
The Complexity of Network Design for s-t

Effective Resistance

by

Pak Hay Chan

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Pak Hay Chan 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/160745744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We consider a new problem of designing a network with small s-t effective resistance. In

this problem, we are given an undirected graph G = (V,E) where each edge e has a cost

ce and a resistance re, two designated vertices s, t ∈ V , and a cost budget k. Our goal is to

choose a subgraph to minimize the s-t effective resistance, subject to the constraint that the

total cost in the subgraph is at most k. This problem has applications in electrical network

design and is an interpolation between the shortest path problem and the minimum cost

flow problem.

We present algorithmic and hardness results for this problem. On the hardness side, we

show that the problem is NP-hard by reducing the 3-dimensional matching problem to

our problem. On the algorithmic side, we use dynamic programming to obtain a fully

polynomial time approximation scheme when the input graph is a series-parallel graph.

Finally, we propose a greedy algorithm for general graphs in which we add a path at each

iteration and we conjecture that the algorithm is a 3.95-approximation algorithm for the

problem.

iii

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor Prof. Lap

Chi Lau for the continuous support of my Master’s study, and for his patience, motivation

and immense knowledge. His guidance and encouragement helped my research and writing

of this thesis tremendously.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Eric Blais

and Prof. Chaitanya Swamy, for their encouragement and insightful comments.

I must also thank my research group mates, Vedat Levi Alev, Tsz Chiu Kwok, Akshay

Ramachandran and Hong Zhou for the stimulating discussions, for their patience to clear

up my confusion about mathematics, and for all the fun time we had in the last two years.

Last but not least, I would like to thank my parents, for their unconditional love and trust.

My girlfriend Yin Ki, for her support and prayers that took me through many times of

doubt and worry. Most importantly, God, for all his grace and blessings in my life. I

dedicate this thesis to them.

iv

Table of Contents

List of Figures viii

1 Overview 1

2 Background 5

2.1 Graphs and Matrices . 5

2.1.1 Graphs . 5

2.1.2 Matrices . 6

2.2 Electrical Networks . 9

2.2.1 Electrical Flow and Voltage . 9

2.2.2 Effective Resistance . 13

2.2.3 Energy and Thomson’s Principle 15

2.3 Applications of Effective Resistance . 18

2.3.1 Analyzing Random Walks . 19

2.3.2 Sampling Random Spanning Trees 23

2.3.3 Spectral Sparsification . 26

v

2.4 Network Design . 30

2.4.1 Edge Connectivity and Iterative Rounding 30

2.4.2 Edge Connectivity on Directed Graphs 32

2.4.3 Element Connectivity . 33

2.4.4 Vertex Connectivity . 33

2.4.5 Bounded Pairwise Distance . 33

2.4.6 Edge Connectivity with Degree Bounds 34

2.5 Spectral Requirements . 34

2.5.1 Mixing Time . 35

2.5.2 Algebraic Connectivity . 35

2.5.3 Total Effective Resistance . 36

2.5.4 Experimental Design . 37

3 Network Design for Minimizing s-t Effective Resistance 41

3.1 Introduction . 41

3.2 NP-completeness for Unit Cost Unit Resistance 43

3.3 Dynamic Programming Algorithms for Series-Parallel Graphs 47

3.3.1 Series-Parallel Graphs . 48

3.3.2 Polynomial Time Algorithm for the Unit Cost Case 49

3.3.3 Fully Polynomial Time Approximation Scheme 51

3.4 Greedy Approach . 56

3.4.1 Observations and Intuition . 56

vi

3.4.2 Greedy Algorithm . 58

3.4.3 Analyzing the Greedy Algorithm 60

3.4.4 Discussion . 67

3.5 Conclusions . 72

References 74

vii

List of Figures

1 An illustration of why effective resistance is a natural connectivity measure 3

2 An illustration of constructing the graph G from a 3DM instance. 44

3 The subgraph H when the 3DM instance has q disjoint triples. 46

4 The subgraph H when U is non-empty. 46

5 An example of a SP-tree. 49

6 A counterexample showing that s-t effective conductance is not submodular. 57

7 A tight example of Conjecture 3.4.4. 67

8 An example of getting a 2-approximation using greedy algorithm. 68

9 A counterexample to Conjecture 3.4.4 when the resistances have arbitrary

values. 69

10 An example that greedy algorithm will get Ω(k)-approximation if the resis-

tances have arbitrary values. 70

11 A counterexample showing that total effective resistance is not submodular. 71

viii

Chapter 1

Overview

Networks appear in various forms in all areas of computer science (e.g. computer net-

works, social networks, biological networks, etc.) The task of designing “good” networks

is a fundamental problem in different research areas from operations research to electrical

engineering.

In computer science and operations research, network design problems are generally about

finding a minimum cost subgraph that satisfies certain “connectivity” requirements. The

most well-studied problem is the survivable network design problem [38, 2, 39, 41, 34],

where the requirement is to have a specified number ru,v of edge-disjoint paths between

every pair of vertices u, v. Other combinatorial requirements are also well studied, including

vertex connectivity [46, 28, 12, 20, 48, 16] and shortest path distances [23, 22].

Besides the combinatorial connectivity requirements, designing networks with good spec-

tral properties are also studied. Some examples include spectral expansion [45, 6], total

effective resistance [37, 59], and mixing time [10]. These requirements are closely related

to quantities in random walks, but much less is known about these problems in general.

In this thesis, we study a basic question in designing networks with a spectral requirement

1

– the effective resistance between two vertices.

First, we motivate the problem by observing that the s-t effective resistance is an interpo-

lation between the s-t shortest path distance and the s-t edge connectivity.

Let f ∈ R|E| be a unit s-t flow in G and define the `p-energy of f as Ep(f) := (
∑

e |fe|p)1/p.

Let Ep(s, t) := minf{Ep(f) | f is a unit s-t flow} be the minimum `p-energy of a unit s-t

flow that the graph G can support. Thomson’s principle (see Chapter 2.2.3) states that

ReffG(s, t) = E2
2 (s, t), so that a graph of small s-t effective resistance can support a unit s-t

flow with small `2-energy. Note that the shortest path distance between s and t is equal

to E1(s, t) (i.e. the `1-energy of a flow is just the average path length and is minimized by

a shortest s-t path), and so a graph with small E1(s, t) has a short path between s and t.

Note also that the edge-connectivity between s and t is equal to the reciprocal of E∞(s, t)

(i.e. if there are k edge-disjoint s-t paths, set the flow value on each path to be 1/k), and

so a graph with small E∞(s, t) has many edge-disjoint s-t paths. As `2 is between `1 and

`∞, the objective function ReffG(s, t) = E2
2 (s, t) takes both the s-t shortest path distance

and the s-t edge-connectivity into consideration.

The example in Figure 1 also demonstrates a simple property why `2-energy may be even

more desirable over `1 and `∞ as a connectivity measure. Conceptually, adding edges to

a graph G would make s and t more “connected”. For `1 and `∞, however, adding extra

edges to the graph may not yield a better energy if the edges added does not improve

the shortest path and the edge connectivity respectively. In contrast, the `2-energy would

typically improve after adding extra edges, and so `2-energy provides a smoother qualitative

measure that better captures our intuition on how well s and t are connected in a network.

In addition, Thomson’s principle states that the electrical flow between s and t is the

unique flow that minimizes the `2-energy. So, designing a network with small s-t effective

resistance has natural applications in designing electrical networks that minimize energy

dissipation [26, 37, 40].

2

Figure 1: An illustration of why effective resistance is a natural connectivity measure

On the left, the s-t shortest path distance is 3, the s-t edge connectivity is 2 and the s-t

effective resistance is 1/(1/3 + 1/4) = 12/7. On the right, after adding edges e and f , both the

s-t shortest path distance and the edge connectivity remain unchanged, but the s-t effective

resistance decreases to 1/(1/4 + 1/2) = 4/3 < 12/7.

Furthermore, the s-t effective resistance has a probabilistic interpretation as the expected

commute time between s and t in a random walk [14] (see Chapter 2.3 for more applications

and interpretations). Given these reasons, the s-t effective resistance can be seen as a nice

and natural alternative connectivity measure between s and t in network design.

In this thesis, we study the problem of keeping the total cost of the wires to be at most

k in the input electrical network to minimize the s-t effective resistance. So the electrical

flow between s and t can still be sent with small amount of energy while we switch off

many wires in the electrical network.

The main contributions in this thesis are as follow:

• We show that the problem is NP-hard even when all the wires (resistors) have the

same resistance and the same cost. This contrasts with the shortest path distance or

the edge connectivity which are solvable in polynomial time (see Chapter 3.2).

• We consider the special case when the input graph is a series-parallel graph, since

3

our problem is related to electrical network design. In Chapter 3.3, we use dynamic

programming to design a fully polynomial time approximation scheme for the problem

when the ratio between the maximum and minimum resistance is bounded, and an

exact algorithm when every edge has the same cost.

• For general graphs, we propose a greedy algorithm that we add a path at each

iteration. We suggest a framework to analyze the algorithm and conjecture that the

algorithm has a constant approximation ratio (see Chapter 3.4).

Background material and related work of our problem are presented in Chapter 2. Formal

definitions of the problem and our main results are presented in Chapter 3.

4

Chapter 2

Background

The aim of this chapter is to introduce the necessary background (Section 2.1-2.2), appli-

cations (Section 2.3) and related work (Section 2.4-2.5) of our problem.

2.1 Graphs and Matrices

2.1.1 Graphs

An undirected graph is a pair G = (V,E) consists of a set V of vertices (nodes or points)

and a set E of edges. Each edge e ∈ E is a pair of vertices (u, v), indicating that there is

an edge joining the two endpoints u and v. When (u, v) ∈ E, we write u ∼ v and say that

u is a neighbor of v (also that v is a neighbor of u). A weighted graph is a graph in

which there is a weight w(e) ∈ R on each edge e ∈ E. A path of a graph G is a sequence

of distinct vertices {v0, v1, . . . vk} such that (vi, vi+1) ∈ E for all 0 ≤ i < k. A cycle of a

graph G is a path where the start vertex and the end vertex are the same. A graph G is

connected if for every pair of vertices u, v, there is a path starting at u and ending at v.

5

We denote the number of vertices by n := |V | and the number of edges by m := |E|. For

a subset of edges F , we write w(F) :=
∑

e∈F w(e) as the total weight of edges in F . For a

subset of vertices S ⊆ V , we write δ(S) as the set of edges with one endpoint in S and the

other endpoint in V \S. For a vertex v, we write δ(v) = δ({v}) as the set of edges incident

on a vertex v, and wdeg(v) := w(δ(v)) as the weighted degree of v. Throughout this thesis,

we assume that G is an undirected connected graphs with positive edge weights.

2.1.2 Matrices

The Laplacian matrix L of an undirected graph is defined as L := D − A, where D ∈
RV×V is the diagonal weighted degree matrix with Du,u = wdeg(u) and A ∈ RV×V is the

adjacency matrix of the graph where Au,v = w(uv) for all u, v ∈ V . By the fundamental

theorem of symmetric matrices, we can write L =
∑n

i=1 λviv
T
i where λ1, λ2, . . . , λn ∈ R

are the eigenvalues of L and v1, v2, . . . , vn are the corresponding eigenvectors that are

orthonormal.

We now show a few facts in linear algebra and a few important properties of the Laplacian

matrix.

Definition 2.1.1 (Positive Semidefinite Matrix). A real symmetric matrix M is positive

semidefinite (PSD) if all eigenvalues of M are non-negative, denoted by M � 0.

Lemma 2.1.2. M is positive semidefinite if and only if for all x ∈ Rn, xTMx ≥ 0.

Proof. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of M with the corresponding orthonormal

eigenvectors v1, v2, . . . , vn. Note that xTMx = xT (
∑n

i=1 λiviv
T
i)x =

∑n
i=1 λi(x

Tvi)
2, hence

∀x ∈ Rn, xTMx ≥ 0⇐⇒ ∀x ∈ Rn,

n∑
i=1

λi(x
Tvi)

2 ≥ 0⇐⇒ ∀i λi ≥ 0.

6

Fact 2.1.3. The Laplacian matrix L of a graph G is positive semidefinite.

Proof. Let Le be the Laplacian of a graph with only one edge e. Note that L =
∑

e∈E Le.

Then for any x ∈ Rn,

xTLx = xT

(∑
e∈E

Le

)
x =

∑
e∈E

xTLex =
∑

(i,j)∈E

w(ij)(xi − xj)2 ≥ 0.

Lemma 2.1.4. If G is connected, then L has rank n− 1.

Proof. We show that the nullspace of L is of dimension 1. For every x ∈ nullspace(L), i.e.

Lx =
#»
0 , we have

0 = xTLx =
∑

(i,j)∈E

w(ij)(xi − xj)2.

But since G is connected and w(ij) > 0, we must have xi = xj for all i, j. Hence, the

vector x must be a multiple of
#»
1 .

Fact 2.1.5. λ1 = 0 and the corresponding eigenvector is v1 =
#»
1 /
√
n.

The pseudo-inverse of the Laplacian matrix L of a connected graph is defined as

L† :=
n∑
i=2

1

λi
viv

T
i ,

which maps every vector x orthogonal to v1 to the unique vector b such that Lx = b and

b ⊥ #»
1 .

When the graph is connected, we can characterize the set of solutions to the Laplacian

system Lx = b.

Lemma 2.1.6. Let L be the Laplacian matrix of a connected graph G. The Laplacian

system Lx = b has solutions if and only if b is perpendicular to
#»
1 . If b ⊥ #»

1 , then the set

of all solutions for Lx = b is {L†b+ c
#»
1 |c ∈ R}.

7

Proof. Since G is connected, from Fact 2.1.5, we know that nullspace(L) =
#»
1 . So, for

every x ∈ Rn, Lx is always perpendicular to
#»
1 . Therefore, for Lx = b to have a solution,

it is necessary that b is perpendicular to
#»
1 .

On the other hand, it is sufficient for b ⊥ #»
1 so that Lx = b has a solution. To see this,

if b ⊥ #»
1 , then we can write b =

∑n
i=2 aivi for some a2, . . . an ∈ Rn. Now we can let

x =
∑n

i=2
ai
λi
vi such that Lx = L

(∑n
i=2

ai
λi
vi

)
=
∑n

i=2
ai
λi
Lvi =

∑n
i=2

ai
λi

(λivi) = b. So x is

a solution to the system. Note that L†b =
(∑n

i=2
1
λi
viv

T
i

)
(
∑n

i=2 aivi) =
∑n

i=2
ai
λi
vi = x,

hence L†b is a solution to the system.

To characterize the set of all solutions, note that L† maps any vector b in the range of L

to the unique vector x such that Lx = b and x ⊥ kernel(L). Since the graph is connected,

kernel(L) = {c #»
1 |c ∈ R}. So the set of all solutions satisfying Lx = b is {L†b+ c

#»
1 |c ∈ R}.

When G is connected, since we know the nullspace of L, we can manipulate the pseudo-

inverse by manipulating the inverse of a related matrix.

Fact 2.1.7. Let J =
#»
1

#»
1 T be the all one matrix. Then for any b ⊥ #»

1 , L†b = (L+ J)−1b.

Proof. Since b ⊥ #»
1 , then we can write b =

∑n
i=2 aivi for some a2, . . . an ∈ Rn. Then

we have (L + J)−1b =
(

1
n

#»
1

#»
1 T +

∑n
i=2

1
λi
viv

T
i

)
b = 1

n

#»
1

#»
1 T b + L†b = L†b, where the last

equality follows from the fact that
#»
1 T b = 0.

Sherman and Morrison gave the formula to compute the inverse of a matrix A when updated

by a rank one matrix uvT .

Theorem 2.1.8 (Sherman-Morrison formula). Suppose A ∈ Rn×n is an invertible square

matrix and u, v ∈ Rn are column vectors. Then A + uvT is invertible if and only if

1 + vTA−1u 6= 0. If A+ uvT is invertible, then its inverse is given by

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

8

Combined with Fact 2.1.7, we can use the Sherman-Morrison formula to compute a solution

to a Laplacian system when the Laplacian matrix is updated by a rank-1 matrix.

2.2 Electrical Networks

Given a weighted graph, if all the edge weights are positive, we can interpret the graph as

an electrical network, where each edge e is regarded as a conductor with conductance

w(e), or resistance r(e) = 1/w(e). In the following subsections, we will introduce some

important concepts of electrical networks.

2.2.1 Electrical Flow and Voltage

Before we define the electrical flow, we first define the standard s-t flows. Given an undi-

rected graph G = (V,E), let k ≥ 0 be the net flow out of source s and into sink t. A k-unit

s-t flow is a vector f ∈ R2|E| defined on oriented edges which satisfies the following:

• (Antisymmetry) f(uv) = −f(vu) for all (u, v) ∈ E.

• (Flow conservation) For every vertex other than s and t, the incoming flow is equal

to the outgoing flow, i.e.

∑
u:v∼u

f(vu) =

k if v = s

−k if v = t

0 if v ∈ V \{s, t}.

For each edge e = (u, v), f(uv) is positive if the flow is going from u to v and negative

otherwise. We define ν(f) := k to be the flow value of f . When k = 1, we call f a unit

s-t flow.

9

An s-t electrical flow is an s-t flow that satisfies Ohm’s law, such that there exists a

potential vector p ∈ RV so that for every edge (u, v) ∈ E,

(p(u)− p(v)) = r(uv) · f(uv).

Ohm’s law states that the amount of electrical flow passing through a resistor between two

points is directly proportional to the electrical potential difference between the two points.

In the context of electrical network, we sometimes called the electrical flow current and

the potential voltage.

Matrix Formulation: Next, we write the relation between the potential and current in

matrix form. For u, v ∈ V , let buv = χu − χv, where χv ∈ Rn is the unit vector with 1 in

the v-th entry and 0 in other entries.

For each vertex v, by flow conservation and Ohm’s law, the potential vector p ∈ RV of a

unit s-t electrical flow satisfies

∑
u:v∼u

f(vu) =
∑
u:v∼u

(p(v)− p(u)) · w(vu) =

1 if v = s

−1 if v = t

0 otherwise.

Writing the above equations in matrix form, we can see that the potential vector p is a

solution to the following linear system:

L · p = bst, (2.2.1)

where L is the Laplacian matrix of the graph defined in Section 2.1. One solution to the

system is p = L†bst. Since G is connected and L has rank n− 1, any solution has the form

p+ c · #»
1 for some c ∈ R (Lemma 2.1.6).

The vector bst in the linear system is also called the external current vector which

specifies the net external current to each vertex. The external current vector b should be

parallel to
#»
1 to guarantee flow conservation.

10

By Ohm’s law, the flow on each edge only depends on the potential difference between its

two endpoints, hence the electrical flow is unique given the external current vector.

Electrical flow is also equivalent to a flow that satisfies the Kirchhoff’s cycle law. Later

we will use this property to prove Thomson’s Principle (Theorem 2.2.6).

Proposition 2.2.1 (Kirchhoff’s cycle law). Let f be an electrical flow. Then, for any

cycle {v0, v1, . . . , vk = v0}, we have

k−1∑
i=0

r(vivi+1)f(vivi+1) = 0.

Kirchhoff’s cycle law states that for every cycle in the network, the sum of the potential

differences of each edge in the cycle is zero.

Proof. By Ohm’s law,

k−1∑
i=0

r(vivi+1)f(vivi+1) =
k−1∑
i=0

r(vivi+1)
1

r(vivi+1)
(p(vi)− p(vi+1)) =

k−1∑
i=0

(p(vi)− p(vi+1)) = 0.

Conversely, we can show that if an s-t flow satisfies Kirchhoff’s cycle law then it is an

electrical flow.

Proposition 2.2.2. Let f ∗ be an electrical flow. If f is an s-t flow that satisfies Kirchhoff’s

cycle law and ν(f) = ν(f ∗), then f = f ∗.

Proof. Let d = f ∗ − f be the difference between the two s-t flows. By flow conservation

and the cycle law of both f ∗ and f , d is also an s-t flow that satisfies the cycle law. If

d is not a zero flow, then we will show that we can find a cycle that violates cycle law.

Suppose d 6= 0 and d(uv) > 0 for some u, v ∈ V . Then, by flow conservation, v must lead

11

to some other vertex v′ with d(vv′) > 0. We can iterate the process repeatedly to obtain a

sequence of vertices where the flow value on the edge is strictly positive. Since the network

is finite, this sequence must revisit a vertex and form a cycle. This cycle would violate the

cycle law.

Next, we show that given an s-t flow, the potential at s and t serve as a boundary of the

potential of all other vertices.

Fact 2.2.3. Let f be a non-zero s-t electrical flow and p be a corresponding potential vector.

Then, for every vertex x, we have p(t) < p(x) < p(s).

Proof. By flow conservation and Ohm’s law, for any vertex x ∈ V \{s, t}, we have

0 =
∑
u:u∼x

f(ux) =
∑
u:u∼x

(p(u)− p(x))w(ux).

Rearranging, we have

p(x) =
∑
u:u∼x

w(ux)

wdeg(x)
p(u),

which shows that the potential at x is a convex combination of all of its neighbor. Now we

will show that p(x) < p(s) for any vertex x. Let A := {a : p(a) = maxa p(a)}. We need to

show that A = {s}. Suppose to the contrary that there exists a vertex x 6= s, t in A. If x

has a neighbor y where p(y) < p(x), using the fact that the above convex combination is

true for v 6= s, t, we have

p(x) =
∑
z:z∼x

w(zx)

wdeg(x)
p(z) =

w(yx)

wdeg(x)
p(y) +

∑
z:z∼x,z 6=y

w(zx)

wdeg(x)
p(z) < max

a
p(a),

a contradiction. So it follows that p(y) ∈ A for every neighbor y of x. Since the graph is

connected, there is always a path from x to s and t and hence s, t ∈ A. Since p corresponds

to a non-zero s-t electrical flow, we must have p(s) > p(t) and thus a contradiction.

Similarly, we can show that p(t) < p(x) for any vertex x to complete the proof.

12

2.2.2 Effective Resistance

Given an electrical flow f and the corresponding potential vector p, the effective resistance

between s and t is defined as

Reff(s, t) =
p(s)− p(t)

ν(f)
,

which is the ratio between the potential difference between s and t and the flow value.

Informally, the s-t effective resistance indicates how “hard” it is to send electrical flow

between s and t. It can be interpreted as the resistance of the whole graph G as a big

resistor.

There are many applications and interpretations of effective resistance. See Section 2.3.

We can express the effective resistance in terms of the Laplacian matrix. Recall in Equation

2.2.1 that the potential vector p ∈ RV of a unit s-t electrical flow is a solution to the linear

system

L · p = bst.

Note that p = L†bst is a solution. Since L has rank n − 1 (G is connected), the set of

solutions has the form of p + c · #»
1 for c ∈ R (Lemma 2.1.6). Hence, by the definition of

effective resistance, we can write

Reff(s, t) = p(s)− p(t) = bTstL
†bst. (2.2.2)

The s-t effective conductance is the inverse of the s-t effective resistance, i.e.

Ceff(s, t) =
1

Reff(s, t)
. (2.2.3)

Effective resistance provides an alternative way to measure the distance of two vertices in

a graph. It can be used as a distance metric to identify cluster in a graph [5]. To show

that effective resistance is a distance metric, it is sufficient to check it satisfies the triangle

inequality.

13

Theorem 2.2.4 (Resistance Metric). Let a, b and c be vertices in a graph. Then

Reff(a, c) ≤ Reff(a, b) + Reff(b, c).

Proof. The main idea is to add the unit current flow from a to b to the unit current flow

from b to c that gives the unit current flow from a to c. Then we consider the corresponding

voltage vectors. Let # »vab,
»vac,

»vbc be the voltage vectors when one unit of current is sent from

a to b, a to c, b to c respectively, i.e.

»vab = L†G(χa − χb), # »vac = L†G(χa − χc), # »vbc = L†G(χb − χc).

Summing up the three equations, we have # »vab + # »vbc = # »vac. By the definition of effective

resistance, we have

Reff(a, c) = (χa − χc)T # »vac = (χa − χc)T # »vab + (χa − χc)T # »vbc.

Note that

(χa − χc)T # »vab = # »vab(a)− # »vab(c) ≤ # »vab(a)− # »vab(b) = Reff(a, b),

since from Fact 2.2.3, we have # »vab(b) ≤ # »vab(c) ≤ # »vab(a) for all vertex c ∈ V . Similarly, we

have (χa − χc)T # »vbc ≤ Reff(b, c), and the theorem follows.

To measure of how well “connected” the electrical network is in terms of the average

resistance distance, sometimes we consider the total effective resistance of the network, i.e.

the sum of the effective resistance between all pairs of vertices. The following theorem

shows that the total effective resistance is proportional to the trace of the pseudo-inverse

of the Laplacian matrix.

Theorem 2.2.5 (Total Effective Resistance). Let Refftotal =
∑n

i=1

∑n
j=1 Reff(i, j) be the

sum of the effective resistances between all pairs of vertices. Then

Refftotal = 2n · tr(L†).

14

Proof.

Refftotal =
∑
i,j

Reff(i, j) =
∑
i,j

bTijL
†bij =

∑
i,j

(
L†(ii) + L†(jj) − L

†
(ij) − L

†
(ji)

)
= 2n

∑
i

L†(ii) − 2
∑
i,j

L†(ij) = 2n · tr(L†),

where the last equality follows from L†
#»
1 = 0 and thus each row of L† sums to zero.

2.2.3 Energy and Thomson’s Principle

We define the energy of an s-t flow f by

E(f) :=
∑
e∈E

r(e)f(e)2.

Theorem 2.2.6 (Thomson’s Principle [42]).

Reff(s, t) = inf{E(f) : f is a unit s-t flow}.

The unique minimizer in the infimum is the unit s-t electrical flow.

Proof. The set of unit s-t flows is a closed and bounded subset of R|E|, hence by compact-

ness there exists a flow f with ν(f) = 1 minimizing E(f). By Proposition 2.2.2, to show

that the unit electrical flow is the unique minimizer, it is enough to check that any unit

flow f of minimal energy satisfies the cycle law.

Let {v0, v1, . . . , vk} be any cycle and let {e1, . . . ek} be the corresponding oriented edges.

Let θ be a zero s-t flow with θ(ei) = 1 for all 1 ≤ i ≤ k and zero on all other edges. By

the minimality of the energy, for any ε ∈ R, we have

0 ≤ E(f + εθ)− E(f) =
k∑
i=1

[
(f(ei) + ε)2 − f(ei)

2
]
r(ei)

= 2ε
k∑
i=1

r(ei)f(ei) + ε2r(ei).

15

Dividing both sides by ε > 0 we have

0 ≤ 2
k∑
i=1

r(ei)f(ei) + εr(ei),

and letting ε → 0 shows that 0 ≤
∑k

i=1 r(ei)f(ei). Similarly dividing ε < 0 and letting

ε → 0 shows that 0 ≥
∑k

i=1 r(ei)f(ei). Therefore, we must have
∑k

i=1 r(ei)f(ei) = 0,

showing that f satisfies the cycle law and hence f is the unique electrical flow minimizing

the energy, by Proposition 2.2.2.

Finally, we show E(f) = Reff(s, t) when f is the unit s-t electrical flow. Let p be the

corresponding potential vector of f such that Lp = bst. Then we have

E(f) =
∑
uv∈E

r(uv)f 2(uv) =
∑
uv∈E

w(uv)((p(u)− p(v))2 = pT

(∑
uv∈E

w(uv)buvb
T
uv

)
p = pTLp.

On the other hand, we have

Reff(s, t) = bTstL
†bst = (Lp)TL†(Lp) = pTLL†Lp = pTLp,

which completes the proof.

From Thomson’s Principle, we can show that the effective resistance is monotonic, i.e.

increasing the resistance of an edge would not decrease the effective resistance between

any two vertices.

Theorem 2.2.7 (Rayleigh’s Monotonicity Law). If {r(e)} and {r′(e)} are sets of resis-

tances on the edges of the same connected graph G = (V,E) with r(e) ≤ r′(e) for all e ∈ E,

then for all x, y ∈ V
Reffr(x, y) ≤ Reffr′(x, y).

Proof. Let f ∗ be the unit x-y electrical flow on the resistances {r′(e)}. By Thomson’s

Principle, we have

Reffr(x, y) = inf
f

∑
e

r(e)f(e)2 ≤
∑
e

r(e)f ∗(e)2 ≤
∑
e

r′(e)f ∗(e)2 = Reffr′(x, y).

16

In addition, we can show that effective resistance is a convex function in terms of conduc-

tances using Thomson’s principle.

Theorem 2.2.8 (Convexity of Effective Resistance). Let Reffx(s, t) be the effective resis-

tance when x ∈ R|E|>0 is the conductance on the edges. Then, Reffx(s, t) is convex with

respect to x.

Proof. It suffices to show that Reff(x+y)/2(s, t) ≤ 1
2
(Reffx(s, t) + Reffy(s, t)) for any x, y ∈

R|E|>0 . Let fx(e) and fy(e) be the unit electrical flow on e with respect to the conductance

vector x and y. First, we show that for any edge e,

fx(e)
2

xe
+
fy(e)

2

ye
≥ (|fx(e)|+ |fy(e)|)2

xe + ye
.

It is equivalent to

fx(e)
2

(
1 +

ye
xe

)
+ fy(e)

2

(
1 +

xe
ye

)
≥ fx(e)

2 + fy(e)
2 + 2|fx(e)fy(e)|

⇐⇒ |fx(e)|ye
|fy(e)|xe

+
|fy(e)|xe
|fx(e)|ye

≥ 2,

which is true since a+ 1/a ≥ 2 for a > 0.

Therefore, we have

Reffx(s, t) + Reffy(s, t)

2
=
∑
e∈E

fx(e)
2

2xe
+
∑
e∈E

fy(e)
2

2ye

≥
∑
e∈E

(|fx(e)|+ |fy(e)|)2

2xe + 2ye
≥
∑
e∈E

(fx(e) + fy(e))
2

2xe + 2ye

=
∑
e∈E

(
fx(e) + fy(e)

2

)2

· 2

xe + ye

≥ Reff(x+y)/2(s, t),

where the first equality and the last inequality follows from Thomson’s Principle.

17

2.3 Applications of Effective Resistance

Effective resistance has proven to have many interpretations and applications in different

contexts. It is connected to the study of random walks on undirected graphs [24, 67],

where it is directly related to the commute time and cover time. Effective resistance also

has combinatorial interpretations on graphs. Kirchhoff [43] discovered that the marginal

probability of an edge in a random spanning tree of a graph is proportional to the effective

resistance between the two endpoints of the edge. Subsequent to their work, there has been

substantial research studying the use of effective resistance in molecular graphs [9, 52].

Another direct application is in the study of electrical network design, where usually the

primary objective is to optimize power dissipation [37].

Recently, effective resistance has found various applications in designing fast algorithms for

graph problems. Recall that to find the electrical flow or a potentials vector of an electrical

network, we need to solve a Laplacian system in the form Lx = b. In a breakthrough work

in 2004, Spielman and Teng gave the first nearly-linear time Laplacian solver [65]. Followed

by the effort of many researchers, it is now known that Laplacian systems can be solved in

Õ(m
√

log n) time [21], where m is the number of nonzero entries and n is the dimension

of the Laplacian matrix. With this fundamental tool of computing electrical flows quickly,

effective resistance has found surprising applications in designing fast algorithms for graph

problems, including constructing spectral sparsifiers [64], computing maximum flow [19],

generating random spanning trees [53, 63] and graph clustering [5].

In the following subsections, we will present some classical results of using effective re-

sistance in analyzing random walks (section 2.3.1), in studying random spanning trees

(section 2.3.2), and in constructing spectral sparsifiers (section 2.3.3). The aim of these

subsections are to motivate the study of effective resistance. Readers who are familiar with

these topics could skip these subsections.

18

2.3.1 Analyzing Random Walks

In this subsection, we will show how effective resistance is related to the commute time

between a pair of vertices and the cover time of a random walk.

A Markov chain is a sequence of random variables (X0, X1, X2, . . .) with state space Ω and

a stochastic transition matrix P ∈ RΩ×Ω
≥0 satisfying the Markov property, namely that the

probability of moving to the next state depends only on the present state and not on the

previous states, i.e.

Pr(Xn+1 = x | X0 = x0, X1 = x1, . . . , Xn = xn) = Pr(Xn+1 = x | Xn = xn) = P (xn, x),

if both conditional probabilities are well defined (Pr(X0 = x0, X1 = x1, . . . , Xn = xn) > 0).

Given an undirected weighted graph G = (V,E, {we}), we can define a simple random

walk on G to be the Markov chain with state space V and transition matrix

P (x, y) =

w(xy)

wdeg(x)
if y ∼ x

0 otherwise.

We demonstrate how effective resistance is related to the commute time and cover time of

a random walk. The hitting time from a to b, denoted by hab, is the expected number

of steps to reach b if the random walk starts at a. The commute time is the expected

number of steps to reach b and back to a if the random walk starts at a, defined as

cab := hab + hba. The cover time is the expected number of steps to reach every state at

least once, regardless of the starting state.

The following theorem gives an explicit relation between commute time and effective re-

sistance.

Theorem 2.3.1. cst =
(∑

v∈V wdeg(v)
)
· Reff(s, t).

19

Proof. Let v ∈ V \{t}. From the definition of hvt, we have

hvt =
∑

x:vx∈E

w(ux)

wdeg(v)
(1 + hxt)

and htt = 0. After rearranging the terms, we have

wdeg(v) =
∑

x:vx∈E

w(vx)(hvt − hxt) for all v ∈ V \{t},

which is equivalent to a Laplacian system of linear equations.

Let W =
∑

v∈V wdeg(v). Let φvt be the voltage at v with φtt = 0 when wdeg(v) units of

currents are injected from v ∈ V \{t} and W − wdeg(t) units of current are removed from

t.

We claim that the values φvt and hvt satisfy the same Laplacian system. Let bt be the vector

of the external currents with bt(v) = wdeg(v) for v ∈ V \{t} and bt(t) = −W + wdeg(t).

By Ohm’s law, for v ∈ V , bt(v) =
∑

x:vx∈E w(vx)(φvt − φxt).

Let
#»

φt be a vector in RV . Then the values of φvt is the solution to the Laplacian system

LG
#»

φt = bt with
#»

φt(t) = 0. Recall that the set of the solution to the system is {L†Gbt+c
#»
1 |c ∈

R}. Hence there is a unique solution with
#»

φt(t) = 0 and therefore we must have hvt = φvt.

Let
#»

ht be the hitting time vector with
#»

ht(v) = hvt.

Similarly, let bs be the vector of external currents with bs(v) = wdeg(v) for v ∈ V \{s}
and bs(s) = −W + wdeg(s). Let

#»

hs be the hitting time vector with
#»

hs(v) = hvs and
#»

hs(s) = hss = 0. Then
#»

hs is the unique solution to LG
#»

hs = bs with
#»

hs(s) = 0.

Note that LG(
#»

ht−
#»

hs) = bt− bs = W (χs−χt), so (
#»

ht−
#»

hs)/W = L†G(χs−χt) is the voltage

vector when one unit of current is sent from s to t.

20

Finally, by the definition of s-t effective resistance, we have

Reff(s, t) = (χs − χt)TL†G(χs − χt) = (χs − χt)T (
#»

ht −
#»

hs)/W

=
1

W
(

#»

ht(s) +
#»

hs(t))

=
1

W
(hst + hts)

=
1

W
cst

and the claim follows.

Theorem 2.3.2. For an unweighted graph G, let R(G) = maxu,v Reff(u, v) be the effective

resistance diameter and let tcover be the cover time. Then

mR(G) ≤ tcover ≤ 2e3mR(G) log n+ n.

Proof. First, observe that for any edge uv, cuv ≤ 2m since the effective resistance between

u and v in an unweighted graph is at most 1. Using this observation, we can show that

the cover time of an unweighted graph is at most 2m(n− 1).

Let T be a spanning tree of G. Consider a walk that goes through T where each edge in

T is traversed once in each direction. Then this is a walk that visits every vertex at least

once. So the cover time of G is bounded by the expected length of this walk, which is at

most ∑
uv∈T

(huv + hvu) =
∑
uv∈T

cuv ≤ 2m(n− 1).

We show the lower bound on the cover time. Let R(G) = Reff(u, v) for some u, v. Then

2mReff(u, v) = cuv = huv + hvu. So the cover time is at least max{huv, hvu} ≥ cuv/2 =

mReff(u, v).

For the upper bound, since the maximum hitting time is at most 2mR(G), regardless

the starting vertex. Therefore, the probability that a vertex is not covered after 2e3m ·

21

R(G) steps is at most 1/e3 by the Markov’s inequality. So if the random walk runs

for 2e3mR(G) log n steps, then a vertex is not covered with probability at most 1/n3.

By a union bound over all vertices, the probability of some vertex is not covered af-

ter 2e3mR(G) log n steps is at most 1/n2. When this happens, we can use the bound

that the cover times is at most 2m(n − 1) ≤ n3. Then the cover time is at most

2e3mR(G) log n+ n3/n2 = 2e3mR(G) log n+ n.

Furthermore, the effective resistance of an edge (s, t) is directly related to the probability

that a random walk starts at s reaches t for the first time by the edge (s, t). The following

theorem would be useful in analyzing the algorithm of generating random spanning tree in

Section 2.3.2.

Theorem 2.3.3. Let (s, t) be an edge and Q(s, t) be the probability that a random walk

started at s reaches t for the first time by the edge (s, t). Then

Q(s, t) = w(st) · Reff(s, t).

Proof (Sketch). Let h(a) be the probability that a random walk that starts at a would visit

t before s. Observe that Q(s, t) can be expressed by the following recurrence:

Q(s, t) =
w(st)

deg(s)
+

1−
∑

x∈V \{s}

P (s, x)h(x)

Q(s, t).

Similar to the proof of Theorem 2.3.1, by writing the recurrence of vector h, we could see

that h is a potential vector when we send 1/Reff(s, t) unit of electrical flow from s to t.

The theorem would follow by substituting the values of h(x).

22

2.3.2 Sampling Random Spanning Trees

In this subsection, we will show the classic results [11, 4] of relating random spanning trees

to effective resistances. For simplicity, we assume that G is unweighted and d-regular in

the following. The results can be generalized to weighted and non-regular graphs.

Theorem 2.3.4. For any unweighted d-regular graph G = (V,E), any edge (s, t) ∈ E and

T be a spanning tree uniformly sampled from the set of spanning trees,

Pr[(s, t) ∈ T] = Reff(s, t).

This theorem immediately gives a new interpretation of effective resistance as a probability

distribution by observing the following lemma.

Lemma 2.3.5.
∑

ij∈E Reff(i, j) = n− 1.

Proof. Note that any spanning tree has n− 1 edges, so we have n− 1 =
∑

ij∈E Pr[(s, t) ∈
T] =

∑
ij∈E Reff(s, t).

Proof of Theorem 2.3.4. The proof is by Algorithm 1 that generates a random spanning

tree. We will use Theorem 2.3.3 to show that an edge (s, t) is in the spanning tree generated

by the algorithm with probability Reff(s, t). And then we will prove that the algorithm

generates a uniform random spanning tree. The theorem follows by combining the two

steps.

Note that Algorithm 1 only adds an edge that connects an uncovered vertex to a covered

vertex, so |T | = n − 1, the edges in T are connected and hence T is a spanning tree. An

edge (s, t) is in T if and only if the walk reaches t for the first time by the edge (s, t). We

assume without loss of generality that the algorithm covers s before t and so it is equivalent

that the walk start at s. Then, by Theorem 2.3.3, the probability that an edge (s, t) ∈ T is

Reff(s, t). So it remains to show the algorithm generates a uniform random spanning tree.

23

Algorithm 1 Generating Random Spanning Tree using Random Walk

1: Let u be a random vertex in G as the start vertex of the random walk

2: while the walk has not covered all vertices do

3: Go to a random neighbor v of u

4: if it is the first time we reach v then

5: Add (u, v) to T

6: end if

7: end while

8: return T

In addition, the expected runtime of Algorithm 1 is O(n3) by the upper bound of cover

time in Theorem 2.3.2.

Let Y = X0, X1, . . . , Xt, . . . be the sample path of the random walk in G and let Yt =

X0, X1, . . . Xt be the first t steps of the walk. First we define two directed forests for this

walk. We define the forward forest FF(Yt) as follows: for any vertex v in Yt except the

start vertex, we add the reversed edge we used when we first enter v, i.e. if tv = min{l :

Xl = v}, then we add (Xtv , Xtv−1) to FF(Yt). Since the vertices must be visited in some

order, FF(Yt) does not have any cycles and hence it is a forest. Note that when the walk

Yt covers all vertices, FF(Yt) is a directed spanning tree rooted at the starting vertex u

and it would not change afterwards.

Similarly in the backward forest BF(Yt), for any vertex v in Yt except the last vertex,

we add the forward edge we used in our last visit to v, i.e. if tv = max{l : Xl = v}, then

we add (Xtv , Xtv+1) to BF(Yt). Let rev(Yt) be the reverse walk of Yt, we can see that

BF(rev(Yt)) = FF(Yt).

The key idea of the proof is that, when Y covers the whole graph at time t∗, FF(Yt∗) and

BF(Yt∗) will both be rooted spanning tree of G. We know that for t ≥ t∗, FF(Yt) remains

24

unchanged while BF(Yt) is changing. We will show that starting from t = t∗, BF(Yt) is a

Markov chain on all rooted spanning trees of G with uniform distribution. This means as

t→ t∗, BF(Yt) will be a uniform rooted spanning tree of G.

Since the graph is d-regular, the probability of traversing from any state A to any state

B is equal to the probability of traversing from B to A. Also note that X0 is chosen

uniformly at random, so Yt and rev(Yt) are identically distributed. Therefore BF(rev(Yt))

is also identically distributed as BF(Yt) for t ≥ t∗. Recall BF(rev(Yt)) = FF(Yt) from the

above, so FF(Yt) is a uniform rooted spanning tree of G. By dropping the direction of the

edges we could obtain a uniform spanning tree.

It remains to show that BF(Yt) converges to uniform distribution on all spanning trees of

G, we need to show (1) there is a path between any two trees, (2) for any rooted tree T

we go to d rooted trees each with probability 1/d, (3) there are d rooted trees come to T

each with probability 1/d. We outline the proofs of the three statements as follows. To

prove (1), we consider two rooted trees T1, T2 with roots r1, r2 respectively. Observe that

any walk started from r1 that leads to r2 will transit T1 to a tree T
′
1 with root r2. Now

consider the depth first search walk starting from r2 that visits all the leaves of T2 and

returns back to r2. This walk will transit T
′
1 to T2. To prove (2), we consider a tree T with

root r and show T will go to d rooted trees each with probability 1/d. Since the graph is

d-regular, there are d neighbors of r. Then the set of directed trees reachable from T in

one step are as follows: For each neighbor v of r, we construct a tree rooted at v by adding

the directed arc (r, v) to T and removing the unique arc that is leaving v. The proof of (3)

is similar to (2), we would obtain the set of trees that transit to T in one step as follows:

For each neighbor v of r, we can construct a tree rooted at v by adding arc (r, v) to T and

removing the arc point to r in the unique path from v to r.

25

2.3.3 Spectral Sparsification

In this subsection, we will show how to construct a spectral approximator by sampling the

edges with respect to their effective resistance.

Before we define spectral approximator, we first introduce and motivate the concept of a

cut approximator. Given a weighted undirected graph G = (V,E, {we}), for a subset of

vertices S ⊆ V , let δG(S) be the set of edges with one endpoint in S and another endpoint

in V − S, and let w(δG(S)) be the total weight of the edges in δG(S). A cut approximator

of a graph G is a graph that approximates every cut in G.

Definition 2.3.6 (Cut Approximator). We say a graph H is a (1 ± ε)-cut approximator

of G if

(1− ε)w(δG(S)) ≤ w(δH(S)) ≤ (1 + ε)w(δ(S)) for all S ⊆ V .

Note that H has the same set of vertices and the edges may have different weights. A cut

approximator with a small number of edges would be useful in designing fast approximation

algorithms for graph connectivity problems such as the minimum cut and the maximum

flow problem [8]. The exact algorithms for these problems usually have the running time

depends on the number of edges m which can be up to O(n2). By constructing a sparse

cut approximator, we could replace m by n log n in the running time essentially. Benczúr

and Karger [8] showed how to construct a cut sparsifier with O(n log n/ε2) edges efficiently

by non-uniform sampling of the edges.

Spectral approximator is a generalization of cut approximator.

Definition 2.3.7 (Spectral Approximator). A graph H is a (1±ε)-spectral approximator of

G if (1− ε)LG � LH � (1 +ε)LG, where LG is the Laplacian matrix of G. Or equivalently,

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx for all x ∈ Rn, where n is the number of vertices

of G.

26

Fact 2.3.8. If H is a (1± ε)-spectral approximator of G, then H is a (1± ε)-cut approxi-

mator of G.

Proof. Let S ⊆ V and χS ∈ Rn be the characteristic vector such that χS(i) = 1 if

i ∈ S and zero otherwise. Since H is a (1 ± ε)-spectral approximator of G, we have

(1− ε)χTSLGχS ≤ χTSLGχS ≤ (1 + ε)χTSLGχS. Note that xTLGx =
∑

ij∈E w(ij)(xi − xj)2,

and thus χTSLGχS =
∑

ij∈E w(ij)(χS(i)−χS(j)) =
∑

ij∈δG(S) w(ij) = w(δG(S)). Therefore,

the spectral approximation implies that (1− ε)w(δG(S)) ≤ w(δH(S)) ≤ (1 + ε)w(δ(S)) for

all S ⊆ V .

The following seminal result by Spielman and Srivastava [64] shows the existence of a

sparse spectral approximator for any graph.

Theorem 2.3.9. For any graph G and ε > 0, there is a (1 ± ε)-spectral approximator H

with O(n logn
ε2

) edges.

We assume without loss of generality that G is unweighted. We write LG =
∑

ij∈E Lij

where Lij = (xi − xj)(xi − xj)T is the Laplacian matrix of the edge (i, j). So we can view

LG as a sum of m matrices.

The main idea of constructing the spectral approximator is to pick a subset of edges with

probability proportional to the effective resistance and then reweight them.

We have the following algorithm:

The resulting graph H would have at most k edges. We want to show if k = O(n log n/ε2),

then H would be a (1± ε)-spectral approximator of G.

First, we show that the algorithm will set the weights to have the correct expected value, i.e.

E[LH] = LG. Then we would like to show if k is large enough, then H will “concentrate”

around its expectation.

27

Algorithm 2 Spectral Approximator

1: Let p ∝ Reff(i, j) for (i, j) ∈ E be a probability distribution over the edges.

2: Let H = (V,E, {we}) and initialize all the new edge weights we to zero.

3: loop k = O(n log n/ε2) times

4: Pick a random edge e from the probability distribution p.

5: Set we ← we +
1

kpe
.

6: end loop

7: return H

Lemma 2.3.10. E[LH] = LG.

Proof. Let ei be the i-th edge we picked in the algorithm and Zi = 1
kpei

Lei be the Laplacian

matrix of the edge. Note that

E[Zi] =
∑
e∈E

1

kpe
Le · Pr(e is picked) =

∑
e∈E

1

kpe
Le · pe =

∑
e∈E

Le
k

=
1

k
LG.

Then

E[LH] = E[
k∑
i=1

Zi] =
k∑
i=1

E[Zi] =
k∑
i=1

LG
k

= LG.

To prove concentration, we use the following result by Ahlswede and Winter [3].

Theorem 2.3.11 (Matrix Concentration). Let Z be a random n× n real symmetric PSD

matrix. Suppose Z � R · E[Z] for some R ≥ 1. Let Z1, Z2 . . . Zk be independent copies of

Z. Then for any ε ∈ (0, 1), we have

Pr

[
(1− ε) � 1

k

k∑
i=1

Zi � (1 + ε)E[Z]

]
≥ 1− 2n exp

(
−ε2k

4R

)
.

28

In our setting, we have E[Z] = 1
k
LG and

∑k
i=1 Zi = H. It remains to upper bound k such

that Zi = 1
kpe
Le � R

k
LG for a small R, i.e., Lij � Reff(i, j) ·R ·LG for some small R. First,

we show how Reff(i, j) relates Lij and LG.

Lemma 2.3.12. Lij � Reff(i, j) · LG

Proof. We would like to show that xTLijx ≤ Reff(i, j)xTLGx for all x ∈ Rn. Note that

nullspace(LG) ⊆ nullspace(Lij), so for x ∈ nullspace(Lij) the inequality holds trivially. For

x ⊥ nullspace(Lij), it follows that x ⊥ nullspace(LG). Thus such an x can be written as

L
†/2
G y for some y, where L†G is the pseudo inverse of LG.

Therefore,

xTLijx

xTLGx
=
yTL

†/2
G LijL

†/2
G y

yTy
≤ λmax(L

†/2
G LijL

†/2
G).

To bound λmax(L
†/2
G LijL

†/2
G), notice that since both L

†/2
G and Lij are positive semidefinite,

we have L
†/2
G LijL

†/2
G � 0, and thus λmax(L

†/2
G LijL

†/2
G) ≤ tr((L

†/2
G LijL

†/2
G)) as the trace of a

matrix equals the sum of eigenvalues and all eigenvalues are non-negative. Note that by

the cyclic property of trace,

tr(L
†/2
G LijL

†/2
G) = tr(LeL

†
G) = tr((χi−χj)(χi−χj)TL†G) = (χi−χj)TL†G(χi−χj) = Reff(i, j).

Recall from Lemma 2.3.5 that
∑

ij∈E Reff(i, j) = n − 1. Combining with Lemma 2.3.12,

we can set pe = Reff(e)∑
e∈E Reff(e)

= Reff(e)
n−1

and we have Le � pe(n− 1)LG and thus R = n− 1.

Using the above matrix concentration result, the failure probability that LH is not an

ε-approximator is at most 2n exp(−ε2k/4R) = 2n exp(−ε2k/4(n− 1)). Finally, by setting

k = O(n log n/ε2), the failure probability is an inverse polynomial in n.

Remark: Direct implementation of the algorithm would takes Õ(m2) time by using a

near-linear time Laplacian solver. To speed up the computation, we can use a general

29

technique called dimension reduction to get a good approximation of Reff(i, j) quickly,

which would improve the running time to Õ(m) [64].

2.4 Network Design

In this section, we will discuss some previous work of network design problems under

different types of combinatorial connectivity requirements.

2.4.1 Edge Connectivity and Iterative Rounding

In this subsection, we present the classical results for the survivable network design prob-

lem. Given a weighted undirected graph and a connectivity requirement ruv for each pair

of vertices u, v, the goal is to find a minimum cost subgraph such that there are at least

ruv edge-disjoint paths between u and v for all u, v. This problem is very well-studied and

captures many interesting special cases [38, 2, 39, 34]. The best approximation algorithm

for this problem is due to Jain [41], who introduced the technique of iterative rounding to

design a 2-approximation algorithm.

In the following, we will present the 2-approximation algorithm given by Jain [41] for this

problem and highlight the key arguments of the proof.

Overview of the algorithm:

The algorithm first solves the linear relaxation of the survivable network design problem,

and then iteratively turn the fractional solution into an integral solution. The extreme point

solutions of the linear program are characterized by a laminar family of tight constraints.

Using this fact, Jain showed that there is at least one edge with fractional value at least

1/2 in any extreme point solution. By repeatedly picking such edges, the total cost of the

integral solution is at most twice the cost of the LP solution.

30

Linear Programming Relaxation:

The problem can be formulated as a linear program by representing the connectivity re-

quirements as a weakly supermodular function. A function f : 2V → Z is called weakly

supermodular if at least one of the following two conditions holds for any two subsets

S, T ⊆ V .

f(S) + f(T) ≤ f(S ∪ T) + f(S ∩ T)

f(S) + f(T) ≤ f(S − T) + f(T − S)

It can be checked that the function f defined by f(S) := maxu∈S,v /∈S{ruv} for each subset

S ⊆ V is a weakly supermodular function. Thus we can write the following linear pro-

gramming relaxation for the survivable network design problem, denoted by LPSNDP, with

the function f being weakly supermodular.

minimize
∑

e∈E cexe

subject to x(δ(S)) ≥ f(S) ∀S ⊆ V

0 ≤ xe ≤ 1 ∀e ∈ E

Although it is not know whether there is a polynomial separation oracle for a general

weakly supermodular function f , this linear program can be solved in polynomial time by

using a maximum flow algorithm as a separation oracle.

Iterative Algorithm:

The following is Jain’s iterative rounding algorithm. We write dF (S) as the number of

edges in F with exactly one endpoint in S.

31

Algorithm 3 Iterative algorithm for survivable network design problem

1: Input: G = (V,E, {ce}), {ruv}
2: Initialization: F ← ∅, f(S)← maxu∈S,v /∈S{ruv}
3: while f 6≡ 0 do

4: Find an optimal extreme point solution x to LPSNDP with cut requirement f

5: Remove every edge e with xe = 0 from the graph.

6: For every edge e with xe ≥ 1/2, add e to F and delete e.

7: For every S ⊆ V , update f(S)← max{f(S)−dF (S), 0}. (Update residual problem)

8: end while

9: Output: H = (V, F)

Jain proved the following important theorem that leads to the 2-approximation guarantee.

Theorem 2.4.1. If f is a weakly supermodular and x is an extreme point solution to

LPSNDP, then there exists an edge e with xe ≥ 1/2.

The proof is based on a token counting argument and the characterization of the extreme

point solution to LPSNDP. The iterative algorithm will terminate assuming Theorem 2.4.1.

By an inductive argument, the returned solution is a 2-approximation solution.

2.4.2 Edge Connectivity on Directed Graphs

Melkonian and Tardos [55] generalized Jain’s framework to directed graphs and proved

that iterated rounding achieves an approximation ratio of 4 and conjecture the true ap-

proximation ratio is 2. Gabow [33] improved the ratio by showing the rounding scheme

gives a factor 3 approximation.

32

2.4.3 Element Connectivity

In the setting of element-connectivity, the set of vertices is partitioned into terminals

and nonterminals. The edges and nonterminals of the graph are called elements. The

terminal vertices can be regarded as reliable nodes in the network. Using the technique of

iterative rounding, Fleischer, Jain and Williamson [29] and Cheriyan, Vempala and Vetta

[17] showed that the 2-approximation result of edge connectivity requirement extends to

the problem when we require rij element-disjoint paths for all pairs of terminals i, j.

2.4.4 Vertex Connectivity

A natural variant is to require that there are ru,v internally vertex disjoint paths for every

pair of vertices u, v. It turns out this problem is much harder to approximate. Kortsarz,

Krauthgamer and Lee [46] showed that unless NP ⊆ DTIME(npoly logn), there is no poly-

nomial time 2log1−ε n-approximation algorithm for this problem. Chuzhoy and Khanna [20]

showed that when the maximum connectivity requirement k is small, there is a O(k3 log n)-

approximation algorithm.

Global vertex connectivity is also well studied. Fakcharoenphol and Laekhanukit [28]

showed that there is a O(log2 k)-approximation algorithm to obtain a minimum cost k-

vertex-connected subgraph. Cheriyan and Végh [16] gives a 6-approximation algorithm if

we further assume the number of vertices n is at least k3(k − 1) + k using the iterative

rounding approach.

2.4.5 Bounded Pairwise Distance

Another natural problem is to have a path length requirement between every pair of ver-

tices. Given a directed or undirected graph G with edge cost {ce} and edge length {le},

33

we want to find a minimum cost subgraph such that there is a path of length duv between

every pair of vertices u, v. Dodis and Khanna [23] gave both hardness and algorithmic

results on this problem. When every edge has the same cost and the same length, they

showed that it is Ω(log n)-hard to approximate and gave an O(log log d)-approximation

algorithm where d = maxu,v d(u, v). When either the edges costs vary or the edges lengths

vary, they showed the problem is Ω(2log1−ε n)-hard to approximate.

2.4.6 Edge Connectivity with Degree Bounds

It is also interesting to study when there are multiple types of combinatorial constraints.

When we incorporates degree upper bounds bv on each vertex v to the edge connectivity

constraints, Lau, Naor, Salavatipour, and Singh [49] showed that there is a (2, 2bv + 3)-

approximation algorithm, where the cost of the returned solution is at most twice the cost

of an optimal solution that satisfies the degree bounds, and the degree of each vertex v is at

most 2bv + 3. Lau and Zhou [50] further improved the results to a (2,min{bv + 3rmax, 2bv +

2})-approximation.

We have seen that there are positive results over different types of combinatorial con-

straints. The ultimate goal of our work is to incorporate effective resistance constraints

into network design problems.

2.5 Spectral Requirements

In this section, we will present some previous work on network design problems with

spectral requirements.

34

2.5.1 Mixing Time

Boyd, Diaconis, and Xiao [10] considered the problem of assigning probabilities to the

edges in a Markov chain to minimize its mixing time. The mixing time of a Markov chain

is the number of steps required for the walk to converge to the stationary distribution. It is

known that the mixing time is governed by the second largest eigenvalue λ2 of the transition

matrix P . They showed that this problem could be formulated as a convex optimization

problem, which can be expressed as the following semidefinite program (SDP):

minimize s

subject to −sI � P − (1/n)
#»
1

#»
1 T � sI,

P ≥ 0, P
#»
1 =

#»
1 , P = P T ,

Pij = 0 ∀(i, j) 6∈ E,

where
∥∥∥P − (1/n)

#»
1

#»
1 T
∥∥∥

2
is the spectral expression of λ2. The above program can be

transformed to a standard semidefinite problem, which is solvable in polynomial time.

Other than formulating the problem as an SDP, they also describe a subgradient method

to solve the program when the graph is large.

2.5.2 Algebraic Connectivity

Ghosh and Boyd [36] studied the problem of adding edges to a graph to maximize the second

smallest eigenvalue of the graph Laplacian, which governs the algebraic connectivity of a

graph. Given a graph G = (V,Ebase ∪ Ecand), the problem is to add k edges from Ecand

to the existing edges Ebase to maximize the algebraic connectivity. Let x ∈ [0, 1]|Ecand| be

the relaxed solution and L(x) = Lbase +
∑

e∈Ecand
xebeb

T
e be the Laplacian matrix of the

resulting graph corresponds to x. They formulated the relaxation of the problem as follows:

35

minimize λ2(L(x))

subject to
#»
1 Tx = k

x ∈ [0, 1]|Ecand|

From the characterization that λ2(L(x)) = inf{yTL(x)y | ‖y‖ = 1,
#»
1 Ty = 0}, the above

program can be furthered formulated as a semidefinite program. The solution to the SDP

serves as an upper bound of the optimal value. They also gave a heuristic algorithm to

turn the fractional solution of the SDP to an integral solution but with no performance

guarantee provided.

2.5.3 Total Effective Resistance

Ghosh, Boyd and Saberi [37] first studied connectivity requirements related to effective

resistances. They studied the problem of allocating conductance to the edges of a given

graph under a fixed total conductance budget to minimize the total effective resistance,

i.e., the sum of the resistances between all pairs of vertices. Using the fact that the total

effective resistance is the trace of the pseudo-inverse of the Laplacian matrix (see Theorem

2.2.5), they formulated the problem as the following semidefinite program:

minimize tr(Y)

subject to 1Tx = 1, x ≥ 0Lx I

I Y

 � 0

where x ∈ R|E| are the variables of the edge weights, Lx =
∑

e∈E xebeb
T
e is the Laplacian

matrix corresponding to the conductance assignment x and Y ∈ Rn×n is the slack sym-

metric matrix. Note that the last constraint in the program is equivalent to Y � L†x.

Since the objective function is convex, they further showed that this SDP could be solved

36

numerically using a custom interior-point algorithm. These earlier works only proposed

convex programming relaxations and heuristic algorithms, but did not show the hardness

of the problem or give any algorithm with a provable approximation guarantee.

2.5.4 Experimental Design

Approximation guarantees are only obtained in two recent papers ([59], [6]). Both papers

studied the more general problem of experimental design, which is a classical problem in

statistics. We will first introduce the problem of experimental design, and then explain the

connections to network design problems.

In the simplest setting, we want to estimate a hidden vector w ∈ Rd via linear measurements

of the form yi = vTi w + ηi, where vi ∈ Rd are possible experiments and ηi is a small

independent and identically distributed unbiased Gaussian error in the measurement of

the experiment. Given a subset S of experiments, we can estimate ŵ of w by least squares

approximation. The error vector w − ŵ has a Gaussian distribution with mean 0 and

covariance matrix Σ :=
(∑

i∈S viv
T
i

)
. In the experimental design problem, our goal is to

pick a set of vectors S with |S| = k out of the m vectors such that the measurement error

is minimized. There are different objective functions f , or known as optimal criterion, to

quantify the “size” of the covariance matrix. Popular choices of f include:

• A(verage) fA(Σ) = tr(Σ−1)/d;

• D(eterminant) fD(Σ) = det(Σ−1);

• T(race) fT (Σ) = d/tr(Σ−1);

• E(igen) fE(Σ) = ‖Σ−1‖2.

We will show that spectral network design problems are special cases of experimental

design. To see this, we can interpret the set of possible experiments as the edges of the

37

graph, where each edge e corresponds to a vector be. Then, the covariance matrix becomes

the Laplacian matrix L =
∑

e∈S beb
T
e . Different optimal criterions of the covariance matrix

would correspond to different objective functions on the Laplacian matrix.

• By Theorem 2.2.5, the trace of the pseudo-inverse Laplacian is the total effective re-

sistance of the graph, hence the A-optimal criterion corresponds to the total effective

resistance.

• The E-optimal criterion corresponds to the spectral gap because
∥∥L†∥∥

2
= λmax(L†) =

1/λ2(L).

• In our problem, the s-t effective resistance can be expressed as a function of the

Laplacian fReff(L) = bTstL
†bst, but it does not correspond to the standard criterion in

experimental design.

The two recent papers obtained different approximations in different optimal criterion.

Nikolov, Singh, and Tantipongpipat [59] obtained an (1 + ε)-approximation for the A-

optimality when k = Ω(d/ε). This result corresponds to the case when every edge has

the same cost, and there is a (1 + ε)-approximation algorithm for minimizing the total

effective resistance when the budget is at least Ω(n/ε) where n is the number of vertices

in the graph. The main idea of their algorithm is by proportional volume sampling, which

involves picking a set of columns S of size k with probability proportional to µ(S) times

det(Σ) for some measure µ.

Allen-Zhu, Li, Singh, and Wang [6] obtained approximation algorithms for a wider class of

optimal criterion (including A, D, E-optimality). They showed that if the optimal criterion

f is convex, monotone and reciprocal multiplicative (f(tΣ) = t−1f(Σ) for all t > 0), then

they can achieve (1 + ε)-approximation with Ω(d/ε2) experiments.

The main idea of their work is as follows. By the convexity of the objective function, they

showed that the convex relaxation of the problem could be solved in polynomial time. Then

38

the key point is to round the fraction solution π to an integral solution ŝ. By applying

a linear transformation on the vectors vi, they reduced the problem to finding a set of k

vectors S to maximize the minimum eigenvalue of
∑

v∈S vv
T . Their main technical result

is a one-sided lower bound on the minimum eigenvalue:

Theorem 2.5.1. Suppose ε ∈ (0, 1/3] and k ≥ n/ε2. Let π ∈ Ck = {π ∈ [0, 1]m :
∑m

i=1 πi ≤
k} that satisfies

∑m
i=1 πiviv

T
i = In×n. Then we can find ŝ ∈ Sk = {s ∈ {0, 1}m :

∑m
i=1 si ≤

k} such that

λmin

(
m∑
i=1

ŝiviv
T
i

)
≥ (1− 3ε) · I.

The key step of proving the theorem is to further reduce the problem to bounding the

regret of a particular Follow-The-Regularized-Leader algorithm which admits closed-form

solutions. The close form solution gives rise to a “swapping” algorithm to lower bounding

the minimum eigenvalue. The algorithm starts with an arbitrary initial solution set S0 ⊆
[m] of cardinality k. In each iteration t ≥ 0, it selects a pair of indices it ∈ St and

jt 6∈ St and makes a “swap” by updating St+1 = St ∪ {jt}\{it}. Indices it, jt are chosen to

minimize a potential function Φ(St) :=
∑

i
1

λi−l , where l is intended to be an lower bound

of the minimum eigenvalues, and λ1, . . . λd are the eigenvalues of
∑

v∈St
vvT . To avoid

blowing up the potential function, the lower bound l would increase slowly over iterations.

Hence, it gives a holistic measure of our current solution of how close it is to the identity

matrix.

The one-sided lower bound results can be used to upper bound effective resistances. The-

orem 2.5.1 implies that we can find a subgraph H with LH � (1 − ε)Lπ, where Lπ is the

Laplacian matrix of the optimal fraction subgraph. Then, recalling Equation 2.2.2 that

the effective resistance of two vertices s, t can be written as bstL
†bst, and the fact that a

lower bound of the Laplacian matrix is an upper bound for the pseudo-inverse, we have

ReffH(s, t) = bTstL
†
Hbst ≤ (1− ε)−1bTstL

†
πbst = (1 + 2ε)Reffπ(s, t).

39

Remark: In our problem, our objective function is the s-t effective resistance, and it

satisfies convexity, monotonicity and reciprocal multiplicativity (see the proof of convexity

in Theorem 2.2.8). Therefore, there is a (1 + ε)-approximation when the budget is at least

Ω(n/ε2). The results from both papers require the budget to be much larger than the

number of vertices. For our problem, the interesting regime is when k is much smaller

than n, where the techniques in [6, 59] do not apply.

40

Chapter 3

Network Design for Minimizing s-t

Effective Resistance

The results in Chapter 3.2 and Chapter 3.3 are based on the joint work with Lap Chi Lau,

Aaron Schild, Sam Chiu-wai Wong and Hong Zhou [13].

3.1 Introduction

The following is the formal formulation of our problem.

Definition 3.1.1 (The s-t effective resistance network design problem). The input is an

undirected graph G = (V,E) where each edge e has a non-negative cost ce and a non-

negative resistance re, two specified vertices s, t ∈ V , and a cost budget k. The goal is to

find a subgraph H of G that minimizes ReffH(s, t) subject to the constraint that the total

edge cost of H is at most k, where ReffH(s, t) denotes the effective resistance between s

and t in the subgraph H with resistances re on the edges.

41

In Chapter 1, we introduce s-t effective resistance as a connectivity measure and observe

that it is the interpolation between s-t shortest path distance and s-t edge connectivity.

In the following sections, we try to answer the following questions:

• How hard is the s-t effective resistance network design problem?

• In what special types of input can we solve the problem exactly or with arbitrarily

small error?

• Is there any fast heuristic algorithm for general input to obtain a “good” approximate

solution?

The following are our main contributions in this thesis.

Unlike shortest path distance or edge connectivity, we show that the problem is NP-hard

(see Chapter 3.2), even when all the edges (resistors) have the same resistance and the

same cost.

Theorem 3.1.2. The s-t effective resistance network design problem is NP-hard, even

when every edge has the same cost and the same resistance (ce = re = 1 for every edge e).

Since our problem is related to electrical network design, it is natural to consider the special

case when the input graph is a series-parallel graph. In Chapter 3.3, we use dynamic

programming to design a fully polynomial time approximation scheme for the problem

when the ratio between the maximum and minimum resistance is bounded, and an exact

algorithm when every edge has the same cost.

Theorem 3.1.3. There is a dynamic programming based (1 + ε)-approximation algo-

rithm for the s-t effective resistance network design problem when the input graph is a

series-parallel graph. The running time of the algorithm is O(|E|7U2/ε2) where U =

42

maxe re/mine re is the ratio between the maximum and minimum resistance. If we as-

sume further that ce = 1 for all edges e, there is an exact algorithm for the problem with

running time O(|E|k2).

For general graphs, we propose a greedy algorithm that we add a path at each iteration.

We suggest a framework to analyze our algorithm and conjecture that the algorithm would

achieve constant approximation (see Chapter 3.4).

Conjecture 3.1.4. There is a greedy based 3.95-approximation algorithm for the s-t ef-

fective resistance network design problem when every edge has the same cost and the same

resistance. The running time of the algorithm is O(m2
√

log n).

3.2 NP-completeness for Unit Cost Unit Resistance

In this section, we prove that the problem is NP-hard even if every edge has the same cost

and the same resistance.

We will prove Theorem 3.1.2 in this subsection. The following is the decision version of

the problem.

Problem 3.2.1 (s-t effective resistance network design with unit-cost unit-resistance).

Input: An undirected graph G = (V,E) where each edge e ∈ E has resistance one,

two vertices s, t ∈ V , and two parameters k and R.

Question: Does there exist a subgraph H of G with at most k edges and ReffH(s, t) ≤
R?

We will show that this problem is NP-complete by a reduction from the 3-Dimensional

Matching (3DM) problem.

43

Problem 3.2.2 (3-Dimensional Matching).

Input: Three disjoint sets of elements X = {x1, . . . , xq}, Y = {y1, . . . , yq} and Z =

{z1, . . . , zq}, a set of triples T ⊆ X × Y × Z where each triple contains exactly one

element in X, Y and Z.

Question: Does there exist a subset of q pairwise disjoint triples in T ?

Reduction: Given an instance of 3DM with {(X, Y, Z), T }, we let τ = |T | and denote

the triples by T = {T1, . . . , Tτ}.

Figure 2: An illustration of constructing the graph G from a 3DM instance.

We construct a graph G = (V,E) as follows.

Vertex Set: The vertex set V of the graph G is the disjoint union of five sets

{s}, {t}, VA, VB, and D. Each vertex in VA corresponds to a triple in T , that is

VA = {T1, . . . , Tτ}. Each vertex in VB corresponds to an element in X ∪ Y ∪ Z,

44

that is VB = {x1, . . . , xq, y1, . . . , yq, z1, . . . , zq}. Let l = 3τ + 3q. The set D consists

of τ · l “dummy” vertices {di,j | 1 ≤ i ≤ τ, 1 ≤ j ≤ l}. So, there are totally

τ + 3q + 2 + τ(3τ + 3q) vertices in G, which is a polynomial in the input size of the

3DM instance.

Edge Set: The edge set E of the graph G is the disjoint union of three edge sets F1,

F2 and P . There are 3τ edges in F1, where there are three edges (T, xa), (T, yb) and

(T, zc) for each triple T = (xa, yb, zc) ∈ T . There are 3q edges in F2, where there is

an edge from each vertex in VB to t. There are τ(l + 1) edges in P , where there is a

path Pi := (s, di,1, di,2, . . . , di,l, Ti) for each triple Ti ∈ T for 1 ≤ i ≤ τ . So, there are

totally 3τ + 3q + τ(3τ + 3q + 1) edges in E, which is a polynomial in the input size

of the 3DM instance.

The proof of the following claim completes the proof of Theorem 3.1.2.

Lemma 3.2.3. Let k = q(l + 1) + 3τ + 3q and R = (3(l + 1) + 2)/3q. The 3DM instance

has q disjoint triples if and only if the graph G has a subgraph H with at most k edges and

ReffH(s, t) ≤ R.

Proof. One direction is easy. If there are q disjoint triples in the 3DM instance, say

{T1, . . . , Tq}, then H will consist of the q paths P1, . . . , Pq, the 3q edges in F1 incident on

T1, . . . , Tq, and all the 3q edges in F2. There are (l + 1)q + 3q + 3q ≤ k edges in H, and

ReffH(s, t) = (l+ 1)/q + 1/3q + 1/3q = (3(l+ 1) + 2)/3q = R, as in the graph in Figure 3.

The other direction is more interesting. If there do not exist q disjoint triples in the 3DM

instance, then we need to argue that ReffH(s, t) > R for any H with at most k edges.

First, note that k < (q + 1)(l + 1), and so the budget is not enough for us to buy more

than q paths. As it is useless to buy only a proper subset of a path, we can thus assume

that H consists of q paths and all the edges in F1 and all the edges in F2, a total of

exactly q(l + 1) + 3τ + 3q = k edges. For any such H, we will argue that ReffH(s, t) > R.

45

Without loss of generality, we assume that H consists of P1, . . . , Pq and all edges in F1 and

F2. As T1, . . . , Tq are not disjoint, there are some vertices in VB that are not neighbors of

T1 ∪ . . . ∪ Tq, call those vertices U .

We consider the following modifications of H to obtain H ′, and use ReffH′(s, t) to lower

bound ReffH(s, t). For every pair of vertices in VB, we add an edge of zero resistance. For

each edge incident on Tq+1, . . . , Tτ , we decrease its resistance to zero. By the monotonicity

principle, the modifications will not increase the s-t effective resistance, as we either add

edges with zero resistance or decreasing the resistance of existing edges. The modifications

are equivalent to contracting the vertices with zero resistance edges in between, and so H ′

is equivalent to the graph in Figure 3. Therefore, we have ReffH(s, t) ≥ ReffH′(s, t) ≥ R.

Figure 3: The subgraph H when the 3DM instance has q disjoint triples.

Figure 4: The subgraph H when U is non-empty.

46

We will prove that one of the inequalities in ReffH(s, t) ≥ ReffH′(s, t) ≥ R must be strict

when U 6= ∅ (Figure 4). To argue the strict inequality, we look at the unit s-t electrical

flow f in H and consider two cases.

• If there exists some vertex u ∈ U with no incoming electrical flow, then we can delete

such a vertex without changing ReffH(s, t). But then in the modified graph H ′, the

number of parallel edges to t is strictly smaller than 3q, and therefore ReffH′(s, t) > R.

• If there exists some vertex u ∈ U with some incoming electrical flow, then f(Tju) > 0

for some j ≥ q+1. Since we have decrease the resistance of such an edge Tju to zero,

the energy of f in H ′ is strictly smaller than the energy of f in H. By Thomson’s

principle, we have ReffH′(s, t) ≤ EH′(f) < EH(f) = ReffH(s, t).

Since the 3DM instance has no q disjoint triples, it follows that U 6= ∅ and thus one of the

above two cases must apply. In either case, we have ReffH(s, t) > R and this completes

the proof of the other direction.

3.3 Dynamic Programming Algorithms for

Series-Parallel Graphs

In this section, we will present the dynamic programming algorithms for solving the s-

t effective resistance network design problem on series-parallel graphs. We first review

the definitions of series-parallel graphs in Subsection 3.3.1. Then, we present the exact

algorithm in Theorem 3.1.3 when every edge has the same cost in Subsection 3.3.2, and

the fully polynomial time approximation scheme in Theorem 3.1.3 in Subsection 3.3.3.

47

3.3.1 Series-Parallel Graphs

Definition 3.3.1 (two-terminal series-parallel graph). A two-terminal series-parallel graph

(SP graph) is a graph with two distinguished vertices (the source vertex s and the target

vertex t) that can be constructed recursively as follows:

• Base case: A single edge (s, t)

• Compose step: If G1 and G2 are two series parallel graphs with source si and target

ti (i = 1, 2), then we can combine them in two ways:

– Series-composition: We identify t1 with s2 as the same vertex, the source of the

new graph is s1 and the target is t2.

– Parallel-composition: We identify s1 with s2 as the same vertex and t1 with t2

as the same vertex, the new source is s1 = s2 and the new target is t1 = t2.

Given the sequence of steps of constructing a series-parallel graph G, we can define a tree

T (SP-tree) as follows.

Definition 3.3.2 (SP-tree).

• Leaf node: If G is a single edge, then T is a single node containing the edge.

• Recurse step: G is either a series-composition (S) or a parallel-composition (P) of

G1 and G2, then T is a S-node (P-node) containing G, and its children are roots of

the SP-trees of G1 and G2.

For a tree node v in a SP-tree T , let Gv be the subgraph that v represents, sv, tv be the

two terminals of Gv, and vl, vr to be its left and right child if v is an internal node. Note

that the SP-tree is a fully binary tree with 2m− 1 nodes.

48

Figure 5: An example of a SP-tree.

Given a two-terminal SP graph, the corresponding SP-tree can be computed in O(n+m)

time. The linear time SP-graph recognition algorithm in [68] will give us the construction

sequence of G, and we can build the SP-tree in a bottom-up manner.

3.3.2 Polynomial Time Algorithm for the Unit Cost Case

The following fact shows that the s-t effective resistance can be computed easily from the

SP-tree.

Fact 3.3.3 (Resistance of series-parallel network). Let G be a two-terminal SP graph and

each edge e has a non-negative resistance re. Let T be the corresponding SP-tree. For every

tree node v, we can compute the source-target effective resistance as follows.

49

Leaf node: ReffGv(sv, tv) = re if v is a leaf node with a single edge e.

S-node: ReffGv(sv, tv) = ReffGvl
(svl , tvl) + ReffGvr

(svr , tvr).

P-node: ReffGv(sv, tv) =
ReffGvl

(svl , tvl) · ReffGvr
(svr , tvr)

ReffGvl
(svl , tvl) + ReffGvr

(svr , tvr)
.

We can design the dynamic programming algorithm by defining the subproblems using the

SP-tree T .

For every tree node v and b = 0, 1 . . . k, we define the subproblem

R(v, b) := min
H⊆Gv

{
ReffH(sv, tv) |

∑
e∈H

ce ≤ b

}
.

Since we assume that every edge e has cost ce = 1, there are at most 2mk subproblems,

as the SP-tree has at most 2m nodes and there are at most k possibilities for the cost of a

subgraph.

It follows from the definition that R(vroot, k) would be the optimal s-t effective resistance

for our problem. To compute R(v, b), with Fact 3.3.3, we can use the following recurrence

which exhausts all possible distributions of the budget among the two children:

R(v, b) =

∞ if v is a leaf node and b < ce

re if v is a leaf node and b ≥ ce

min
b′=0...b

R(vl, b
′) +R(vr, b− b′) if v is a S-node

min
b′=0...b

R(vl, b
′) ·R(vr, b− b′)

R(vl, b′) +R(vr, b− b′)
if v is a P-node.

As there are O(mk) subproblems and each subproblem can be computed in O(k) time, the

time complexity of this dynamic programming algorithm is O(mk2).

50

3.3.3 Fully Polynomial Time Approximation Scheme

In this subsection, we use dynamic programming to design a fully polynomial time ap-

proximation scheme to prove Theorem 3.1.3. In the previous subsection, we assume that

every edge has the same cost to obtain an exact algorithm, by having a bounded number

of subproblems in dynamic programming. When the cost could be arbitrary, the number

of subproblems can no longer be bounded by a polynomial. Since the cost constraint must

be satisfied, we do not change the cost of the edges, but instead we discretize the resis-

tance of the edges and optimize over the cost, and show that it gives an arbitrarily good

approximation when the discretization is fine enough.

Rescaling:

First, by rescaling, we assume that mine re = 1 and maxe re = U in G. Let m = |E|
and L = ε/m2 where ε > 0 is the parameter in the approximation guarantee. We further

rescale the resistance by setting re ← re/L. This rescaling ensures that for any subgraph of

G in which s-t is connected, the s-t effective resistance is upper bounded by Um/L (when

all the edges are in series) and is lower bounded by 1/(mL) (when all the edges are in

parallel).

Subproblems and Recurrence:

Let T be the SP-tree of G and let vroot be the root of T . We define two similar sets

of subproblems. For every tree node v and a value R ∈ [1/(mL), Um/L], we define the

subproblem

C(v,R) := min
H⊆Gv

{∑
e∈H

ce | ReffH(sv, tv) ≤ R

}
.

51

Similar to the reasoning in the previous subsection, the subproblems satisfy the following

recurrence relation:

C(v,R) =

ce if v is a leaf node with a single edge e and R ≥ re

∞ if v is a leaf node with a single edge e and R < re

min
R1,R2∈[1/(mL),Um/L]

{C(vl, R1) + C(vr, R2) | R1 +R2 ≤ R} if v is a S-node

min
R1,R2∈[1/(mL),Um/L]

{
C(vl, R1) + C(vr, R2) | R1R2

R1 +R2

≤ R

}
if v is a P-node.

Discretized subproblems:

We cannot use dynamic programming to solve the above recurrence relation efficiently

as there are unbounded number of subproblems. Instead, we use dynamic programming

to compute the solution of all the “discretized” subproblems using the same recurrence

relation. For every integer R from d1/(mL)e to dUm/Le, we define

C(v,R) :=

ce if v is a leaf node with a single edge e and R ≥ dree

∞ if v is a leaf node with a single edge e and R < dree

min
R1,R2∈{d1/(mL)e...dUm/Le}

{C(vl, R1) + C(vr, R2) | R1 +R2 ≤ R} if v is a S-node

min
R1,R2∈{d1/(mL)e...dUm/Le}

{
C(vl, R1) + C(vr, R2) |

⌈
R1R2

R1 +R2

⌉
≤ R

}
if v is a P-node.

We can think of C(v,R) as the minimum cost required to select a subset of edges such

that the effective resistance between sv and tv is at most R, when the effective resistance

is rounded up to an integer during each step of the computation in the recurrence relation.

Algorithm and Complexity:

After computing all C(v,R), the algorithm will return

min{R | C(vroot, R) ≤ k}

as the approximate minimum s-t effective resistance. Given a tree node v, by trying

all possible integral values of R1 and R2, we can compute the values of C(v,R) for each

52

possible R in O((Um/L)2) time. Therefore, the total running time of computing all C(v,R)

is O(m) · O((Um/L)2) = O(m7U2/ε2). To output the optimal edge set, we can store the

optimal values of R1, R2 for each pair of (v,R) to reconstruct the edge set.

Correctness and Approximation Guarantee:

Since we have not changed the edge cost, the solution returned by the algorithm will have

total cost at most k. It remains to show that the s-t effective resistance is at most (1 + ε)

times the optimal s-t effective resistance. For every tree node v and every b ∈ [0, k], we

define

R(v, b) := min{R | C(v,R) ≤ b, R ∈ [1/(mL), Um/L]}

R(v, b) := min{R | C(v,R) ≤ b, R ∈ {d1/(mL)e, . . . dUm/Le}}.

First we show R(v, b) has similar recurrence as R(v, b).

Claim 3.3.4. For every non-leaf node v of T and b ∈ [0, k], we have

R(v, b) :=

min

b1,b2|b1+b2=b
{R(vl, b1) +R(vr, b2)} if v is a S-node

min
b1,b2|b1+b2=b

{⌈
1

1/R(vl, b1) + 1/R(vr, b2)

⌉}
if v is a P-node.

Proof. If v is a S-node, then from the definition of R(v, b), we have

R(v, b) = min{R | C(v,R) ≤ b, R ∈ {d1/(mL)e, . . . dUm/Le}}

= min{R1 +R2 | C(vl, R1) + C(vr, R2) ≤ b, R1, R2 ∈ {d1/(mL)e, . . . dUm/Le}}.

Let b1 := C(vl, R1) and b2 := C(vr, R2), then the pair of R1, R2 that achieves the minimum

would satisfy R(vl, b1) = R1 and R(vr, b2) = R2. Thus we have

R(v, b) = min{R(vl, b1) +R(vr, b2) | b1 + b2 = b}.

Similarly, we can show the recurrence of R(v, b) when v is a P-node.

53

It follows from the definitions that the optimal s-t effective resistance is R(vroot, k), and

the output of our algorithm will be R(vroot, k). The following lemma establishes the ap-

proximation guarantee.

Lemma 3.3.5. For every tree node v and for every b ∈ [0, k], it holds that

R(v, b) ≤
(

1 +
ε|E(Gv)|

m

)
R(v, b).

Proof. We prove the lemma by induction on the tree node of the SP-tree.

Base Case: Suppose v is a leaf node of T and Gv is a graph of a single edge e.

• For b < ce, we have R(v, b) = R(v, b) =∞.

• For b ≥ ce, we have R(v, b) = re and

R(v, b) = dree ≤ re + 1 = re +
(ε
m

)(1

mL

)
≤ re +

ε

m
re =

(
1 +

ε|E(Gv)|
m

)
R(v, b),

where the second inequality uses that every resistance is at least 1/(mL), and the

last equality uses that |E(Gv)| = 1 and re = R(v, b).

S-node: Suppose v is a S-node. For every b ∈ [0, k], we have

R(v, b) = min
b1,b2|b1+b2=b

{R(vl, b1) +R(vr, b2)}

≤ min
b1,b2|b1+b2=b

{(
1 +

ε|E(Gvl)|
m

)
R(vl, b1) +

(
1 +

ε|E(Gvr)|
m

)
R(vr, b2)

}
≤ min

b1,b2|b1+b2=b

{(
1 +

ε|E(Gv)|
m

)
(R(vl, b1) +R(vr, b2))

}
=

(
1 +

ε|E(Gv)|
m

)
min

b1,b2|b1+b2=b
{(R(vl, b1) +R(vr, b2))}

=

(
1 +

ε|E(Gv)|
m

)
R(v, b),

54

where the first equality follows from Claim 3.3.4, the first inequality follows from the induc-

tion hypothesis, and the second inequality follows from the fact that max(|E(Gvl)|, |E(Gvr)|)
is at most |E(Gv)| − 1.

P-node: Suppose v is a P-node. For every b ∈ [0, B], we have

R(v, b) = min
b1,b2|b1+b2=b

{⌈
1

1/R(vl, b1) + 1/R(vr, b2)

⌉}
≤ min

b1,b2|b1+b2=b

{⌈(
1 +

ε(|E(Gv)| − 1)

m

)
1

1/R(vl, b1) + 1/R(vr, b2)

⌉}
=

⌈(
1 +

ε(|E(Gv)| − 1)

m

)
R(v, b)

⌉
≤
(

1 +
ε(|E(Gv)| − 1)

m

)
R(v, b) + 1

=

(
1 +

ε(|E(Gv)| − 1)

m

)
R(v, b) +

ε

m

1

mL

≤
(

1 +
ε(|E(Gv)| − 1)

m

)
R(v, b) +

ε

m
R(v, b)

=

(
1 +

ε|E(Gv)|
m

)
R(v, b),

where the first equality follows from Claim 3.3.4, the first inequality follows from the

induction hypothesis and the fact that max(|E(Gvl)|, |E(Gvr)|) ≤ |E(Gv)|−1, and the last

inequality holds as the minimum resistance of any subgraph is at least 1/(mL).

Therefore, the lemma follows by an induction on the SP-tree.

By substituting v = vroot and b = k, we have

R(vroot, k) ≤
(

1 +
mε

m

)
R(vroot, k) = (1 + ε)R(vroot, k),

and this completes the proof of Theorem 3.1.3.

55

3.4 Greedy Approach

In [13], we obtain a constant factor approximation algorithm for our problem when every

edge has the same cost and the same resistance. Our technique is based on rounding the

fractional solution to the convex relaxation problem.

In this section, we design a greedy combinatorial algorithm to our problem when every edge

has the same cost and the same resistance. We provide some intuition and suggest a frame-

work to analyze our algorithm. We conjecture that our algorithm is a 3.95-approximation

algorithm to the problem.

3.4.1 Observations and Intuition

For the greedy algorithm, it is more convenient to consider the s-t effective conductance

(Chapter 2.2.2). If we treat the s-t effective conductance as a set functions on the set

of edges, then the problem becomes finding the best subset F ⊆ E where |F | ≤ k that

maximizes the s-t effective conductance. In the following, we denote the s-t effective

resistance on the edge set F by Reff(F) and the effective conductance by Ceff(F) :=

1/Reff(F).

When the set function is submodular, monotone and non-negative, there is a famous result

by Nemhauser, Wolsey and Fisher in 1978 [58] stating that if we pick an element x which

maximizes the marginal benefit f(S ∪ {x})− f(S) each time, we will obtain a set S that

achieves a (1− 1/e)-approximation of the optimum.

Definition 3.4.1. A set function f : 2X → R is called submodular if for all subsets

S ⊂ T ⊂ X and all x ∈ X\T ,

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T).

56

(a) The edge set F1 with a single edge e (b) The edge set F2 with a single edge e

Figure 6: A counterexample showing that s-t effective conductance is not submodular.

In other words, the marginal return of adding x is always diminishing as the set grows.

Although the s-t effective conductance is non-negative and monotonic, it is not a submod-

ular function.

Fact 3.4.2. The s-t effective conductance is not submodular.

Proof. In Figure 6, we have F1 ⊂ F2. Note that

Ceff(F1 ∪ {e})− Ceff(F1) =
1

Reff(F1 ∪ {e})
− 1

Reff(F1)
=

1

2
− 1

2
= 0

Ceff(F2 ∪ {e})− Ceff(F2) =
1

Reff(F2 ∪ {e})
− 1

Reff(F2)
=

1

1
− 1

2
=

1

2
.

So Ceff(F1∪{e})−Ceff(F1) < Ceff(F2∪{e})−Ceff(F2) and hence Ceff is not submodular.

From the example in the above proof, we could see that adding a single edge might not

help to increase the s-t effective conductance if the edge does not connect two vertices

that are previously connected. This suggests that a good greedy algorithm should consider

adding edges that introduce new connection of the graph at each iteration. If we can show

the marginal increase of the effective conductance of adding a path is diminishing, then we

might be able to follow the idea in [58] to design a good approximation algorithm.

57

3.4.2 Greedy Algorithm

The main idea of our greedy strategy is to keeping adding a path that maximizes the ratio

between the marginal increase of conductance and its length.

Initially, the set of used edges U is empty, and our algorithm will partition the unused

edges into paths and return them as a list P in some greedy order. Finally, to output the

actual selection of edges, we keep selecting the paths in P in order until we run out of

budget.

The key part of the algorithm is how we partition the edges into paths. We keep track

of a set of vertices V ∗, which contains s, t and the vertices connected by the used edges.

At each iteration, for any pair of vertices in V ∗, we compute a shortest path that uses

the minimum number of edges between the two vertices, where the path can only use the

unused edges and only pass through vertices that are not connected before. Then, we pick

a path that maximizes the ratio between the marginal increase in s-t effective conductance

of the resulting graph and its length. We mark this path as used and repeat the iteration

until all edges are used.

The following is the pseudo-code for the path partitioning algorithm.

58

Algorithm 4 Greedy Path Partitioning Algorithm

1: Input {G = (V,E), s, t, {re}, {ce}, U} . U is the set of selected edges

2: V ∗ ← {s, t} ∪ {vertices appear in U} . set of connected vertices

3: E∗ ← U . set of used edges

4: P ← empty list . list of paths in greedy order

5: while E∗ 6= E do

6: A← ∅ . set of possible paths in this iteration

7: for u, v ∈ V ∗ do

8: puv ← any (u, v) shortest path on the graph G′ = (V \V ∗ ∪ {u, v}, E\E∗)
9: A← A ∪ puv

10: end for

11: p∗ = arg maxp∈A
Ceff(E∗∪{p})−Ceff(E∗)

c(p)
. c(p) is the length of path p

12: update the set of connected vertices: V ∗ ← V ∗ ∪ V (p)

13: update the set of used edges: E∗ ← E∗ ∪ E(p)

14: Add p∗ to P

15: end while

16: Output P

Let P = {p1, p2, . . . , pτ} be the list of paths returned by the greedy algorithm on input

{G = (V,E), s, t, {re}, {ce}, U = ∅} where we start from an empty graph and τ is the total

number of paths in P . Let Pi := ∪ij=1pj be the partial solution after the i-iteration of the

algorithm. For any subset of edges F , let c(F) :=
∑

e∈F ce be the total edge cost of F . Let

i∗ be the largest i such that c(Pi) ≤ k, so our algorithm will return the set of edges Pi∗ .

Given any subset of edges E∗ ⊆ E, we can compute the s-t effective resistance (conduc-

tance) on E∗ in Õ(m
√

log n) time using Laplacian solvers [21]. Since we can compute the

shortest path between two points in O(n + m) time and there are at most m iterations,

the time complexity of the algorithm is Õ(m2
√

log n).

59

3.4.3 Analyzing the Greedy Algorithm

We have the following conjecture on the performance guarantee on our algorithm.

Conjecture 3.4.3. Algorithm 4 is a greedy-based 3.95-approximation algorithm for the s-t

effective resistance network design problem when ce = 1 and re = 1 for every edge e.

Similar to the proof of the greedy algorithm on minimizing supermodular function, we

need to assume the objective function Ceff(F) has a certain “submodular” property. We

conjecture the following about the diminishing return property of the greedy algorithm.

Conjecture 3.4.4 (Approximate Diminishing Return Property). Let Pi be a partial greedy

solution for some i ∈ [0 . . . τ] and F be any subset of the edges such that F ∩ Pi = ∅, let

{f1, f2, . . . } where F =
⋃
i fi be the list of paths output by the greedy algorithm on input

{G = (V, F ∪ Pi), s, t, {re}, {ce}, U = Pi}. (We pre-select the edges in Pi.) Then we have

Ceff(Pi ∪ {f1})− Ceff(Pi)

c(f1)
≥ 1

2
· Ceff(Pi ∪ F)− Ceff(Pi)

c(F)
.

Let the effective conductance increase ratio of a set of edges X to a set of existing

edges Y be the effective conductance increased after adding X to Y divided by the cost of

adding X, i.e.

∇Y (X) :=
Ceff(Y ∪X)− Ceff(Y)

c(X)
.

This conjecture states that if we start from a partial greedy solution Pi and the next

path we are going to add is f1, then the effective conductance increase ratio of f1 is always

greater than one half the effective conductance increase ratio any set of edges that contains

f1. This suggests that after adding f1, adding subsequent paths would not improve the

effective conductance increase ratio by more than a factor of 2, and hence we say the

algorithm has the approximate diminishing return property. Indeed, the constant

1/2 in the conjecture is the best possible ratio we can get, by the example in Figure 7 in

60

Subsection 3.4.4. Now, we first prove the approximation guarantee assuming Conjecture

3.4.4. More discussion on Conjecture 3.4.4 will be in Subsection 3.4.4.

Let d∗ be the shortest distance between s and t. Without loss of generality, we can assume

the budget k is not less than d∗. We suggest a framework to analyze our algorithm as

follows:

1. We show that when k ≤ c1 · d∗ for some constant c1 ≥ 1, returning any shortest s-t

path at the first iteration of the algorithm is already a c1-approximation algorithm

for our problem. See Lemma 3.4.6.

2. Otherwise, if our algorithm used a constant fraction of the budget, i.e. c(Pi∗) ≥ c2 ·k
for some constant 0 < c2 ≤ 1, we show that the algorithm would achieve (1 −
e−c2/2)−1-approximation assuming the diminishing return property of the algorithm.

See Lemma 3.4.7.

3. In the final case where c(Pi∗) < c2 ·k, we argue that the remaining edges of the graph

is not that “useful” and we show that the algorithm would achieve
(

1 + 2
(1−c2)2c1

)
-

approximation assuming the diminishing return property. See Lemma 3.4.8.

Combining the three lemmas above, we can conclude that Algorithm 4 is a 3.95-approximation

algorithm.

Theorem 3.4.5. Assuming Conjecture 3.4.4, Algorithm 4 is a greedy-based 3.95-approximation

algorithm for the s-t effective resistance network design problem when ce = 1 and re = 1

for every edge e.

Proof. From Lemma 3.4.6, Lemma 3.4.7 and Lemma 3.4.8, it remains to choose c1 ≥ 1 and

0 < c2 ≤ 1 to minimize

max

{
c1, (1− e−c2/2)−1,

(
1 +

2

(1− c2)2c1

)}
.

61

Notice that the first term increases with c1, the second term decreases with c2 and the third

term decreases with c1 but increases with c2, so the minimum is attained when the three

terms are equal. By solving this system of equations, we can get c1 ≈ 3.95 and c2 ≈ 0.585.

Substituting the values, we can see that all three terms are at most 3.95, which completes

the proof.

In the following, we will state and prove the three lemmas.

Lemma 3.4.6. When the budget k is at most c1 ·d∗ for some c1 ≥ 1, returning any shortest

s-t path would be a c1-approximation of the s-t effective resistance.

Proof. First, observe that i∗ ≥ 1 since k ≥ d∗, thus Pi∗ would contain a s-t shortest path

and Reff(Pi∗) ≤ d∗. So it is enough to show that Reff(F) ≥ (d∗)2/k for any subset of edges

F with c(F) ≤ k.

For any F ⊆ E with c(F) ≤ k, let GF = (V, F) be the corresponding graph of F . Now we

construct another graph G′F on vertex set {v0, . . . vd∗} by identifying some vertices on GF :

• For all j ∈ 1, . . . d∗, we identify those vertices with distance j to s as vertex vj.

• For all vertices with distance to s greater than d∗, we identify them as vertex vd∗ .

Since identifying a pair of vertices is equivalent to adding an edge with zero resistance be-

tween them, so by Rayleigh’s monotonicity principle (Theorem 2.2.7), we have ReffG′F (s, t) ≤
ReffGF

(s, t) = Reff(F). Note that G′F connects s and t with a sequence of parallel edges.

Let Ei be the set of edges connecting vj and vj+1. Using the Cauchy-Schwarz inequality

and the fact that ReffG′F (s, t) =
∑d∗

j=1
1∑

e∈Ej
1/re

=
∑d∗

j=1 1/|Ej| from the series rule and the

parallel rule (Fact 3.3.3), we have

d∗ =
d∗∑
j=1

√
|Ej| ·

1√
|Ej|

≤

√√√√ d∗∑
j=1

|Ej| ·

√√√√ d∗∑
j=1

1

|Ej|
≤
√
k ·
√

ReffG′F (s, t),

62

which completes the proof.

Lemma 3.4.7. Assuming Conjecture 3.4.4, if the output of our algorithm Pi∗ consumes

at least c2 fraction of the budget, then it obtains a
(
1− e−c2/2

)−1
approximation of the

problem.

Proof. The proof follows the main idea in [58]. For any i ∈ [0 . . . τ] and for any F ⊆ E

with c(F) ≤ k, if we can show that

Ceff(Pi) ≥

1− e
−
c(Pi)

2k

Ceff(F)

assuming Conjecture 3.4.4, then the lemma will follow after substituting c(Pi∗) ≥ c2 ·k and

the fact that effective resistance is reciprocal to effective conductance.

For any i ∈ [1, . . . τ] and any F ⊆ E with c(F) ≤ k and F∩P = ∅, let {f1, f2, . . . } be the list

of paths output by the greedy algorithm on input {G = (V, F ∪Pi), s, t, {re}, {ce}, U = Pi}
where we pre-selected edges in the partial solution Pi. Then we have

Ceff(F) ≤ Ceff(Pi ∪ F)

= Ceff(Pi) + (Ceff(Pi ∪ F)− Ceff(Pi))

≤ Ceff(Pi) + 2c(F) · Ceff(Pi ∪ f1)− Ceff(Pi)

c(f1)

≤ Ceff(Pi) + 2k · Ceff(Pi+1)− Ceff(Pi)

c(pi+1)
,

where the first inequality follows from Rayleigh’s monotonicity principle (Theorem 2.2.7),

the second inequality follows from Conjecture 3.4.4, and the last inequality follows from

the optimality of pi+1 in our greedy algorithm.

Multiply both sides by c(pi+1)/k , we have

c(pi+1)

2k
Ceff(F) ≤ Ceff(Pi+1)−

(
1− c(pi+1)

2k

)
Ceff(Pi).

63

Adding (1− c(pi+1)/2k) · Ceff(F) on both sides and rearrange, we have

Ceff(F)− Ceff(Pi+1) ≤
(

1− c(pi+1)

2k

)
(Ceff(F)− Ceff(Pi)).

Let ai := Ceff(F)− Ceff(Pi). We can rewrite the above inequality as

ai+1 ≤
(

1− c(pi+1)

2k

)
ai.

By induction, we can relate ai+1 and a0. Note that a0 = Ceff(F) − Ceff(P0) = Ceff(F).

Then by using the inequality 1− x ≤ e−x, we can conclude that

ai+1 ≤
i∏

j=0

(
1− c(pj+1)

2k

)
Ceff(F) ≤ Πi

j=0

(
e−

c(pj+1)

2k

)
· Ceff(F) = e−

c(Pi+1)

2k · Ceff(F).

Substitute ai := Ceff(F)− Ceff(Pi) and rearrange, we complete the proof by having

Ceff(Pi) ≥

1− e
−
c(Pi)

2k

Ceff(F).

Lemma 3.4.8. Assuming Conjecture 3.4.4, if the output of our algorithm Pi∗ consumes less

than c2 fraction of the budget and k ≥ c1 ·d∗, then returning Pi∗ would be a
(

1 + 2
(1−c2)2c1

)
-

approximation of the minimum s-t effective resistance.

Proof. The intuition behind is that since c(Pi∗) < c2 · k and c(Pi∗+1) > k, then if we

let l := c(pi∗+1), we know that l ≥ (1 − c2)k which is a constant fraction of the budget.

Hence pi∗+1 is a relatively long path compare to the shortest path as we have k ≥ c1 · d∗.
By the optimality of pi∗+1, this suggests that the subsequent paths would only give small

contribution to the s-t effective conductance and it is affordable to ignore them.

First, we would like to show that Ceff(Pi∗ ∪ {pi∗+1}) is upper bounded by Ceff(Pi∗) + 1/l,

the effective conductance after adding a s-t path of length l to the set of edges Pi∗ , by

lower bounding Reff(Pi∗ ∪ {pi∗+1}).

64

Claim 3.4.9. Ceff(Pi∗ ∪ pi∗+1) ≤ Ceff(Pi∗) + 1
l
.

Proof. Let L be the Laplacian matrix of the edge set Pi∗ with the rows and columns only

correspond to the vertices in Pi∗ . Recall the definition of effective resistance in Section

2.2.2, we can write

Reff(Pi∗) = bTstL
†bst.

Let pi∗+1 be a path connecting u and v. Now adding a path from u to v of length l is

equivalent to modify the Laplacian matrix from L to L+(1/l)·buvbTuv, since a path from u to

v of length l can be regarded as a resistor connecting u, v with resistance l (or conductance

1/l).

To express the s-t effective resistance after adding pi∗+1, we will need the Sherman-Morrison

formula (Theorem 2.1.8). By the Sherman-Morrison formula and Fact 2.1.7, we have

Reff(Pi∗ ∪ {pi∗+1}) = bTst

(
L+

1

l
buvb

T
uv

)†
bst = bTstL

†bst −
(bTstL

†buv)
2

l + bTuvL
†buv

.

Note that L†buv is a potential vector when one unit of current is sent from u to v, so we

can interpret the term bTuvL
†buv as the potential difference between u and v. By Fact 2.2.3

that the potential difference is maximum between u, v when an electrical flow is sent from

65

u to v, we have

Reff(Pi∗ ∪ {pi∗+1}) = bTstL
†bst −

(bTstL
†buv)

2

l + bTuvL
†buv

≥ bTstL
†bst −

(bTstL
†buv)

2

l + bTstL
†buv

≥ bTstL
†bst −

(bTstL
†bst)

2

l + bTstL
†bst

= Reff(Pi∗)−
Reff(Pi∗)

2

l + Reff(Pi∗)

=
1

Ceff(Pi∗)

(
1− 1

l · Ceff(Pi∗) + 1

)
=

l

l · Ceff(Pi∗) + 1
=

1

Ceff(Pi∗) + 1/l
,

where the second inequality also follows from Fact 2.2.3 and the fact that x2

l+x
is increasing

on x for l > 0.

Now we are ready to upper bound the difference between Ceff(F) and Ceff(Pi∗), for any

F ⊆ E with c(F) ≤ k. We have

Ceff(F)− Ceff(Pi∗) = k · Ceff(F)− Ceff(Pi∗)

k

≤ k · Ceff(Pi∗ ∪ F)− Ceff(Pi∗)

k

≤ 2k

l
(Ceff(Pi∗ ∪ {pi∗+1})− Ceff(Pi∗))

≤ 2k

l2
(by Claim 3.4.9)

≤ 2

(1− c2)2c1d∗
(by l ≥ (1− c2)k and k ≥ c1d

∗)

≤ 2Ceff(Pi∗)

(1− c2)2c1

,

where the first inequality is by Rayleigh’s monotonicity (Theorem 2.2.7), the second in-

equality follows from Conjecture 3.4.4 and the optimality of pi∗+1 and the last inequality

follows from the fact that Reff(Pi∗) ≤ d∗ since Pi∗ contains the s-t shortest path.

66

After rearranging, we have Ceff(F) ≤ Ceff(Pi∗)
(

1 + 2
(1−c2)2c1

)
. It is equivalent to Reff(Pi∗) ≤

Reff(F)
(

1 + 2
(1−c2)2c1

)
, which completes the proof.

3.4.4 Discussion

In this subsection, we discuss some examples and intuition of the approximate diminishing

return property (Conjecture 3.4.4). We will also show why the greedy approach might not

be able to generalize to the case where the resistances of the edges are arbitrary. In the

end of this subsection, we will discuss the attempt in [66] of adding a set of edges to the

graph to minimize total effective resistance by a greedy algorithm.

Figure 7: A tight example of Conjecture 3.4.4.

Tight example of Conjecture 3.4.4: In Figure 7, let P1 be the s-t path consisting of

solid edges and F be the set of dashed edges. Given the partial solution P1, f1 will be the

next path that the greedy algorithm selects from the remaining edge set F . Then we have

Ceff(P1) =
1

n
,

Ceff(P1 ∪ {f1}) =
1

n− 1/2
=

2

2n− 1
,

Ceff(P1 ∪ F) =
2

n
.

67

So we can compare the conductance increase ratio of adding f1 and adding F respectively,

∇P1(f1) =
Ceff(P1 ∪ {f1})− Ceff(P1)

c(f1)
=

2

2n− 1
− 1

n
=

1

n(2n− 1)
,

∇P1(F) =
Ceff(P1 ∪ F)− Ceff(P1)

c(F)
=

2/n− 1/n

n
=

1

n2
.

Therefore, we would see that
∇P1

(f1)

∇P1
(F)

= n
2n−1

, which tends to 1/2 when n tends to infinity.

Although Conjecture 3.4.4 is tight in the above example, the greedy algorithm actually

performs well - it will return the optimal set of edges for every possible value of the

budget. Next, we show the worst example to our algorithm that we found so far.

Figure 8: An example of getting a 2-approximation using greedy algorithm.

In Figure 8, the number x on an edge means this edge consists of x unit-cost-unit-resistance

edges. When the budget k = 2n, the optimal s-t effective resistance is 2 + n−1
2

by selecting

all edges except the s-t shortest path of length n, but our greedy algorithm would only select

the s-t shortest path of effective resistance n. Hence the ratio is n
2+(n−1)/2

= 2 − 6
n+3
≈ 2

when n is large. In this example, the main reason for the large gap is that our greedy

algorithm would waste almost half of the budget. Note that in the unit resistance setting,

the “bad” examples we found so far to Conjecture 3.4.4 and the algorithm are both simple

instances. We believe that there might not be examples that exceed the conjectural ratio.

Examples when the resistances have arbitrary values: Next, we demonstrate a few

examples to show the greedy algorithm cannot generalize to the case where the edges have

the same cost but have arbitrary resistance.

68

Figure 9: A counterexample to Conjecture 3.4.4 when the resistances have arbitrary values.

In Figure 9, the number next to an edge is the resistance of that edge. The partial solution

P0 is the empty set and F is the whole set of edges. We will show that Conjecture 3.4.4

does not hold in this example. The next path f1 returned by the greedy algorithm consists

of k/2 edges of resistances 1 and one edge of resistance a. Then we have

Ceff(P0) = 0,

Ceff(P0 ∪ {f1}) =
1

k/2 + a
=

2

k + 2a
,

Ceff(P0 ∪ F) =
1

k/2 + 2a/k
=

2k

k2 + 4a
.

So we can compare the conductance increase ratio of adding f1 and adding F respectively,

∇P0(f1) =
Ceff(P0 ∪ {f1})− Ceff(P1)

c(f1)
=

2

(2a+ k)(k/2 + 1)
=

4

(2a+ k)(k + 2)
,

∇P0(F) =
Ceff(P0 ∪ F)− Ceff(P1)

c(F)
=

2k

(k2 + 4a)k
=

2

k2 + 4a
.

Therefore, if we pick a� k2, we would see that

∇P0(f1)

∇P0(F)
=

4(k2 + 4a)

2(2a+ k)(k + 2)
≈ 4 · 2

2(k + 2)
= O(1/k) < O(1).

Using the above example, we can construct an example that most path-based greedy algo-

rithms would have bad performance.

69

Figure 10: An example that greedy algorithm will get Ω(k)-approximation if the resistances

have arbitrary values.

In Figure 10, we could see that the bottom s-t path consists of k/2 edges with total

resistance a + k
2
− 1 while the top s-t path consists of k/2 + 1 edges with total resistance

a + k
2
. So the bottom s-t path has a lower resistance and lower cost, which is likely to

be selected by most of the path-based greedy algorithm. Unfortunately, as long as the

algorithm picks the bottom path first, it would be far from the optimal solution. With

total budget k, the optimal solution is to pick all the edges in the upper half of the graph

and thus the s-t effective resistance is k
2

+ 2a
k

. On the other hand, a path-based greedy

algorithm would only select the bottom s-t path with s-t effective resistance a + k
2
− 1.

Therefore, assuming a� k2, the ratio between the optimal solution and the greedy solution

would be
a− 1 + k/2

k/2 + 2a/k
=

2ak − 2k + k2

k2 + 4a
≈ k

2
= Ω(k).

From this example, we could see that for any greedy algorithm that is better than O(k)-

approximation, it cannot just consider the “local” information of the graph (e.g. the

resistance and the cost of a path), it has to take some “global” information of the graph

70

into account (e.g. the upper s-t path has many cheap-cost improvement). This suggests

that when the resistance are arbitrary, the problem might be much harder and we might

need a different technique.

Greedy approach in minimizing total effective resistance: There is an attempt in

[66] to minimize the total effective resistance using the approach of submodular function

maximization. Given an unweighted connected graph and a set of candidate edges, the

goal is to add a subset of candidate edges to the graph to minimize the total effective

resistance. They try to show the negative of total effective resistance is a submodular

function, and thus there is a (1 − 1/e)-approximation greedy algorithm. Recall Theorem

2.2.5 that the total effective resistance is proportional to the trace of the Laplacian matrix.

They define fe : 2E\{e} 7→ R be the marginal return function of edge e over all subset of

edges of E\{e}, i.e. fe(F) := tr(L†F) − tr(L†F∪{e}) They try to show that fe(E1) ≤ fe(E2)

for all E2 ⊆ E1 ⊆ E\{e} by considering the derivatives of fe.

Unfortunately, their proof is incorrect and they found a counterexample to show the total

effective resistance is not submodular.

Figure 11: A counterexample showing that total effective resistance is not submodular.

In Figure 11, all edges have the same resistance. Let the set of solids edges be F . We can

71

check that

Refftotal(F) ≈ 26.67, Refftotal(F ∪ {e}) ≈ 20.50

Refftotal(F ∪ {f}) ≈ 20.50, Refftotal(F ∪ {e, f}) ≈ 13.91.

Hence Refftotal(F ∪ {f})−Refftotal(F ∪ {e, f}) ≈ 6.59 > 6.17 = Refftotal(F)−Refftotal(F ∪
{e}), which contradicts to the definition of submodularity.

For our greedy approach to the problem, although the effective conductance is not sub-

modular, we generalize the constraint of submodularity to the approximate diminishing

return property. In fact, as long as the factor in Conjecture 3.4.4 is a constant, we can still

obtain a constant approximation algorithm.

It is plausible that an analog of Conjecture 3.4.4 in total effective resistance would be true

when all edges have unit resistance, and hence the greedy algorithm may be a constant

factor approximation algorithm for minimizing the total effective resistance using a similar

analysis in this subsection.

3.5 Conclusions

In this thesis, we introduce a new problem of s-t effective resistance network design problem

and study it from both the complexity and the algorithmic point of view. From the

complexity point of view, we show that the problem is NP-hard even in the simplest setting

where every edge has the same resistance and cost. On the other hand, we design a dynamic

programming based algorithm for series-parallel graphs and a fast greedy algorithm for

general graphs that we conjecture to have a constant approximation ratio.

Finally, other than the conjecture on the performance of our greedy algorithm, we note

the following open problems:

72

1. How hard is it to approximate the solution when the edges no longer have unit

resistance? We conjecture the approximate hardness ratio should depend on the

ratio rmax := maxe re
mine re

.

2. As in the survivable network design problem, we can generalize the problem by having

an effective resistance requirement for each pair of vertices. Given the resistance

upper bounds ruv for all pair of vertices, the problem is to find a minimum cost

subgraph such that the effective resistance between u and v is at most ruv for every

u, v. The main open question is that whether this problem admits a constant factor

approximation algorithm.

The ultimate goal is to incorporate effective resistance as constraints for network design

problems. This will give the network designers a much better control on the resulting

networks. We believe these problems are interesting and solving them would require deeper

understanding on the spectral properties and lead to the development of interesting and

useful techniques.

73

References

[1] Alexander A Ageev and Maxim I Sviridenko. Pipage rounding: A new method of

constructing algorithms with proven performance guarantee. Journal of Combinatorial

Optimization, 8(3):307–328, 2004.

[2] Ajit Agrawal, Philip Klein, and R Ravi. When trees collide: An approximation algo-

rithm for the generalized steiner problem on networks. SIAM Journal on Computing,

24(3):440–456, 1995.

[3] Rudolf Ahlswede and Andreas Winter. Strong converse for identification via quantum

channels. IEEE Transactions on Information Theory, 48(3):569–579, 2002.

[4] David J Aldous. The random walk construction of uniform spanning trees and uniform

labelled trees. SIAM Journal on Discrete Mathematics, 3(4):450–465, 1990.

[5] Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. Graph Clus-

tering using Effective Resistance. In Anna R. Karlin, editor, 9th Innovations in Theo-

retical Computer Science Conference (ITCS 2018), volume 94 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 41:1–41:16, 2018.

[6] Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal discrete

optimization for experimental design: A regret minimization approach. arXiv preprint

arXiv:1711.05174, 2017.

74

[7] Nima Anari and Shayan Oveis Gharan. Effective-resistance-reducing flows, spectrally

thin trees, and asymmetric tsp. In Foundations of Computer Science (FOCS), 2015

IEEE 56th Annual Symposium on, pages 20–39. IEEE, 2015.

[8] András A Benczúr and David R Karger. Approximating st minimum cuts in Õ(n2)

time. In Proceedings of the twenty-eighth annual ACM symposium on Theory of com-

puting, pages 47–55. ACM, 1996.

[9] Danail Bonchev, Alexandru T Balaban, Xiaoyu Liu, and Douglas J Klein. Molecular

cyclicity and centricity of polycyclic graphs. i. cyclicity based on resistance distances

or reciprocal distances. International journal of quantum chemistry, 50(1):1–20, 1994.

[10] Stephen Boyd, Persi Diaconis, and Lin Xiao. Fastest mixing markov chain on a graph.

SIAM review, 46(4):667–689, 2004.

[11] Andrei Broder. Generating random spanning trees. In Foundations of Computer

Science, 1989., 30th Annual Symposium on, pages 442–447. IEEE, 1989.

[12] Tanmoy Chakraborty, Julia Chuzhoy, and Sanjeev Khanna. Network design for vertex

connectivity. In Proceedings of the fortieth annual ACM symposium on Theory of

computing, pages 167–176. ACM, 2008.

[13] Pak Hay Chan, Lap Chi Lau, Aaron Schild, Sam Chiu wai Wong, and Hong Zhou.

Network design for s-t effective resistance, 2018. Manuscript.

[14] Ashok K Chandra, Prabhakar Raghavan, Walter L Ruzzo, Roman Smolensky, and

Prasoon Tiwari. The electrical resistance of a graph captures its commute and cover

times. Computational Complexity, 6(4):312–340, 1996.

[15] Shiri Chechik and Christian Wulff-Nilsen. Near-optimal light spanners. In Proceedings

of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages

883–892. Society for Industrial and Applied Mathematics, 2016.

75

[16] Joseph Cheriyan and László A Végh. Approximating minimum-cost k-node connected

subgraphs via independence-free graphs. SIAM Journal on Computing, 43(4):1342–

1362, 2014.

[17] Joseph Cheriyan, Santosh Vempala, and Adrian Vetta. Network design via iterative

rounding of setpair relaxations. Combinatorica, 26(3):255–275, 2006.

[18] Markus Chimani and Joachim Spoerhase. Network design problems with bounded

distances via shallow-light steiner trees. arXiv preprint arXiv:1409.6551, 2014.

[19] Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and

Shang-Hua Teng. Electrical flows, laplacian systems, and faster approximation of

maximum flow in undirected graphs. In Proceedings of the forty-third annual ACM

symposium on Theory of computing, pages 273–282. ACM, 2011.

[20] Julia Chuzhoy and Sanjeev Khanna. An o(k3 log n)-approximation algorithm for

vertex-connectivity survivable network design. In Foundations of Computer Science,

2009. FOCS’09. 50th Annual IEEE Symposium on, pages 437–441. IEEE, 2009.

[21] Michael B Cohen, Rasmus Kyng, Gary L Miller, Jakub W Pachocki, Richard Peng,

Anup B Rao, and Shen Chen Xu. Solving sdd linear systems in nearly m
√

log n time.

In Proceedings of the forty-sixth annual ACM symposium on Theory of computing,

pages 343–352. ACM, 2014.

[22] Michael Dinitz and Zeyu Zhang. Approximating low-stretch spanners. In Proceedings

of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages

821–840. Society for Industrial and Applied Mathematics, 2016.

[23] Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded pairwise dis-

tance. In Proceedings of the thirty-first annual ACM symposium on Theory of com-

puting, pages 750–759. ACM, 1999.

76

[24] Peter G Doyle and J Laurie Snell. Random walks and electric networks. Mathematical

Association of America,, 1984.

[25] David Durfee, Rasmus Kyng, John Peebles, Anup B Rao, and Sushant Sachdeva.

Sampling random spanning trees faster than matrix multiplication. arXiv preprint

arXiv:1611.07451, 2016.

[26] Jeremy Elson, Richard M Karp, Christos H Papadimitriou, and Scott Shenker. Global

synchronization in sensornets. In Latin American Symposium on Theoretical Infor-

matics, pages 609–624. Springer, 2004.

[27] Alina Ene and Ali Vakilian. Improved approximation algorithms for degree-bounded

network design problems with node connectivity requirements. In Proceedings of the

forty-sixth annual ACM symposium on Theory of computing, pages 754–763. ACM,

2014.

[28] Jittat Fakcharoenphol and Bundit Laekhanukit. An o(log2 k)-approximation algorithm

for the k-vertex connected spanning subgraph problem. In Proceedings of the fortieth

annual ACM symposium on Theory of computing, pages 153–158. ACM, 2008.

[29] Lisa Fleischer, Kamal Jain, and David P Williamson. An iterative rounding 2-

approximation algorithm for the element connectivity problem. In Foundations of

Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 339–347.

IEEE, 2001.

[30] Ronald M Foster. The average impedance of an electrical network. Contributions to

Applied Mechanics (Reissner Anniversary Volume), pages 333–340, 1949.

[31] András Frank. Connectivity and network flows. Handbook of combinatorics, 1:111–177,

1995.

77

[32] Takuro Fukunaga, Zeev Nutov, and R Ravi. Iterative rounding approximation al-

gorithms for degree-bounded node-connectivity network design. SIAM Journal on

Computing, 44(5):1202–1229, 2015.

[33] Harold N Gabow. On the l∞-norm of extreme points for crossing supermodular di-

rected network lps. In International Conference on Integer Programming and Combi-

natorial Optimization, pages 392–406. Springer, 2005.

[34] Harold N Gabow, Michel X Goemans, Éva Tardos, and David P Williamson. Approx-

imating the smallest k-edge connected spanning subgraph by lp-rounding. Networks,

53(4):345–357, 2009.

[35] Shayan O Gharan. University of Washington Computer Science, CSE 599, Lecture

Notes: Recent Developments in Approximation Algorithms, 2015. URL: https://

homes.cs.washington.edu/~shayan/courses/cse599/. Last visited on 2018/03/30.

[36] Arpita Ghosh and Stephen Boyd. Growing well-connected graphs. In Decision and

Control, 2006 45th IEEE Conference on, pages 6605–6611. IEEE, 2006.

[37] Arpita Ghosh, Stephen Boyd, and Amin Saberi. Minimizing effective resistance of a

graph. SIAM review, 50(1):37–66, 2008.

[38] Michel X Goemans, Andrew V Goldberg, Serge A Plotkin, David B Shmoys, Eva

Tardos, and David P Williamson. Improved approximation algorithms for network

design problems. In SODA, volume 94, pages 223–232, 1994.

[39] Michel X Goemans and David P Williamson. A general approximation technique for

constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

[40] Rabih A Jabr, Ravindra Singh, and Bikash C Pal. Minimum loss network reconfigura-

tion using mixed-integer convex programming. IEEE Transactions on Power systems,

27(2):1106–1115, 2012.

78

https://homes.cs.washington.edu/~shayan/courses/cse599/
https://homes.cs.washington.edu/~shayan/courses/cse599/

[41] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network

problem. Combinatorica, 21(1):39–60, 2001.

[42] William Thomson Baron Kelvin and Peter Guthrie Tait. Treatise on natural philoso-

phy, volume 1. Clarendon Press, 1867.

[43] Gustav Kirchhoff. Ueber die auflösung der gleichungen, auf welche man bei der un-

tersuchung der linearen vertheilung galvanischer ströme geführt wird. Annalen der

Physik, 148(12):497–508, 1847.

[44] Douglas J Klein and Milan Randić. Resistance distance. Journal of mathematical

chemistry, 12(1):81–95, 1993.

[45] Alexandra Kolla, Yury Makarychev, Amin Saberi, and Shang-Hua Teng. Subgraph

sparsification and nearly optimal ultrasparsifiers. In Proceedings of the forty-second

ACM symposium on Theory of computing, pages 57–66. ACM, 2010.

[46] Guy Kortsarz, Robert Krauthgamer, and James R Lee. Hardness of approxima-

tion for vertex-connectivity network design problems. SIAM Journal on Computing,

33(3):704–720, 2004.

[47] Guy Kortsarz and Zeev Nutov. Approximating minimum cost connectivity problems.

In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,

2010.

[48] Bundit Laekhanukit. Parameters of two-prover-one-round game and the hardness of

connectivity problems. In Proceedings of the twenty-fifth annual ACM-SIAM sympo-

sium on Discrete algorithms, pages 1626–1643. SIAM, 2014.

[49] Lap Chi Lau, Joseph Naor, Mohammad R Salavatipour, and Mohit Singh. Surviv-

able network design with degree or order constraints. SIAM Journal on Computing,

39(3):1062–1087, 2009.

79

[50] Lap Chi Lau and Hong Zhou. A unified algorithm for degree bounded survivable

network design. Mathematical Programming, 154(1-2):515–532, 2015.

[51] Yin Tat Lee, Aaron Sidford, and Santosh S Vempala. Efficient convex optimization

with membership oracles. arXiv preprint arXiv:1706.07357, 2017.

[52] Istvan Lukovits, Sonja Nikolić, and Nenad Trinajstić. Resistance distance in regular

graphs. International Journal of Quantum Chemistry, 71(3):217–225, 1999.

[53] Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast generation of ran-

dom spanning trees and the effective resistance metric. In Proceedings of the twenty-

sixth annual ACM-SIAM symposium on Discrete algorithms, pages 2019–2036. Society

for Industrial and Applied Mathematics, 2015.

[54] Peter Matthews. Covering problems for brownian motion on spheres. The Annals of

Probability, pages 189–199, 1988.

[55] Vardges Melkonian and Éva Tardos. Algorithms for a network design problem with

crossing supermodular demands. Networks: An International Journal, 43(4):256–265,

2004.

[56] Adam Meyerson, Kamesh Munagala, and Serge Plotkin. Cost-distance: Two metric

network design. In Foundations of Computer Science, 2000. Proceedings. 41st Annual

Symposium on, pages 624–630. IEEE, 2000.

[57] Adam Meyerson and Brian Tagiku. Minimizing average shortest path distances via

shortcut edge addition. In Approximation, Randomization, and Combinatorial Opti-

mization. Algorithms and Techniques, pages 272–285. Springer, 2009.

[58] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of

approximations for maximizing submodular set functions—i. Mathematical Program-

ming, 14(1):265–294, 1978.

80

[59] Aleksandar Nikolov, Mohit Singh, and Uthaipon Tao Tantipongpipat. Proportional

volume sampling and approximation algorithms for a-optimal design. arXiv preprint

arXiv:1802.08318, 2018.

[60] Kaare Brandt Petersen and Michael Syskind Pedersen. The matrix cookbook (version:

November 15, 2012), 2012.

[61] Prasad Raghavendra and David Steurer. Graph expansion and the unique games con-

jecture. In Proceedings of the forty-second ACM symposium on Theory of computing,

pages 755–764. ACM, 2010.

[62] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between ex-

pansion problems. In Computational Complexity (CCC), 2012 IEEE 27th Annual

Conference on, pages 64–73. IEEE, 2012.

[63] Aaron Schild. An almost-linear time algorithm for uniform random spanning tree

generation. arXiv preprint arXiv:1711.06455, 2017.

[64] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.

SIAM Journal on Computing, 40(6):1913–1926, 2011.

[65] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph

partitioning, graph sparsification, and solving linear systems. In Proceedings of the

thirty-sixth annual ACM symposium on Theory of computing, pages 81–90. ACM,

2004.

[66] Tyler Summers, Iman Shames, John Lygeros, and Florian Dörfler. Topology design

for optimal network coherence. In Control Conference (ECC), 2015 European, pages

575–580. IEEE, 2015.

[67] Prasad Tetali. Random walks and the effective resistance of networks. Journal of

Theoretical Probability, 4(1):101–109, 1991.

81

[68] Jacobo Valdes, Robert E Tarjan, and Eugene L Lawler. The recognition of series

parallel digraphs. In Proceedings of the eleventh annual ACM symposium on Theory

of computing, pages 1–12. ACM, 1979.

82

	List of Figures
	Overview
	Background
	Graphs and Matrices
	Graphs
	Matrices

	Electrical Networks
	Electrical Flow and Voltage
	Effective Resistance
	Energy and Thomson's Principle

	Applications of Effective Resistance
	Analyzing Random Walks
	Sampling Random Spanning Trees
	Spectral Sparsification

	Network Design
	Edge Connectivity and Iterative Rounding
	Edge Connectivity on Directed Graphs
	Element Connectivity
	Vertex Connectivity
	Bounded Pairwise Distance
	Edge Connectivity with Degree Bounds

	Spectral Requirements
	Mixing Time
	Algebraic Connectivity
	Total Effective Resistance
	Experimental Design

	Network Design for Minimizing s-t Effective Resistance
	Introduction
	NP-completeness for Unit Cost Unit Resistance
	Dynamic Programming Algorithms for Series-Parallel Graphs
	Series-Parallel Graphs
	Polynomial Time Algorithm for the Unit Cost Case
	Fully Polynomial Time Approximation Scheme

	Greedy Approach
	Observations and Intuition
	Greedy Algorithm
	Analyzing the Greedy Algorithm
	Discussion

	Conclusions

	References

