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Abstract

Traditional multi-camera systems require a fixed calibration between cameras to pro-

vide the solution at the correct scale, which places many limitations on its performance.

This thesis investigates the calibration of dynamic camera clusters, or DCCs, where one

or more of the cluster cameras is mounted to an actuated mechanism, such as a gimbal or

robotic manipulator. Our novel calibration approach parameterizes the actuated mecha-

nism using the Denavit-Hartenberg convention, then determines the calibration parameters

which allow for the estimation of the time varying extrinsic transformations between the

static and dynamic camera frames. A degeneracy analysis is also presented, which identifies

redundant parameters of the DCC calibration system.

In order to automate the calibration process, this thesis also presents two information

theoretic methods which selects the optimal calibration viewpoints using a next-best-view

strategy. The first strategy looks at minimizing the entropy of the calibration parameters,

while the second method selects the viewpoints which maximize the mutual information

between the joint angle input and calibration parameters.

Finally, the effective selection of key-frames is also an essential aspect of robust visual

navigation algorithms, as it ensures metrically consistent mapping solutions while reducing

the computational complexity of the bundle adjustment process. To that end, we propose

two entropy based methods which aim to insert key-frames that will directly improve the

system’s ability to localize. The first approach inserts key-frames based on the cumulative

point entropy reduction in the existing map, while the second approach uses the predicted

point flow discrepancy to select key-frames which best initialize new features for the camera

to track against in the future.
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The DCC calibration methods are verified in both simulation and using physical hard-

ware consisting of a 5-DOF Fanuc manipulator and a 3-DOF Aeryon Skyranger gimbal.

We demonstrate that the proposed methods are able to achieve high quality calibrations

using RMSE pixel error metrics, as well as through analysis of the estimator covariance

matrix. The key-frame insertion methods are implemented within the Multi-Camera Par-

allel Mapping and Tracking (MCPTAM) framework, and we confirm the effectiveness of

these approaches using high quality ground truth collected using an indoor positioning

system.
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Chapter 1

Introduction

Visual Simultaneous Localization and Mapping (SLAM) algorithms have been proposed

for use in a wide array of applications, ranging from inspection and surveillance [1, 2],

to outdoor and Martian exploration [3, 4]. Capable visual SLAM solutions are especially

important where only intermittent measurements to inertial positioning systems, such as

GPS, are available, or the required accuracy of the localization solution is greater than what

GPS alone can provide. Although very high accuracy localization and mapping is possible

using LIDAR, the high cost of such sensors remains a barrier to wide range deployment.

In contrast, the continuous innovation and improvements in cell phone and mobile device

technology has made it possible to obtain high quality, low cost, and low power camera

sensors off the shelf, which has further made vision-based navigation an appealing approach

for the autonomous mobile robotics community.

Monocular visual navigation systems consist of only one camera, and are limited by

only being able to observe the environment from a single view-point at a time. As a result,

the localization quality can degrade rapidly if parts of the environment are occluded, or

rapid motion of the camera causes significant viewpoint changes. Furthermore, without

additional sensing, a monocular system is only able to resolve its motion up to a scale
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factor [5], limiting its use for navigation and control applications where the true motion at

scale is required. To that end, multi-camera systems, consisting of two or more cameras,

have become a popular approach for visual navigation, as depending on the configuration,

they are able to mitigate the shortcomings of monocular systems.

Many different configurations of multi-camera systems are used for localization and

mapping, in a broad range of applications. Stereo cameras are a widely used approach,

where two forward facing cameras are calibrated and rectified so that epipoloar search

can be easily performed between the two images [6]. The large overlapping field-of-view

(FOV) allows for the calculation of corresponding feature point depths in every pair of

collected images, which has led to the development of many stereo based approaches for

visual odometry and SLAM in applications such as planetary exploration [3], autonomous

driving [7], and aerial robots [8].

As an alternative, more general multi-camera clusters (MCCs) provide advantages to

stereo based configurations, as the addition of an arbitrary number of cameras with multiple

viewpoints allows for more robust tracking and mapping operations in three respects.

First, the ability of the MCC to take measurements over a wide FOV helps with camera

localization robustness by better constraining the motion solution, and preventing feature

starvation by consistently tracking features over longer durations and over large viewpoint

changes. Second, a wider FOV allows for robust map generation and point triangulation

by collecting more feature measurements across the whole environment. Finally, so long

as the extrinsic calibration is known, multi-camera systems do not require overlap in the

FOV to resolve the scale of the solution [9].

Although capable of performing accurate localization in a variety of environments, a

major disadvantage of all multi-camera systems to date is that they require a fixed cali-

bration between cameras to provide the solution at the correct scale. The fixed extrinsic

calibration of the cluster places many limitations on MCC performance. First, any camera
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cluster must be re-calibrated if a new configuration is required, which is especially tedious

and time consuming when the vehicle is deployed in the field. Second, since the MCC is

fixed to the vehicle frame, the observation viewpoints of the cameras are highly depen-

dent on the vehicle motion. The coupling of the vehicle motion and camera observation

viewpoints is especially problematic if the vehicle undergoes motions which make the vi-

sion solution degenerate, or if the vehicle motion results in the camera cluster observing

areas of low texture where only poor feature measurements are possible. Finally, many

systems, such as UAVs, cannot use the existing gimballed camera payload to assist with

the visual navigation. Since current state of the art multi-camera solutions require fixed

calibrations between cameras, the gimballed camera is generally only employed for data

collection purposes.

Typical vision-based navigation and calibration algorithms are composed of two parts:

the front-end, and the back-end. One of the responsibilities of the front-end is processing

the camera stream and extracting features from the images. For the purpose of vision-based

navigation and calibration, features are points in the image which can be reliably identified

from multiple viewpoints, and may correspond to specific structures in the image such as

points, edges or objects. Using the local neighbourhood of pixels surrounding the feature, a

descriptor for the feature can be generated. The descriptor quantifies the appearance of the

feature, and is used to match the feature between multiple viewpoints. Measurements to

features in the environment are recorded from multiple view points, known as key-frames,

and the collection of measurements are passed to the back-end. The back-end performs

an optimization procedure called bundle adjustment, which is a nonlinear optimization

that estimates both the structure of the environment, and the motion of the camera.

The robotics and computer vision research community have developed many navigation

systems which perform real-time estimation, using vision only techniques [10, 11, 12, 13,

14, 15, 16], as well methods which integrate additional inertial or GNSS sensing [17, 18].

Calibration algorithms operate similarly, except instead optimize over unknown physical
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system model parameters of the camera cluster, such as spatial sensor offsets and lens

distortion parameters [19, 20]. Successful estimation requires careful attention to both the

back-end and the front-end components, as the measurements selected by the front-end

directly impact the ability of the back-end to find a valid solution.

In order for any estimation system to operate successfully, the state or parameters of

the system must be uniquely recoverable given the measurable outputs. In the context

calibration, this means that the data contained in the camera input stream must contain

sufficient information in order to fully recover the calibration parameters. Furthermore,

the estimation solution should be unique, since convergence to an arbitrary set of cali-

bration parameters, which may also agree with the measurements yet do not reflect the

physical state of the system, would likely result in failure of system when used in a visual

navigation task. Existing works have investigated the degeneracy of similar systems in

order to evaluate the limitations of parameter and state estimate recovery [10, 11]. Al-

though it is clear that estimation systems require front-end measurements which contain

sufficient information, for state-of-the-art calibration methods, measurement selection re-

mains a widely manual process, thus the true information content of the measurements is

unknown.

Manual measurement collection for calibration is limiting in two main aspects. First,

providing sufficient information to accurately estimate the calibration parameters requires

collecting data over the full measurement space of the system. Defining a set of collection

points is not obvious, especially as the system’s measurement space increases in complexity,

and poor data selection will result in an inaccurate or degenerate calibration. Although the

measurement space can be sampled to concurrently select data for batch processing, such

an approach becomes cumbersome and impractical as the dimension of the measurement

space grows, and further does not guarantee that the selected samples will provide the

sufficient excitation required for accurate calibration. Second, manual selection of the
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measurements precludes automating the calibration. Automatic calibration is emerging

as a crucial functionality for state-of-the-art applications, as robots deployed in the field

and those which are mass produced require accurate calibration that can be performed by

non-experts without human intervention in order to improve robustness.

The effective selection of key-frames is also an essential aspect of robust visual nav-

igation algorithms, as it ensures metrically consistent mapping solutions while reducing

the computational complexity of the bundle adjustment process. Both the accuracy and

computational complexity of visual SLAM solutions can be significantly improved by se-

lectively including only the most informative new measurements at each stage of the algo-

rithm. However, determining the information content of measurements before inclusion in

the tracking and mapping processes is an open problem.

In this thesis, information theoretic approaches are used to perform informed data

selection for calibration and navigation of dynamic camera clusters (DCC). This thesis

will present and study the time-varying calibration required in order to enable the use of

a DCC with existing vision-based tracking and SLAM systems, and will also perform a

degeneracy analysis of the DCC calibration process, in order to identify the circumstances

under which the calibration fails. In order to ensure sufficient measurement excitation of

the system, we shall also investigate an automatic method of calibration for DCCs, which

is autonomous, and works on the principle of next-best-view [21] to select the actuator

configurations such that selected measurements locally minimize parameter uncertainty

at each iteration. Finally, in this thesis, we shall discuss a method to perform informed

key-frame selection, which scores potential key-frames based on their predicted information

content with respect to the existing map.

The DCC based calibration will allow, for the first time, vehicles such as drones to in-

tegrate gimballed cameras into their existing visual navigation pipelines. As the gimballed

cameras are typically capable of collecting very high quality imagery, this integration will
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greatly improve navigation accuracy, and will facilitate the development of new active vi-

sion algorithms that perform viewpoint selection of the dynamic camera. The proposed

informed key-frame selection methods continually assess the the input image streams and

will greatly improve navigation robustness in challenging environments. Advances in in-

formed data selection are critical for robust and reliable navigation, and the work presented

in this thesis will further enable the next generation of robots to perform increasingly dif-

ficult and demanding missions.

1.1 Related Works

1.1.1 Calibration

Much work has been done on multi-sensor calibration problems for robotics applications.

Existing approaches have been able to perform high quality extrinsic calibrations between

camera and IMU sensors [19], as well as perform observability analysis to determine when

the calibration fails [20]. Precise extrinsic calibration between cameras and 3D LIDAR

sensors have also been achieved using both gradient based methods [22], and information

theoretic approaches [23]. The camera-to-camera calibration problem is also well studied,

as it is essential for MCC based SLAM systems.

Current camera-to-camera calibration approaches typically use fiducial markers to gen-

erate common observations between cameras [9, 24, 25], though unsupervised methods

which use natural features in the environment from pre-existing maps or on-line SLAM

solutions have also provided good results [26]. Although there has been significant work

done in the area of camera to camera calibration, we have not found any existing results

for camera to camera calibration through an actuated mechanism.

The hand-eye calibration problem, from the field of robotic manipulators, consists of
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computing the relative position and orientation between the motion frame of a mecha-

nism, and a sensor which is rigidly mounted to the mechanism. The main focus for the

hand-eye problem is simultaneously estimating the relative translation between a camera

mounted to a robotic manipulator and the manipulator’s end effector frame, as well as the

transformation between the manipulator’s base frame and the camera’s motion base frame

[27]. Originally developed for camera to manipulator calibration, the hand-eye problem

also describes other calibration tasks, such as camera to odometry calibration [28], and

the calibration between a camera cluster and a motion tracking system [9]. Although the

hand-eye problem is similar to the dynamic MCC calibration problem, the hand-eye cali-

bration assumes that the parameters of the mechanism’s forward kinematics (such as the

DH parameters), are known, whereas our dynamic MCC calibration requires estimation of

these parameters.

The class of calibration methods related to our problem is known as kinematic calibra-

tion, and seeks to refine the forward kinematic parameters of robotic manipulators in order

to improve overall end effector positioning performance. Generally, the kinematic param-

eters are optimized by comparing the motion of the end effector to the predicted motion

of the mechanism given the forward kinematic parameters and the joint angles. External

measurement of the end effector can be performed using a variety of methods, such as

using co-ordinate measurement machines (CMM)[29] and externally mounted theodolites

[30]. However the cost of such measurement equipment is typically quite high, which has

motivated the use of low-cost camera based solutions for kinematic calibration.

Camera based kinematic calibration for manipulators consists of taking relative mea-

surements between a camera mounted on the manipulator and a fiducial target in the

environment, or mounting the target on the manipulator and placing a static camera in

the environment [31]. For example, kinematic calibration has been performed by using a

laser dot target with known scale to estimate the DH-parameters of two pan-tilt units with
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attached cameras [32]. The work most similar to ours uses both visual sensors and LIDAR

mounted to a robotic manipulator to identify fiducial targets in the environment, and then

simultaneously estimate both the DH-parameters of the manipulator the the poses of the

targets [33]. Although such approaches use the camera and fiducial marker to perform

the calibration, the estimated parameters only describe the forward kinematics of the ma-

nipulator with respect to the robot base, whereas calibration of the dynamic MCC, for

use in a SLAM problem, requires knowledge of the camera to camera calibration, which

only include the mechanism’s kinematic parameters as part of the total transformation

between camera co-ordinate frames. Furthermore, existing approaches in the literature do

not discuss degeneracy of the calibration procedure

1.1.2 Observability and Degeneracy Analysis

Observability and degeneracy analysis are fundamental to understanding if the desired

calibration parameters can be successfully estimated using the observations measured by

the system. For nonlinear systems, the local weak observability of the system can be

determined by checking the observability rank condition at any point in the system’s state

space [34]. This involves checking the column rank of a matrix containing the partial

derivatives with respect to the system states, for increasing orders of Lie derivatives of

the measurement model with respect the the system dynamics. When the matrix has

full column rank, the system is locally weakly observable about that point. Although

primarily used to analyse control systems, local weak observability of nonlinear systems

has also successfully been analyzed for visual-inertial odometry Systems [35], as well as

sensor-to-sensor self calibration problems [20]. In order to perform observability analysis,

we require the system state to have dynamics which evolve with time. For robot systems

which do not naturally possess dynamics, constant velocity or constant acceleration 6-DOF

motion models are often employed to circumvent this requirement. However, for such cases,
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the true characteristics of the robot are ignored, and the analysis only holds for vehicle

trajectories which are sufficiently close to the assumed motion model.

The concept of system degeneracy analysis is closely related to observability for non-

linear systems. For systems which do not possess any dynamics, only the zeroth-order Lie

derivatives are non-zero. Thus, evaluating the observability rank condition is equivalent to

checking the rank of the measurement Jacobian matrix. With such an approach, degen-

erate configurations have successfully been identified for multi-camera systems employing

both geometric solution strategies [36, 37, 38, 39, 40] and nonlinear optimization [5]. In this

work, we follow an approach similar to that found in [5], in order to identify superfluous

calibration parameters that result in the degeneracy of the DCC calibration problem.

1.1.3 Sensitivity Analysis

Observability and degeneracy analysis of systems only provides a binary answer as to

whether the system is observable. In many estimation applications, it is also advantageous

to understand the degree of observability of the system, which attempts to quantify how

close a system is to being observable.

To study the degree of observability, existing works discuss a local observability index

and a local estimation condition number which operates on the local observability Gramian.

The approach has been used to measure the degree of observability or unobservability of

a system, and has been successfully applied to determining the optimal locations from

which to collect observation for vortex flow strength estimation [41]. The use of the local

observability index has also been extended and applied to trajectory optimization of a

UAV for sensor self-calibration [42]. The work predicts the quality of state estimation

based on the vehicle’s ego-motion, and accounts for dynamics, measurements and nonlinear

observability of the system.
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The approaches which explore the local observability index of a system aim to classify

the system on a scale ranging from poorly to strongly observable [42]. The system is strongly

observable if the output changes significantly when the state is marginally perturbed. A

state with this property is robust to measurement noise and it is highly distinguishable

within some proximity where this property holds. Conversely, a state that leads to a small

change in the output, even though the state value was extensively perturbed, is defined as

poorly observable. Since the local observability index examines the state-to-measurement

relationship through the system measurement model, it is unclear from the existing work

as to how the local observability index is related to the state covariance matrix, which is

typically used within least squares estimation frameworks to assess the estimation quality.

Other approaches examine the local sensitivity of the estimation error function by

analyzing the error function Jacobian with respect to the state and measurement data.

Such an approach has been successfully applied to the sensitivity analysis of an electrical

power distribution system, in order to identify the parameters and measurements that are

most influential to the estimation process [43]. However, the analysis presented requires

taking derivatives with respect to individual measurements, which is cumbersome and

intractable for typical visual navigation and calibration algorithms, where the process can

look at a very large number of visual features as part of the overall estimation task.

Global sensitivity methods looks at performing perturbation experiments which exam-

ine how small changes to the system inputs affect its output, over the permissible set of

input parameter ranges. These approaches then use scatter plots, regression techniques, or

the conditional variance factoring of parameters to determine the strength of correlation

between the input and output [44]. Such techniques work well when the nature of the

system process does not allow one to take derivatives of the output function with respect

to the parameters of interest but may require manual inspection of data plots, making

automation infeasible. Furthermore, methods to perform efficient analysis of the coupling
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effects between parameters is unclear, as the techniques would require one to perform

extensive trials over multiple combinations of parameters.

Generally, state-of-the art sensitivity analysis approaches also only examine determin-

istic systems. Recently, some researchers have looked at using information theoretic tools

to study sensitivity analysis on stochastic systems [45], which requires the characterization

of the relationship between the input parameters and the output distribution. Specifically,

these approaches seek to quantify how much changing one or more of the inputs changes

the distribution of the output, or in other words, how sensitive the output distribution is

to changes in the inputs. Mutual information can be used to quantify this relationship for

estimation purposes, as the mutual information quantifies how much learning the value of

a measurement affects the uncertainty in the distribution of estimation parameters [45].

1.1.4 Information Theory Applied to SLAM

Information theoretic data selection techniques have been employed in other areas of the

visual SLAM problem. Active SLAM algorithms attempt to generate control inputs in

order to produce vehicle motions which will best collect informative sensor measurements.

LIDAR based approaches have been proposed, which perform active localization through

the entropy reduction of discrete occupancy grid maps [46]. The approaches discussed in

[47, 48, 49] perform active EKF based SLAM, and formulated information gain metrics

based on the innovation covariance matrix maintained by the EKF. The methods proposed

in [50, 51, 52, 53] also used information-theoretic formulations, and focused on using mutual

information between points to improve feature matching and map partitioning. It is evident

that the information-theoretic framework offers valuable methods to quantify information,

and can be applied to other visual-navigation components such as active vision and key

frame insertion.
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1.1.5 Active Vision and Active Calibration

Active vision systems [54] have the advantage of being able to manipulate the viewpoint of a

camera in order to obtain maximum information from the environment, and are particularly

useful in application such as Visual SLAM, where occlusions and limited field of view are

prevailing factors [55]. These systems have also been applied to calibration problems, such

as determination of the intrinsic parameters of the camera lens model [56].

Foviated vision, and gaze selection systems, selectively view areas of the environment

by actively moving cameras which are mounted on actuated mechanisms, or by selecting

image stream sub-regions from cameras which are statically mounted. Existing foviated

platforms are designed to either individually actuate a pair of forward facing cameras

[57], or manipulate the orientation of statically calibrated multi-camera clusters [58, 59],

generally to aid with object identification, localization, or precise fixation tasks.

Existing gaze selection approaches analyze the image stream to look for areas of the

environment with high saliency [59, 60], or regions which contain the most prominent visual

features [61]. However, these approaches do not investigate how salient or prominent image

regions affect robot-specific tasks such as localization or path-planning.

Some researchers have investigated information theoretic measures, which seek to max-

imize the task performance of humanoid robots by actively deriving appropriate view di-

rections for the robot’s individual cameras over a planning horizon [58]. However, these

approaches mainly focus on the movement of individual cameras based on their image

streams, and forgo treatment of the foviated camera set as a single unit which exhibits a

time-varying extrinsic calibration between cameras.

Next-Best-View (NBV), in general, is the process of determining the next best camera

location from which to collect measurements, in order to maximize an information metric

that is specific to the task [21]. NBV approaches have been successfully applied to a va-
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riety of applications, such as visual servoing [62], 3D reconstruction [63], and monitoring

complex industrial processes [64]. In order to formulate the NBV problem, many existing

approaches discretize the configuration space, and select the next-best-view from a finite

set of possible configurations. For example, NBV 3D mapping of a cluttered environment

has been performed by discretizing the desired space to be mapped into voxels, then sam-

pling a fixed number of locations in order to determine the next best view for accurate

reconstruction [65]. Assisted intrinsic camera calibration has also been accomplished by

generating a discrete set of fiducial target poses, then suggesting the optimal target poses

from the set which result in a high quality calibration [56]. Although promising, the efficacy

of these existing approaches is heavily dependent on the discretization strategy.

Using active vision and next-best-view concepts, active calibration of the hand-in-eye

problem has been previously attempted. However, the existing approaches use a set of pre-

defined motions for measurement collection, and determine some of hand-in-eye transfor-

mations using additional, non-camera-based sensing [66, 67, 68, 69, 70]. Closely related to

DCC calibration, an extended kinematic calibration has been proposed, where the intrinsic

camera parameters, kinematic parameters, and hand-eye relationship are simultaneously

estimated using a point on the manipulator that is tracked by a camera through a set

of predefined joint configurations [71]. Existing active calibration approaches use a set of

predefined movements, while this thesis will propose a method which actively calculates

and selects the next best pose of the camera that results in the maximum reduction in

parameter uncertainty.

1.1.6 Key-frame Selection

Visual mapping techniques often use key-frames in order to reduce the problem size of the

batch optimization. Existing approaches, such as Parallel Tracking and Mapping (PTAM)

generally insert key-frames based on point triangulation baselines that vary with the depth
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to the feature location being estimated [72]. For example, points with large scene depth

are better estimated using wide triangulation baselines. The co-visibility of features can

also be used to insert key-frames which maximize the total number of common feature

measurements over a specific subset of the map [73]. Another selection heuristic inserts key-

frames whenever the number of currently tracked points falls below a user defined threshold

[74]. Note that the heuristics can be combined, as is the case with Multiple Camera PTAM

(MCPTAM) [10]. However, the overall key-frame insertion strategy remains ad-hoc, and

the approach is generally refined through manual tuning. Furthermore, these heuristics

attempt to insert key-frames in order to maintain the map integrity, yet do not directly

attempt to minimize the uncertainty in the map. The approach detailed in [75] presents a

method for variable baseline stereo, where the triangulation baseline is selected to minimize

the modeled stereo depth error. Although the approach could be adopted to operate with

key-frames, the formulation does not allow one to consider measurements from more than

two view-points, nor does it consider the camera motion or initialization of new points

in the map. The work discussed in [76] performs key-frame selection to reduce content

redundancy in the measurements. However, the approach operates off-line and is not

suitable for real-time deployment on a field robot.

1.2 Contributions

This work aims to apply informed data selection techniques to camera based navigation

for autonomous robots. The contributions claimed in this thesis are as follows.

DCC Calibration Formulation: Multi-camera clusters used for visual SLAM assume

a fixed calibration between the cameras, which places many limitations on its performance,

and directly excludes all configurations where a camera in the cluster is mounted to a mov-

ing component. In this work, we present a novel calibration method for dynamic camera
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clusters (DCC), where one or more of the cluster cameras is mounted to an actuated mech-

anism, such as a gimbal or robotic manipulator. The calibration approach parametrizes

the actuated mechanism using the Denavit-Hartenberg convention, then determines the

calibration parameters which allow for the estimation of the time varying extrinsic trans-

formations between camera frames.

DCC Calibration Degeneracy Analysis: This thesis will present an analytical de-

generacy study of the DCC calibration system, and identify the conditions required for

successful parameter estimation. We shall demonstrate that a subset of the estimation

parameters are redundant, and their inclusion in the calibration process results in a degen-

erate system that cannot be calibrated.

DCC Calibration using Next-Best-View: The baseline DCC calibration approach

relies on manual selection of the joint angles, and requires sufficient measurement excitation

from different actuator configurations to ensure accurate calibration results. To that end,

a novel active vision approach for DCC calibration is presented, which directly reduces

the parameter uncertainty by selecting calibration measurements using an information

theoretic next-best-view policy. The presented system automatically selects the next-best-

view for the calibration by determining the optimal actuator inputs which minimize the

predicted covariance of the extrinsic calibration parameters.

Key-frame Selection: Two novel entropy based key-frame selection methods which

aim to accomplish two different tasks are proposed. First, we formulate an approach

which seeks to select key-frames based on the expected cumulative point entropy reduction

(CPER) in the currently existing map. The CPER method chooses key-frames which are

the most likely to provide measurements which maximize the reduction in the uncertainty

in the currently existing map points. Second, we propose an approach which seeks to select

key-frames which are expected to initialize the most favourable new feature points, given

predicted camera motion over a finite time horizon. The new points are evaluated using
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the point pixel flow discrepancy (PPFD) between the currently existing map points and

the predicted location of new points triangulated from multiple views.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

� Chapter 2 presents background information on the co-ordinate frames and nota-

tion used in this document, information theoretic tools such as entropy and mutual

information, the Denavit-Hartenberg convention which will be used for DCC param-

eterization, and a summary of other techniques from both the robotics and computer

vision communities which provide the fundamentals for nonlinear least squares esti-

mation methods.

� Chapter 3 formulates the calibration process for a dynamic camera clusters, and

details the use of the Denavit-Hartenberg convention to parameterize the extrinsic

calibration between the optical centers of a static and dynamic camera, as a function

of the actuated mechanism input. The chapter also presents an analytical degener-

acy study of the DCC calibration system, and identifies the conditions required for

successful parameter estimation. Experimental results from both simulation study

and data collected using a 3-DOF UAV gimbal and a 5-DOF robot manipulator are

presented and demonstrate the success of the proposed calibration approach using a

re-projection error metric.

� Chapter 4 formulates the information theoretic next-best-view measurement ap-

proach, which seeks to select actuator configurations which directly reduce the un-

certainty of the calibration parameters. The novel approach investigates two formu-

lations: one which seeks to reduce the entropy of the estimated parameter covariance
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matrix, and another which aims to optimally find the actuator configurations which

maximize the mutual information between the extrinsic calibration parameters and

mechanism joint angles. The next-best-view approaches are demonstrated using both

simulation study and data collected using a 3-DOF UAV gimbal and a 5-DOF robot

manipulator.

� Chapter 5 presents two novel approaches for key-frame selection which systematically

determine the best key-frames for insertion into a point-feature based map. The

first approach, inserts key-frames based on the cumulative point entropy reduction

(CPER) in the existing map, while the second approach, uses the predicted point

flow discrepancy (PPFD) to select key-frames which best initializes new features for

the camera to track against in the future. Both approaches are implemented within

the Multi-Camera Parallel Mapping and Tracking framework, and we demonstrate

the effectiveness of the proposed methods using ground truth data collected using an

indoor positioning system.

� Chapter 6 draws conclusions for the thesis and provides several suggestions for future

research directions in this area.
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Chapter 2

Background

2.1 Frames and Notation

A co-ordinate frame is defined using the notation Fa, where the provided subscript is the

name of the frame. Suppose we are given two frames, Fa and Fb. Then, a vector quantity

is denoted as ata:b, where the right superscript denotes the tail to head direction of the

vector, and the left superscript denotes the frame in which the vector is expressed. Thus,

ata:b can be described as a vector from the origin of Fa to the origin of Fb, expressed in Fa.

In order to denote a point in 3D space consistently using our vector notation, we will

first define the frame for the point as Fp. The vector describing the position of the point,

expressed in frame Fa, is ata:p. To improve notational clarity, we drop the tail to head

relationship for the point vector and introduce the shorthand,

ata:p := ap ∈ R3, (2.1)

where the superscript a denotes Fa, the frame in which the point p is expressed. We will
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Frame a
Frame b

Figure 2.1: Example of two co-ordinates frames, Fa and Fb, and the transformation between
them, Ta:b, which can be read as, “the transformation which maps points from frame Fb,
to frame Fa”. This notation allows us to ensure the correct frames are being used when
transforming points. For example, with the expression ap = Ta:b bp, the adjacent superscript
b indicates that the frame which the point bp is expressed in, and the direction of the
transformation, Ta:b are compatible.

also express points in homogeneous co-ordinates using italicized script,

bp :=

 bp

1

 . (2.2)

Occasionally, we will need to extract columns from matrices. Suppose we have a matrix

M. Then, the notation [M]i denotes the extraction of the ith column from the matrix M,

and the notation [M]i:j denotes the extraction of a sub-matrix which contains the i through

j columns of M.

2.2 Rigid Body Transformation

Suppose we are given two frames, Fa and Fb. Then, the rigid body transformation that

maps points from Fb to Fa is Ta:b ∈ SE(3), as depicted in Figure 2.1
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The transformation, Ta:b, can also be expressed as a matrix,

Ta:b =

 Ra:b ata:b

0 1

 , (2.3)

where Ra:b ∈ SO(3) is the rotation matrix from frame Fb to Fa, and ata:b is the translation

vector from Fa and Fb, expressed in Fa. Using this notation, we are able to explicitly

check the correctness of transformations by simply inspecting the head-to-tale relationships

between vectors. For example, a point expressed in frame Fb,
bp, is transformed to frame

Fa with the expression ap = Ta:b bp, which is equivalent to the sequence,

ap = Ta:b bp (2.4) ata:p

1

 =

 Ra:b ata:b

0 1

 btb:p

1

 (2.5)

=

 Ra:b btb:p + ata:b

1

 (2.6)

=

 ata:b + atb:p

1

 (2.7)

=

 ata:p

1

 . (2.8)

Since the translation vector component for the transformation matrix Ta:b will always

be expressed in frame Fa in this work, we can exclude the prescript for the translation

vector and equivalently express (2.3) as
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Ta:b =

 Ra:b ta:b

0 1

 . (2.9)

Since the rotation component of Ta:b, Ra:b, is a member of the special orthogonal group,

SO(3), it has an associated Lie algebra, which is denoted so(3). A member of the SO(3) Lie

algebra, φa:b ∈ so(3), can be mapped to an element of SO(3), Ra:b, through the exponential

map,

exp : so(3) 7→ SO(3) (2.10)

exp(φa:b) 7→ Ra:b. (2.11)

In order to map elements from the SO(3) Lie group to the so(3) Lie algebra, we shall use

the logarithmic map,

log : SO(3) 7→ so(3) (2.12)

log(Ra:b) 7→ φa:b. (2.13)

The lie algebra so(3) is the set of all three by three skew-symmetric matrices,

so(3) = {A ∈ R3×3 : AT = −A}. (2.14)

Since a 3×3 skew-symmetric matrix can also be encoded as a three dimensional vector, we

will define a hat operator [·]∧ : R3 7→ SO(3). Suppose we are given a vector a = [a1 a2 a3] ∈

R3. Then,
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[a]∧ =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (2.15)

Similarly, we shall define a vee operator, [·]∨ : so(3) 7→ R3, which provides a reverse

mapping for Equation (2.15), and maps a skew-symmetric matrix in so(3) to a three-

dimensional vector in R3.

Since both the SO(3) and SE(3) groups are not vector spaces, they are not endowed

with addition or subtraction operations. To that end, in Section 2.2.1, we shall use the

log and exp mapping functions to map small perturbations from the SO(3) Lie group to

the so(3) Lie algebra, and vice-versa, to compute differentials. Note that the log and exp

mappings from Equations (2.10) and (2.12) can also be defined for the Special Euclidean

group, SE(3), but are not required in this work as we treat the rotation and translation

component of (2.9) separately. A more complete description of the usage and properties

of Matrix Lie Groups for transformations and orientations is provided by [77, 78].

2.2.1 Taking Derivatives on SE(3)

Performing nonlinear optimization over variables which are members of SE(3) poses an

issue using standard filtering and optimization frameworks, which rely on small differentials

in order to compute derivatives. For example, consider the function f : Rn 7→ Rn. We can

compute the ith Jacobian element of f as

[
∂

∂x
f(x)

]
i

= lim
εi→0

f(x+ εi)− f(x)

|εi|
, (2.16)

where εi ∈ Rn is a perturbation vector which contains an infinitesimal non-zero value at

the ith element, and zero for all other elements.
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In order to similarly compute derivatives involving elements of SE(3), we will use the

box-plus and box-minus operators, which adapt the functions of addition and subtraction

on SE(3) [79]. The box-plus operator, � : SE(3) × R6, allows us to add a small vector

space perturbation,

ϕā:a =

 φā:a

ρā:a

 ∈ R6, (2.17)

to an element of SE(3), Ta:b. Let φā:a ∈ R3 be a small rotation perturbation, and ρā:a ∈ R3

be a small translation perturbation, such that when φā:a, is composed with the rotation,

Ra:b, and ρā:a is added to ta:b, the result is a transformation, Tā:b, from frame Fb, to a

perturbed version of frame Fa, denoted as Fā, Ra:b ta:b

0 1

�

 φā:a

ρā:a

 =

 exp([φā:a]∧)Ra:b ρā:a + ta:b

0 1

 (2.18)

=

 Rā:b tā:b

0 1

 (2.19)

= Tā:b. (2.20)

The box-minus operator, � : SE(3)×SE(3) 7→ R6 allows us to determine the difference

between two elements of SE(3) in terms of a vector space perturbation using the mapping

 Rā:b tā:b

0 1

�

 Ra:b ta:b

0 1

 =

 [log(Rā:b(Ra:b)T )]∨

tā:b − ta:b

 (2.21)

=

 φā:a

ρā:a

 (2.22)

Using the box-plus and box-minus operator, the operations required to calculate deriva-
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tives involving elements of SE(3) can be defined. In this work, to compute derivatives, we

treat the rotation and translation perturbations to an element of SE(3) separately, by ex-

tending the approach outlined in [77]. Note that it is also possible to compute derivatives

using the exponential map defined for SE(3) [78], however, the approach discussed in Sec-

tion 2.2.1 leads to less complex Jacobian expressions which facilitate degeneracy analysis,

which is discussed in Chapter 3.

Suppose g1 : SE(3) 7→ Rn, g2 : Rn 7→ SE(3), and g3 : SE(3) 7→ SE(3). Then, the ith

Jacobian element can be computed as

[
∂

∂Ta:b
g1(Ta:b)

]
i

= lim
ϕā:a
i →0

g1(Ta:b � ϕā:a
i )− g1(Ta:b)

|ϕā:a
i |

, (2.23)

[
∂

∂x
g2(x)

]
i

= lim
εi→0

g2(x+ εi) � g1(x)

|εi|
, (2.24)

[
∂

∂Ta:b
g3(Ta:b)

]
i

= lim
ϕā:a
i →0

g3(Ta:b � ϕā:a
i ) � g3(Ta:b)

|ϕā:a
i |

, (2.25)

where ϕā:a
i ∈ R6 is the perturbation vector from (2.17), with an infinitesimal value at the

ith element of ϕā:a
i , and zero for all other elements.

2.3 Denavit-Hartenberg Parameterization

The Denavit-Hartenberg (DH) convention is a widely used method to assign co-ordinate

frames to the links of a robotic manipulator. Here, we will provide a brief overview of the

DH approach for a serial manipulator with rotational joints. For more detailed information,

we refer the reader to some of the popular references for manipulator modelling and control

[80, 81].

Suppose co-ordinate frame, Fi, is attached to the ith link of a robotic manipulator. The
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Figure 2.2: Example of DH convention between two rotational joints

DH convention uses four independent parameters to define the transformation between

adjacent links, as depicted in Figure 2.2.

Consider the two adjacent co-ordinate frames Fi−1 and Fi from Figure 2.2. In order

to construct co-ordinate frame i using the DH convention, the z axis of the frame is placed

co-incident with the joint angle. Then, a common normal direction between zi−1 and zi

can be determined as

ni =
zi−1 × zi
‖zi−1 × zi‖

. (2.26)

Using the common normal, the xi axis is placed along ni and points from zi−1 to zi,

and the intersection of the xi and zi axes define the origin, Oi, of frame Fi. With the xi

and zi axes defined, the yi axis is constructed on the frame according to the right-hand

rule. Typically, frames are assigned in a sequential fashion, starting from the end effector

frame and ending at the base frame of the mechanism.
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With frame Fi constructed, the transformation between frames Fi−1 and Fi can be

defined using the DH parameters. First, frame Fi−1 is rotated about axis zi−1 by the joint

rotation parameter θi. Second, frame Fi−1 is translated along the zi−1 axis by the link

offset parameter di. Third, Fi−1 is translated along the direction of the xi axis by the link

length parameter, ai. Finally, the Fi−1 frame is rotated about the xi axis by the twist

angle parameter, αi. After applying the transformations with the four parameters, frames

Fi−1 and Fi are co-incident.

In this work, we shall denote the DH parameters which describe the transformation

between frames Fi−1 and Fi on an actuated mechanism as θi ∈ R, which represents the

revolute joint angle, and ωi = [di, ai, αi]
T ∈ R3, which represent the link length, link offset,

and link twist angle, respectively. Using the DH parameters, a homogeneous rigid body

transformation, Ti:i−1
ωi

∈ SE(3), can be computed as

Ti:i−1
ωi,θi

= Ti:si
θi

Tsi:ri
di

Tri:qi
ai

Tqi:i−1
αi

(2.27)

where the frames Fqi , Fri , Fsi are intermediate frames within the compounded transform

of Equation (2.27), and the transformations of the individual DH parameters are given as,

Ti:si
θi

=



c(θi) −s(θi) 0 0

s(θi) c(θi) 0 0

0 0 1 0

0 0 0 1


(2.28)
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Tsi:ri
di

=



1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1


(2.29)

Tri:qi
ai

=



1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1


(2.30)

Tqi:i−1
αi

=



1 0 0 0

0 c(αi) −s(αi) 0

0 s(αi) c(αi) 0

0 0 0 1


(2.31)

where c(·) and s(·) denote the cos(·) and sin(·) of an angle, respectively. Multiplying out the

transformation from Equations (2.28) - (2.31), results in the combined DH transformation

matrix,

Ti:i−1
ωi

=



c(θi) −s(θi)c(αi) s(θi)s(αi) aic(θi)

s(θi) c(θi)c(α1) −c(θi)s(αi) ais(θi)

0 s(αi) c(αi) di

0 0 0 1


. (2.32)
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2.4 Image Feature Tracking and Projections

The projection function, which maps a point from the camera frame, cpi, to a pixel location

on the 2D image plane is defined as

Ψ(cpi) : R3 7→ P2

Ψ(cpi) = [ui vi]
T ,

(2.33)

where ui and vi are the pixel co-ordinates of the projected point along the u and v image

directions, respectively. Note that the projection can be performed using a variety of

camera models, such as pinhole, Taylor, [82] or omni model [83]. In the standard pinhole

camera model, light rays are represented as lines which converge at the center of projection

and intersect with the image plane. In order to accommodate the large radial distortion

caused by fish-eye lenses, the Taylor camera model, uses a spherical mapping where the

elevation and azimuth angles to a 3D point, s = [θ, φ]T , are modelled as half lines which

pass through the sphere’s centre. The unit vector on the sphere is then mapped to the

image plane through a polynomial mapping function. To model the misalignment between

the image sensor and the lens axis, the point’s final pixel location is adjusted using an

affine transformation.

In this work, we do not assume a specific type of camera model, however, it is impor-

tant to consider the decrease in sensitivity of the measurement Jacobian for wide angle

camera models such as the Taylor model [82] and omni model [83]. In such cases, image

measurements of the points seen near the boundary of the lens’ field of view are less sen-

sitive to perturbations of the point position in 3D, thus degrading the information quality

required for precise localization of the camera. The effects of these lens model sensitivities

on localization are discussed in detail in Chapter 5.
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2.5 Nonlinear Least Squares on Manifolds

When solving estimation problems, a measurement model, is used to model observed mea-

surements, given a state estimate. Suppose we have a state or parameter vector we wish

to estimate, denoted by x ∈ Rn. Then, the nonlinear measurement model is given as,

ẑ = h(x). (2.34)

The goal of nonlinear least squares estimation methods is to determine the optimal

state vector, x∗, by optimizing the least squares cost function Λ(x) : Rn 7→ R,

Λ(x) =
1

2
eTΩe, (2.35)

where e = (z − h(x)) is known as the least squares residual vector, Ω = Σ−1 is the mea-

surement noise information matrix, and z ∈ Rm is the vector of observed measurements.

By finding the optimal state vector which best explains the observed measurements, op-

timizing the cost function from (2.35) performs maximum-likelihood estimation, however,

the cost can be modified to include prior information about the state, in which case the

process becomes maximum a posteriori estimation [84, 78].

The measurements, z, may not always be a vector space quantity, but instead could

be a member of a compound manifold, as would be the case if the system was observing

direct measurements of poses, which are a member of the special Euclidean group, SE(3).

To generalize the measurement model from (2.34), let us redefine it as a function which

maps values from the state space S, to the measurement space M,

h(x) : S 7→ M (2.36)
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Then, the error term, e, from (2.35), can be rewritten using the box-minus operator de-

scribed in Section 2.2.1, as

e = (z � h(x)). (2.37)

To optimize the cost function provided by Equation 2.35 using the error term from

Equation (2.37), the process proceeds iteratively, starting with an initial state estimate,

x̆0. Each iteration seeks to update the current state estimate, x̆k using a vector space

perturbation, ϕk ∈ Rn

x̆k+1 = x̆k � ϕk, (2.38)

such that the sequence {x̆0, x̆1, x̆2, · · · } converges to the optimal solution x∗. Note that the

system may converge to a locally optimal solution, based on how the system is initialized.

To find the value of the update perturbation, the cost function from 2.35 is linearized

about the estimate x̆k using a second-order Taylor-series expansion,

Λ(x̆k � ϕk) ≈ Λ(x̆k) +

∂Λ(x̆k � ϕk)

∂ϕk

∣∣∣∣∣∣
ϕk=0

Tϕk +
1

2
ϕTk

∂2Λ(x̆k � ϕk)

∂ϕ2
k

∣∣∣∣∣∣
ϕk=0

ϕk. (2.39)

To minimize the Taylor-series expansion of the cost function provided in Equation

(2.39), its derivative with respect to the update perturbation, ϕk, is set to zero, resulting

in, ∂2Λ(x̆k � ϕk)

∂ϕ2
k

∣∣∣∣∣∣
ϕk=0

ϕk = −

∂Λ(x̆k � ϕk)

∂ϕk

∣∣∣∣∣∣
ϕk=0

. (2.40)

For the quadratic cost function from 2.35, its first partial derivative with respect to the

update perturbation evaluates to

∂Λ(x̆k � ϕk)

∂ϕk

∣∣∣∣∣∣
ϕk=0

= JTΩek, (2.41)
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where

J =
∂e(x̆k � ϕk)

∂ϕk

∣∣∣∣∣∣
ϕk=0

(2.42)

is the Jacobian matrix of the residual term e(x) from Equation (2.37), with respect to the

update vector, ϕk [84]. The second derivative of the cost function, or the Hessian matrix,

is approximated by

∂2Λ(x̆k � ϕk)

∂ϕ2
k

∣∣∣∣∣∣
ϕk=0

≈ JTΩJ. (2.43)

Substituting the terms from (2.41) and (2.43) into the update Equation (2.40) results

in the nonlinear least squares normal equations,

(JTΩJ)ϕk = JTΩek, (2.44)

which can be solved for the update perturbation ϕk, so long as the Hessian matrix approx-

imation,

JTΩJ (2.45)

is invertible. If the approximated Hessian is singular, then the system is ill-conditioned

and cannot be solved. The cases where the DCC calibration system is degenerate are

investigated in Chapter 3.

Once the update perturbation is solved, the linearization is updated using Equation

(2.38). The optimization proceeds iteratively using the new state estimate, ϕk+1, until the

termination criteria are fulfilled. These include a maximum iteration limit being reached,

the magnitude of the state update falling below a threshold, or the magnitude of the cost

reduction becoming less than a selected threshold. Ideally, the solution will converge to

the global minimum. However, the system can settle to local minima depending on the

shape of the cost function and the initial estimate of the solution. Therefore, it is vital
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to supply the optimization algorithm with a reasonably accurate initial state estimate to

help with convergence to the correct solution.

2.6 Information Theory

Information Theory is generally considered to initially have been developed in order to

facilitate reliable data transmission over noisy communication channels. It has since been

established as a means of quantifying information content. This section will outline some

fundamental tools from information theory, which are used in this thesis. For a more

detailed treatment of the area, the reader is directed to the work of Cover and Thomas

[85].

2.6.1 Entropy and Mutual Information for Discrete Random Vari-

ables

The Shannon entropy is a measure of the unpredictability or uncertainty of information

content. Suppose X = {x1, x2, . . . , xn} is a discrete random variable. The Shannon entropy

for X, H(X) is given as

H(X) = −
∑
xi∈X

P (xi) logP (xi), (2.46)

where P (xi) denotes the probability of event xi occurring. The Shannon entropy provides

a scalar value that quantifies the average variance of the discrete random variable X. The

base of the logarithm in Equation (2.46) denotes the units of the entropy. In the case

where the base of the logarithm is 2, the units are referred to as bits, and when performed

using the natural logarithm, the units are referred to as nats.

We can also define the joint entropy of two variables, which can be defined as the
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entropy over their joint probability distribution,

H(X, Y ) = −
∑

xi∈X,yi∈Y

P (xi, yi) logP (xi, yi). (2.47)

When the two variables are independent, it can be shown that their joint entropy is equal

to the sum of their marginal entropies,

H(X, Y ) = H(X) +H(Y ) (2.48)

In the case where two variables are correlated, then having knowledge about one of

the variables can affect the entropy of the other. For example, if the value of the random

variable Y is given, then we can compute the conditional entropy of X given Y by averaging

over all possible outcomes of yi

H(X|Y ) = −
∑
yi∈Y

P (yi)

 ∑
xi∈X

P (xi|yi) logP (xi|yi)

 (2.49)

= −
∑

xi∈X,yi∈Y

P (xi, yi) logP (xi|yi). (2.50)

Observing Equations (2.46),(2.47) and (2.49), we see that

H(X|Y ) = H(X, Y )−H(Y ). (2.51)

Equation (2.51) illustrates the intuitive meaning of conditional entropy, as it quantifies the

uncertainty exhibited by a variable, once another variable that is correlated with the first

has been observed.

The relative entropy (also called the information divergence or Kullback-Leibler diver-

gence) provides a measure of the difference between two probability distributions. If we
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denote two discrete probability distributions, X and Y , then the relative entropy between

the two is given as

D(X‖Y ) =
∑
i

P (xi) log
P (xi)

P (yi)
. (2.52)

The relative entropy measures the information lost when Y is used to approximate X,

and is zero if and only if X = Y . Using the definition of relative entropy, the Kullback-

Leibler divergence between a joint probability distribution and its marginal distribution,

is given as

I(X;Y ) =
∑

xi∈X,yi∈Y

P (xi, yi) log
P (xi, yi)

P (xi)P (yi)
. (2.53)

Since Equation (2.53) measures the difference between a joint probability distribution and

its marginal distribution, in effect, it quantifies the correlation or common information

between the random variables X and Y . This measure is known as mutual information.

In the special case where the two variables are independent, the numerator term of (2.53)

evaluates to P (xi, yi) = P (xi)P (yi), resulting in a cancellation and thus zero mutual in-

formation between the variables. The mutual information equation can also be expressed

as,

I(X;Y ) = H(X) +H(Y )−H(X, Y ), (2.54)

which is visualized in Figure 2.3.

2.6.2 Entropy and Mutual Information for Gaussian Random

Variables

Using a similar approach to the ones described for discrete random variables, it is possible to

derive the information theoretic measures of entropy and mutual information for continuous

random variables [85]. In this section, we will look at the specific case where the continuous

random variable is modelled as a Gaussian distrubution, as this is the most prevalent case
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Figure 2.3: Relationship between joint entropy, marginal entropy, conditional entropy, and
mutual information [86].

which arises when performing visual navigation and SLAM.

In the case where the probability density function of the continuous random variable,

Y , is modelled as a Gaussian distribution, the entropy (sometimes referred to as differential

entropy) is derived to be

he(Y ) = ln(σ
√

2πe), (2.55)

where σ is the variance of the distribution, and he(Y ) is used to denote that the logarithm

was taken with base e, in order to present Equation (2.55) in a simplified form. Similarly,

the entropy for a multivariate Gaussian distribution can be computed as

he(Y ) =
1

2
ln((2πe)n |Σ|), (2.56)

where Σ is the covariance matrix of the multivariate Gaussian distribution, and |· | denotes

the determinant operator. Note that unlike the entropy for discrete random variables, it

is possible for the entropy of continuous random variables to be less than zero.

Suppose we have a Gaussian distribution which is defined by its mean vector, x, and
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its covariance matrix, Σ. If the distribution is partitioned as

x =

 a

b

 , Σ =

 Σaa Σab

Σba Σbb

 . (2.57)

Then, the mutual information between the random variables a, and b is given as [51],

I(a; b) =
1

2
log
|Σaa||Σbb|
|Σ|

. (2.58)

Note that if the variables a and b are uncorrelated then Σba = Σab = 0, and thus |Σ| =

|Σaa||Σbb|. For this special case, we see that the mutual information measure defined in

Equation (2.58) evaluates to zero, exactly as in the general discrete case presented in

Equation (2.53).

2.7 Multiple Camera Parallel Tracking and Mapping

MCPTAM is a real-time, feature-based, visual SLAM algorithm which extends Klein and

Murray’s Parallel Tracking and Mapping (PTAM) [72] in four ways. First it allows multiple,

non-overlapping field-of-view (FOV), heterogeneous cameras in any fixed configuration

to be successfully combined. The flexible camera configuration enables the use of wide

baselines and high visibility, which allows features to be tracked for long periods. Second it

extends the PTAM’s pinhole camera model to work with fish-eye and omnidirectional lenses

through the use of the Taylor camera model [82], which helps mitigate feature starvation

due to occlusions and texture-less frames in any single camera. Third, PTAM’s back-end

has been replaced with the g2o optimizer allowing for faster and more flexible optimization

structures [84]. Finally, MCPTAM introduces both an improved update process and a

novel feature parameterization using spherical co-ordinates anchored in a base key-frame
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co-ordinate system [11].

A brief formulation of MCPTAM is given as follows. Let the point-feature map, P , be

a set of points defined with respect to an inertial world frame Fw, P = {wp1,
wp2, . . . ,

wpn}

for the n map points.

2.7.1 Tracking

We shall denote one of the cameras in the cluster as the base camera, and the remaining

cameras in the cluster as the auxiliary cameras. The co-ordinate frame of the cluster is

chosen to be the frame of the base camera, and without loss of generality, the first camera

index is chosen to be the base camera. Let us denote the pose of the camera cluster base

frame, Fcb , with respect to the world frame, at time step k, as Tw:cb
k . In order to track the

camera cluster pose, the map points are re-projected into the image frames of the cameras.

Denote a rigid body transformation which transforms a point from the jth auxiliary

camera frame Fcj , to the base camera frame, as Tcj:cb ∈ SE(3). Note that in the standard

MCPTAM formulation presented in [11], this transformation between an auxiliary camera

and the base camera is static, and is computed off-line using a calibration procedure.

A map point, which is expressed in the world frame, wp, can be transformed into the

frame of the jth camera through the transformation chain cjp = Tcj:cb(Tw:cb
k )−1 wp. An

example camera cluster is depicted in Figure 2.4.

An image feature detector and descriptor is used to find points in the image which

correspond to the existing points maintained in the map. Given a set of corresponding

points, the camera cluster pose parameters are found through a manifold based nonlinear

least squares optimization process, which seeks to determine the cluster pose such that the

re-projection errors between corresponding points is minimized. Note that the MCPTAM

method uses a robust cost function to weight the residual terms, which can be computed
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Figure 2.4: An example camera cluster, where Fw denotes the world frame, and Fcb , Fc1 ,
and Fc2 denote the frames for the base camera, and the first and second auxiliary cameras in
the cluster, respectively. Note that estimation of the cluster position, Tw:cb

k , is with respect
to the base camera, but points can be mapped between frames using the known extrinsic
calibrations which exist between the base and auxiliary cameras.
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using standard approaches, such as Huber or Tukey weighting [10].

Let the set of map points from P which are visible to camera j at time k, and for

which valid image feature correspondences exist, be denoted as P̃ k
j ⊂ P . Given a point

wpi ∈ P̃ k
j ⊆ R3, the image feature measurement, taken with respect to the jth camera

in the cluster, is denoted as zji ∈ R2. A measurement of a feature is composed of two

elements, corresponding to the u and v pixel co-ordinates, respectively. Thus, a single fea-

ture provides two independent measurements per observing camera. The full measurement

vector is constructed by stacking all measurements at time k into a single column vector,

and is denoted as yk ∈ Rm. In a similar fashion, the nonlinear measurement model for the

jth camera, hj(T
w:cb
k ) : SE(3) 7→ R|P̃ k

j | is given as

hj(T
w:cb
k ) =



Ψj(T
cj:cb(Tw:cb

k )−1 wp1

Ψj(T
cj:cb(Tw:cb

k )−1 wp2

Ψj(T
cj:cb(Tw:cb

k )−1 wp3

...

Ψj(T
cj:cb(Tw:cb

k )−1 wp|P̃ k
j |


(2.59)

Note that the nonlinear measurement model for the full camera cluster is found by simply

stacking the measurement models from Equation (2.59) for all cameras in the cluster.

The re-projection error is calculated by transforming the map points in P̃ k according

to the current camera cluster pose, projecting the points into image co-ordinates using the

measurement model, and subtracting from the point’s corresponding image measurement.

A cost function, ΛP̃ k(Tw:cb
k ) : SE(3) 7→ R, which penalizes the re-projection error over the

set of corresponding map points, P̃ k, is defined as

ΛP̃ k(Tw:cb
k ) =

C∑
j=1

|P̃ k
j |∑

i=1

‖zji −Ψj(T
cj:cb(Tw:cb

k )−1 wpi‖, (2.60)
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where C is the total number of cameras in the cluster. Finally, the pose of the camera

cluster at time k is estimated by optimizing the cost given by Equation (2.60), using the

manifold optimization framework outlined in Section 2.5. The optimal transformation

parameters, Tw:cb
k
∗, is given as

Tw:cb
k
∗ = argmin

T
w:cb
k ∈SE(3)

ΛP̃ k(Tw:cb
k ). (2.61)

2.7.2 Mapping

By re-observing features as the camera cluster explores the environment, the point loca-

tions in the map can be refined using additional measurements. Furthermore, new map

points can be inserted into the map in order to provide landmarks to track against. To

perform these tasks, MCPTAM uses key-frames, which are a snapshot of the images and

point measurements taken from a point along the camera cluster’s trajectory. Since MCP-

TAM performs tracking using multiple cameras, it extends the idea of key-frames to multi-

keyframes, which are simply a collection of the key-frames from the individual cameras at

a particular instant in time.

We shall define a multi-keyframe, M , as collection of key-frames, M = {K1, K2, . . . , KC},

where each key-frame corresponds to a camera within the cluster. Each multi-keyframe is

associated with its pose in SE(3). In order to insert a new multi-keyframe into the map, the

point measurements from each observing key-frame are collected, and the parameters of

the point locations, as well as the key-frame poses are optimized using a bundle adjustment

procedure [11].
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Chapter 3

Dynamic Multi-Camera Cluster

Calibration

This chapter describes the calibration process for a dynamic MCC where some or all of the

cameras are non-static. First, we formulate the calibration process between a single static

camera and a camera mounted to an actuated mechanism, which will be referred to as the

dynamic camera. Our calibration process requires a region of overlapping FOV between

the static and dynamic camera, but only over a subset of all possible configurations of the

dynamic camera. Second, we will describe an extension of the static-to-dynamic camera

calibration case which will allow for calibration of the dynamic-to-dynamic camera case.

Using the static-to-dynamic and dynamic-to-dynamic camera calibration techniques, the

extrinsics of any arbitrary dynamic camera cluster can be calibrated in a pair-wise fashion,

provided each calibration pair has sufficient field-of-view overlap. Note that simultaneous

calibration over multiple camera pairs is a trivial extension to the presented method.
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3.1 Static-to-Dynamic Camera Calibration Using Re-

projection Error

Suppose we are performing DCC calibration for a mechanism with M links, with link 1

starting at the end effector of the mechanism, and link M ending at the base frame of the

mechanism. The transformation between the static camera frame, Fs, and the dynamic

camera frame Fd, has the form

Ts:d
ν,θ̄ = Ts:bT

b:eM−1

ωM ,θM
· · ·Te2:e1

ω2,θ2
Te1:e
ω1,θ1

Te:d, (3.1)

where Ts:b defines the transformation from the mechanism base frame, Fb, to the static

camera frame, Fs, Te:d defines the transformation from the dynamic camera frame, Fd, to

the mechanism end-effector frame, Fe, and T
ei+1:ei
ωi+1,θi+1

defines the transformation from the

ith actuated mechanism link, to the i+ 1th actuated mechanism link, which is composed of

the DH parameters and joint angle inputs of the i+ 1th actuated mechanism link, denoted

as ωi+1 and θi+1, respectively. In this way, the product

Tb:e
ω,θ̄ = T

b:eM−1

ωM ,θM
· · ·Te2:e1

ω2,θ2
Te1:e
ω1,θ1

(3.2)

represents the kinematic chain of transformations from the end effector of the mechanism,

to its base frame, as a function of its DH parameters and joint angle inputs. Finally, note

that using the provided indexing scheme, frame FeM is equivalent to the base frame Fb.

The aim of the calibration process is to determine the total rigid body transformation

Ts:d
ν,θ, where ν ∈ S is the set of estimated parameters which is used to build the transform

chain from Equation (3.1),

ν = {Te:d, ω1, ω2, · · · , ωM ,Ts:b} ∈ S. (3.3)
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The values ω = [ω1, ω2, · · · , ωM ] ∈ R3M denote the unknown DH parameters of the mech-

anism which must be estimated, Te:d ∈ SE(3) is the unknown end-effector to dynamic

camera transformation, Ts:b ∈ SE(3) is the unknown base frame to static camera trans-

formation, and S is the compound state-space for the unknown quantities, consisting of

parameters which exist in both the vector space R3, and the Matrix Lie group SE(3).

We shall also define θ̄ = [θ1, θ2, · · · , θM ] ∈ RM as the measured parameters used to

build the transformation from Equation (3.1). In this work, we assume that the measured

parameters are available from either known inputs to the mechanism, or can be measured

using sensor feedback. It is possible to also perform the calibration without joint angle

input by simultaneously estimating the joint angles as part of the calibration process [87].

In order to perform the calibration between the static camera and the dynamic camera,

a fiducial marker is used to collect feature measurements in both cameras. Note that any

marker, such as an AprilTag [88] or chess board is suitable, so long as the scale of the

points can be determined using a target of known dimension. Measurements of the marker

are taken from both cameras simultaneously, which requires that the two cameras share an

overlapping field of view. Although it is possible to calibrate a multi-camera cluster with

completely disjoint or non-overlapping fields of view, such a calibration requires motion of

the camera cluster and tracking of natural feature points from non-fiducial sources [10, 9],

which is left as direction of future work for the DCC case.

Using the measurements and known scale of the fiducial marker, it is possible for the

observing camera to compute its 3D pose relative to the marker frame, Ft, using well

studied techniques such as the perspective-n-point algorithm [89] or a bundle adjustment

approach [6]. Given the pose of the observing camera relative to the marker frame, we

determine the position of marker points relative to the camera frame. An example image

of a DCC set-up and its associated frames and transformations is depicted in Figure 3.1.

For each instance where both the dynamic and static camera capture measurements to
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Figure 3.1: Example DCC set-up, where the unknown calibration quantities to be estimated
are outlined in purple. The transformations from the target frame, Ft, to the observing
cameras are computed using PnP or bundle-adjustment methods.

the fiducial marker, we define the ith measurement set as Zi = {P s
i , P

d
i , Q

s
i , Q

d
i , θ̄i}, where P s

i

and P d
i is the set of marker points defined in the frames of the static and dynamic cameras,

respectively, Qs
i and Qd

i is the set of measurements to the marker points, as observed by the

static and dynamic cameras, respectively, and θ̄i is the set of joint inputs for the mechanism

at snapshot i. Note that the measurement sets only include corresponding points visible

in both cameras, so consequently |P s
i | = |P d

i | = |Qs
i | = |Qd

i |. In order to produce a

high quality calibration, multiple measurement sets need to be collected, while ensuring

sufficient excitation of the joint inputs by collecting measurements from many different

configurations of the dynamic camera. A sequence of measurement sets is visualized in

Figure 3.2.

Using the measurement set and the transformation between camera frames, we can now

define the reprojection error between the marker point j in the dynamic camera frame and

the corresponding measured point in the static camera frame, for measurement set i, as
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(a) Measurement Set 1 (b) Measurement Set 2

(c) Measurement Set 3 (d) Measurement Set N

Figure 3.2: An example sequence of DCC measurement configurations. The configuration
space of the mechanism is excited in order to collect N different measurement sets used for
the calibrations, as seen in figures (a) - (d). Note that for clarity, only the transformation
from the dynamic to static camera is drawn.
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esj(ν, θ̄i) = zsj −Ψs(Ts:d
ν,θ̄i

dpj) (3.4)

where zsj ∈ Qs
i is the measurement of point j, from measurement set Qs

i , observed in the

static camera, and dpj ∈ P d
i is the 3D position of point j, from the point set P d

i , as observed

from the dynamic camera. Since both the dynamic and static camera observe the same

marker at each snapshot, we can similarly compute the error for points observed in the

static frame and projected into the dynamic frame,

edj (ν, θ̄i) = zdj −Ψd((Ts:d
ν,θ̄i

)−1 spj) (3.5)

where zdj ∈ Qd
i is the measurement of point j, from measurement set Qd

i , observed in the

dynamic camera, and spj ∈ P s
i is the 3D position of point j, from the point set P s

i , as

observed from the static camera. The total squared reprojection error as a function of

the estimation parameters, Λr(ν) : S 7→ R over all of the collected measurement sets,

Γ = {Z1, Z2, . . . , Zk}, is defined as

Λr(ν) =
∑
Zi∈Γ

 |P s
i |∑

j=1

edj (ν, θ̄i)
T edj (ν, θ̄i) +

|P d
i |∑

j=1

esj(ν, θ̄i)
T esj(ν, θ̄i)

 (3.6)

Finally, Equation (3.6) is optimized in order to find the optimal parameters, ν∗, which

minimize

ν∗ = argmin
ν∈S

Λr(ν). (3.7)

Note that (3.7) describes an unconstrained nonlinear optimization over manifold quantities,

and is solved using the nonlinear least squares approach presented in Section 2.5.
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3.2 Static-to-Dynamic Camera Calibration Using Pose-

Loop Error

Since both the static camera and dynamic camera observe the same fiducial target, it is

possible to formulate the calibration problem using a pose-loop error function. Let us

denote the transformation from the fiducial target frame, Ft, to the static camera frame,

Fs, as Ts:t ∈ SE(3). Similar to the reprojection error formation discussed in Section 3.1,

the transformation, Ts:t, can be determined using the perspective-n-point algorithm [89] or

a bundle adjustment approach [6]. As the dynamic camera also observes the same fiducial

target, we can similarly compute the transformation from the target frame, Ft, to the

dynamic camera frame, Fd, as Td:t. Given the two observations of the fiducial target from

the static and dynamic camera, we can generate a measurement of the dynamic to static

camera transformation, T̃s:d, which is given by

T̃s:d = Ts:t(Td:t)−1. (3.8)

For the pose-loop calibration formulation, we shall define the ith measurement set as

Bi = {T̃s:d
i , θ̄i} (3.9)

where T̃s:d
i is the measured dynamic to static camera transformation as computed using

Equation (3.8) at snapshot i, and θ̄i is the set of joint inputs for the mechanism at the ith

configuration. Figure 3.3 depicts the pose-loop transformation constraint.

Using the measured transformation from Equation (3.8), we can now formulate an

error function, ε(ν, θ̄), which directly compares the measured dynamic to static camera

transformation for the ith measurement set, and the modeled transformation formulated
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Figure 3.3: Example transformation loop for a measurement set. Since both the moving and
static camera make observations to the same target, it is possible to construct the pose-loop
measurement, T̃s:d.
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in Equation (3.1), as

ε(ν, θ̄i) = T̃s:d
i � Ts:d

ν,θ̄i
. (3.10)

The total squared pose-loop error as a function of the estimation parameters, Λp(ν) :

S 7→ R, over the k collected measurement sets, Γ = {B1, B2, . . . , Bk}, is defined as

Λp(ν) =
∑
Bi∈Γ

ε(ν, θ̄i)
T ε(ν, θ̄i) (3.11)

Finally, to perform the calibration and determine the optimal parameters, ν∗, Equation

(3.11) is optimized in order to find the parameters which minimize the total pose-loop error,

ν∗ = argmin
ν∈S

Λp(ν), (3.12)

which is solved using the manifold based nonlinear least squares optimization discussed in

2.5.

A key observation to note is that for the reprojection error approach, an error term

is required for each observed point, whereas the pose-loop formulation only requires an

error term for each measurement set. In the pose-loop formulation, the point observations

are only used to calculate the transformations from the target to the static and dynamic

cameras, Ts:t, and Td:t. In this way, the pose-loop approach abstracts out the fiducial

target point observations, and instead operates on the relative pose measurement between

the static and dynamic camera. The benefit of this abstraction is the reduced number of

row entries in the system Jacobian. The reprojection error formulation will add two row

entries to the system Jacobian for each observed point, j, present within each measurement

set, i. In contrast, the pose loop formulation will only add six rows per measurement set,

i, as the relative pose error term from Equation (3.10) evaluates to a 6× 1 vector. When
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compared to the reprojection calibration approach, the reduced sized system Jacobian of

the pose-loop formulation exhibits a simplified block-structure, which allows for a tractable

analysis of calibration degeneracies.

3.3 Actuated-to-Actuated Camera Calibration

Compared to the static-to-dynamic calibration, the calibration of an dynamic-to-dynamic

camera pair requires the calculation of an additional transform between the base frames

of the each mechanism, Tb2:b1 , as depicted in Figure 3.4. Suppose the camera pair consists

of two cameras, Camera 1 and Camera 2. To determine the unknown transform, the

camera pair is calibrated by first holding Camera 1 stationary using a static control input,

θ̄1, and performing the static-to-dynamic calibration by moving Camera 2, which results

in the estimation of calibration parameters ν2. The static-to-dynamic calibration is then

performed again, except now holding Camera 2 stationary using a static control input, θ̄2,

and performing the calibration by moving Camera 1, which results in the estimation of

calibration parameters ν1

As illustrated in Figure 3.4, we can now define two equivalent transformation loops

using the estimated parameters from the static-to-dynamic calibrations and the static

control inputs θ̄1 and θ̄2,

Tb2:b2 = Tb2:e2
ω2,θ̄2

Te2:d2(Tb1:d2)−1(Tb2:b1)−1

Tb1:b1 = Tb1:e1
ω1,θ̄1

Te1:d1(Tb2:d1)−1Tb2:b1
(3.13)

Using the transformation loops from (3.13), we now estimate the parameters of the

unknown base to base transformation, Tb2:b1 , such that Tb2:b2 = Tb1:b1 = I. Let us define
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Camera 1 Camera 2

Figure 3.4: Frame transformations for actuated-to-actuated camera calibration case, drawn
for the static control input configurations of θ̄1 and θ̄2. The grey arrows show the transforms
which are calibrated when camera 1 is treated as the dynamic camera, and the orange arrows
show the transforms which are calibrated when camera 2 is treated as the dynamic cam-
era. The unknown transformation, Tb2:b1 , is depicted with the red arrow. After performing
individual calibrations of the cameras, the unknown transform Tb2:b1 can be solved by equat-
ing pose-loops from camera 1 and camera 2 which contain Tb2:b1 . Note that the notation,
Tb2:d1/s2 indicates that the transformation can be interpreted as Tb2:d1 or Tb2:s2 , depending
on which camera is being held static.
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the error term for the transformation loop for camera 1 and camera 2 as

ε1(Tb2:b1) = I � Tb1:b1

ε2(Tb2:b1) = I � Tb2:b2
(3.14)

Finally, the cost function, Λ(Tb2:b1) : SE(3) 7→ R, which penalizes the error in the loop

transformations from (3.13), is given as,

Λ(Tb2:b1) =

ε1(Tb2:b1)

ε2(Tb2:b1)

T ε1(Tb2:b1)

ε2(Tb2:b1)

 , (3.15)

which can be optimized using the manifold based nonlinear least squares approach outlined

in Section 2.5 to find the unknown transformation Tb2:b1 . Once the base mechanism to

base mechanism transformation is determined, the calibration is complete, as the forward

kinematics between both actuated cameras are fully defined.

3.4 Degeneracy Analysis and Minimal Parameteriza-

tion

In this section, we will present degeneracies that arise from over-parameterization of the

calibration problem. In the formulations presented in Section 3.1 and 3.2, we describe the

calibration parameters from Equation (3.3) as one six degree of freedom transform from

the base link frame of the mechanism, Fb, to the static camera frame, Fs, another six

degree of freedom transform from the end effector frame of the mechanism, Fe, to the

dynamic camera frame, Fd, and 3M DH parameters for a mechanism with M links. Note

that only three of the four possible DH parameters are estimated per link, as θi parameter

is measured using joint or encoder feedback.
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As discussed in Section 2.5, the system Hessian matrix is approximated by

∂2Λ(x̆k � ϕk)

∂ϕ2
k

∣∣∣∣∣∣
ϕk=0

≈ JTΩJ. (3.16)

In order for the system to possess a unique solution, the Hessian, JTΩJ must be invertible,

which is equivalent to the Jacobian matrix, J, having full rank [5]. We will now show that

for the DCC calibration problem, a subset of the estimation parameters are redundant,

and their inclusion in the calibration process results in a degenerate system that cannot

be solved. Our approach will be to demonstrate that the system Jacobian column corre-

sponding to the redundant parameters is in fact, a linear combination of other columns

which exist in the Jacobian matrix, causing the system Jacobian matrix be rank deficient.

A example of the structure of the DCC system Jacobian is depicted in Figure 3.5

We will first briefly present two derivative functions required to perform the degeneracy

analysis. Then, we will present the degeneracies resulting from redundant parameters in

the system. Note that the degeneracy analysis will be performed using the pose-loop for-

mulation of the calibration problem, as the pose-loop formulation is functionally equivalent

to the reprojection formulation, but benefits from a Jacobian structure with fewer rows,

which facilitates degeneracy analysis.

3.4.1 Jacobian of Transform Function and DH Matrix

The following Jacobians of the transformation composition function and box-minus func-

tion will be required to perform the degeneracy analysis for the calibration system. To

that end, we will also present the derivatives for the DH transformation matrix with re-

spect to the di, ai, and αi parameters. Jacobians that are required, but not specific to the

development of the degeneracy analysis, are derived in Appendix B.
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Figure 3.5: A visualization of the general system Jacobian for the DCC calibration problem.
The figure depicts the Jacobian of the error function (3.10), with respect to the calibration
parameters, ν, stacked over N measurement sets. Each column in the matrix corresponds to
a different calibration parameter. Our strategy for degeneracy analysis will be to show that
some of the Jacobian columns corresponding to a degenerate parameter can be expressed
as linear combination of other parameter columns. Note that the contribution from each
measurement set stacks along the rows blocks of this Jacobian, and thus our degeneracy
analysis must be invariant to the selected measurement configuration.
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Jacobian of composition function: Suppose we have two transformation matrices,

Tb:c ∈ SE(3) and Ta:b ∈ SE(3), with their resulting composition

Ta:c = Ta:bTb:c. (3.17)

Then, the 6 × 6 Jacobian matrices, representing the derivatives of Equation (3.17), with

respect to the left and right entities are computed as,

∂Ta:c

Ta:b
=

 I 0

−[Ra:btb:c]∧ I

 (3.18)

∂Ta:c

Tb:c
=

 Ra:b 0

0 Ra:b

 (3.19)

Jacobian of box-minus function: Suppose we have two transformation matrices,

Ta:c ∈ SE(3) and Tb:c ∈ SE(3), with their resulting box-minus difference

ϕa:b = Ta:c � Tb:c (3.20)

Then, the 6 × 6 Jacobian matrices, representing the derivatives of Equation (3.20), with

respect to the left and right entities are computed as,

∂ϕa:b

Ta:c
=

 J a:c
� 0

0 I

 (3.21)

∂ϕa:b

Tb:c
=

 J b:c
� 0

0 −I

 (3.22)

where J a:c
� and J b:c

� are the derivatives with respect to the left and right entities of the
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box-minus operation on rotation matrices, as presented in B.

Derivatives of the DH transformation matrix: In this section, we shall derive the

derivative of DH parameter matrix from Equation (2.32), with respect to the di , ai, and

αi parameters. Note that the derivative with respect to θi is not required, as we assume

that the joint angles are measured quantities and thus do not need to be estimated.

To determine the derivative of Ti:i−1
ωi

with respect to the di parameter, we first express

the DH matrix transform chain from Equation (2.27) as

Ti:i−1
ωi,θi

= Ti:si
θi

Tsi:i−1
di,ai,αi

. (3.23)

Recall that using the definition of derivative with the box-plus and box-minus operator

from Equation (2.25), we can compute the derivative of Equation (3.23) with respect to

the right side transformation as,[
∂Ti:i−1

ωi,θi

∂Tsi:i−1
di,ai,αi

]
i

= lim
ϕ
s̄i:si
j →0

Ti:si
θi

(Tsi:i−1
di,ai,αi

� ϕs̄i:si
j ) � Ti:si

θi
Tsi:i−1
di,ai,αi

|ϕs̄i:si
j |

. (3.24)

If we inspect the sixth element of the perturbation vector

ϕs̄i:si
6 =

[
0 0 0 0 0 δd

]
, (3.25)

and apply it to the term Tsi:i−1
di,ai,αi

� ϕs̄i:si
6 from Equation (3.24), we get,
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Tsi:i
di,ai,αi

� ϕs̄i:si
6 =



1 0 0 0

0 1 0 0

0 0 1 δd

0 0 0 1


Tsi:i
di,ai,αi

(3.26)

=



1 0 0 0

0 1 0 0

0 0 1 δd

0 0 0 1





1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1


Tri:i
ai,αi

(3.27)

=



1 0 0 0

0 1 0 0

0 0 1 di + δd

0 0 0 1


Tri:i
ai,αi

(3.28)

The key observation from Equation (3.28) is that the perturbation from the sixth

element of the perturbation vector from Equation (3.24), exactly maps to a perturbation

of the di parameter in the DH matrix Ti:i−1
ωi

. Thus the derivative of Ti:i−1
ωi

with respect

to the di parameter is simply the sixth column of the composition derivative with respect

to the right side element, as presented in Equation (3.19),

∂Ti:i−1
ωi,θi

∂di
=

[
∂Ti:i−1

ωi,θi

∂Tsi:i
di,ai,αi

]
6

(3.29)

=

 Ri:si
θi

0

0 Ri:si
θi


6

(3.30)
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where the rotation matrix Ri:si
θi

is the rotation component of Ti:si
θi

, and is simply a function

of the joint angle parameter, θi,

Ri:si
θi

=


c(θi) −s(θi) 0

s(θi) c(θi) 0

0 0 1

 , (3.31)

and the sixth column of Equation (3.30) evaluates to

∂Ti:i−1
ωi,θi

∂di
=

 Ri:si
θi

0

0 Ri:si
θi


6

(3.32)

=



0

0

0

0

0

1


(3.33)

Using a similar strategy, it is possible to show that the derivative of the DH matrix

with respect to the ai parameter is the fourth column of the composition derivative with

respect to the right side transformation of

Ti:i−1
ωi,θi

= Ti:ri
θi,di

Tri:i−1
ai,αi

, (3.34)

and that the derivative of the DH matrix with respect to the αi parameter is the first
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column of the composition derivative with respect to the right side transformation of

Ti:i−1
ωi,θi

= Ti:qi
θi,di,ai

Tqi:i−1
αi

(3.35)

The derivatives are given as

∂Ti:i−1
ωi,θi

∂ai
=

[
∂Ti:i−1

ωi,θi

∂Tri:i−1
ai,αi

]
4

(3.36)

=

 Ri:ri
θi

0

0 Ri:ri
θi


4

(3.37)

=

 0[
Ri:ri
θi

]
1

 (3.38)

∂Ti:i−1
ωi,θi

∂αi
=

[
∂Ti:i−1

ωi,θi

∂Tqi:i−1
αi

]
1

(3.39)

=

 Ri:qi
θi

0

0 Ri:qi
θi


1

(3.40)

=

 [Ri:qi
θi

]
1

0

 (3.41)

3.4.2 DCC Error Term Jacobian:

Recall that the transformation chain for the DCC calibration problem has the form

Ts:d
ν,θ̄ = Ts:bT

b:eM−1

ωM ,θM
· · ·Te2:e1

ω2,θ2
Te1:e
ω1,θ1

Te:d, (3.42)
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and that for each measurement set i, we construct the pose-loop error equation

ε(ν, θ̄i) = T̃s:d
i � Ts:d

ν,θ̄i
, (3.43)

and the inclusion of each measurement to the calibration problem adds a block row to the

system Jacobian matrix, as seen in Figure 3.5.

Let us inspect the derivative of the error function (3.43) with respect to the unknown

calibration transformation, Ts:d
ν,θ̄i

. Using the derivative function for box-minus with respect

to the right-side transforms from Equation (3.22), we get,

∂ε(ν, θ̄i)

∂Ts:d
ν,θ̄

=

 J s:d
� 0

0 −I

 . (3.44)

Equation 3.44 will be used repeatedly in the latter sections to evaluate the Jacobian

with respect to the parameters used to build the calibration transform, Ts:d
ν,θ̄i

.

3.4.3 Degeneracies related to static-camera-to-base transform

First, let us inspect the derivative of the error function (3.43) with respect to the base

frame to static frame transformation. Using chain rule,

∂ε(ν, θ̄i)

∂Ts:b
=
∂ε(ν, θ̄i)

∂Ts:d
ν,θ̄

∂Ts:d
ν,θ̄

∂Ts:b
. (3.45)

Using the derivative for box-minus with respect to the right-side of the error equation,

as given by Equation (3.44), and the derivative of the transformation composition with
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respect to the left side transform (3.18), we get,

∂Ts:d
ν,θ̄

∂Ts:b
=

 I 0

−[Rs:btb:d]∧ I

 , (3.46)

resulting in,

∂ε(ν, θ̄i)

∂Ts:b
=

 J s:d
� 0

0 −I

 I 0

−[Rs:btb:d]∧ I

 (3.47)

=

 J s:d
� 0

−[Rs:btb:d]∧ −I

 . (3.48)

Degeneracy 1: Inclusion of the dM parameter: We will now show that the inclu-

sion of the offset parameter, dM , which is used to construct the transformation T
b:eM−1

ωM ,θM
,

results in a degeneracy of the calibration system.

Let us inspect the derivative of the loop-error Equation (3.43) with respect to the offset

parameter dM ,

∂ε(ν, θ̄i)

∂dM
=
∂ε(ν, θ̄i)

∂Ts:d
ν,θ̄

∂Ts:d
ν,θ̄

∂Tb:d

∂Tb:d

∂T
b:eM−1

ωM ,θM

∂T
b:eM−1

ωM ,θM

∂dM
. (3.49)

Using the derivative functions from Equations (3.44), (3.18), and the derivative of the
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DH matrix with respect to the di parameter, given in Equation (3.32), we can compute

∂Ts:d
ν,θ̄

∂Tb:d
=

 Rs:b 0

0 Rs:b

 (3.50)

∂Tb:d

∂T
b:eM−1

ωM ,θM

=

 I 0

−[Rb:eM−1teM−1:d]∧ I

 (3.51)

∂T
b:eM−1

ωM ,θM

∂dM
=



0

0

0

0

0

1


(3.52)

we get,

∂ε(ν, θ̄i)

∂dM
=

 0

−Rs:b


3

(3.53)

Inspecting the last three columns of the Jacobian ∂ε(ν,θ̄i)
∂Ts:b from Equation (3.48), observe

that it is possible to write ∂ε(ν,θ̄i)
∂Ts:b as a linear combination of the elements of ∂ε(ν,θ̄i)

∂dM
,

 0

−I

λ =

 0

−Rs:b


3

, (3.54)

where λ is a 3× 1 column vector. By setting λ as

λ =

 0

Rs:b


3

, (3.55)
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which demonstrates that the inclusion of the dM parameter in the calibration formulation

results in a degeneracy. Intuitively, this degeneracy is caused by the freedom with which

the base frame of the mechanism, Fb, can be placed. In accordance with the DH-convention

described in Section 2, the only constraint on the base frame is that its z-axis must coincide

with the rotation axis of the M th joint. Thus, the origin of Fb can be placed anywhere

along the M th joint rotation axis. This degree of freedom for the movement of Fb along the

rotation axis is precisely the same as the degree-of-freedom offered by the dM parameter,

and thus the dM parameter and the translation component of Ts:b are ambiguous.

It is important to note that the rotation Rs:b remains constant as additional measure-

ment sets are added, as it does not depend on any of the joint angle inputs. Thus, even

as multiple row-blocks are added to the system Jacobian due to measurements from mul-

tiple mechanism configurations, the Jacobian column associated with the dM parameter

is comprised of a stack of repeated vectors corresponding to Equation (3.53). This result

implies that the degeneracy is invariant to the measurement configurations collected, and

is fundamental to the problem formulation. The system Jacobian as it pertains to this

degeneracy is visualized in Figure 3.6.

3.4.4 Degeneracies related to end-effector-to-dynamic-camera trans-

form

Let us first inspect the derivative of the transformation chain of Equation (3.1) with respect

to the transformation from the dynamic camera frame, Fd, to the end-effector frame Fe,

∂ε(ν, θ̄i)

∂Te:d
=
∂ε(ν, θ̄i)

∂Ts:d
ν,θ̄

∂Ts:d
ν,θ̄

∂Te:d
. (3.56)

Using the derivative functions for box-minus with respect to the right-side transforms

Equation (3.44), and transformation composition with respect to the right side transform
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Figure 3.6: A visualization of the system Jacobian for the DCC calibration problem and
the degeneracy caused by the inclusion of the dM parameter. The Jacobian column of the dM
parameter can be expressed as a linear combination of the static-camera-to-base translation
parameters.

from Equation (3.19), we get,

∂Ts:d
ν,θ̄

∂Te:d
=

 Rs:e 0

0 Rs:e

 (3.57)

resulting in,

∂ε(ν, θ̄i)

∂Te:d
=

 J s:d
� Rs:e 0

0 −Rs:e

 . (3.58)

Degeneracy 2: Inclusion of the α1 parameter: The derivative of the transforma-

tion chain, given in Equation (3.1), with respect to the α1 parameter can be expressed

as,
∂ε(ν, θ̄i)

∂α1

=
∂ε(ν, θ̄i)

∂Ts:d
ν,θ̄

∂Ts:d
ν,θ̄

∂Te1:d

∂Te1:d

∂Te1:e
ω1,θ1

∂Te1:e
ω1,θ1

∂α1

. (3.59)
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Using the derivative functions given by Equations (3.44), (3.18), (3.19), and the derivative

of the DH matrix with respect to the α1 parameter, given by Equation (3.39), we can

compute

∂Ts:d
ν,θ̄

∂Te1:d
=

 Rs:e1 0

0 Rs:e1

 (3.60)

∂Te1:d

∂Te1:e
ω1,θ1

=

 I 0

−[Re1:ete:d]∧ I

 (3.61)

∂Te1:e
ω1,θ1

∂α1

=

 [Re1:e
α1,θ1

]
1

0

 , (3.62)

which evaluates to

∂ε(ν, θ̄i)

∂α1

=

 J s:d
� Rs:e1

[
Re1:e
α1,θ1

]
1

−Rs:e1 [Re1:ete:d]∧
[
Re1:e
α1,θ1

]
1

 (3.63)

=

 J s:d
� [Rs:e]1

−Rs:e1 [Re1:ete:d]∧
[
Re1:e
α1,θ1

]
1

 . (3.64)

Let us denote the bottom partition of ∂ε(ν,θ̄i)
∂α1

as
(
∂ε(ν,θ̄i)
∂α1

)
b

= −Rs:e1 [Re1:ete:d]∧
[
Re1:e
α1,θ1

]
1
,

which can be simplified as,

(
∂ε(ν, θ̄i)

∂α1

)
b

= −[Rs:ete:d]∧Rs:e1
[
Re1:e
α1,θ1

]
1

(3.65)

= −[Rs:ete:d]∧ [Rs:e]1 , (3.66)

by identity (A.3), and can be further simplified to

−Rs:e[te:d]∧(Rs:e)T [Rs:e]1 (3.67)
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by identity (A.2), resulting in

= −Rs:e[te:d]∧


1

0

0

 (3.68)

= −Rs:e


0

te:d
z

te:d
y

 . (3.69)

Finally, through comparison of (3.69) and (3.58) we see that

∂ε(ν, θ̄i)

∂α1

=

[
∂ε(ν, θ̄i)

∂Te:d

]
1

+

[
∂ε(ν, θ̄i)

∂Te:d

]
3:6


0

te:d
z

te:d
y

 . (3.70)

Notice that the vector, 
0

te:d
z

te:d
y

 , (3.71)

is composed of translation elements of the transformation from the dynamic camera to the

end effector frame, which do not change with measurement configurations. Thus the linear

combination of (3.70) is present for the row-blocks added to the system Jacobian by all the

measurement sets, and the system experiences a degeneracy if the α1 parameter is included

as part of the calibration state. The system Jacobian as it pertains to this degeneracy is

visualized in Figure 3.7

Degeneracy 3: Inclusion of the a1 parameter: Let us compute the derivative of
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Figure 3.7: A visualization of the system Jacobian for the DCC calibration problem and
the degeneracy caused by the inclusion of the α1 parameter. The Jacobian column of the α1

parameter can be expressed as a linear combination of a subset of the dynamic-camera-to-
end-effector transformation parameters.

the transformation chain Equation (3.1) with respect to the a1 parameter,

∂ε(ν, θ̄i)

∂a1

=
∂ε(ν, θ̄i)

∂Ts:d
ν,θ̄

∂Ts:d
ν,θ̄

∂Te1:d

∂Te1:d

∂Te1:e
ω1,θ1

∂Te1:e
ω1,θ1

∂a1

. (3.72)

Using the derivative functions from Equations (3.44), (3.60), (3.61), and the derivative of

the DH matrix with respect to the a1 parameter, given by (3.36), we can compute

∂ε(ν, θ̄i)

∂a1

=

 0

−Rs:e1
[
Re1:e
α1,θ1

]
1

 (3.73)

=

 0

− [Rs:e]1

 . (3.74)
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Figure 3.8: A visualization of the system Jacobian for the DCC calibration problem and
the degeneracy caused by the inclusion of the a1 parameter. The Jacobian column of the a1

parameter is equivalent to the dynamic-camera-to-end-effector transformation tx parameter.

Finally, through comparison of (3.74) and (3.58) we see that,

[
∂ε(ν, θ̄i)

∂Te:d

]
4

=
∂ε(ν, θ̄i)

∂a1

. (3.75)

Since these columns are identical for all row-blocks added to the system Jacobian

through multiple measurement sets, the system experiences a degeneracy if the a1 pa-

rameter is included as part of the calibration state, as the contribution of the a1 parameter

to the system Jacobian, is encompassed by the contribution of the transformation Te:d to

the system Jacobian. The system Jacobian as it pertains to this degeneracy is visualized

in Figure 3.8

Degeneracy 4: Inclusion of the d1 parameter: Let us compute the derivative of

the transformation chain Equation (3.1) with respect to the d1 parameter,

∂ε(ν, θ̄i)

∂d1

=
∂ε(ν, θ̄i)

∂Ts:d
ν,θ̄

∂Ts:d
ν,θ̄

∂Te1:d

∂Te1:d

∂Te1:e
ω1,θ1

∂Te1:e
ω1,θ1

∂d1

. (3.76)
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Using the derivative functions from Equations (3.44), (3.60), (3.61), and the derivative of

the DH matrix with respect to the d1 parameter, which is given by Equation (3.32), we

can compute

∂ε(ν, θ̄i)

∂d1

=

 0

− [Rs:e1 ]3

 , (3.77)

We shall now expand the last three columns of the derivative from Equation (3.58) as

[
∂ε(ν, θ̄i)

∂Te:d

]
3:6

=

 0

−Rs:e

 (3.78)

=

 0

−Rs:e1Re1:e

 . (3.79)

In order to express Equation (3.77) as a linear combination of Equation (3.79), we multiply

Equation (3.79) by the column vector [Re1:e]T3 ,

[
∂ε(ν, θ̄i)

∂Te:d

]
3:6

[Re1:e]T3 =

 0

−Rs:e1Re1:e [Re1:e]T3

 (3.80)

=



0

−Rs:e1


0

0

1




(3.81)

=

 0

− [Rs:e1 ]3

 . (3.82)

Recall that the rotation matrix Re1:e is the rotation component of the DH transforma-
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tion matrix, Te1:e
ω1,θ1

, thus, the rotation matrix Re1:e has the form

Re1:e =


c(θ1) −s(θ1)c(α1) s(θ1)s(αi)

s(θ1) c(θ1)c(α1) −c(θ1)s(αi)

0 s(α1) c(α1)

 . (3.83)

Then, the column vector [Re1:e]T3 is the third column of the transposed matrix from (3.83),

[Re1:e]T3 =


0

s(α1)

c(α1)

 . (3.84)

The value of α1 is constant with respect to the measurement configuration. Thus, for any

measurement set, we can express the derivative of the DH chain with respect to the d1

parameter as the linear combination

∂ε(ν, θ̄i)

∂d1

=

[
∂ε(ν, θ̄i)

∂Te:d

]
3:6


0

s(α1)

c(α1),

 (3.85)

and therefore including the d1 parameter as part of the calibration process results in a

system degeneracy. The system Jacobian as it pertains to this degeneracy is visualized

in Figure 3.9. Analogous to the degeneracy caused by the dM parameter, we see that d1

parameter can be expressed using the translation components of the subsequent 6-DOF

transform.
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Figure 3.9: A visualization of the system Jacobian for the DCC calibration problem and
the degeneracy caused by the inclusion of the d1 parameter. The Jacobian column of the d1

parameter can be expressed as a linear combination of the dynamic-camera-to-end-effector
translation parameters.

3.4.5 Degeneracies caused by Parallel Joint Axis

Recall from the DH convention discussed in Section 2, that the di parameter is the ith link

offset, and that the direction of di is along the ith link joint axis. We will now show that if

the direction of two subsequent joint axes, the directions of di and di+1 are parallel, then

the system is degenerate. Note that if the two subsequent joint axes are parallel, then the

twist angle parameter between them, αi is equal to zero. An example manipulator with

parallel sequential joint axes is depicted in Figure 3.10.

We begin by computing the derivative of the DH chain function from (3.1) with respect

to an arbitrary di parameter,

∂ε(ν, θ̄i)

∂di
=
∂ε(ν, θ̄i)

∂Ts:d
ν,θ̄

∂Ts:d
ν,θ̄

∂Tei:d

∂Tei:d

∂T
ei:ei−1

ω1,θ1

∂T
ei:ei−1

ωi,θi

∂di
. (3.86)

Using the derivative functions from Equations (3.44), (3.60), (3.19), and the derivative of
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Figure 3.10: An example mechanism where subsequent joint axes are parallel
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the DH matrix with respect to the di parameter, (3.32), we can compute

∂ε(ν, θ̄i)

∂di
=

 0

− [Rs:ei ]3

 , (3.87)

Using a similar process, we can compute the derivative of the DH chain function from

Equation (3.1) with respect to the subsequent di+1 parameter as,

∂ε(ν, θ̄i)

∂di+1

=

 0

− [Rs:ei+1 ]3

 . (3.88)

Expanding the rotation chain from Equation (3.88), we get

∂ε(ν, θ̄i)

∂di+1

=

 0

− [Rs:ei+1 ]3

 (3.89)

=

 0

−Rs:ei [Rei:ei+1 ]3

 . (3.90)

If we set [Rei:ei+1 ]3 to [0 0 1]T , we get that

∂ε(ν, θ̄i)

∂di+1

=



0

−Rs:ei


0

0

1




(3.91)

=

 0

− [Rs:ei ]3

 (3.92)

=
∂ε(ν, θ̄i)

∂di
(3.93)
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Thus, when [Rei:ei+1 ]3 = [0 0 1]T , the derivatives of the error function with respect to

di, given by Equation (3.87), and with respect to di+1, given by Equation (3.88), are equal.

Since Rei:ei+1 is the rotation component for a DH matrix, its transpose, Rei+1:ei has the

form shown in Equation (3.83). Taking the third column of Rei:ei+1 is equivalent to taking

the third row of Rei+1:ei , and thus [Rei:ei+1 ]3 is given as

[Rei:ei+1 ]3 =


0

s(αi)

c(αi)

 (3.94)

Finally, when the sequential joint axes for di and di+1 are parallel, the twist angle between

the axis are zero, α = 0, and (3.94) becomes

[Rei:ei+1 ]3 =


0

0

1

 . (3.95)

Thus, when the twist angle, αi is zero, the two subsequent joint axes are parallel, and

∂ε(ν, θ̄i)

∂di
=
∂ε(ν, θ̄i)

∂di+1

, (3.96)

resulting in a system degeneracy. Similar to the previously discussed degeneracies, the

presented result does not depend on the measurement configuration, and therefore, the

degeneracy applies to all block-rows added to the system Jacobian from the collected

measurement sets. The system Jacobian as it pertains to this degeneracy is visualized in

Figure 3.11.
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Figure 3.11: A visualization of the system Jacobian for the DCC calibration problem and
the degeneracy caused by parallel subsequent joint axes. In this case, the Jacobian column
of the di and di+1 parameters are equivalent.

3.4.6 Degeneracies Specific to the One Joint Mechanism

In this section, we will discuss the system degeneracies of the DCC calibration problem

when there is only one joint axis. In this case, the general chain from Equation (3.42) can

be expressed as

Ts:d
ν,θ̄ = Ts:bTe1:e

ω1,θ1
Te:d (3.97)

where, for this special case, θ̄ = [θ1], as there is only one degree of freedom in the system,

so the set of estimation parameters becomes

ν = {Ts:b, a1, d1, α1,T
e:d}. (3.98)

However, as discussed in Section 3.4, the columns for the a1, d1, and α1 parameters must

be removed from the system Jacobian in order to prevent degeneracy. Thus, for this special

case, the set of estimation parameters becomes ν = {Ts:b,Te:d}, and we need only analyze

the Jacobian of the error function from Equation (3.43) with respect to Ts:b and Te:d.

First One Joint Mechanism Degeneracy: First, let us isolate the 5th and 6th
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column of the derivative of Te:d from Equation (3.58),

[
∂ε(ν, θ̄i)

∂Te:d

]
5

=

 0

− [Rs:e]2

 (3.99)

=

 0

−Rs:b [Rb:e]2

 (3.100)

[
∂ε(ν, θ̄i)

∂Te:d

]
6

=

 0

− [Rs:e]3

 (3.101)

=

 0

−Rs:b [Rb:e]3

 . (3.102)

Next, let us isolate columns 3 to 6 of the derivative of Ts:b from Equation (3.48),

[
∂ε(ν, θ̄i)

∂Ts:b

]
3:6

=

 0

−I

 (3.103)

We can now develop an expression using the bottom partitions of Equations (3.100),

(3.102), and (3.103). Suppose the expression

Rs:b
[
Rb:e

]
2
λ1 + Iλ2 = Rs:b

[
Rb:e

]
3

(3.104)

holds, where λ1 and λ2 are vectors of the appropriate dimensions. Equation (3.104) can

be further manipulated as

[
Rb:e

]
2
λ1 + (Rs:b)Tλ2 =

[
Rb:e

]
3
. (3.105)
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Setting λ2 = [Rs:b]3, Equation (3.105) becomes


0

0

1

 =
[
Rb:e

]
3
−
[
Rb:e

]
2
λ1 (3.106)

Since Rb:e is the rotation component for a DH matrix, it has the form shown in Equation

(3.83), and thus Equation (3.106) can be expressed as


0

0

1

 =


s(θ1)s(α1)

−c(θ1)s(α1)

c(α1)

−

−s(θ1)c(α1)

c(θ1)c(α1)

s(α1)

λ1. (3.107)

Finally it can be shown that setting λ1 = − tan(α1) results in the left hand side and right

hand side equality for Equation (3.107). Using these results, we see that a subset of the

columns of the system Jacobian for the one joint angle case can be expressed as the linear

combination, [
∂ε(ν, θ̄i)

∂Te:d

]
6

=

[
∂ε(ν, θ̄i)

∂Te:d

]
5

λ1 +

[
∂ε(ν, θ̄i)

∂Ts:b

]
3:6

λ2 (3.108)

thus resulting in a system degeneracy. Note that both λ1 and λ2 are not dependent on

the mechanism configuration and therefore, the degeneracy applies to all block-rows added

to the system Jacobian from the collected measurement sets. The system Jacobian as it

pertains to this degeneracy is visualized in Figure 3.12.

Second One Joint Mechanism Degeneracy:

First, let us investigate the following block columns of the derivative of Te:d, from

Equation (3.58),
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Figure 3.12: A visualization of the system Jacobian for the one joint axis special case of
the DCC calibration problem. The Jacobian column corresponding to the z-axis direction
of the dynamic-camera-to-end-effector transform can be expressed as a linear combination of
other columns, thus causing a degeneracy in the system.

[
∂ε(ν, θ̄i)

∂Te:d

]
1:3

=

 J s:d
� Rs:e

0

 , (3.109)

and the following block columns of the derivative of Ts:b from Equation (3.48),

[
∂ε(ν, θ̄i)

∂Ts:b

]
1:3

=

 J s:d
�

−[Rs:btb:d]∧

 . (3.110)

Suppose we set λ1 = [Rb:e]
T
3 and λ2 = [Rs:b]3. We shall create an expression, Q, relating
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the Jacobian columns from Equations (3.109) and (3.110), which evaluates to

Q =

[
∂ε(ν, θ̄i)

∂Te:d

]
1:3

λ1 −
[
∂ε(ν, θ̄i)

∂Ts:b

]
1:3

λ2 (3.111)

=

 J s:d
� Rs:e

0

 [Rb:e
]T

3
−

 J s:d
�

−[Rs:btb:d]∧

 [Rs:b
]

3
. (3.112)

Expanding and simplifying numerator terms, we get

Q =

 J s:d
� Rs:bRb:e [Rb:e]

T
3

0

−
 J s:d

� [Rs:b]3

−[Rs:btb:d]∧ [Rs:b]3

 (3.113)

=

 J s:d
� [Rs:b]3

0

−
 J s:d

� [Rs:b]3

−[Rs:btb:d]∧ [Rs:b]3

 (3.114)

=

 0

[Rs:btb:d]∧ [Rs:b]3

 . (3.115)

Using Identity (A.2), we can simplify the denominator,

Q =

 0

Rs:b[tb:d]∧(Rs:b)T [Rs:b]3

 (3.116)

=



0

Rs:b[tb:d]∧


0

0

1




(3.117)

=

 0

Rs:b[tb:d]∧3

 . (3.118)
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Next, let us look at following block columns of the derivative of Te:d, from Equation

(3.58),

[
∂ε(ν, θ̄i)

∂Te:d

]
4:6

=

 0

−Rs:e

 , (3.119)

=

 0

−Rs:bRb:e

 . (3.120)

We shall now construct an expression which relates the Jacobian columns from (3.120) to

Q,

 0

−Rs:bRb:e

λ3 = Q (3.121)

=

 0

Rs:b[tb:d]∧3

 . (3.122)

Equating the bottom partition of Q with the bottom partition of the left hand side of

Equation (3.122), we get,

−Rs:bRb:eλ3 = Rs:b[tb:d]∧3 (3.123)

Rb:eλ3 = −[tb:d]∧3 (3.124)

Rb:eλ3 = −Ptb:d (3.125)

λ3 = −(Rb:e)TPtb:d, (3.126)
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where P is a permutation matrix,

P =


0 1 0

−1 0 0

0 0 0

 (3.127)

which is used to express the column of the skew-symmetric matrix term from Equation

(3.124) as a standard vector.

Since tb:d is the translation vector corresponding to the transformation Tb:d = Tb:eTe:d,

tb:d can be expanded as

tb:d = Rb:ete:d + tb:e. (3.128)

Substituting Equation (3.128) into Equation (3.126) results in,

λ3 = −(Rb:e)TPRb:ete:d − (Rb:e)TPtb:e. (3.129)

Observe that for the one joint axis case, Rb:e and tb:e corresponds to the rotation and

translation component for a single DH matrix, respectively, thus they have the form shown

in Equation (2.32). With this, it can be shown that

(Rb:e)TPRb:e =


0 c(α1) −s(α1)

−c(α1) 0 0

s(α1) 0 0

 (3.130)

=M, (3.131)
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and similarly,

(Rb:e)TPtb:e =


0

−a1c(α1)

a1s(α1).

 (3.132)

= V (3.133)

Thus, λ3 can be expressed as

λ3 =Mte:d + V (3.134)

Combining Equations (3.118) and (3.122), we see that we are able to express the linear

combination of Jacobian columns,

[
∂ε(ν, θ̄i)

∂Te:d

]
1:3

λ1 −
[
∂ε(ν, θ̄i)

∂Ts:b

]
1:3

λ2 =

[
∂ε(ν, θ̄i)

∂Te:d

]
4:6

λ3 (3.135)

which holds true for our selected values of λ1, λ2 and λ3. This linear combination of

Jacobian columns indicates that a degeneracy is present in the system, but can be mitigated

by the removal of any of the parameters associated with the Jacobian columns present in

(3.135). Once again, note that the expressions for λ1, λ2 and λ3 are constructed using

parameters that do not change with the DCC configuration, thus, this degeneracy is present

for all block-rows added to the system Jacobian as part of a measurement set. The system

Jacobian as it pertains to this degeneracy is visualized in Figure 3.13.
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Figure 3.13: A visualization of the system Jacobian for the one joint axis special case of
the DCC calibration problem. The Jacobian columns corresponding to dynamic-camera-to-
end-effector rotation can be expressed as a linear combination of other columns, thus causing
a degeneracy in the system.

3.5 Non-Degeneracy of the Minimal Parameterization

In the previous section, we identified calibration parameters that must be removed in order

to avoid degeneracies in the calibration system. In this section, we shall analyse the system

Jacobian structure after these identified degeneracies have been removed, and will identify

the sufficient conditions required for the system to be non-degenerate. The non-degeneracy

conditions will be used to illustrate the efficacy of the minimal parameterization identified

in Section 3.4.6 for the 1-DOF case, and demonstrate configuration-specific degeneracies

that occur for larger degree-of-freedom mechanisms. For the analysis, we will operate

on Jacobian matrices constructed using the minimal number of measurements required to

solve the system. If the non-degeneracy analysis holds for this minimal system, it must also

hold for systems which are constructed using additional measurements, and is therefore a

worst case assessment of the conditions for non-degeneracy.
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3.5.1 Constructing the Minimal Jacobian

Recall that the box-minus operator from Equation (2.21) computes the tangent space

difference between two transformation matrices which are members of the SE(3) Lie group.

Inspecting the poseloop error from Equation (3.10), we see that each collected measurement

set provides three measurements corresponding to the rotation component of the poseloop

error, and three measurements corresponding to the translation component of the poseloop

error, generating six total measurements. Let us denote the top and bottom partitions of

the poseloop error from Equation (3.10) as

ε(ν, θ̄i) = T̃s:d
i � Ts:d

ν,θ̄i
(3.136)

=

 εri

εti

 , (3.137)

where εri and εti denote the rotation and translation components,respectively, of the poseloop

error corresponding to the ith measurement set.

Similar to the process described in [5] for non-degeneracy analysis, the system Jacobian

will be constructed using the minimum number of measurements required to solve the

system, and we shall refer to this Jacobian as the minimal Jacobian. To that end, in

order to solve a system with N calibration parameters, a minimum of N independent

measurements is required, and therefore the minimal Jacobian will be a square matrix. As

discussed in Section 3.4.6, the 1-DOF DCC calibration case requires the estimation of five

rotation and five translation parameters, for a total of 10 estimated parameters. Since each

measurement set provides six independent measurements, at minimum, we would require

the collection of two measurement sets. Note that these two measurement sets would collect

six translation and rotation measurements, therefore one of each type of measurement can

be discarded in order to generate the minimal Jacobian.
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The 2-DOF case requires the estimation of seven rotation and seven translation param-

eters, and thus 3 measurement sets must be collected in order to construct the minimal

Jacobian. Beyond the 2-DOF case, for every additional degree of freedom, one rotation

parameter, αj, and two additional translation parameters, dj and aj, are added as calibra-

tion parameters. Suppose the DCC mechanism contains D degrees of freedom. Then, for

D > 1, the number of rotation parameters to be estimated is,

Nr = 5 +D, (3.138)

and the number of translation parameters is

Nt = 5 + 2(D − 1). (3.139)

It is evident that the number of estimated translation parameters is greater than or equal to

the number of rotation parameters, thus, the number of translation parameters in the sys-

tem dictates the number of measurement sets required to construct the minimal Jacobian,

and can be calculated as

Km(D) =

⌈
Nt

3

⌉
, (3.140)

where d·e denotes the ceiling operator.

Using the minimum number of measurement sets calculated with Equation (3.140), we

shall now construct the minimal Jacobian for a general DCC mechanism, and provide the

sufficient conditions for the system to be non-degenerate. The strategy is to construct

the square minimal Jacobian, and show that its determinant is a non-zero value through

analysis of the matrix rank.

Assuming that the parallel axis case described in Section 3.4.5 is not present, and taking

into account the degeneracies described in Section 3.4, the system Jacobian ith row block

85



has the form,

Ji =

∂ε(ν, θ̄i)
∂Te:d

· · · ∂ε(ν, θ̄i)
∂dM−j

∂ε(ν, θ̄i)

∂aM−j

∂ε(ν, θ̄i)

∂αM−j
· · · ∂ε(ν, θ̄i)

∂aM

∂ε(ν, θ̄i)

∂αM

∂ε(ν, θ̄i)

∂Ts:b

,
(3.141)

where ∂ε(ν,θ̄i)
∂Te:d and ∂ε(ν,θ̄i)

∂Ts:b are given by Equations (3.58) and (3.48), respectively, and the

remaining derivative quantities can be readily calculated using the techniques outlined in

Section 3.4. Combining the row blocks from Equation (3.141), the minimal Jacobian for a

D degree of freedom mechanism will have the form

JDm =


J1

...

JKm(D)

 . (3.142)

Using the individual Jacobian quantities for the derivatives outlined in Equation (3.141),

it is easily demonstrated that the rows and columns of the general minimal Jacobian from

Equation (3.142), can be reordered into a block triangular structure. To do so, the columns

corresponding to the rotation parameters grouped into the left partition, the columns cor-

responding to the translation parameters are grouped into the right partition, the rows

corresponding to rotation measurements are grouped into the top partition, and finally,

the rows corresponding to translation measurements are grouped into the bottom partition.

The row and column re-ordering is visualized in Figure 3.14. Note that performing these

elementary row and column operations only changes the sign of the determinant, and not

the absolute value [5].

The reordered minimal Jacobian now has the form

JDm =

 Br 0

Brt Bt

 , (3.143)
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(a) Minimal Jacobian Structure

(b) Re-ordered minimal Jacobian structure

Figure 3.14: Comparison of the minimal Jacobian structure before and after performing
row and column re-ordering. (a) depicts the structure of the minimal Jacobian, and (b) shows
the minimal Jacobian structure after performing re-ordering. Shaded and white cells depict
non-zero and zero entries, respectively. Note the large block of zeros in the top right corner
of the re-ordered Jacobian in (b).
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and due to the block-diagonal structure of (3.143), the determinant of the minimal Jacobian

can be written as

|JDm| = |Br||Bt|. (3.144)

Thus, the necessary and sufficient conditions for the minimal Jacobian to be degenerate

are that, Br or Bt, must have a determinant of zero.

3.5.2 1-DOF Non-degeneracy Analysis

We shall now use the sufficient conditions for non-degeneracy from Equation (3.144) to

analyse the minimal Jacobian for the 1-DOF case. Recall that for the 1-DOF mechanism

that five rotation and five translation parameters are estimated, and that two measurement

sets are required to construct the minimal Jacobian.

Translation Block: The augmented translation block from Equation (3.144) has the

form

B̄t =

 I
[
Rs:e
θ1

]
1:2

I
[
Rs:e
θ2

]
1:2

 . (3.145)

We shall now perform rank-invariant operations in order to simplify B̄t and compute its

rank. Note that B̄t is a 6 × 5 matrix, but one row will be removed after simplifying, in

order to construct the square matrix, Bt. Pre-multiplying B̄t by matrix E1,

E1 =

 I 0

I −I

 , (3.146)

which subtracts the bottom partition from the top partition, results in

E1B̄t =

 I
[
Rs:e
θ1

]
1:2

0
[
Rs:e
θ1

]
1:2
−
[
Rs:e
θ2

]
1:2

 . (3.147)
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Next, pre-multiplying Equation (3.147) by matrix E2,

E2 =

 I 0

0 Rb:s

 , (3.148)

yields

E2E1B̄t =

 I
[
Rs:e
θ1

]
1:2

0
[
Rb:e
θ1

]
1:2
−
[
Rb:e
θ2

]
1:2

 . (3.149)

We shall now show that the matrices E1 and E2 perform rank-invariant operations to

a matrix when pre-multiplied. By inspection, it is evident that the matrix E1 is a matrix

with a full rank of six. Therefore,

rank(E1E2B̄t) = rank(E2B̄t). (3.150)

In order to determine the rank of matrix E2, we shall compute its determinant. Since E2

has a block-diagonal structure, the determinant is computed as

|E2| = |I||Rb:s|. (3.151)

As Rb:s is a rotation matrix, its determinant must equal 1. Thus,

|E2| = 1, (3.152)

E2 has a full rank of 6, therefore,

rank(E2B̄t) = rank(B̄t), (3.153)

and the rank of the original augmented matrix B̄t is equal to the rank of the expression
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from Equation (3.149).

Inspecting equation (3.149), note that for the 1-DOF case, the rotation, Rb:e
θj , is a

function of the single θ and α parameters for the one link in the mechanism. However, as

a result of degeneracy analysis conducted in Section 3.4.4, the α parameter must not be

estimated in order to avoid degeneracy of the system. As is the case with any degenerate

parameter identified in Section 3.4, its value can be set to any finite value for use in the

construction of the static to dynamic camera transformation chain. In order to simplify the

non-degeneracy analysis, and without loss of generality, we can set α = 0 for the 1-DOF

system, which results in

Rb:e
θj =


c(θj) −s(θj) 0

s(θj) c(θj) 0

0 0 1

 . (3.154)

Substituting the result from Equation (3.154) into Equation (3.149), results in

E2E1B̄t =



I
[
Rs:e
θ1

]
1:2

0


c(θ1) −s(θ1)

s(θ1) c(θ1)

0 0

−

c(θ2) −s(θ2)

s(θ2) c(θ2)

0 0




. (3.155)

In order to determine the rank of the expression from Equation (3.155) we shall use

the determinantal rank theorem, which states that, for a matrix, A, its rank is equal to

the order of its largest square sub-matrix with non-zero determinant [90]. To that end, we

shall now compute the rank of the matrix from Equation (3.155), using the determinant
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of the 5× 5 sub-matrix

Ct =


I

[
Rs:e
θ1

]
1:2

0

c(θ1) −s(θ1)

s(θ1) c(θ1)

−
c(θ2) −s(θ2)

s(θ2) c(θ2)


 (3.156)

=

 Ct1 Ct2
0 Ct3

 . (3.157)

Due to the block structure of Equation (3.157), the determinant of Ct is computed as

|Ct| = |Ct1||Ct3|. (3.158)

By inspection, it is clear that |Ct1| = 1, and it can be shown that

|Ct3| = 2− 2 cos(θ1 − θ2). (3.159)

Therefore, the determinant Ct will evaluate to zero if cos(θ1 − θ2) = 1. Otherwise, the

determinant of Ct is non-zero, implying that Ct has full rank. Since Ct is the largest square

sub-matrix of Equation (3.155) with full rank,

rank(B̄t) = rank(Ct) (3.160)

= 5. (3.161)

The condition,

cos(θ1 − θ2) = 1, (3.162)

will be true if

θ1 − θ2 = 2πn, n ∈ Z (3.163)
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which occurs if two measurement sets are collected from the same DCC configuration.

Finally, recall that B̄t is a 6 × 5 matrix which was constructed in order to facilitate

block-wise operations during the simplification process. The original square matrix, from

Equation (3.144), Bt, is simply B̄t with one row removed, thus rank(Bt) = 5 so long as the

condition from Equation 3.162 is not true.

Rotation Block: The augmented rotation block from Equation (3.144) has the form

B̄r =

 J s:d1

� J s:d1

�

[
Rs:e
θ1

]
1:2

J s:d2

� J s:d2

�

[
Rs:e
θ2

]
1:2

 (3.164)

=

 J s:d1

� 0

0 J s:d2

�

 I
[
Rs:e
θ1

]
1:2

I
[
Rs:e
θ2

]
1:2

 (3.165)

= E3B̄t. (3.166)

The rank of Equation (3.165) can be computed as

rank(E3B̄t) = rank(B̄t) (3.167)

so long as E3 is a full rank matrix. To determine the rank of E3, we can compute its

determinant,

|E3| = |J s:d1

� ||J s:d2

� |, (3.168)

where J s:d1

� and J s:d2

� are the Jacobian matrices for the rotation component of the manifold-

minus operation, computed from the two measurement sets used to construct the minimal

Jacobian. A full derivation of this Jacobian quantity is provided in Appendix B. The key

observation is that the Jacobian J s:di

� is computed using the series of compositions,

J s:di

� = [Γ(log(R̃s:di � Rs:di))]−1R̃s:di(Rs:di)T (3.169)
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where Γ is the Jacobian of the exponential map function for SO(3), as described in Ap-

pendix B, and R̃s:di is the rotation component of the measured transformation, T̃s:di , from

Equation (3.8). It is evident that Equation (3.169) is the composition of three full rank

matrices, as the rotations Rs:di and R̃s:di have a determinant of one, and Γ is an invertible

matrix [77]. Thus, the determinant

|E3| 6= 0, (3.170)

and E3 has full rank.

Note that the right hand side matrix of Equation (3.165) is exactly the minimal Jacobian

translation block from Equation (3.145). Therefore, we can apply the same analysis as

performed for the translation block and see that Br has full rank so long as the condition

from Equation (3.162) is not true.

Finally, given the analysis performed on the translation block in Section 3.5.2, and the

rotation block in Section 3.5.2, we conclude that, for the 1-DOF case, the system does

not suffer from degeneracy so long as the two viewpoints used to construct the minimal

Jacobian are distinct.

3.5.3 Beyond the 1-DOF Case

Beyond the 1-DOF case, performing analytical non-degeneracy analysis becomes very in-

volved, as a D degree-of-freedom manipulator requires the zeroing of Km(D) row blocks

in order to manipulate the minimal Jacobian into a block triangular form. The analytical

zeroing process quickly degrades to the manipulation of cumbersome expressions which do

not offer significant insight into the necessary and sufficient conditions required to avoid de-

generacies. To that end, in this section, we shall discuss some specific configurations which

have been identified to result in degeneracy, and their relationship to other degeneracies

which exist within the literature.
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Many of the documented degeneracies for DH parameterization occur when solving the

inverse kinematics problem, when the manipulator is in a configuration where it is not

possible to determine the joint angle values, or occur as a result of motion degeneracies,

which are present in configurations where joint angle velocities do not map uniquely to

end effector velocities. On the other hand, degeneracies for the DCC calibration problem

identify situations where it is not possible to uniquely estimate a subset of the calibration

parameters. Let us now investigate two examples of configuration specific degeneracies

that arise in the general DCC calibration problem for a D degree-of-freedom system.

Configuration specific degeneracy 1: Zero angle between subsequent joints

Recall that the general form of the Jacobian row block has the form from Equation (3.141).

Let us inspect the Jacobian columns corresponding to the aj and aj+1 parameters for two

subsequent links,

∂ε(ν, θ̄i)

∂aj
=

 0

− [Rs:ej−1 ]1

 (3.171)

∂ε(ν, θ̄i)

∂aj+1

=

 0

− [Rs:ej ]1

 (3.172)

The bottom partition of Equation (3.171) can be expanded as

∂ε(ν, θ̄i)

∂aj
=

 0

−Rs:ej [Rej:ej−1 ]1

 . (3.173)

The term [Rej:ej−1 ]1 corresponds to the first column of the rotation component from the

DH parameter transformation matrix from Equation (2.32), between link frames Fej and
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Fej−1
, and has the form

[Rej:ej−1 ]1 =


cos(θj)

sin(θj)

0

 (3.174)

It is evident that when θj = 0 or θj = π, Equation (3.174) evaluates to

[Rej:ej−1 ]1 =


1

0

0

 , (3.175)

which results in

∂ε(ν, θ̄i)

∂aj
=

 0

− [Rs:ej ]1

 . (3.176)

Thus, when the joint angle is selected to be

θj = πn, n ∈ Z, (3.177)

over the number of measurement sets required to construct the minimal Jacobian, the

associated columns,
∂ε(ν, θ̄i)

∂aj
=
∂ε(ν, θ̄i)

∂aj+1

(3.178)

result in a degeneracy. An example of this degeneracy for the 3-DOF gimbal DCC exists

when the second joint angle is actuated such that the first rotation axis and the third

rotation axis are aligned, as depicted in Figure 3.15. This condition is also known as

the gimbal lock configuration, which is a well studied degeneracy for Euler angle rotation

parametrizations [91].

Configuration specific degeneracy 2: DH chain results in identity rotation We
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(a) Non-degenerate Configuration

(b) Degenerate Configuration

Figure 3.15: Non-degenerate and degenerate configurations for the 3-DOF gimbal DCC. (a)
depicts the non-degenerate configuration, while (b) illustrates the degeneracy present when
θ2 = π, which causes perturbations in a2 and a3 to have the same effect on the motion of the
dynamic camera frame, Fd. Note that this degeneracy is also present for θ2 = 0.
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begin by inspecting the translation block from the minimal Jacobian of Equation (3.143),

and analysing the columns corresponding to the derivatives with respect to Te:d and Ts:b.

The ith row-block has the form

Bti =

∂ε(ν, θ̄i)
∂Te:d


t

· · ·

∂ε(ν, θ̄i)
∂Ts:b


t

 (3.179)

Where

∂ε(ν,θ̄i)
∂Te:d


t

and

∂ε(ν,θ̄i)
∂Ts:b


t

correspond to the translation component, or the bottom

partition of the Jacobian from Equations (3.58) and (3.48), respectively. Substituting the

appropriate partitions from Equations (3.58) and (3.48), Bt from Equation (3.179) becomes

Bti =
[
Rs:e · · · I

]
. (3.180)

It is evident that if

Rs:e = I, (3.181)

for all measurement sets used to construct the minimal Jacobian block, Bt, then the

columns corresponding to the derivatives with respect to Te:d and Ts:b become equal,

which clearly results in a rank loss of Bt, causing a degeneracy in the system. This con-

figuration specific degeneracy is present for any degree-of-freedom DCC system, so long as

the rotational component of the end-effector frame, Fe, is aligned with the static camera

frame, Fs.

It should be noted that the degeneracies discussed in this section are configuration

specific, in that they occur only for specific selections of joint angles used to collect the

measurement set. In Chapter 4, we will present an automated approach which avoids

configuration specific degeneracies by selecting mechanism joint angles that result in the

collection of image measurements with the highest information content.
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3.6 Experimental Results

This section presents experimental results which validate the DCC calibration approach

presented in Sections 3.1 and 3.2. Note that we only test the static-to-dynamic calibrations,

as dynamic-to-dynamic calibration is a straightforward extension of the static-to-dynamic

calibration case. First, we shall investigate the calibration performed in a simulation

environment, and second, we will discuss the results of performing the DCC calibration

using physical hardware.

Similar to existing system ID and calibration methods, sufficiently rich input data is

required to ensure the estimated parameters can be accurately determined. Existing marker

based MCC calibration relies on relative motion between the marker and camera rig to

collect 3D point and image measurement information from multiple viewpoints, whereas

a dynamic MCC is able to observe the marker from different viewpoints by actuating

the camera. To that end, the data for both the simulation and hardware experiments

is collected through a linear spacing strategy, where the measurement configurations are

selected by discretizing the joint angle space and systematically collecting measurements

from all possible discrete combinations. This is indeed a naive sampling strategy, and the

preferred information-theoretic sampling strategy is discussed in Chapter 4.

Finally, we assume that the intrinsic calibration of the lenses is performed prior to the

DCC calibration, using any of the widely available lens calibration methods [82, 19].

3.6.1 Simulation Experiments

To validate our calibration approach, we generate a 2-,3-, and 5-DOF mechanism in sim-

ulation, and perform the DCC calibration using measurements from a simulated fiducial

target. In all three cases, we generate a static camera which is fixed in the world, and a

moving camera which is attached to the end effector of each actuated mechanism.
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The 5-DOF mechanism simulates a five degree-of-freedom robotic manipulator, similar

to the one shown in Figure 3.17(a), with a static camera mounted to the robot base, and

the dynamic camera attached to its end effector. The 3-DOF mechanism simulates a 3-

axis gimbal, similar to the one shown in Figure 3.17(b), and allows the camera to perform

yaw, pitch, and roll motions. Finally, The 2-DOF mechanism is similar to the 3-DOF

system, except it only allows for yaw and roll motions of the dynamic camera. Note that

the mechanisms are generated with translational offsets between links, which allow for

the dynamic camera to undergo translation and rotation when the mechanism inputs are

excited. The simulated cameras use a pinhole intrinsic lens model, which includes radial

and tangential distortion. Realistic intrinsic model parameters, determined by calibrating

the cameras depicted in the hardware set-up from Figure 3.17, are used. The simulated

fiducial target is a 6×7 chessboard.

The goal of this simulation study is to understand the effect that noise present in the

measured encoder and pixel values has on the overall calibration quality. For each DCC

configuration (2-,3-, and 5-DOF), we perform a simulated calibration trials while varying

the amount of noise added to the encoder and pixel measurements. Note that we simulate

the effect of the encoder and pixel noises independently, therefore, when pixel noise is added

to the system, the encoder noise is set to zero, and vice-versa. Gaussian distributed 1-std

noise values between zero and 0.09 rad, and zero to 0.9 pixels, are added to the measured

encoder and pixel values, respectively. As a point of comparison, a typical machine vision

of reasonable quality would exhibit between 0.25 - 0.5 pixel noise, an optical encoder for

a high precision manipulator may exhibit noise values less than 0.001 rad, and a magnetic

or hall effect encoder can exhibit noise values upwards of 0.05 rad.

For each trial, the initial condition for the calibration parameters is generated by ran-

domly perturbing the ground truth parameters by values sampled from a uniform distri-

bution of zero to 2 cm translation, and zero to 5 degrees rotation. Next, a noise value is
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sampled, and is added to the system prior to running the optimization. We then record the

optimized parameters and compare that to the ground truth calibration, in order to deter-

mine the calibration error. Note that for each noise scenario, 50 noise samples are drawn,

resulting in 50 simulated calibration trials, whose errors are then averaged in order to

determine the final calibration error for that noise scenario. Finally, for each DCC configu-

ration, the final calibration errors are averaged across translation and rotation parameters,

which are presented in Figure 3.16.

From Figure 3.16, first notice that at zero noise, the translation and rotation errors

are extremely low (on the order of 10−7 meters and 10−5 degrees), which verifies that the

calibration formulation as described in Sections 3.1 and 3.2, along with the parameter

removal strategy outlined in Section 3.4, results in successful calibrations which converge

to the ground truth parameters.

Second, Figure 3.16 also illustrates that the encoder noise has a larger effect on the

calibration error, as compared to the pixel noise error, for both the translation and rota-

tional components. Such a result suggests that the calibration process is highly sensitive

to errors in the encoder values, which geometrically, can be interpreted as angular errors

present in the encoders amplifying the position error of each successive joint co-ordinate

frame, due to the length and geometry of the link. In contrast, large pixel noise does not

have as great of an affect on the calibration error, as the image pixel noise only affects

the transformation from the fiducial target to the observing camera. This result suggests

that, in order to achieve a high accuracy calibration, when implementing the DCC, it is

more important to fit the system with high accuracy encoders, than it is to use an imaging

sensor which exhibits low noise characteristics.
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Figure 3.16: Average rotation and translation errors for the simulated 2-,3-, and 5-DOF
mechanisms, as encoder and pixel noise amounts are increased. Plots (a) and (b) show the
translation and rotation error when encoder noise is added to the system, while plots (c) and
(d) similarly show the errors when pixel noise is added to the system.
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Dynamic Camera

Static Camera

(a) Fanuc 5-dof DCC

Dynamic Camera

Static Camera

(b) Aeryon 3-dof DCC

Figure 3.17: Physical hardware set-ups for DCC calibration experiments
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3.6.2 Physical Hardware Experiments

The proposed calibration approaches are further verified using the physical hardware DCCs

shown in Figure 3.17. The Fanuc manipulator based DCC, depicted in Figure 3.17(a), is

comprised of a 5-DOF Fanuc LR-Mate 200iD manipulator, and two Ximea xIQ cameras

which operate at 60fps and 1280×1024 resolution, fitted with 120 degree wide FOV lenses.

To build the DCC, one camera is statically mounted to the base, and the other is attached

to the manipulator’s end effector. The images captured from the static and dynamic

cameras of the Fanuc based DCC are presented in Figure 3.18.

The gimbal based DCC, depicted in Figure 3.17(b), consists of a 3-DOF gimballed

camera mounted to an Aeryon Skyranger drone, and a downward facing static camera

mounted to the frame of the vehicle. The static camera operates at 100 fps and 640×480

resolution, and is fitted with a 150 degree wide FOV lens. The gimbal camera, the Aeryon

HD-Zoom 30, captures images at approximately 2 fps and 1920×1080 pixels. The gimbal

camera is designed for long-distance surveillance, and thus has zoom functionality and a

very narrow FOV. For these experiments, the zoom level of the gimbal camera was set to

its widest setting, which resulted in an FOV of approximately 90 degrees. The difference in

the captured images for the Aeryon DCC is shown in Figure 3.19. Finally, we use the April

grid detector bundled with Kalibr[19] to detect the location of a 6×6 April grid target with

respect to the camera, although any fiducial target with known scale is suitable for this

application.

For each tested mechanism a calibration set is collected using the linear spacing strategy,

which is used to perform the optimization and generate the calibration parameters of the

DCC. An independent verification set is also collected using a random sampling strategy,

and is strictly used to verify the results generated using the calibration set. For the

Fanuc-DCC, 32 calibration / verification images are collected, and for the Aeryon-DCC,

27 calibration / verification images are collected. Finally, both the reprojection formulation
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(a) Static Camera Viewpoint

(b) Dynamic Camera Viewpoint

Figure 3.18: Static and dynamic camera images collected using the Fanuc DCC. Note that
both images were captured from the same physical location of the robot, and the difference
in viewpoint is due to the configuration of the Fanuc manipulator.
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from Section 3.1, and the poseloop formulation from Section 3.2, are tested.

Tables 3.1 and 3.2 present the summary calibration statistics for the Fanuc-DCC and

Aeryon-DCC, respectively. For the Fanuc-DCC, both the reprojection and poseloop RMSE

error of the calibration set is fairly low, and the verification set RMSE is comparable to that

of the calibration set (within 0.03 - 0.05 pixels), which verifies that both of our proposed

approaches are able to generate a high quality calibration.

The Aeryon-DCC also demonstrates similar performance between the reprojection and

poseloop approaches based on the calibration set RMSE. However, compared to the Fanuc-

DCC, we see that the Aeryon-DCC exhibits significantly higher RMSE values. The in-

creased error is likely due to less precise encoders used for joint angle measurements in

the Aeryon-DCC, when compared to Fanuc-DCC. Since the Fanuc manipulator is designed

for high-precision (±0.02mm) pick and place applications, the required accuracy of the en-

coders is quite high, whereas the Aeryon gimbal only requires the encoder measurements to

assist with image stabilization, and thus does not require high accuracy. As demonstrated

in the simulation results from Section 3.6.1, precise encoder measurements are fundamental

to achieving high quality calibrations, which corroborates our experimental results of the

Fanuc-DCC out-performing the Aeryon-DCC.

Additional sources of error in the Aeryon-DCC are non-rigidity in the system, and

the lower quality optics found in the static camera. Our formulations assume that the

chain transformations take place between rigid links, and thus any flex, backlash, or non-

rigid components in the system are not modeled and contribute to error. Since the Fanuc

manipulator is used for precise and repeatable operations, its material and structural design

maximize rigidity. The gimbal on the Aeryon-DCC, on the other hand, is designed to be

low-weight in order to maximize drone flight times, and likely sacrifices some system rigidity

in order to maintain the low-weight design. Finally, observing Figure 3.19(a), it is evident

that the integrated static camera exhibits decreased sharpness and image quality, which
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(a) Static Camera Viewpoint

(b) Dynamic Camera Viewpoint

Figure 3.19: Static and dynamic camera images collected using the Aeryon DCC. Note that
both images were captured from the same physical location of the vehicle, and the difference
in the images is due to the dynamic camera having a much narrower FOV.
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decreases the positioning accuracy of the camera relative to the target.

Table 3.1: Summary statistics for Fanuc manipulator DCC calibration

Calibration Set Error
(pixel RMSE)

Validation Set Error
(pixel RMSE)

Reprojection 0.55 0.58
Poseloop 0.54 0.59

Table 3.2: Summary statistics for Aeryon Gimbal DCC calibration

Calibration Set Error
(pixel RMSE)

Validation Set Error
(pixel RMSE)

Reprojection 1.98 2.16
Poseloop 2.01 2.13
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Chapter 4

Information Theoretic

Next-Best-View 1

While Chapter 3 shows that it is possible to achieve a calibration of the dynamic cam-

era cluster, the quality of the calibration is heavily dependent on the ability to collect an

extensive set of measurements while providing sufficient excitation to the joints inputs,

as the parameter estimates are highly sensitive to the selected measurement sets. The

manual measurement collection process is increasingly onerous as the number of degrees

of freedom of the manipulator increase, as it becomes difficult to ensure sufficient mea-

surement excitation through the mechanism’s configuration space. Even if an exhaustive

measurement set is collected, it does not guarantee accurate calibration after the optimiza-

tion, as the relationship between manually collected measurements and uncertainty of the

estimation parameters is unclear. In this chapter, we present two methods that seeks to

find a next-best-view which locally minimizes calibration parameters’ covariance with each

1Partial contents of this chapter have been incorporated within a co-authored paper that has been
accepted for publication. J. Rebello, A. Das and S.L. Waslander, “Autonomous Active Calibration of a
Dynamic Camera Cluster using Next-Best-View.” 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). All authors contributed equally to the work.

108



successively collected measurement, until a user specified accuracy is achieved. The first

method will look at minimizing the entropy of the calibration parameters, while the second

method will look to select the viewpoints which maximize the mutual information between

the joint angle input and calibration parameters. Note that the automatic calibration pro-

cesses can be performed using the re-projection error or pose-loop error methods outlined

in Chapter 3.

4.1 Parameter Initialization

The autonomous calibration process is initialized with a collection of M measurement sets.

We shall denote a generic measurement set collection as D1:M , which are initially obtained

by sampling the configuration space. Common strategies such as random, systematic, or

cluster [92] sampling can be used to generate the initial measurement set collection. Each

measurement set Di is obtained from a sampled mechanism input θ̄i. The prior mean

and covariance of the calibration parameters are obtained by optimizing Equation (3.6)

or (3.11) using all of the sampled measurements, L1:M . The resulting parameter estimate,

ν̃1:M , produced by the optimization is assumed to be Gaussian distributed with covariance

Σν̃,θ̄1:M .
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4.2 Covariance Entropy Minimization

In order to compute the covariance of the parameters, Σν̃,θ̄1:M , the Jacobian of the residual

equation, Jν̃,θ̄1:M , is required, where

Jν̃,θ̄1:M =


Jν̃,θ1

...

Jν̃,θM

 . (4.1)

Each row-block of (4.1), Jν̃,θ̄i , corresponds to the Jacobian contribution of the config-

uration associated with the ith joint input, θ̄i, and can be calculated as

Jν̃,θ̄i =
∂ε(ν, θ̄i)

∂ν
(4.2)

using the techniques outlined in Chapter 3. Finally, using a first order approximation of

the Fisher information matrix [93], the parameter covariance is given as,

Σν̃,θ̄1:M = (JTν̃,θ̄1:M ΩJν̃,θ̄1:M )−1. (4.3)

where Ω is the measurement noise information matrix, as described in Section 2.5.

4.2.1 Next-Best-View Configuration Selection

To reduce the uncertainty in the calibration parameters with each subsequent measurement

set, we seek a locally optimal mechanism configuration, θ̄∗, which will minimize the entropy

of the estimation parameters. Suppose we have an arbitrary mechanism configuration for

the next-best-view, ˆ̄θ. Then, the resulting measurement Jacobian matrix, which includes

the measurement from ˆ̄θ, has the form
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Jν̃,η(
ˆ̄θ) =

Jν̃,θ̄1:M

J
ν̃, ˆ̄θ

 , (4.4)

where η = {θ̄1:M ,
ˆ̄θ} denotes the set of actuator inputs from θ̄1:M and the optimal next-best-

view configuration, ˆ̄θ. Using (4.4), the parameter covariance for the estimation parameters

can be predicted by

Σν̃,η(
ˆ̄θ) = ((Jν̃,η(

ˆ̄θ)TΩJν̃,η(
ˆ̄θ))−1. (4.5)

Note that (4.5) is an approximation to the true parameter uncertainty when measurements

from ˆ̄θ are included, as ν̃ is computed using the configurations from θ̄1:M , and does not in-

clude ˆ̄θ. The accuracy of this approximation will degrade according to the error between ν̃

and the true estimation parameters. However, in our experiments, we have seen promising

results with ν̃ being initialized according to the process described in Section 4.1. Further,

the approximation improves as the calibration process proceeds and converges to an accu-

rate set of parameters. The construction of the predicted covariance matrix is visualized

in Figure 4.1.

Our next-best-view configuration is determined by formulating a cost function using

the covariance matrix given in (4.5). Suppose we have an actuated mechanism with L

joints. Then, we shall define a cost Λe : RL 7→ R which is given as,

Λe(
ˆ̄θ) = he(Σν̃,η(

ˆ̄θ)), (4.6)

where he(·) denotes the entropy function, as described in Chapter 2. The cost function in

(4.6) maps a next-best-view mechanism input, ˆ̄θ, to the expected entropy of the parameter

covariance matrix from (4.5).

Although the cost defined in (4.6) uses the entropy of the covariance matrix in order

to quantify the parameter uncertainty, it is possible to also use other metrics, such as the
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(a) Initial Jacobian (b) Row addition from ˆ̄θ

(c) Predicted covariance
matrix

Figure 4.1: Visualization of the predicted covariance matrix construction. (a) depicts the
initial Jacobian matrix containing contributions from measurement set 1 to M . (b) illustrates

how the contribution from the candidate next-best-view measurement, ˆ̄θ, is added to the
bottom of the Jacobian. (c) shows the covariance matrix computed using the Jacobian from

(b), which predicts the parameter uncertainty if ˆ̄θ were to be used in the estimation process.
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Frobenius norm, trace of the covariance matrix, and mutual information. Entropy of the

covariance matrix was selected in this case, as that metric has been shown to work well

in related applications, such as key-frame selection for visual SLAM, which is discussed in

more detail in Chapter 5. A mutual information based approach is presented in Section

4.4, and we demonstrate its relationship to the entropy based approach in Section 4.5.

In order to find the optimal next-best-view, θ̄∗, the cost function from (4.6) is optimized

over the feasible configurations of the actuated mechanism,

min Λe(
ˆ̄θ)

subject to λl < ˆ̄θ < λu,
(4.7)

where θ̄l and θ̄u are the upper and lower bounds, respectively, of the mechanism input

angles. Note that in practice the bounds of each joint angle are generally available from

either the mechanism manufacturer or can be determined using a homing process.

4.3 Entropy Optimization with Successive Next-Best-

View Measurements

Once the next-best-view configuration, θ̄∗, is determined, the actuated mechanism is moved

and a measurement set, Dθ̄∗ , is collected from the corresponding optimal configuration. The

measurement set is then appended such that

D1:M+1 ← D1:M ∪Dθ̄∗ (4.8)

M = M + 1. (4.9)

The estimation parameters are optimized using the updated measurement sets, in order
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to recompute ν̃1:M using the additional measurements from Dθ̄∗ . Then, the next-best-view

selection procedure described in Section 4.2.1 is performed again. The process of selecting

the next-best-view, then re-calculating the estimation parameters, ν̃1:M , is repeated until

the entropy score from (4.6) reaches a user selected threshold, or a maximum number of

views is selected. Figure 4.2 visualizes the next-best-view cost from (4.6) for a two degree

of freedom (DOF) mechanism, and also illustrates the NBV optimization and selection

process over 4 measurement collections.

Note that our next-best-view approach performs a continuous optimization over the

mechanism’s configuration space, and also takes into account the viewpoint of the fidu-

cial target implicitly in the formulation through the kinematic and projection Jacobians.

Thus, our approach does not require discretization of the configuration space, or prede-

fined motion paths over a finite set of target positions. Instead, we are able to perform

next-best-view selection for arbitrary target positions, so long as corresponding feature

measurements can be acquired from both the static and dynamic camera.

4.4 Mutual Information Maximization

Since the entropy based approach discussed in Section 4.2 operates on the entire parameter

covariance matrix in order to determine the next-best-view score, it can be thought of as

a method which aggregates and quantifies the uncertainty across all of the estimation

parameters. In some cases, it is more useful to understand how a subset of parameters is

affected by knowledge of a different set of variables. For example, if performing the DCC

calibration in a situation where additional feature landmarks must be estimated along

side the calibration parameters, it would be beneficial to understand how the mechanism

configuration affects both the calibration parameters and feature landmarks independently.

To that end, the mutual information which exists between variables can be used to quantify
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(d) 3 NBV Additions

Figure 4.2: Progression of the entropy based NBV cost surface for a two degree-of-freedom
mechanism, as measurements are added from the NBV configurations. In this case, the au-
tonomous calibration is initialized using 3 configurations, then 3 additional measurements
are added using the proposed NBV approach. The red asterisks denote configurations from
which the collected measurements were used for parameter estimation. (a) shows the cost
surface after initialization, while (b)-(d) depict the changing cost surface as NBV measure-
ments are added. Note that the plots are coloured according to the covariance entropy in
nats.
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how knowledge of one set of parameters affects the uncertainty of another.

In this section, we shall present a more general formulation for next-best-view selection,

which maximizes the mutual information between the candidate measurement and the

calibration parameters, and can also be easily be extended to perform NBV selection for

calibration problems which contain additional estimation variables. We shall also show how

this formulation of next-best-view is related to the entropy minimization method described

in Section 4.2.

4.4.1 Cost formulation

Let us define the residual error term for the candidate measurement, ˆ̄θ, as

ε ˆ̄θ
= θ̄ − ˆ̄θ, (4.10)

which has the Jacobian
∂ε ˆ̄θ

∂ ˆ̄θ
= −I. (4.11)

To construct the required Jacobian matrix for mutual information based next-best-view,

we first augment the Jacobian from Equation (4.4), Jν̃,η(
ˆ̄θ), with an additional column,

which is the derivative of the poseloop error from Equation (3.10) with respect to the

candidate measurement, ˆ̄θ,

J ˆ̄θ
=
∂ε(ν, θ̄i)

∂ ˆ̄θ
, (4.12)

which can be readily computed using the techniques outlined in Chapter 3. Second, we

augment the Jacobian from Equation (4.4), with the candidate measurement Jacobian from

Equation 4.11. This augmentation is due to the added residual term from Equation (4.10),

which reflects the direct measurements of the joint angles that are available as part of the

system. The augmented Jacobian, which will be used for mutual information computation,
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is given as

J
ν̃, ˆ̄θ

=

 Jν̃,η(
ˆ̄θ) J ˆ̄θ

0 −I

 . (4.13)

Similar to the covariance matrix calculated in Equation (4.5), we shall now compute

the augmented covariance matrix using the Jacobian from Equation (4.13),

Σ
ν̃, ˆ̄θ

= ((J
ν̃, ˆ̄θ

)TΩJ
ν̃, ˆ̄θ

)−1 (4.14)

=

 Σν̃ν̃ Σ
ν̃ ˆ̄θ

Σ ˆ̄θν̃
Σ ˆ̄θ ˆ̄θ

 (4.15)

which is a covariance matrix which has entries corresponding to both the calibration param-

eters from the current linearization point, ν̃, and the candidate joint angle measurement,

ˆ̄θ. The construction of this augmented covariance matrix is visualized in Figure 4.3. Note

that the inclusion of the derivatives from Equation (4.11) in the augmented Jacobian en-

sure that the approximated Hessian matrix from Equation (4.14) is always invertible, as

the residual term from Equation (4.10) indicates that we always have a direct measure-

ment of the additional variables added to the system through the column augmentation of

Equation (4.12).

The mutual information based next-best-view is determined by formulating a cost func-

tion using the covariance matrix given in (4.14). Using the techniques described in Section

2 for computing the mutual information between two partitions of a Gaussian distribution,

we can develop the mutual information expression between the calibration parameters from

the current linearization point, ν̃, and the candidate joint angle measurement, ˆ̄θ, as

I(ν̃; ˆ̄θ) =
1

2
log
|Σν̃ν̃ ||Σ ˆ̄θ ˆ̄θ

|
|Σ

ν̃, ˆ̄θ
|

. (4.16)

Similar to the entropy minimization approach outlined in Sections 4.2.1 and 4.3, we
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(a) Initial Jacobian (b) Row and column

augmentation from ˆ̄θ

(c) Covariance matrix

Figure 4.3: Visualization of the covariance matrix construction for mutual information
maximization. (a) depicts the initial Jacobian matrix containing contributions from mea-
surement set 1 to M . (b) illustrates how the contribution from the candidate next-best-view

measurement, ˆ̄θ, is added to the bottom row of the Jacobian, as well as to the right-hand-
most column. (c) shows the covariance matrix computed using the Jacobian from (b), which
contains elements from the current linearization point, ν̃, and the candidate joint angle mea-

surement, ˆ̄θ.
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shall define a mutual information cost Λm : RL 7→ R, which is given as,

Λm(ˆ̄θ) = I(ν̃; ˆ̄θ). (4.17)

In order to find the optimal next-best-view, θ̄∗, the cost function from (4.17) is optimized

over the feasible configurations of the actuated mechanism,

max Λm(ˆ̄θ)

subject to λl < ˆ̄θ < λu,
(4.18)

where θ̄l and θ̄u are the upper and lower bounds, respectively, of the mechanism input

angles. Figure 4.4 visualizes the next-best-view cost from (4.17) for a two degree of freedom

(DOF) mechanism, and also illustrates the mutual information based NBV optimization

and selection process over 4 measurement collections.

Finally, it should be noted that, in order to extend this approach for problems with

additional estimation parameters, we can simply replace the Jacobian blocks corresponding

to the calibration parameters and mechanism joint angles with the Jacobian blocks of any

other parameters of interest.

4.5 Relationship to Entropy Minimization Approach

We shall now investigate the relationship between the mutual information maximization,

and entropy based minimization approaches for NBV selection. First, recall the covariance

matrix from Equation (4.14), Σ
ν̃, ˆ̄θ

, which represents the uncertainty in both the estimation
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Figure 4.4: Progression of the mutual information based NBV cost surface for a two degree-
of-freedom mechanism, as measurements are added from the NBV configurations. In this
case, the autonomous calibration is initialized using 3 configurations, then 3 additional mea-
surements are added using the proposed mutual information maximization approach. The
red asterisks denote configurations from which the collected measurements were used for pa-
rameter estimation. (a) shows the cost surface after initialization, while (b)-(d) depict the
changing cost surface as NBV measurements are added. Note that the plots are coloured
according to the mutual information in nats.
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parameters and the candidate joint angle measurement, has the form

Σ
ν̃, ˆ̄θ

=

 Jν̃,η(
ˆ̄θ) J ˆ̄θ

0 −I

T  Jν̃,η(
ˆ̄θ) J ˆ̄θ

0 −I

−1

(4.19)

=

 (Jν̃,η(
ˆ̄θ))TJν̃,η(

ˆ̄θ) (Jν̃,η(
ˆ̄θ))TJ ˆ̄θ

(J ˆ̄θ
)TJν̃,η(

ˆ̄θ) (J ˆ̄θ
)TJ ˆ̄θ

+ I

−1

(4.20)

=

 ∆A ∆B

∆C ∆D

 . (4.21)

Using the Schur Complement [90], we can relate the block partitions from Equation (4.21)

to the marginal covariances from Equation (4.14) as,

Σν̃ν̃ = (∆A −∆B∆−1
D ∆C)−1 (4.22)

Σ ˆ̄θ ˆ̄θ
= (∆D −∆C∆−1

A ∆B)−1. (4.23)

Next, let us manipulate the mutual information expression from Equation (4.16). Us-

ing the determinant inverse identity [90], we can express the determinant of the inverse

covariance matrix as,

|Σ−1

ν̃, ˆ̄θ
| = 1

|Σ
ν̃, ˆ̄θ
|
, (4.24)

which can be substituted into Equation (4.16), yielding

I(ν̃; ˆ̄θ) =
1

2
log(|Σν̃ν̃ ||Σ ˆ̄θ ˆ̄θ

||Σ−1

ν̃, ˆ̄θ
|). (4.25)

Using the results derived from the Schur Complement [90], it is also possible to write
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the determinant, |Σ−1

ν̃, ˆ̄θ
| as,

|Σ−1

ν̃, ˆ̄θ
| = |(∆A)(∆D −∆C∆−1

A ∆B)| (4.26)

= |∆A||(∆D −∆C∆−1
A ∆B)| (4.27)

Substituting the terms for the marginal covariances from Equations (4.22) and (4.23),

and the determinant identity for the inverse covariance matrix from Equation (4.26), into

the mutual information expression from Equation (4.25) yields,

I(ν̃; ˆ̄θ) =
1

2
log

|∆A|
|∆A −∆B∆−1

D ∆C |
. (4.28)

Finally, observe that the numerator term in Equation (4.28) can be expressed as

|∆A| = |(Jν̃,η(ˆ̄θ))TJν̃,η(
ˆ̄θ)|, (4.29)

which is the inverse of the entropy cost given in Equation (4.6). The minimization of

the NBV entropy cost therefore maximizes |∆A|, and in turn, maximizes the the mutual

information cost presented in Equation (4.28). Thus, we see that the entropy minimization

strategy presented in Section 4.2 also selects next-best-view configurations which maximize

the mutual information between the estimation parameters and the candidate joint angle,

and we would expect both approaches to perform similarly. This insight is corroborated

in Figures 4.2 and 4.4, which demonstrate that the entropy and mutual information based

approaches pick similar NBV configurations when given the same calibration problem.
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4.5.1 Relationship to Degeneracy

Let us denote the product inside of the log operation of Equation (4.25) as

A = |Σν̃ν̃ ||Σ ˆ̄θ ˆ̄θ
||Σ−1

ν̃, ˆ̄θ
| (4.30)

Recall that the matrix Σν̃ν̃ represents the covariance matrix of the calibration parameters,

which is the inverse of the system Hessian presented in Equation (3.16). As discussed

in Chapter 3, this Hessian matrix must be invertible in order for the system to be non-

degenerate, and therefore, its determinant must be non-zero. Conversely, if the system

is degenerate, then the determinant of the matrix Σν̃,ν̃ becomes zero, which results in A

evaluating to zero, and an undefined mutual information score.

The presented mutual information based NBV approach seeks configurations which

maximize the mutual information score, and thus looks to maximize the quantity denoted

by A. Therefore, this approach selects measurement configurations which steer the system

away from degeneracy, and degeneracies that are caused by specific system configurations

are systematically avoided.

4.6 Experimental Results

This section presents experimental results which validate the NBV calibration approaches

presented in Sections 4.2 and 4.4. First, we shall investigate the calibration performed in

a simulation environment, and second, we will discuss the results of performing the DCC

calibration using physical hardware. The experimental platforms used for the physical

hardware experiments are the same as those used in Chapter 3, and is depicted in Figure

3.17.
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4.6.1 Simulation Experiments

To validate our next-best-view approach, we generate the same 2-,3-, and 5-DOF mecha-

nism in simulation, as described in Section 3.6.1, and perform the NBV calibration using

measurements from simulated fiducial targets. In all three cases, we generate a static cam-

era which is fixed in the world, and a moving camera which is attached to the end effector

of each actuated mechanism.

The 5-DOF mechanism simulates a five degree-of-freedom robotic manipulator, simi-

lar to the one shown in Figure 3.17(a), with a static camera mounted to the robot base,

and the dynamic camera attached to its end effector. The 3-DOF mechanism simulates

a 3-axis gimbal, similar to the one shown in Figure 3.17(b), and allows the camera to

perform yaw, pitch, and roll motions. Finally, The 2-DOF mechanism is similar to the

3-DOF system, except it only allows for yaw and roll motions of the dynamic camera.

Gaussian distributed noise with 0.5 deg std are added to all joint angle encoder measure-

ments. Note that the mechanisms are generated with translational offsets between links,

which allow for the dynamic camera to undergo translation and rotation when the mecha-

nism inputs are excited. The simulated cameras use a pinhole intrinsic lens model, which

includes radial and tangential distortion. Realistic intrinsic model parameters, determined

by calibrating the cameras depicted in the hardware set-up from Figure 3.17, are used, and

Gaussian distributed pixel noise with 0.25 std deviation are added to the simulated image

measurements.

In order to demonstrate how the automatic next-best-view approaches can be used

in a field calibration setting, we compare our method to two other view-point selection

strategies which could easily be performed by a non-expert human operator in the field.

The first competing strategy simply selects random viewpoints within the bounds of the

configuration space of the mechanism. The second competing strategy discretizes the

configuration space of the mechanism using a linear spacing. For example, suppose we wish
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to collect measurements from a 2-DOF mechanism with angle bounds of −20 to 20 degrees

for each axis. Using a spacing of 20 degrees, the set of M desired viewpoint angles generated

using this linear spacing approach is λ1:M = {(−20,−20), (−20, 0), (−20, 20), (0,−20),

(0, 0), (0, 20), (20,−20), (20, 0), (20, 20)}. Note that linear spacing based selections are

sampled from the joint angle space as opposed to the two dimensional image space, as the

former offers a richer set of configurations to consider for maximum covariance reduction.

For each tested mechanism, the number of collected viewpoints was selected to be the

same, in order to compare the entropy reduction for each approach after collecting the

same number of measurements.

We also compare the effect of two different calibration fiducial targets, the calibration

plane and the calibration box. The calibration plane is a fairly typical set-up used within

the robotics and computer vision communities, where a fiducial target of known scale is

printed on a flat plane, and the viewpoints of the observing cameras are manipulated in

order to collect a rich set of measurements of the plane from multiple angles and distances.

The calibration box, on the other hand, is an extension of the calibration plane approach,

where six planar targets are assembled to form a cube, and the device to be calibrated is

positioned within the cube. Such an approach provides the advantage of similar measure-

ment collection quality, regardless of the camera viewpoint. The two set-ups are depicted

in Figure 4.5.

Figures 4.6 and 4.7 present the calibration box results, and plot the entropy and trace

of the covariance matrix, respectively, as the number of views used for the calibration is

increased. Note that the covariance matrix trace is an alternative metric to quantify the

overall uncertainty, and is included in these results to further demonstrate the effectiveness

of our NBV approaches. Tables 4.1 and 4.2 present the entropy and trace scores, for the

final view-point addition, of the tested mechanism configurations.

For the calibration box case, all tested methods provide similar performance with re-
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Figure 4.5: (a) shows the calibration box set-up, while (b) depicts the calibration plane
set-up. In both cases, the static and dynamic camera frames are drawn in order to illustrate
the DCC position relative to the target points. Note that the calibration box from (a) is
constructed from six square targets assembled in a cube configuration.
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Table 4.1: Summary of the calibration box entropy scores at the final view point addition, for
the tested DCC configurations. The performance of the tested methods are fairly comparable,
as they converge to similar scores.

2-DOF 3-DOF 5-DOF
Linear Spacing 3.57 -4.62 -8.50

Random 3.66 -4.31 -7.98
Entropy 3.12 -4.78 -8.87

Mutual Information 3.61 -4.78 -8.62

Table 4.2: Summary of the calibration box trace scores at the final view point addition, for
the tested DCC configurations. The performance of the tested methods are fairly comparable,
as they converge to similar scores.

2-DOF 3-DOF 5-DOF
Linear Spacing 1.46 0.58 0.66

Random 1.50 0.63 0.71
Entropy 1.28 0.56 0.62

Mutual Information 1.49 0.57 0.65

spect to parameter uncertainty reduction. This result corroborates that the calibration

box provides image measurements with similar information content, regardless of viewing

angle. The rapid trace score decreases exhibited by the linear spacing strategy in Figure

4.7 are due to that strategy holding certain joint angles fixed over multiple viewpoint ad-

ditions, and once that joint is actuated, a sharp decrease in the trace score occurs due to

the improvement in measurement excitation.

Figures 4.8 and 4.9 present the calibration plane results, and plot the entropy and trace

of the covariance matrix, respectively, as the number of views used for the calibration is

increased. Tables 4.3 and 4.4 present the entropy and trace scores, for the final view-point

addition, of the tested mechanism configurations.

It is evident that for all tested mechanisms, the next-best-view approaches provide the

lowest covariance matrix entropy and trace scores over all collected measurements. Our

approaches are able to provide lower parameter uncertainty, when compared to the ran-
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Figure 4.6: Calibration box: comparison of the parameter covariance entropy versus the
number of views, for the random sampling, linear spacing, and next-best-view approaches.
(a)-(c) present the results for the 2-,3-,and 5-DOF cases, respectively.
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Figure 4.7: Calibration box: comparison of the parameter covariance entropy versus the
number of views, for the random sampling, linear spacing, and next-best-view approaches.
(a)-(c) present the results for the 2-,3-,and 5-DOF cases, respectively.
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dom and linear spacing strategy, as the next-best-view method seeks the measurement

configurations at each iteration that directly improve the uncertainty of the estimation

parameters. Although the random sampling and linear spacing techniques are also able to

provide a decrease in parameter uncertainty, those approaches do not evaluate the selected

viewpoint, and therefore may include measurements which do not provide significant en-

tropy reduction. This behaviour is evident in Figure 4.9(a), where between measurements

3 and 4, a random viewpoint is selected that provides little improvement of the covariance

matrix trace score. The larger reduction in entropy for the random sampling approach

compared to the linear spacing approach, as shown in Figures 4.8(c) and 4.9(c), is due to

the random approach selecting a richer set of configurations from diverse viewpoints for

the 5-DOF case.

From Figures 4.8 and 4.9, it is also evident that for a desired target covariance score, the

next-best-view approaches are able to achieve the target using fewer viewpoints than the

random and linear spacing strategies. For example, in Figure 4.8(c), a target covariance

entropy of 25 nats is achieved by the next-best-view approach using 8 views, while the

linear spacing and random strategies required 25 and 20 views, respectively, to achieve the

same calibration quality. Since the next-best-view entropy and trace scores are less than

the scores generated using the random and linear spacing methods, our results demonstrate

that for any parameter uncertainty target, our next best view approaches will be able to

achieve the target with fewer collected measurement views compared to the competing

strategies.

4.6.2 Physical Hardware Experiments

The next-best-view approaches are also validated using a physical, 3-DOF gimbal based

DCC, that allows for yaw, pitch, and roll motions of the dynamic camera, and a 5-DOF

manipulator based DCC, as depicted in Figure 3.17. We perform a similar experiment to
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Figure 4.8: Calibration plane: comparison of the parameter covariance entropy score versus
the number of views, for the random sampling, linear spacing, and next-best-view approaches.
(a)-(c) present the results for the 2-,3-,and 5-DOF cases, respectively.
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Figure 4.9: Calibration plane: comparison of the parameter covariance trace score versus
the number of views, for the random sampling, linear spacing, and next-best-view approaches.
(a)-(c) present the results for the 2-,3-,and 5-DOF cases, respectively.
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Table 4.3: Summary of the calibration plane entropy scores at the final view point addition,
for the tested DCC configurations. Note that the entropy and mutual information methods
achieve the best score.

2-DOF 3-DOF 5-DOF
Linear Spacing 9.54 4.27 21.48

Random 15.51 7.50 19.25
Entropy 7.53 1.95 9.93

Mutual Information 7.74 2.04 10.05

Table 4.4: Summary of the calibration plane trace scores at the final view point addition,
for the tested DCC configurations. Note that the entropy and mutual information methods
achieve the best score.

2-DOF 3-DOF 5-DOF
Linear Spacing 8.61 4.60 41.54

Random 40.56 8.73 31.99
Entropy 5.09 3.01 10.69

Mutual Information 5.56 3.14 11.90

that presented in Section 4.6.1, where we compare the next-best-view approaches to the

linear spacing and random sampling viewpoint selection methods. Our cameras are fitted

with 120 degree field-of-view lenses, which allow for sufficient overlapping view between

the static and dynamic camera, even when the joint angles are excited over a wide range.

Figures 4.10 and 4.11 plot the parameter covariance matrix entropy and trace scores,

respectively, versus the number of collected views for each of the strategies tested. Tables

4.1 and 4.2 present the entropy and trace scores, for the final view-point addition, of the

tested mechanism configurations. We see that the next-best-view approaches maintain the

lowest entropy over all of the collected viewpoints, and exhibit a rapid rate of decreasing

entropy over the first few collected images.

In order to validate the quality of the next-best-view approaches, the competing meth-

ods are used to generate calibrations and are evaluated against an independently collected

validation data set, as described in Chapter 3. The RMSE pixel error of the validation
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Figure 4.10: Comparison of the parameter covariance entropy score versus the number
of views, for the random sampling, linear spacing, and next-best-view approaches. (a)-(b)
present the results for the 3-,and 5-DOF cases, respectively, as performed using the physical
set-up shown in Figure 3.17.

set are plotted against the number of viewpoints used for the calibration, as presented in

Figure 4.12. It is evident that for both the 3-DOF and 5-DOF cases, the mutual informa-

tion and entropy based NBV approaches select measurements which result in high quality

calibrations, as the RMSE pixel error of the validation set converge rapidly to low values,

compared to the random and linear spacing based approaches. For the 3-DOF case, we

see that the NBV selection methods produce a high quality calibration using just seven

viewpoints, and the linear spacing and random methods require 16 and 27 viewpoints,

respectively, to achieve a calibration of comparable quality. Similarly, for the 5-DOF case,

a high quality calibration is achieved after five viewpoints, and the random and linear

spacing techniques require 15 and 22 viewpoints, respectively, to generate calibrations of

similar quality.

134



5 10 15 20 25

number of additional views

101

102

103

104

co
va

ria
nc

e 
tr

ac
e 

(lo
g-

sc
al

e)

linear-spacing
random
mutual-information
entropy

(a) 3-DOF

5 10 15 20 25 30

number of additional views

101

102

103

104

105

co
va

ria
nc

e 
tr

ac
e 

(lo
g-

sc
al

e)

linear-spacing
random
mutual-information
entropy

(b) 5-DOF

Figure 4.11: Comparison of the parameter covariance trace score versus the number of
views, for the random sampling, linear spacing, and next-best-view approaches. (a)-(b)
present the results for the 3-,and 5-DOF cases, respectively, as performed using the physical
set-up shown in Figure 3.17.

3-DOF 5-DOF
Linear Spacing 12.47 15.44

Random 20.23 21.98
Entropy 10.15 14.45

Mutual Information 10.28 14.49

Table 4.5: Summary of the covariance entropy scores at the final view point addition, for
the physical DCC set-ups.

3-DOF 5-DOF
Linear Spacing 19.48 25.90

Random 111.31 51.20
Entropy 12.92 21.27

Mutual Information 13.36 21.27

Table 4.6: Summary of the covariance trace scores at the final view point addition, for the
physical DCC set-ups.
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Figure 4.12: RMSE pixel error of the validation set, plotted against the number of views
used to generate the calibration parameters. (a) and (b) show the reprojection error results
for the 3-DOF Aeryon gimbal DCC, and 5-DOF Fanuc manipulator DCC, respectively. Note
that the entropy and mutual information based approaches converge rapidly to low RMSE
pixel values, compared to the linear spacing and random method.

136



Chapter 5

Keyframe Selection using Point

Entropy Methods

In this chapter, we discuss the informed selection of key-frames for inclusion in the SLAM

back-end, which also contributes significantly to the overall performance of visual SLAM

methods by improving the quality of the global map that results from performing bundle

adjustment. The accuracy of the map point parameter estimation is heavily dependent on

the triangulation baseline between the measurement viewpoints. If the point is initially

triangulated using narrow baseline observations, considerable uncertainty in point depth

estimates result. However, if the point is re-observed with a wider baseline, the depth

estimate can be resolved with increased accuracy. Many visual SLAM techniques use

heuristics based on point triangulation baseline to perform key-frame insertion. However

no existing approaches attempt to perform key-frame selection through direct minimization

of the point estimate covariance. To determine the best multi-keyframe for insertion, this

chapter will propose two main selection metrics: the cumulative point entropy reduction

(CPER), which maximizes the expected entropy reduction in the existing map points, and

the point pixel flow discrepancy (PPFD), which assesses the expected future features that
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can be added to the map.

5.1 Selection Based on Cumulative Point Entropy Re-

duction (CPER)

The most accurate way to update the point covariance would be to integrate all the mea-

surements from each observing key-frame, effectively eliminating the benefit of key-frame

selection by performing bundle adjustment on every tracked image. However, such an

approach for point covariance evaluation is very computationally expensive, and is not

suitable for a real-time mapping and tracking solution. Instead, we propose to select a

key-frame by evaluating the expected information gain from each potential candidate im-

age set since the previous multi-keyframe insertion. The expected information gain will

be computed by comparing the expected entropy reduction over the map points, with the

assumption that the key-frame candidate’s location is known and fixed. Although the

key-frame’s pose parameters are in-fact updated through bundle adjustment once inserted

into the map, the fixed key-frame parameter assumption allows for rapid evaluation of

the point’s entropy reduction, and is reasonable so long as the tracker pose estimate is

sufficiently accurate.

In order to determine when a key-frame should be inserted into the map, we inspect

the uncertainty of the camera cluster provided by the tracking process at current time k.

The covariance of the tracking pose parameters is given by Σk
c = (JT

ck
ΩJck)−1, where Jck

is the Jacobian of the map reprojection error with respect to the cluster state, and Ω is

the measurement information matrix. Note that Jck has m rows, representing m stacked

measurements collected across all of the cluster cameras. To assess the current tracking

performance, we extract the diagonal elements of covariance matrix Σk
c , which reflect the

individual uncertainty of each of the tracker state parameters, σtx , σty , σtz , σφx , σφy , and
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σφz , where tx, ty, and tz are the translational perturbations according to the x, y, and

z directions, and φx, φy, and φz denote the rotation perturbations in the tangent space,

for the current linearization point. Finally, a key-frame is added when any element of the

positional entropy is above a user defined threshold, ε, or

max(he(σtx), he(σty), he(σtz), he(σφx), he(σφy), he(σφz)) > ε, (5.1)

where he(·) is computed using Equation (2.56). When a multi-keyframe addition is trig-

gered, the next step is to determine which multi-keyframe should be added. For this,

multi-keyframe candidates are maintained in a buffer and scored based on the expected

reduction in point entropy if added to the map through a bundle adjustment process.

Suppose the tracking thread is currently operating at time k, and the last multi-

keyframe insertion occurred at time k0. Denote the set of multi-keyframe candidates which

are buffered between times k0 and k as

Φ = {Mk0 ,Mk0+1,Mk0+2, . . . ,Mk}. (5.2)

Since each of the multi-keyframe candidates are saved from the tracking thread, an estimate

of the global pose of each candidate is available from the tracking solution. Denote the set

of map points from P , visible in Kl ∈Mi, as P̃ il ⊂ P .

In the bundle adjustment process, the point parameters are modeled as a Gaussian

distribution with an associated mean and covariance. Denote the estimate for the point in

the world frame, wp as wp̂j, and the associated covariance matrix Σj ∈ R3×3. Suppose point

wpj ∈ P̃ il is measured in key-frame Kl ∈Mi. Our method seeks to determine the updated

covariance of point wpj, if triangulated using an additional measurement from key-frame

Kj. This is accomplished using a covariance update step, similar to the Extended Kalman

Filter.
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Denote the Jacobian of the reprojection function, with respect to the point parameters,

evaluated at point wp̂j, as

Jpj
=
∂Ψ(Tcb:w

k
wpj)

∂ wpj
|wp̂j

. (5.3)

The Jacobian, Jpj
, describes how perturbations in the point parameters for wp̂j map to

perturbations in the image reprojections. Using the Jacobian, Jpj
, and the prior point

covariance Σj, the predicted point covariance is given as

Σ̄j = (I−ΣjJ
T
pj

(Jpj
ΣjJ

T
pj

+ R)−1Jpj
)Σj. (5.4)

Note that the prior point covariance, Σj, is available from the most recent bundle adjust-

ment. The predicted covariance, Σ̄j, provides an estimate of the covariance for point, wpj,

if the observing key-frame was inserted into the bundle adjustment process. Equation (5.4)

can be evaluated rapidly for each point, as the computational bottleneck is the inversion

of a 3×3 matrix. To asses the reduction in uncertainty, we evaluate the entropy of the

predicted covariance matrix from Equation (5.4). Similar to the strategy used in Chapter

4 to perform next-best-view data collection, we use the entropy of the covariance matrix

as a smooth cost which quantifies the overall uncertainty of the parameter estimate. Fur-

thermore, the point entropy provides a convenient way to assess the uncertainty reduction

across all of the points observed in the multi-keyframe, as the entropy score from individual

points can be easily summed.

Denote the entropy corresponding to the point’s prior and predicted covariance as

he(
wp̂j) and h̄e(

wp̂j), respectively. The reduction in entropy for point wpj is given as

Υ(wpj) = he(
wp̂j)− h̄e(wp̂j). (5.5)

Using Equation (5.5), the expected entropy reduction,Λc, for all map points measured in
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multi-keyframe Mi is

Λc(Mi) =
∑
Kl∈Mi

∑
p∈P̃ il

Υ(p). (5.6)

Finally, when a multi-keyframe insertion is requested, all multi-keyframes within the buffer

Φ are scored using Equation (5.6). The multi-keyframe selected for insertion, M∗, is the

one from the buffer which maximizes the point entropy reduction:

M∗ = argmax
Mi∈Φ

Λc(Mi). (5.7)

Once selected, M∗ is inserted into the map through bundle adjustment, and the multi-

keyframe buffer, Φ, is reset.

Note that our proposed approach treats each point independently, as the covariance

matrix from Equation (5.4), is only for the parameters of point wp̂j, and ignores the cor-

relation the point may have with other points in the map. Consider that if two points are

correlated, then improvement of the point estimate for one of the points would improve

the point estimate of the other point as well. This additional correlation is captured in the

mutual information [85] between points. The independence approximation is suitable for

our application, as it provides a lower bound on the overall expected entropy reduction of

the map, using the known camera motion assumption. The mutual information which ex-

ists between points will only further reduce the map entropy after the key-frame is inserted

and processed with bundle adjustment.

The entropy reduction for a point described in Equation (5.5), is also dependent on

the camera model, as the point projection Jacobian given by Equation (5.3), is dependent

on the underlying camera projection equations. For example, wide FOV lenses using the

Taylor model spatially compress points near the boundaries of the image plane, while

a typical pinhole projection preserves the relative spatial distribution of 3D points. This

comparison is illustrated in Figures 5.1(a) and 5.1(b), which display the image projection of
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a planar grid of 3D points positioned in-front of the camera. As a result of the compression,

points projected using the Taylor model which fall near the boundaries of the image are

less sensitive to perturbations of the 3D point location. This amounts to the magnitude

of the Jacobian described in Equation (5.3), being attenuated for points which project

near the edge of the image. This insight is illustrated in Figures 5.1(c) and 5.1(d), which

show the norm of the projection Jacobian with respect to perturbations in the x point

parameter. It is evident that the pinhole model maintains uniform sensitivity to point

parameter perturbations across the image plane, as the norm of the Jacobian is constant

over the entire image, while the Taylor camera model has reduced sensitivity as the points

are projected farther from the image center.

Thus, by scoring multi-keyframes based on the expected point entropy reduction, our

proposed approach is able to select key-frames based on the triangulation baselines between

observations, as well as take into account the camera model and assess key-frames based

on the sensitivity of point measurements as well. It should be noted that even though we

derived the proposed key-frame selection approach for points parameterized with Euclidean

co-ordinates in the global frame, our method can be formulated for a wide range of point

parameterizations, such as spherical, relative, etc.

5.2 Selection Based on Point Pixel Flow Discrepancy

(PPFD)

Although it is important to strengthen the parameter estimates for the points which already

exist within the map, an equally important function for multi-keyframe insertion is to

incorporate new map points to track against in the future. Feature matches which exist

between the inserted multi-keyframe and the existing multi-keyframes result in new map

points which can be used for localization. However, the effectiveness of the newly created

142



points for tracking is dependent on their location, as well as the motion of the vehicle.

For example, the creation of new map points which are not in the current view of the

camera cluster, as well as the creation of new map points in a region with a high density

of existing map points, are generally not desired. From a tracking perspective, map points

should be distributed throughout the image [94, 95], and should be trackable given the

current camera motion.

The difficulty in assessing a potentially new map point is that a correspondence is re-

quired from an existing key-frame in order to perform the 3D point triangulation. The

process of feature matching across key-frames is computationally expensive, thus in order to

maintain real-time performance, MCPTAM searches for feature correspondences between

key-frames in the mapping thread, prior to bundle adjustment. Such a division allows the

tracking thread to localize against the existing map, while the mapping thread searches

for new features and performs bundle adjustment. Although it would be possible to de-

velop a heuristic to postulate the effectiveness of an image feature without searching for

correspondences, performing feature matching in the key-frame evaluation process presents

many benefits. First, seeking feature matches allows us to determine the 3D location of

the point, which can be used to predict the movement of the point from a camera fixed ob-

servation frame. Second, locating matches allows us to directly detect when measurements

to a feature are occluded due to obstacles.

We propose a three step method to evaluate multi-keyframes from the multi-keyframe

buffer, Φ, for potential map points. In the first step, we evaluate the map points which

currently exist in the map and create a probability distribution on the image plane, which

captures how those points will move over a specified time horizon and vehicle motion. In

step two, we take features from the multi-keyframe candidates and match them against a

subset of the existing multi-keyframes to determine the set of predicted map points that

would appear if the multi-keyframe was inserted into the map. Given the predicted point
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locations, we generate a similar probability distribution to step one, except now capturing

how we expect the predicted points to move in the image frame. In step three, we compare

the two probability distributions, and identify the multi-keyframe from the buffer which

best introduces new map points such that the distribution of map points over the image

is maximized.

Evaluation of Existing Map Points: In order to evaluate the distribution of the

existing map points, we first project them into the image frame corresponding to the

current tracker position. We are interested in understanding how the map points will

move, or flow, in the image, given a time horizon and a predicted camera cluster motion.

In some applications, the path of the vehicle is determined using a path planning method,

thus the expected motion of the vehicle is known in advance. For this derivation, we shall

not assume any known motion, but instead use a constant velocity model. However, the

approach is general, and can also be formulated using more complex motion models.

The flow of a map point, wpi, expressed in the frame of observing camera j, cjpi , will

begin at image co-ordinates corresponding to the point reprojection, ui = Ψ(cjpi). To

determine the flow of the map point for a given motion, we require relationships between

the pixel reprojection motion and camera motion. The Jacobian of the image reprojection

for point i, with respect to the cluster state at time k, is given as

J i
ck =

∂Ψ(Tcj:cbTcb:w
k

wpj)

∂Tcb:w
k

. (5.8)

If the motion of the camera cluster with respect to time is denoted as
∂T

cb:w
k

∂t
, then the

change of the point projection with respect to time is

∂Ψ(Tcj:cbTcb:w
k

wpj)

∂t
=
∂Ψ(Tcj:cbTcb:w

k
wpj)

∂Tcb:w
k

∂Tcb:w
k

∂t
. (5.9)

Using the constant velocity model over a specified time horizon, δt, the ending image
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point, ūi, for the reprojection flow, given the motion of the cluster is

ūi =
∂Ψ(Tcj:cbTcb:w

k
wpj)

∂t
δt. (5.10)

Using the pair of start and end points for the reprojection flow (ui, ūi), a discrete

probability distribution can be constructed on the image plane, which we will call the

existing point flow PDF (E-PFP). The E-PFP captures the probability of not measuring

existing map points in the image, so areas of high probability denote locations where we

would like to add new map points. To construct the E-PFP, we begin with a 2D uniform

distribution, where the discretization of the PDF is analogous to the pixel resolution of

the image. Straight lines are drawn between the reprojection flow pairs, and the 2D

locations on the PDF which intersect the flow lines are assigned a value of 0. The flow

lines are then dilated and blurred in order to account for motion uncertainty of the camera

cluster, and to avoid adding new points in the map which are needlessly close to existing

points. The amount of dilation and blurring, as well as the lookahead horizon, are a

tunable parameters dependent on the relative point density desired by the user. Finally,

the E-PFP is normalized to make it valid probability distribution, such that the sum of all

probabilities is equal to 1. A depiction of the E-PFP is given in Figure 5.2(b).

Evaluation of Predicted Map Points: We now wish to find the multi-keyframe

from the buffer which will add new image points in high probability areas of the E-PFP.

To do so requires the matching of image features from the candidate key-frame to features

located in key-frames in the existing map. In order to reduce the computational complexity

of the feature matching operation, we first perform a binning operation, similar to what

is described in [94, 95]. The images from the candidate multi-keyframe are divided into

rectilinear bins, and only the feature with the best score is matched against existing key-

frames, which greatly reduces the number of feature matches required. Second, the features

are only matched against the key-frames from the N closest multi-keyframes which exist
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in the map.

To determine how the predicted map points will flow in the image plane, we construct

the future point flow PDF (F-PFP), which is generated in a similar manner to the E-PFP.

For each candidate multi-keyframe, we perform feature matching and generate the set of

predicted map points, P̄ . We then compute the pixel flow for the predicted points in P̄

using Equation (5.10). The F-PFP is also initialized as a discrete uniform distribution,

and regions of the predicted points’ pixel flow are assigned a value of 1. Similar to the

E-PFP, the flow lines for the predicted points are dilated and blurred in order to account

for motion uncertainty of the camera cluster. Finally, the F-PFP is normalized to make it

a valid discrete probability distribution. An example F-PFP is shown in Figure 5.2(c).

Scoring the pixel flow PDF: Given the E-PFP for the current multi-keyframe, and

the F-PFP’s from the buffered multi-keyframes, we now wish to determine which F-PFP

is the most similar to the E-PFP. Doing so determines the multi-keyframe from the buffer

which best distributes new features in regions of the image plane not already containing

existing features, while taking into account the vehicle motion and expected time horizon

between key-frame additions. To compare the probability distributions, we compute the

relative entropy between the E-PFP and F-PFP using Equation (2.52), as described in

Section 2. Recall that the relative entropy is a measure of the difference between PDF’s,

thus if the two PDFs are identical, the relative entropy will be zero. If we denote the

E-PFP as τ , and the set of all F-PFP’s from multi-keyframes buffered since time k0 as

Γ = {βk0+1, βk0+2, . . . , βk}, k = |Φ|, (5.11)

then the optimal F-PFP, β∗, which minimizes the relative entropy, is selected as

β∗ = argmin
β∈Γ

D(τ‖β). (5.12)
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5.3 Experimental Results

To validate our proposed key-frame selection methods, we performed two sets of exper-

iments. In the first set of experiments, we simulate a surveillance task, and compare

the CPER approach to other common key-frame selection heuristics based on movement

thresholds and map point overlap. In the second set of experiments, we demonstrate

the effectiveness of the PPFD approach in exploration scenarios involving occlusions and

aggressive camera motion.

For both cases, the key-frame selection methods are implemented within the MCPTAM

framework. The camera rig was equipped with three Ximea xIQ cameras, arranged in a

rigid cluster, with one camera looking forwards, and the others facing off to the left and

right sides. The cameras were fitted with wide angle lenses, with 160◦ field of view, and

images were captured at 30 frames per second, at a resolution of 900x600 pixels. The

ground truth of the camera motion was collected using an Optitrack Indoor Positioning

System (IPS), which is capable of tracking motion at a rate of 100 Hz, with sub centime-

ter translational accuracy, and sub degree rotational accuracy. The extrinsic calibration

between the camera co-ordinate frame and the IPS was determined using an off-line opti-

mization method, as detailed in [5, 11]. Note that although experiments are shown using

the MCPTAM algorithm, our key-frame selection methods can be applied to any key-frame

based visual SLAM which uses point features.

5.3.1 Evaluation of CPER in a Surveillance Task

We simulate a surveillance task by moving the camera rig in an environment where there are

few occlusions, and such that many features can be re-observed throughout the trajectory.

The test trajectory is visualized in Figure 5.4. The proposed CPER approach is compared

against a distance threshold heuristic and a point overlap heuristic. The former adds a
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key-frame when the distance between the current tracking position and the closest key-

frame in the map is greater than a user defined threshold, while the latter adds a key-frame

when the ratio of measured image features to measured map points falls below a threshold.

We tested the CPER method to distance threshold of 0.5m (0.5mt), 1m (1mt), 2m (2mt),

and to point percent overlap threshold of 25% (25pt), 50% (50pt) and 60% (60pt). For the

CPER method, we set the entropy threshold, ε, to -6.0 nats, through empirical evaluation

of our approach. The results of the experiment are shown in Figure 5.3 and summarized

in Table 5.1.

Translation
MSE [m2]

rotation
MSE [rad2]

num
multi-kf

num map
points

average tracker
entropy [nats]

0.5mt 0.0024 4.33e-05 13 2431 -6.59
1mt 0.0027 5.50e-05 5 1390 -6.22
2mt 0.0039 1.75e-04 4 459 -5.73
25pt 0.0105 0.0019 3 104 -4.7
50pt 0.0023 1.00e-04 11 1886 -6.11
60pt 7.02e-04 1.33e-04 44 3657 -6.55
CPER 1.04e-04 4.12e-05 8 949 -6.56

Table 5.1: Summary of results for surveillance motion sequence.

In general, all of the tested approaches were able to provide precise localization, due to

the small workspace and high visibility of features. However, the CPER approach demon-

strated an improvement in average translation error of roughly one order of magnitude,

compared to the other methods. The rotation errors are approximately equal for all of the

tested methods, except for 25pt, which also performed the least well in terms of translation

error, as well. This is likely because the 25pt threshold only added 3 key-frames to the

map, resulting in few points to track against.

Conversely, the CPER approach aggressively added key-frames at the beginning of

the sequence in order to rapidly reduce the tracking entropy. Figure 5.3(d) shows that

CPER added approximately 4 key-frames within the first two seconds of motion. Although
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the decrease in entropy, seen in Figure 5.3(c), is also exhibited by the 60pt and 0.5mt

approaches, both achieve the same entropy reduction approximately 3 seconds after CPER.

This is because CPER actively selects key-frames in order to reduce tracking entropy, which

allows for consistent localization throughout the trajectory.

We further see the CPER approach is not wasteful in adding key-frames. Although

0.5mt and 60pt achieved comparable accuracy and tracker entropy reduction, each ap-

proach added 13 and 44 key-frames respectively, while CPER only added 8. Similarly

CPER added 74% and 60% fewer map points compared to 60pt and 0.5mt, respectively.

This is because our approach only adds new key-frames when required by the tracker, and

seeks to improve the points which exist in the map. As a result, fewer multi-keyframes

are added, and fewer points are required to maintain suitable tracking integrity. Since the

point percent threshold methods add key-frames based on the ratio of measured image

features to visible map points, image noise and temporary tracking loss of map points will

cause these approaches to rapidly insert key-frames into the map, displayed by the 60pt

approach in Figure 5.3(d).

5.3.2 Evaluation of PPFD in an Exploration Task

We identify three important situations where the PPFD approach is effective in key-frame

selection. In case 1, we illustrate how PPFD is well suited to exploratory movements

when there are few existing points in the map. Case 2 demonstrates how PPFD is able

to effectively add new key-frames when the view points are partially occluded, and finally,

case 3 shows how PPFD is able to successfully initialize new map points when the camera

cluster is undergoing aggressive motions. Results from the three cases are highlighted in

Figures 5.5 - 5.7, while the relative entropy score (RES) over the motion sequences are

displayed in Figure 5.8. In order to isolate the results of key-frame triggering from key-

frame selection, the triggering was performed after a fixed time horizon in the sequence.
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After a new key-frame was requested, the key-frame for insertion was selected from the

buffer using the PPFD method.

Exploration: Figure 5.5(a) shows an image with the map points visible immediately

after initialization, while Figure 5.5(b) shows the map points after the key-frame was

inserted using PPFD. The respective E-PFP and F-PFP are visualized in Figures 5.5(c)

and 5.5(d). The E-PFP clearly shows areas in the image frame which are lacking points,

and the F-PFP corresponds to the key-frame from the buffer which resulted in the lowest

RES, displayed in Figure 5.8(a).

Occlusion: The map points pre and post key-frame insertion are depicted in Figure

5.6(a) and 5.6(c), respectively. There are few map points at initialization, and as shown in

Figure 5.6(b), there are few predicted map points due to the occlusion. This behaviour is

reflected by the RES in Figure 5.8(b), where the occlusion results in a high RES between

key-frames 10 and 85. Finally, once the camera has passed the occlusion, the RES drops

sharply at key-frame 90, which is selected as the key-frame for insertion. The respective

E-PFP and F-PFP are visualized in Figures 5.6(d) and 5.6(e).

Aggressive Motion: Due to the aggressive movement of the camera, the image

exhibits motion blur, as seen in Figure 5.7(a). In this case, the camera was pitched back

and forth aggressively, which resulted in a diminished ability to robustly track features. The

behaviour is reflected the RES, seen in Figure 5.8(c), where the score exhibits oscillatory

behaviour and intermittent regions where there were no feature matches with which to

compute the F-PFP score. However, the PPFD method chooses the key-frame from the

buffer which is able to best initialize new map points. In this case, key-frame 10, where

the image was momentarily sharp due to a direction change in the rotation, was selected

for insertion, resulting in the initialization of new map points seen in Figure 5.7(b). The

associated E-PFP and F-PFP are also visualized in Figures 5.7(c) and 5.7(d), respectively.

Figure 5.7(e) depicts a F-PFP from key-frame 110, which had a relatively high RES. Note
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the lower number of features detected on Figure 5.7(e) when compared to Figure 5.7(d).
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(a) Pinhole (b) Taylor

(c) Jacobian (pinhole) (d) Jacobian (Taylor)

Figure 5.1: Comparison of image reprojection sensitivity between pinhole and Taylor cam-
era models, with respect to the x point parameter. The image compression around the edges
results in reduced sensitivity of image projection Jacobian in the outer edge areas, as seen in
(b), where as the pinhole camera model displays uniform strength in the image reprojection
Jacobian, as seen in (a).
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(a) Image View with Map Points (b) E-PFP

(c) F-PFP

Figure 5.2: Example E-PFP and P-PFP with corresponding image view and map points.
(a) shows the camera view. The red, green, and yellow markers denote existing map points,
while the magenta markers denote predicted point locations triangulated between current
key-frame and existing multi-keyframes in the map. The E-PFP and F-PFP, shown in (b)
and (c), respectively, are generated assuming a 1 m/s velocity in the forward direction of the
cluster, and for a time horizon of 1 second. Light regions denote areas of high probability,
while darker areas indicate low probability.
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(a) Translational Error
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(b) Rotation Error
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(c) Tracker Entropy
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(d) Keyframe additions

Figure 5.3: (a) and (b) show the translation and rotation errors, respectively, of the camera
trajectories compared to ground truth. Note that our proposed CPER approach is able to
maintain very precise localization throughout the sequence. Plot (c) illustrates the tracker
entropy over time, while (d) shows the key-frame additions over time. Note that the CPER
method aggressively adds key-frames in the first few seconds of motion in order to rapidly
lower the tracking entropy.
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Figure 5.4: The recovered camera cluster motion for the tested methods, with the ground
truth overlayed

(a) exp. pre-insertion (b) exp. pos-insertion

(c) exp. E-PFP (d) exp. F-PFP

Figure 5.5: PPFD results for a typical exploration task. Subfigures (a) and (b) show the
map points overlayed in the camera images, while (c) and (d) visualize the E-PFPs and
F-PFPs used to select the inserted keyframe.
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(a) occ. pre-insertion (b) occ. occlusion

(c) occ. post-insertion (d) occ. E-PFP

(e) occ. F-PFP

Figure 5.6: PPFD results with occlusion present over a portion of the camera motion.
Subfigures (a),(b), and (c) show the map points overlayed in the camera images, while (d)
and (e) visualize the E-PFPs and F-PFPs used to select the inserted key-frame. Note the
small number of predicted features in (b) due to the occlusion.
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(a) agg. pre-insertion (b) agg. post-insertion

(c) agg. E-PFP (d) agg. F-PFP

(e) agg. failed F-PFP

Figure 5.7: PPFD results with aggressive motion of the camera cluster. Subfigures (a)
and (b) show the map points overlayed in the camera images, while (c) and (d) visualize the
E-PFPs and F-PFPs used to select the inserted key-frame, and (e) depicts the F-PFP of a
key-frame where few feature matches are found due to motion blur.
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(a) relative entropy (exploration)
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(b) relative entropy (occlusion)
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(c) relative entropy (aggressive motion)

Figure 5.8: Plots (a),(b), and (c) show the relative entropy over the sequence for the forward
exploration, occlusion, and aggressive motion cases, respectively. Note that discontinuities
in the plots are due to indeterminate relative entropy scores that result when there are no
feature matches in the key-frame Such is especially the case in (c), where rapid motion results
in many key-frames where points cannot be matched successfully.
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Chapter 6

Conclusion

The work presented in this thesis discusses the design and analysis of systems which seek

to perform information-theoretic data selection of the incoming camera streams for multi-

camera visual calibration and navigation. In this work, informed data selection is performed

using active vision to manipulate the viewpoint of the cameras, and by analyzing the

information content in the image streams to determine optimal viewpoints for keyframe

selection.

Traditional multi-camera systems require a fixed calibration between cameras to provide

the solution at the correct scale. The fixed extrinsic calibration of the cluster places many

limitations on multi-camera cluster performance, such as increasing the difficulty of in-

field calibration, coupling the collected image viewpoints with the vehicle motion and

possibly leading to degenerate motions, and precluding the use of actuated cameras, such

as UAV gimbals, with state-of-the-art visual navigation systems. This thesis investigates

the calibration of dynamic camera clusters, or DCCs, where one or more of the cluster

cameras is mounted to an actuated mechanism, such as a gimbal or robotic manipulator.

Our novel calibration approach parametrizes the actuated mechanism using the Denavit-

Hartenberg convention, then determines the calibration parameters which allow for the
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estimation of the time varying extrinsic transformations between the static and dynamic

camera frames.

The proposed dynamic-to-static camera transformation chain is parameterized using the

DH convention, as described in Chapter 2, which allows us to parameterize the extrinsic

calibration between the optical centers of a static and dynamic camera, as a function of

the actuated mechanism input, and perform the DCC calibration for any system that can

be described as a serial manipulator.

The DCC calibration can be formulated either using a reprojection error, or a poseloop

error, as presented in Chapter 3, both of which can perform the estimation of the unknown

calibration parameters through successive observations of a fiducial target of known scale.

We also presented an extension of the dynamic-to-static calibration case which performs

DCC calibration between two dynamic cameras. The proposed calibration approaches

were evaluated both in simulation, and using physical hardware. High quality calibrations

were achieved using a 5-DOF Fanuc arm based DCC, and a 3-DOF Aeryon gimbal based

DCC, which exhibited approximately 0.58 and 2.13 RMSE pixel error, respectively, using

a validation data set.

The proposed DCC calibration was analyzed for system degeneracies, in Chapter 3,

illustrating an over-parameterization of the system. By investigating the system Jacobian

matrix, it was shown that a subset of the columns could be expressed as linear combinations

of each other, identifying a rank deficiency in the Jacobian matrix. As a result, we showed

that the dM , a1, α1, and d1 calibration parameters are redundant, a degeneracy occurs

when two subsequent joint axes are parallel, and that the special case where there is one

joint axis in the DCC presents two additional redundant parameters.

Manual measurement collection for DCC calibration is increasingly onerous as the num-

ber of degrees of freedom of the manipulator increase, as it becomes difficult to ensure suf-

ficient measurement excitation through the mechanism’s configuration space. In order to
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automate the calibration process, Chapter 4 presented two information theoretic methods

which select the optimal calibration viewpoints using a next-best-view strategy. The first

strategy looked at minimizing the entropy of the calibration parameters, while the sec-

ond method selected the viewpoints which maximize the mutual information between the

joint angle input and calibration parameters. The NBV methods were evaluated using the

5-DOF Fanuc arm based DCC and a 3-DOF Aeryon gimbal DCC, and we demonstrated

that both the entropy and mutual information based NBV approaches are able to actively

select the viewpoints which result in the lowest parameter uncertainty.

The effective selection of key-frames is also an essential aspect of robust visual nav-

igation algorithms, as it ensures metrically consistent mapping solutions while reducing

the computational complexity of the bundle adjustment process. Both the accuracy and

computational complexity of visual SLAM solutions can be significantly improved by se-

lectively including only the most informative new measurements at each stage of the al-

gorithm. Existing approaches generally insert key-frames based on point triangulation

baselines, co-visibility of features, or heuristics which insert key-frames whenever the num-

ber of currently tracked points falls below a user defined threshold. Overall these existing

key-frame insertion strategy remain ad-hoc and requires manual tuning.

To that end, this thesis also presented two novel approaches for key-frame selection,

cumulative point entropy reduction (CPER) and predicted pixel flow discrepancy (PPFD),

which systematically evaluate candidate key-frames and selects them based on the expected

improvement of the map. The approaches are complementary, as CPER improves the

existing map, and PPFD predicts and improves the future map. Our experimental results

demonstrated that the CPER approach allows for accurate location using fewer key-frames

compared to ad-hoc insertion methods, and that the PPFD approach is well suited to

exploration tasks and is able to achieve good performance even in the presence of occlusion

and aggressive motion.
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In summary, the main contributions of this thesis are listed as follows:

� The novel formulation of the calibration process for a dynamic camera cluster, and

using the Denavit-Hartenberg convention to parameterize the extrinsic calibration

between the optical centers of a static and dynamic camera, as a function of the

actuated mechanism input.

� An analytical degeneracy study leading to the identification of redundant parameters

of the DCC calibration system.

� Two novel information theoretic next-best-view measurement approaches, which seek

to select actuator configurations which directly reduce the uncertainty of the calibra-

tion parameters. The approaches investigate two formulations: one which seeks to

reduce the entropy of the estimated parameter covariance matrix, and another which

aims to optimally find the actuator configurations which maximize the mutual infor-

mation between the extrinsic calibration parameters and mechanism joint angles.

� Two novel approaches for key-frame selection which systematically determine the best

key-frames for insertion into a point-feature based map. The first approach, CPER,

inserts key-frames based on the cumulative point entropy reduction in the existing

map, while the second approach, PPFD, uses the predicted point flow discrepancy to

select key-frames which best initialize new features for the camera to track against

in the future.

6.1 Future Extensions

Given the versatility of the discussed methods in this work, a wide range of future exten-

sions can be considered. In this section, the most promising of them are summarized.
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� A calibrated DCC can be mounted to a vehicle, and used for localization or SLAM.

It would be interesting to look at viewpoint selection strategies, based on the ideas

presented in this thesis, which point the cameras in order to maximize localization

quality.

� Active viewpoint selection using a calibrated DCC could also be formulated and

applied to a wide range of tasks outside of SLAM and localization. For example, the

calibrated DCC can be used for inspection, or a viewpoint policy could be formulated

in order to reconfigure the cluster to best perform dense reconstruction for obstacle

avoidance.

� As seen in this work, the quality of the DCC calibration is directly impacted by

the accuracy of the joint angle encoders. An encoderless approach, which does not

require any joint angle feedback, but instead estimates the joint angle configurations

as part of the calibration state, facilitates DCC calibration on systems which either

posses poor quality encoders, or no encoders at all. Although such a system has

been formulated and tested on a 2-DOF gimbal [87], the degeneracy analysis of the

encoderless system is yet to be investigated. This degeneracy analysis would be

an interesting problem to pursue, as the inclusion of the joint angle states in the

estimation makes this a rich problem.

� The next-best-view formulations can be extended to include the intrinsic lens param-

eters. The NBV approaches can further be modified in order to establish repeatable

trajectories for more generic calibrations, such as IMU to Camera, LIDAR to Cam-

era, etc. These repeatable trajectories would be valuable in a manufacturing setting,

where the approach could be used to automatically calibrate large volumes of devices.

� Remove the fiducial target for the DCC calibration, and attempt to perform the

calibration using a pre-built map, natural features in the environment, or additional
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sensing that provides scale information, such as LIDAR, GPS, or IMU.

� An interesting extension to the key-frame selection strategies presented in this thesis

would be to apply them to other variants of SLAM and localization which use other

sensors and map representations, such as point-cloud, surfel, or TSDF.
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Appendix A

Skew-Symmetric Matrix Identities

The degeneracy analysis performed in Chapter 3 requires the manipulation of vectors

expressed in skew-symmetric form. This appendix will outline some important identities

related to skew-symmetric matrices, which are described in greater detail in [77].

Suppose we have a vector v ∈ R3. A skew-symmetric (also called an anti-symmetric)

matrix satisfies

([v]∧)T = −[v]∧. (A.1)

Additionally, given an orthogonal matrix R, it can be shown that the following identity

holds

[Rv]∧ = R[v]∧RT . (A.2)

Finally, though simple manipulation, Equation (A.2) can be expressed as

R[v]∧ = [Rv]∧R (A.3)
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Appendix B

SE(3) Composition and Box-minus

Jacobian Derivation

The degeneracy analysis performed in Chapter 3 makes extensive use of the transformation

matrix composition and box-minus functions, expressed in Equations (3.17) and (3.20),

respectively. In this appendix, we shall derive these Jacobian matrices, primarily using the

process described in [77].

In order to derive the composition and box-minus Jacobian matrices for elements in

SE(3), we must first derive some important Jacobian quantities relating to elements in

SO(3).

B.1 Important SO(3) Jacobians

Suppose we have two rotation matrices, Rb:c ∈ SO(3) and Ra:b ∈ SO(3), with their

resulting composition

Ra:c = Ra:bRb:c. (B.1)
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As derived in [77], the derivatives of the composition function from Equation (B.1), are

given as
∂Ra:bRb:c

∂Ra:b
= I (B.2)

∂Ra:bRb:c

∂Rb:c
= Ra:b, (B.3)

and the derivatives of the inverse and log functions are given as

∂(Ra:b)−1

∂Ra:b
= −(Ra:b)T (B.4)

and
∂ log(Ra:b)

∂Ra:b
= [Γ(log(Ra:b))]−1, (B.5)

respectively. Here, Γ ∈ R3×3 is the Jacobian of the exponential map function, and is given

by

Γ(φa:b) = I +
(1− cos(‖φa:b‖))[φa:b]∧

‖φa:b‖2
+

(‖φa:b‖ − sin(‖φa:b‖))[[φa:b]∧]2

‖φa:b‖3
(B.6)

Γ(φa:b) ≈ I +
1

2
[φa:b]∧, (‖φa:b‖ ≈ 0). (B.7)

Finally, the derivative of the co-ordinate mapping through a rotation matrix, is given as

∂(Ra:b btb:c)

∂Ra:b
= −[Ra:b btb:c]∧. (B.8)
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B.2 Box-minus Jacobian for SO(3)

Suppose we have two rotation matrices, Ra:c ∈ SO(3) and Rb:c ∈ SO(3), with their

resulting box-minus difference

φa:b = Ra:c � Rb:c (B.9)

= log(Ra:c(Rb:c)−1) (B.10)

(B.11)

where φa:b ∈ so(3) is a member of the Lie Algebra of SO(3). Using chain rule, the derivative

of the expression from Equation (B.9) with respect to the left rotation, Ra:c, is given as

∂(Ra:c � Rb:c)

∂Ra:c
=
∂ log(Ra:c(Rb:c)-1)

∂(Ra:c(Rb:c)−1)

∂(Ra:c(Rb:c)−1)

∂Ra:c
. (B.12)

By Equation (B.2),
∂(Ra:c(Rb:c)−1)

∂Ra:c
= I, (B.13)

and
∂ log(Ra:c(Rb:c)-1)

∂(Ra:c(Rb:c)−1)
(B.14)

is evaluated using Equation (B.5). Noting that Ra:c(Rb:c)−1 = Ra:b, the derivative of

Equation (B.12) can be simplified as

∂(Ra:c � Rb:c)

∂Ra:c
=
∂ log(Ra:b)

∂Ra:b
(B.15)

= [Γ(log(Ra:b))]−1. (B.16)

Similarly, the derivative of the expression from Equation (B.9) with respect to the right
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rotation, Rb:c, is given as

∂(Ra:c � Rb:c)

∂Rb:c
=
∂ log(Ra:c(Rb:c)-1)

∂(Ra:c(Rb:c)−1)

∂(Ra:c(Rb:c)−1)

∂(Rb:c)−1

∂(Rb:c)−1

∂Rb:c
. (B.17)

By Equation (B.3),
∂(Ra:c(Rb:c)−1)

∂(Rb:c)−1
= Ra:c, (B.18)

and by Equation (B.4)
∂(Rb:c)−1

∂Rb:c
= −(Rb:c)T . (B.19)

Finally, the derivative of Equation (B.17) can be simplified as

∂(Ra:c � Rb:c)

∂Rb:c
= −[Γ(log(Ra:b))]−1Ra:c(Rb:c)T (B.20)

= J b:c
� , (B.21)

where J b:c
� is the shorthand expression for Equation (B.20), as it is used quite frequently

in the degeneracy analysis conducted in Chapter 3.

B.3 Composition Jacobian for SE(3)

Suppose we have two Transformation matrices,

Ta:b =

 Ra:b ata:b

0 1

 , (B.22)

Tb:c =

 Rb:c btb:c

0 1

 , (B.23)
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and their resulting composition

Ta:bTb:c =

 Ra:b ata:b

0 1

 Rb:c btb:c

0 1

 (B.24)

=

 Ra:bRb:c Ra:b btb:c + ata:b

0 1

 . (B.25)

As described in Chapter 2, in this work, we treat perturbations to the rotation and

translation components of a transformation separately. To that end, the Jacobian of the

composition from Equation (B.24) with respect to the left transformation,Ta:b ,has the

form

∂Ta:bTb:c

∂Ta:b
=

 ∂(Ra:bRb:c)
∂Ra:b

∂(Ra:bRb:c)
∂ ata:b

∂(Ra:b btb:c+ata:b)
∂Ra:b

∂(Ra:b btb:c+ata:b)
∂ ata:b

 , (B.26)

where by Equation (B.2),
∂(Ra:bRb:c)

∂Ra:b
= I. (B.27)

By inspection, it is clear that
∂(Ra:bRb:c)

∂ ata:b
= 0 (B.28)

and
∂(Ra:b btb:c + ata:b)

∂ ata:b
= I. (B.29)

Finally, the term Ra:b btb:c describes a co-ordinate mapping, so by Equation (B.8),

∂(Ra:b btb:c + ata:b)

∂Ra:b
= −[Ra:b btb:c]∧. (B.30)
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Therefore, the derivative of the composition function from Equation (B.26) is computed as

∂Ta:bTb:c

∂Ta:b
=

 I 0

−[Ra:b btb:c]∧ I

 (B.31)

=

 I 0

−[atb:c]∧ I

 . (B.32)

Similarly, the Jacobian of the composition from Equation (B.24) with respect to the

right transformation, Tb:c, has the form

∂Ta:bTb:c

∂Tb:c
=

 ∂(Ra:bRb:c)
∂Rb:c

∂(Ra:bRb:c)
∂ btb:c

∂(Ra:b btb:c+ata:b)
∂Rb:c

∂(Ra:b btb:c+ata:b)
∂ btb:c

 , (B.33)

where by Equation (B.3),
∂(Ra:bRb:c)

∂Rb:c
= Ra:b, (B.34)

and by Inspection
∂(Ra:bRb:c)

∂ btb:c
= 0, (B.35)

∂(Ra:b btb:c + ata:b)

∂Rb:c
= 0, (B.36)

and
∂(Ra:b btb:c + ata:b)

∂ btb:c
= Ra:b. (B.37)

Therefore, the derivative of the composition function from Equation (B.33) is computed as

∂Ta:bTb:c

∂Tb:c
=

 Ra:b 0

0 Ra:b

 . (B.38)
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B.4 Box-minus Jacobian for SE(3)

Suppose we have two transformation matrices, Ta:c ∈ SE(3) and Tb:c ∈ SE(3), with their

resulting box-minus difference

ρa:b = Ta:c � Tb:c (B.39)

=

 Ra:c � Rb:c

ata:c − btb:c

 . (B.40)

The derivative of Equation (B.39) with respect to the left transformation, Ta:c, has the

form

∂Ta:c � Tb:c

∂Ta:c
=

 ∂(Ra:c�Rb:c)
∂Ra:c

∂(Ra:c�Rb:c)
∂ ata:c

∂(ata:c−btb:c)
∂Ra:c

∂(ata:c−btb:c)
∂ ata:c

 , (B.41)

where by Equation (B.15),

∂(Ra:c � Rb:c)

∂Ra:c
= [Γ(log(Ra:b))]−1, (B.42)

and by inspection
∂(Ra:c � Rb:c)

∂ ata:c
= 0, (B.43)

∂(ata:c − btb:c)

∂Ra:c
= 0, (B.44)

and
∂(ata:c − btb:c)

∂ ata:c
= I, (B.45)

and the derivative from Equation (B.41) has the form

∂Ta:c � Tb:c

∂Ta:c
=

 [Γ(log(Ra:b))]−1 0

0 I

 . (B.46)
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Similarly, the derivative of Equation (B.39) with respect to the right transformation,

Tb:c, has the form

∂Ta:c � Tb:c

∂Tb:c
=

 ∂(Ra:c�Rb:c)
∂Rb:c

∂(Ra:c�Rb:c)
∂ btb:c

∂(ata:c−btb:c)
∂Rb:c

∂(ata:c−btb:c)
∂ btb:c

 , (B.47)

where by Equation (B.20),
∂(Ra:c � Rb:c)

∂Rb:c
= J b:c

� , (B.48)

and by inspection
∂(Ra:c � Rb:c)

∂ btb:c
= 0, (B.49)

∂(ata:c − btb:c)

∂Rb:c
= 0, (B.50)

and
∂(ata:c − btb:c)

∂ btb:c
= −I, (B.51)

and the derivative from Equation (B.47) is computed as,

∂Ta:c � Tb:c

∂Tb:c
=

 J b:c
� 0

0 −I

 . (B.52)
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