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Abstract

Social media platforms contain large amounts of freely and publicly available data that
could be used to measure population characteristics across different geographical regions.
Analyzing public data sources such as social media data has shown promising results for
public health measures and monitoring. This thesis addresses challenges in building sys-
tems that collect high-volumes of data from social media platforms. More specifically, we
look at Twitter data processing, filtering, and aggregation to provide population-level in-
dicators of physical activity, sedentary behavior, and sleep (PASS). In the first part of the
thesis, we go over the whole machine learning pipeline built: (i) Twitter data collection
from November 2017 to May 2018; (ii) data preparation through manual annotation, key-
word filtering, and an active learning technique for the labelling of 10,283 tweets; and (iii)
training a classifier to identify PASS related tweets. Training the model involves building
an initial classifier to efficiently find relevant tweets in subsequent annotation iterations.
Our classifiers include an ensemble model consisting of several shallow machine learning
algorithms, along with deep learning algorithms. In the second part of the thesis, we look
at the performance of different solutions. We provide benchmark results for the task of
classifying PASS related tweets for the various algorithms considered. We also derive health
indicators by aggregating and computing the proportion of classified tweets by province
and compare our metrics with the prevalence of obesity, diabetes and mood disorders from
the Canadian Community Health Survey. Our work shows how machine learning can be
used to complement public health data and better inform health policy makers to improve
the lives of Canadians.
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Chapter 1

Introduction

1.1 Motivation

In today’s digital world, people are getting less physical activity, and are spending increas-

ingly more time in front of computers and electronic devices. A less active society has in

part led to a rise in obesity, diabetes, heart disease and mental health issues in Canada

[8]. Yet, physical activity is only one variable of many that affect health, thus developing

guidelines and a framework to identify what makes a healthy lifestyle is a difficult task.

In the past, routine reporting in Canada focused on moderate to vigorous levels of

physical activity. However, recent studies have found that activities at all levels affect

health [21, 58]. The Public Health Agency of Canada (PHAC) contends that reporting

on a range of indicators permits a clearer picture of Canadians’ health and well-being.

For instance, light Physical Activity, Sedentary Behaviour and Sleep (PASS) are now also

included in health monitoring in Canada [41]. PASS information can be used to develop

effective policies and programs aimed at improving the population’s engagement in physical
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activity and overall health. Most public health data comes from Canadian health surveys,

but traditional methods of collecting public health data are costly and slow. Hence, there

is a need to modernize the monitoring of Canadians’ physical activity levels.

1.2 Why Study PASS?

The average person today spends most of their time stationary, whether it is work hours at

a desk or relaxed time in front of a screen (e.g., a television, a computer, a smart-phone).

While our daily lives involve varying intervals of physical activity and sedentary behaviour

(i.e., sitting and sleeping), the amount of time spent in each of these domains has a direct

impact on health, well-being, and quality of life. Recent studies show that the average

amount of time spent sedentary among Canadian adults and children is 10 and 8.5 hours

per day, respectively [11, 10]. These statistics are alarming given that the recent Canadian

24-Hour Movement Guidelines recommend no more than 2 hours of screen time for children

and youth [54].

Similarly, surveys in past years suggest that 1 in 4 Canadian children are not getting

enough sleep i.e., less than the recommended 8-11 of sleep per night [54]. Good, quality

sleep is a crucial part of a healthy lifestyle, and the amount of sleep an individual gets has

been associated with various health outcomes, including chronic diseases and increased

chance of death [7].

More effort is needed in order to promote healthy living and behaviours. Indeed, it

is important for public health organizations to effectively monitor the health of a nation.

The development of new technologies and new methodologies provides an opportunity to

improve the prevention of chronic diseases and injuries. Non-traditional data sources like
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social media could help in understanding population trends in physical activity, seden-

tary behaviour and sleep, and identify populations at risk of developing diseases such as

diabetes or obesity. Users on social media often share their thoughts, feelings, and experi-

ences, which can be used to track attitudes and behaviours. A more advanced public health

surveillance could better inform those responsible for creating programs and policies im-

pacting the health of Canadians so that citizens can spend more years living productively

and happily.

1.3 Problem Definition

Advances in natural language processing and machine learning today allow for novel meth-

ods of collecting health data and analyzing it. Social media platforms represent a rich

pool of information where people publicly share content. Platforms such as Twitter offer

real-time and geotagged data collection. The constant stream of data about user’s daily

lives can greatly enhance and improve traditional public health surveillance techniques.

This thesis explores the challenges of building systems that collect high-volumes of

data from Twitter for public health surveillance. We investigate the necessary steps for

the collection and preparation of data for building a robust machine learning classifier to

identify tweets related to physical activity, sedentary behaviour and sleep. Once relevant

tweets are obtained, our interests lie in discovering insightful trends across different regions

and time periods in Canada.
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1.3.1 Research Questions

The main focus of this thesis is to extract insightful trends from social media data in relation

to PASS. Another important component involves the use of machine learning algorithms

for the collection of a labeled dataset and the classification of tweets. Developing a system

that accomplishes such tasks requires answering the following research questions:

1. What do Canadians share about PASS on social media?

2. Can social media be used to measure PASS health indicators?

3. How are machine learning classifiers affected by the period of the year data is col-

lected?

4. What machine learning classifiers perform best for identifying PASS-related tweets?

1.4 Thesis Contributions

In this thesis, we present a system that collects Twitter data for public health monitoring.

The main contributions of this thesis are threefold:

1. Twitter data collection and annotation: We labelled a total of 10,283 tweets

that are related to the PASS domain through manual annotation, keyword filtering

and an active learning technique. This method helps increase the performance of our

machine learning (ML) algorithm by finding relevant tweets to label.

2. Machine learning models for the classification of tweets: We built machine

learning classifiers to determine whether a tweet was related to physical activity,
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sedentary behaviour and/or sleep. Our models included an ensemble model to classify

relevant tweets. The ensemble model consists of various machine learning algorithms

that were combined for better performance. We also build deep learning models to

obtain the highest performance for the classification of tweets in the PASS domain.

3. PASS Health Indicators: We derived health indicators for every province/territory

in Canada by predicting PASS labels on our Twitter dataset of 8.4 million tweets. The

health metric was obtained by aggregating the counts for every region in Canada and

computing the proportion of labelled tweets. We compared our results with Canadian

health surveys using Pearson’s correlation.

1.5 Outline

The remainder of the thesis is structured as follows:

In Chapter 2, we provide relevant background information for public health surveil-

lance systems, and shows some common approaches used for the problem of text classifi-

cation.

In Chapter 3, we describe the techniques used for the preparation of our data. In

particular, we discuss methods for the collection of Twitter data for PASS indicators, and

the preprocessing and the cleaning of the tweets.

In Chapter 4, we present the various machine learning algorithms used for the classi-

fication of PASS-related tweets. We provide the details for the ensemble model that makes

predictions based on shallow base learners. We also show the model architectures of our

deep learning models for the same problem.
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In Chapter 5, we provide the results from various experiments, including benchmark

results for the three PASS indicators for every model used. We also run experiments to

show the effect of seasonality on our models.

Finally, in Chapter 6, we discuss the findings, limitations and implications of our

study. We discuss potential areas for further exploration and improvement.

6



Chapter 2

Background

2.1 Social Data and Public Health Monitoring

In this work, we leverage the massive, freely, and publicly available data coming from social

media, commonly referred to as social data. Social data refers to data that is created by

people with the goal of sharing with others [44]. In general, social data is generated by a

large percentage of the Canadian population, approximately 22 million users, which makes

it appropriate for public health monitoring [53]. In this section, we first present traditional

approaches for public health monitoring and then explore alternative sources of health

data.

2.1.1 Current Approach to Public Health Monitoring

Public health information is crucial for policy makers and health care professionals to

develop health care programs and anticipate health care services [4]. Public health organi-
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zations like the PHAC rely on Statistics Canada through the Canadian Community Health

Survey (CCHS). The CCHS collects health information from Canadians through surveys

that are performed biennially. The survey is designed to produce cross-sectional estimates

to address priority health data gaps at national, provincial and regional levels [25].

2.1.2 Social Media Platforms

Social media platforms has recently been a popular alternative source to explore public

health data and applications. The Google Flu Trends system [14] famously used Internet

search activity to provide estimates of influenza prevalence. Using Google’s search engine,

they inferred the public’s interest from their searches for flu-related information. Moreover,

blogs, such as Tumblr and Wordpress, are online platforms where users post messages and

articles intended to be broadcast to a general, public audience. Blogs are common for

extracting social data and social monitoring, as people tend to share their beliefs and the

time of day during which they partake in various activities.

Finally, social media platforms like Facebook, Twitter, Instagram or Youtube have been

particularly popular for public health monitoring, as they provide publicly accessible data

from billions of daily users [52]. The data that can be publicly found in these platforms

can reveal population attitudes and behaviors. Previous work assessed alcohol behavioural

stages from tweets [29], revealed dietary choices through photos [18], and captured drug

use in videos [34]. Since the work in this thesis focuses on population-level monitoring,

social media networks are an appropriate source of data. However, it is worth noting that

young adults are over-represented on Twitter [50].
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2.1.3 Data-Driven Public Health Applications

Early work in social monitoring for health-related applications investigated what public

health information could be learned from Twitter by building a binary classifier to identify

health-related messages from a corpus of tweets [42]. Their studies led to the construction

of structured disease information from tweets for public health metrics.

Recently, Nguyen et al. [37, 38] built a US neighborhood dataset from Twitter data

for indicators of happiness, diet, and physical activity. The aim was to obtain area-level

indicators of well-being and health behaviours from geo-tagged tweets. They evaluated

their method by comparing predicted values for their health indicators to those generated

by human labelers. Additionally, geotagged tweets were spatially mapped to census data

which allowed them to assess the associations between tweets and their neighborhood

variables with demographic, economic and health characteristics [38].

Other similar work attempted to predict general population health behavior and de-

rive mental health indices from Twitter data [39, 40]. They approached their study as a

regression problem where they predicted the health index for each US state. For instance,

their health index for sleep represents the proportion of people who sleep less than 7 hours

daily. They evaluated their results with correlations between actual health rankings from

the United States (U.S.)’ annually conducted Behavioral Risk Factor Surveillance System

(BRFSS) surveys and the estimated health ranking from their models.

2.1.4 PASS Indicators

More specific research on social monitoring focuses on the PASS domain in relation to

behavioural medicine. Researchers study how people make choices about their health and

how it affects their personal health and well-being.
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Researchers have increasingly studied exercise and physical activities using Twitter

[27, 61]. Vickey et al. [57] and Kiciman et al. [27] compared self-reported estimates of

daily physical activity data provided from surveys to a mobile fitness app where users share

their physical activity over Twitter. These studies found that participants’ actual physical

activity levels were lower than those reported in the self-reported surveys. Akbari et al.

[2] built a classifier to detect tweets that mention actions related to wellness, including

exercise, diet, and healthcare utilization [44]. Similarly, Dos Reis et al. [19] were interested

in whether social media data could be used to make causal inferences for health surveillance.

They trained a text classifier to estimate the volume of a user’s tweets that express anxiety

and depression, then compared it to groups that exercise regularly and a matched control

group.

The public monitoring of sleep has been studied less extensively. Nonetheless, research

has gone into examining whether social media could be used to infer sleep issues and

investigating common sleep problems and patterns [1, 32].

2.2 Text Classification

Text classification is the task of assigning one or more categories to a text document based

on its content. In our work, we classify tweets in order to filter for relevant data for analysis.

Figure 2.1 shows a standard pipeline for the analysis of social media for public health

surveillance, with data being the most important component. The pipeline is made of two

parts: filtering and inference. For the filtering task in the pipeline, we consider machine

learning classifiers. A classifier is an algorithm that assigns labels to the input tweet

messages. In the next subsections, we formally define the problem of text classification

and provide a context within our system. We also cover different techniques for the data
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collection of relevant PASS data. We cover various techniques considered for filtering

relevant data, such as keyword filtering, supervised, semi-supervised, and unsupervised

machine learning algorithms.

Figure 2.1: Standard pipeline for monitoring of social data

2.2.1 Multi-label Classification

In traditional single-label classification, the task is defined as the concept of learning from

of a set of examples that are associated with a single label l from a set of disjoint labels

L, |L| > 1. If |L| = 2, then the learning problem is referred to as a binary classification,

whereas if |L| > 2, then it would be called a multi-class classification problem [55].

In text classification, text documents can belong to more than one category. In this

case, a tweet can be classified into one or more of the three indicators: physical activity,

sedentary behaviour or sleep. Multi-label classification assigns each input sample to a

set of binary target labels. Multi-label classification is a generalization of the multi-class

classification, where in the multi-label problem, there exists no constraint on how many of

the classes the input sample can be assigned to.

The existing methods for multi-label classification can be grouped into two separate cat-

egories: a) problem transformation methods and b) algorithm adaptation methods. Problem
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transformation methods are the most common approach, where a multi-label classification

task is transformed into a one or more single-label classification problem. Algorithm adap-

tation methods involve extending specific learning algorithms to handle multi-label data

directly.

Binary Relevance

The simplest and most commonly used problem transformation method is called binary

relevance. This method treats each label as a separate single classification problems, mak-

ing the assumption that there is no correlation among the various labels in the problem. In

other words, |L| datasets are constructed from the original one that contain all examples

of the original dataset, labeled as y if the labels of the original example contained y and as

¬y otherwise. More formally, this technique learns |L| binary classifiers Hl : X −→ {l,¬l},

one for each different label l in L.

Classifier Chains

In this technique, a classifier is first trained on the input data. Subsequent classifiers are

then trained on the same input data, in addition to all previous classifiers’ predictions in

the chain [49]. This allows the model to learn from the signals from the correlation among

preceding target variables.

2.2.2 Filtering Techniques

Any quantitative methods of analyzing social data requires the collection and processing of

relevant data. Below, we describe numerous ways for identifying, filtering and classifying
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pertinent data. We first cover a simple method, namely keyword filtering, and move to

more sophisticated machine learning techniques.

Keyword Filtering

Keyword filtering searches for tweets that match a certain pattern or keyword for the

identification of relevant information. Keyword filtering is usually the simplest and quickest

way for collecting relevant data. In past social monitoring studies, Paul et al. [43, 42] used a

list of 20,000 keyphrases related to illnesses, diseases, symptoms, and treatments to collect

data for labelling on Amazon Mechanical Turk (AMT). They ensured the quality of their

data by using a majority vote technique i.e. removing example points where the majority

of annotators did not agree and were unsure of the best label. Similarly, McIver et al.

[32] used a list of keywords from researchers with expertise in sleep-related fields of study

and experimental queries to obtain their dataset of tweets for characterizing sleep issues.

In certain cases, it is also possible to collect data using only hashtag keywords. Akbar

et al. used sleep logs on Twitter from the #Sleep_as_Android mobile phone application

[1]. Hashtags allow messages to be directly categorized by different topics. Even though

keyword filtering is popular, the method has many disadvantages. Keyword filtering only

looks at particular individual keywords and fails to obtain the full context of a document.

Supervised ML through SVMs and Logistic Regression

When context matters in text classification, the problem of classifying relevant tweets can

be approached as a supervised machine learning problem, where the model is trained on

many labeled examples. Support Vector Machine (SVM)s and logistic regression are the

most commonly used classification models for identifying health-related tweets [29, 42, 59].
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Classifiers rely on a set of predictors, or features, to represent information and signals

in text messages. The bag-of-words method is a typical approach in natural language

processing to represent the features of a sentence as a bag of words while keeping word

count and ignoring order. An extension of the bag-of-words approach is to take order into

considering and look beyond individual words in a tweet. Considering bigrams, a sequence

of two words, trigrams, a sequence of three words, or n-grams of contiguous words adds

context. Both bag-of-words approach and its extension treat all words with the same

importance. A more powerful technique is to extract Term Frequency-Inverse Document

Frequency (TF-IDF) [48] features which assigns a weight to different words depending on

their uniqueness and importance rather than giving equal weight to all words.

In certain cases, extracting features from metadata can also be useful. For character-

izing sleep issues, McIver et al. [32] used the number of tweets, friends count, followers

count, tweet time and location as added features in their model.

Unsupervised ML through Clustering

An alternate approach to the problem of identifying relevant tweets is through a clustering

technique known as topic modeling.

Similar to classification, this approach organizes tweets into categories without requiring

labels, making it an unsupervised machine learning problem. The main idea behind topic

modeling is to view text documents as a composition of many underlying topics, with each

topic represented as a cluster of related words. Latent Dirichlet Allocation (LDA) is the

most commonly used topic model and has been applied to social media through different

applications. For predicting U.S. county-level indices, Nguyen et al. [39] extracted low-

level features such as the topics and linguistics for tweets, in addition to statistical features.
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They used two different textual features: the Linguistic Inquiry and Word Count (LIWC)

package [46] for extracting language style of tweets and latent topics extracted using the

LDA method.

Semi-supervised ML through active Learning

Active learning is a type of semi-supervised machine learning in which the learning algo-

rithm interactively query for a user or teacher to label new data points. Liu et al. [29]

employed this approach to find alcohol-related tweets efficiently to reduce the manual effort

for labelling tweets by identifying tweets that were more useful to annotate. Their method

iteratively requested the labelling of tweets that were close to the decision boundary of their

supper vector machine classifier, which was initially trained on available labeled data.

Deep Neural Networks

Deep learning models have been used for numerous Natural Language Processing (NLP)

applications and achieved success in many traditional NLP tasks [12, 62]. In text clas-

sification, these methods use a multilayer neural network (NN) architecture. The model

takes an input sentence and automatically learns features from the input through training

via backpropagation [13]. The input to these neural networks are raw words represented

as a vector of indices taken from a finite dictionary of words. These word indices are then

mapped to a feature vector through a look-up table to obtain word embeddings. Word

embeddings are vector representation of words that are trained from very large unlabeled

corpora containing billions of words [33].

While a 2-dimensional Convolutional Neural Networks (CNN) in computer vision in-

volves sliding a window of filters over an image, there is a similar notion in NLP, where
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a 1-dimensional CNN is a sliding window over a sequence of words. In other words, a

1-dimension convolution of size k can be thought of as an n-gram detector that learns to

identify relevant k-grams in the input [24]. Kim et al. [28] trained a CNN with one layer of

convolution on top of Word to vector (Word2vec), word embeddings trained on 100 billion

words of Google News, and achieved excellent results on sentence classification tasks.

Similarly, text data from tweets can also be represented as temporal data, or a series

of words. A Recurrent Neural Network (RNN) is a type of neural network that processes

sequential data. In this case, tweets can be modeled as a sequence of words, where each

word is encoded with an integer representing the word index in a dictionary. A Long

Short Term Memory (LSTM) unit is a special type of RNN that is designed to overcome

certain limitations, such as the vanishing and exploding gradient problems, when dealing

with larger sequences and quantities of data. Modeling RNNs for text classification is

similar to the deep learning architecture previously described. The input is a fixed-sized

input vector of word indices that are mapped to word embeddings, and the model outputs

labels of a specified length. For many NLP tasks, context from previous and future words

are important and beneficial to a model. To capture the full context of a sentence, a bi-

directional LSTM is employed, which presents a forward and backward sequence as input

to a network such that it captures past and future information [22].
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Chapter 3

Data Preparation

Twitter contains data about the daily lives of millions of Canadian users [52], thus making

it an appropriate data source for a study of PASS health indicators. We first collected a

large dataset of tweets, then built a labelled dataset for the three PASS indicators using

keyword filtering to select relevant tweets for manual annotation. In this chapter, we

describe the techniques used for collecting, labelling and cleaning our data before it is used

in a machine learning classifier.

3.1 Data Aggregation

The Twitter Streaming API service provides a constant 1% random sample of all tweets

in real-time. Developers and researchers can collect targeted datasets based on specific

keywords, locations, or users. Twitter’s developer platform offers several tools and APIs

for extracting data from their social media, hence incoming samples were constrained to

geo-tagged tweets from Canada using a bounding box, represented in latitude and longitude
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measurements. Using the Twitter Streaming API, we stored incoming English language

tweets from Canada to a MongoDB database from November 17, 2017 to May 24, 2018.

3.1.1 Exclusions

Since the Twitter platform is open to anyone, posts can sometimes originate from orga-

nizations, clubs, governments, public figures, etc. We excluded all re-tweets since these

messages do not originate from the user posting the original tweet. In addition, all non-

English tweets were removed to simplify our model learning the linguistic structures of a

single language.

Figure 3.1: The number of tweets and users throughout the filtering stages
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3.1.2 Keyword filtering

In order to quickly obtain relevant tweets for manual annotation, we used regular expres-

sions to identify tweets that contained specific keywords appropriate for PASS. Tables 3.1,

3.2 and 3.3 show the lists of keywords used to identify relevant tweets to build the dataset.

For sleep, we used the provided keywords from previous work that studied sleep issues

using Twitter [32]. The search terms, identified through consultation with researchers with

expertise in sleep-related fields of study, included names of sleep disorders, specific medi-

cations for sleep problems and popularly used hashtags related to sleep issues. Our list of

keywords for physical activity were based on the ones used in similar work [37]. The list

included activities gathered from physical activity questionnaires, compendium of physical

activities and popular available fitness programs. Popular mountains and parks covering

most provinces in Canada were also included. While the keywords do not consist of an

exhaustive list of all provincial and national parks, most mountains and parks in Canada

are intended to be captured from active learning. For sedentary behaviour, we focused

on obtaining tweets that clearly indicated that the user was in a stationary state for a

prolonged period. We first captured media that a person usually spends watching on tele-

vision or online: keywords contained names from the most popular sports leagues, steams,

players, movies and TV shows. Additionally, keywords for the most popular books were

included.

Although this approach does not include the entire set of all PASS relevant tweets, it

is hypothesized that it covers a good majority.
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Table 3.1: Sedentary behaviour keywords

Sports athletes Sports teams Generic sports Sports leagues Movies TV shows Books Verbs

stephen curry toronto raptors mma ufc black panther stranger things book watch

lebron james toronto maple leafs basketball nba avengers netflix read read

james harden edmonton oilers baseball mlb infinity wars game of thrones reading reading

demar derozan calgary flames hockey nhl dunkirk strangerthings watch

kyle lowry ottawa senators soccer mls annihilation arrested development watching

montreal canadiens football nfl star wars 13 reasons why

toronto blue jays ready player one mindhunter

Toronto FC red sparrow house of cards

isle of dogs walking dead

jurassic world black mirror

handsmaid’s tale luke cage

3.2 Data Labelling

The construction of our labelled dataset consists of two main parts: manual annotation

from the keyword filtering, and active learning after training an initial classifier. Due to

cost restrictions and to ensure consistency across labels, the tweets were annotated by a

single person i.e., the main author of this thesis. Familiarity with Canadian cultural and

geographical references was also an important factor, as mentions of popular shows, sports,

athletes and locations was commonly found in tweets.

3.2.1 Annotation

The main idea behind the keyword filtering was to find tweets that were relevant to the

PASS indicators and to narrow down the search for potential tweets to be labelled quickly.

We also avoid tagging tweets that are clearly irrelevant to the PASS domain.

We separate the tweets from the keyword filtering into three groups each representing

a health indicator independently. The manual annotation task had to determine whether
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Table 3.2: Physical activity keywords

Activities Outdoors

gym hiking

workout climb

basketball mountain

baseball mt

climb algonquin

dance mont tremblant

squat bruce peninsula

skating manitoulin island

weights tobermory

gains national park

volleyball provincial park

yoga bromont

park chicopee

mountain blue mountain

play whistler

train jasper

run banff

hike sutton

ski orford

lift

Table 3.3: Sleep keywords

Generic Medications

bed ambien

sack melatonin

insomnia zolpidem

dodo lunesta

zzz intermezzo

siesta trazadone

tired eszopiclone

nosleep zaleplon

cantsleep

rest

zzz

pass out

get up

wake up

asleep

slept

power nap

a tweet was related to the health indicator or not (positive or negative). Table 3.4 shows

samples tweets and how they were annotated to build our PASS dataset.
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Table 3.4: Sample tweet annotations

Tweet text
Indicator

Physical activity Sedentary behaviour Sleep

4 hours of sleep last night & im ready for bed like 2 hours ago × × X

i have to be up in 6 hours for a twelve hour shift and i can’t sleep × × X

got up early to go mountainbiking before work and have been rewarded with sunshine X × ×

i did yoga today! X × ×

geralds game - stephen king. i am reading it over christmas × X ×

i’ve watched avengersinfinitywar trailer about 7 times now. it gets better with each viewing × X ×

Since the expression of how a person is involved in a physical activity, sedentary be-

haviour or poor sleep can vary in so many different ways, we followed some guidelines

described below to determine when a tweet should be positively labeled. In general, we are

interested in tweets that show that the user was involved with one of the PASS indicators

recently, either in the past or upcoming week.

Physical Activity

A tweet should be positively labeled for this indicator if the post has sufficient information

that the user was involved in some form of physical activity. These tweets incorporated

gym-related exercises (e.g., weight lifting, working out), sports (e.g., basketball, soccer),

recreation (e.g., hiking, skiing), and light activities (e.g., shoveling snow, walking the dog).

We also identified some positive examples that were more difficult to label below.

Location: When a location is mentioned in the tweets that heavily implies that the

user did physical activity, then that post was positively labeled.

• Sunday morning @ [YMCA/yoga club/centre]

• missed yesterday but putting in some time today! (@ goodlife fitness in oakville)
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• good to be flying again @ batawa ski hill

Sedentary Behaviour

A tweet labeled for this indicator must show that the user was in a sedentary behaviour,

which is defined as in a state of sitting or lying down for long periods of times. A person

is usually sedentary at work, at school, at home, when travelling or during leisure time.

These tweets comprised of watching a screen (e.g., sports games, movies, TV shows) or

reading (e.g., book). Examples of more challenging tweets to identify are shown below.

Commentary while watching television: People will often tweet while watching

something on TV or online. There must be sufficient information to suggest that the user

was in a sedentary behaviour at the moment the tweet was made. Generic statements

about a show, movie or sporting event do not qualify.

Sleep

Tweets that demonstrate that the user has poor sleep should be positively labeled for this

health indicator. If the post expressed how many hours of sleep the person had, then the

general rule to follow is that 7 hours or less represents inadequate sleep [40].

3.3 Data Preprocessing

3.3.1 Metadata

Twitter data comes in the form of text, but can contain attachments such as images and

URLs. The data content is accompanied with metadata, such as the timestamps and
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location which are used for the analysis in order to understand variation in populations.

Location information is often provided by the social media platform. For instance, Twitter

provides detailed information in the form of latitude and longitude coordinates when users

participate with a GPS-enabled device. Otherwise, the platform can sometimes infer the

location of the user through their network and tag a tweet with a nearby city or location

name. Finally, Twitter messages are restricted to 280 characters to ensure that users only

share short messages. Tweets were parsed to obtain the tweet ID, timestamp, location,

and self-stated location.

3.3.2 Data Cleaning

All non-English tweets were excluded in the dataset, although tweets that use non-English

number characters or notations were still accepted. We used a tokenizer 1 based on nltk 2

that was adapted for Twitter. The tokenization step allows us to appropriately distinguish

different parts of a tweet such as hashtags, usernames, URLs, retweets, emoticons and

emojis. The cleaning of the text data from tweets involved removing usernames, emoticons,

emojis, and URLs from the content in preparation for feature extraction. Finally, the

tweets were all lower-cased, special characters were stripped and generic stop words were

also removed.

Because our experiments include the use of deep learning models such as RNNs and

CNNs, we treat tweets as temporal data, or a sequence of words. After tokenization,

we convert the raw text data to a vector of integers, representing word indices from the

dictionary of all words in the dataset. The vectors are then left-padded with zeros in order

to have a fixed-sized input to the deep learning models.
1https://github.com/erikavaris/tokenizer
2https://www.nltk.org/
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Chapter 4

Methods

4.1 Feature Extraction

We used a set of various different features for the PASS classification of tweets that are

summarized in Table 4.1.

TF-IDF. We extracted (1, 4)-gram TF-IDF features from the words and characters of

a tweet. The most relevant terms from the TF-IDF features are displayed in Figure 4.1.

Hand-crafted features. Additionally, we extracted indirect text features from the

tweets such as the number of unique words used, the character length of the tweet, the

number of words per tweet, and the average word length of the tweet. We show the tweet

data histograms for the average word length, word length, and character length in Figure

4.2, 4.4, and 4.3 respectively.

Word embeddings. We also used GloVe 1 word embeddings [47] weighted with TF-
1https://nlp.stanford.edu/projects/glove/
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Table 4.1: Features used in shallow machine learning algorithms

Feature Dimensions

Average word length 1

Number of words 1

Number of characters 1

Number of unique words 1

(1, 4)-gram word TF-IDF 5000

(1, 4)-gram character TF-IDF 5000

Glove word vectors 200

Total 10204

IDF. We used GloVe word vectors pre-trained on 2 billion tweets, which contained a vo-

cabulary of 1.2 million words with dimension 200.

4.2 Classifier Details

We experiment with two different types of classifiers: an ensemble model consisting of

several machine learning models, and deep learning classifiers.

4.2.1 Ensemble Model

We employ an ensemble of machine learning algorithms that combines base learners into

one predictive model. The classification is accomplished by merging the predictions of 5

separate models: Naive Bayes (NB), Logistic Regression (LR), RBF-SVM, Random Forest

(RF), and XGBoost (XGB). A meta learner then learns how to best combine the predictions
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Figure 4.1: Top (1-4) grams from the TF-IDF feature extraction

of the base learners into a final output prediction. In our case, we feed the probability

output of these models to another logistic regression model for the final prediction of the

PASS labels. In doing so, our model can learn to weigh more accurate models more heavily

in the final prediction. This approach allows to combine powerful non-linear classifiers

for a greater representational capacity. Our model implementations use the scikit-learn

machine learning package in Python [45]. Table 4.2 shows the algorithms and matching

Python libraries used for the implementation.
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Figure 4.2: Average word length frequency across tweets

4.2.2 Deep Learning

The implementation of our deep learning models is done using the Keras package that

offers a high-level and fast deep learning framework [9].

1-D Convolutional Neural Network

In this architecture, we use a one-dimensional CNN with pre-trained GloVe embeddings.

Our model uses 1-D CNNs with 3 different filter sizes that are concatenated. This involves

sliding a one-dimensional window of three different lengths (size of 1, 2 and 3 in this case).

The three convolutional layers can be seen as detectors searching for n-grams of size 1, 2
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Figure 4.3: Character frequency across tweets

and 3. The subsequent layers include a max-pooling layers, several fully-connected layers

with ReLu activation layers [36]. We employ dropout on the fully-connected layers to

prevent overfitting the model [51]. Figure 4.6 shows the model architecture along with the

input and output sizes at each layer.

Recurrent Neural Network

The RNN architecture consists of a bidirectional LSTM, which involves stacking two layers:

the first layer is the original input kept as is, while the second layer is a reversed copy of

the input sequence. This technique adds more context to the model, as each timestep
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Figure 4.4: Number of word frequency across tweets

in the network processes data in both directions at the same time. Figure 4.7 shows

the architecture of the neural network. Similar to the 1-D CNN architecture previously

described, we use pre-trained GloVe word embeddings.

4.3 Active Learning

We use an active learning approach in order to increase the efficiency of labeling our

tweets, since we have the challenge of class imbalance. This approach involves labelling

data iteratively to avoid tagging redundant tweets and focus on data that are more difficult
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Figure 4.5: Ensemble model high-level overview

to label to increase the performance of our model, similar to Liu et al. [29]. We accomplish

this by first training a classifier on the existing labelled data of roughly 1000 tweets that

were manually labelled. We then selected all unlabelled tweets that have a probability

estimate within a threshold 0.30 <= P (li|x) <= 0.70. The tweets that fall into this

decision boundary range are then selected as future tweets to be labelled in the process.

The process was repeated 5 times, with approximately 2000 tweets being labelled at each

iteration by the same person i.e., the main author of the thesis. The manual annotation

rules followed were detailed previously.

4.4 PASS Health Indicators

To obtain PASS health indicators, we classified tweets on our entire dataset of 8.4 mil-

lion tweets. Afterwards, we aggregated the tweet count for each indicator per province and

territory in Canada, and computed the relative proportion for that region. In order to com-
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Table 4.2: Algorithms used in the ensemble model with corresponding Python library

Algorithm Python libraries

Random Forest sklearn.ensemble.RandomForestClassifier

Logistic Regression sklearn.linear_model.LogisticRegression

RBF SVM sklearn.svm.SVC

Linear SVM sklearn.svm.LinearSVC

Naive Bayes sklearn.naive_bayes.BernoulliNB

XGBoost xgboost.XGBClassifier

pare our PASS-derived health indicators, we obtained the 2014 CCHS data from Statistics

Canada. We correlated our PASS indicators and the 2014 CCHS prevalence of self-reported

obesity, diabetes, and mood disorder for each province using Pearson’s correlation coeffi-

cient. The survey questions used to obtain these statistics can be seen in Table 4.3. The

questions emphasized that the survey was interested in conditions diagnosed by a health

professional and that are expected to last or have already lasted 6 months or more. The

assessment of obesity used guidelines based on Body Mass Index (BMI), a measure that

examines the relation between weight and height. BMI was calculated for the population

aged 12 to 17 years old, then aged 18 and older, excluding pregnant women, and persons

less than 3 feet (0.914 metres) tall or greater than 6 feet 11 inches (2.108 metres) [6]. For

the survey variables, we took the percentages of people who reported being overweight or

obese, the percentage of self-reported diabetes and mood disorders for every province.
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Table 4.3: Survey questions for mood disorders and diabetes

Variable Survey question

Mood disorder Do you have a mood disorder such as depression, bipolar disorder, mania or dysthymia?

Diabetes Do you have diabetes?

4.5 Evaluation

For the evaluation of our models, we used 5-fold cross-validation, where 20% of the data

is held-out for testing, and this process is repeated K times (5 in this case), with the

final scoring metrics averaged across each fold. Due to class imbalance, precision, recall,

F1-Score and the Area Under the Receiver Operating Characteristic (AUROC) score were

used as evaluation metrics. The training times, predict times, and accuracy were also

recorded for additional performance measures. All experiments are performed on a Linux

system with an i7-6700 (8-cores @ 3.40 GHz), and one NVidia Titan X Pascal GPU.

Precision is the fraction of True Positives (Tp) over the number of true positives plus

the number of false positives (Fp). Precision can be interpreted as the classifier’s ability to

not label positively a sample that is negative.

P =
Tp

Tp + Fp

(4.1)

Recall is the ratio of True Positives (Tp) over the number of true positives plus false

negatives (Fn). Intuitively, recall measures a classifiers’ ability to find all positive samples

in its data.

R =
Tp

Tp + Fn

(4.2)
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The F1 score is the harmonic mean of both the precision and recall, which combines

both metric into a single value.

F1 = 2
P ×R

P +R
(4.3)

4.5.1 Seasonality Experiments

A set of experiments to investigate the seasonality of the data was also run. Both tweets

and PASS-related indicators should vary depending on the period of the year. Indeed, we

were interested in the differences between winter and spring/summer periods and how that

was reflected in the classification of the models. For this experiment, we separated the

data into two time periods: the first part (November 17, 2017 to March 20, 2018) was used

as training data, while the other part (April 18, 2018 to May 24, 2018) was used as the

testing set.

4.6 Hyper-parameter Tuning

The hyper-parameters for the classifiers were determined through an exhaustive grid-

search. The best parameters were selected by performing a nested 5-fold cross-validation

and selecting the values that obtained the highest performance scores after being averaged

out across folds. To avoid using the cross-validation test data for model selection and

to prevent overfitting, hyper-parameters are tuned based on a validation set consisting of

data from the inner cross-validation loop, while the outer cross-validation loop is used to

estimate the model performance. For logistic regression and the support vector machines,

we tuned the C and regularization parameters across a uniform distribution of (10−4, 104).
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For the random forest and XGBoost classifiers, we tuned the minimum number of samples

required to split an internal node and the maximum depth of the tree over the range [100,

200, 300, 400], [1, 5, 10, 15], and [6, 7, 8, 9, 10] respectively.
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Figure 4.6: 1-D CNN Architecture. Each block contains the name of the layer, and the

input and output dimensions. The three convolution layers that are concatenated have

filter sizes of 1, 2 and 3. 36



Figure 4.7: LSTM Architecture. Similar to the CNN, each block contains the name of the

layer, and the dimensions of the input and output. A dimension size of None indicates

that the network accepts inputs of any dimension for the batch sizes.
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Chapter 5

Results

5.1 Data

After the manual annotation of our tweet dataset through keyword filtering and active

learning, we had a total of 10,283 labelled tweets; 3245, 5657, and 1381 were annotated

for physical activity, sedentary behaviour and sleep tweets respectively. The tweets were

continuously sampled from the Twitter Streaming API from November 15, 2017 to May

24, 2018, with a gap from March 20, 2018 to April 18, 2018. The input data to the

classifiers was the output from the preprocessed tweets described in the previous chapter.

We use the binary relevance problem transformation approach to deal with the multi-label

classification; a separate classifier was trained for each PASS indicator independently. Table

5.1 shows the distribution of the labeled tweets from our dataset.
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Table 5.1: Distribution of labeled data

Positive tweets Negative tweets

Physical Activity 1524 (46.7%) 1721

Sedentary Behaviour 1945 (34.8%) 3712

Sleep 541 (39.2%) 840

5.2 Model Comparisons

We performed experiments with individual classifiers, then combined them together for the

ensemble model. We included the results from the deep learning models for the complete

classifier benchmark for the task predicting tweets related to PASS. Table 5.2 shows the

experimental results for all the different models we used.

The Naive Bayes classifier obtains the best recall score across each PASS domain, with

the highest recall of 0.914, 0.764, and 0.939 for physical activity, sedentary behaviour and

sleep. Due to the simplicity of naive bayes, it is a low variance and high bias model, where

the model does not achieve high capacity or complexity, but will get most of the predictions

right. In addition, naive bayes is a fastest model to train and predict.

For higher complexity, the ensemble model and deep learning models obtain the best

performance. The LSTM model scores the highest F1-Score for physical activity, and

sedentary behaviour with scores of 0.810 and 0.665 respectively, while falling short as the

second highest F1-score for sleep (0.679) behind naive bayes (0.741).

For our deep learning models, we found that training for 10 epochs with batch sizes of

256 gave the best performance. Both deep learning models performed well in comparison

to the shallow machine learning algorithms, obtaining strong performance scores in across

39



most metrics. These results may be seen alongside those of the other algorithms in Table

5.2. While the LSTM model achieves slightly higher performance than the CNN, it takes

considerably more time to train the model. This could be explained by the fact that the

LSTM processes temporal data, and can only backpropagate through the data sequen-

tially, while operations in the CNN model can be parallelized more efficiently. One point

to consider about the CNN model is that it has high space complexity, with 13,720,201

parameters compared to 3,534,301 for the LSTM. Due to the higher capacity of the CNN

model, it suffers from overfitting when trained for many epochs and fails to generalize as

well as the LSTM. The addition of L2 regularization on the fully-connected layers of the

CNN did not seem to help prevent overfitting [51].

5.3 PASS Health Indicators

We used the LSTM model to classify tweets on our entire dataset, as it obtained the

best results across all evaluation metrics for the PASS indicators. The total count after

aggregating tweet predictions by province and territory is shown in Table 5.3. Applying

the LSTM classifier to the 8.4 million tweets resulted in 135,052 PASS-related tweets.

5.3.1 Comparison with Health Surveys

We compared our PASS health indicators with existing Canadian health surveys. Table

5.4 shows the pairwise Pearson’s correlation coefficient between the PASS health indicators

and the 2014 CCHS data for prevalence of obesity, diabetes and mood disorders. The

physical activity indicator was positively correlated with the prevalence of obesity, diabetes

and mood disorder. However, there were no statistically relevant (∗p < .05) correlations
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Table 5.2: Model comparisons using 5-fold cross-validation

Domain Algorithm Train time (s) Predict time (s)
Test set

Accuracy F1 Score Precision Recall ROC AUC

Physical

activity

Logistic Regression 9.80 3.29 0.912 0.734 0.803 0.720 0.954

Naive Bayes 8.19 3.35 0.917 0.812 0.766 0.916 0.954

Random Forest 10.35 4.13 0.911 0.713 0.821 0.668 0.964

XGBoost 23.21 4.33 0.926 0.790 0.832 0.799 0.975

Ensemble 39.51 5.17 0.924 0.775 0.833 0.773 0.973

rbf-SVM 79.11 18.84 0.927 0.793 0.827 0.801 0.964

LSTM 42.94 2.00 0.937 0.833 0.811 0.890 0.979

1d-CNN 17.66 1.44 0.915 0.767 0.772 0.815 0.956

Sedentary

behaviour

Logistic Regression 10.42 3.36 0.828 0.487 0.629 0.421 0.851

Naive Bayes 8.41 3.40 0.771 0.576 0.488 0.769 0.859

Random Forest 10.67 4.12 0.856 0.529 0.742 0.439 0.904

XGBoost 22.71 4.27 0.863 0.593 0.722 0.527 0.914

Ensemble 43.32 5.05 0.864 0.575 0.751 0.487 0.916

rbf-SVM 136.23 32.35 0.850 0.562 0.681 0.506 0.883

LSTM 49.06 3.15 0.881 0.658 0.739 0.604 0.924

1d-CNN 23.60 2.67 0.833 0.601 0.583 0.634 0.857

Sleep

Logistic Regression 10.72 3.35 0.952 0.562 0.767 0.521 0.976

Naive Bayes 8.23 3.37 0.934 0.740 0.701 0.937 0.968

Random Forest 10.21 4.16 0.941 0.507 0.787 0.498 0.987

XGBoost 18.01 4.28 0.947 0.629 0.791 0.641 0.982

Ensemble 29.97 5.07 0.947 0.624 0.798 0.632 0.988

rbf-SVM 43.41 11.04 0.953 0.633 0.769 0.635 0.983

LSTM 55.88 4.35 0.954 0.683 0.797 0.711 0.987

1d-CNN 29.47 3.71 0.951 0.602 0.796 0.596 0.971
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Table 5.3: Predicted tweet counts and relative proportion by province

Province
Tweet count Proportion of tweets (%)

Physical activity Sedentary behaviour Sleep Total Physical activity Sedentary behaviour Sleep

Northwest Territories 100 73 4 6,694 1.494 1.091 0.060

Prince Edward Island 274 385 11 28,516 0.961 1.350 0.039

New Brunswick 750 1,458 52 103,699 0.723 1.406 0.050

British Columbia 7,313 10,527 532 1,081,369 0.676 0.973 0.049

Yukon 79 75 1 12,621 0.626 0.594 0.008

Newfoundland and Labrador 546 1,280 52 104,998 0.520 1.219 0.050

Saskatchewan 946 2,172 111 192,221 0.492 1.130 0.058

Nova Scotia 1,420 3,477 175 307,495 0.462 1.131 0.057

Alberta 5,225 12,652 606 1,190,521 0.439 1.063 0.051

Ontario 18,195 50,890 2,227 4,282,422 0.425 1.188 0.052

Québec 2,014 5,144 284 489,935 0.411 1.050 0.058

Nunavut 32 105 4 8,266 0.387 1.270 0.048

Manitoba 1,303 4,321 237 372,593 0.350 1.160 0.064

between the PASS health indicators and the survey data.

5.3.2 Trends

We analyzed the performance of our health indicators by observing the temporal trend of

the proportion of all tweets for the PASS domains, as depicted in Figure 5.1 and 5.2. The

most noticeable trend we can observe is the lower proportion of tweets related to physical

activity after April 2018. This could perhaps be explained by arrival of the new spring

season. As most of the data that the classifier was trained on were during the winter, it

was biased towards physical activities in the winter e.g., skiing, snowboarding and other

similar sports.
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Table 5.4: Correlations, means and standard deviations of PASS indicators and 2014 Cana-

dian Community Health Survey variables across all provinces. The survey measures in-

cluded the percentage of people self-reporting as being obese, having diabetes and mood

disorders. These variables were correlated with each PASS domain, shown as their relative

proportion of all tweets. The mean and standard deviation for all those variables were

reported.

Measure Mean (std)
Correlations

1. 2. 3. 4. 5. 6.

1. Physical activity tweets (%) 0.61 (0.31)

2. Sedentary behaviour tweets (%) 1.13 (0.20) 0.033

3. Sleep tweets (%) 0.05 (0.01) -0.058 0.575*

4. Obesity, 18 years old and over (%) 58.09 (6.14) 0.382 0.298 0.117

5. Obesity, 12 to 17 years old (%) 24.79 (10.57) 0.339 -0.204 -0.120 0.709*

6. Diabetes (%) 6.60 (2.34) 0.317 -0.035 -0.131 0.670* 0.766*

7. Mood disorder (%) 7.73 (2.77) 0.236 -0.093 -0.085 0.444 0.480 0.767*

Notes: ∗p < .05
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Figure 5.1: Weekly trend of Twitter PASS indicators. Labels are aligned to Sunday.

5.4 Seasonality

We further investigated the effect of seasonality on the data by separating it into 2 different

time periods: from November 15, 2017 to March 20, 2018 (Winter), and April 18, 2018 to

May 24, 2018 (Spring). The labelled tweets in the first period included a total of 8,070

samples and were used for the training data. The second time frame, which consisted

of 2,213 tweets, served as the testing data. Figure 5.3 shows the tweet count from each

week since the beginning of data collection. As shown in Table 5.5, seasonality seems to

have an effect on the performance of the classifiers. For all three PASS indicators, lower

scores than those presented in Table 5.2 were obtained on all performance metrics. The

1-dimensional CNN scored the highest F1-scores on all three domains when trained on

tweets within a specific time window. Our models failed to generalize as well to newer

data, which contained tweets with information related to the new spring season. As an

example, for sedentary behaviour, new movies that are watched and mentioned in later

44



Figure 5.2: Monthly trend of Twitter PASS indicators. Labels are aligned to the first day

of the month.

months would fail to be part of the training data. While the LSTM model previously

obtained the highest scores on the test sets, it appears to be more susceptible to overfitting

when trained on tweets from the winter season, as suggested by the low recall scores.

5.5 Error Analysis

From the experimental results, it can be seen that sedentary behaviour is the most difficult

domain to classify, with the lowest scores obtained when compared to the physical activity

and sleep classes. The poorer performance for the sedentary behaviour domain could

be explained by the tweets in that class, which are much more difficult to classify. In

particular, there are a lot of different activities that can fall into the sedentary behaviour

category: watching a movie or the television, reading a book, etc. Since the expression of

those activities on social media involves mentioning a title, our features may not capture
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Table 5.5: Model comparisons using seasonal difference test split

Domain Algorithm Train time (s) Predict time (s)
Test set

Accuracy F1 Score Precision Recall ROC AUC

Physical

activity

Logistic regression 9.93 3.81 0.940 0.750 0.753 0.747 0.972

Naive Bayes 9.07 3.66 0.927 0.741 0.646 0.868 0.947

Random forest 10.60 4.41 0.934 0.714 0.743 0.687 0.965

XGBoost 23.58 5.16 0.943 0.773 0.739 0.811 0.977

Ensemble 39.61 5.92 0.947 0.783 0.770 0.796 0.977

rbf-SVM 79.59 19.64 0.936 0.750 0.708 0.796 0.969

LSTM 43.67 2.18 0.915 0.730 0.588 0.962 0.971

1d CNN 17.77 1.78 0.948 0.779 0.801 0.758 0.976

Sedentary

behaviour

Logistic regression 11.30 3.88 0.830 0.457 0.560 0.385 0.834

Naive Bayes 8.55 3.86 0.735 0.491 0.381 0.690 0.808

Random forest 11.58 4.37 0.853 0.444 0.739 0.317 0.878

XGBoost 23.42 4.67 0.860 0.553 0.680 0.466 0.891

Ensemble 43.50 5.41 0.863 0.536 0.720 0.427 0.886

rbf-SVM 136.47 32.91 0.856 0.536 0.667 0.449 0.873

LSTM 49.52 3.71 0.850 0.578 0.605 0.554 0.875

1d CNN 23.75 3.00 0.835 0.578 0.549 0.610 0.872

Sleep

Logistic regression 10.94 3.46 0.955 0.531 0.691 0.431 0.974

Naive Bayes 8.85 4.17 0.947 0.640 0.533 0.800 0.963

Random forest 10.52 5.14 0.958 0.521 0.806 0.385 0.924

XGBoost 18.04 5.17 0.966 0.638 0.838 0.515 0.960

Ensemble 30.18 5.90 0.964 0.612 0.829 0.485 0.978

rbf-SVM 44.29 11.78 0.960 0.589 0.750 0.485 0.978

LSTM 56.32 4.53 0.955 0.497 0.731 0.377 0.980

1d CNN 29.98 4.26 0.961 0.669 0.662 0.677 0.973
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Figure 5.3: Tweet count by week

all possible movies, books, or TV shows, which may explain where our model fails.

The classifiers performed significantly better for predicting physical activity and sleep

tweets. From investigating 4.1, the n-grams that are important for physical activity ex-

plicitly mentions activity names or sports, which makes it easy for models to capture.

Similarly, the most significant n-grams for sleep were all terms that indicated low or poor

quality sleep mentioning the amount of time slept, e.g. the sleep duration.

To better understand how our model makes decisions, we analyzed Type I and Type II

errors, as well as correct predictions made.

Physical activity. Table 5.6 shows the different types of errors our models made.

The false positive example shows a way how the model can fail. As seen from that sample

tweet, important keywords like jumping and parkour were used in the sentence. Since

our models rely heavily on word counts (TF-IDF) and word embeddings, the models can
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Table 5.6: Physical activity classified tweets

Physical activity

True positives today was day 4 out of 90. my workout went great!

False positives i be jumping from an emotion to another like i’m doing parkour

True negatives pick an emoji to describe yesterday’s workout

False negatives The worst thing about hiking is when your phone dies before you

get to the top and you can’t cop any pics for your ‘gram!!

mistake this tweet for one related to physical activity when relevant words are used. To

properly classify such a tweet requires an understanding of the context, and, for the most

part, this is not something our models are designed to capture. TF-IDF features only look

at (1, 4)-grams in a tweet which can be insufficient when context is provided further on

in a sentence. The use of an LSTM may help circumvent this limitation but generally

requires a larger number of examples to perform well. When observing the false negative

example, we can see the difficulty that can arise when building models from human text.

In this particular case, the user made a statement that implies that the person went hiking

shortly before the tweet was posted. While the hiking keyword was used, the rest of the

tweet must have failed to have enough important words for the models to make the correct

prediction or the other words (e.g., phone, pics, gram) confused it.

Sedentary behaviour. The false positive example in Table 5.7 again highlights the

difficulty of the task. There are informative keywords (watching, 13 reasons why) that

mislead the model to believe that the sample should be positively labelled. However, when

looking at the entire context of the tweet, there lacks information to suggest that the user

was indeed watching a show recently for an extended period of time.
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Table 5.7: Sedentary behaviour classified tweets

Sedentary behaviour

True positives watching avengers tonight. so excited!

False positives this is exactly why i stopped watching 13 reasons why

True negatives 75 % of leaf fans don’t truly know the game of hockey

False negatives guess im going to watch avengers alone

Table 5.8: Sleep classified tweets

Sleep

True positives im running on 4 hours of sleep, i have fours hours left in my day

False positives too bad i can’ t sleep until i get home from work in 7 hours

True negatives it’s so nice to sleep for 10 hours

False negatives almost 2 AM... still awake... need to be up in 4 hours...
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Sleep. Errors from our sleep classifiers are reported in Table 5.8. Similar to the model

failings of the previous health domains, the false positive could be explained by the use

of important keywords, without fully grasping the entire context of the tweet. When

investigating the TF-IDF features from Figure 4.1, the amount of hours were important

terms in the features. However, as suggested by the figure, the terms do not form a

comprehensive coverage of all quantities of sleep that are less than or equal to 7 hours

because of the low amount of data. In other words, if the training data does not include

the mention of x hours of sleep, then the model will likely fail to classify that tweet properly.
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Chapter 6

Discussion and Future Work

6.1 Contributions

We developed a system that uses Twitter data to obtain population-level health metrics in

Canada for physical activity, sedentary behaviour, and sleep. The three main contributions

of this thesis are as follows:

1. Twitter data collection and annotation: We manually annotated our own dataset

of tweets using keyword filtering, and an active learning approach to iteratively ob-

tain data more efficiently. Our labeled dataset consisted of a total of 10,283 tweets

that are related to the PASS domain.

2. Machine learning models for the classification of tweets: We treated this

problem as a multi-label classification problem where a classifier has to predict three

different PASS indicators as output. We then experimented with different machine

learning algorithms. We built an ensemble model consisting of 5 different machine
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learning algorithms. The model feeds the probability output from a set of prediction

algorithms to a logistic regression classifier to find the optimal combination. We then

experimented with deep learning models that included a 1-dimensional CNN and an

LSTM.

3. PASS Health Indicators: We derived health indicators for every province and

territory in Canada by predicting PASS labels on our Twitter dataset of 8.4 million

tweets. The health metric was obtained by aggregating the counts for every province

and territory in Canada, and computing the proportion of labelled tweets. We then

compared our results with the 2014 CCHS survey data using Pearson’s correlation.

6.2 Deep Learning for Tweet Classification

To the best of our knowledge, public health surveillance systems that rely on machine

learning algorithms for the classification of social media data have not extensively used

deep learning. In this thesis, we show the effectiveness of deep learning models with

relatively simple architectures. Even with a small tweet dataset, our deep learning models

outperformed the traditionally used methods for tweet classification. Once a model is fully

trained, deep learning algorithms can further improve the efficiency of predictions as data

can be processed in batches and computed in parallel. Finally, there is the benefit of

avoiding the manual engineering of features for the classifiers, as the input to the neural

networks are simply word embeddings, with the model naturally learning a representation

of the data during the training phase. This suggests that the approach is versatile enough

for strong performance on other tweet classification problems.
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6.3 Comparison with Existing Measures

Current measures from PHAC for PASS indicators provide average statistics such as the

average number of minutes per day engaged in physical activity, or the average number

of hours per day spent sedentary. These statistics are gathered from individuals using

surveys. In comparison, our system measures PASS indicators based on Twitter data,

which are aggregated through different regions in Canada. While it is not possible to obtain

specific metrics as in the case of PHAC, it allows us to obtain population-level measures

that can complement current methods. In particular, passive monitoring of social media

data is different such that PASS-related events are observed rather than self-reported.

This enables going beyond tracking high level statistics, as Canadians are active at home,

at work, and in their communities. Monitoring physical activity, sedentary behaviour,

and sleep through social media may be helpful to obtain a clearer picture of the health

behaviours of individual Canadians.

Another disadvantage of PHAC’s current indicators is that they are updated only every

few years. For instance, CCHS is completed annually while the Canadian Health Measures

Survey (CHMS) is conducted every two years. The analysis of social media data like

Twitter can provide greater temporal resolution and be updated daily, weekly, or monthly.

There is also a geographical resolution advantage when using social media data, as this data

often comes with latitude and longitude coordinates. While our work computed indicators

on a provincial level, it is possible to scale down to even municipalities and neighborhoods.

Based on the differences stated above, PHAC can potentially use our indicators to inform

their policy decisions with a much shorter latency. Such additional findings can inform

revisions for the next versions of the surveys that the existing PASS indicators are based

on.
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6.4 Implications

Monitoring PASS at the population level complements PHAC. Busy and stressful urban

lifestyles that are common in Canada, as well as rising mental health problems such as

anxiety and depression, often lead to sleep deprivation and insomnia [26]. Because PASS

problems can significantly predispose Canadians to health problems like obesity, diabetes,

heart disease, and mental health disorders, it is invaluable for PHAC to have the state-

of-the-art ability to monitor the Canadian population’s PASS levels. With that said, our

PASS surveillance system could provide PHAC with a novel way to continuously moni-

tor the PASS levels in different regions of Canada in a cost-effective manner. Our PASS

indicators can complement the existing survey-based indicators by providing higher tem-

poral resolution with weekly updates. Twitter’s large userbase enables our indicators to

effectively represent the majority of Canadians, although older adults and individuals in

remote areas with limited Internet connectivity may be under-represented. This limitation

could offer an opportunity; PHAC and Statistics Canada could perhaps target their survey

efforts to those under-represented sub-populations rather than conducting surveys of the

entire population, which would lead to cost savings. As such, the combination of existing

survey efforts and our indicators could together better represent the Canadian population.

6.5 Limitations

While our method of monitoring public health using Twitter data shows promising results,

it also comes with limitations.
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6.5.1 Data Collection

One limitation in the use of Twitter data for our study is that it is not representative of the

entire population, as the majority of users tend to be young male adults [50]. Because our

dataset represents a subset of publicly available tweets, our conclusions may not generalize

to the full stream of tweets. Obtaining population-level PASS indicators required the

collection of geotagged tweets from at most 1% sample of the total tweets at a given time

using Twitter’s Streaming API. Previous studies suggested that about 1% to 2% of tweets

contain GPS location information, and that Twitter’s Streaming API may obtain 40% to

90% of all geotagged tweets [5, 35]. Tweets that contain GPS location information may be

different from those without. Furthermore, the possibility that privacy concerns differ by

age group may pose a problem for interpreting results given a lack of demographic indicators

in our current approach. While there are approaches to infer certain demographic statistics

from usernames and tweet contents, we did not explore this route. Nonetheless, adoption

rates on social media platforms have been steadily increasing [20].

On the subject of privacy concerns, it should be noted that not all users are open to

sharing their daily activities and health behaviours on the Internet; hence, the dataset

is biased to certain populations. Indeed, some groups are more willing to share health

information on public platforms than others [30]. Our technique may only capture certain

types of information that users feel comfortable sharing in relation to the PASS domain.

Additionally, individuals suffering from mental health or weight-related issues may feel

especially uncomfortable disclosing such information due to stigmatization [15]. There is

also the possibility that users post socially desirable information that do not reflect their

actual lifestyles.

Finally, because our dataset was manually annotated by a single person, there are some
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possible errors and biases that can arise, depending on the interpretation of the labeller.

6.5.2 Classifiers

Our dataset was initially collected by using regular expression keyword filtering to select

the most relevant tweets to label. While this allows us to obtain most tweets that are

related to PASS, there is still a subset that does not go through the filter to be labelled.

In part because of the small dataset that we have and the insufficient data for all relevant

tweets, there will always be a certain amount of tweets that our classifiers will not be able

to detect.

One challenge when dealing with Twitter data is that the text content of tweets often

require a lot of cleaning, or comes with problems such as typos, missing characters, and

grammatical mistakes. This poses a problem for machine learning algorithms that rely on

word frequencies as each token of a tweet is used to build a frequency count for feature

extraction. Additionally, the occurrence of rare words, or named entities such as movie

titles, book titles, and sports teams or players also becomes a challenging topic. Acquiring

a dataset large enough to contain all these named entities is also not a feasible task, hence

there should be an approach to deal with rare words or entities, but that share similar

meaning. Data augmentation could be used to generate additional training data (e.g.,

substituting known entities with known rarer ones).

Our method also only considers tweets in the English language, which limits conclusions

to English speakers. The verbal expressions that differ across cultures is not taken into

account, such as the possible sarcasm and humor that a tweet can contain. While it is

still challenging for a human to infer a PASS related tweet, it is even more difficult for a

computer to understand the nuances of natural language.
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6.6 Future Work

Because our dataset is relatively small, and deep neural networks perform better with

large amounts of data, it is very likely that our method of predicting PASS indicators

would perform better with additional data. The required scalability of this approach could

be accomplished using AMT for the annotation of more tweets, combined with the active

learning approach used in this work and others such as Liu et al. [29]. Additionally, GNIP,

Twitter’s enterprise API, provides access to a substantially higher volume of data from the

platform. This allows one to obtain tweets from the past, which goes beyond the regular

1% random sample provided by the streaming real-time API.

Another interesting research route would be to look into other social media outlets that

make their data publicly available via an API, such as Instagram and Facebook. Instagram

provides an interesting opportunity to apply image recognition technology, which would

be an additional modality that can give important insight into the population’s actual

behaviours and lifestyles. The extension of this work could potentially complement public

health data and assist health policymakers in their decision-making, and thus benefit the

health of all Canadians.
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