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Abstract

With the advent of deep learning methods, researchers have been increasingly preferring
deep learning methods over decades-old feature-engineering-inspired work in Natural Lan-
guage Processing (NLP). The research community has been moving away from otherwise
dominant feature engineering approaches; rather, is gravitating towards more complicated
neural architectures. Highly competitive tools like part-of-speech taggers that exhibit
human-like accuracy are traded off for complex networks, with the hope that the neural
network will learn the features needed. In fact, there have been efforts to do NLP “from
scratch” with neural networks that altogether eschew featuring engineering based tools
(Collobert et al, 2011). In our research, we modify the input that is fed to neural networks
by annotating the input with linguistic information: POS tags, Named Entity Recognition
output, linguistic relations, etc. With just the addition of these linguistic features on a
simple Siamese convolutional neural network, we are able to achieve state-of-the-art results.
We argue that this strikes a better balance between feature vs. network engineering.
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Chapter 1

Introduction

Factoid question answering refers to question answering where the answers are facts. Ques-
tions such as, Who is the president of United States?, Who is the author of the Harry Potter
series? etc., are examples of factoid question answering. Factoid question answering usu-
ally has shorter and one or fewer answers. One of the major components of question
answering is answer selection. Answer selection implies choosing the right set of answers
given a natural language question. That is, given a question q and a candidate set of sen-
tences {c1, c2, . . . cn}, the goal of answer selection is to recognize the sentences that have
the correct answers in them. Typically, answer selection forms an important component
in an overall question answering pipeline architecture [46]. A sample question-answer set
is as shown in Figure 1.

For several years, research in Natural Language Processing (NLP) has been inspired by

Question: What is the name of Durst’s group?
Answers:
(+) Limp Bizkit lead singer Fred Durst did a lot before he hit the big time.
(+) “I hope he’s OK”, said Limp Bizkit singer Fred Durst.
(−) “Our world today is really emotional”, says Durst.
(−) The group’s DJ Lethal is now a member of Limp Bizkit.
(−) The Ozzfest is a proving ground but not, Durst hopes, a competition.

Figure 1.1: A sample question-answers pair for answer selection chosen from the TrecQA
dataset [53]. The relevant and non-relevant answers are indicated by (+) and (−) respec-
tively.
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Machine Learning models that frequently involve the use of feature engineering techniques.
The efforts of this research area has culminated in several systems such as Part of Speech
(POS) taggers, Dependency parsers, and Named Entity Recognizers (NER) that exhibit
human level accuracies. Not being an exception, until recently, the research in answer
selection for question answering was also powered by machine learning models with feature
engineering [53, 41, 60, 61]. While these models require hand-crafted features for better
answer selection, one of the attractive characteristics of these models is that they are simple
and are easily interpretable.

With the advent of neural networks (NN), however, nearly all NLP problems are ad-
dressed through them. Since NNs do not require any feature engineering, there also have
been attempts to promote “Natural Language Processing from Scratch” in the NLP com-
munity, with emphasis on avoiding feature engineering altogether [6]. With the seemingly
panacea use of NNs, decades worth of NLP research has been increasingly abandoned.
Nevertheless, complex neural models have been proposed to achieve higher effective mea-
sures over the standard datasets, making it harder for the community to interpret these
models.

Not being an exception to this trend, recent work in answer selection has largely moved
away from feature engineering approaches that were dominant in the past decade. Nearly
all work today takes advantage of NNs, with researchers proposing models of great sophis-
tication and complexity. A common theme among all these NN models is that they almost
always take word embeddings representing the questions and answers as input. Unlike
the traditional machine learning models, these inputs are unaccompanied by linguistic fea-
tures that are known to be useful to question answering: POS tags, NER output, linguistic
relations, etc. Deep learning models on the other hand, purposely shun such features,
expecting that NN will learn them automatically.

The increase in complexity of these NN architectures also leads to uninterpretable
models. Moreover, the unnecessary complexity of the models tend to overfit the standard
datasets. It is therefore desirable to strike a balance between NN architecture and some
amount of feature engineering.

This work attempts to combine a simple NN model with linguistic features from NLP
models. We begin with a baseline “Siamese” convolutional neural network (CNN) for an-
swer selection that has word embedding matrix representing a question answer pair. We
augment this word input matrix with rich linguistic features. We build a simple convolu-
tional neural network with this linguistically annotated features (Lai-CNN for short) that
rivals or exceeds the state-of-the-art results on the standard QA datasets.

Through Lai-CNNs, we are trading model complexity with mature NLP technology
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and using linguistic features to help the network to learn better. We argue that, although
Lai-CNNs might not yield the top place in the state-of-the-art leadboard, it will certainly
help in gaining better effective measure while retaining model interpretability. Overall,
this hybrid approach between NNs and linguistic features strikes a better balance between
feature vs. network engineering.

We incorporate the linguistic features into the network by adding linguistic features as a
part of the input to the network. Since the neural network usually inputs word embedding
corresponding to each word in the natural language sentence, we first convert the linguistic
features corresponding to each word into a one-hot representation, and concatenate this
new encoded vector to the word embedding of the corresponding word. The convolutional
neural network then convolves over the input word embedding to generate feature maps.
These feature maps are automatically generated saving us the trouble of engineering fea-
tures. Once the features maps are created, they are fed to a fully connected neural network
and the network learns to classify whether an answer is relevant to the question or not.

1.1 Contributions

The main contribution of this work is that we combine traditional feature engineering ap-
proaches with neural methods. By retaining a simple CNN model and by adding linguistic
features to its input matrix, we argue that this combination of linguistic features with the
neural methods strikes a good balance between complex network architectures and feature
engineering. In essence, following are the main contributions of this work:

• We present several baselines: word overlap, idf -weighted word overlap, textflow, and
word mover’s distance, of which the latter two haven’t been employed in QA tasks
before.

• This work proposes a way to incorporate linguistic features into CNNs by augment-
ing the input matrices of the NNs with one-hot vector representations of linguistic
features.

• Ablation experiments that demonstrate gains with respect to addition of linguistic
features ordered by difficulty—the complexity of their training.

3



1.2 Thesis Organization

The subsequent chapters are organized in the following manner: Chapter 2 presents the
background elaborating on the task, dataset and the metrics used. In chapter 3 we go over
the relevant related work and chapter 4 presents various baselines and convolutional neural
network based models. Chapter 5 presents the linguistically annotated input approach and
chapter 6 presents the experiments and results. Chapter 7 concludes the thesis.

4



Chapter 2

Background and Related Work

A typical question answering system has the following general strategy for retrieving the
relevant answers corresponding to a question (as illustrated by Figure 2.1):

1. Analyze the question and identify the intent of the question. The question is classified
according to the type of its answer. Borrowing an example from Voorhees et al. [49],
the question beginning with who implies the person or organization being sought,
and a question beginning with when indicates a time designation is needed.

2. Retrieve all relevant documents by treating the given question as a query.

3. Parse the returned documents to get sentences that have entities that are of same type
as the answer. If a sentence with the required entity is found, it is deemed to be the
right answer to the question, otherwise the system progresses to do passage matching
techniques (between the query and candidate sentences) such as word overlap.

To illustrate this better, consider the question-answers pairs as shown in Figure 2.2.
The correct answer in the ranked list is at index 3, “Amazon river 6,992km long” and an
ideal answer selection system will place this answer at the top of the list. Note that since
there can be more than one correct answer to the question, placing the correct answers
as high as possible on top of the ranked list improves the overall quality of the answer
selection system.

5



Question Question Analysis

Query Document Retrieval

Documents Answer Selection

Sentences Answer Extraction

Answers

Figure 2.1: A typical question answering pipeline architecture, adapted from Tellex et
al. [46]

Question: How long is the Amazon river?
Answers:
(−) Amazon rainforest is also known as Amazon Jungle
(−) Amazon river is the longest river in the world
(+) Amazon river is 6,992km long
(−) The Amazon river dolphin are also known as the pink river dolphin or boto
(−) The Amazon River is located in South America

Figure 2.2: An Answer Selection module would rerank the candidate answers such that
the most relevant answers will appear at the top of the ranked list. The relevant and
non-relevant answers are indicated by (+) and (−) respectively.
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2.1 Related Work

In this section, we present the previous work in the field of factoid question answering; es-
pecially, the work done in the TrecQA and WikiQA datasets. We will present the evolution
of the task, metrics, and various methods that were employed. First, we will discuss the
non-neural approaches to factoid question answering, following which the recent advances
in neural-methods will be discussed.

2.1.1 Non-neural methods

Non-neural approaches to answer selection for factoid question answering are mostly lin-
guistically inspired approaches that try to capture the similarity of a candidate answer to
a given question by formulating similarity as the distance between the question and the
answer. That is, lower the distance between question and answer, likely is the answer to
be relevant to the question.

Answer selection, naturally, is a text matching problem [61]. That is, the goal of the task
is to measure how close an answer is to the question semantically. But, natural language is
ambiguous and there are inordinate ways of expressing a same utterance. Traditional bag-
of-words approaches cannot be employed since bag-of-words is invariant to the ordering of
the words and therefore answers that have more overlaps with the questions, although not
relevant, will be picked to be the most relevant answers. Consider, for instance, a question,
Who is the president of United States?. A candidate answer, The president of the United
States says no to NAFTA, although has high overlap, is not the right answer.

Overlap features for several of the NLP operations such as recognizing textual entail-
ment, paraphrase identification, and question answering that input sentence pairs have
shown to have a surprising degree of utility but the overlap features themselves are not
enough for these tasks [52]. Similarly, there have been approaches, where simple word over-
lap methods are extended to include matching of synonyms, and varied expressions through
resources like WordNet [26, 11]. A general approach in the QA community, however, has
been to employ alternative representational techniques that extract useful information from
the question-answers pair and to come up with a technique that matches the best candidate
answer to the question.

Some of the early non-neural approaches include representing the dependency tree of
both a question and a set of answers and choosing the answer that has the least edit distance
to the question in terms of their dependency trees [30]. This way, both the syntactic and
semantic information of the question-answer pairs is retained. The distance between the
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representations were measured using an approximate tree matching algorithm that captures
the number of additions, deletions, and changes to the tree. This work, however performed
strict matching between the dependency trees. As an alternative approach, a stastical
model based on fuzzy relation matching technique was proposedby Cui et al. [8].

Wang et al. propose “Jeopardy model”, a model based on quasi-synchronous grammar
formalism (developed by Smith and Eisner [40] for machine translation) [53]. The proposed
model softly aligns a question sentence with a candidate answer sentence through syntactic
and semantic transformations.

Figure 2.3: A tree edit sequence transforming a premise to an entailed hypothesis as
adapted from Heilman and Smith [16]

Similar to dependency based tree edit distance models, Heilman and Smith proposed
tree edit models for representing complex tree ordering phenomenon [16]. To better un-
derstand the working of tree models, consider the tree transformation in the Figure 2.3.
The figure illustrates the entailment from a given premise to the corresponding hypoth-
esis. The tree goes through a series of transformations to reach from the premise to the
hypothesis by relabeling nearby to near and moving Roseville Blvd to be a child of near.
To sequence the series of the edits efficiently, the authors use a logistic regression model
that uses 33 syntactic features. The tree edit model was found to perform competitively
for paraphrase identification, answer selection in question answering, and in recognizing
textual entailment.

Yao et al. consider answer selection as a sequence tagging problem by constructing
a linear-chain Conditional Random Field (CRF) based on question-answer pairs to learn
the association between the question and answer types [60]. They use Tree Edit Distance
(TED) to represent the knowledge of shared structure between the question and answer.
One of the advantages of this approach is that the authors do not use manually created
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templates for question and answers and thereby avoid human effort. Along with the TED
as one of the feature for the classifier, the authors also use traditional features such as
POS, NER, and dependency parsing that are known to aid answer selection in question
answering.

Practically, however, the approaches discussed above are computationally expensive
since they use syntactic and semantic parsers to be applied at runtime and a matching
algorithm is often non-trivial requiring additional computational resources. Moving slightly
away from the previous work that focusses on answer selection based on the syntactic
analysis that is powered by dependency tree matching, Yih et al. improve the effective
measures by considering rich lexical semantic resources [61]. Yih et al. focus on shallow
semantic components—lexical components. That is, they use latent semantic models to
capture the hidden word-alignment structures. The authors use WordNet to derive lexical
semantic information.

Severyn and Moschitti use tree kernels to automatically learn complex structural pat-
terns between question and answers [36]. For both question as well as a candidate answer,
the authors design shallow syntactic trees and connect these trees through relational words
(i.e., words that overlap between the question-answer pair). They then proceed to label the
nodes of the trees with semantic information and discover more semantic links between the
question and the answer based on the named entities. They also do not use any external
resources such as WordNet.

One of the drawbacks of the tree edit models is that they have two separate phases:
alignment-finding phase and resort to ad-hoc distance metrics. Wang and Manning propose
a framework for performing these steps in a single phase by using alignments as structured
latent variables [52].

2.1.2 Neural methods

The advantages of the neural methods for answer selection is that they do not involve any
complex feature engineering techniques. Additionally, in contrast to the prior work with
non-neural methods, the neural methods usually do not depend on any external resources
such as WordNet.

The first deep learning approach to answer selection was proposed by Yu et al [64].
The authors created two distributional sentence models: bag-of-words model and a bigram
model based on convolutional neural network (CNN). The authors use these models to
represent the input question and answer and train a supervised model. The questions and
answers are projected into vectors using these distributional models and the model learns

9



to semantically match the question with its candidate answer. On top of the semantic
match, the authors also proposed an enhanced model that combines this semantic match
signal with two word matching features. The neural architecture is simple and is illustrated
by Figure 2.4.

Figure 2.4: The architecture of the one dimensional convolutional neural network as
adopted from Yu et al. [64]

Wang and Nyberg proposed stacked bidirectional LSTMs (biLSTM) [51] that sequen-
tially reads words from question and answer sentences assigns a relevance score to the
candidate sentences. The candidate answers with entities that are similar in embedding
space can be misidentified as the right answers. For instance, Japan and China could be
very similar in the semantic space but China may not be the right answer to the question.
To discriminate between such answers, the proposed system does exact keyword match on
top of the biLSTM relevance model. In contrast to Yu et al [64], this work uses Google’s
pre-trained 300-dimensional vectors that were trained on Google News corpora [25].

Severyn and Moschitti present a “siamese” structured CNN that learns the represen-
tations corresponding to the input question and answer and computes similarity between
the learned representations [37]. We call this model SM model (after the authors) and is
discussed in detail in the baselines section (see 3.2).

The models that followed the SM model gained complexity and sophistication. For
instance, Tan et al proposed a biLSTM model that models question and and answer re-
spectively, which are then connected to a pooling layer, and use a similarity metric to
measure the matching between the question and the answer [42]. The simple pooling layer,
however, may not retain linguistic information, and therefore the authors use CNN on top
of the biLSTMs. The authors reason that this also results in a better embeddings corre-
sponding to the questions and answers. In addition to using CNNs over the biLSTMs, the
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authors also propose a simple attention model, which works as a framework for generating
answer embedding according to the question context. The architecture of biLSTM CNN
is as shown in the Figure 2.5

Cosine
Question Answeroq oa
output layer output layer

Convolutional Filters
Convolutional Filters

biLSTM biLSTM

max-k pooling max-k pooling

Figure 2.5: The architecture of biLSTM CNN as adopted from Tan et al. [42]

Santos et al. proposed a two-way attention mechanism called attention pooling, a
discriminative model for pairwise ranking [9]. Through attention pooling, the pooling
layers in the neural network can be aware of the current input pair (question and answer),
and therefore influence the computation of each other’s representations. In addition to
the learned representations, attention pooling jointly learns a similarity measure over the
projected segments of the input pair such as the trigrams of the input pairs and uses the
measure to calculate attention vectors in both directions.

All the previous work that has been discussed thus far only consider similarity between
the input sentence pair but not the dissimilarity between them. The dissimilarities between
the sentence pairs, however, also give signals on the semantics of the sentences. Wang et
al. consider both the similarities and disimilaries by decomposing and composing lexical
semantics over all sentences [57]. That is, for each vector corresponding to a word, the
model calculates a semantic matching vector based on all the other words in the corpus.
Following which, each word is represented in terms of a similar and dissimilar vector. The
authors use a CNN model to capture the features in the similar and dissimilar compo-
nents and a similarity score is estimated over the composed feature vectors. Finally, this
composed feature vector is used to predict sentence similarity between the input pair of
sentences.

Building up on the idea of sentence similarity and dissimilarity by Wang et al. [57], He
et al. propose a model that compares the a multiplicity of perspectives. The authors reason
that through multiple perspectives, the ambiguity and variability of linguistic expression
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can be captured [14]. The authors model questions and answers using a CNN model that
can capture features at multiple levels of granularity with multiple types of pooling such
as min, max, and average pooling. The model also uses multiple similarity metrics (cosine
distance, Euclidean distance, and element-wise difference).

One of the common themes among all neural methods that are discussed in this section
thus far is that in all methods model transforms the input questions and answers into a
fixed-length vector and then processes these vectors by computing similarity matching on
them. However, these representations are coarse-grained and may not capture the essence
of the input sentences well. As a way to cope with such a problem, He and Lin propose a
method for capturing fine-grained word interactions directly [15]. The authors also employ
a novel similarity layer to focus on the important word interactions. The end-to-end model
is as shown in the Figure 2.6.

Deep ConvNet

focusCube

simCube

Interaction Modeling

1. Context Modeling

3. Similarity Focus Layer

4. 19-Layer

2. Pairwise Word

On the mat there sit cats Ca
ts
sit

on
the

ma
t

bbb

b
b

bbb

b
b

On the mat there sit cats Ca
ts
sit

on
the

ma
t

Cats Sit On the Mat On the Mat There Sit Cats

Figure 2.6: The architecture of the pair-wise interaction model as adopted from He et
al. [15]

We observe ever increasing penchant towards complex neural network architectures as
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a replacement to feature engineering. To quote Yang et al. [58], “Without combining addi-
tional features, could we build deep learning models that can achieve comparable or even
better performance than methods using feature engineering?”. This trend is disconcerting
since the authors are trading simple overlap features with complex neural architectures.
The authors propose a new architecture: attention based neural matching model (aNMM).
The proposed model is equipped with a novel value-shared weighting scheme, and an at-
tention scheme to focus on important question terms.

In contrast to the pointwise approach, where a single answer is learned to be relevant
or not to a given a question, Rao et al. propose a pairwise approach to order a pair of
answers, where the model learns to rerank the answers based a positive and a negative
answer pair [31]. The model learns the joint representations of the triplet input: question,
positive answer, and negative answer. The model stacks a triplet ranking loss function to
learn from these representations with the goal to minimize the total number of inversions
to the ranked list.

Some of the recent neural architectures that have been discussed so far use either con-
volutional neural networks or recurrent neural architectures to represent the input question
and answers followed by complex similarity matching layers [58, 9, 14, 15, 31]. The problem
with these architectures, however, is the similarity matching layers, which are new word
interaction layers or attention based matching mechanisms, are not suited for practical ap-
plications due to the high memory consumption and computation cost incurred. Tay et al.
propose an LSTM network with holographic composition, a novel technique to represent
the relationship between a question and an answer [43]. The authors show that the holo-
graphic composition helps in providing scalable and rich representational learning without
trading off for high parameter costs. The authors also propose Holographic Dual LSTM
(HDLSTM) to model input sentences and for semantic matching. The model is trained
end to end so that the parameters of the LSTM are optimized to best learn the relation
between question and answer representations. The end-to-end system with holographic
composition is as shown in the Figure 2.7.

Tay et al. explore if state-of-the-art effective measures can be obtained with simple
neural architectures [44]. The authors propose a new neural architecture called HyperQA,
that is parameter-efficient and outperforms architectures like Attentive Pooling BiLSTMs
and Multi-Perspective CNNs. The parameters are reduced is by modelling the relationship
between question and answers in Hyperbolic space rather than in an Euclidean space.
HyperQA does not require any feature engineering , and does not requir complicated word
interaction layers such as the ones described in Multiperspective CNNs [14].

Wang et al. propose a bilateral multi-perspective matching (BiMPM) model to improve
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Figure 2.7: Architecture of the Holographic Dual LSTM model (HDLSTM) as adopted
from Tay et al. [43]

on the existing similarity layers by matching the encodeded representations of question and
answer in both the directions [55]. Given a question and answer as an input, the model
first encodes the sentences with a biLSTM, and the encoded sentences are matched in
both directions: in the direction of question and in the direction of the answer. For
each direction, in each time step, the answer is matched against all timesteps of other
answers from multiple perspectives. Finally, another biLSTM is used to aggregate the
matching results into a fixed-length matching vector. The matching vector is fed into a
fully-connected layer to decide whether the given answer is relevant to the question. The
working of BiMPM is as illustrated by Figure 2.8.

Shen et al. try to address the answer selection problem by focussing on semantic
similarity between the question and answers at word level [38]. The question and the cor-
responding candidate answer is first modelled using a biLSTM. The question and answer
pair is then used to compute word-similarity matrix between the representations. Mean-
while, the authors reason that each word in a question and answer has different importance
and they propose two strategies to capture importance of words: inter-attention layer and
inter-skip layer. The weighted vectors are then fed to a fully-connected layer and then to
a softmax layer to make final predictions.

Most recent work in answer selection includes work by Tran et al. [48] and Tay et
al. [45]. Tran et al. propose a new family of Recurrent Neural Networks called a Context-
dependent Additive Recurrent Neural Network (CARNN), which is aimed at developing
better dialogue systems by considering external contextual signals (previous utterance in a
dialogue system) in addition to the given textual input. The authors use this architecture
to use question as the external signal to achieve the state-of-the-art effective measures
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Figure 2.8: Architecture of the bilateral multi-perspective matching model (BiMPM) as
adopted from Wang et al. [55]

on the TREC QA dataset. Tay et al. propose a new attention mechanism called Multi-
Cast Attention Networks (MCAN) for ranking in conversational modelling and question
answering tasks. At the time of writing, MCAN holds the highest state-of-the-art effective
measures on the cleaner version of the TREC QA dataset.

2.2 Datasets

For our experiments, we consider two benchmark datasets that have been extensively used
by the research community for factoid question answering: TREC QA and WikiQA.

2.2.1 TREC QA

The factoid question answering task was first introduced as a TREC 8 (Text REtrieval
Conference) task on the TREC Disk 4 and 5 minus Congressional Record documents [49].
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Dataset Document Collections

TREC8 TREC disks 4&5 minus Congressional Record

TREC9
TREC10

AP newswire (Disks 1-3)
Wall Street Journal (Disks 1-2)

San Jose Mercury News (Disk 3)
Financial Times (Disk 4)

Los Angeles Times (Disk 5)
Foreign Broadcast Information Service (FBIS) (Disk 5)

TREC11
TREC12
TREC13

AQUAINT disks

Table 2.1: Source document collections for TrecQA.

Set # Question # Pos Answers # Neg Answers

Train 1,229 6,403 47,014
Dev 82 222 926
Test 100 284 1,233

All 1,411 6,909 49,173

Table 2.2: Statistics for various splits of TrecQA.

TREC 8 QA task was the first major large scale evaluation of systems based on the list
answers returned and not on the set of documents with respect to the question asked.

Starting with the TREC 8 QA track, question answering systems were evaluated on
their end-to-end performance. The participating systems would follow the aforementioned
steps and return a single tuple per question; the tuple being the answer string and the
document where the answer was found. These submissions were evaluated by TREC
organizers based on a pattern matching scheme. That is, a simple regular expression
matching with answers such as 1977 or George Bush accompanied by the DocID where
this answer was found. This type of evaluation, however, is flawed since it can also accept
an incorrect answer—that comes from the wrong sentence but the same document—to be
the right answer.

To illustrate this better, consider an example discussed by Wang et al. [53]: for the
question “When did James Dean die?” The correct sentence that has the right answer
to this question is, “In 1955, actor James Dean was killed in a two-car collision near
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Cholame, Calif.” . Therefore, the correct answer is 1955. But, the same document also
had the sentence, “In 1955, the studio asked him to become a technical adviser on Elia
Kazans East of Eden, starring James Dean.” This sentence also has the answer 1955
and if a system had chosen this sentence to be the answer, TREC evaluation would have
accepted such answer to be the right answer.

To overcome this problem, Wang et al. use the entire sentence as the answer instead
of extracting the part of the answer. This way, the answer is informative to the user as
well, as she or he can read the wider context of the sentence. They also focus only on the
answer selection part of the question answering pipeline, assuming the candidate answers
are given to a question.

Starting with Wang et al. [53], research on question answering has been mostly focussed
on the answer selection part. That is, given a question q and “assuming” a candidate set of
answers {c1, c2, . . . cn} are given, the answer selection module will select the most relevant
answers in the list. Alternatively, this problem can be formulated as a learning-to-rank
problem, where the objective of the answer selection system is to the rerank the candidate
answers {c1, c2, . . . cn} such that the the most relevant answers appear at the top of the
ranked list.

The TREC QA dataset was proposed and built by Wang et al. [53]. TREC 8-12 QA
datasets were used for training, and TREC 13 QA dataset was used for testing purposes.
The authors automatically chose the candidate answers by picking up the sentences from
the document pool that have at least one non-stopword overlap with the question words.
To augment the training set with the relevant answers, the authors also added answers
with the correct pattern to the training set. The test set was completely manually judged
and the first 100 questions of the TREC8-12 training set were also manually judged.

The entire TREC 13 set and the first 100 questions from the training set TREC 8-12
were manually judged. The source details and statistics of TREC QA dataset are as shown
in the Table 2.1 and 2.2 respectively.

2.2.2 WikiQA

One of the drawbacks of the TREC QA dataset is that the candidate answers have at least
one non-stop question words, and therefore the dataset involves a strong bias on the type
of the answers included. Consequently, lexical overlap approaches between the question
and answer words might perform better on the TREC QA dataset compared to a natural
setting. Borrowing an example from Yang et al. [59], consider an example that illustrates
this bias as shown in Figure 2.2.2.
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Question: How did Seminole war end?
Answer: Ultimately, the Spanish Crown ceded the colony to United States rule.

Figure 2.9: An example of an answer that does not share non-stop question words

Set # Question # Pos Answers # Neg Answers

Train 873 1,040 7,632
Dev 126 140 990
Test 243 293 2,058

All 1,242 1,473 10,680

Table 2.3: Statistics for various splits of WikiQA.

To overcome the problems that are intrinsic to the TREC QA dataset, Yang et al. [59]
proposed the WikiQA dataset. The questions for the WikiQA dataset come from the
Bing query logs and the candidate answers are chosen from Wikipedia pages. The can-
didate answers were labelled through crowd sourcing on Amazon MTurk. The statistics
corresponding to the WikiQA dataset are as shown in Table 2.3.

2.3 Metrics

Since the task is a learning-to-rank task, we use metrics that are usually employed to guage
the quality of a ranked list. The two standard metrics that are used are:

1. Mean Average Precision (MAP)

2. Mean Reciprocal Rank (MRR)

2.3.1 Mean Average Precision (MAP)

Mean Average Precision quantifies that quality of a ranked list is. That is, more the
number of relevant documents at the top of the ranked list, higher will be the MAP score.
MAP for a set of questions is calculated by finding the mean of the average precision scores
for each query. Average Precision (AP) is defined as following:
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AP =
1

|R|

Q∑
i=1

P (i)× rel(i) (2.1)

where |R| is the total number of relevant documents,

P (i) is the precision at top i documents, and
rel(i) is 1 if relevant, 0 otherwise.

Therefore, MAP is defined as:

MAP =

∑Q
q=1AP (q)

Q
(2.2)

where Q is the total number of questions

To illustrate AP better, consider the ranked list shown in 2.3

1, 0, 0, 1, 1, 1 (2.3)

Here “1” indicates a relevant answer and “0” indicates a non-relevant answer. The
precision calculated at each point would be as shown in 2.5

1/1, 0, 0, 2/4, 3/5, 4/6 (2.4)

The AP would therefore be the precision calculated at each point and averaged over
total number of relevant documents:

AP = (1 + 2/4 + 3/5 + 4/6)/4 = 0.6917 (2.5)

So, how do we compare two AP scores? That is, how good is, say, an AP score of 0.5
over an AP score 0.1 and how can this be reflected in terms of the quality of the ranked
list?

Consider a list that has relevant answers at alternative indices:

0, 1, 0, 1, 0, 1, 0, 1, ... (2.6)

Clearly, the AP of this list would be 0.5. Alternatively, consider another ranked list
with relevant answers at every third index:
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0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ... (2.7)

The AP score of this list would be 0.333. To recapitulate, if the AP is 0.5, the relevant
answer occurs at every second position. If the AP score is 0.3, the relevant answer occurs
at every 3rd position and an AP score of 0.1 would mean that every 10th answer is correct.

2.3.2 Mean Reciprocal Ranking

Mean Reciprocal Ranking (MRR) indicates how well the first relevant answer is placed.
That is, MRR can be thought to be equivalent to MAP with only the first relevant answer
considered. More formally,

MRR =
1

N

N∑
i=1

1

rank(Qi)
(2.8)

where N is the total number of questions
rank(Qi) is the index at which relevant answer is found for question Qi

The MRR corresponding to the ranked list in equation 2.6 and equation 2.7 are 0.5
and 0.3333 respectively.
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Chapter 3

Baselines

In this chapter, we explore various baselines both neural and non-neural, and present
results using them.

3.1 Non-nerual Baselines

The non-neural baselines for question answering for TREC QA and WikiQA datasets are
fairly competitive and exhibit MAP/MRR scores that are very close to the state-of-the-art
systems.

Word overlap is the simplest baseline that captures what fraction of non-stop question
words are present in the candidate answer. The baseline ranks the candidate answer that
has higher number of non-stop question words over the candidate sentences that have lower
non-stop question words. The baseline, therefore, inherently flawed since i) there can be
two candidate sentences with the exact number of non-stop question words ii) a candidate
answer can still be a relevant answer without having an exact match with non-stop question
words. That is, word overlap only captures lexical similarity and not semantic similarity
between the words.

3.1.1 Weighted Word Overlap

As discussed in the earlier section, the word overlap baseline considers candidate answer
sentences with equal number of non-stop question words equally; thereby, does not dis-
criminate between relevant and non-relevant answers.
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One of the ways to deal with this problem is to weight the non-stop question words
based by their importance. This way, two sentences containing the same number of non-
stop question words will be ranked differently depending on the importance of the non-stop
question words they possess.

The weighted-word-overlap baseline works exactly on the same principles, where the
non-stop question words are weighted by the Inverse Document Frequency (IDF) score.
IDF is defined in Equation 3.1. We notice that rarer a word, lower is its document frequency
df, and therefore more informative or important is the word.

idf(t,D) = log
N

|1 + {d ∈ D : t ∈ d}|
(3.1)

where N : total number of documents in the corpus

|{d ∈ D : t ∈ d}| is the number of documents where the term t appears. Also, known as
the document frequency df.

The working of weighted-word-overlap baseline is as shown in Figure 3.1.

The Amazon river is 6,992 km long

How long is the Amazon river ? 

0.3327 0.1325 0.0987

IDF weighted word overlap = (0.5639)/3 = 0.1880

Figure 3.1: Illustration of IDF weighted word overlap baseline.

3.1.2 Word Mover’s Distance

Word Mover’s Distance (WMD) is a metric that is similar to the well-known Earth Mover’s
Distance metric (proposed by Rubner et al. [33]) and measures the distance between two
documents. The WMD between two documents A and B is defined as thee minimum
cumulative distance that words from document A need to travel to match exactly the
point cloud of document B [20]. More formally, WMD is as defined as in Equation 3.2.
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WMD(q, a) =
∑
w∈q

min
w′∈a

dist(~w, ~w′) (3.2)

where q is a question

a is a candidate answer
and dist(.) is Euclidean distance

WMD can perform both lexical and semantic matches and therefore the method over-
comes the drawbacks of lexical matches that are inherrent in the word overlap baselines The
method is also a simple hyper-parameter-free model that is easy to use and to interpret.

We use WMD to capture the distance between two sentences and therefore the similarity
between a question and a candidate answer. Lower the distance the words in question have
to move to be similar to the answer, more relevant the candidate answer would be to the
question. We represent each question and the answer with word vectors by using the pre-
trained word vectors from Mikolov et al. [25]. We then calculate the WMD between a
question and the corresponding candidate answers and based on the score the candidate
answers are reranked. The working example of WMD is as illustrated by the Figure 3.2.

The Amazon river is 6,992 km long

How long is the Amazon river ? 

Figure 3.2: Working of Word Mover’s Distance

3.1.3 TextFlow

TextFlow is a text similarity measure that computes the distance between two input sen-
tences by representing the input text pairs as continuous curves and by using both the
actual position of the words and sequence matching to compute the similarity value [27].
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Figure 3.3: Working of TextFlow as adopted from Mrabet et al. [27]

It is a stand-alone similarity measure, whose parameters can be pre-tuned when needed
with the help of a small dataset. The working of TextFlow is as illustrate by Figure 3.3.
The word sequences corresponding to the input text pair is represented along the X and
Y axis. The area under the curve oscillating around the diagonal indicates the similarity
between the text pairs. Greater the area under the curve, lower is the similarity between
the input text pairs. TextFlow between two input sentences is a real number and is in the
interval [0,1]; 0 indicating no match and 1 indicating exact match. It is an asymmetric
measure and therefore TextFlow(X, Y) is not same as TextFlow(Y, X).

We treat a question and the corresponding candidate answer to be input text pairs and
we rerank the candidate answers based on their TextFlow scores.

3.2 Neural Baseline: SM Model

SM model is a Convulational Neural Network based model that was proposed by Severyn
and Moschitti [37]. The model follows a Siamese structure with two wings, a wing for
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Figure 3.4: The architecture of SM model as adopted from Sequiera et al. [35]

question and answer respectively. In this structure, a question and a candidate answer is
processed at the same time.

The word embeddings of the question and answer is fed as input to each of the wings.
That is, each word in the question and the answer is first converted into a continuous dis-
tributional vector such that if two words are similar in semantic space, their corresponding
vectors would also be similar in the vector space (through cosine similarity, euclidean
distance, etc.)

The convulational filters then convolve over these input matrices, followed by a RELU
activation and max-pooling yielding feature maps corresponding to the question and the
candidate answer. In the figure 3.4, xd corresponds to the feature maps of the answer and
xq refers to the feature map of the query. Note that, unlike traditional machine learning
methods, these features are automatically generated.

In the original paper, the feature maps xd and xq are concatenated into a single vector:

xjoin = [xT
q ;xsim; xT

d ; xT
feat] (3.3)

where xjoin indicates the bilinear join layer and xsim refers to the bilinear similarity between
xq and xd:

sim(xq, xd) = xT
qMxd (3.4)

This similarity matrix M is a parameter of the network that is optimized during training.
Rao et al. found that the existence of this matrix did not affect the effective measures
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(and hurt the effective measures slightly) and therefore we have removed the matrix from
the subsequent implementation of the SM model [32].

The feature maps are then fed to a fully connected neural network along with four
additional external features (represented by xfeat in the picture):

1. word overlap before removing stop words

2. word overlap after removing stop words

3. IDF weighted word overlap before removing stop words

4. IDF weighted word overlap after removing stop words

Table 3.1: Baseline resultson TREC QA dataset

Method MAP MRR

Word overlap 0.650 0.681
Weighted word overlap 0.701 0.769
WMD 0.733 0.791
TextFlow 0.704 0.762
SM Model 0.768 0.821

Table 3.2: Baseline resultson WikiQA dataset

Method MAP MRR

Word overlap 0.494 0.496
Weighted word overlap 0.560 0.564
WMD 0.604 0.614
TextFlow 0.531 0.535
SM Model 0.688 0.709

The external features xfeat are very useful and it was found that external features along
with the convolutional filter maps result in the effectiveness of SM model [32]. Finally, the
output of the fully connected layer is fed to a SoftMax layer and a score for each class i.e.,
relevant or non-relevant is generated. This score corresponding to the candidate answers
is then used to rerank the list so that most relevant answers appear at top of the ranked
list.

In addition to removing the bilinear matrix from the join layer, we also made some
other simplifications/modifications to the original SM model:
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1. The original SM model had static embeddings in the input layer. That is, the gra-
dients during the training were not back-propagated to the input layer. With our
implementation, we back-propagate the gradients to the input space for all our ex-
periments.

2. The original SM model uses ReLU as the activation function but we use tanh. We did
not see any difference in terms of effective measures when one of the two activation
functions were used and we retained the tanh activation function.

3. Following Rao et al., we removed the similarity matrix M since its existence does
not affect the effective measures [32].

The MAP, MRR scores obtained for each of above discussed baselines for TREC QA
and WikiQA dataseta are shown in Table 3.1 and 3.2 respectively.
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Chapter 4

Proposed Model

In this chapter, we describe in detail our proposed model. We build up the linguistically
annotated input for CNNs (Lai-CNN) over the SM model that was discussed in the
previous chapter. But, the question is how do we incorporate the linguistic features into
the neural network? Chen et al., for instance, proposed an elaborate set of features to be
added as external features to SM model [5]. The authors propose these features at three
different levels: lexical and semantic matching, readability, and focus features. These sets
of features—21 of them in total—capture either the interaction between the question and
answer or are overlap features like BM25. We, on the other hand, want to annotate each
word in the question and the answer with its linguistic features and therefore these features
cannot be incorporated as external signals.

Therefore, we would have to modify the input that is fed to SM model by linguistically
annotating it. The SM model takes an input matrix of word-embedding as the input, where
each word is represented as a vector. We linguistically annotate the input matrix before
feeding it to the neural network.

As discussed in the previous chapter, the SM model follows a “Siamese” structure
with two wings, a wing for a question and another for an answer, which are processed
simultaneously. The illustration of each arm is as shown in Figure 4.1.

Following Peng and Lu [28], in addition to the word embedding, we concatenated ad-
ditional linguistic features in each input “arm”. However, there are a plethora of linguistic
features to choose from and a neural network, the network could easily overfit if an inor-
dinate number of features were added affecting the effective measures.

We only choose the linguistic features that have known to help in the answer selection
task (see Yao et al. [60]). We also order the linguistic features to be added to the input of
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Figure 4.1: The input word embedding to SM CNN. Note that this figure is the rotated
form of the input word embedding matrix in Figure 3.4

the network based on the difficulty of the task i.e., how hard is it to train the correspond-
ing natural language processing task. Accordingly, we enumerate the annotations in the
following order:

1. Part-of-speech Tagging (POS)

2. Named Entity Recognition (NER)

3. Dependency parsing

4.1 Part-of-speech Tagging

POS tagging is a task of identifying the grammatical units of words in a given sentence.
The POS of a word gives details on the grammatical function of the word in an utterance
and helps in disambiguating the word’s purpose. It not only gives a lot of information
about the word but also about its neighbouring words. Examples of POS include nouns,
verbs, adjectives etc.
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Figure 4.2: PTB tagset as adopted from Jurafsky et al. [17]

English has a standardized POS tagsets called the Penn-Tree-Bank tagset (PTB for
short). PTB tagset has 45 tags in total and are shown as by Figure 4.2. These tags are
fine-grained and since our task just needs general signal of what the grammatical class of
the word is and to avoid overfitting of the model with too many tags, we map the PTB
POS tag set to a universal tag set proposed by Petrov et al. [29]. The universal POS tagset
is shown in Figure 4.3.

The rationale behind using POS tags for answer selection is that the POS tags accentu-
ate the signals that could be important for matching factoid question answers. Consider,
for instance, the following question:

Q: what is the longest river in the world ?

Here the words longest and river form an ADJECTIVE-NOUN pair and a relevant answer
will have a similar pair. Helping the neural network to recognize such patterns helps in
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Figure 4.3: Universal POS tagset as proposed by Petrov et al. [29]

the ranking of relevant answers better.

POS tagging has been extensively studied by the NLP research community with word-
level accuracy of 97.33% on the WSJ dataset [39]. POS tagging is treated as a sequence
tagging task and even simple HMM based models yield word-level accuracy as high as
96.7%. With the state-of-the-art accuracy as high as 97.33%, POS tagging is a fairly easier
task; especially, considering the human error on the task is 3% [23].

4.2 Named Entity Recognition

A named entity is, roughly speaking, anything that can be referred to with a proper name:
a person, a location, or an organization [17]. However, named entities also include temporal
expressions such as dates, time, and numerical expression such as prices. The list of generic
named entities along with the examples is as shown by Figure 4.4.

Named Entity Recognition (NER) is a task that recognizes the entities and identifies
the categories of the named entities. Consider the following sentence that is annotated
with its named entities:

Example: [Germany’]LOCATIONs representative to the [European Union’]ORGANIZATION veterinary
committee [Werner Zwingman]PERSON said on [Wednesday]DATE consumers should . . .

In the above example Germany is the name of a country, European Union is the name
of an organization and so on.
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Figure 4.4: A list of named entities as adopted from Jurafsky et al. [17]

NER is a difficult task due to the ambiguity of segmentation while recognizing the entity
since a named entity recognizer would have to identify where the entity begins and where it
ends. Additionally, identifying the type of the entity on its own can also be ambiguous since
the named entity can seemingly belong more than one category. Consider, for example,
the word JFK, which might refer to a person, an airport, a school, a bridge etc.

The use of NER features in the input to the neural network for answer selection can be
justified easily. Since the task focuses on factoid answer selection, most of the questions
and answers will have named entities in them and helping the neural network find the
named entities will rank the relevant answers better. To illustrate this, consider a sample
factoid question:

Q: When was Albert Einstein born ?

The question has the words Albert Einstein, which is a named entity. The answer
to this question will also have a date as the answer which is also a named entity and a
neural network that is trained to use named entities as a signal for answer selection would
therefore perform well on answer selection.

NER is also treated as a sequence labelling task where the assigned tags identify both
boundary and type of the entity. Sequence taggers like CRF, MEMM are trained on the
labelled data. Named Entity Recognition as a tagging task is not as easy as POS tagging
and the state-of-the-art system exhibits 89.31% accuracy over the CoNLL 2003 dataset [1].

4.3 Dependency Parsing

Dependency parsing gives the dependency information between two words in a sentence.
It is the binary relationship between two words in an utterance. Several NLP systems use
dependency information to understand how two words are related that cannot otherwise
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be understood through bag-of-words approaches. The syntactic structure of the sentence
can solely be explained by the words and the binary grammatical associations between
them [17]. The dependencies are called typed dependencies since the type of the depen-
dency is drawn from the pre-established set of grammatical relations. The dependency
tree includes a ROOT relation, which is the head of the entire structure. A dependency
tree three parts: head, dependent, and a grammatical function. A set of grammatical
relationships are as shown in Figure 4.5.

Figure 4.5: Examples of dependency relaltionships as adopted from Jurafsky et al. [17]

DET
a

NN
dog

VERB
runs

SUBJDET
ROOT

Figure 4.6: Dependency parsing of a simple sentence

Consider the example sentence as shown in the Figure 4.6. In this example, we can see
that the word a is related to the word dog by a being the DETERMINER of the word dog.
Here, DETERMINER is a grammatical function, dog is a dependent word, and a is the
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head. Similarly, dog is the SUBJECT of the verb runs and runs is the ROOT verb in this
sentence and runs is the head of the word dog and ROOT is the head of the word runs.

There could also be longer dependencies that can be captured by the dependency parse
as shown in the Figure 4.7. Adding dependency features as a linguistic feature to our
CNN based model helps the network in capturing the long distance dependencies that are
usually missed by CNNs since model shorter passages.

Figure 4.7: Longer dependencies while dependency parsing

Dependency parsing is the hardest of the NLP tasks that we had enumerated earlier.
The state-of-the-art (non-neural) dependency parse achieves a UAS score of 88% [3].

Each of the linguistic features mentioned in this chapter will be added to the input
layer of the CNN. The sans-linguistic features, however, are word embeddings in semantic
space of d dimension. Therefore, the linguistic features that are added to this input layer
should also be mapped to an embedding space. We do this by representing the linguistic
features in one-hot representation. That is, we begin with an array of 0’s and we assign
1 to the index of the linguistic feature. This sparse representation of the input can be
paralleled to the vector representation of the corresponding linguistic feature.

After concatenating the word embedding with the linguistic features, the input to the
network is as shown in Figure 4.8. The row corresponding to each word represents the
word embedding of the word, and the representation of its linguistic features. Consider,
for instance, the word cat. The POS of the word is NN (a Noun), the head of the word is
the. The word the is related to cat by a dependency relation det (ie.,the is the determiner
of the word cat). The word cat is not a named entity and therefore is represented by O
(no entity).
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Figure 4.8: The constituents of Lai-CNN. Note that this figure is the rotated form of the
input word embedding matrix in Figure 3.4

The numbers corresponding to each embedding represent the dimension of the corre-
sponding embedding space. The figure also indicates the corresponding representation of
linguistic features: word and head-word features are represented with word embedding
features (word embedding in the figure) whereas POS, NER, and dependency features are
represented using one-hot representation (one-hot vectors in the figure). Going back to
the example word cat, the first feature Word is represented as a word embedding, the de-
pendency feature det is represented as a one-hot vector. The headword the is represented
as a word embedding. Finally, the POS and NER features NN and O are represented by
one-hot vectors respectively.

4.4 Experimental Setup

In this section, we present the implementation details pertaining to our proposed model
that was discussed in detail in the earlier chapter. We annotate the SM model with
linguistic features by modifying the word embedding matrix to the neural network. In
the end, the word embedding matrix that was input to the neural network included the
following features:
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4.4.1 Word Embedding

We used a 50-dimensional word2vec word embedding built on the Wikipedia dump and
the AQUAINT collections. The word embedding was trained by using Google’s word2vec
model [25] and was provided by the authors of SM model [37]. If an embedding corre-
sponding to a word was not found during the initialization (out of vocabulary words), the
word embedding for such words was initialized with embeddings sampled from a uniform
distribution U [-0.25, 0.25].

4.4.2 Part-of-speech

Before the training our model, we run the datasets through Stanford’s Log-linear POS
tagger [47]. The POS tagger tags the input text with a set of PTB tags. The PTB tagset
has 45 tags and therefore a sparse representation of the tags would result in larger word-
embedding matrix, possibly resulting in overfitting. Moreover, we are only interested in
the signals such as an ADJECTIVE-NOUN pair that can also be generated through course
POS tagset.

We, therefore, mapped the POS tags of each word into the universal POS tag set [29].
Finally, we represented the universal POS tags as a 15-dimensional one-hot vectors.

4.4.3 NER

The sentences in the dataset are tagged with Named Entities using Stanford’s CRF se-
quence models [12]. The NER tagset had the following tags: PERSON, LOCATION,
ORGANIZATION, MISC, MONEY, NUMBER, ORDINAL, PERCENT, DATE, TIME,
DURATION, and SET. We represented NER tags as a 16-dimensional one-hot vector.

4.4.4 Dependency + Headword

Dependency parsing can be thought of as a binary relationship between two words in a
sentence connected by a grammatical relationship. Therefore, while dependency parsing a
sentence, we get a tuple of the word’s headword and the grammatical relationship. We use
Stanford’s dependency parser to obtain a set of universal dependencies [34].

We used the basic universal dependencies obtained from CoreNLP dependency parser.
The dependency feature of each word is represented as a 43-dimensional one-hot vector.
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As for the headword, since the headword is yet another word belonging to the sentence, we
use the same initial 50-dimensional word2vec word embedding to represent the headwords.

We implemented the proposed neural network with PyTorch deep learning toolkit (ve-
rion: 0.2.0). We performed parameter tuning on both the TREC QA and WikiQA datasets
separately. We used Adadelta as the optimizer with the initial learning rate of 1.0 for
TrecQA dataset and 0.96 for WikiQA. For both datasets, we used a batch size of 64. We
used tanh as the activation function with a dropout rate (p = 0.5) in the fully connected
layer. For both models we used a single kernel with a filter width of size 5. As for param-
eter regularization, we used λ = 10−5 and λ = 0.95 × 10−4 for TREC QA and WikiQA
respectively.

We first train the model with individual linguistic features: POS, NER, and dependency
features (Headword + Dep). We combine these features to provide two sets of cumulative
features:

1. POS + NER

2. POS + NER + Headword + Dep
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Chapter 5

Experimental Results

The results on the TREC QA and WikiQA datasets are as shown in the Table 5.1 and 5.2
respectively. The effective measures corresponding to previous work in answer selection
for question answering. For the TREC QA dataset, we enumerate the results by referring
to the ACL Wiki page for question answering 1. For WikiQA, we manually discover the
previous work on the WikiQA dataset and cite the effective measures.

In the results corresponding to the TREC QA dataset in Table 5.1, we see the effective
measures by Punyakanok et al. [30] and Cui et al. [8] are considerably lower. This is
because the TREC QA dataset was not proposed until 2007 and Wang et al. [53] revisited
their approaches on the TREC QA dataset.

The other surprising fact is that simple lexical baselines in Table 3.1 perform better
than several linguistic and Machine Learning approaches. We can easily reason the utility
of word-overlap methods for the TREC QA dataset by revisiting how TREC QA dataset
was created (see Section 2.2.1). Historically, question answering task was evaluated in
an end-to-end fashion with ad-hoc retrieval at the beginning of the pipeline and answer
selection at the end of the pipeline. The TREC QA dataset was also created from TREC
QA tracks which followed the above-mentioned evaluation strategy. Since ad-hoc retrieval
methods such as BM25 and QL (Query Likelihood) work based on word-overlap mecha-
nisms, the dataset favours word-overlap techniques. This also explains the gains obtained
by the external feature xfeat layer that is fed into the SM model, which essentially con-
sists of word overlap features. Additionally, the WMD baseline from Table 3.1 is not far
behind compared to the state-of-the-art system for TREC QA dataset, indicating that
WMD captures the semantic overlaps that could be missed by the word-overlap methods.

1https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
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Table 5.1: Results on the TREC QA dataset

Reference MAP MRR

Punyakanok et al. (2004) [30] 0.419 0.494
Cui et al. (2005) [8] 0.427 0.526
Wang et al. (2007) [53] 0.603 0.685
Heilman and Smith (2010) [16] 0.609 0.692
Wang and Manning (2010) [52] 0.595 0.695
Yao et al. (2013) [60] 0.631 0.748
Severyn and Moschitti (2013) [36] 0.678 0.736
Yih et al. (2013) [61] 0.709 0.770
Yu et al. (2014) [64] 0.711 0.785
Wang and Nyberg (2015) [56] 0.713 0.792
Feng et al. (2015) [10] 0.711 0.800
Yang et al. (2016) [58] 0.750 0.811
He et al. (2015) [14] 0.762 0.830
He and Lin (2016) [15] 0.758 0.822
Tay et al. (2017) [43] 0.770 0.825
Rao et al. (2016) [31] 0.780 0.834
Chen et al. (2017) [5] 0.782 0.837

SM model 0.768 [0.766, 0.769] 0.821 [0.811, 0.827]

Linguistic features

POS 0.774 [0.768, 0.778] 0.832 [0.816, 0.848]
NER 0.776 [0.768, 0.786] 0.837 [0.832, 0.840]
Headword + Dep 0.777 [0.775, 0.781] 0.837 [0.825, 0.848]

Cumulative features

POS + NER 0.779 [0.777, 0.785] 0.846 [0.840, 0.853]
POS + NER + Headword + Dep 0.781 [0.776, 0.793] 0.843 [0.831, 0.854]
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The WMD baseline also performs competitively with respect to the WikiQA dataset with
effective measures comparable with Yu et al. [64].

Table 5.2: Results on the WikiQA dataset

Reference MAP MRR

Yu et al. (2014) [64] 0.619 0.628
Yang et al. (2015) [59] 0.652 0.665
Dos Santos et al. (2016) [9] 0.689 0.696
Miao et al. (2016) [24] 0.689 0.707
Yin et al. (2016) [63] 0.692 0.711
He and Lin (2016) [15] 0.709 0.723
Rao et al. (2016) [31] 0.701 0.718
Tay et al. (2017) [43] 0.712 0.727
Wang et al. (2017) [55] 0.718 0.731
Yin and Schtze (2017) [62] 0.712 0.723
Chen et al. (2017) [4] 0.721 0.731
Wang et al. (2016) [50] 0.734 0.742
Wang and Jiang (2016) [54] 0.743 0.755

SM Model 0.688 [0.682, 0.692] 0.709 [0.706, 0.711]

Linguistic features

POS 0.701 [0.695, 0.704] 0.721 [0.715, 0.725]
NER 0.696 [0.688, 0.704] 0.716 [0.706, 0.726]
Headword + Dep 0.696 [0.689, 0.707] 0.712 [0.702, 0.723]

Cumulative features

POS + NER 0.700 [0.696, 0.705] 0.718 [0.712, 0.723]
POS + NER + Headword + Dep 0.704 [0.698, 0.711] 0.720 [0.710, 0.731]

We notice that while some of the sophisticated and computationally expensive models
only give slight improvements in the effective measures over the existing systems [58, 9, 14,
15, 31], our proposed model shows similar increments although by following a simple archi-
tecture. Consider, for instance, Yang et al.[58], who use an attention based neural matching
model (aNMM), a computationally expensive model with a value-shared weighting scheme
as well as the attention scheme to focus on important question words. The proposed model,
however, begins with a simple “Siamese” architecture and changes the input fed into the
neural network but does obtain considerable gains in the effective measures.

While conducting our experiments, we noticed that the effective measures would vary
by a margin of 3 to 4 points. This sort of variance in the results caused by the selection of
random seeds is well known in the community [7]. We, therefore, repeated the experiments
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on 5 different random seeds and tuned the hyper-parameters for each seed. The format
of the results are average[min,max]. Comparing our approach with the previous work in
question answering area, we are the first ones to report results on k different random seeds.
Therefore, it is fair to compare the maximum values of effective measures obtained with
Lai-CNNs with the existing systems. We, however, show that the results averaged over a
set of random seeds also outperform the existing approaches.

We begin with the modified version of SM model that has an average (MAP, MRR)
scores of (0.768, 0.821) for TREC QA. The maximum MAP and MRR scores for the dataset
are 0.769 and 0.827 respectively. Just by adding the POS linguistic features to the input
matrix of the SM model, we notice that Lai-CNN beats the state-of-the-art system in
terms of MRR by obtaining a maximum MRR score of 0.848—a 2% improvement over
the baseline. We see similar effects with the addition of NER or dependency features.
With the addition of NER features, the maximum MAP score exceeds the MAP score of
the state-of-the-art system. Choosing the maximum effective measures obtained in this
configuration alone would rival state-of-the-art systems. Similarly, we cumulate the above-
mentioned linguistic features. With the addition of POS + NER features, the MRR
score averaged over 5 random seeds exceeds the state-of-the-art MRR score. Meanwhile,
the maximum effective measures in this configuration show 2% and 3% improvement over
the baseline with respect to MAP and MRR respectively. Finally, with the addition of
POS + NER + Headword + Dep features, the average MAP obtained is 0.781, which
is comparable with the state-of-the-art system and average MRR obtained is 0.843, which
beats the state-of-the-art MRR. The maximum effective measures, once again, far exceed
the state-of-the-art measures .

Similarly, for the WikiQA dataset, we begin with SM model that has an average (MAP,
MRR) score of (0.688, 0.709). The SM model has a maximum MAP and MRR score of
0.692 and 0.711 respectively. Just as we saw in the TREC QA dataset, a simple addition of
one of the linguistic features results in considerable gains. We obtain a maximum MAP of
0.707 and a maximum MRR of 0.726 just by adding one of the linguistic features. Similarly,
by adding the cumulative linguistic features POS + NER + Headword + Dep, we
obtain a maximum MAP of 0.711 and an MRR of 0.731 which is a 2% improvement over
the baseline. The improvements with WikiQA dataset do not outperform the state-of-the-
art effective measures but nevertheless contribute to improvements over the baseline. We
notice that the gains in the effective measures over the baseline for both the datasets are
2̃% but the WikiQA dataset has stronger state-of-the-art systems.

To recapitulate, we notice by adding individual linguistic features alone, gains in effec-
tive measures are evident in both the datasets. In case of the TREC QA dataset, the gains
are huge and just adding one of the linguistic features rivals the existing state-of-the-art
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MRR score. Furthermore, adding the cumulative linguistic features, extends the gains
with POS + NER + Headword + Dep rivalling the existing state-of-the-art effective
measures.

In contrast to the previous systems in this area, which report results on a (probably
hand picked) random seed, we report our results on 5 different random seeds and show
that the gains are observable even while averaging the effective measures across the random
seeds. Similar to the TREC QA dataset, the gains in the WikiQA dataset are also easily
noticeable with just the addition of any of the aforementioned linguistic features. Although
the gains on the WikiQA dataset do not beat the state-of-the-art effective measures, the
gains achieved by adding the linguistic features are, nevertheless, commendable.
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Chapter 6

Conclusion

In this thesis, we proposed a novel way to combine the linguistic features into the word
embedding matrix of the neural networks. We begin by modifying the SM model, which is
a “Siamese” structured model both question and answer input word embedding matrices
processed simultaneously. We carefully choose a set of features to be added to the SM
model so as to help the model learn better for an answer selection task.

We argue against the common trend of resolving to more complicated and sophisticated
neural networks, which have increasingly been used in the question answering community.
We also make the best use of decades old research spent on developing models like POS
taggers that exhibit human-like accuracies over standardized datasets, that have been
abandoned with the advent of neural networks and with a goal of doing NLP “from scratch”.
We add the the following linguistic features that are known to aid answer selection: POS,
NER, and dependency features. We come up with simple ways of representing these feature
and adding them to the input matrix of the neural network. By using just three simple
and intuitive linguistic features, we strike a good balance between feature engineering and
complex neural models.

We show that the linguistic features not only contribute to increment in effective mea-
sures over the baseline, but just the addition of one of the linguistic features rivals the
state-of-the-art effective measures for the TREC QA dataset and also considerable gains
over the WikiQA dataset. We, therefore, hold that Linguistically Annotated Input CNNs
may not get a system a place in the leader-board but will definitely yield considerable
increments in the effective measures.

The proposed Lai-CNN model adds considerable improvements over a simple neural
baseline for answer selection in question answering systems. As a future work, we aim to
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extend Lai-CNN for other NLP tasks such as sentence classification and text entailment.
Several existing models for these approaches are CNN based. For example, models like
Kim-CNN [18] and Mp-CNN [14] use CNNs for sentence classification and text entail-
ment. These models can can easily be modified to just by linguistically annotating the
input to the models. We predict that by linguistically annotating the input to the neural
models, noticeable improvements in the effective measures can be obtained.
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