
Efficient Representation and
Encoding of Distributive Lattices

by

Corwin Sinnamon

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Corwin Sinnamon 2018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/160745706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis is based on joint work ([18]) with Ian Munro which appeared in the proceedings
of the ACM-SIAM Symposium of Discrete Algorithms (SODA) 2018. I contributed many
of the important ideas in this work and wrote the majority of the paper.

iii

Abstract

This thesis presents two new representations of distributive lattices with an eye towards
efficiency in both time and space. Distributive lattices are a well-known class of partially-
ordered sets having two natural operations called meet and join.

Improving on all previous results, we develop an efficient data structure for distributive
lattices that supports meet and join operations in O(log n) time, where n is the size of the
lattice. The structure occupies O(n log n) bits of space, which is as compact as any known
data structure and within a logarithmic factor of the information-theoretic lower bound by
enumeration.

The second representation is a bitstring encoding of a distributive lattice that uses
approximately 1.26n bits. This is within a small constant factor of the best known upper
and lower bounds for this problem. A lattice can be encoded or decoded in O(n log n)
time.

iv

Acknowledgements

Many thanks to my supervisor, Ian Munro, for his guidance and his many thoughtful
conversations. He always had time for me, and he was always on my side. Equal thanks
to John Brzozowski, who supervised me in a long and fruitful research assistantship just
prior to my Master’s degree, for I would not be where I am without his mentorship and
his kindness.

Thanks also to the many professors who inspired me during my seven years at the
University of Waterloo, most notably Eric Blais, Naomi Nishimura, Anna Lubiw, Kathryn
Hare, and Prabhakar Ragde. Finally, thanks to Bryce Sandlund, Kshitij Jain, Ankit
Vadehra, Hicham El-Zein, Sebastian Wild, and the other friends and collaborators I have
been lucky enough to know in the last two years.

v

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Background . 2

1.2 Birkhoff’s Representation Theorem . 3

1.2.1 Chains, Antichains, and the Covering Relation 5

1.2.2 Persistence . 5

1.3 Overview . 7

2 Persistent Ideal Trees 9

2.1 Ideal Trees . 9

2.2 A Faster Data Structure . 11

2.2.1 Chain Decompositions and Wavefronts 12

2.2.2 Strategy . 15

2.2.3 Computing WAVE . 16

2.2.4 Persistent Ideal Tree . 17

2.2.5 Computing WAVE−1 . 19

3 Compact Encoding of Distributive Lattices 25

3.1 Preliminaries . 26

3.2 Doubling Lattices . 26

vi

3.3 Compression Strategy . 29

3.4 Intuitive Algorithm . 31

3.5 Decompression Algorithm . 33

3.6 Compression Algorithm . 34

3.7 Improving the Space Requirements . 35

4 Conclusion and Open Problems 42

References 43

vii

List of Figures

1.1 Some examples of Birkhoff’s Representation Theorem for Distributive Lattices. 4

1.2 A distributive lattice on n = 19 elements with m = 7 join-irreducible ele-
ments (indicated by open circles). The nodes in the lattice are labelled with
the corresponding ideals of the join-irreducible poset. 7

1.3 The join-irreducible poset for the distributive lattice in Figure 1.2. 8

2.1 The ideal tree for the distributive lattice in Figure 1.2. The linear extension
τ is given in Figure 1.3. 10

2.2 One possible minimal chain decomposition of the join-irreducible poset in
Figure 1.3. 13

2.3 The lattice in Figure 1.2 labelled with wavefronts instead of ideals. The
chain decomposition is that of Figure 2.2. 14

3.1 (a) A distributive lattice L and its join-irreducible poset. (b) The result of
DOUBLE(L, x). 28

3.2 Growing the distributive lattice of Figure 1.2 by a sequence of double oper-
ations. 32

3.3 An example of decoding the lattice with covering sequence (2, 0, 0, 2, 0, 0, 1, 0). 36

3.4 A distributive lattice with covering sequence (2, 1, 0, 1, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0). 39

viii

Chapter 1

Introduction

A lattice is a partially-ordered set having two binary operations called meet (or greatest
lower bound) and join (or least upper bound). The most pleasing and well-structured
class of lattices is that of distributive lattices, whose meet and join operations satisfy a
deceptively simple distributivity condition. Distributive lattices have found algorithmic
applications in performing computations on arbitrary partially-ordered sets [6, 20].

The work in this thesis comes from the point of view of succinct [14, 17] or compact [19]
data structures, where the notion is to minimize the storage requirements for combinatorial
objects while still supporting the natural operations quickly. Such space reduction can
lead to the representations residing in a faster level of memory than conventional methods
with a resulting improvement in run time. To a lesser extent various forms of graphs,
including partial orders have also been examined. An exception is the work on abelian
groups [10], which leads to speculation on the applicability of the methods for symbolic
computation [16]. This thesis builds on such notions as I address space-efficient techniques
for representing distributive lattices.

A natural representation of a lattice, or indeed any partial order, is by the transitive
reduction of the associated directed acyclic graph. It can be shown that the transitive
reduction of a distributive lattice has at most n lg n edges1, and thus it can be represented
in O(n log2 n) bits; this is in contrast to representations of arbitrary partial orders which
require O(n2) bits, or even arbitrary lattices which require O(n1.5) bits [15]. However, the
transitive reduction graph does not seem to support efficient computation of the meet or
join of a pair of elements.

1I use lg to denote log2.

1

The main result of Chapter 2 is a space-efficient data structure occupying O(n log n)
bits that supports the evaluation of these meet and join operations in O(log n) time. The
worst-case logarithmic query time is a significant improvement on all previous methods,
excluding trivial structures that use quadratic space, and the space usage is no worse than
any known method.

However, the data structure is not space-optimal as the lower bound for this problem
is known to be Θ(n) bits. More precisely, the information-theoretic lower bound on the
number of bits required to represent a distributive lattice lies between 0.88n and 1.257n,
asymptotically [9]. This raises the question of how to usefully represent a distributive
lattice in so little space.

To answer this question, Chapter 3 presents an encoding method for distributive lattices
that compresses the lattice to approximately 1.25899n+o(n) bits. Although this represen-
tation does not support any queries on the coded lattice, it requires only O(n log n) time
to convert between the transitive reduction graph and the coded lattice.

This thesis is an extended version of [18] which appeared in the ACM-SIAM Symposium
on Discrete Algorithms, 2018.

1.1 Background

Let (X,6) be a partially-ordered set (poset). For S ⊆ X, we say x ∈ X is an upper bound
on S if x > y for all y ∈ S. If x is the minimum among all upper bounds of S, then x
is the least upper bound (LUB) of S. Similarly, x is a lower bound on S if x 6 y for all
y ∈ S, and x is the greatest lower bound (GLB) of S if x is the maximum among all lower
bounds of S. Note that the GLB and LUB are always unique when they exist.

A partially-ordered set L is a lattice if every pair of elements has a LUB and a GLB.
For lattices, LUB is called join (denoted ∨) and GLB is called meet (denoted ∧). Hence,
a poset is a lattice if and only if x ∨ y and x ∧ y exist for all x, y ∈ L.

The following elementary properties of lattices follow easily from the definition.

• The meet and join operations are associative and commutative.

• If x 6 y, then x ∧ y = x and x ∨ y = y.

• A lattice must have a unique top element above all others and unique bottom element
below all others in the lattice order. By convention, these are denoted by ⊥ and >,
respectively.

2

A lattice is called distributive if meet and join satisfy the additional property that, for
all x, y, z ∈ X,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

The complementary statement that x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) can be deduced from
this property. Thus, meet and join distribute over one another in a distributive lattice.

Throughout, let L be a finite distributive lattice on n elements. An element x ∈ L is
join-irreducible if it is not the minimum element and it is not expressible as y ∨ z for any
y, z 6= x. Similarly x ∈ L is meet-irreducible if it is not the maximum element and it is not
expressible as y∧ z for any y, z 6= x. Let J (L) (M(L)) denote the poset of join-irreducible
(meet-irreducible) elements of L, where the partial order is inherited from the lattice order.
It is well known that J (L) and M(L) are closely related; in particular |J (L)| = |M(L)|.
The concept of irreducible elements of L is essential to understanding distributive lattices.

Henceforth, let m = |J (L)|. It is worth noting that m can vary greatly with respect to
n, lying anywhere in the range [lg n, n− 1].

1.2 Birkhoff’s Representation Theorem

A famous theorem of Birkhoff from 1937 [2, 4] proves that the structure of L is completely
determined by J (L) via the lattice of ideals.

An ideal of a poset P = (X,6) is a set I ⊆ X such that whenever x ∈ I and y 6 x,
y ∈ I as well. In other words, an ideal is a downward-closed subset of P . Let O(P) be
the set of ideals of P . When ordered by inclusion, O(P) is a distributive lattice in which
∧ = ∩ and ∨ = ∪.

For x ∈ L, define ↓x = {y ∈ L | y 6 x}.

Theorem 1. [Birkhoff’s Representation Theorem]
For every distributive lattice L, the function IDEAL : L→ O(J (L)) defined by

IDEAL(x) = ↓x ∩ J (L)

is a lattice isomorphism. Thus, L is isomorphic to O(J (L)).

See Figure 1.1 for examples of Birkhoff’s theorem on small distributive lattices. Fig-
ures 1.2 and fig:bigposet show a larger example.

3

(a)

(b)

(c)

(d)

1 2 3

1

2

3

1

2

3

1 2

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

∅

{1} {3}

{1, 2} {1, 3}

{1, 2, 3}

∅

{1}

{1, 2}

{1, 2, 3}

∅

{1} {2}

{1, 2}

Figure 1.1: Some examples of Birkhoff’s Representation Theorem for Distributive Lattices.
The diagrams on the left show the join-irreducible posets of the distributive lattices on the
right. The lattice nodes are labelled with the ideals of the posets on the left, as determined
by the isomorphism IDEAL. The open circles in the lattices indicate the join-irreducible
elements.

4

Note that a dual theorem holds for the lattice of filters (i.e., upward-closed sets) of
M(L), ordered by inverse inclusion with ∧ = ∪ and ∨ = ∩. It is slightly more intuitive to
work with J (L) for our purposes, but the choice is not important.

Birkhoff’s theorem suggests a general strategy for computing meets and joins in dis-
tributive lattices. It states that there is an isomorphism between L and the ideals of J (L),
which we call IDEAL. The join and meet operations, which may appear complicated, are
translated to union and intersection through this isomorphism. Thus, if both IDEAL and
IDEAL−1 can be efficiently computed, then joins and meets may be computed by simple
union and intersection operations. Specifically, x∨ y = IDEAL−1(IDEAL(x)∪ IDEAL(y)),
and x ∧ y = IDEAL−1(IDEAL(x) ∩ IDEAL(y)). Hence, the time to compute a meet or
join is proportional to the time to compute IDEAL, IDEAL−1, and a union or intersection
over sets of size at most m. This strategy is discussed and extended in Chapter 2.

1.2.1 Chains, Antichains, and the Covering Relation

We review some basic definitions related to partially-ordered sets to be used in the next
chapters. A chain of a poset (X,6) is a subposet C ⊆ X that is totally-ordered; that is,
for all x, y ∈ C, either x 6 y or y 6 x. An antichain of (X,6) is a subposet A ⊆ X such
that, for all x, y ∈ A, x 66 y and y 66 x.

The width of a poset is the size of the largest antichain in the poset. Dilworth’s
Theorem [7] states that the elements of any poset can be partitioned into a number of
chains equal to the width of the poset. This is always a tight bound on the number of
chains as no two elements in the same antichain can lie in a single chain. We call such a
partition a chain decomposition of the poset.

For x, y ∈ L, say y covers x (or x is covered by y) if x < y and for all z ∈ L,
x 6 z < y =⇒ x = z (i.e., there is no intermediate element z between x and y). This
covering relation between elements of a poset uniquely determines the poset as the partial
order is the transitive closure of the covering relation.

1.2.2 Persistence

As a critical tool in Section 2.2.3, we use the concept of a persistent data structure. A
brief summary is given here; see [8] for more details.

A normal, ephemeral data structure might support a set of update operations that
change its content or structure. Thus, a sequence of update operations sends the content

5

of the data structure through many states, or versions. A persistent data structure is one
that simulates the ephemeral structure and its operations, but also remembers every past
version of the structure.

A structure is partially persistent if every past version is accessible, but only the most
recent version can be updated. For example, if V0 is the initial version of the data structure
and a sequence of update operations u1, u2, . . . , uk are applied to V0, then the persistent
structure can simulate access operations on any version Vi, which is obtained by applying
u1, u2, . . . , ui to V0. The structure resembles a list of versions V0, . . . , Vk, in which Vi is
superseded by Vi+1.

A structure is fully persistent if every past version can be updated as well as accessed.
In this case, the versions are not arranged in a list, but in a tree called the version tree.
The version tree can branch by updating a past version, and so a version is superseded
independently by each of its children in the version tree. The relevant sequence of updates
that yields a version V from V0 are those on the path from V0 to V in the version tree.

The only persistent data structure we require is a fully persistent linked list. An
ephemeral linked list consists of a set of nodes that each store some values and a pointer
to the next node in the list. This basic list structure supports an access operation that
traverses a list from its beginning by following pointers from one node to the next. It also
supports the update operations of inserting or deleting a node by modifying the pointers
in the adjacent nodes. The update operations only require constant time once the position
of the node in the list is found.

It is possible to make a fully persistent list with these same operations using the tech-
niques of Driscoll et al in [8]. The access operation of traversing a list still requires O(1)
time per node in the worst case. The update operations require O(1) amortized time; that
is, any sequence of k update operations takes O(k) time. Each update will use an amount
of space proportional to the number of words that it alters. For example, if an update op-
eration changes a single pointer in one node, that will use a constant number of additional
words. Therefore, we may treat the versions of the persistent list as if they were indepen-
dent linked lists, and the space usage will be proportional to the sum over all updates of
the number of updated words. We will use persistence to gain space improvements over
storing the versions separately.

6

{1} {2}

{1, 3} {2, 5}

{1, 2, 4}

{1, 2, 3, 4, 5, 6}

{1, 2}

{1, 2, 3} {1, 2, 5}

{1, 2, 3, 4, 5, 7}

{1, 2, 3, 4, 5, 6, 7}

∅

{1,2,3,
4,5}

{1,2,
5,7}

{1,2,
3,4}

{1,2,
4,5}

{1,2,
3,5}

{1,2,3,
5,7}

{1,2,4,
5,7}

Figure 1.2: A distributive lattice on n = 19 elements with m = 7 join-irreducible elements
(indicated by open circles). The nodes in the lattice are labelled with the corresponding
ideals of the join-irreducible poset.

1.3 Overview

We consider four representations of a lattice L. The first two were previously known, and
the last two are newly introduced here.

1. Transitive Reduction Graph (TRG(L)) A natural representation for L is its
transitive reduction graph, the directed acyclic graph (DAG) on the elements of L
which has an edge (x, y) if and only if x 6 y and there is no z ∈ L such that
x < z < y (i.e., y covers x). We denote this representation by TRG(L). This is a

7

1 2

3 4 5

6 7

Figure 1.3: The join-irreducible poset for the distributive lattice in Figure 1.2.

very straightforward way to store a lattice while still being reasonably space-efficient:
It can be shown that the transitive reduction graph of a distributive lattice has at
most n lg n edges [11], and thus TRG(L) can be represented in O(n log2 n) bits.

2. Ideal Tree (TREE(L)) The second representation is the ideal tree data structure
for distributive lattices due to Habib and Nourine [11, 12], described in Section 2.1.
This representation requires only O(n log n) bits of space and computes meets and
joins in O(m) time, which may be as fast as O(log n) or as slow as O(n).

3. Persistent Ideal Tree (PTREE(L)) In Chapter 2, we construct a new data struc-
ture called the persistent ideal tree. Like the ideal tree, this representation requires
O(n log n) bits of space, but it allows computation of meets and joins in O(log n)
time.

4. Compressed Encoding Chapter 3 describes the final representation, a compressed
encoding of L which requires approximately 1.25899n + o(n) bits of space. The
constant here is obtained by applying arithmetic coding to a more direct compression
of the lattice, which encodes the lattice in a binary string containing exactly n zeros
and at most 3

7
n ones. The compression code can be computed from TRG(L) in

O(n log n) time, and it can be decompressed to TRG(L) in O(n log n) time.

8

Chapter 2

Persistent Ideal Trees

In this chapter, we discuss the previous approach to a data structure for distributive lattices
and extend it to obtain our main result:

Theorem 2. There is a data structure for distributive lattices that requires O(n log n) bits
of space and supports meet and join operations in O(log n) time. It can be constructed in
O(n log n+m2.5) time from TREE(L) or TRG(L).

2.1 Ideal Trees

In 1996, Habib and Nourine [12] invented a data structure called an ideal tree that implicitly
computes IDEAL and IDEAL−1 to perform meet and join operations. The ideal tree is a
clean and elegant way to manipulate distributive lattices; see also [11]. We use their ideas
extensively in this chapter.

Recall that L is a distributive lattice on n elements and J (L) is the join-irreducible
poset of L, which has size m. Let τ be a linear extension of J (L) and write τ(p) for the
position of p in τ . For each x ∈ L \ {⊥}, let the block number of x be defined by

BLOCK(x) = max{τ(p) | p ∈ IDEAL(x)}.

The block number of ⊥ is not defined.

Definition 3 (Ideal Tree). The ideal tree of L with respect to τ is a tree on the elements
of L in which the set of block numbers on the path from x to the root is equal to {τ(p) |
p ∈ IDEAL(x)}. The ideal tree is denoted TREE(L).1

9

1 2

3 5

4

6

2

3 5

7

7

5

74 55

7 7

Figure 2.1: The ideal tree for the distributive lattice in Figure 1.2. The linear extension τ
is given in Figure 1.3.

Proposition 4. The ideal tree has the following properties.

• ⊥ is the root of TREE(L), and TREE(L) is a spanning tree of TRG(L).

• The height of the ideal tree is exactly m.

• The ideal tree is unique up to τ . Hence, a lattice may have many different ideal trees,
one for each linear extension of its join-irreducible elements.

1In [12], the block numbers are assigned to edges rather than vertices. As well, our description of the
ideal tree is “upside-down” relative to their definition. These changes are convenient for our purposes and
the differences are superficial.

10

• Along any path from the root to a node, the block numbers are strictly increasing.

• The children of any node have distinct block numbers.

The ideal tree can be used to compute both IDEAL and IDEAL−1 in O(m) time.
One obtains IDEAL(x) by following parent pointers from x to the root and recording the
sequence of block numbers along the path. The set of block numbers encodes IDEAL(x)
by identifying τ(p) with p for all p ∈ J (L).

One can also compute IDEAL−1(I) for an ideal I of J (L) in O(m) time, assuming that
I is given as the sequence {τ(p) | p ∈ I} sorted in increasing order. The unique path in
TREE(L) beginning at the root and having block numbers {τ(p) | p ∈ I} leads to the
desired node. By Proposition 4, the block numbers must appear in increasing order, and
at each node along the path there can only be one child with a given block number. Thus,
the node can be located by starting at the root and repeatedly moving to the child with
the next block number in I.

If the children pointers in each node of the ideal tree are stored in increasing order,
then this search can be performed in only O(m) time. At each node, the children must be
visited in increasing order until the child with the desired block number is found, and then
the search can proceed from that child. By this method, the sequence of block numbers
seen over the entire search must be a strictly increasing sequence, and hence only O(m)
children can be visited in total.

Theorem 5 (Habib and Nourine [12]). The ideal tree computes meets and joins in O(m)
time. TREE(L) requires O(n log n) space, and can be constructed from TRG(L) in O(n log n)
time.2

2.2 A Faster Data Structure

We now develop a method of improving the efficiency of ideal trees that reduces the time
for meet and join operations to O(log n) while staying within O(n log n) space.

Our objective is to relate the time for operations to the width of J (L), rather than its
size. Recall that the width of a poset is the size of its largest antichain. The following
lemma demonstrates that the width is preferable to the size of J (L) in many cases.

2More precisely, the preprocessing time is O(|E|), where E is the edge set of TRG(L), but |E| always
lies between n− 1 and n lg n for distributive lattices.

11

Lemma 6. For all distributive lattices L with n elements, width(J (L)) ≤ lg(n).

Proof. Consider the poset P which consists of w non-comparable elements; that is, P is
a single antichain of size w. Every subset of the w elements is, trivially, an ideal of the
poset. Hence the ideal lattice O(P) contains exactly 2w elements.

Now fix a distributive lattice L of size n and let w = width(J (L)). By definition J (L)
contains an antichain of size w as a subposet. It is easily seen that a poset has at least as
many ideals as any of its subposets; hence n ≥ 2w and w ≤ lg(n).

As with the ideal tree, we wish to quickly move between L and the ideals of J (L) to
compute meets and joins. However, we cannot afford to look at an entire ideal of J (L)
during any meet or join operation, since the ideals may have up to m = |J (L)| elements.
To avoid this, we decompose J (L) into w = width(J (L)) disjoint chains and identify each
ideal by the largest elements of each chain that lie in that ideal. Since ideals are downward
closed, everything below these chainwise largest elements must lie in the ideal. This lets us
operate only on sets of size w or less. We now formalize this idea and see how to implement
it.

2.2.1 Chain Decompositions and Wavefronts

As in the last section, we make use of a linear extension τ of J (L), and for all x ∈ L we
define BLOCK(x) = max{τ(p) | p ∈ IDEAL(x)}. We abuse the notation by identifying
p ∈ J (L) with τ(p) ∈ {1, 2, . . . ,m}, and extend all functions on J (L) to operate on
{1, 2, . . . ,m} as well.

A chain decomposition of a poset is a partition of the elements into disjoint sets
C1, C2, . . . , Ck such that the elements within each Ci are totally ordered in the poset.
By Dilworth’s Theorem [7], every poset of width w admits a decomposition into exactly w
chains.

Fix a chain decomposition C = {C1, C2, . . . , Cw} of J (L), where w is the width of
L. Define a function CHAIN: J (L) → {1, . . . , w} such that p ∈ CCHAIN(p) for all p ∈
J (L). The arrangement in Figure 2.2 has CHAIN(1) = CHAIN(3) = 1, CHAIN(4) =
CHAIN(6) = 2, and CHAIN(2) = CHAIN(5) = CHAIN(7) = 3.

Since a chain is totally ordered, min and max are well-defined functions on the non-
empty subsets of a chain. Note that min and max are well-behaved with respect to τ , since

12

1

2

3

4

5

6

7

C1 C2 C3

Figure 2.2: One possible minimal chain decomposition of the join-irreducible poset in
Figure 1.3.

for ∅ (S ⊆ Ci the minimum element of S with respect to chain order also has the smallest
integer value τ(p) among all p ∈ S. The analogous property holds for max.

We identify an ideal by the set of chainwise maximum elements of I, which we call the
wavefront of the ideal.

Definition 7. The wavefront of an ideal I of J (L) with respect to C is defined by

W(I) = {max(Ci ∩ I) | Ci ∩ I 6= ∅, 1 ≤ i ≤ w}.

The wavefronts, rather than the ideals, will be our way of identifying and manipulating
lattice elements.

Fortunately, union and intersection of ideals translate easily to the language of wave-
fronts. Observe that the wavefront of the union of two ideals is the chainwise maximum of
their wavefronts, which contains precisely the largest element in each chain that appears
in either wavefront. Similarly the wavefront of their intersection is the chainwise minimum
of their wavefronts.

We make this precise: Write max for chainwise maximum and min for chainwise
minimum. Then for any ideals I1 and I2,W(I1∪I2) = max(W(I1),W(I2)) andW(I1∩I2) =
min(W(I1),W(I2)).

13

{1} {2}

{1, 3} {5}

{2, 4}

{4, 5, 6}

{1, 2}

{1, 2, 3} {1, 5}

{3, 4, 7}

{4, 6, 7}

∅

{3, 4, 5}

{1, 7}{2, 3, 4} {4, 5}{1, 3, 5}

{1, 3, 7} {4, 7}

Figure 2.3: The lattice in Figure 1.2 labelled with wavefronts instead of ideals. The chain
decomposition is that of Figure 2.2.

For computational purposes, we represent a wavefront W ⊆ J (L) by the string with
characters {τ(p) | p ∈ W(I)} sorted in decreasing order. For example, the top node in
Figure 2.3 has wavefront {4, 6, 7} so it is represented by the string 764. This representation
allows efficient computation of max and min:

Lemma 8. Given wavefronts W1 and W2, the chainwise maximum max(W1,W2) and
chainwise minimum min(W1,W2) can be computed in O(w) time.

Proof. First, merge the wavefronts into a list of length |W1| + |W2| sorted in decreasing
order. As the strings representing W1 and W2 are sorted this way initially, merging takes
O(w) time. For each chain Ci, 1 ≤ i ≤ w, the chainwise maximum contains only the

14

largest element of Ci in this combined list; since it is sorted in decreasing order, this is the
element of Ci that occurs earliest in the list.

To compute max(W1,W2), walk the list in order and, for each chain Ci, keep track
of whether an element of Ci has already appeared in the list. If an element of Ci has
already appeared, then any other element of Ci encountered can be deleted. The resulting
list only contains the first element of each chain that appeared in the original list, and
hence represents the chainwise maximum. Similarly, the chainwise minimum consists of
the elements in each chain that occur last in the list. Hence, min(W1,W2) can be computed
by walking the list in reverse and deleting elements as before.

The price of using wavefronts is that a chain decomposition of J (L) must be computed
as part of the preprocessing for our data structure. This can be done in O(m2.5) time.

Proposition 9. A minimal chain decomposition of J (L) can be computed in O(m2.5) time.

Proof. Let G be a bipartite graph with vertex set J (L) × {`, r} that includes an edge
{(p, `), (q, r)} whenever p < q in J (L). A maximum matching M on G can be computed
in O(m2.5) time using the Hopcroft-Karp algorithm [13].

This matching induces a partition of J (L) by putting p and q in the same group when-
ever {(p, `), (q, r)} ∈M . We shall see that this partition is a minimal chain decomposition
of J (L).

As M is a matching, two elements p and q lie in the same group if and only if there is a
sequence of elements p1, p2, . . . , pk ∈ J (L) such that M contains the edges {(p, `), (p1, r)},
{(p1, `), (p2, `)}, . . . , {(pk−1, `), (pk, r)}, and {(pk, `), (q, r)}. By construction, having these
edges in G implies that p < p1 < p2 < · · · < pk < q. Thus, each group of elements must
be totally-ordered in J (L). Moreover, any unmatched vertex (p, `) must be the maximum
element of its chain, and any unmatched vertex (q, r) must be the minimum element of its
chain. Hence the number of unmatched nodes in J (L)×{`} (or in J (L)×{r}) is equal to
the number of chains. As a maximum matching must minimize the number of unmatched
nodes on either side of the bipartition, it follows that M induces a decomposition of J (L)
into a minimum number of chains.

2.2.2 Strategy

The chain decomposition will make it possible to use wavefronts instead of ideals in our
computations while essentially using the same strategy described in Section 1.2. Let us
restate this strategy in terms of the lattice of wavefronts of J (L).

15

Define WAVE: =W ◦ IDEAL. In other words,

WAVE(x) = {max(Ci ∩ IDEAL(x)) | Ci ∩ IDEAL(x) 6= ∅, 1 ≤ i ≤ w}.

The function WAVE is an isomorphism between L and the lattice of wavefronts, in
which min and max are the meet and join operations, respectively. Thus, for all x, y ∈ L,

x ∨ y = WAVE−1(max(WAVE(x),WAVE(y))),

x ∧ y = WAVE−1(min(WAVE(x),WAVE(y))).

Since min and max can be computed in O(w) time by Lemma 8, it only remains to
compute WAVE and WAVE−1 in comparable time. To this end, we develop two data
structures, one that computes WAVE in O(w) time, and one that computes WAVE−1 in
O(log n) time. This yields the main theorem of this chapter.

Theorem 2 (Restated). There is a data structure for distributive lattices that requires
O(n log n) bits of space and supports meet and join operations in O(log n) time. It can be
constructed in O(n log n+m2.5) time from TREE(L) or TRG(L).

The O(m2.5) term in the preprocessing time comes from computing a chain decompo-
sition of J (L) as described in Proposition 9. Otherwise, the data structure can be created
in O(n log n) time.

2.2.3 Computing WAVE

We extend the ideal tree data structure to allow access to WAVE(x) in O(w) time for each
x ∈ L. Consider the path in TREE(L) from a node x to the root. This path contains
all the block numbers of IDEAL(x), but only a subset of the block numbers lie in the
wavefront.

Our goal is to traverse the path from x to the root, looking at all of the nodes whose
block numbers lie in the wavefront and bypassing all of the others. This motivates the
following definition.

Definition 10. Consider a path in TREE(L) with nodes xk, xk−1, . . . , x1, x0, where x0 = ⊥
is the root. Let the short path of xk be the subpath which contains x0, and for i ≥ 1,
contains xi if and only if BLOCK(xi) ∈ WAVE(xk). Denote the short path of xk by
SHORT(xk).

16

We wish to traverse the short path of a node instead of the full path in TREE(L). Since
the short path has length at most w+ 1, this will reduce the time to compute WAVE from
O(m) to O(w) as desired.

One obvious representation of the short path is a linked list beginning at xk and ending
at x0, with the intermediate nodes in decreasing order by their block numbers. This is
indeed a possible solution; however, it requires O(n log2 n) bits of space to store the short
paths of all the nodes as separate linked lists, and we do not wish to use so much space.
We reduce the space with the observation that the difference between the short path of
each node and the short path of its parent in TREE(L) is always small.

Lemma 11. Let x, y ∈ L where x is the parent of y in TREE(L). Then SHORT(y) can
be obtained from SHORT(x) by adding y and possibly deleting one element.

Proof. Since x is the parent of y in the ideal tree, we have IDEAL(y) = IDEAL(x) ∪ {y}.
Moreover, y ∈WAVE(y) since the block numbers are increasing from the root in TREE(L)

Let i = CHAIN(BLOCK(y)). If WAVE(x)∩Ci = ∅, then WAVE(y) = WAVE(x)∪{y}.
In this case, SHORT(y) is obtained from SHORT(x) by adding y.

Otherwise, there is a node z ∈ SHORT(x) with CHAIN(BLOCK(z)) = i. Since
BLOCK(y) is larger than BLOCK(z) and they lie in the same chain, WAVE(y) = WAVE(x)\
{BLOCK(z)} ∪ {BLOCK(y)}. Hence, SHORT(y) is obtained from SHORT(x) by adding
y and removing z.

This lemma shows that the total space required to store the wavefronts is O(n log n)
if we only store the differences between a node and its parent. Then a short list could
be reconstructed whenever it is needed by inserting and deleting elements according to
these differences. However, this is not a realistic strategy as there could be as many as m
insertions and deletions in this reconstruction, even though the short list has only w + 1
elements at the end.

We wish to store all the short lists explicitly as linked lists, so that any one of the lists
can be accessed and traversed in O(w) time, while staying within O(n log n) bits of space.
Persistence will make this possible; see Section 1.2.2 for a summary of persistence.

2.2.4 Persistent Ideal Tree

Instead of storing the short lists separately, we represent them as different versions of the
same fully persistent list. This list has n versions, one for each element of L, and we write
“Version x” for the list corresponding to SHORT(x).

17

Definition 12. The persistent ideal tree of L with respect to τ is a fully persistent linked
list on L in which Version x stores the short path of x. The persistent ideal tree is denoted
PTREE(L).

Although PTREE(L) resembles a list more than it does a tree, the structure of the
ideal tree is essentially contained in it. In fact, the version tree of PTREE(L) has exactly
the same structure as TREE(L).

Proposition 13. The persistent ideal tree can be used to compute WAVE(x) in O(w) time
for all x ∈ L. PTREE(L) can be constructed in O(nw) time from the ideal tree and the
chain decomposition of J (L). It occupies O(n log n) bits of space.

Proof. To compute WAVE(x) for an element x, walk Version x of the list and record the
sequence of block numbers; the result is WAVE(x) sorted in decreasing order. This can
be done in constant time per step, as if each list were stored independently, for a total of
O(w) time.

The construction is straightforward using Lemma 11. First create Version ⊥, a list
containing only ⊥. For all other nodes y ∈ L, Lemma 11 shows how to construct Version
y inductively. Let x be the parent of y in TREE(L). Version y is obtained from Version x
by adding node y to the front of the list, then scanning the list for an element z such that
CHAIN(BLOCK(y)) = CHAIN(BLOCK(z)). If z is found, then it is deleted from Version
y; that is, the predecessor of z is updated to point at the successor of z. Note that every
list can only have one element belonging to each chain, so there can only be one such z.
If the list does not contain any element in the same chain as BLOCK(y), then no further
action is taken.

Node y can be attached to the front of the list in O(1) time, and z can be scanned
for and deleted in O(w) amortized time. Hence, each version can be constructed in O(w)
amortized time, and PTREE(L) can be constructed from TREE(L) in O(nw) time. As
each pointer update adds O(log n) bits of space, the total space required is O(n log n)
bits.

Unfortunately, unlike the ideal tree, the persistent ideal tree is not effective for com-
puting WAVE−1. To do so, one would need to match a given wavefront with the block
numbers of a single version of the persistent ideal tree, and it is not clear how to do this in
less than O(m) time. We solve this with a second data structure which can be constructed
from PTREE(L).

18

2.2.5 Computing WAVE−1

We now see how to recover a lattice element from its wavefront. One can view WAVE(x)
as a string over the alphabet {0, 1, . . . ,m} of length at most w. Define WCODE(x) to be
the string with characters {τ(p) | p ∈WAVE(x)} sorted in decreasing order; for example,
the code for an element x with WAVE(x) = {3, 4, 7} is the string WCODE(x) = 743.

Computing WAVE−1 is thereby reduced to solving a version of the static dictionary
problem in which the keys are strings of length w. Each element of L has an associated
key string that is determined by its wavefront, and a search for that key in the dictionary
must simply identify its lattice element.

This dictionary problem has been solved, in some variations, by ternary search trees [1].
We include our own solution, which uses very similar ideas, to justify the small space
requirements. Since the common solutions to this problem allow insertion and deletion of
strings, they cannot use less space in the worst case than is required to store all of the
key strings explicitly; this alone will usually require more than O(n log n) bits of space.
Our solution sacrifices insertions and deletions, which we do not need, to let the entire
structure occupy O(n log n) bits of space. As well, our solution only supports successful
searches; there are no guarantees about what it returns if the query string is not stored in
the set. Fortunately, all of the searches performed by our meet and join operations will be
for query strings corresponding to existing wavefronts.

Lemma 14. Let S be a set of n strings of length k over the alphabet {1, . . . , n}. For any
function f : S → {1, . . . , n}, there is a data structure that takes O(n log n) bits of space
and computes f(s) in O(k + log n) time.

Proof. Suppose the strings of S are listed out explicitly in lexicographic order, and we are
searching for a particular query string a1a2 . . . ak in S. Let S(i) denote the ith string in
the sorted list.

The algorithm performs a binary search on each character independently as follows.
First, a1 is compared with c, the first character of S(bn/2c): If a1 < c then the list is
reduced to the strings whose first character is strictly less than c, and if a1 > c then the
list is reduced to the strings whose first character is strictly greater than c. In either case,
the search recurses on the reduced list.

If a1 = c, then the list is reduced to the interval of strings that begin with c, and the
search moves on to search in the reduced range for a string whose second character is a2.
The search repeats recursively until all the characters have been matched, at which point

19

there can only be one string that has not been eliminated from the list, and it must be an
exact match for the query string.

This search is fast. With every comparison, either a character ai is matched and
removed from consideration, or ai is not matched with c and the list is reduced by at least
half. There are exactly k character matches in a successful search, and the list can only
be halved dlg ne times before it is reduced to a single string. Therefore the total number
of character comparisons in the search is O(k + log n).

Unfortunately, we cannot afford to list the strings explicitly as that requires O(kn log n)
bits. To reduce the space, the search can be represented as a ternary decision tree, in which
each node corresponds to one of the comparisons made during the search. To indicate what
comparison should be done, each node must store a comparison character c and an index
i. A node can have up to three children corresponding to the three outcomes of the
comparison (either ai < c, ai > c, or ai = c). We call these the <-child, >-child, and =-
child of the node. A node may have fewer than three children if an option is unreachable in
the decision tree by any string in S, but every node must have an =-child by construction.
The decision tree has n leaves in bijection with the strings of S, hence the values of f can
be stored in the leaves of the tree.

The decision tree can be represented in O(log n) bits per node. However, there may be
more than O(n) nodes in a tree. With one modification to the decision tree, it is possible
to ensure that the number of nodes is at most 2n: Any node that has only one child must
be deleted from the tree, since any query string in S that reaches that node can only pass
to its =-child. Clearly this can only reduce the search time and the size of the tree.

We now show that there are at most n non-leaf nodes in the decision tree using a
charging argument. Observe that every node has either a <-child or a >-child, and they
all must have an =-child. If a node has a <-child, then call it a <-node; otherwise, call it
a >-node.

A node with comparison character c and index i is only reached after the first i − 1
characters b1b2 . . . bi−1 have been determined implicitly by the decision tree. Define the
prefix of the node to be the string b1b2 . . . bi−1. Observe that every node has a different
prefix. Moreover, if there is a node with prefix p in the decision tree then there must be
at least two strings in S beginning with p, for otherwise the node would have no <-child
or >-child.

Charge every <-node to the (lexicographically) first string in S that begins with the
prefix of that node, and charge every >-node to the (lexicographically) last string in S
that begins with the prefix of that node.

20

Claim. No string in the list can be charged more than once.

First, we show that <-node and a >-node cannot charge the same string. To a con-
tradiction, suppose a string b1b2 . . . bk is charged by a <-node x with prefix b1b2 . . . bi−1,
and also by a >-node y with prefix b1b2 . . . bj−1. Then b1b2 . . . bk is the first string in S
beginning with b1b2 . . . bi−1, and also the last string beginning with b1b2 . . . bj−1. We cannot
have i = j since no two nodes have the same prefix. If i < j, then there is only one string
in S beginning with b1b2 . . . bj−1. Similarly, if j < i then there is only one string beginning
with b1b2 . . . bi−1. We have a contradiction in either case, as there must be at least two
strings beginning with any prefix of a node in the decision tree.

Now suppose a string b1b2 . . . bk is charged by two<-nodes: node x with prefix b1b2 . . . bi−1
and node y with b1b2 . . . bj−1, where i < j. Then b1b2 . . . bk is the first string in S beginning
with b1b2 . . . bi−1, and also the first beginning with b1b2 . . . bj−1. Since y has a <-child, there
must exist a string in S beginning with b1b2 . . . bj−1c, where c is less than the comparison
character of y. Yet this string occurs before b1b2 . . . bk lexicographically and begins with
b1b2 . . . bi−1, contradicting the assumption that b1b2 . . . bk is charged by x.

The case for two >-nodes follows by symmetry. Thus the claim has been proven.

This establishes a surjection from the internal nodes of the modified decision tree to S;
hence, the modified decision tree contains at most n non-leaf nodes. There is also a leaf
for each string s, which just stores the value f(s). Therefore, the decision tree has at most
2n nodes. Each node requires O(log n) bits of space to store the comparison character, the
index, and the pointers to its children, for a total of O(n log n) bits of space.

We now apply this data structure to compute the function defined by f(WCODE(x)) =
x. The persistent ideal tree easily facilitates the construction of the decision tree, but first
the nodes must be sorted lexicographically by wavefront. We require two additional lemmas
to sort the nodes.

Define CODE(x) to be the string of block numbers on the path from x to the root
in TREE(L), or equivalently, the string with characters {τ(p) | p ∈ IDEAL(x)} sorted in
decreasing order. For example, the code for an element x with IDEAL(x) = {1, 3, 4, 5, 7, 9}
is the string CODE(x) = 975431. Recall that WCODE(x) is the string of block numbers
along the short path of x in decreasing order.

Lemma 15. The lexicographic order of L by WCODE is the same as the lexicographic
order by CODE.

Proof. Let x, y ∈ L with CODE(x) < CODE(y) lexicographically. Say CODE(x) =
a1a2 · · · aix1x2 · · ·xj and CODE(y) = a1a2 · · · aiy1y2 · · · yk. Then x1 < y1, and hence there

21

is an element p ∈ IDEAL(y) \ IDEAL(x) where τ(p) = y1. Moreover, τ(p) is the largest
among all p ∈ IDEAL(y) \ IDEAL(x).

We show that p must be in WAVE(y). Suppose otherwise; then there must be some
q ∈ IDEAL(y) ∩ CCHAIN(p) with q > p. Since p 6∈ IDEAL(x), we have q 6∈ IDEAL(x);
hence τ(q) does not appear in a1a2 · · · ai. But τ(q) > τ(p), so τ(q) does not appear in
y1y2 · · · yk either. Thus, τ(q) does not appear in CODE(y) and q 6∈ IDEAL(y). This yields
a contradiction, so p ∈WAVE(y).

In particular, p ∈WAVE(y) \WAVE(x), and τ(p) is the first character of WCODE(y)
that differs from WCODE(x). Since τ(p) > x1 it follows that WCODE(x) < WCODE(y)
lexicographically.

Lemma 16. Beginning with TREE(L), the nodes can be sorted by CODE in O(n) time.

Proof. The sorting algorithm is a kind of bucket sort. Create m lists, L1, . . . ,Lm, which
are initially empty; throughout the algorithm, Lj exclusively stores elements in block j.
For each child x of ⊥, add x to list LBLOCK(x). Then, for j = 1, 2, . . . ,m, walk Lj in order
and add all of the children of x ∈ Lj to the appropriate lists for their block numbers.
After every list has been traversed, we claim that the concatenation {⊥}L1L2 . . .Lm must
contain every element of L sorted lexicographically by ideal.

First, every node must be added to its list. Since block numbers are strictly increasing
along every path leaving the root, the children of a node in Lj cannot be added to an
earlier list Li, i ≤ j; hence, if the algorithm visits a node it must also visit each of its
children eventually. Thus when the algorithm reaches the end of Lm every node must have
been visited.

Moreover, each list will be sorted lexicographically by ideal. This is trivially true of
L1 which can only have one element. It then follows by induction for Lj, j ≥ 2, since
the order within Lj is inherited from the parents of its elements in the concatenation
{⊥}L1L2 . . .Lj−1. That is, for two elements x and y in block j, the algorithm adds x
to Lj before y if and only if parent(x) appear before parent(y) in {⊥}L1L2 . . .Lj−1. This
produces the correct sorted order because for each x ∈ Lj, CODE(x) = jCODE(parent(x)).
Hence, the concatenation {⊥}L1L2 . . .Lm gives the lexicographic order by ideal.

These two lemmas show that L can be sorted by WCODE in O(n) time.

Proposition 17. There is a data structure that computes WAVE−1 in O(log n) time,
occupies O(n log n) bits, and can be constructed from the persistent ideal tree in O(n log n)
time.

22

Proof. Let S be the set of all wavefronts of lattice elements, expressed as strings of block
numbers in decreasing order. Each has length at most w; pad the end of each string with
zeros so that they have length exactly w.

Consider WAVE−1 as a function from S to L. The decision tree structure of Lemma 14
for S computes WAVE−1 in O(log n + w) time, which is O(log n) by Lemma 6, and it
requires O(n log n) bits of space. We show that the decision tree can be constructed in
O(n log n) time, beginning with PTREE(L).

First, the n persistent nodes of PTREE(L) must be sorted lexicographically by their
wavefronts, corresponding to the sorted order in S. By Lemmas 15 and 16, the nodes can
be sorted by WCODE in O(n) time using TREE(L).

Once the nodes are sorted by wavefront, the decision tree can be constructed by follow-
ing the procedure in Lemma 14. The algorithm is restated here in terms of the persistent
ideal tree.

Maintain a pointer for each wavefront, initially pointing at the first node of each short
list in the persistent tree. The decision tree can be constructed as described in Lemma 14:
Choose the middle element x of the sorted list of lattice nodes, and create a node in the
decision tree with index 1 and character BLOCK(x). Walk the sorted list of nodes in both
directions to find the range of lattice elements with that block number. This divides the
list into three pieces: he list of nodes with smaller block number, the list with the same
block number, and the list with larger block number. Recurse on the first piece and the
last piece, and assign the roots of the resulting decision trees to be the <-child and >-child,
respectively, of the current node. For the list with the same block number as the middle
element, advance all the pointers to the next node in the short list (this takes constant
time per node), and then recurse on the sublist, now comparing their block numbers to
the next index of the search string.

If it ever happens that all the nodes in the list have the same block number (i.e., the
first and last pieces are empty), then delete the current node of the decision tree entirely,
advance the pointers in each short list, and recurse on the same list with the next index.
This has the effect of omitting any node in the decision tree that has only an =-child. The
resulting decision tree is the data structure described in Lemma 14. Since each node of
PTREE(L) is considered only a constant number of times for each index from 1 to w, the
construction time is O(n log n).

Remark 18. This procedure above maintains pointers to multiple nodes in PTREE(L),
and moves them along their short lists at different rates. Given that we have not explicitly
described the fully persistent list structure at the heart of the persistent ideal tree, it may

23

not be obvious that multiple lists can be accessed at the same time. As long as no updates
to the structure occur, the persistent structure of [8] allows for complete independence in
the accesses. There are no updates to the persistent list in Proposition 17.

This concludes the description of our data structure for distributive lattices. Theorem 2
follows immediately from Lemma 6, Proposition 9, Proposition 13, and Proposition 17.

24

Chapter 3

Compact Encoding of Distributive
Lattices

Counting the number of distributive lattices on n elements up to isomorphism is a long-
standing and difficult problem. In 2002, Erné, Heitzig, and Reinhold placed bounds on
these numbers with the following theorem.

Theorem 19. [Enumeration Bounds [9]] Let dn be the number of non-isomorphic dis-
tributive lattices on n elements. Then 1.81n−4 < dn < 2.46n−1 for all n ≥ 4, and
1.84n < dn < 2.39n eventually.

According to these bounds, we have 0.88n < lg dn < 1.257n for sufficiently large n;
hence, it is possible to distinguish between all the distributive lattices on n elements using as
few as 1.257n bits. It is natural to ask if there is a reasonable representation of distributive
lattices that uses so little space. By “reasonable”, we mean that there should be efficient
methods to convert between this compression and a natural representation of the lattice
such as its transitive reduction graph.

The techniques used to obtain Theorem 19 do not seem to directly yield such a represen-
tation. The authors invent a canonical form for distributive lattices which identifies each
lattice by a sequence of integers, but they rely on careful analysis of generating functions
to count the number of possible sequences. We make several refinements to this technique
that allow for a compact encoding of the sequence itself.

In this chapter, we first define a compression method that encodes a distributive lattice
in 10

7
n + O(log n) bits. As 10

7
≈ 1.429, the size of this encoding is already within a small

25

constant factor of the optimal. We then compress this further using arithmetic coding to
reduce the size to approximately 1.25899n+ o(n) bits. Our compression can be efficiently
constructed from TRG(L) and vice versa.

3.1 Preliminaries

As in Chapter 2, let L be a distributive lattice on n elements and let m = |J (L)|. Fix a
linear extension τ of J (L), and identify p ∈ J (L) with its position in τ .

Recall that an element y covers an element x (or x is covered by y) if x < y and for all
z ∈ L, x 6 z < y =⇒ x = z.

Let C(x) be the set of elements that cover x.

Lemma 20. An element x ∈ L is join-irreducible if and only if it covers a unique element
of L.

Proof. Since L is finite, every element except for ⊥ covers at least one element of L, and
⊥ is not join-irreducible by definition. If x ∈ L is join-irreducible, it cannot cover any two
distinct elements y and z, for then y ∨ z = x. If x covers a unique element x′ ∈ L, then
for all y, z < x we have y, z ≤ x′. Hence y ∨ z ≤ x′ whenever y, z < x. Since there is
no intermediate element between x′ and x, we can only have y ∨ z = x when y = x or
z = x.

3.2 Doubling Lattices

The encoding is an application of a special case of the doubling method for lattices, orig-
inally due to Alan Day [5] and cleverly exploited in [9] to count distributive lattices. We
use it to construct a distributive lattice by a sequence of m “doubling” operations, each
adding one join-irreducible element to the lattice.

We define the operation DOUBLE that accepts a distributive lattice L and an element
x ∈ L and outputs a larger lattice L′ that is obtained by creating a new join-irreducible
element x′ that covers x, and “completing” the lattice with this new element. That is, L′

is constructed to be the smallest distributive lattice that contains L ∪ {x′}.
Definition 21. Let x ∈ L, and let y1, y2, . . . , yk be the elements of L greater than or equal
to x. Then DOUBLE(L, x) adds k new elements y′1, y

′
2, . . . , y

′
k to L and extends the order

relation 6 as follows:

26

• For 1 ≤ s, t ≤ k, y′s 6 y′t ⇐⇒ ys 6 yt

• If z ∈ L, then z 6 y′s ⇐⇒ z 6 ys.

See Figure 3.1 for an example of the double operation.

The double operation has an intuitive effect on the transitive reduction graph of L.
TRG(DOUBLE(L, x)) is obtained from TRG(L) as follows:

• Beginning at node x, follow upward edges to visit all y reachable from x in TRG(L).
Call these nodes y1, y2, . . . , yk.

• Create new nodes y′1, y
′
2, . . . , y

′
k. Add an edge (ys, y

′
s) for s = 1, 2, . . . , k. Also add an

edge (y′s, y
′
t) whenever (ys, yt) is in TRG(L), for 1 ≤ s, t ≤ k.

From the definition, it is easy to check that the resulting DAG accurately represents
DOUBLE(L, x). This procedure takes time proportional to the number of edges between
elements of {y1, y2, . . . , yk} in TRG(L).

We now prove that DOUBLE does actually produce a distributive lattice, and that it
modifies J (L) in a predictable way.

Lemma 22. The poset DOUBLE(L, x) is a distributive lattice, and J (DOUBLE(L, x)) =
J (L) ∪ {x′}, where x′ is the newly-created element covering x.

Proof. As in the definition, let y1, y2, . . . , yk be the elements of {y ∈ L | y > x}, and let
y′1, y

′
2, . . . , y

′
k be the duplicate elements created by DOUBLE(L, x).

Let P be the poset that extends J (L) with an element q, and extends the order relation
of J (L) by the rule q > p if and only if p ∈ IDEAL(x). We know that O(P) (the lattice
of ideals ordered by inclusion) is a distributive lattice, and that it contains O(J (L)) ∼= L
as a sublattice since J (L) is a subposet of P . We show that y′1, y

′
2, . . . , y

′
k correspond to

the ideals in O(P) \ O(J (L)), and that y′1, y
′
2, . . . , y

′
k relate to L in the same way as the

ideals in O(P) \ O(J (L)) relate to O(J (L)).

Clearly, the ideals of O(P)\O(J (L)) are exactly the ideals containing q. Let I ∈ O(P)
and suppose q ∈ I. Then IDEAL(x) ⊆ I since q > p for all p ∈ IDEAL(x) (that is,
IDEAL(x) 6 I in O(P)). Since q is a maximal element of P , the set I \{q} is also an ideal
of P , and even an ideal of J (L) since q 6∈ I \ {q}. In particular, there is an element y ∈ L
such that IDEAL(y) = I \ {q}, and since I \ {q} must still contain IDEAL(x) as a subset
we have y > x in L. Thus, O(P) \ O(J (L)) = {IDEAL(y) ∪ {q} | y > x}.

27

1

2

3

1

2

3

4

∅

{1}

{1, 2}

{1, 2, 3}

{1, 3}

{3}

∅

{1}

{1, 2}

{1, 2, 3}

{1, 3}

{3}

{1, 3, 4}

{1, 2, 3, 4}

(a)

(b)

x

x

x′

Figure 3.1: (a) A distributive lattice L and its join-irreducible poset. (b) The result of
DOUBLE(L, x).

Define Φ: L∪{y′1, y′2, . . . , y′k} → O(P) by Φ(z) = IDEAL(z) for z ∈ L, and by Φ(y′s) =
IDEAL(ys)∪{q} for s = 1, . . . , k. Since IDEAL is an isomorphism between L andO(J (L)),
we only need to show that y′1, y

′
2, . . . , y

′
k have the same order relations in DOUBLE(L, x)

as Φ(y′1),Φ(y′2), . . . ,Φ(y′k) have in O(P).

Observe the following for 1 ≤ s, t ≤ k:

• IDEAL(ys) ∪ {q} ⊆ IDEAL(yt) ∪ {q} ⇐⇒ IDEAL(ys) ⊆ IDEAL(yt).

• If z ∈ L, IDEAL(z) ⊆ IDEAL(ys) ∪ {q} ⇐⇒ IDEAL(z) ⊆ IDEAL(ys).

If we rewrite these rules using Φ, it becomes clear that they are exactly those stated in
Definition 21.

• Φ(y′s) ⊆ Φ(y′t) ⇐⇒ Φ(ys) ⊆ Φ(yt).

• If z ∈ L, Φ(z) ⊆ Φ(y′s) ⇐⇒ Φ(z) ⊆ Φ(ys).

28

Therefore, Φ is an isomorphism between DOUBLE(L, x) and O(P) extending IDEAL. The
result now follows by Birkhoff’s representation theorem.

This lemma has an interesting consequence. Since DOUBLE adds a single join-irreducible
element to the lattice, an appropriate sequence of m double operations applied to a trivial
lattice is sufficient to create any distributive lattice with m join-irreducible elements. In
fact, since the elements of J (L) can be added in different orders, there may be many ways
to build a given lattice. The only restriction on the double operation is that the element
added to J (L) must be maximal in that poset; therefore, the double operations can add
join-irreducible elements in the order of any linear extension of J (L) and the resulting
lattice must be isomorphic to L.

3.3 Compression Strategy

Now consider C(x)∩J (L), the set of join-irreducible elements that cover x. By Lemma 20,
every join-irreducible element is present in exactly one set C(x) ∩ J (L) for x ∈ L. Hence,∑

x∈L |C(x) ∩ J (L)| = m.

In fact, storing |C(x)∩J (L)| for each x ∈ L is sufficient to uniquely identify a distribu-
tive lattice up to isomorphism. The number |C(x) ∩ J (L)| is the number of times that
DOUBLE must be applied to x in order to grow L from the trivial lattice, simply because
doubling on x adds one new join-irreducible element to the lattice and that element covers
x.

This is the basis of our encoding: we store |C(x) ∩ J (L)| for each x, ordered in a
predictable way. This sequence of values serves as an instruction set for building the
lattice by doubling.

Let x1, x2, . . . , xn be the elements of L, sorted in some fashion to be decided later. The
covering sequence of L is the sequence (c1, c2, . . . , cn) where ci = |C(xi) ∩ J (L)|. The
encoding we present is a space-efficient representation of the covering sequence.

Definition 23. The compression code of a lattice with covering sequence (c1, c2, . . . , cn) is
the bitstring 1c101c20 . . . 1cn0.

Simply put, the compression code is the covering sequence written in unary. Note
that the compression code of L occupies n + m bits as it contains exactly n zeros and∑

x∈L |C(x) ∩ J (L)| = m ones. It is trivial to convert between this compression code and
the covering sequence in linear time.

29

In the worst case this uses 2n−1 bits, which occurs when L is totally ordered. However,
the worst case behaviour can be improved by accounting for some expensive cases. Later
we will define the improved compression code and prove the main theorem of this chapter:

Theorem 24. The improved compression code of L occupies at most 10
7
n+O(log n) bits.

It contains exactly n zeros and no more than 3
7
n ones, along with O(log n) bits of extra

information. This compression can be created from TRG(L) in O(n log n) time and it can
be decompressed to TRG(L) in O(n log n) time.

Our final result is a simple corollary of this theorem. It uses arithmetic coding [3] to
compress the improved compression code to a size equal the entropy lower bound plus a
lower order term1.

Corollary 25. There exists a code representing for distributive lattices that uses at most
(− lg(0.7)− 3

7
log(0.3))n+ o(n) ≈ 1.25899n+ o(n) bits. Converting between this represen-

tation and the improved compression code requires O(n) time.

Proof. The improved compression code is a binary string in which a zero occurs with
probability at least n

10n/7
= 0.7 and a one occurs with probability at most 3n/7

10n/7
= 0.3.

Arithmetic coding of this string reduces the length to the ceiling of entropy lower bound,
given by

d(# zeros)(− lg(probability of zero)) + (# ones)(− lg(probability of one))e

= d−n lg(0.7)− 3

7
n log(0.3)e ≈ 1.25899n

An extra O(log n) bits are required to store the length of the code.

However, ordinary arithmetic coding is not very efficient algorithmically. To obtain
fast encoding and decoding times, we first split the improved compression code into pieces
of size logn

2
and code them separately. An extra O(log log n) bits are required for each

piece, but this only adds O(n log logn
logn

) bits overall. By precomputing the map between all

possible logn
2

-bit strings and their encodings, each piece can be encoded or decoded in linear
time.

1Thanks to Patrick Nicholson for this suggestion.

30

3.4 Intuitive Algorithm

The lattice can be recovered from its covering sequence by the following decompression
algorithm, which will be made precise later.

1: procedure Decompress(c1, c2, . . . , cn)
2: Set K to the trivial lattice with element ⊥
3: Create a list L containing ⊥
4: for i = 1, 2, . . . , n do
5: x← L[i]
6: for j = 1, 2, . . . , ci do
7: K ← DOUBLE(K, x)
8: Insert new nodes y′1, y

′
2, . . . , y

′
k into L

9: Return K

This algorithm reads the covering sequence as a list of instructions for building the
lattice. The algorithm scans the list L one node at a time and, for each node x that it
visits, it pops a number from the covering sequence and applies DOUBLE to the existing
lattice that many times with node x. All the new nodes created by the double operations
are inserted into L (in some unspecified way) so that they will be visited eventually by the
algorithm. An example of this algorithm is shown in Figure 3.2.

As long as the final order of nodes in L is the “same” as that of the covering sequence
(i.e., the order x1, x2, . . . , xn), the nodes of K will be correctly matched with their corre-
sponding nodes in L and the correct values in the covering sequence. In that case, the
double operations must correctly reproduce L; this can be shown using Lemma 22.

To make this algorithm precise, it remains to decide on a protocol for ordering the
covering sequence. The encoding algorithm uses the protocol to decide on the order of the
covering sequence, and the decoding algorithm uses it to decide the order that nodes are
inserted into L.

Describing and computing this protocol is the chief difficulty of the encoding procedure,
even though many different protocols would work equally well. The only requirement of the
protocol is that it can be easily computed by the decoding algorithm, which cannot know
the final lattice structure until the end. The protocol serves as an agreement between the
encoding and decoding algorithms that ensures correctness while allowing for a compact
representation of the covering sequence.

One possible protocol works according to the following rule, expressed in terms of line
8 of Decompress: Insert y′1, y

′
2, . . . , y

′
k at the end of L in the same respective order as

31

1 2

3 4 5

6 7

1 2

3 4 5

6

1 2

3 4 5

1 2

3

1 2

3

1 2

4

K0

K1

K2

1

1

2 3

1

2

K3

K4

K8

K14

1

2 3

4

1

2 3

45 6

7 8

1

2 3

45 6

7 89

1011 12 13

14

Figure 3.2: Growing the distributive lattice of Figure 1.2 by a sequence of double opera-
tions. The numbers give the order in which the nodes are visited, and open circles indicate
unvisited nodes. Each image shows the result of one DOUBLE operation. The covering
sequence for this lattice is (2, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0).

y1, . . . , yk appear in the list. That is, y′1, . . . , y
′
k are inserted after all the preexisting nodes,

and y′s appears before y′t if and only if ys appears before yt in L.

We adopt a similar protocol, except that this one sorts first by height and only uses
the above protocol to decide on the order between nodes of the same height. We say the
height of x ∈ L is the length of the shortest path from ⊥ to x in TRG(L). Write h(x) for

32

the height of x.

Rule: Keep L sorted by height. When adding new nodes to L, for s = 1, . . . , k,
insert y′s at the end of the nodes of height h(y′s). If h(y′s) = h(y′t), then the
order is inherited from ys and yt in L.

This rule is baked into the formal algorithm in the next section.

3.5 Decompression Algorithm

Proposition 26. TRG(L) can be computed from its covering sequence in O(n log n) time.

Proof. We give a formal description of the decompression algorithm. For each x ∈ L, the
algorithm applies the double operation with x as its second argument |C(x)∩J (L)| times,
and it applies the double operations in the order determined by the Rule above. It keeps
a set of m + 1 lists, L0,L1, . . . ,Lm, in which Lj contains the nodes of K with height j.
Initially L0 contains only ⊥, and the other lists are empty.

Each node stores its height, denoted h(x). As well, each node x is assigned an index
`(x) ∈ {1, . . . , n} that stores the position of x in its list, Lh(x).

The algorithm works as follows, beginning with a covering sequence (c1, . . . , cn). For
i = 1, . . . , n, let x be the ith item in L0L1 · · · Lm. Repeat the following ci times:

i Replace K by DOUBLE(K, x).

ii Find the newly created nodes y′1, y
′
2, . . . , y

′
k and their counterparts y1, y2, . . . , yk. Sort

these nodes such that h(y1) ≤ h(y2) ≤ · · · ≤ h(yk) and `(ys) < `(ys+1) whenever
h(ys) = h(ys+1). Set h(y′s) = h(ys) + 1 for s = 1, . . . , k.

iii For s = 1, . . . , k in order, set `(y′s) = |Lh(y′s)|+ 1 and append y′s to the end of Lh(y′s).

Since each double operation runs in time proportional to the number of new edges
it creates, the total time for the double operations is O(|E|) where E is the edge set of
TRG(L). It is known that |E| ≤ n lg n for distributive lattices. Sorting y1, y2, . . . , yk by
height and index in step (ii) takes O(k log k) time, and everything else takes O(k) time.
Thus, the total time for the algorithm is O(n log n).

33

It only remains to prove that this algorithm reproduces L faithfully. Since the height
of y′s is always larger than that of x (for all s = 1, . . . k), a node is never appended to a list
Lj that has already been traversed. Moreover, every node is added to a list exactly once
since this only occurs when the node is created. This shows that every node will eventually
be visited by the algorithm.

By Lemma 22, K is a distributive lattice at the beginning and end of every step.
There are m double operations executed during the algorithm, so K has m join-irreducible
elements at the end.

The most critical ingredient of this algorithm is the certainty that the values in the
covering sequence are correctly matched with the nodes in K. This must be true because
the order of the covering sequence is based on Rule, which in turn is described in terms
of this very algorithm. In other words, since this algorithm is used to decide the order of
the covering sequence, we can be certain the order is correct.

Hence, if we assume that (at some point in the algorithm) K is a correctly structured
sublattice of L, then the nodes in K being processed by the algorithm must be accurately
identified with the numbers in the covering sequence. Each double operation then adds a
join-irreducible element to K, extending J (K) to a larger subposet of J (L). The algorithm
must therefore terminate with J (K) = J (L).

3.6 Compression Algorithm

We now give an algorithm that efficiently builds the covering sequence of L from its ideal
tree. Our algorithm first computes |C(x) ∩ J (L)| for each x ∈ L and then puts them in
the order the covering sequence.

Proposition 27. The covering sequence of L can be computed from TRG(L) in O(n log n)
time.

Proof. First, compute |C(x) ∩ J (L)| for all x ∈ L. By Lemma 20, an element x′ of L is
join-irreducible if and only if it covers a unique element x. Thus, the values of the covering
sequence can be computed as follows: Initialize cy = 0 for all y ∈ L, and then visit all join-
irreducible elements x′ ∈ J (L) and increment cx, where x is the unique element covered
by x′.

To order these values, simply run the decoding algorithm, beginning with a trivial
lattice, while maintaining an injective map φ between the in-progress lattice K and the

34

completed lattice L that embeds K as a sublattice of L. When the decoding algorithm
“asks” for a value in the covering sequence to associate with a node x ∈ K, supply it with
the value cφ(x). Now φ can be extended by identifying the new join-irreducible element of
K with one of the elements in C(φ(x)) ∩ J (L) \ φ(K).

Note that this method works with any protocol for ordering the compression code, not
just the one we have chosen.

Finding the values of the covering sequence requires O(|E|) time, where E is the set of
edges in TRG(L). Ordering the values takes the same time as running the decompression
algorithm, which is O(n log n). Thus, the total time is O(n log n).

3.7 Improving the Space Requirements

The encoding representation above uses n + m bits because the values in the covering
sequence are represented in unary. In the worst case, this requires 2n − 1 bits. This
occurs when the lattice is totally ordered, and the compression code is the bitstring
10101010 · · · 010. Similarly inefficient examples can be constructed by adding sufficiently
long chains above or below any distributive lattice; the result will always be a distributive
lattice, and the compression code will begin or end with the string 10101010 · · · 010.

These examples are so inefficient because the decoding process repeatedly applies the
double operation to the top element of the lattice K, and only one new node is created by
each operation. We can avoid this inefficient case by storing the value of n along with the
compression. This allows the decoding algorithm to detect when L has been completely
generated without simply reaching the end of the covering sequence. If L has not been
completely generated, then the decompression algorithm is guaranteed to double at least
once more on the current lattice K, and if it reaches the last unvisited element of K then
it knows — without reading the next bit of the encoding — that it must double at least
once on this final element.

We can use this observation to omit some ones from the encoding. Suppose that,
at some point during the decoding algorithm, L has not been completely generated and
x is the last unvisited node in K. Then the algorithm must apply DOUBLE at least
once; hence, the first 1 in the unary representation for |C(x) ∩ J (L)| can be omitted
from the compression and still be “read” implicitly by the decompression algorithm. The
compression and decompression algorithms can be easily modified to handle these implicit
ones.

35

With this improvement, all of the ones in the compression code for the totally or-
dered lattice become implicit; 10101010 · · · 010 is replaced by 000 · · · 00. See Figure 3.3
for another example. More generally, every one in the compression code causes a double
operation that creates at least two new nodes, and hence there are at most n/2 ones in
the encoding. Combined with the n zeros, the compression code has length at most 1.5n.
The space is therefore reduced to 1.5n+O(log n) bits in the worst case. The O(log n) term
reflects the space required to store n.

1

1

1
2 3

4

1
2 3

4

1
2 3

4
5 6

7

Figure 3.3: An example of decoding the lattice with covering sequence (2, 0, 0, 2, 0, 0, 1, 0).
The improved compression code is the bitstring 1000100000, in which three ones are omitted
compared to the simple compression code. The numbers give the order in which the nodes
are visited (as determined by Rule), and open circles indicate unvisited nodes.

A second, more complex improvement reduces the space to just 10
7
n + O(log n) bits.

Just as the first improvement deals with the case when DOUBLE is applied to the top

36

node of K, this improvement deals with the cases where DOUBLE is applied to nodes just
below the top node. In this case, and only this case, a double operation produces exactly
two new nodes. This is a bad case; we wish for every 1 in the compression code to be
responsible for the creation of at least 7

3
= 2.333 new nodes, on average. If this is achieved,

then the total number of ones in the improved compression will be at most 3
7
n ≈ 0.429n.

Combined with the n zeros in the code, this gives the 10
7
n bit code we desire.

Suppose that at some point in the decompression algorithm, every node of K has been
visited except for the top node and the nodes immediately below it. Let >K be the top
node of K, and let x1, x2, . . . , xd be the nodes just below it. Note that d ≥ 2, for if d = 1
then >K must have been created by a double operation on x1 and we assume that x1 has
not been visited yet.

Consider all of the double operations that will be applied to x1, x2, . . . , xd. If two or
more double operations are applied to x1, x2, . . . , xd, then the first double operation creates
exactly two nodes, and all of the following double operations create at least three nodes,
since the distance from the top of the lattice increases to three after the first operation.
Hence, a sequence of i double operations on x1, x2, . . . , xd creates at least 3i−1 new nodes.
For i ≥ 2, this implies that each double operation creates at least 2.5 (≥ 7

3
) new nodes on

average. Thus, we can restrict our attention to the case where only one double operation
is applied to x1, x2, . . . , xd.

We can also eliminate the case where d ≥ 3. Suppose that double is applied just
once on x1, x2, . . . , xd; without loss of generality, assume it is applied to x1. Although
DOUBLE(K, x1) only creates two new nodes, the fact that d ≥ 3 implies that the most
recent double operation, which created K from some smaller lattice K ′, must have created
at least four nodes. We prove this in the following claim.
Claim: Suppose d ≥ 3 and let z ∈ K ′ such that DOUBLE(K ′, z) = K. Then |{y ∈ K ′ |
y > z}| ≥ 4.

Suppose otherwise. One can easily check that {y ∈ K ′ | y > z} is a sublattice of K ′, as
the upper set of any element of any lattice is always a lattice. The only lattices with one,
two, or three elements are totally ordered; hence this sublattice has no two elements with
the same height. The double operation makes a copy of {y ∈ K ′ | y > z} and attaches it
to K ′, increasing the height of each element by one. Hence, only of the new nodes can be
just below >K in K. The only other node that can be on that row is >K′ . Thus, d ≤ 2, a
contradiction.

This implies that the total number of new nodes created by the two double operations
(DOUBLE(K ′, z) and DOUBLE(K, x1)) is at least six, and thus each one creates an average
of at least 3 nodes. This exceeds 7

3
, as required.

37

We have not altered our encoding yet, we have only done analysis. We now make a
change in how the covering sequence is encoded in order to handle the remaining “bad”
cases, in which d = 2 and only one double operation is applied to x1 and x2.

We have eliminated every case except for the two cases pictured below, which we call
α and β. Case α doubles on x1 and β doubles on x2. They correspond to the bit strings
100 and 010 respectively; these are the pieces of the compression code that are read while
processing x1 and x2.

β :α :

x1 x2 x1 x2

>K >K

We also consider case γ representing the bit string 00, in which double is not applied
to x1 or x2.

The algorithm may encounter cases α, β, and γ any number of times while decoding the
compression code. These cases can be detected easily: Every time the decoding algorithm
reaches the second highest row of K, it checks if there are only three unvisited nodes in
K. If so, it reads a few bits ahead in the compression code to see if α, β, or γ cases occur.
Every time α occurs, it appears in the code as the string 100, β appears as 010, and γ
appears as 00. Of course, a compression code may contain substrings 100, 010, and 00 in
places that do not correspond to these α, β, and γ cases; these cases only occur when the
corresponding strings are associated with exactly two nodes on the second highest row of
the lattice.

Our modification swaps these strings, so that the most frequent of these three cases
is represented by the string 00, while the other two are represented by 100 and 010. For
example, when the decoding algorithm detects one of these special cases, it may read the
string for γ, but act as if it had read the string for α. This has the significant advantage
that the shortest of these codes is the most common, thus minimizing the total number of
bits across all the occurrences of these cases. Along with the bitstring code and the value
of n, the improved compression code stores two extra bits to indicate whether α, β, or γ
is the most frequent case. This describes our final encoding of L.

Definition 28. Let (c1, c2, . . . , cn) be the covering sequence for L. Then the simple com-
pression code for L is 1c101c20 · · · 1cn0. The improved compression code modifies the simple
compression code in two ways:

38

1

2 3

45

6 7

8

9 10

11 12

1314

15

Figure 3.4: A distributive lattice with covering sequence (2, 1, 0, 1, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0).
The numbers in the figure indicate the order that the nodes are visited in the decompres-
sion algorithm. The simple compression code is (1)1010010000(1)10010100000, where the
parenthesized ones would be omitted by the first improvement.

• Any 1 in the code that corresponds to an operation DOUBLE(K,>K) in the decom-
pression algorithm is omitted. The value of n is stored along with the code.

• All of the occurrences of α (with string 100), β (with string 010), and γ (with string
00) are located. The most common of these cases swaps its string with 00. A number
between 1 and 3 is stored with the code to indicate whether α, β, or γ is the most
frequent case.

See Figure 3.4 for an example. As α is the most frequent case, the simple compression
code is changed into the improved code as shown here:

110 100︸︷︷︸
α

100︸︷︷︸
α

00︸︷︷︸
γ

110 010︸︷︷︸
β

100︸︷︷︸
α

00︸︷︷︸
γ

0

10
︷︸︸︷
00

︷︸︸︷
00

︷︸︸︷
100 10

︷︸︸︷
010

︷︸︸︷
00

︷︸︸︷
100 0

39

By omitting ones that can be made implicit, and by swapping the strings for α and γ, the
compression code becomes 10000010010010001000.

The changes to the encoding and decoding algorithms are straightforward. It is easy
to detect the α, β, and γ cases during decoding, and then to interpret the code correctly
by swapping cases as needed.

We now prove that the improved code uses at most 10
7
n bits. Let fα, fβ, and fγ be the

number of occurrences of the three cases.

In α and β, two new nodes are created and the algorithm moves to the next row; there
are no guarantees about what doubling occurs later in the algorithm. In γ, however, the
algorithm must proceed to apply double to >K at least once, for otherwise it would visit
all the nodes of K without doubling. The only exception is when K = L, and this case is
not significant since it occurs only once. If >K is doubled i ≥ 1 times, this reflects i − 1
consecutive ones in the compression code (since the first 1 is implicit) and it creates 2i− 1
new nodes in the lattice (since the ith DOUBLE operation creates 2i−1 new nodes).

For all i ≥ 1, it is true that (2i − 1) − 2
3
≥ 7

3
(i − 1), and we have equality for i = 2.

But we only require (2i − 1) ≥ 7
3
(i− 1) to ensure that every 1 in the code creates at least

7
3

nodes on average. This extra “two-thirds of a node” can be charged to the γ case that
occurred just before. Although the γ case does not double x1 or x2, and therefore does not
create any new nodes directly, we can assume that γ “creates” 2

3
of a node by the doubling

that must follow.

Thus, the total number of nodes created across all occurrences of α, β, and γ is 2fα +
2fβ + 2

3
fγ. We now show that the ratio of the number of created nodes to the number of

ones in the improved code associated with α, β, or γ is at least 3
7
. The total number of

ones in the compression code depends on whether α, β, or γ is the most common case.

If fα ≥ fβ, fγ, then the number of ones in the compression code is fβ + fγ. In this case,
we have

2fα + 2fβ + 2
3
fγ

fβ + fγ
≥

(1
3
fβ + 5

3
fγ) + 2fβ + 2

3
fγ

fβ + fγ
=

7

3
.

Similarly, if fβ ≥ fα, fγ then the number of ones in the compression code is fα + fγ. Then

2fα + 2fβ + 2
3
fγ

fα + fγ
≥

2fα + (1
3
fα + 5

3
fγ) + 2

3
fγ

fα + fγ
=

7

3
.

Finally, if fγ ≥ fα, fβ then the number of ones in the compression code is fα + fβ. Then

2fα + 2fβ + 2
3
fγ

fα + fβ
≥

2fα + 2fβ + (1
3
fα + 1

3
fβ)

fα + fβ
=

7

3
.

40

In all three cases the ratio of nodes created to number of ones in the compression code
is at most 7

3
. Thus, the total number of ones in the compression code is at most 3

7
n. As

the number of zeros is still n, we conclude that the compression code uses 10
7
n bits. As

well, these modifications can only reduce the length of the code, so m+ n is still an upper
bound. We have now proved Theorem 24.

41

Chapter 4

Conclusion and Open Problems

This thesis has introduced two novel representations of finite distributive lattices. The
first is the persistent ideal tree data structure that performs meet and join operations in
O(log n) time while staying space efficient. To my knowledge, it is more efficient than any
known data structure for distributive lattices using less space than a simple O(n2 log n)
lookup table.

However, the construction time of O(n log n+m2.5) for the persistent ideal tree is high,
owing exclusively to the chain decomposition of J (L) that must be computed. I wonder
whether this expenditure can be avoided.

The second representation is a compact encoding of the lattice using kn bits of space
where comes very close to the information-theoretic lower bound for representing distribu-
tive lattices. One might ask whether the space requirements of the compression code can
be reduced much further; such a result may yield a new upper bound on the number of
distributive lattices of size n.

Finally, a natural question is whether there exists a data structure that has the best
of both worlds: It occupies O(n) bits of space while supporting meet and join operations
efficiently. It seems unlikely that the persistent ideal tree could be modified to require less
space, or that the compression code could be modified to support meet and join operations,
so perhaps an entirely new structure is needed to solve this problem.

42

References

[1] Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and searching
strings. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 360–369. Society for Industrial and Applied Mathematics, 1997.

[2] Garrett Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443–454, 1937.

[3] John G. Cleary, Radford M. Neal, and Ian H. Witten. Arithmetic coding for data
compression. Communications of the ACM, 30(6):520–540, 1987.

[4] Brian A. Davey and Hilary A. Priestley. Introduction to lattices and order. Cambridge
university press, 2002.

[5] Alan Day. A simple solution to the word problem for lattices. Canad. Math. Bull,
13:253–254, 1970.

[6] Karel De Loof, Hans De Meyer, and Bernard De Baets. Exploiting the lattice of ideals
representation of a poset. Fundamenta Informaticae, 71(2, 3):309–321, 2006.

[7] Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of
Mathematics, pages 161–166, 1950.

[8] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data
structures persistent. Journal of Computer and System Sciences, 38(1):86–124, 1989.

[9] Marcel Erné, Jobst Heitzig, and Jürgen Reinhold. On the number of distributive
lattices. The Electronic Journal of Combinatorics, 9(1):23, 2002.

[10] Arash Farzan and J. Ian Munro. Succinct representation of finite abelian groups. In
Barry M. Trager, editor, Symbolic and Algebraic Computation, International Sympo-
sium, ISSAC 2006, Genoa, Italy, July 9-12, 2006, Proceedings, pages 87–92. ACM,
2006.

43

[11] Michel Habib, Raoul Medina, Lhouari Nourine, and George Steiner. Efficient algo-
rithms on distributive lattices. Discrete Applied Mathematics, 110(2):169–187, 2001.

[12] Michel Habib and Lhouari Nourine. Tree structure for distributive lattices and its
applications. Theoretical Computer Science, 165(2):391–405, 1996.

[13] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[14] Guy Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th
Annual Symposium on Foundations of Computer Science (FOCS), pages 549–554.
IEEE Computer Society, 1989.

[15] Daniel J. Kleitman and Kenneth J. Winston. The asymptotic number of lattices.
Annals of Discrete Mathematics, 6:243–249, 1980.

[16] J. Ian Munro. Succinct data structures ... potential for symbolic computation? In
Sergei A. Abramov, Eugene V. Zima, and Xiao-Shan Gao, editors, Proceedings of the
ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC
2016, Waterloo, ON, Canada, July 19-22, 2016, pages 5–8. ACM, 2016.

[17] J. Ian Munro and S. Srinivasa Rao. Succinct representation of data structures. In
Dinesh P. Mehta and Sartaj Sahni, editors, Handbook of Data Structures and Appli-
cations. Chapman and Hall/CRC, 2004.

[18] J. Ian Munro and Corwin Sinnamon. Time and space efficient representations of dis-
tributive lattices. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 550–567. Society for Industrial and Applied
Mathematics, 2018.

[19] Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge Uni-
versity Press, 2016.

[20] Lhouari Nourine and Olivier Raynaud. A fast algorithm for building lattices. Infor-
mation Processing Letters, 71(5-6):199–204, 1999.

44

	List of Figures
	Introduction
	Background
	Birkhoff's Representation Theorem
	Chains, Antichains, and the Covering Relation
	Persistence

	Overview

	Persistent Ideal Trees
	Ideal Trees
	A Faster Data Structure
	Chain Decompositions and Wavefronts
	Strategy
	Computing WAVE
	Persistent Ideal Tree
	Computing WAVE-1

	Compact Encoding of Distributive Lattices
	Preliminaries
	Doubling Lattices
	Compression Strategy
	Intuitive Algorithm
	Decompression Algorithm
	Compression Algorithm
	Improving the Space Requirements

	Conclusion and Open Problems
	References

