= u2 be neighbours of v, such
that P ∩{u1, u2} = ∅. By Lemma 4.1.3, the path u1vu2 is contained in a cell C ′. But since
v is also contained in C, we have that V (C) ∩ V (C ′) 6= ∅, contradicting Lemma 4.1.6.

Thus we may assume P is a 3-string. Let u 6= v be the endpoints of P . Let u1 be a
vertex in V (C)∩N(u), with u1 6∈ V (P ). Similarly, let v1 be a vertex in V (C)∩N(v), with
v1 6∈ V (P ). Let u2 be a vertex in N(u) \ V (C), and let v2 be a vertex in N(v) \ V (C).
Note v2 6= u2, as otherwise v2Pv2 is a cycle of length 6 in G, contradicting Lemma 4.1.2.
Furthermore, v2 and u2 are not adjacent as otherwise the cell v2Pu2v2 6= C intersects C
contradicting Lemma 4.1.6.

Let G′ be the graph obtained from G by both identifying u1 and u2 to a new vertex zu,
and identifying v1 and v2 to a new vertex zv. Note since v2 and u2 are not adjacent, no
loop is created. Moreover, we have the following two claims.

Claim 1. G′ does not contain a triangle.

Proof. Suppose not. Since G does not contain a 5-cycle, a triangle in G′ contains both
zu and zv. But then the path u2uu1v1vv2 is contained in a cell C ′ 6= C. This contradicts
Lemma 4.1.6.

Claim 2. G′ does not contain a 5-cycle.

Proof. Suppose not. Let K be a 5-cycle contained in G′. Since K 6⊂ G, we have that
at least one of zu and zv is contained in V (K). Suppose first exactly one of zu and zv is
contained in V (K). Without loss of generality, suppose zu ∈ V (K). Then the path u1uu2
is contained in a cell C ′ in G. Since u ∈ V (C ∩ C ′), this contradicts Lemma 4.1.6.

Thus we may assume both zu and zv are contained in V (C ′), and that the path
u2uu1v1vv2 is contained in a 9-cycle C ′ in G. But then the path uu1v1v is contained
in both C ′ and C, contradicting Lemma 4.1.7.

Note G′ does not admit a homomorphism φ to C7, as any such homomorphism extends
to G by setting φ(u1) = φ(u2) = φ(zu), and φ(v1) = φ(v2) = φ(v). Thus G′ contains a C7-
critical subgraph G′′. By Claims 1 and 2, we have that G′′ 6∈ {C3, C5}. Since v(G′′) < v(G)
and G is a minimum counterexample, p(G′′) ≤ T . Note by Lemma 2.1.12, P 6⊆ G′′ since
zuPzv is a 5-string. Furthermore, G′′ contains at least one of {zu, zv} since G′′ 6⊆ G.

Suppose first G′′ contains exactly one of {zu, zv}, and without loss of generality suppose
zv ∈ V (G′′). Let F be the graph obtained from G′′ by splitting zv back into v1 and v2
and adding v1vv2. We have p(F ) ≤ p(G′′) + 17(2) − 15(2) ≤ T + 4, and so F contradicts
Lemma 4.1.1.
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Figure 4.4: Obtaining G′ from G by identifying xi and ci to a new vertex zi, for each
i ∈ {1, 2}. The black vertices’ degrees are as illustrated. The white vertices’ degrees are
at least that illustrated.

Thus we may assume G′′ contains both of {zu, zv}. Let F be the graph obtained from
G′′ by splitting zv back into v1 and v2 and adding the path v1vv2. Let F ′ be obtained
from F by splitting zu back into u1 and u2 and adding the path u1uu2. We have p(F ′) ≤
p(G′′) + 17(4) − 15(4) ≤ T + 8. By Lemma 4.1.1, G ∈ P5(F

′) or F ′ = G. But since
P \ {u, v} 6∈ F ′ and P is not a 4-string, this is a contradiction.

Finally, the last three lemmas in this section establish the neighbouring structure of cer-
tain types of vertices not contained in cells. These lemmas will be useful in the discharging
portion of the proof of Lemma 1.1.3.

Lemma 4.2.5. Let v ∈ V (G) be a vertex of type (3,2,2) that is not contained in a cell. If
a 6= b are the vertices that share a 2-string with v and deg(a) = deg(b) = 3, then at least
one of a and b is contained in a cell.

Proof. Suppose not. Let Sa = aa1a2v be the 2-string shared by a and v, and let Sb = bb1b2v
be the 2-string shared by b and v. Let S be the 4-string incident with v. By Lemma 4.1.4
applied to v, since v is not contained in a cell there exists a 9-cycle C = Sa ∪ Sb ∪ bc2c1a
in G. Let x1 ∈ N(a) \ V (C), and let x2 ∈ N(b) \ V (C).

Note since C is a 9-cycle, by Lemma 4.1.8 the path x1ac1c2bx2 is not contained in a
9-cycle. Furthermore, since cells and 9-cycles are edge-disjoint by Lemma 4.1.7, ac1 and
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c2b are each not contained in a cell. Let G′ be the graph obtained from G by identifying xi
and ci to a new vertex zi, for each i ∈ {1, 2} (see Figure 4.4). Note that G′ does not contain
a triangle or 5-cycle. Furthermore, if G′ admits a homomorphism φ to C7, then φ extends
to G by setting φ(x1) = φ(c1) = φ(z1) and φ(x2) = φ(c2) = φ(z2), contradicting the fact
that G is C7-critical. Thus G′ does not admit a homomorphism to C7. Furthermore, G′

is not C7-critical, as v is a vertex of degree 3 and weight 9 in G′, contradicting Corollary
2.2.1. Thus G′ contains a proper C7-critical subgraph G′′. Note since G′′ does not contain a
vertex of degree 3 with weight at least 9, at least one edge in one of the strings S∗ incident
with v is not contained in G′′. Since G′′ has minimum degree 2 by Lemma 2.1.3, we have
E(S) ∩ E(G′′) = ∅. Let S ′ and S ′′ be the strings in {Sa, Sb, S} \ {S∗}. Since S ′ ∪ S ′′ is a
k-string with k ≥ 5, at least one of the edges in S ′ ∪ S ′′ is not contained in E(G′′). Since
G′′ has minimum degree 2, it follows that E(S ′∪S ′′)∩E(G′′) = ∅. In particular, it follows
that v 6∈ V (G′′).

Since G′′ 6⊂ G, it follows that G′′ contains at least one of z1 and z2. Furthermore, since
G′′ is not a triangle or a 5-cycle and v(G′′) < v(G), we have p(G′′) ≤ T .

Suppose first exactly one of {z1, z2} is contained in V (G′′). Without loss of generality,
we may assume z1 ∈ V (G′′). Let F be the graph obtained from G′′ by splitting z1 back
into c1 and x1, and adding the path x1ac1. Then p(F ) = p(G′′) + 17(2) − 15(2) ≤ T + 4.
Since F 6= G, this contradicts Lemma 1.1.3.

Thus we may assume both of {z1, z2} are contained in V (G′′). Let F be the graph
obtained from G′′ by splitting z1 back into c1 and x1, splitting z2 back into c2 and x2, and
adding the paths x1ac1 and x2bc2. Then p(F ) = p(G′′)+17(4)−15(4) ≤ T +8. By Lemma
4.1.1, either F = G or G ∈ P5(H). But since v 6∈ V (F ) is a vertex of degree 3, this is a
contradiction.

Lemma 4.2.6. Let v ∈ V (G) be a vertex of type (2,2,2) not contained in a cell. If a, b,
and c are the vertices that share a 2-string with v and deg(a) = deg(b) = deg(c) = 3, then
at least one of a, b and c is contained in a cell.

Proof. Suppose not. Let Sa, Sb, and Sc be the 2-strings shared by v with a, b, and c,
respectively. Let N(a) \ V (Sa) = {a1, a2}, let N(b) \ V (Sb) = {b1, b2}, and similarly let
N(c) \ V (Sc) = {c1, c2}. Note first a, b, and c are all distinct vertices, since G does
not contain a 6-cycle by Lemma 4.1.2. Furthermore, {a1, a2} ∩ {b, c} = ∅ since v is not
contained in a cell. Similarly, {b1, b2} ∩ {a, c} = {c1, c2} ∩ {a, b} = ∅.

Let G′ be the graph obtained from G by (see Figure 4.5):

– identifying a1 and a2 to a new vertex za,

– identifying b1 and b2 to a new vertex zb, and
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Figure 4.5: Obtaining G′ from G by identifying x1 and x2 to a new vertex zx, for each
x ∈ {a, b, c}. The black vertices’ degrees are as illustrated. The white vertices’ degrees are
at least that illustrated.

– identifying c1 and c2 to a new vertex zc.

If G′ admits a homomorphism φ to C7, then φ extends to G by setting φ(x1) = φ(x2) =
φ(zx) for each x ∈ {a, b, c}, contradicting the fact that G is C7-critical. Therefore G′

contains a C7-critical subgraph G′′. Note by Lemma 2.2.1, at least one vertex in V (Sa) ∪
V (Sb)∪V (Sc) is not in V (G′′) as otherwise v has weight nine in G′′, contradicting Corollary
2.2.1. Without loss of generality, suppose there is a vertex in V (Sa) not contained in V (G′′).
Since G′′ is C7-critical, by Lemma 2.1.3 G′′ has minimum degree 2, and so (V (Sa) \ {v})∩
V (G′′) = ∅. Suppose Sa ∪ Sb is contained in G′′. Since E(Sa) ∩ E(G′′) = ∅, it follows
that Sa ∪ Sb is a 7-string in G′′, contradicting Lemma 2.1.12. Thus at least one edge in
E(Sa ∪ Sb) is not contained in E(G′′). Since G′′ has minimum degree 2 by 2.1.3, it follows
that E(Sa ∪ Sb) ∩ E(G′′) = ∅, and furthermore that V (G′′) ∩ V (Sa ∪ Sb ∪ Sc) = ∅.

Claim 1. G′′ is neither a triangle nor a 5-cycle.

Proof. Suppose not, and suppose first G′′ is a triangle. Since neither a, b, nor c is contained
in a 5-cycle in G by Lemma 4.1.2, G′′ we have that |{za, zb, zc}∩V (G′′)| ≥ 2. Since neither
a, b, nor c is contained in a cell, it follows that |{za, zb, zc} ∩ V (G′′)| = 3 and that the
paths a1aa2, b1bb2, and c1cc2 are contained in a 9-cycle C. Let F = Sa ∪ Sb ∪ Sc ∪ C. The

39



potential of F is given by

p(F ) = p(C) + p(Sa) + p(Sb) + p(Sc)− p(a)− p(b)− p(c)− 2p(v)

= 18 + 3(23)− 3(17)− 2(17)

= 2.

Since T ≥ 2, this contradicts Lemma 4.1.1.

Suppose next G′′ is a 5-cycle. Since neither a, b, nor c is contained in a cell, |{za, zb, zc}∩
V (G′′)| ≥ 2. First suppose that |{za, zb, zc} ∩ V (G′′)| = 2, and so that two of the paths
a1aa2, b1bb2, and c1cc2 are contained in a 9-cycle C. Without loss of generality, assume the
paths are a1aa2 and b1bb2. Let F be the graph formed by C ∪ Sa ∪ Sb. The potential of F
is given by

p(F ) = p(C) + p(Sa) + p(Sb)− p(a)− p(b)− p(v)

= 18 + 2(23)− 3(17)

= 13.

By Lemma 4.1.1, since T ≥ 2, we have F = G or G ∈ P5(F ) ∪ P4(F ). But this is a
contradiction, since Sc is a 2-string and Sc 6⊂ F .

We may therefore assume that |{za, zb, zc} ∩ V (G′′)| = 3, and so that the paths a1aa2,
b1bb2 and c1cc2 are contained in an 11-cycle C. Let F = C ∪ Sa ∪ Sb ∪ Sc. The potential
of F is given by

p(F ) = p(C) + p(Sa) + p(Sb) + p(Sc)− p(a)− p(b)− p(c)− 2p(v)

= 22 + 3(23)− 17(5)

= 6.

By Lemma 4.1.1, F = G. Let Pab be the (a, b)-path in C that does not contain c. Simi-
larly, let Pbc and Pac be the (b, c)- and (a, c)-paths along C that do not contain a and b,
respectively. Note since neither a, b, nor c is contained in a cell by assumption, neither Pab,
Pbc, nor Pac is a 4-string by Lemma 4.1.3. Since together the three paths form an 11-cycle,
we may assume without loss of generality that each of Pab and Pbc is a 3-string, and that
Pac is a 2-string. Note Sa ∪ Sc ∪ Pac forms a 9-cycle C ′. Let a′ and c′ be v’s neighbours
in Sa and Sc, respectively. Let F ′ be the graph obtained from G by identifying a′ and c′.
Note F ′ does not admit a homomorphism to C7 as such a homomorphism extends to G.
Thus F ′ contains a C7-critical subgraph F ′′. Note C ′ is a cell of weight 9 in F ′′, and so F ′′

does not contain at least one string in or incident with C ′. But then F ′′ is a subgraph of a
theta graph. By Lemma 2.2.5 no theta graph is C7-critical; since F ′′ has girth at least 7,
it follows that F ′′ is not C7-critical.
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By Claim 1, G′′ 6∈ {C3, C5}, and since G is a minimum counterexample and v(G′′) <
V (G), it follows that p(G′′) ≤ T . Since G′′ 6⊂ G, at least one of {za, zb, zc} is contained in
V (G′′). Let I = {x : zx ∈ V (G′′)}. Let F be the graph obtained from G′′ by splitting zx
back into x1 and x2 and adding the path x1xx2, for each i ∈ I. Let k = |I| ≤ 3. We have
p(F ) ≤ p(G′′) + 17(2k) − 15(2k). Note this does not necessarily hold with equality, since
{x1, x2} and {y1, y2} are not necessarily disjoint for x 6= y, {x, y} ⊆ I. Simplifying, p(F ) ≤
p(G′′) + 2(2k) ≤ T + 12. By Lemma 4.1.1, either F = G or G ∈ P5(F ) ∪ P4(F ) ∪ P3(F ).
But since v 6∈ V (F ) and deg(v) = 3, this is a contradiction.

Lemma 4.2.7. Let v ∈ V (G) be a vertex of type (3,3,0) that is not contained in a cell. Let
S be the 0-string incident with v, and let u 6= v be an endpoint of S. If u is not contained
in a cell, u is not of type (3,3,0).

Proof. Suppose not. Let Sa and Sb be the 3-strings incident with v, and let Sc and Sd be
the 3-strings incident with u. Let a 6= v and b 6= v be endpoints of Sa and Sb, respectively.
Let c 6= u and d 6= u be endpoints of Sc and Sd, respectively. Note a 6= b and c 6= d by
Lemma 2.2.6.

In this proof, we consider all numerical indices to be taken modulo 7. We aim to
show {a, b} ∩ {c, d} 6= ∅. To see this, suppose not. Let φ be a homomorphism from
G \ (V (Sa ∪Sb ∪Sc ∪Sd) \ {a, b, c, d}) to C = c0c1..c6c0. Let I1 = Bφ(v|a, Sa)∩Bφ(v|b, Sb).
Let I2 = Bφ(u|c, Sc) ∩ Bφ(u|d, Sd). Note since G is C7-critical, we have NC(I1) ∩ I2 = ∅;
otherwise, φ extends to G, a contradiction. First, we will show the following:

Claim 1. Given φ as described, {φ(c), φ(d)} ∩ φ(a) 6= ∅.

Proof. By Lemma 2.1.11, since each of Sa, Sb, Sc, and Sd is a 3-string, each of |Bφ(v|a, Sa)|,
|Bφ(v|b, Sb)|, |Bφ(u|c, Sc)|, and |Bφ(u|d, Sd)| is at least 5. Note since I1 and I2 are each the
intersection of two subsets of V (C) of size at least 5, it follows that |I1| ≥ 3 and |I2| ≥ 3.
Suppose |I1| ≥ 4. Then |NC(I1)| ≥ 5 by Lemma 2.1.10, and so NC(I1) ∩ I2 6= ∅. But then
φ extends to G, a contradiction. Therefore I1 (and symmetrically, I2) is a set of size 3.

We may assume without loss of generality that φ(u) = c1. Then Bφ(v|a, Sa) = V (C) \
{c0, c2}. Let φ(b) = cj, with j ∈ {0, . . . , 6}. In order to have |I2| = |Bφ(v|b, Sb) ∩
Bφ(v|a, Sa)| = 3, we therefore have {c0, c2}∩{cj−1, cj+1} = ∅. Thus j ∈ {4, 5, 2, 0}. Suppose
j = 2. Then I1 = {c4, c5, c6}. But then |NC7(I1)| = 5, and so since NC(I1) ∩ I2 6= ∅, φ
extends to G, a contradiction. The same is symmetrically true if j = 0. We may therefore
assume j ∈ {4, 5}. Without loss of generality, we will take j = 4, as the j = 5 case
corresponds to simply renaming the vertices along the cycle C in the opposite orientation.
Similarly, if φ(c) = ck, then φ(d) ∈ {ck+3, ck+4}. Note since φ(a) = c1 and φ(b) = c4, we
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have I1 = {c1, c4, c6}. Thus NC(I1) = {c0, c2, c3, c5}. Since φ does not extend to G, we
have that I2 = {c1, c4, c6}, and so without loss of generality, φ(c) = c1 and φ(d) = c4. Since
φ(a) = φ(c), this is a contradiction.

Let G′ be the graph obtained from G \ (V (Sa ∪ Sb ∪ Sc ∪ Sd) \ {a, b, c, d}) by adding
a 4-string Sac with endpoints a and c, and a 4-string Sad with endpoints a and d. Note
by assumption assumption a 6= c and a 6= d. It follows that G′ does not contain a
cycle of length three or five, since a cycle containing either Sad or Sac has length at least
six. Note if G′ admits a homomorphism φ to C, then φ extends to G by Claim 1, since
φ(a) 6∈ {φ(d), φ(c)}. Thus G′ is not homomorphic to C7, and so it contains a C7-critical
subgraph G′′. Since G′′ 6∈ {C3, C5}, since v(G′′) < v(G) and since G is a minimum
counterexample, it follows that p(G′′) ≤ T . Note since G′′ has minimum degree two and
G′′ 6⊂ G, we have that G′′ contains at least one of Sac and Sad.

Suppose first G′′ contains exactly one of Sac and Sad; without loss of generality, assume
Sac ⊂ G′′. Let F be the graph obtained from G′′ by deleting Sac and adding SauvSc. Then
F ⊂ G, and p(F ) = p(G′′) + 17(4) − 15(4) ≤ T + 8. By Lemma 4.1.1, either F = G or
G ∈ P5(F ). But since Sd 6⊂ F and Sb 6⊂ F , this is a contradiction.

We may therefore assume G′′ contains both Sac and Sad. Let F be the graph obtained
from G′′ by deleting Sac and Sad, and adding in Sa, Sc, Sd, and the edge uv. Since this is
a net addition of 3 vertices and 3 edges, we have p(F ) = p(G′′) + 17(3) − 15(3) ≤ T + 6.
By Lemma 4.1.1, F = G. But since Sb 6⊂ F , this is a contradiction.

Thus we may assume a ∈ {c, d}. Without loss of generality, assume a = c. We now
break into two cases depending on whether or not b = d.

Case 1: b = d. Let G1 = G \ (V (Sa ∪ Sb ∪ Sc ∪ Sd) \ {a, b}). Note since G is C7-
critical and G1 ⊂ G, G1 admits a homomorphism φ to C7 = c1...c7c1, with φ(a) = c1 and
φ(b) ∈ {c1, c2, c3, c4}. Note φ(b) = c4, as otherwise φ extends to G, a contradiction. To see
this, see Figure 4.6.

Let G2 ∈ P2(G1) be the graph obtained from G1 by adding an (a, b)-path P of length
2. Note if G2 admits a homomorphism φ to C7, then φ extends to G since there does not
exist a homomorphism φ′ : G2 → C7 with φ′(a) = c1 and φ′(b) = c4. Thus G2 contains
a C7-critical subgraph G′2. Suppose G′2 is a triangle. Then ab is an edge in G. But then
C = Sa ∪ Sc ∪ uv and C ′ = Sb ∪ Sa ∪ ab are two 9-cycles that intersect in a 3-string
Sa, contradicting Lemma 4.1.1. Suppose next that G′2 is a 5-cycle. Then there exists an
(a, b)-path Q of length 3 in G. Let F = Sa ∪ Sb ∪ Sc ∪ Sd ∪ uv ∪ Q. Since v(F ) = 18
and e(F ) = 20, the potential of F is given by p(F ) = 17(18) − 15(20) = 6. By Lemma
4.1.1, F = G. But since there exists a homomorphism φ of Q to C7 with φ(a) = c1 and
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Figure 4.6: Figure for Lemma 4.2.7. Extensions of φ to G. The white vertices are of
unknown degree, though their degree is at least that shown. The black vertices’ degrees
are as illustrated.
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φ(b) = c2, we have that φ extends to a homomorphism of G to C7, contradicting the fact
that G is C7-critical. Thus we may assume G′2 6∈ {C3, C5}, and since v(G′2) < v(G) and
G is a minimum counterexample, it follows that p(G′2) < T . Note since G′2 6⊂ G and G′2
has minimum degree at least 2 by Lemma 2.1.3, the path P is contained in G′2. Let F be
the graph obtained from G′2 by deleting V (P ) \ {a, b} and adding Sa ∪ Sb. The potential
of F is given by p(F ) = p(G′2) + 17(6)− 15(6) ≤ T + 12. By Lemma 4.1.1, either F = G
or G ∈ P5(F ) ∪ P4(F ) ∪ P3(F ). But since one of u and v is not contained in F and
deg(u) = deg(v) = 3, this is a contradiction.

Case 2: b 6= d. Let G′ be the graph obtained from G \ (V (Sa ∪ Sb ∪ Sc ∪ Sd) \ {a, b, d})
by adding a 4-string Sbd with endpoints b and d. Note since b 6= d, G′ does not contain a
cycle of length 3 or 5, since a cycle containing Sbd has length at least 6.

SupposeG′ admits a homomorphism φ to C7. Without loss of generality, we may assume
φ(a) = c1 and φ(b) ∈ {c1, c2, c3, c4}. Note φ(b) 6= φ(d), since Bφ(b|d, Sbd) = V (C7)− φ(b).

Claim 2. The homomorphism φ extends to G.

Proof. Let I1 = Bφ(v|a, Sa) ∩ Bφ(v|b, Sb) and I2 = Bφ(u|a, Sc) ∩ Bφ(u|d, Sd). Note since
G is C7 critical, it follows that I1 ∩ NC7(I2) = ∅ as otherwise φ extends to G. Since each
of Sa, Sb, Sc, and Sd is a 3-string, by Lemma 2.1.11 each of |Bφ(v|a, Sa)|, |Bφ(v|b, Sb)|,
|Bφ(u|a, Sc)|, and |Bφ(u|d, Sd)| is at least 5. Note since I1 and I2 are each the intersection
of two subsets of V (C7) of size at least 5, it follows that |I1| ≥ 3 and |I2| ≥ 3. Suppose
|I1| ≥ 4. Then |NC7(I1)| ≥ 5 by Lemma 2.1.10, and so NC7(I1) ∩ I2 6= ∅. But then φ
extends to G, a contradiction. Therefore I1 (and symmetrically, I2) is a set of size exactly
3.

Since φ(a) = c1, it follows thatBφ(v|a, Sa) = {c1, c3, c4, c5, c6}. Since φ(b) ∈ {c1, c2, c3, c4}
and Bφ(v|b, Sb) = {ci : i ∈ [7], i 6= φ(b)± 1}, it follows that φ(b) ∈ {c2, c4}.

Suppose φ(b) = c2. Then we have

I1 = Bφ(v|a, Sa) ∩Bφ(v|b, Sb)
= {c1, c3, c4, c5, c6} ∩ {c2, c4, c5, c6, c7}
= {c4, c5, c6}.

But then |NC7(I1)| = 5, and so it follows that I2 ∩ NC7(I1) 6= ∅ since I2 is a set of size 3.
This contradicts the fact that φ does not extend to G. Thus we may assume φ(b) = c4.

Similarly, we may assume φ(d) 6= c2, and symmetrically, φ(d) 6= c7. Thus φ(d) ∈
{c4, c5}. Since φ(d) 6= φ(b), we have that φ(d) = c5. But then I1 = {c1, c4, c6} and so
N(I1) = {c2, c3, c5, c7}. Since I2 = {c1, c3, c5}, we have that N(I1) ∩ I2 6= ∅, and so that φ
extends to G.
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Since G is C7-critical, Claim 2 is a contradiction and so we may assume that G′ does not
admit a homomorphism φ to C7. Thus G′ contains a C7-critical subgraph G′′. Note since
G′ does not contain a cycle of length 3 or 5, it follows that G′′ 6∈ {C3, C5}. Furthermore,
since v(G′′) < v(G) and G is a minimum counterexample, we have that p(G′′) ≤ 2. Note
at least one edge in E(Sbd) is contained in E(G′′) since G′′ 6⊂ G. Furthermore, since G′′

has minimum degree 2 by Lemma 2.1.3, it follows that Sbd ⊂ G′′. Let F be the graph
obtained from G′′ by deleting Sbd \ {b, d} and adding SbuvSd. Since this is a net addition
of 4 vertices and 4 edges, it follows that p(F ) = p(G′′) + 17(4) − 15(4) ≤ 10. By Lemma
4.1.1, since T ≥ 2 it follows that either F = G or G ∈ P5(F ). But this is a contradiction,
since Sa 6⊂ F and Sc 6⊂ F .
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Chapter 5

Discharging

Now that we have established the required structure of a minimum counterexample, the
remainder of this thesis will be dedicated to proving Theorem 1.1.3 via discharging. The
discharging will proceed in five stages: in each stage, charge will only be sent to structures
that have not received charge in previous stages. It follows, then, that a structure in need
of charge will only ever receive charge in a single stage.

Proof of Theorem 1.1.3. Suppose not. Let G be a minimum counterexample, and let X ⊆
V (G) be the set of vertices of degree at least three. We assign an initial charge of ch0(v) =
15 deg(v)− 2wt(v)− 34 to each vertex v ∈ X, and ch0(v) = 0 for each v ∈ V (G) \X. Note∑

v∈X(15 deg(v)− 2wt(v)− 34) =
∑

v∈X(15 deg(v)− 34)−
∑

v∈V (G)\X 4, since every vertex

v of degree 2 contributes to the weight of two distinct vertices in X (namely, the endpoints
of the string that contain v). Since

∑
v∈V (G)\X 4 =

∑
v∈V (G)\X 34− 15 deg(v), we have

∑
v∈V (G)

ch0(V ) =
∑

v∈V (G)

(15 deg(v)− 34)

= 15
∑

v∈V (G)

deg(v)−
∑

v∈V (G)

34

= 30e(G)− 34v(G)

= −2p(G)

≤ −2(T + 1).

Note since T ≥ 2, this is at most -6. We will redistribute the charge amongst the vertices
and cells until every vertex and cell has non-negative charge, contradicting the fact that
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Weight six Weight seven Weight eight
(4, 2, 0) (4, 3, 0) (4, 2, 2)
(4, 1, 1) (4, 2, 1)
(3, 3, 0) (3, 3, 1)
(3, 2, 1) (3, 2, 2)
(2, 2, 2)

Table 5.1: The types of poor vertices in G.

the sum of the charges is at most −2(T + 1). The proof will be done in two sections: in
Section 5.1, we will show that after discharging no structures that start with non-negative
charge end with negative charge. In Section 5.2, we will show that all structures that start
with negative charge end with non-negative charge.

For simplicity, we define the following term.

Definition 5.0.1. A vertex is poor if it has negative charge.

Note by Corollary 2.2.1, if v is a vertex in V (G), then wt(v) ≤ 5 deg(v) − 7. For a
vertex v ∈ X, we therefore have ch0(v) ≥ 15 deg(v)− 2(5 deg(v)− 7)− 34 = 5 deg(v)− 20.
Therefore the only possibly poor vertices are vertices of degree three. If v has degree three
and is poor, then it has weight at least six since ch0(v) = 11− 2wt(v). By Corollary 2.2.1,
vertices of degree three (and thus poor vertices) have weight at most eight. By Lemmas
4.2.1, 4.2.2, and 4.2.3 the only poor vertices of weight eight are of type (4,2,2). The poor
vertices of weight seven are of type (4,3,0), (4,2,1), (3,3,1), or (3,2,2), and the poor vertices
of weight six are of type (4,2,0), (4,1,1), (3,3,0), or (3,2,1). This is summarized in Table
5.1.

We will discharge in steps: each step consists of a single rule that will be carried out
instantaneously throughout the graph. For convenience, since a single rule is carried out
in each step, we will refer to the rules and steps interchangeably. At the end of Step i., the
resulting charge of each cell and vertex will be denoted by chi.

Rule 1. Each vertex contained in a cell sends all of its charge to the cell that contains it.
(Since cells are disjoint by Lemma 4.1.6, this is unambiguous.)

Rule 2. Let u and v share a short string. If u is in a cell C and v is poor after Step 1, C
sends −ch1(v) charge to v.

Rule 3. Let u and v share a short string with deg(u) ≥ 4. If v is poor after Step 2, u sends
−ch2(v) charge to v.
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Rule 4. Let u and v share a short string with deg(u) = 3 and wt(u) ≤ 4. If v is poor after
Step 3, u sends −ch3(v) charge to v.

Rule 5. Let u and v share a short string with deg(u) = 3 and wt(u) = 5. If v is the only poor
vertex that shares a short string with u after Step 4, then u sends −ch4(v) charge to
v.

Before proceeding with the proof, we note two important facts regarding the discharging
rules. First, the rules are performed sequentially. This ensures that in the later steps of the
discharging process, we will have uncovered a significant amount of information regarding
the local structure of the vertices and cells receiving charge. For instance, if a vertex v
receives charge in Step 4, then v is not contained in a cell and does not share a short string
with a vertex in a cell or a vertex of degree at least 4.

Second, vertices and cells only send charge along short strings. If a vertex or cell sends
charge to many poor structures, this means it is incident with many short strings. It follows
that the vertex or cell sending charge has relatively low weight, and so consequently has a
large amount of charge to spare.

5.1 No New Negative Structures are Created

In this section, we will show that no cell or vertex x with initial charge ch0(x) ≥ 0 has
negative final charge after discharging. First we will show that all cells have non-negative
charge at the end of the discharging process (Lemma 5.1.1). We will then prove that no
vertex with degree at least four is poor after Step 5 (Lemma 5.1.2). Finally with Lemmas
5.1.3 and 5.1.4, we will prove that all vertices of degree 3 and weight at most 5 have non-
negative final charge. In Section 5.2, we will prove that all vertices of degree 3 and weight
at least 6 have non-negative final charge. As cells and vertices are the only structures that
carry charge at any point during the discharging, this will show that the sum of the charges
is non-negative, contradicting our initial assumption and completing the proof of Theorem
1.1.3.

Lemma 5.1.1. Let C be a cell in G. At the end of Step 2, ch2(C) ≥ 0.

Proof. Let X be the set of vertices in C of degree at least three. At the end of Step 1,
ch1(C) =

∑
v∈X(15 deg(v)− 2wt(v)− 34). Rewriting,
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ch1(C) =
∑
v∈X

((15 deg(v)− 30)− (2wt(v) + 4))

= 15
∑
v∈X

(deg(v)− 2)− 2
∑
v∈X

(wt(C) + 2).

But since
∑

v∈X(wt(v) + 2) = wt(C) + 14 and
∑

v∈X(deg(v) − 2) = deg(C), we have
ch1(C) = 15 deg(C) − 28 − 2wt(C). We will split our further analysis into two cases de-
pending on the degree of the cell C. Note deg(C) ≥ 3 by Lemma 2.2.3.

Case 1: deg(C) ≥ 4. Suppose that immediately after Step 1, there are p poor vertices
that are each the endpoint of a short string whose other endpoint is in C. Note each
of these p strings contributes at most 2 to the weight of C. For each poor vertex u we
have ch1(u) ≥ −3, and so ch2(C) ≥ ch1(C) − 3p = 15 deg(C) − 28 − 2wt(C) − 3p. Since
wt(C) ≤ 4(deg(C)− p) + 2p, we have

ch2(C) ≥ 15 deg(C)− 28− 2(4(deg(C)− p) + 2p)− 3p

= 7 deg(C)− 28 + p.

Since deg(C) ≥ 4, ch2(C) ≥ p ≥ 0, as desired.

Case 2: deg(C) = 3. Suppose for a contradiction that ch2(C) < 0. Suppose first |X| = 2.
Then X contains a single vertex of degree 3, and a single vertex of degree 4. Note all
vertices that are poor immediately after Step 1 have weight at most seven, since vertices of
type (4, 4, 2) are contained in cells and so send their charge to the cells that contain them
in Step 1. Let v be the vertex of degree 3 in X. Let the three strings incident with v be S1,
S2 and S3, named such that S1 and S2 are contained in C. Suppose that S1 is a 4-string.
By Lemma 4.1.3, S2 ∪ S3 is contained in a cell C ′ 6= C, contradicting Lemma 4.1.6. Thus
we may assume S1 is not a 4-string. Symmetrically, S2 is not a 4-string.

Since |X| = 2 by assumption, we may therefore assume without loss of generality that
S1 is a 3-string and S2 is a 2-string. Note S3 is therefore a 0-string. To see this, suppose
not. Then by Lemma 4.1.4 applied to v and S1, we have that S2 ∪ S3 (and in particular,
S2) is contained in either a cell or a 9-cycle C ′ 6= C. Suppose first C ′ is a cell. Since
S2 ∈ C ∩ C ′, this contradicts Lemma 4.1.6 as distinct cells in G are vertex-disjoint. Thus
we may assume C ′ is a 9-cycle. Since S2 ∈ C ∩C ′, this contradicts Lemma 4.1.7 since cells
and 9-cycles are edge-disjoint.
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Thus we may assume S3 is a 0-string. Let v1 be the vertex that shares S3 with v. Note
if ch2(v1) < 0, then v1 is a vertex of degree 3 not contained in a 7-cycle. By Lemma 4.1.3,
v1 is thus not incident with a 4-string. Since v1 is incident with a 0-string S3, we have that
wt(v1) ≤ 6. Thus if ch2(v1) < 0, it follows that ch2(v1) = −1. Let u be the vertex of degree
4 in X, and let S4 6⊆ C and S5 6⊆ C be the strings incident with u, with endpoints u1 6= u
and u2 6= u, respectively. Note since ch2(C) = 17− 2wt(C), if wt(C) ≤ 5, then ch2(C) ≥ 0
since C pays at most 1 to v1 in Step 2, and at most 3 to each of u1 and u2 in Step 2. Thus
we may assume wt(C) ≥ 6. Note also if neither u1 nor u2 is poor immediately after Step
1, then ch2(C) ≥ 0 since ch2(C) ≥ 17− 2wt(C)− ch1(v1), and wt(C) ≤ 8 by Lemma 2.2.4.
Thus we may assume at least one of u1 and u2 receives charge from C in Step 2, and so
that at least one of S4 and S5 is a short string. Note that G does not contain a k-string
with k ≥ 5 by Lemma 2.1.12. Furthermore, since at least one of S4 and S5 is short, S4 and
S5 together contribute at most 6 to the weight of C. Thus wt(v) ≤ 6, and since wt(C) ≥ 6,
it follows that wt(C) = 6. Since S3 is a 0-string and at least one of S4 and S5 is a short
string, it follows that exactly one of S4 and S5 is a short string, and so that C sends charge
to exactly one of u1 and u2. But then ch2(C) ≥ 0, since ch2(C) = 17− 2wt(C) = 5 and C
sends at most 1 to v1 and 3 to one of u1 and u2.

Thus we may assume |X| = 3. Since deg(C) = 3, it follows that X contains three
vertices of degree three. Let S0 be a k-string with k ≤ 2 and endpoints u, v such that
v ∈ V (C). Suppose that u is poor after Step 1. Then u is a degree three vertex not
contained in a cell. Let S1 and S2 be the other strings incident with u.

Claim 1. The weight of u is at most six.

Proof. Suppose not. First suppose either of S1 or S2 is a 4-string. By Lemma 4.1.3 applied
to u, v is contained in a cell C ′ 6= C, contradicting Lemma 4.1.6. Thus u is not contained
in a 4-string. Suppose now k ∈ {1, 2} (i.e. that S0 is either a 1- or 2-string). First suppose
that S1 is a 3-string and that S2 is not a 0-string. Then by Lemma 4.1.4 applied to u
and S1, there exists an edge vv1 ∈ E(C) contained in a cell or 9-cycle C ′ 6= C. If C ′ is a
9-cycle, this is a contradiction since 9-cycles and cells are edge-disjoint by Lemma 4.1.7.
If C ′ is a cell, this too is a contradiction since distinct cells are vertex-disjoint by Lemma
4.1.6. Thus if S1 is a 3-string, we may assume S2 is a 0-string. Symmetrically, if S2 is a
3-string, we may assume S1 is a 0-string.

If k ≥ 1, then S1 and S2 therefore contribute at most 4 to the weight of C. If k = 0,
since neither S1 nor S2 is a 4-string, they contribute at most 6 to the weight of C. Note
by assumption k ≤ 2. Thus u has weight at most six. Since by assumption ch2(u) < 0, it
follows that u has weight exactly six.

Since u has weight exactly six, we have that ch2(u) = −1.
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Let A be the set of vertices that are poor immediately after Step 1, and that are incident
with a short string incident with C. Let |A| − p. Note that since C has degree 3, it follows
that p ≤ 3. After Step 2, we have ch2(C) = ch1(C) − p = 17 − 2wt(C) − p. Note if
wt(C) ≤ 7, then since p ≤ 3 we have that ch2(C) ≥ 0, a contradiction. Thus we may
assume that wt(C) ≥ 8. Note also that by Lemma 2.2.4, wt(C) ≤ 8, and so we may
assume wt(C) = 8. Note also since ch2(C) < 0, we have p ≥ 2. Thus at least two of the
strings incident with C each contribute at most 2 to the weight of C. Since C has weight
8, it follows that C is incident with a 4-string and so that p ≤ 2. Thus we may assume
p = 2, and since wt(C) = 8, it follows that C is a (4, 2, 2)-cell.

Let S = u0u1u2u3 be a 2-string incident with C, such that u0 ∈ V (C). Note since u3
is poor after Step 2, it is not contained in a cell. Let u4 and u5 be u3’s neighbours not
contained in S.

Let G′ be the graph obtained from G by identifying u4 and u5 to a new vertex z. Note
G′ contains a cell of weight nine, and so G′ is not C7-critical by Lemma 2.2.4. Furthermore,
G′ admits no homomorphism to C7, as any such homomorphism φ extends to G by setting
φ(u4) = φ(u5) = φ(z). Therefore G′ contains a C7-critical subgraph G′′, and since G′′ 6⊂ G,
we have z ∈ V (G′′).

Note G′ contains no 5-cycles nor triangles, since u3 ∈ V (G) is not contained in a 7-cycle
by assumption. Since v(G′′) ≤ v(G), G′′ is not a counterexample to Theorem 1.1.3 and
thus p(G′′) ≤ T . Note at least one string incident with C or at least one string S ′ ⊂ C is
not contained in G′′, as otherwise C has weight 9 in G′′, contradicting Lemma 2.2.4.

Suppose first u3 6∈ V (G′′). Since G′′ has minimum degree at least 2 by Lemma 2.1.3,
it follows that u2 6∈ V (G′′). Let F be the graph obtained from G′′ by splitting z back to
u4, u5 and adding in the path u4u3u5. Then p(F ) = p(G′′) + 17(2)− 15(2) ≤ T + 4. Since
u2 6∈ V (G′′) and since F ⊂ G, this contradicts Lemma 4.1.1.

We may therefore assume that u3 ∈ V (G′′), and so there exists a string S ′ 6= S whose
internal vertices are not contained in V (G′′). Note either S ′ is incident with C, in which
case it has at least 2 internal vertices, or S ′ ⊂ C, in which case V (C) ∩ V (G′′) = ∅ since
G′′ contains no k-string with k ≥ 5 by Lemma 2.1.12. Thus we have V (G) \ V (G′′) 6= ∅.
Let F be the graph obtained from G′′ by splitting z back to u4 and u5, and adding edges
to create the path u4u3u5. Then p(G) = p(G′′) + 17(1)− 15(1) ≤ T + 2. Since F ⊂ G but
F ( G, again this contradicts Lemma 4.1.1.

Lemma 5.1.2. Let v ∈ V (G) be a vertex of degree at least four. At the end of Step 3,
ch3(v) ≥ 0.

Proof. Suppose not. Let A be the set of vertices that are poor immediately after Step 2
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and that each share a short string with v. Let p = |A|. Note none of the p vertices in
A are contained in cells, as otherwise they have charge at least 0 at the end of Step 1.
Furthermore, v is not contained in a cell, as this cell would send charge to the vertices in A
in Step 2. Note since all vertices of degree 3 and weight 8 are contained in cells by Lemma
4.1.3, each vertex in A has weight at most 7, and so v sends at most 3p units of charge in
Step 3.

First, suppose deg(v) ≥ 5. At the end of Step 3, we have ch3(v) ≥ ch2(v) − 3p =
15 deg(v)−2wt(v)−34−3p. Note since v is incident with p short strings and the remaining
deg(v)− p strings incident with v each contribute at most 4 to the weight of v, it follows
that wt(v) ≤ 4(deg(v)− p) + 2p. Thus ch3(v) ≥ 15 deg(v)− 2(4 deg(v)− 2p)− 34− 3p =
7 deg(v) − 34 + p ≥ 1 + p, since deg(v) ≥ 5. Since p is non-negative, ch3(v) ≥ 0, a
contradiction.

Thus we may assume deg(v) = 4. Since v is not contained in a cell, by Lemma 4.1.5 v
is not incident with a 4-string. Since v is incident with at least p short strings and at most
(deg(v)− p) k-string with k = 3, it follows that v has weight at most 3(deg(v)− p) + 2p =
12− p, and so

ch3(v) ≥ ch2(v)− 3p = 15 deg(v)− 2wt(v)− 34− 3p

≥ 60− 2(12− p)− 34− 3p

= 2− p.

Thus if p ≤ 2, we have ch3(v) ≥ 0, a contradiction.

Since p ≤ deg(v) = 4, we may therefore assume p ∈ {3, 4}. Note if wt(v) ≤ 7, since

ch3(v) ≥ 15 deg(v)− 2wt(v)− 34− 3p

≥ 60− 14− 34− 3p

= 12− 3p

it follows that ch3(v) ≥ 0, a contradiction.

Thus v has weight at least 8 and is incident with at least three short strings. It follows
that v is either a vertex of type (3, 2, 2, 2), (2, 2, 2, 2), or (3, 2, 2, 1). Note if v shares a short
string with a poor vertex v′ of weight 6, then v pays v′ only 1 and each of the other (p− 1)
vertices in A at most 3. Thus v pays the vertices in A at most 3(p − 1) + 1, and so it
follows that ch3(v) ≥ 4 − p. Since p ∈ {3, 4}, this is non-negative. Thus we may assume
that v pays at least three poor vertices of weight 7. We finish the proof with the following
three claims.

Claim 1. v is not a vertex of type (2, 2, 2, 2).
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Proof. Suppose not. Recall v only pays a subset of the vertices of degree 3 that are not
contained in cells. Furthermore, since v is of type (2, 2, 2, 2), v only pays vertices that are
incident with 2-strings. Since the only vertices of degree 3 and weight 7 not contained in
cells and incident with 2-strings are vertices of type (3, 2, 2), we may assume v pays at
least three vertices of type (3, 2, 2). Since each vertex of type (3, 2, 2) in A is not in a cell,
by Lemma 4.1.4 they are each contained in 9-cycles. Thus there exist vertices a 6= b in A
of type (3, 3, 2), such that Sa = aa1a2v is a 2-string shared by v and a, Sb is a 2-string
shared by v and b, and Sab is a 2-string shared by a and b. Similarly, there exist vertices
c 6= d in A such that c is of type (3, 2, 2), Sc is a 2-string shared by v and c, Sd is a 2-string
shared by v and d, and Scd is a 2-string shared by c and d. Let C be the 9-cycle formed
by Sa ∪ Sb ∪ Sab. Let G′ be the graph obtained from G by identifying v and a1 to a new
vertex z, and deleting a2. Note G′ does not admit a homomorphism φ to C7 as otherwise
φ extends to G by setting φ(v) = φ(a1) = φ(z) and φ(a2) ∈ NC7(φ(z)). Furthermore, G′

itself is not C7-critical, as the cycle C ′ obtained from C with the identification of v and
a1 is a cell of weight 10 in G′, contradicting Lemma 2.2.4. Thus G′ contains a C7-critical
subgraph G′′.

Note G′′ does not contain at least one string incident with C ′ or one string in E(C ′).
We claim one of these strings not contained in G′′ contains at least one internal vertex.
To see this, suppose not. Note C ′ is incident with four strings: Sc, Sd, and two 3-strings
S ′a and S ′b incident with a and b, respectively. Since these four strings all have internal
vertices, we may assume they are all contained in G′′. Since Sab and Sb are both 2-strings,
we may assume they are both contained in G′′. Thus G′ does not contain the edge az. But
then Sab ∪ S ′a is a 6-string contained in G′′, contradicting Lemma 2.1.12.

Thus we may assume there is a vertex in V (G) \ {a1, a2, v} that is not contained in
V (G′′).

Since G′′ 6⊂ G, it follows that G′′ contains the new vertex z. Note G′′ does not contain
a triangle or 5-cycle, since Sa is contained in a 9-cycle in G and so is not contained in a
cell by Lemma 4.1.7. Since v(G′′) < v(G′), it follows that p(G′′) ≤ T .

Let F be the graph obtained from G′′ by splitting z back into the vertices v and a1 and
adding in the path va2a1. Then p(F ) = p(G′′) + 17(2)− 15(2) ≤ T + 4. But since F 6= G,
this contradicts Lemma 4.1.1.

Claim 2. v is not a vertex of type (3, 2, 2, 2).

Proof. Suppose not. Since v is of type (3, 2, 2, 2), v only pays vertices that are incident
with 2-strings. Since the only vertices of degree 3 and weight 7 not contained in cells and
incident with 2-strings are vertices of type (3, 2, 2), we may assume v pays three vertices
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of type (3, 2, 2). Since each vertex of type (3, 2, 2) in A is not in a cell, by Lemma 4.1.4
they are each contained in 9-cycle. Let a 6= b 6= c be the three vertices of type (3, 2, 2) in
A. Let Sa, Sb, and Sc be the 2-strings shared by v with a, b, and c, respectively. Let S ′a
be the other 2-string incident with a. By Lemma 4.1.4, S ′a ∪ Sa is contained in a 9-cycle
C. Since v has degree exactly 4 and is incident only with 2-strings and a 3-string, one of
Sb and Sc is contained in C. Without loss of generality, we may assume C = Sa ∪ S ′a ∪ Sb,
and so that S ′a is shared by b and a. Similarly, let S ′c 6= Sc be a 2-string incident with
c. By Lemma 4.1.4, Sc ∪ S ′c is contained in a 9-cycle C ′ 6= C. Since v has degree exactly
4 and is incident only with 2-strings and a 3-string, it follows that there exists a 2-string
S 6= Sc incident with v that is contained in C ′. Thus Sa or Sb is contained in C ′. But this
contradicts Lemma 4.1.8, since Sb ∪ Sa ⊂ C.

The only remaining possibility is then that v is of type (3,2,2,1). Since |A| ≥ 3 and each
vertex in A has weight 7, we may assume v shares its incident 2-strings S1 and S2 with two
poor (3, 2, 2) vertices u1 and u2, and its incident 1-string S3 with a poor (3, 3, 1) vertex u3.
By applying Lemma 4.1.4 to u1, u2, and u3, we find each of S1 and S2 is contained in two
9-cycles, contradicting Lemma 4.1.8.

Lemma 5.1.3. Let v ∈ V (G) be a vertex of degree 3 and weight at most 4. At the end of
Step 4, ch4(v) ≥ 0.

Proof. Suppose not. Let A be the set of vertices that are poor immediately after Step 4
and that each share a short string with v. Let p = |A|. Note none of the p vertices in
A are contained in cells, as otherwise they have charge at least 0 at the end of Step 1.
Furthermore, v is not contained in a cell, as otherwise this cell sends charge to the vertices
in A in Step 2. Note since all vertices of degree 3 and weight 8 are contained in cells by
Lemma 4.1.3, each vertex in A has weight at most 7, and so v sends at most 3p units of
charge in Step 3.

Note if A contains p ≤ 3 vertices of weight 6, then v sends only 3 units of charge in
Step 4, and so

ch4(v) ≥ ch3(v)− 3

= 15 deg(v)− 2wt(v)− 34− 3

≥ 45− 8− 34− 3

= 0, a contradiction.

We may therefore assume A contains a vertex u of weight at least 7. Since A only con-
tains vertices of weight at most seven, we may assume u has weight exactly 7. Furthermore,
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if p = 1 (and so v sends charge to only one vertex in Step 4), then ch4(v) = ch3(v)−3 = 0,
a contradiction. Thus we may assume p ≥ 2. Since vertices of type (4, 3, 0) and (4, 2, 1)
are contained in cells and thus have charge 0 after Step 1, we may assume u is either of
type (3, 3, 1) or of type (3, 2, 2).

First suppose u is of type (3, 2, 2). Let u1 be the other vertex that shares a 2-string
with u. Note if u1 is contained in a cell, then ch4(u) = 0 by Step 2, and so u 6∈ A, a
contradiction. Furthermore, if deg(u1) ≥ 4, then ch4(u) = 0 by Step 3, and so again
u 6∈ A. We may therefore assume u1 has degree three. But then this contradicts Lemma
4.2.5, as neither v nor u1 is contained in a cell.

Thus we may assume u is of type (3, 3, 1). Let S1 and S3 be the two 3-strings incident
with u, and let S2 be the 1-string shared by u and v (see Figure 5.1. By Lemma 4.1.4, since
u is a (3, 3, 1)-vertex not contained in a cell, we have that S2 ∪ S3 is contained in a 9-cycle
C. Similarly, S1 ∪ S2 is contained in a 9-cycle C ′ 6= C. Since both 9-cycles contain S2, we
have that C ′ ∩ C = S2 by Lemma 4.1.8. Let S4 and S5 be the other two strings incident
with v. Without loss of generality, suppose S4 ⊂ C ′ and S5 ⊂ C. Note since p ≥ 2, one of
S4 and S5 is shared by v with a vertex in A. Without loss of generality, we may assume
S4 is shared by v and a vertex w in A.

Since v has weight at most four and is incident with a 1-string S2, it follows that at
least one of S4 and S5 is not a 2-string.

First suppose S4 is not a 2-string. Since w ∈ A, we have that w has degree three
and wt(w) ≥ 6. Furthermore, since w is not contained in a cell, w is not incident with a
4-string by Lemma 4.1.3. Since the internal vertices of two of the strings incident with w
are contained in C ′ \ V (S1 ∪ S2), together these two strings contribute at most 1 to the
weight of w. But then w has weight at most 4, a contradiction.

Thus we may assume S4 is a 2-string, and since w has weight at least 6, we have that
w is a vertex of type (3, 2, k) with k ≥ 1.

Let S6 denote the third string incident with w (so w is incident with S1, S4, and S6). By
Lemma 4.1.4 applied to w, S4 and S6 are contained in a 9-cycle C ′′. Since S4 is contained
in C ′ ∩ C ′′, this contradicts Lemma 4.1.8.

Lemma 5.1.4. Let v ∈ V (G) be a vertex of degree 3 and weight 5 that shares a short
string with only one poor vertex at the end of Step 4. At the end of Step 5, ch5(v) ≥ 0.

Proof. Suppose not. Let u be the vertex with ch4(u) < 0 that shares a short string with
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S4 S5

Figure 5.1: Figure for Lemma 5.1.3. v has weight at most four and degree three. The
white vertices are of unknown degree, though their degree is at least that shown. The
black vertices’ degrees are as illustrated.

v. Suppose wt(u) = 6. Then ch4(u) = −1, and so

ch5(v) = ch4(v)− ch4(u)

= 15 deg(v)− 2wt(v)− 34− 1

= 45− 10− 34− 1

= 0, a contradiction.

We may therefore assume u has weight at least seven.

Note since ch4(u) < 0, u is not contained in a cell by the discharging rules. By Lemma
4.1.3, it follows that u is not of type (4,2,2), (4,3,0), or (4,2,1). Thus we may assume u is
a vertex of type either (3,3,1), or (3,2,2). By Lemma 4.2.5, if u is a (3,2,2)-vertex it has
charge at least 0 by either Step 1, 2, or 3.

Therefore we may assume u is a vertex of type (3,3,1), and hence the string shared by
u and v is a 1-string. Note v is not incident with a 4-string as otherwise it is contained in
a cell by Lemma 4.1.5 and so ch2(u) ≥ 0, contradicting the fact that u ∈ A. Thus since
v has degree 3 and weight 5 and is incident with a 1-string, it is either a vertex of type
(3,1,1) or of type (2,2,1).

First suppose v is of type (3, 1, 1). Let S1 and S2 be the two 1-strings incident with v,
named such that S1 is shared by u and v. Let S3 be the 3-string incident with v. Let the
two 3-strings incident with u be named S4 and S5. Note S4 and S5 do not have the same
two endpoints by Lemma 2.2.6. Furthermore v and u share only S1 by Lemma 2.2.6. By
Lemma 4.1.4 applied to u and S4, since u is not contained in a cell S1 ∪ S5 is contained in
a 9-cycle C. Note since v has degree 3, it follows that either S2 or S3 is contained in C.
Since v(S1 ∪ S5 ∪ S3) = 11, we may assume that S2 ⊂ C.
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Similarly, by Lemma 4.1.4 applied to u and S5, we have that S4 ∪ S1 is contained in
a 9-cycle C ′. Note since v has degree 3, it follows that either S2 or S3 is contained in C ′.
Since v(S1 ∪ S4 ∪ S3) = 11, it follows that S2 ⊂ C ′.

Since S1 ∪ S2 ⊂ C ∩ C ′, this contradicts Lemma 4.1.8.

Therefore we may assume v is a (2, 2, 1)-vertex. Let a and b be the two vertices that
share a 2-string with v. Note a 6= b by Lemma 2.2.6. Let Sa be the string shared by a
and v, and let Sb be the 2-string shared by b and v. Let S1, S2 and S3 be the three strings
incident with u, named such that S1 is shared by u and v. Note S2 and S3 do not have
the same endpoints by Lemma 2.2.6. By Lemma 4.1.4 applied to u and S2, since u is not
contained in a cell we have that S3 ∪S1 is contained in a 9-cycle C. Similarly, by applying
Lemma 4.1.4 to u and S3, we have that S2 ∪ S1 is contained in a 9-cycle C ′. Thus without
loss of generality, we may assume S2 is shared by a and u, and that S3 is shared by b and
u.

Let G′ be the graph obtained from G by deleting u, v, and all of the internal vertices
of their incident strings. Since G is C7-critical, G′ has a homomorphism φ to a cycle
C = c1c2c3c4c5c6c7c1. Without loss of generality, we may assume φ(a) = c1 and φ(b) ∈
{c1, c2, c3, c4}. Since φ does not extend to G, φ(b) = c4. (To see the extensions of all other
homomorphisms to G, see Figure 5.2.) Let G′′ be the graph obtained from G′ by adding a
new vertex z and edges az and bz. Note now the following:

Claim 1. There does not exist a homomorphism φ : G′′ → C with φ(a) = c1 and
φ(b) = c4.

Proof. Suppose φ : G′′ → C is such that φ(a) = c1. Note φ(b) ∈ Bφ(b|a, azb). But
Bφ(b|a, azb) = NC(NC(c1)) = {c1, c3, c6}.

Thus if G′′ admits a homomorphism to C, this homomorphism extends to a homomor-
phism of G to C, since by Claim 1 there does not exist a homomorphism φ from G′′ to C
with φ(a) = c1 and φ(b) = c4. We may thus assume G′′ contains a C7-critical subgraph
G′′′, and since G′′′ 6⊂ G, we have z ∈ V (G′′′). Furthermore, since G′′′ has minimum degree
at least two, {az, zb} ∈ E(G′′′).

Suppose G′′′ is a triangle. Then ab is an edge in E(G). But then abSaSb is a cell C ′′

with Sa ⊂ C ′′ ∩ C ′, contradicting Lemma 4.1.7. Suppose now G′′′ is a 5-cycle. Then there
exists an (a, b)-path P of length 3. But then P ∪Sa∪Sb is a 9-cycle C ′′ with Sa ⊂ C ′′∩C ′,
contradicting Lemma 4.1.8.

Thus we may assume that G′′′ is not a triangle or 5-cycle. Since v(G′′′) < v(G), it follows
that G′′′ is not a counterexample to Theorem 1.1.3, and so p(G′′′) ≤ T . Let F be the graph
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Figure 5.2: Figure for Claim 5.1.4. Extensions of φ to G. The white vertices are of
unknown degree, though their degree is at least that shown. The black vertices’ degrees
are as illustrated.

obtained from G′′′ by deleting z and adding Sa∪Sb. Then p(F ) = p(G′′′)+17(4)−15(4) ≤
T + 8. But since u is a vertex of degree 3 and u 6∈ V (F ), this contradicts Lemma 4.1.1.

5.2 Every Initially Poor Structure Receives Charge

We have shown that no new poor vertices or cells are created through discharging. Since
no cell is initially poor, it remains to show only the following lemma.

Lemma 5.2.1. Let v ∈ V (G) have ch0(v) < 0. At the end of Step 5, ch5(v) ≥ 0.
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Proof. Suppose not. Since ch0(v) < 0, we may assume v is a vertex of degree 3 and weight
at least 6. We may assume v is not contained in a cell, as otherwise v receives −ch0(v)
charge from its cell in Step 1, resulting in ch5(v) = ch1(v) = 0. Since v is not in a cell,
by Lemma 4.1.3 v is not incident with a 4-string. It follows that v is not of type (4, 2, 2),
(4, 3, 0), (4, 2, 1), (4, 2, 0), or (4, 1, 1). We may also assume v does not share a short string
with a vertex in a cell or a vertex of degree at least 4, as otherwise v receives charge at
least −ch0(v) in either Step 2 or Step 3, a contradiction. Furthermore, we may assume v
does not share a short string with a vertex of degree 3 of weight at most 4, as otherwise
ch5(v) ≥ 0 by Step 4. Finally, by Step 5 we may assume that if v shares a short string
with a vertex u of degree 3 and weight 5, then v is not the only poor vertex that shares a
short string with u.

Note v is not a vertex of type (3, 2, 2). To see this, suppose not. Let a and b be the
vertices that share a short string with v. Note a 6= b by Lemma 2.2.6. Since ch5(v) < 0,
neither a nor b is contained in a cell, and both a and b have degree 3. But by Lemma
4.2.5, since v is not contained in a cell and deg(a) = deg(b) = 3, at least one of a and b is
contained in a cell, a contradiction.

Note furthermore the following claim.

Claim 5.2.2. v is not of type (2, 2, 2).

Proof. Suppose not. By Lemma 4.2.6, either v is contained in a cell, v shares a short string
with a cell, or v shares a short string with a vertex of degree at least 4. But then v receives
charge in either Step 1, Step 2, or Step 3, contradicting that ch5(v) < 0.

Thus v is either a vertex of type (3,3,0), (3,2,1), or (3,3,1).

Claim 5.2.3. v is not of type (3,3,1).

Proof. Suppose not, and let u be the vertex with which v shares its short string. Since
ch5(v) < 0, it follows that u is either a vertex of degree 3 and weight at least 6, or a vertex
of degree 3 and weight 5 that shares short strings with at least two vertices that are poor
after Step 5. Let A be the set of vertices that share a short string with u and that have
negative charge after Step 5.

Let S1 and S3 be the 3-strings incident with v, and let S2 be the 1-string shared by
u and v. Let a and b be the other endpoints of the strings S1 and S3, respectively. Note
a 6= b by Lemma 2.2.6. By Lemma 4.1.4 applied to v, since v is not contained in a cell
by assumption, S2 ∪ S3 is contained in a 9-cycle C1. Similarly, S2 ∪ S1 is contained in a
9-cycle C2. Let S4 6= S2 and S5 6∈ {S2, S4} be the other two strings adjacent with u, such
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that at least one edge from S5 contained in C1. Note C2 does not contain an edge e in
S5 as otherwise eS2 ⊂ C1 ∩ C2, contradicting Lemma 4.1.8. Since u has degree 3, and the
distance from each of a and b to u along C2 and C1, respectively, is at most three, we have
that u has weight at most five. Since wt(u) ≥ 5, we have therefore that wt(u) = 5, and so
that S4 and S5 are 2-strings with endpoints a, u and b, u, respectively. Furthermore, since
|A| ≥ 2, at least one of a and b has negative final charge. Without loss of generality, we
may assume a ∈ A, and so that a has degree 3 and wt(a) ≥ 6. Let S4 be the 2-string
shared with u by a. Let S6 6∈ {S1, S4} be the third string incident with a. Since a has
weight at least six, since S1 is a 3-string, and since S4 is a 2-string, we have that S6 is a
k-string with k ≥ 1. But then Lemma 4.1.4 applies to a, and so S6 and S4 are contained in
a 9-cycle C3. Since S4 ⊂ C3 ∩C1, this contradicts Lemma 4.1.8. We may therefore assume
v is not a vertex of type (3, 3, 1).

Claim 5.2.4. v is not a vertex of type (3,2,1).

Proof. Suppose not. Let a, b, and c be the vertices that share a 1-string, 2-string, and
3-string, respectively, with v. Let Sa, Sb and Sc be the three strings incident with v, such
that Sa is incident with a, Sb is incident with b, and Sc is incident with c. Note a 6= b
and a 6= c since G has girth at least 7 by Lemma 4.1.2. Furthermore, b 6= c since v is not
contained in a cell by assumption. By Lemma 4.1.4, Sb ∪ Sa is contained in a 9-cycle C.
Let Sab be the (a, b)-path of length 4 in C with v 6∈ V (Sab).

Note since ch5(v) < 0, it follows from the discharging rules that each of a and b has
degree 3, is not contained in a cell, and has weight at least 5. Suppose first that Sab is
a 3-string. Since a has weight at least 5, it is incident with a k-string Sd, with k ≥ 1.
By Lemma 4.1.4, Sa ∪ Sd is contained in a 9-cycle C ′ 6= C. Note E(Sb) ∩ E(C ′) = ∅,
as otherwise Sa ∪ Sb ⊂ C ∩ C ′, contradicting Lemma 4.1.8. Thus we may assume Sc is
contained in C ′, and so k ≤ 2.

Suppose first that k = 2. Let G′ = G\ (V (Sa∪Sb∪Sc∪Sd∪Sab)\{b, c}). Since G′ ( G
and G is C7-critical, G′ admits a homomorphism φ to C = c1c2c3c4c5c6c7c1. Without loss of
generality, we may assume φ(b) = c1 and φ(c) ∈ {c1, c2, c3, c4}. Note φ(c) = c3 as otherwise
φ extends to G. To see this, see Figure 5.3. Let G1 ∈ P3(G

′) be the graph obtained from
G′ by adding a (b, c)-path P of length 3.

Claim 1. There does not exist a homomorphism φ : G1 → C with φ(b) = c1 and
φ(c) = c3.

Proof. Suppose φ : G1 → C is such that φ(b) = c1. Note φ(c) ∈ Bφ(c|b, P ). But
Bφ(c|b, P ) = NC(NC(NC(c1))) = {c2, c7, c4, c5}.
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By Claim 1, it follows that G1 does not admit a homomorphism to C7. Therefore G1

contains a C7-critical subgraph G2. Since G2 6⊂ G and G2 has minimum degree 2, P ⊂ G2.
Note since b 6= c, it follows that G2 is not a triangle.

Suppose G2 is a 5-cycle. Then there exists a (b, c)-path Q of length 2 in G. Let
F = Q ∪ Sa ∪ Sb ∪ Sc ∪ Sd ∪ Sab. Note v(F ) = 16 and e(F ) = 18, and so it follows that
p(F ) = 17(16)− 15(18) = 2. This contradicts Lemma 4.1.1, since T ≥ 2.

We may therefore assume that G2 is not a triangle or 5-cycle. Since v(G2) < v(G) and G
is a minimum counterexample, it follows that p(G2) ≤ T . Let F be the graph obtained from
G2 by deleting P \{a, b} and adding Sd∪Sab. Then p(F ) = p(G2) + 17(4)−15(4) ≤ T + 8.
By Lemma 4.1.1, either F = G or G ∈ P5(F ). But since v is not contained in F and
deg(v) = 3, this is a contradiction.

We may therefore assume that k = 1. Since a is not contained in a cell, a it not incident
with a 4-string by Lemma 4.1.3. Since a is incident with two 1-strings and has weight at
least 5, it follows that a is a vertex of type (3,1,1). Note since a has weight 5, it follows
from the discharging rules that a shares each of its short strings with a vertex that is poor
immediately after Step 4. Otherwise a sends charge to v in Step 5. Let d 6= a be an
endpoint of Sd. Note d is adjacent to c which has degree at least 3 since it is the endpoint
of a string. Thus d is adjacent to a 0-string and a 1-string. Since ch5(d) < 0, it follows
that d has degree 3 and weight at least 6. But then d is adjacent to a k-string with k ≥ 5,
contradicting Lemma 2.1.12.

We may therefore assume Sab is not a 3-string. But then Sab contributes at most 2 to
wt(a) + wt(b). Let S1 be the third string incident with a, with S1 6⊂ Sab and S1 6= Sa.
Similarly, let S2 be the third string incident with b, with S2 6⊂ Sab and S2 6= Sb. Let ma

and mb be integers chosen such that S1 is an ma-string, and S2 is an mb-string. Since a is
incident with a 1-string Sa and b is incident with a 2-string S2, we have wt(a) + wt(b) ≤
2+2+1+ma+mb. Since each of a and b has weight at least 5, it follows that ma+mb ≥ 5.
Hence at least one of ma and mb is at least three. Suppose first mb ≥ 3. Note mb ≤ 3,
since otherwise by Lemma 4.1.3 b is contained in a cell, contrary to assumption.

First suppose b is a vertex of type (3, 2, 0). Then since b has weight 5, it shares each
of its short strings with a poor vertex as otherwise b sends charge to v in Step 5. Thus
b shares its 0-string with a vertex w of degree 3 and weight at least six. Note w ∈ Sab,
and Sab contributes at most 2 to the weight of w by assumption. But then since w has
weight at least 6, it is the endpoint of a 4-string and so is contained in a cell. This is a
contradiction, as vertices contained in cells are not poor after Step 1.

We may therefore assume that b is either of type (3, 2, 1) or of type (3, 2, 2). But then
Sab contributes at most 1 to the weight of a. Since a has weight at least 5 and a is not
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Figure 5.3: Figure for Lemma 5.2.4. Extensions of φ to G. The white vertices are of
unknown degree, though their degree is at least that shown. The black vertices’ degrees
are as illustrated.
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contained in a cell, we have that ma = 3, and Sab contributes 1 to the weight of each of a
and b. Note wt(a) = 5. By assumption, a shares both its short strings with vertices that
are poor after Step 5. Let w′ ∈ Sab be the vertex of degree at least 3 that shares a 1-string
with each of a and b. Since w′ is poor after Step 5, it has degree 3 and weight at least 6.
But then w′ is incident with a 4-string, and so by Lemma 4.1.3 it is contained in a cell.
This is a contradiction, as vertices contained in cells are not poor after Step 1.

Thus we may assume mb ≤ 2, and so ma ≥ 3. Since a is not contained in a cell, a is
not incident with a 4-string by Lemma 4.1.3. Thus ma = 3. Note since wt(a) ≥ 5, we
have that Sab contributes at least 1 to the weight of a. Thus a is either of type (3, 1, 1) or
(3,2,1).

Suppose first a is of type (3,1,1). By the discharging rules, since ch5(v) < 0 it follows
that a shares a 1-string with a vertex w′′ ∈ V (Sab) such that ch5(w

′′) < 0. But then
wt(w′′) ≥ 6 and w′′ has degree 3. Since Sab contributes at most 2 to the weight of w′′, it
follows that w′′ is incident with an r-string with r ≥ 4. But this is a contradiction, as by
Lemma 4.1.3 vertices of degree 3 incident with 4-strings are contained in cells.

Thus we may assume a is of type (3,2,1). But then Sab contributes 0 to the weight of b.
Since b is not contained in a cell, b is not incident with a 4-string by Lemma 4.1.3. Thus
it follows that since wt(b) ≥ 5, b is of type (3, 2, 0). Note since ch5(v) < 0 and wt(b) = 5,
it follows from Rule 5 that b shares its 0-string with a vertex w∗ of degree 3 and weight at
least 6, such that ch5(w

∗) < 0. Thus w∗ is not contained in a cell. But since Sab contributes
at most 2 to the weight of w∗ and w∗ has weight at least 6, it follows that w∗ is incident
with a 4-string. By Lemma 4.1.3, w∗ is contained in a cell —a contradiction.

The only remaining possibility is then that v is a vertex of type (3,3,0). Let u be the
vertex that shares a 0-string with v. Since ch5(v) < 0, we have that u has degree 3 and
weight at least 5. Note u is not incident with a 4-string as otherwise by Lemma 4.1.3 v is
contained in a cell, a contradiction.

Thus since u has degree 3 and weight at least 5 and is incident with a 0-string, it follows
that u is either of type (3,3,0) or (3,2,0). Suppose first u is of type (3,2,0). Since ch5(v) < 0,
and wt(u) = 5, it follows that u shares its incident 2-string with another vertex w with
ch5(w) < 0. Otherwise, u sends −ch5(v) to v in Step 5, contradicting that ch5(v) < 0.
Since w is not contained in a cell, by Lemma 4.1.3 w is not incident with a 4-string. It
follows that w is not of type (4, 2, 2), (4, 2, 1), or (4, 2, 0). Furthermore, by Lemma 4.2.5,
w is not a vertex of type (3, 2, 2). Since w is the endpoint of a 2-string, it is thus of type
(3,2,1) or (2,2,2). But by Claim 5.2.4, if w is of type (3,2,1) then ch5(w) ≥ 0. Similarly,
by Claim 5.2.2 w is not of type (2,2,2).
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Therefore we may assume u is of type (3, 3, 0). But then by Lemma 4.2.7, u is contained
in a cell C. Since v receives charge from C in Step 2, ch5(v) ≥ 0 —a contradiction.

Thus by Lemma 5.1.1 and since the charge of cells only changes in Steps 1 and 2, all
cells have non-negative charge at the end of Step 5. By Lemmas 5.1.2, 5.1.3, and 5.1.4, all
vertices of degree at least 4 and all vertices of degree 4 and weight at most 5 have non-
negative charge at the end of Step 5. By Lemma 5.2.1, all degree 3 vertices with weight
at least 6 have non-negative charge at the end of Step 5. Since vertices and cells are the
only structures in G that carry charge, the sum of the charges is therefore non-negative.
But since the total charge did not change, the total charge carried by the graph is at most
−2(T + 1). Since T ≥ 2, this is a contradiction.

65





References

[1] K. Appel and W. Haken. Every planar map is four colorable. I. Discharging. Illinois
J. Math., 21(3):429–490, 09 1977.

[2] O. Borodin, S-J Kim, A. Kostochka, and D. West. Homomorphisms from sparse
graphs with large girth. Journal of Combinatorial Theory, Series B, 90(1):147–159,
2004.

[3] P. Catlin. Graph homomorphisms into the five-cycle. Journal of Combinatorial The-
ory, Series B, 45(2):199–211, 1988.

[4] G.A. Dirac. Note on the colouring of graphs. Mathematische Zeitschrift, 54(4):347–
353, 1951.
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