
A Game-Theoretic
Decision-Making Framework for

Engineering Self-Protecting
Software Systems

by

Mahsa Emami-Taba

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

c© Mahsa Emami-Taba 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/160745651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of
the Examining Committee is by majority vote.

External Examiner: Dr. Mohammad Zulkernine
Professor and Canada Research Chair, School of Computing,
Queen’s University

Supervisor: Dr. Ladan Tahvildari
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal Member: Dr. Otman Basir
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Dr. Vijay Ganesh
Associate Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal-External Member: Dr. Reid Holmes
Adjunct Associate Professor, Cheriton School of Computer Science,
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Targeted and destructive nature of strategies used by attackers to break down
a software system require mitigation approaches with dynamic awareness. Making
a right decision, when facing today’s sophisticated and dynamic attacks, is one of
the most challenging aspects of engineering self-protecting software systems. The
challenge is due to: (i) the consideration of the satisfaction of various security and
non-security quality goals and their inherit conflicts with each other when selecting a
countermeasure, (ii) the proactive and dynamic nature of these security attacks which
make their detection and consequently their mitigation challenging, and (iii) the
incorporation of uncertainties such as the intention and strategy of the adversary to
attack the software system.

These factors motivated the need for a decision-making engine that facilitates
adaptive security from a holistic view of the software system and the attacker. In-
spired by game theory, in this research work, we model the interactions between
the attacker and the software system as a two-player game. Using game-theoretic
techniques, the self-protecting software systems is able to: (i) fuse the strategies of
attackers into the decision-making model, and (ii) refine the strategies in dynamic
attack scenarios by utilizing what has learned from the system’s and adversary’s
interactions.

This PhD research devises a novel framework with three phases: (i) modeling
quality/malicious goals aiming at quantifying them into the decision-making engine,
(ii) designing game-theoretic techniques which build the decision model based on the
satisfaction level of quality/malicious goals, and (iii) realizing the decision-making
engine in a working software system. The framework aims at exhibiting a plug-
and-play capability to adapt a game-theoretic technique that suite security goals
and requirements of the software. In order to illustrate the plug-and-play capability
of our proposed framework, we have designed and developed three decision-making
engines. Each engine aims at addressing a different challenge in adaptive secu-
rity. Hence, three distinct techniques are designed: (i) incentive-based (“IBSP”),
(ii) learning-based (“MARGIN”), and (iii) uncertainty-based (“UBSP”). For each
engine a game-theoretic approach is taken considering the security requirements and
the input information. IBSP maps the quality goals and the incentives of the at-
tacker to the interdependencies among defense and attack strategies. MARGIN,
protects the software system against dynamic strategies of attacker. UBSP, han-
dles adversary-type uncertainty. The evaluations of these game-theoretic approaches
show the benefits of the proposed framework in terms of satisfaction of security and
non-security goals of the software system.

iv

Acknowledgements

First and foremost I would like to thank my enthusiastic supervisor Professor
Ladan Tahvildari. It was under Dr. Tahvildari’s supervision that I prospered in this
compelling research area, and ultimately, was able to meet and pass all the milestones
one after another. My Ph.D. journey has been an amazing experience, not only for
her tremendous academic support, but also for having her as a mentor and a sister.
In addition to our academic collaboration, I greatly value the close personal rapport
that Ladan and I have forged over the years. Words cannot express my gratitude for
all her sweet gestures, encouragements and kind support during my ups and downs
of starting a new life in Waterloo.

I would like to thank the members of my dissertation committee. I was so for-
tunate to have such an intellectual committee with me along the path: Professor
Mohammad Zulkernine my external examiner, for having accepted to take the time
out of his busy schedule to read my thesis and provide me with his insightful sug-
gestions, Dr. Otman Basir for his encouraging comments and indispensable support,
Dr. Vijay Ganesh for his inspiring remarks which broadened my perspectives in re-
search, Dr. Reid Holmes, my internal-external examiner for his invaluable comments
on my thesis, and Dr. Adam Kolkiewicz for serving as the thesis examination chair.

I am grateful to have had the opportunity to meet Professor Hausi Muller. I
cannot thank him enough for all his valuable feedback and kind support. I am par-
ticularly indebted to Dr. Marin Litoiu for exposing me to their testbed infrastructure
at CERAS lab. I was fortunate to be part of the collaboration project with Profes-
sor Ettore Merlo and Dr. Marios-Eleftherios Fokaefs from Ecole Polytechnique de
Montreal, Viorel Onut from IBM Markham, and CERAS lab member Nasim Beigi
Mohammadi. Also, I would like to express my gratitude to Dr. Patrick Martin for
his valuable feedback and remarks during the ORF-RE project on Ultra-Large-Scale
Services meetings.

I would like to express my sincere appreciation to Communications Security Es-
tablishment Canada (CSEC) to open my horizon to do this line of research. I would
like to take time and thank the Doctoral Symposium committee, and the ACM stu-
dent research competition committee, at the International Conference on Software
Engineering (ICSE)-2017, whose constructive comments, and influential criticisms,
paved the way for accomplishing my research goals.

I am very lucky to have been given the opportunity to be a part of Lovell Corpo-
ration. I am grateful for their contribution in my academic life as a start up company
to see where some techniques used in my thesis can have a direct application in a

v

young company. Many thanks to Kelly Lovell for providing a pleasant and friendly
working and research environment.

I would like to thank my colleagues in the Software Technologies and Applied
Research (STAR) lab, Dr. Mohammad Hamdaqa and Soheil Soltani for their moral
support and valuable feedback. In particular, I would like to thank Dr. Mehdi Amoui
for all the brainstorming sessions and discussions.

I gratefully acknowledge the funding sources that made my Ph.D. work possi-
ble. I was funded by Natural Sciences and Engineering Research Council (NSERC)
Engage and Ontario Centres of Excellence (OCE) Voucher for Innovation and Pro-
ductivity (VIP), University of Waterloo Provost Doctoral Entrance Award, Ontario
Graduate Scholarship (OGS), University of Waterloo Presidents Graduate Scholar-
ship (PGS), and Lovell Corporation.

Finally, but by no means least, I owe an immense debt of gratitude to my awesome
Mom and Dad, who raised me with love and supported me in all my pursuits, and
to my sisters, Leila and Parisa, who were always next to me. Thank you for all the
love and support and sacrifice you have made through bad times and for being a part
of my happiness in the good times. This last word of acknowledgment I have saved
for my caring and encouraging friend, Abbas, whose faithful support during the final
stages of this Ph.D. is so appreciated.

vi

Dedication

To my beloved parents and sisters.

vii

Table of Contents

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Motivation . 1
1.2 Problem Description and Research Focus 3
1.3 Approach and Research Questions . 4

1.3.1 RQ1: How should the framework incorporate the incentives of
the attacker? . 4

1.3.2 RQ2: How should the framework learn from previous action
selections? . 5

1.3.3 RQ3: How should the framework support adversary-type un-
certainty? . 5

1.4 Research Contributions . 5
1.5 Document Organization . 8

2 Background and Related Works 9

2.1 Self-Protecting Software Principles and Requirements 11
2.2 Related Research Projects . 14

2.2.1 Adaptive Application Security 14
2.2.2 Modeling and Analyzing Security in Self-Protecting Software . 15

viii

2.2.3 Decision Making in Self-Protecting Software 16
2.2.4 Application of Game Theory in Cybersecurity 18
2.2.5 Attack-Type Uncertainty in Self-Protecting Software 19

2.3 Summary . 22

3 A Framework for Decision Making in Self-Protecting Software Sys-
tems 23

3.1 A Motivating Scenario . 24
3.2 The Game-Theoretic Decision-Making Framework in Nutshell 25
3.3 Modeling: Goal-Oriented Model . 27

3.3.1 Concepts and Their Relations in a Goal-Oriented Model . . . 27
3.4 Designing: Game-Theoretic Decision Making Mechanism 30
3.5 Realizing: Adaptation Manager for Self-Protecting Software Systems 33
3.6 Summary . 34

4 Decision Making using Stochastic Games 35

4.1 Concepts and Notations . 37
4.2 A Stochastic Game Approach . 40
4.3 Modeling: Incentive-Based Evaluation 42

4.3.1 Strategy Interdependency Generator 43
4.3.2 Soft-Goal Interdependency Graph Formation 44
4.3.3 Strategy Interdependency Evaluation Procedure 49

4.4 Designing: Game-Theoretic Strategy Selection Engine 52
4.4.1 Utility Calculation Function 52
4.4.2 Stochastic Game Model . 54

4.5 Realizing: Formal Modeling via Stochastic Multiplayer Game 55
4.5.1 Model Checking Stochastic Multiplayer Games 56
4.5.2 Formal SMG Model of IBSP Mitigation Approach 57

ix

4.5.3 Formal SMG Model of Random, Fixed-Drop, and Fixed-Puzzle
Mitigation Approaches . 62

4.5.4 Attacker Formal SMG Model 64
4.6 Analyzing IBSP via Stochastic Multiplayer Game 64

4.6.1 Obtained Results . 66
4.6.2 Threats to Validity . 68

4.7 Summary . 70

5 Decision Making using Markov Games 71

5.1 Notations . 73
5.2 A Markov Game Approach . 73
5.3 Modeling: Intrusion Detection and Quality Goals Model 76

5.3.1 The Intrusion Detection System 76
5.3.2 The Goal-Action-Attribute Model 77

5.4 Designing: Markov Game Decision-Making Engine 78
5.4.1 The State Generator and the State Mapper 78
5.4.2 The Reward Function . 79
5.4.3 The Markov Game Decision and Learning Algorithm 81

5.5 Realizing: Case Study of a Web Application Using Simulink 85
5.5.1 Attack-Type Uncertainty Scenarios 86
5.5.2 Experiment Setup . 88
5.5.3 MARGIN Realization . 89

5.6 Obtained Results . 91
5.6.1 RQ2.1: Can MARGIN learn to select a proper countermeasure? 92
5.6.2 RQ2.2: What is the effect of the cost of a countermeasure? . 95
5.6.3 RQ2.3: What is the impact of the explore rate? 95
5.6.4 RQ2.4: What is the effect of the discount factor? 97
5.6.5 RQ2.5: What is the effect of the learning rate? 99

x

5.6.6 RQ2.6: Is learning a good idea? (How does the proposed tech-
nique perform comparing with other techniques?) 101

5.6.7 Threats to internal and external validity 106
5.7 Summary . 106

6 Decision Making using Bayesian Games 108
6.1 Notations . 109
6.2 A Bayesian Game Approach . 110
6.3 Modeling: Cost and Benefits of Strategies 112
6.4 Designing: Type 1 Adversary . 112

6.4.1 Nash Equilibrium Analysis . 113
6.4.2 Mixed Strategy Equilibrium Analysis 114
6.4.3 Case Based Analysis . 115

6.5 Designing: Type 2 Adversary . 116
6.5.1 Nash Equilibrium Analysis . 117
6.5.2 Mixed Strategy Equilibrium Analysis 118
6.5.3 Case Based Analysis . 118

6.6 Designing: Adversary-Type Uncertainty 119
6.6.1 Bayesian Nash Equilibrium (BNE) Analysis 120
6.6.2 Case Based Analysis . 123

6.7 Realizing: Case Study of a Voice over IP 125
6.7.1 Implementations . 126
6.7.2 Attack Scenario . 126

6.8 Obtained Results . 127
6.9 Summary . 129

7 Concluding Remarks and Future Directions 131
7.1 Contributions . 131
7.2 A Summary of Research Questions 134
7.3 Future Work . 135
7.4 Conclusion . 137

xi

References 138

xii

List of Tables

4.1 Summary of Notations Used . 38
4.2 Interdependencies of Strategies . 43
4.3 Propagation Rules Showing Resulting Labels for Contribution Links

(Adopted From [61] [121]) . 49
4.4 Cases where Overall Labels can be Automatically Determined (Adopted

From [61]) . 50
4.5 Labels Soft-Goals for SIs . 51
4.6 Utility Function for a Quality/Malicious Goal 53
4.7 Normal Form Game Model . 55
4.8 Defining Preferences for Each System State 59
4.9 Defining Preferences for Each Category of Attacker 60
4.10 The Accumulated Utility of the SPS System 67
4.11 The Accumulated Utility of the Attacker 67

5.1 Summary of Notations Used . 74
5.2 Utility Function Examples for the “Usability” Goal and Its Attributes:

“Response Time” and “User Annoyance” at the state of “Running” . 80
5.3 A GT Table Representing Interdependencies of Countermeasures and

Attacks . 91
5.4 Kruskal-Waillis Test Results for RQ2.6 103

6.1 Summary of Notations Used . 110
6.2 Strategic Form of Type 1 Adversary vs. SPS 113

xiii

6.3 Payoffs and Numerical Examples of Type 1 Adversary 115
6.3.a Payoffs of Type 1 Adversary in G1 Preferred SPS 115
6.3.c Payoffs of Type 1 Adversary in G2 Preferred SPS 115
6.3.b Numerical Example of Type 1 Adversary in G1 Preferred SPS 115
6.3.d Numerical Example of Type 1 Adversary in G2 Preferred SPS 115
6.4 Strategic Form of Type 2 Adversary vs. SPS 117
6.5 Payoffs and Numerical Examples of Type 2 Adversary 117
6.5.a Payoffs of Type 2 Adversary in G1 Preferred SPS 117
6.5.c Payoffs of Type 2 Adversary in G2 Preferred SPS 117
6.5.b Numerical Example of Type 2 Adversary in G1 Preferred SPS 117
6.5.d Numerical Example of Type 2 Adversary in G2 Preferred SPS 117
6.6 Case Based Analysis of Adversary-Type Uncertainty 122
6.7 Type 1 Adversary: Targeting the Availability of Registrar Server (G1) 129
6.8 Type 2 Adversary: Targeting the Availability of Proxy Server (G2) . . 129

7.1 Publication linked with Research Methodology 133

xiv

List of Figures

2.1 IBM MAPE-K Loop . 12

3.1 Game-Theoretic Decision-Making Framework 26
3.2 Retrofitting MAPE-K Model to Incorporate Game-Theoretic Design . 31

4.1 Required Concepts in our Incentive-Based Self-Protection Framework 37
4.2 The Architecture of Incentive-Based Self-Protection Framework . . . 41
4.3 Malicious Goals Decomposition Graphs 45
4.4 Quality Goals Decomposition Graphs 46

5.1 High-level Architecture of MARGIN in a SPS System 75
5.2 Composing GAAM for the Experimental Evaluation 90
5.3 RQ2.1 Scenarios . 93
5.4 RQ2.2 – No Cost Countermeasures vs. Costly Countermeasures . . . 94
5.5 RQ2.2 Scenarios . 96
5.6 RQ2.3 – Comparing explore rates ε = 0.1 vs. ε = 0.9 97
5.7 RQ2.4 – Comparing discount factors γ = 0.1 vs. γ = 0.9 98
5.8 RQ2.5 – Comparing learning rates α = 0.1 vs. α = 0.9 99
5.9 RQ2.6 – MARGIN vs. No Defense Box-plots 100
5.10 RQ2.6 – MARGIN vs. Random Box-plots 104
5.11 RQ2.6 – MARGIN vs. Fixed Box-plots 105

6.1 Extensive Form of the Modeled Bayesian Game 120

xv

6.2 An Example of a Bayesian Security Game and Its Numerical Solution
Obtained Using GAMBIT Software [65] 124

xvi

Chapter 1

Introduction

Today’s life style is largely dependent on software systems. Securing these systems
and their information are a critical concern from personal to governmental scale
standpoints. However, the increasing complexity of software systems hardens the
achievement of the desired level of security. In these systems, a great challenge for
administrators is to select a timely countermeasures in response to attacks. Nonethe-
less, the dynamic nature of security attacks demands fast reacting adaptive systems
that are able to detect and mitigate threats on the fly while ensuring the security
goals of Confidentiality, Integrity, and Availability (CIA) 1. Designing Self-Protecting
Software (SPS) systems is a response to these demands.

The main objective of SPS systems is to satisfy security goals and requirements.
An important issue in these systems is to make adaptation decisions as a response
to threats or to the deviations from security goals. The aforementioned issue has set
the main goal of this PhD research thesis. More specifically, we aim at providing a
novel systematic approach for decision making in SPS systems.

1.1 Motivation

The number of application-layer attacks (such as “low and slow” Distributed Denial
of Service (DDoS) attacks) is rising in the past few years2. According to the Arbor’s

1https://en.wikipedia.org/wiki/Information security/
2https://www.arbornetworks.com/blog/insight/application-layer-ddos-attacks-the-numbers-

may-surprise-you/

1

12th annual Worldwide Infrastructure Security Report (WISR), the average cost of
downtime to the victims of a DDoS attack is around $500 per minute3. The report
also indicates that 25% of DDoS attacks target applications which means about
2 million attacks annually. The challenge is that malicious requests can look like
legitimate requests until the application can no longer respond.

Incapsula4, a company that provides website security and DDoS protection ser-
vices, announced the mitigation of one of the most sophisticated and highly adaptive
DDoS attacks they have faced so far5. The attack was against one of its customers
that was a popular trading site and was suspicious to be initiated from the ex-partner
of the targeted company as the attacker has intimate knowledge of the vulnerabilities
in the targeted infrastructure. The attack was ongoing for few weeks until it was
fully mitigated. It was a combination of various network-layer and application-layer
attacks. The unique characteristic of this attack was the dynamic change of attack
type based on the defense strategy that is taken by Incapsula. For example, it started
with a network SYN flood attack and was followed by various application-layer at-
tacks such as HTTP flood attack that targeted several chosen resource intensive
pages. These attempts were mitigated by approaches such as sufficient network ca-
pacity and client classification. However, interestingly the attacker seems to be able
to observe failure of those attacks and started another type of application-layer at-
tack by targeting the AJAX objects of website which results in severe impact on the
database.

As Incapsula kept blocking the different attack methods, the attacker kept adapt-
ing. Finally, the attacker started flooding the website with requests that appear to
be legitimate as they were sent from real browsers using malware-infected computers.
One of the Incapsula researchers said: “It looked like an abnormally high spike in
human traffic”. Incapsula researchers were able to manually detect this attack and
apply CAPTCHA challenges to mitigate it.

As highlighted above, software systems or software security providers, cannot
rely on rule-based, policy-based, or goal-based decision-making approaches [7][99].
These approaches either fail to protect the software system when facing dynamic
attacks or become too complicated to capture and maintain all possible scenarios.
Attack mitigation is often hard coded in these applications. As a result, responding
to uncertain types of attacks is not possible. Moreover, intrusion response at the

3https://www.arbornetworks.com/blog/insight/ddos-attacks-2017-no-days-off/
4http://www.incapsula.com/
5https://www.pcworld.com/article/2056805/applicationlayer-ddos-attacks-are-becoming-

increasingly-sophisticated.html

2

later stages of an attack results in more harm to the system in terms of cost and
annoyance of legitimate users. Hence, a great challenge in engineering SPS systems is
to design a decision-making engine that is capable of selecting a timely countermea-
sure. Providing this capability, calls for SPS systems with innovative and adaptive
decision-making engines that have a set of countermeasures in place to compete with
well-planned strategies of attackers.

Furthermore, adaptive application security involves making decisions under un-
certainties such as the time, the power, or the damage of potential attacks. One of
the uncertainties that has been largely ignored in the literature is the intention of the
adversaries. The majority of research focuses on characteristics of attacks (e.g., their
request arrival rates), whereas characteristics of attackers/adversaries (e.g., their in-
tentions and strategies) are neglected. For example in case of Incapsula, the attack
was initiated from an ex-partner whom has more knowledge of the application than a
malicious user. In today’s sophisticated attacks, in order to confuse defense systems,
adversaries may initiate an attack that exhibits a scenario similar to another attack
but has an entirely different malicious goal (e.g., to break down the server or to harm
a specific user in the system). In such cases, incorporating uncertainty about the
type of adversaries into the decision model helps to choose a proper countermeasure
for protecting the software systems.

1.2 Problem Description and Research Focus

In this research work, capturing the inherent interdependencies between strategies
of the SPS system and the attacker is the main concern in designing the decision
model. The success or failure of an attack depends on how the system is protected,
and similarly the effectiveness of a countermeasure depends on how the system is
being attacked. In a nutshell, there is a need for decision models that can be adapted
based on the strategies of attackers. To address this gap, we employ game theory in
order to quantitatively analyze multi-players actions and utilities in SPS.

Problem Statement: How to model, design, and realize a novel decision-making
engine in SPS systems with the aid of game-theoretic techniques?

To employ a game-theory technique, we first need to model the payoffs of the
players (SPS and the attacker). The objective is to incorporate the knowledge gath-
ered from the goals and strategies of the players. Modeling the goals of the players
facilitates interpretation of the relation among various sources of data. Goal models

3

help to capture the positive or negative impact of strategies and hence defining the
payoffs.

In this research, the focus is to model and incorporate goals and strategies of
attackers into the deciding-making engine. The inputs to this engine are the sets
of goals and strategies which are defined for both the SPS system and the attacker.
The output of the decision-making engine is a countermeasure representing the cho-
sen strategy by the SPS system while taking into consideration the strategy of the
attacker.

1.3 Approach and Research Questions

In our research approach, we aim at engineering a novel decision-making framework
that utilizes game theoretic techniques to select the proper mitigation against an
attack. The framework will consist of three phases including: (i) modeling quality
goal, (ii) designing game-theoretic techniques, and (iii) realizing the decision-making
engine. The first phase models the security goals of the system and afterwards maps
the goal-oriented model to the designed game-theoretic technique. The goal-oriented
model empowers the decision-making engine capable of tracking the satisfaction of
the goals before and after applying a mitigation strategy. The framework provides
the steps to map the goal-oriented model to the employed game-theoretic technique.
The technique is chosen by taking into consideration the available information from
the attack scenario and the security requirements of the software system.

The approach aims at providing answers to four research questions. For each of
these questions, we explain the objective and the followed methodology,

1.3.1 RQ1: How should the framework incorporate the in-
centives of the attacker?

Objective: Considering the intention behind an attack facilitates mitigation of both
dynamic and uncertain attacks. We noticed that one of the shortcomings of the
traditional approaches is their only concentration on the modeling of the security
goals, while modeling the malicious goals of attackers is over-sighted.
Methodology: To incorporate the strategies and incentive of the attacker, we model
the malicious goals of the attacker. The possible malicious goals can also be deter-
mined by investigating the history of attacks to the software system. We start from

4

defining the high-level goals, then we break them to lower-level goals that can be
related to measurable attributes. Chapter 4 provides the details of incorporating the
incentive and strategies of attackers.

1.3.2 RQ2: How should the framework learn from previous
action selections?

Objective: Learning from the impact of previous countermeasures guides the decision-
making engine to take more proper countermeasures in future action selections. Such
information will guide the decision-making engine to make better decisions specifi-
cally when facing dynamic attacks.
Methodology: To provide a feedback loop in the decision model, we quantify the
positive/negative impact of the previously applied countermeasures and incorporate
this information into the decision model. Chapter 5 provides the details of incorpo-
rating the feedback from previous action selections into the decision model.

1.3.3 RQ3: How should the framework support adversary-
type uncertainty?

Objective: Considering uncertainty about the type of the adversary facilitates mit-
igation of the malicious user behavior as early as possible (before the type of the
attack is detected). When an attack scenario is similar among various adversary-
types, there is a need to model the characteristics of adversaries/attackers instead of
merely modeling the characteristics of attacks.
Methodology: To equip the proposed framework to support adversary-type un-
certainty, we consider probabilistic approaches that can define uncertainty in utility
values. The details of the proposed Bayesian game decision-making model is provided
in Chapter 6.

1.4 Research Contributions

The objectives of our research to the problem of countermeasure selection in SPS
systems is engineering a framework that considers goals and strategies of the system
and malicious users in its decision-making engine. The contributions of this research
are:

5

• a novel mapping from high-level quality/malicious goals to quantita-
tive utility values. The proposed framework allows reasoning about security
goals considering other quality goals such as performance, cost, or usability
depending on the business goals of the system and hence capturing the trade-
offs among security and non-security goals. The modeled framework not only
considers the quality goals regarding the adaptable system, but also incorpo-
rates the malicious goals of attackers as the basis for reasoning in choosing a
countermeasure. Thus, satisfaction of these goals need to be mapped to utility
values to make action selection possible.

• a unique modeling of the interdependencies among defense and at-
tack strategies. Whether an attack can succeed relies on how the system
is protected. Similarly, a defense strategy is effective depending on how the
system is attacked. The proposed framework captures such interdependencies
among strategies.

• a learning-based decision model during runtime. The proposed frame-
work not only mitigates the fixed-strategy attacks, but also prevents dynamic
attacks. Such attacks change their strategies in order to stay hidden from the
intrusion detection system.

• an innovative decision model for adversary-type uncertainty. If the
type of the adversary is unknown, the mitigation have to be postponed until the
intention of the attacker is clear which happens at the later stages of the attack.
Hence, mitigating such attack scenarios can be extremely costly. The proposed
framework addresses the scenarios when the software system is uncertain about
the type of the adversary as soon as the malicious behavior is detected.

• a step-wise plug-and-play framework. The proposed framework provides
the guidelines that can be employed to engineer a self-protecting software. The
guidelines are generic enough that does not require specific system require-
ments. Hence, various techniques can be employed depending on the available
information as well as the security requirements of the software system.

The research achievements can be enumerated as follows:
• The idea of a holistic and game-theoretic decision-making for adaptive security

was discussed in [43]. This article was later selected to be published in the Cyber
Security E-Book: Best of TIM Review, Kindle Edition.

6

• The modeling aspect of self-protecting software systems in our research method-
ology was presented in the Canadian Consortium for Software Engineering Research
(CSER) in November 2014. The poster received the Best Poster award (3rd place).
• A study in mitigating application-layer SIP flood attack in VoIP telephony

systems is conducted by applying the Markov game technique and the obtained re-
sults were presented in the 24th IBM Annual International Conference on Computer
Science and Software Engineering. The presented poster won the IBM Best Exhibit
award.
• Another article discussed the idea of adaptation based on the strategy of the

attacker and mitigation of attacks considering preferences in quality goals. This po-
sition paper was published in the Emerging Technologies Track (ETT) of the 24th
IBM Annual International Conference on Computer Science and Software Engineer-
ing [44].
• Our paper published in [45] elaborates on our study of strategy-aware mitigation

using Markov games for dynamic application-layer attacks. In this paper, a simulated
case study using MATLAB Simulink was performed to gauge our game-theoretical
approach in SPS systems.
• Our paper published in [46] focuses on addressing uncertainty about adversary

types in SPS systems using Bayesian game technique. This paper won the Best
Student Paper award in the 26th IBM Annual International Conference on Computer
Science and Software Engineering.
• The idea of my thesis is described in [42] which was discussed at the Doctoral

Symposium of the 39th Annual International Conference on Software Engineering
(ICSE).
• A poster was presented in the 39th Annual International Conference on Software

Engineering (ICSE) elaborating on the idea of game-theoretic approach for decision-
making in SPS [41].
• The idea of strategy-aware mitigation using Markov games [45] is extended as

a journal draft and has been submitted to ACM Transactions on Autonomous and
Adaptive Systems (TAAS) journal. Currently, the submission is awaiting reviewer
scores.
• The position paper that was published in [44] is extended as a full journal

draft and is under its final revision to be submitted to Journal of Systems and
Software (JSS).

7

1.5 Document Organization

The rest of this thesis is organized as follows. Chapter 2 briefly reviews the back-
ground concepts and some related works. Chapter 3 details the proposed plug-and-
play framework. Chapter 4 shows how the framework has been realized to incorporate
the incentive of the attacker. Chapter 5 extends the framework to support learning
from previous action selection. Chapter 6 shows how to expand the framework to in-
tegrate adversary-type uncertainty. Chapter 7 summarizes the thesis, draws several
conclusions, and suggests ideas for potential future works.

8

Chapter 2

Background and Related Works

In recent years, interests in building software systems that are adaptive to their secu-
rity goals has increased. Self-Adaptive Software (SAS) systems address automation
in response to changes in the requirement and environment. SAS monitors itself
and its context, detects significant changes, decides how to react, and executes such
decisions [109]. SAS systems monitor the software itself and/or its context based on
the specific goal they are intended to fulfil. In these systems, the software behavior
is evaluated at runtime and pre-defined actions will be executed in case of detecting
anomaly in the bahavior of software. The objective of these systems is to ease the
need for continuous human supervision. The need for a self-adaptive software was
recognized by DARPA in 1997. The Broad Agency Announcement (BAA) [73] de-
scribes Self Adaptive Software as: “Self-adaptive software evaluates its own behavior
and changes behavior when the evaluation indicates that it is not accomplishing what
the software is intended to do, or when better functionality or performance is pos-
sible.” As software systems become more complicated and diverse, anticipating the
interactions among components by software architects are less possible, which leads
to software systems dealing with these issues at runtime. Even skilled humans are
not able to integrate such complex and massive software systems.

Installing, configuring, optimizing, and maintaining a software system at runtime
is a challenge that first was addressed in 2001 by IBM. The only option remaining
to tackle the aforementioned problem is autonomic computing. The inspiration of
autonomic computing comes from biological systems. For example, heart rate is
administered by nervous system unconsciously. It can get slower or faster depending
on different conditions without requiring brain instruction. Biological systems co-
operate with complexity, heterogeneity and uncertainty [107]. Our conscious brain

9

does not need to worry about vital and lower-level decision makings as autonomic
nervous system deals with these functions. The idea of autonomic computing is
coming from the same perspective. It frees system administrators in dealing with
lower lever decision makings in management and tedious operational tasks. Here, we
briefly name the 8 elements of autonomic computing recognized by IBM [32].

1. Self-Aware is the capability of the systems to be aware of itself by means of its
states and behaviours. It is provided by the system monitoring itself.

2. Context-Aware is the ability of the system to be aware of its operational envi-
ronment and its changes.

3. Self-Configuring is the capability of installing, configuring, and integrating
large complex systems. In these systems, a new component will incorporate
and adopt itself seamlessly.

4. Self-Optimizing finds ways to improve their performance, response time and
throughput. In a self-optimizing system, low priority tasks can use computing
resources when computing resources are not fully used by higher priority tasks.

5. Self-Healing is the capability of recovering from anomalous behaviour. Self-
healing is the process of detecting, diagnosing, and repairing localized problems
resulting from bugs or failures in software and hardware.

6. Self-Protecting is the capability of detecting security attacks and triggering
countermeasures. These systems not only defend against the malicious attack
but also are capable of anticipating problems and taking steps to avoid them
or moderate their effects.

7. Anticipation is an optional property. An autonomic computing system will
anticipate the optimized resources needed while keeping its complexity hidden
from the user.

8. Openness is an optional property. Computing resources are product of different
vendors that may or may not share the detail of their product. Managing these
computing resources is a challenge since the focus is on building tools rather
than on automation of decision making.

IBM [64] outlines existing and emerging standards related to autonomic managers
as well as sensors and effectors. Two comprehensive roadmaps on software engineer-
ing for self-adaptive systems published in 2009 [27] and 2013 [77] covering a different

10

set of topics and challenges that must be addressed by this community. To ensure
that user requirements are satisfied and quality attributes met their expectations,
software Validation and Verification (V&V) methods are developed. Developing cer-
tified runtime V&V mechanisms in self-adaptive systems is discussed further in [122].

Self-Protecting Software (SPS) systems are a class of self-adaptive software sys-
tems that aim at protecting system against malicious attacks and accidental cas-
cading of failures. SPS systems are developed using existing self-adaptive software
development methods aiming at reducing human involvement in protecting systems
against malicious attacks. Automation accelerates the analyses of the monitored data
and perhaps increases the number of symptoms that can be detected in order to pre-
vent security threats. Moreover, automation helps to speed up the decision-making
process at the time of the attack. In an SPS system an immediate, suboptimal re-
sponse can sometimes be more effective than a late, optimal response. These timely
actions prevent the spread of attacks and therefore minimize the consequences of the
attacks.

2.1 Self-Protecting Software Principles and Re-
quirements

An SPS needs to anticipate threats based on early reports from sensors and then
take steps to prevent or alleviate them. The goal of a SPS is to recognize and deal
with attacks without human administrators being involved in the decision making.
SPS systems have the ability to detect security attacks and trigger countermeasures.
These systems not only defend against malicious attacks but also are capable of
anticipating problems and taking steps to avoid them or moderate their effects [109].
Adaptation engine in SPS as well as SAS can be realized using internal or external
approaches [109]:

• Internal approaches fuse software and adaptation specification while exter-
nal approaches use an external adaptation engine. Internal approaches suffer
from costly maintenance and lack of scalability because of low level adaptation
mechanism they use (e.g., programming-based mechanism).

• External approaches are reusable, scalable, and easily maintainable.

In SPS systems that are based on application-layer information, integrating adap-
tation engine can be either internal or external to the software system. At the network

11

layer, this component is mostly external because sensors relay on the data coming
from the network to the software system as opposed to the data transferred inside
the system.

In an autonomous system, autonomic manager’s functionality is organized into
four groups of functions called MAPE-K (Monitoring, Analyzing, Planning and Exe-
cuting) loop. These processes share a common Knowledge of the system (Figure 2.1).

Figure 2.1: IBM MAPE-K Loop [33]

• Monitor (Observe): Monitoring is fundamentally important in supporting
autonomous systems. It collects data from a managed resource (software system) or
the software environment through sensors. The collected data can be aggregated,
correlated or filtered if necessary. The data gets ready to be analyzed further. Col-
lected data includes information regarding system status, throughput or etc. For
instance, log files contain information about severity of the error and its trace back.
Monitoring can also be achieved through heartbeat mechanism. During runtime, it
is important that monitoring functions quickly collect and organize the data and
provide them to the analyzer functions.
• Analyze (Detect): A self-protecting system can detect illegal activities. It

analyzes the changes to ensure business goals are being met. Otherwise, the adap-
tation engine need to plan to adapt the system in order to meet the system policies.
To analyze complex behaviors of the system, modeling mechanisms aid autonomic
manager not only to analyze the managed resource (or its IT environment) but also
to predict the future behavior of the managed resource with the aid of modeling
techniques such as time-series forecasting or queuing models. Intrusion Detection
Systems (IDSs) compare data packets with a library of known attacks.
• Plan (Decide): Planning is to construct a plan of actions in order to meet

the objectives and business goals. The resulted plan needs to be aligned with the

12

defined policies. Planning can be of different granularity such as running a function
or setting up a new server. Intrusion prevention systems plan on how to react to the
detected malicious attacks. Self-adaptation requires two kinds of plannings, obser-
vation planning and adaptation planning. The former is planning what observations
are required and the frequency of the observations and their cost. The latter is to
determine which adaptation to make, when and where to make the adaptation.
• Execute (Act): Execute functionality performs the necessary changes in the

provided plan through effectors. Execution of the changes can involve updating the
knowledge that is used by the autonomic manager [64]. This process is responsible
for applying security function at runtime.
• Knowledge: Knowledge contains particular data that can be shared between

MAPE functions. Knowledge can be symptoms, policies, historical logs, metrics,
topology information and etc. It is shared through registry, dictionary, database or
etc. knowledge can be obtained through policies or be retrieved from an external
knowledge source such as specific historical knowledge or can be either created or
updated by autonomic manager itself. Monitor functions can create knowledge by
collecting historical log files. Execution functions may update the shared knowledge
to show the actions that were taken. Analyzing and planning functions may later use
this information to enhance their decision-making process. Knowledge of application
architecture in component-based systems can be used to detect foreign activities and
to trigger counter measures [31]. Knowledge in a dynamic environment is not static.
In a dynamic operational environment, shared knowledge among MAPE processes is
subject to change. New techniques to obtain knowledge in a dynamic environment
is discussed by Fisch et al. [50]. Their techniques benefit from communication of
knowledge in a multi-agent system. By means of cooperation among intelligent
agents, the agents are able to coop with the situations that they have not already
faced.
• Sensor: Behavior and structure of the system need to be observed to be able

to act on and modify the system. Basically sensors reflect the application behavior.
Sensors in adaptive security aim at capturing changes that impact security. Methods
such as packet filtering can be employed in observing necessary data. Sensors can
be loggers that record system activities and events. The pattern of events that leads
to an attack can be exploited in detecting the attack early on.

Furthermore capability of adding and removing sensors would let the system to
plan on adding/removing sensors if necessary. For example when a particular behav-
ior is observed, additional information might be needed before deciding the adapta-
tion plan. In adaptive security, to distinguish a malicious attack from a suspicious

13

attack, supplementary information is demanded.
• Effector: A self-protecting system triggers the right countermeasure with or

without minimal human interventions. Effectors trigger and execute the adaptation
plan. A system can modify its own behavior or structure with the aid of effectors.
Effectors can isolate a node, apply more strict rules in checking the packets that it
sends, or even force to reboot or reinstall a node [31].
• Managed resources: The elements of a software system that are controlled

with the adaptation manager are called managed resources. They are essentially
what is found in software systems, for instance, CPU, database, server, etc.

It is worth mentioning that the main goal of this research is to realize the Planning
process of the MAPE-K model. The other three processes in the MAPE-K (i.e.,
Monitoring, Analyzing, and Executing) are not the focus of this research.

2.2 Related Research Projects

Our work has taken shape in the context of a rich literature focused on (i) adaptive
application security, (ii) modeling and analyzing security, (iii) decision making in
SPS, (iv) application of game theory in cybersecurity, and lastly (v) attack-type
uncertainty in SPS. Here, we relate our work to the most related projects in each of
these fields.

2.2.1 Adaptive Application Security

Elkhodary and Whittle provide a survey on application adaptive security mech-
anisms [40]. The studied mechanisms are evaluated according to computational
paradigm, reconfiguration scale, and conflict handling. The authors discuss decision
making in application adaptive security from conflict resolution handling aspect;
Whether the conflict is resolved by the user, the system, or both. Yuan et al. pro-
pose a taxonomy of SPS, the authors discuss adaptation decision making in terms of
how adaptive decisions are made [133]. The authors also conducted a systematic sur-
vey on self-protecting software systems [132]. They categorized adaptation decision-
making approaches into: human-driven, heuristic-driven, or algorithm-driven. An
architecture-based self-protection approach is presented by Yuan et al. [135]. The
authors describe several architectural adaptation patterns in order to detect and mit-
igate web application security threats. The described patterns are also realized based

14

on Rainbow [52] architecture-based adaptation framework. An adaptive rule-based
malware detection at the host level is presented in [11]. The authors employ learning
classifier systems, which is a combination of rule-based expert systems with evolu-
tionary algorithms. Their approach is based on reinforcement learning in order to
dynamically evolve decision rules. However, the focus of their work is not adaptivity
at the application-level. A noticeable gap in the application-level adaptive security
literature is the lack of systematic decision-making approaches.

SecuriTAS proposed by Pasquale et al. [99] enables software designers to model
security goals and requirements of a system at the design-time. The model is used at
runtime to analyze and plan for adaptation. Security concerns are modeled by Fuzzy
Causal Network (FCN) from goal model, threat model, and asset model to represent
the relationship among security goals, threats and assets. In SecuriTAS, decision
making is supported by utility nodes in the defined FCN. Bailey et al. [7] propose
a model-driven self-adaptive approach to access control. Their proposed run-time
approach is based on model generation, transformation, and verification to provide
assurances that the deployed adaptation conforms to the system requirements. Ac-
cess control policies are associated with system resources, and access rights assigned
to users; Access decisions are based on access control rules. An architecture-based
self-protection is studied by Schmerl et al. [111] in which various denial of service
mitigation strategies and their effect on quality attributes are evaluated using Rain-
bow self-adaptive framework [52]. The authors take advantage of decision theory
and utility theory to provide a scientific basis for decision making in SPS. An auto-
mated DDoS attack mitigation platform called CAAP is presented in [9]. CAAMP,
a software defined mitigation platform that dynamically mitigates the DDoS threats
on applications on a public cloud using a private cloud. The above approaches, even
though effective, rely on simple rules for action selection. Hence, they may fail to
mitigate well-planned attacks.

2.2.2 Modeling and Analyzing Security in Self-Protecting
Software

Modeling and reasoning with prioritization of Non-Functional Requirements (NFRs)
to better making runtime decisions is of more interest in the recent years [3] [100] [101].
Modeling and analyzing security helps to collect and organize security related con-
cepts such as security and non-security goals, threats to the systems, and attacks.
Various modeling techniques have been proposed to model security aspects of soft-
ware systems [119] [125]. These models consist of goal models, threat models, and

15

other similar models. Goal models capture both security and non-security goals
of the adaptable system and the relation among goals of the system and goals of
(malicious and regular) users.

An important issue in software security is analyzing the trade-offs among the
competing goals of multiple actors (e.g., system admin, malicious user). In order
to model goals of the software system and the attacker, there are well-studied goal
models in the literature that can be employed (e.g., [12] [62] [80] [93] [97] [124]).
Such modeling techniques provide proper basis for modeling and analyzing security
trade-offs. However, dealing with runtime adaptation, a decision model is required
to not only capture security analysis but also to accommodate payoffs and decision
nodes.

A key challenge in software systems is continuous assurance of quality goals at
runtime. Traditionally, satisfaction of quality goals is gained through a variety of
requirement engineering and analysis at the design and the development time such
as security requirement engineering [39]. Our proposed framework aims at provid-
ing an engineering approach to fuse adaptive security into software systems while
considering quality goals of the software system as well as the malicious goals of an
attacker.

2.2.3 Decision Making in Self-Protecting Software

One of the key challenges of feedback control loops in SPS systems is the action-
selection process [77]. A quality-driven approach for enabling decision making in self-
adaptive systems is discussed by Salehie and Tahvildari [108]. The authors propose
an action-selection mechanism based on cooperative decision making. Various ap-
proaches for decision making in self-adaptive system have been proposed (e.g., [60]).
A probability-based approach to support decision making in SAS systems based on
dynamic decision networks is studied by Bencomo et al. [10]. The authors address
the challenge of making adaptation decisions under uncertainty in SAS systems.
Pandey et al. [98] present a novel hybrid planning approach for decision-making in
self-adaptive systems. They deal with potentially conflicting requirements of time-
liness and optimality of adaptation plans. Although there are many solutions for
making adaptation decisions in SAS, decision making in SPS systems have not yet
received the full attention they deserve.

The knowledge incorporated in selecting proper actions in these techniques is
gained from the system itself and/or its environment. The destructive nature of

16

attacks distinguishes the decision making in SPS from the decision making in the
other forms of SAS. SPS should be able to fuse the goal and strategies of attackers in
its decision-making process so that it can take fast and valid reactions to sudden and
unforeseen changes in strategies of attackers. Moreover, the goal of decision making
in SAS is to select the adaptation action that helps to reach the system to its optimal
state. However, in SPS the goal of the deciding process is to discover the adaptation
action that directs the system to the safest state during runtime.

A variety of decision mechanisms in autonomic computing systems and more
specifically self-optimizing systems is investigated in [86] and a comparison of the
approaches for decision making is provided. Moreno et al. [92] present an approach
for proactive latency-aware adaptation that makes fast adaptation decisions while
producing similar results compare to another approach based on probabilistic model
checking. A decision making strategy consists of a set of strategies (adaptation
mechanism) and criteria (attributes presented in architecture layer) to achieve cer-
tain objectives (goals) [51]. Most approaches in SPS, implicitly fused these three
dimensions as a set of rules or policies.

In general, decision making to provide cyber defense is an ongoing challenge. The
work by Gonzalez et al. [56] aims at providing a better understanding of dynamics of
cyber-attack and defense actions through simulations of cybersecurity scenarios using
a multi-agent cognitive model framework. In the field of self-adaptation software sys-
tems, different techniques (from probabilistic models [10] to goal-driven models [110])
for making adaptation decisions are investigated. However, decision making in SPS
systems has not yet received the full attention it deserves. A systematic survey of
SPS systems [132] highlights the lack of sophisticated decision-making techniques
in these systems. More recently, the approach presented by Barna et al. [8] uses
a performance model to predict the impact of arriving requests; a decision engine
adaptively generates rules for filtering traffic and sending suspicious traffic for further
review. They use CAPTCHA puzzle test [126] to verify the legitimacy of users.

Bailey et al. in [7] propos an SPS system to protect the system against insider
threats, by adapting the access control policies associated with system resources,
and access rights assigned to users. Both [8] and [7] assume that the SPS system is
aware of the type of attacks at the time of adaptation decisions. Data mining tech-
niques have been extensively applied to provide security. Most research works have
focused on intrusion detection at network and host levels (e.g., [76]) and malware
detection at source code and executable levels (e.g., [113]). Recently, detecting mali-
cious behavior at the architectural-level has been investigated. In [131], Yuan et al.
took advantage of automatic mining of software component interactions to identify

17

potential malicious (abnormal) behavior in SPS systems. While developing threat
detection approaches (based on mining data collected from network traffic, source
code, or software component interactions) is an active research area, decision making
in SPS systems is performed using traditional approaches.

Despite the central role of the decision maker in mitigating application-layer
attacks, the impact of attacker strategy has not been directly modeled in the decision-
making process of SPS systems. Consequently, it is not incorporated to drive the
action-selection process.

2.2.4 Application of Game Theory in Cybersecurity

A variety of mathematical theories can be used to model and analyze cybersecu-
rity [36]. In dynamic systems, control theory is beneficial in formulating the dynamic
behaviour of the systems. In contrast to these approaches, game theory provides rich
mathematical tools and techniques to express security problems. Roy et al. [104]
emphasize that game theory can provide us with a mathematical framework for an-
alyzing and modeling network-security problems. The applicability of game theory
relates to the essence of game theory that deals with problems where multiple play-
ers with contradictory objectives compete with each other. Game theory continues
to get more attention in different disciplines including IT security. Security games
are employed as a basis for decision making as well as predicting the behavior of
attackers [4].

Definitions of some basic game theory terms (refer to [4] [35] [83]) are presented in
order to help readers better understand game theory. Security games consist of mul-
tiple players, a set of actions that can be taken by each player, and payoffs of taking
any of these actions. The solution to these games is known as Nash equilibrium [96]
which is a satisfactory solution concept that non of the players can gain further by
changing their strategies. In multiple-person decision-making scenarios, the players
are cooperative or non-cooperative competing for limited resources. Security games
can be modeled as non-cooperative games, in which, players make decisions indepen-
dently. A static game is a one-shot game where no player is allowed to change the
strategy. Wu et al. design a static game for bandwidth depletion attack for DoS
and DDoS [128] attacks. The existence of Nash equilibrium in the modeled game
represents the best strategy for both players. In dynamic games each player can
change their strategy during the game.

Game-theoretic models formalize the decision making in multiple players prob-
lems. Hence, concepts of game theory can be leveraged in the decision-making engine

18

of SPS systems. Security games allow players (the defender and the attacker) to de-
velop a systematic strategy based on formalized methods. In security games, players
do not have access to each others payoffs; therefore, they observe the opponent’s
behaviour and estimate the result of their action. Game-theoretic models are ex-
tensively discussed in the network security literature [58] [81] [88] [104] and more
recently in the Internet of Things literature [75]. The applications of game-theory in
software security has become more active in the recent years.

Game theory provides a quantitative approach in which the knowledge of players
is expressed by mathematical models. Haley et al. [59] distinguish cybersecurity as
a non-zero-sum game. In zero-sum games, your gain is your opponent’s loss [35].
However, in cybersecurity, this is not necessarily true. An attacker may just be
experimenting with a scenario for excitement and have no serious intention, even
though the attack may cause loss of revenue for the attacked system. Recent efforts
have attempted to address the challenges of understanding human factors in cyber
defense. Gonzalez et al. [56] introduce a framework called CyberWar Game which
employs game theory and simulates cybersecurity scenarios using a multi-agent cog-
nitive model. The authors draw insights from studying societies in which agents
exhibit human boundedly rational characteristics. They focus on addressing dynam-
ics of decision-making in cybersecurity at a very high-level and is not applicable to
software security.

The authors in the book chapter [15] show how Stochastic Multiplayer Games
(SMG) can be used to mitigate different types of uncertainty in contexts such as
self-protecting systems, proactive latency-aware adaptation, and human-in-the-loop.
SMG has been employed to enable developers to approximate the behavioral envelope
of a self-adaptive system by analyzing best- and worst-case scenarios of alternative
designs for self-adaptation mechanisms. Similar to the SMG analysis in this paper,
the interplay between a self-adaptive system and a potentially adversarial environ-
ment as an SMG, and the analysis that accounts for the strategy of the adversary
when selecting counter-measures has been described in [14] [16] [17] [18] [111] [112].
Yet, the framework and SMG analysis in this thesis is different from SMG analy-
sis in those studies by incorporating intention and strategies of attackers with the
action-selection process.

2.2.5 Attack-Type Uncertainty in Self-Protecting Software

Uncertainty can be defined as the difference between information that is represented
in an executing system and the information that is both measurable and available at a

19

certain point in the system’s life-time [54]. A definition and taxonomy of uncertainty
within the context of a dynamically adaptive systems is presented by Ramirez et
al. [102]. Furthermore, a summary of existing techniques and insights into addressing
uncertainty in self-adaptive systems is provided by Cámara et al. [13]. They present a
method to represent different types of uncertainty in MAPE-K self-adaptive systems.
Their analysis results show that although uncertainty-aware adaptation does not
guarantee to perform better than non-uncertainty-aware adaptation in all cases, but
rather in most of the cases.

Uncertainty in security games could be about information that the defender has
with regard to the attacker. In [123], authors investigated how human defenders
behave under several levels of uncertainty and various types of attack strategies.
They conclude that defense algorithms would be more efficient if they are adaptive
to the attacker actions. More recently sensing uncertainty in decision making for self-
adaptation is studied by Cámara et al. [19]. Their analysis is based on model checking
of stochastic multi-player games. Their results show that although uncertainty-aware
adaptation is not guaranteed to perform better than uncertainty-ignorant adaptation
in all cases, it does perform at least comparably in all cases.

Incorporating attack-type uncertainty into the decision-making process is stud-
ied in the field of network security, e.g., wireless ad hoc networks [85], Mobile Ad
hoc Networks (MANETs) [79], and network protection [53]. Capturing intentions of
attackers and the alternative ways they can be realized through an attack is stud-
ied in the field of requirement engineering. Alexander [2] advocates using misuse
and use cases together to conduct threat analysis during requirements analysis. Van
Lamsweerde [124] provides constructive guidance in early elaboration of security con-
cerns. In his paper, a requirement engineering method for building an intentional
anti-model is provided. The anti-model produces vulnerabilities and capabilities
required for achieving the anti-goals. Although security requirement engineering
provides models that elicit attackers’ goals and intentions at the requirement en-
gineering stage, runtime action selection in an SPS system requires the support of
runtime models.

Only a few cybersecurity approaches consider adversary-type uncertainty in their
decision models. For instance, a recent work by Garnaev et al. [53] studied the
incorporation of adversary-type uncertainty in network security protection. They
discuss the dilemma a network defender faces due to limited resources: either to
focus on increasing defense of the most valuable nodes or to defend all the nodes
while reducing the level of defense of the most valuable ones. They suggested a
Bayesian game in which the probability of the adversary’s type can be considered

20

as a sub-scale in the scale of threat levels. While the authors in [53] address the
uncertainty in network security, their modeled matrix game is specific to a network
of nodes in a communication network and cannot be applied in software security.

Another work, by Li and Wu [79], describes a dynamic Bayesian game between
regular and malicious nodes in Mobile Ad hoc Networks (MANETs). In their mod-
eled game, the regular node forms beliefs and measures uncertainty to evaluate the
type of opponent. The game is studied to choose the probability of cooperating with
the opponent or to report the malicious node. Additionally, a malicious node eval-
uates the risk of being caught and uses its flee strategy to avoid punishment. The
game modeled by Li and Wu [79] is specific to MANETs and cannot be applied in
the field of software security. In wireless ad hoc networks, the uncertainty of a de-
fender about his type of opponent (regular or malicious) is formulated in both static
and dynamic Bayesian game contexts [85]. The modeled game is specific to IDS
implementation in the network layer and cannot be employed in the field of software
security, and more specifically, for addressing security goals at the application level.
Liu et al. [84] developed a game-theoretic formalization that can capture the inher-
ent interdependency between an adversary’s intent, objectives, and strategies and
a defender’s objectives and strategies in such a way that adversarial objectives and
strategies can be automatically inferred. However, in their game model the security
goal preferences of the system are not considered in the decision model.

Recent literature in security games incorporates payoff uncertainty [94] and ad-
versarial uncertainty [95] using Stackelberg security games. Their modeled security
game is general and not specific to cyber security. Fielder et. al. [49] address the
challenge of making better security decisions by the aid of a game-theoretic model
that captures essential characteristics of resource allocation decision making (i.e. sys-
tem administrators’ time) to prevent data loss and defend system and network assets
of an organization.

As discussed above, the state-of-the-art either focuses on incorporating the uncer-
tainty about adversary types in (i) specific network security scenarios or (ii) general
security games. However, the focus of this article is on software security and fusing
the uncertainty about adversary types into the decision-making model of an SPS
system. More specifically, the benefits and costs of protecting/mitigating security
goals in a software system are incorporated in the proposed decision model.

21

2.3 Summary

This chapter gives a comprehensive review of principles for this research. We have
extensively reviewed the state-of-the-art research in SPS systems and raised relative
research challenges and gaps in this area. A revealing insight from this overview of
related research projects is the absence of decision-making techniques that capture
all the possible knowledge from the software system and its operational environment
(including its users) and incorporates such knowledge in making effective adaptive
decisions.

Observations from the state-of-the-art research can be summarized as follows:
(i) the developed underlying decision making in the current literature is based on
utility values that are defined by the use of policies or goals, (ii) machine learning
techniques mostly concentrate on the detection of attack followed by simple rule-
based attack mitigation, and (iii) most state-of-the-art approaches assume that the
attacker initiates and continues the attack with the same strategy.

It is worth mentioning that the problem of “How to design a dynamic decision
making approach that incorporates the strategy of the attacker” has not been explored
neither in academia not in industry. One solution is exploiting game theoretic ap-
proaches. In spite of that, the application of game theory as a potential solution for
decision making in SPS systems has not been investigated. This PhD research em-
ployes game-theoretic techniques in the decision making of SPS systems. In the next
chapter, we present our approach to address incorporating the strategy of attackers
in the decision-making of SPS systems.

22

Chapter 3

A Framework for Decision Making
in Self-Protecting Software
Systems

Securing software systems is a critical concern as these systems are involved in al-
most every aspects of today’s lifestyle. Moreover, the growing number of dynamic
and well-planned attacks make it more challenging to reach the desired level of secu-
rity especially in complex and interconnected software systems. Traditional software
security techniques focus on threat detection approaches and building Intrusion De-
tection Systems (IDSs). However, dynamic security attacks call for fast reacting soft-
ware systems that not only detect, but also mitigate threats. Building Self-Protecting
software (SPS) systems is a response to these demands. The main objective of SPS
systems is to satisfy software’s security goals and requirements by triggering ap-
propriate countermeasures. In this research, we provide a framework to facilitate
decision-making in SPS systems in such a way that the triggered countermeasures
are aligned with the security goals of the software system.

To devise a game-theoretic decision-making framework, we start by presenting
a motivating scenario 3.1. Followed by defining the three-phases of the proposed
framework in Nutshell in Section 3.2. Then we elaborate on each phase of the
framework in Sections 3.3, 3.4, and 3.5.

23

3.1 A Motivating Scenario

Two types of attacks that are major threats to a software system and significantly
difficult to detect and mitigate are: (i) slow application-aware DoS attacks [8], and
(ii) insider attacks [21]. These attacks differ in the essence of their damage to the
software systems. The former targets the availability of the software system and
the latter threatens its confidentiality. Interestingly, both application-layer DoS and
insider attacks share a similar scenario to fulfill their malicious goals; a user or
multiple users keep downloading documents to either (i) overload the server, or
(ii) gain access to confidential information in the system. In general, the scope
of the attacks that we aim at addressing in this thesis is limited to the attacks that
share similar scenarios and as a result confuse the IDS in determining the actual type
of the attack. DDoS attacks can be modeled as the multiple DoS attacks occurring
at the same time and each DoS attack is treated separately.

As a motivating example, consider a software system that provides mitigation
against both application-layer DoS and insider attacks by issuing a CAPTCHA
test [126] against DoS attacks or removing the access permissions of insider attack-
ers [7]. In this system, suspicious number of downloads is detected, but the attack
type (an application-layer DoS attack or an insider attack) is not yet distinguishable.
Consequently, even though the software system is capable of mitigating both types of
attacks, the decision-making engine fails to choose the proper countermeasure as soon
as the malicious scenario is detected. Hence, before the attack strategy is detected,
the system may (i) take a random countermeasure, or (ii) take a fixed countermea-
sure. For this reason, the SPS system may either take a wrong response (which does
not address the attack properly) or delay the selection of the countermeasure until
the attack type is clear to the SPS system. For example if an application-layer DoS
attack continues, the system’s availability noticeably drops, or if an insider attack
is in progress, unauthorized access of sensitive information will be noted eventually.
This delay works very much to the advantage of the attacker and its malicious goals.

What differentiates these two types of attacks from each other is the intention be-
hind them. In this motivating example, even though both application-layer DoS and
insider attacks exhibit a similar malicious behavior to the monitoring infrastructure,
the attackers intentions are entirely different. When initiating an application-layer
DoS attack, the objective of the attacker is to break down the system and make
it unavailable to its normal users. In the event of an insider attack, the goal of
the attacker is to gain access to sensitive information in the system. Accordingly,
defense strategies for these two attack types substantially differ from each other.

24

This fact highlights the importance of the correlation among defense strategies in
the underlying decision-making engine in the case of attack-type uncertainty.

In our framework, we aim at providing this correlation by incorporating the
intentions and strategies of attackers into the decision model. The intentions of
attackers can be modeled using soft-goal models such as Soft-goal Interdependency
Graph (SIG) [29]. Moreover, the correlation among attack strategies and defense
strategies is captured by modeling a two-player game and the impact of strategies
are instrumented with utility functions.

3.2 The Game-Theoretic Decision-Making Frame-
work in Nutshell

Our research objective is to provide decision making at runtime to adapt the sys-
tem in supporting security goals while incorporating the likelihood of an attack. To
achieve our research objective, we need to resolve several issues. First, we need to
design systematic models to represent, capture and analyze the impact of counter-
measures on security and non-security quality goals as well as on possible goals of
attackers. Second, given a list of countermeasures that can be taken by the adapt-
able software and possible attacks that threat the adaptable software, we need a
decision-making mechanism to reason which countermeasure is suitable to take con-
sidering strategy of the attacker. Third, we should be able to assess the adaptation
plan to evaluate the success or failure of the adapted countermeasure. These issues
can be accomplished by addressing the following set of research questions. We need
a methodology that provides notations, techniques and guidelines in developing an
SPS system. Moreover it should also allow for traceability and evaluation of security
goals during the runtime.

Fig. 3.1 depicts the phases of our decision-making framework. The framework
aims at exhibiting a plug-and-play capability to adapt a game-theoretic technique
that is the best fit considering the security goals and requirements of the software
system. The phases are summarized as:
•Modeling: Goal-Oriented Model. In SPS systems, the knowledge incorporated
in the decision models is not limited to the software itself and their running envi-
ronment. The users of a system are the potential attackers to a system. Hence, the
knowledge that captures the behavior (and ultimately trustworthiness) of the users
can enhance the quality of the decision making. In this research work, we model the

25

Figure 3.1: Game-Theoretic Decision-Making Framework

required knowledge by exploiting goal-oriented modeling techniques. These tech-
niques facilitate trade-off analysis among goals and provide a suitable base for deal-
ing with security. Goal-oriented models captures the required knowledge not only
from the adaptable system’s perspective but also from malicious user’s perspective.
The analysis of the trade-offs among goals in these models will further facilitate the
analysis of security decisions for the decision-making engine in a SPS.
• Designing: Game-Theoretic Decision-Making Mechanism. The second
phase of the research is designing the planning process of the SPS. Decision making
in competitive scenarios can be modelled as a game between the two players. Game-
theory is a natural fit to quantitatively analyze multi-players actions and utilities. In
designing the decision-making engine, we leverage game-theoretic algorithms. They
are distinguishable from other algorithms in considering the strategy of the opponent
when choosing the next action. Hence, game theory aids in trade-off analysis of
security countermeasures and possible attacks.
• Realizing: Adaptation Manager for SPS. The third phase of the research is
the development process in order to realize the first two phases. The first step of
this phase covers collecting the required information to build the goal-oriented model
and mapping the model to a game-theoretic technique. Next step is to develop the
decision-making mechanism. The last step in this phase is to evaluate and test the
planning process. Evaluation needs to be performed in a complete adaptation engine
interacting with other adaptation processes.

The research objective is to provide action selection at runtime to adapt the

26

system in supporting security goals. The plug-and-play feature in our framework
is the capability of the framework to employ (i) different goal models (in the first
phase) depending on the properties of the available data that can be used in the
model and (ii) various game-theoretic techniques (in the second phase) based on the
security goal and requirements of the software system. The framework aims at:
(i) capturing trade-offs among security and non-security goals, (ii) quantifying the
impact of an attack when selecting a countermeasure, and (iii) choosing a plan of
actions incorporating likelihood of an attack by employing a game-theoretic decision-
making technique. The following sections give more details on each phase of the
framework.

3.3 Modeling: Goal-Oriented Model

Security issues arise when a user of the system strives to achieve a goal that inten-
tionally or unintentionally threats the quality goals of the software system. In our
research approach, we consider the adaptation manager as a player in a game that
aims at protecting assets of the system. Besides, a malicious user of the system is
considered as a player that competes against the adaptation manager to exploit sys-
tem’s assets with the intention of breaking down the system. Therefore, in the first
phase of our research, the goal is to develop an goal-oriented model that captures
the relation between various concepts of both players. The model should be able
to represent goals and actions of the software system and specially their effect on
goals and actions of malicious users. Relations such as dependency or conflict among
concepts are recognized at this stage.

The first issue, when building a knowledge-base decision-making framework, is
representing the required knowledge. The knowledge includes goals, attributes,
states, and strategies. The objective of developing a goal-oriented model is to predict
the intentions and strategies of attackers based on available information. In the fol-
lowing subsection, we explain in more details the input concepts and their relations
in developing a goal-oriented model for SPS.

3.3.1 Concepts and Their Relations in a Goal-Oriented Model

In this section, we elaborate further on the concepts comprising the goal-oriented
model.

27

(a) Quality Goals and Malicious Goals: Incorporating goals in the adaptation
model has the advantage of being traceable and trustable [110]. It facilitates
analyzing and tracing goals at runtime and provides transparency of goals and
requirements. Specifying the goals of the players (adaptation manager and
malicious user) helps to answer the following question: “What are criteria
which players bases their decision upon?”. These criteria can be measured
during the runtime of the system. Therefore, the decision-making process can
quantify goals at runtime and consider their level of satisfaction when making
an adaptive decision.

(b) Countermeasures and Attacks: Depending on the vulnerabilities of the
software system, various attacks threaten the system and ultimately dimin-
ish satisfaction of quality goals. A set of countermeasures choose to be de-
veloped in the system aiming to prevent or mitigate such threats. This set
of countermeasures may include weak adaptation actions, such as parameter
adjusting, or strong adaptation actions, such as adding or removing system
components [109].

(c) Adaptable Software State and User Category: Both software states and
user categories can be represented in terms of various attributes. Values of
these attributes can be discrete or continuous. Discrete attributes, such as the
load of the system, can take certain values (e.g. ”high”, ”normal”, and ”low”).
Continuous attributes indicate a measurement at a certain point. For example,
the number of requests of a user per hour.
Determining the maliciousness of a user is a challenge by its own and is out of
the scope of this research. We can use simplistic behavior monitoring to deter-
mine the maliciousness of the action taken by a user. For instance, measures
to determine maliciousness of a user can be the amount of traffic generated
by the user or the sensitivity of the data that has been accessed by the user.
Other approaches can be employed to detect suspicious activities. For exam-
ple, Lamba et al. [74] describe a model-based approach to cluster sequences of
user behaviors within a system and to find suspicious, or anomalous, sequences.
Yuan and Maled [134] detect anomalous behavior by mining software compo-
nent interactions from system execution history. Zawawy et al. [136] discuss a
root cause analysis technique that can be used to identify the causes of failures
utilizing a probabilistic reasoning technique that is based on the use of Markov
Logic Networks.

(d) System Utility Function and User Utility Function: System and user

28

utility functions are essential to enable quantitative decision-making. The in-
formation in utility functions aim at: (i) quantifying cost and benefits of
countermeasures and attacks, and (ii) specifying preferences of each quality
goal and priorities of malicious goals while considering the state of the adapt-
able software and the category of the malicious user who is sending suspicious
requests to the system.

The relations among the above mentioned concepts need to be considered in the
goal-oriented model that will be developed, namely: (i) relations between denial and
satisfaction of software’s quality goals and goals of the malicious user, (ii) relations
between success and failure of attacks and countermeasures, and (iii) relations be-
tween software states and software quality goals and between user categories and
malicious goals. More details are given in the followings:

(a) Relation Between Quality Goals and Malicious Goals: Goals determine
the criteria of selecting actions at runtime. Actions that satisfy higher priority
goals are preferred over other actions. The two involved players (adaptation
manager and malicious user) have conflicting goals. Hence, specifying these
conflicts and the level of their impact on each other help the adaptation man-
ager in making a finer decision, considering various attack scenarios that a
malicious user may take.

(b) Relation Between Countermeasures and Attacks: Different software sys-
tems have different vulnerabilities that depend on their design and their de-
velopment. After identifying vulnerabilities of the system, the next step is to
determine potential attacks that can exploit them. Possible countermeasures
of the system and potential attacks can be related through vulnerabilities of
the system. Thus, by realizing the vulnerabilities of the system, we can define
a set of countermeasures that system can adapt to protect such vulnerabilities
or eliminate them. At the same time, malicious users may take advantage of
such vulnerabilities and target their attacks to harm the system by exploiting
one of these vulnerabilities. Identifying types of attacks that a malicious user
can trigger is beneficial in preventing them from happening.
Capturing the relations between countermeasures and attacks allow security
decisions to be made rationally.

(c) Relations Between Software State and Quality Goals and Relations
Between User Category and Malicious Goals: To connect the running

29

system and its users to the adaptation manager, the state of the running system
as well as its current users’ behavior need to be represented to the adaptation
manager. We aim at capturing the relations between software states and quality
goals along with the relations between user category and malicious goals. The
preferences of quality goals may vary depending on the state of the software.
For example, at certain states, high availability goal is the essential security
goal but in other states, high performance goal has higher priority.
Depending on the categories of users (such as insider attackers or careless
users), their intention and hence their malicious goal varies. Characterizing
users helps to identify their goals and consequently capturing the likelihood of
the actions that threaten the system at any point of time. We plan to relate:
(i) the states of the system to its quality goals, and (ii) the categories of users
to their possible malicious goals.

In SPS systems, unlike other self-adaptive software systems (self-optimization,
self-configuration, or self-healing systems), the adaptive decision is highly dependent
on the strategy of the attacker. Hence, a goal-oriented model that captures attacker’s
strategies is required. In general, two critical points are required in the potential goal-
oriented model that will be used: (i) capability of modeling more than one agent’s
decision situation, and (ii) capability of capturing the relationship between quality
goals and decisions.

The purpose of employing a goal-oriented model is to provide the adaptation
manager with the knowledge required in making a systematic decision. This phases
of the framework is carried out offline to build the goal model. However, if required,
the model can be updated during runtime of the software system as the security
goals and requirements change. In the next section, we describe the second phase of
the research which relies on the developed goal-oriented model in the first phase.

3.4 Designing: Game-Theoretic Decision Making
Mechanism

Envisioning all possible strategies that can be taken by a malicious user is not possible
at the design-time. This challenge is addressed by utilizing game-theory in decision
making of SPS systems. The purpose of this phase is to design a game-theoretic
mechanism using the goal-oriented model produced in the previous step. The model

30

Figure 3.2: Retrofitting MAPE-K Model to Incorporate Game-Theoretic Design

guides in designing the decision model. The decision model is constructed using
game-theoretic algorithms. This phases of the framework is carried out offline to
design the decision-making algorithm and implement it. However, the runtime data
will be used during runtime as the inputs of the decision-making algorithm to select
a countermeasure and update the decision model.

In SPS systems, the adaptation mechanism consists of five main components,
based on MAPE-K reference model, presented by IBM in [71]: Monitoring, Analyzing,
Planning, Executing, and Knowledge-Base. In our approach, we incorporate modeling
the knowledge about the intentions and behavior of users into the MAPE-K loop as
part of the knowledge-base. The retrofitted MAPE-K reference model is illustrated
in Figure 3.2.

In this retrofitted model, the monitored data is originated from both the adapt-
able software and its environment which encompasses system users. The raw data
is then filtered or transformed (if needed) to identify information of the system and
users in the forms of various attributes. Subsequently, the attributes are passed

31

to the analyzing process. It encapsulates two main aspects of the decision-making
process: (i) the states of the system, and (ii) the actions of the user. The third
element of the decision-making process is the learning factor which is the effect of
the previous action that was executed.

One of the important aspects of a decision-making mechanism is the capability
of learning. It guides determining the benefit/loss after employing the adaptation
action that is selected by the system in respond to the malicious user’s action. It
requires calculating the effect of the last action taken by SPS. This effect can be
characterized based on the performance of the system or the maliciousness degree of
the user:

• Learning from performance of the system: One way to find the benefit
of the adopted action is by measuring the performance of the system. For
example, measuring the amount of increase or decrease in the load of the system
can be an estimation of the effectiveness of an action and hence, the reward
value.

• Learning from maliciousness degree of the user: Another option to
capture the reward value can be based on the user’s request and/or the user’s
history of requests. For example, the reward of dropping skeptical requests are
higher than the reward of dropping normal requests to the system.

In dynamic learning of malicious users’ intention and strategy, incorporating the
degradation or enhancement of the performance of the software system can be ef-
fective. It is also worth mentioning that the performance of the system can change
due to reasons other than the system being under attack. Hence, in some types of
attacks, such measurement is not a good indicator to detect an attack. In such sit-
uations, characteristics of requests issued by users are better candidates to evaluate
the feedback from taking an adaptation action.

The feedback from the previous adaptation action can be either by quantifying
the success (positive feedback) or failure (negative feedback) of the action. The
result of learning from positive or negative feedback is not necessarily the same. In
some systems, learning from success of the adaptation action is more effective than
learning from its failure or vice versa.

32

3.5 Realizing: Adaptation Manager for Self-Protecting
Software Systems

The objective of this phase is to realize the first two phases in building the adaptation
manager for SPS and furthermore implement and evaluate them. The steps in this
phase of research are summarized below:

(a) Building Goal-Oriented Model: The first step is responsible for collecting
the required information and provide a structure for this set of information.
The modeling process gathers the required information from two repositories
of security policies and vulnerability assessment. The developed model aims at
capturing the relevance of various input information. It incorporates priorities
and preferences of quality goals and their related actions. Such information can
be gained from security policies repository. This process analyzes the security
and non-security goals and requirements of the system and the impact of adap-
tation actions on those goals. In addition to modeling the system information,
the advantage of goal-oriented model is that it also recognizes possible mali-
cious goals and attacks for each vulnerability that exist in the system. This
information can be provided from vulnerability assessment repository. Since,
the essence of the to-be-developed adaptation model is capturing more than
one agent’s goals and actions, the resulted model is able to represent the im-
pact of defense strategies on the attacker’s strategy. The resulted goal-oriented
model is the input to the next process.

(b) Developing Game-Theoretic Decision Making Algorithm: Having a de-
cision model that captures the deciding criteria, the next step is to incorporate
it into the decision making mechanism that is in charge of finding the sequence
of actions that satisfy security goals. The decision making strategy is designed
and developed based on the developed decision model.

(c) Implementation: After building the model and developing the decision mak-
ing algorithm, the decision making mechanism need to be implemented as part
of adaptation manager planning process. The adaptation manager can either
be implemented internal or external to the adaptable software.

(d) Evaluation: Part of evaluating the action selection algorithm is evaluating the
satisfaction of security goals and requirements that are specified in the security
policies. The evaluation is possible by a feasibility study on various types of

33

attacks at runtime and by analyzing the impact of selected countermeasures
on utility function of the system and malicious users.

The third phase of the framework is carried out partly offline (building the goal
model, designing the decision-making algorithm, and implementation) and partly
online (evaluation). In general, the three phases of the framework are performed
throughout the Software Development Life Cycle (SDLC) [90]. From analyzing the
security and non-security goals, to designing the game-theoretic decision model and
implementing the decision-making engine and evaluate it.

The framework is scalable in terms of both the goal model and the decision model.
The quality goals that can be added to the goal model are limited. Hence the goal
model is scalable to capture as many quality goals are required. The decision model
is also scalable as the number of defense and attack strategies are not overwhelmingly
large. The scalability of the realization phase can be influenced by the number of
the malicious users. The framework monitors and analyzed each malicious user and
selects a countermeasure per user.

The complexity that is introduced to the software system by the above decision-
making framework is mainly related to the complexity of the designed game-theoretic
technique in the second phase of the framework. In general, the complexity of
computing two-player Nash equilibria is studied in detail by Chen et al. [26] and
Daskalakis et al. [34]. The modeled two-player games in our framework have lim-
ited number of actions for each player and hence computing the Nash equilibria is
straightforward.

3.6 Summary

This chapter introduced the high-level framework for decision-making in SPS sys-
tems. The framework aims at providing a systematic approach in engineering an
adaptation manager for SPS systems. The approach aims at exhibiting a plug-and-
play capability by it ability to adapt a decision-making technique that suites secu-
rity goals and requirements of the software. It enables employing decision-making
techniques capable of learning malicious user’s strategy and adapting accordingly.
Moreover, it considers various strategies that can be taken by the involved players
(adaptation manager and malicious users of the software system) before making the
adaptation decision. In the following three chapters, we investigate three different
game-theoretic techniques that are employed with the aid of the proposed plug-and-
play decision-making framework.

34

Chapter 4

Decision Making using Stochastic
Games

Software systems play an increasingly important role in critical infrastructure, gov-
ernment and everyday life. These systems are being designed and deployed, however,
security often is left for later. To make matters worse, the attacks that threat such
systems are becoming more sophisticated and are becoming harder to detect and mit-
igate. Despite such challenge, today’s state-of-the-art in software security consists
of solutions that address a particular security attack that targets Confidentiality,
Integrity, or Availability (CIA) security goals. Mostly, these solutions satisfy one or
two of these goals [132]. However, in the real world, each attack has a different im-
pact on security (and non-security) quality goals of the software system based on the
vulnerability being exploited by the attacker. Acknowledging this impact on quality
goals is beneficial to choose the proper defense strategy. Interestingly, various types
of attacks (even though distinct in their nature) can share similar attack scenarios
(behavioral patterns). In such cases, the targeted software system fails to select the
appropriate strategy when facing an attack scenario that is common among different
attack strategies. Consequently, a proper countermeasure cannot be applied until
the nature of the attack is clear to the software system. In other words, even though
a software system has the capability to protect itself against each individual attack,
it may be incapable of acting when faced with attack type uncertainty. Such un-
certainty is more probable when the attack is in its early stages and the Intrusion
Detection System (IDS) lacks enough symptoms to identify the type of the attack.

Software systems are a target for different attack strategies such as Denial of Ser-
vice (DoS) attacks [91], and insider attacks [21]. A Self-Protecting Software (SPS)

35

system is capable of detecting security threats and mitigating them through runtime
adaptation techniques [135]. Mature and effective defense mechanisms are proposed
to secure a software system [132] [40] [48]. There are extensive research studies on
detecting and mitigating each type of attacks individually [126][111][8][7]. However,
attack strategies can exhibit similar scenarios which results in uncertainty about the
type of the attack. There is little work on mitigation strategies that intervene in a
coordinated manner [114]. The lack of integrated defense strategies gives rise to trig-
gering countermeasures that do not properly mitigate when facing with attack-type
uncertainty. Although the continuation of an attack can clarify the strategy of the
attacker eventually (when enough data is gathered to analyze the attack strategy),
the delay between attack detection and mitigation can be easily exploited by attack-
ers to significantly damage the software system. However, state-of-the-art solutions
suffer from not systematically incorporating the strategies of the attackers in their
decision-making model.

Most research works that consider the strategies of attackers have focused on
network-layer security. Incentive-based modeling and inference of attacker’s intent,
objectives, and strategies and a game-theoretic formalization is presented by Liu et
al. [84]. However, their modeling is specific to the security at the network level.
Recent work proposed by Zonouz et al. [137] considers a game-theoretic intrusion
response engine by modeling a Stackelberg stochastic game. Nonetheless, their pro-
posed response engine targets security at the network level and is not applicable to
security at the application level.

In [45], we argued that the application of game-theory in Self-Protecting Soft-
ware (SPS) systems demonstrates promising results due to the incorporation of at-
tack strategies in the decision model. In this chapter, we introduce the idea of an
Incentive-Based Self-Protection (IBSP) framework that exploits game-theory to ad-
dress the aforementioned challenges. The IBSP framework extends the proposed
framework in Chapter 3. IBSP follows the three high-level phases as discussed in
Chapter 3. In IBSP, by incorporating malicious intentions of attackers into the de-
cision model, we aim at selecting a countermeasure that is aligned with the quality
goals of the SPS system while minimizing the satisfaction of the malicious goals of
attackers.

Our objective is to model and design a decision-making engine that reasons about:
(i) the impact of these actions on quality goals of the software system, and (ii) the
impact of the available countermeasures on malicious goals of attackers. The novelty
of our contribution is the incorporation of the malicious goals and intentions of
attackers into the decision-making process of SPS systems.

36

Quality
Goal
(QG)Countermeasure

(C)

Attack
(A)	

Vulnerability	

Satisfy/Deny

Satisfy/Deny

Protect

Exploit

Attacker	
Category
(AC)

Determine

Attacker	
Utility	
(AUtil) System	

Utility
(SUtil)

Effect

Effect

Effect

Effect

Malicious
Goal
(MG)

System	State
(SS)

Determine

Satisfy/Deny

Satisfy/Deny Borderline: Related to SPS

Borderline: Related to Attacker

Connection: Data Flow/Control Flow

State/Category

Soft-Goal

Strategy

Utility

Vulnerability

Legend

Figure 4.1: Required Concepts in our Incentive-Based Self-Protection Framework

The rest of this chapter is organized as follows. Section 4.1 presents the concepts
and notations used throughout this chapter. Section 4.2 gives an overview of the
extended framework employing the stochastic game technique. Section 4.3, 4.4, and
4.5 dive deeper into each phase of the extended framework: Modeling, Designing,
and Realizing phases respectively. Section 4.6 demonstrates the obtained results of
the evaluation. Finally, Section 4.7 summarizes the chapter.

4.1 Concepts and Notations

Table 4.1 shows the notations used throughout this chapter. Sets are shown by
calligraphic letters such as X = {Xi}. Hence, italic letters with a subscript (Xi)
represent a member of a set. Function names are illustrated by italic letters e.g.,
Func(list of inputs) → output. The utility values are shown by italic letters with
a subscript representing the name of the approach. The percentage of the difference
between two utility values is shown by italic letters that start with ∆ and has a
subscript for its name.

The main concepts involved in IBSP framework are shown in Figure 4.1. The SPS
system and the attacker are defined by the same set of concepts while information
related to the SPS system are illustrated with solid lines and information related to

37

Table 4.1: Summary of Notations Used

Notation Definition
A = {Ai} Set of Attacks
C = {Ci} Set of Countermeasures
AC = {ACi} Set of Attacker Categories
SS = {SSi} Set of System States
QG = {QGi} Set of Quality Goals
MG = {MGi} Set of Malicious Goals

G = QG ∪MG = {Gi} Set of all Quality and Malicious Soft-Goals
QGP (Soft-Goal) High Performance
QGU (Soft-Goal) High Usability
QGR (Soft-Goal) High Reliability
QGS (Soft-Goal) High Security
MGA (Soft-Goal) Access to Sensitive Data
MGB (Soft-Goal) Breaking Down the Server

SI = {SIi} A Set of Strategy Interdependencies
SIG = {SIGi} A Set of Soft-Goal Interdependency Graphs for both Quality

and Malicious Soft-Goals (QG and MG)
IMP = {++,+, ?,−,−−} A Set of Impacts

{++ : Make,+ : Help, ? : Unknown,− : Hurt,−− : Break}
LAB = {×,W−, U, \,W+,

√
} A Set of Labels

{× : Denied,W− : Weakly Denied, U : Unknown,
\ : Conflict,W+ : Weakly Satisfied,

√
: Satisfied}

Label(SIi, Gj)→ LAB Label of SIi on Soft-Goal Gj

SLAB = {Label(SIi, Gj)} A Set of Labels for all SIi in SI and all Soft-Goals Gj in G
Pref(Gi)→ [0..1] Preference of Soft-Goal Gi

Sat(Label(SIi, Gj))→ [0..1] Satisfaction of Soft-Goal Gj via Strategy Interdependency SIi
OR Sat(LAB)→ [0..1]
SUtil(SIi)→ [0..1] Utility of Strategy Interdependency SIi for the System
AUtil(SIi)→ [0..1] Utility of Strategy Interdependency SIi for the Attacker
AUSName → [0..∞] Accumulated Utility of the System via Mitigation Approach Name

AUAName → [0..∞] Accumulated Utility of the Attacker via Mitigation Approach Name

∆AUSName The delta between two System Accumulated Utility Values
∆AUAName The delta between two Attacker Accumulated Utility Values

38

the attacker are represented with dash lines to be easily distinguished. Following
concepts are considered:
• Vulnerabilities: By realizing system vulnerabilities, we can define a set of coun-
termeasures that protect the system. Nevertheless, attackers may exploit those vul-
nerabilities and harm the system.
• Countermeasures (C) & Attacks (A): The specific vulnerabilities of a software
system lead to specific types of attacks and ultimately diminish satisfaction of its
quality goals. Consequently, a set of specific countermeasures must be developed in
an SPS to prevent or mitigate such threats. Countermeasures and attacks are paired
to build Strategy Interdependencies (SIs). SIs capture the impact of the attacker’s
strategy while considering the system’s selected countermeasure and vice versa.
• Quality Goals (QG) & Malicious Goals (MG): We incorporate not only the
quality goals of the system but also the malicious goals of the attacker. Incorporating
quality goals of the system into the decision model has been studied in self-adaptive
systems [10] as well as in SPS systems [59] [106] [99]. The Modeling of goals has
the advantage of improving traceability and trustability [110]. In order to represent
and reason about the malicious goals of attackers, they can be modeled with the
aid of conceptual modeling approaches such as the extended version of the i* frame-
work [130] proposed by Elahi et al. [38]. We assume that conceptual models of
quality goals and malicious goals are provided from the security requirement engi-
neering phase. This design-time information will be mapped to a runtime decision
model.
• System State (SS) & Attacker Category (AC): Combining different forms of
evidence leads to more-precise attack detection. In SPS, various possible evidences
are gathered from monitored attributes. We categorize these evidences based on the
system runtime data and attacker historical data into two main groups: (i) System
State: is determined based on the preferences of quality goals in the SPS system,
and (ii) Attacker Category: is determined based on the preferences of malicious goals
of the attackers.
• System Utility (SUtil) & Attacker Utility (AUtil): Utility functions for the
software system and attackers are essential to enable quantitative decision-making.
We map the qualitative values, which represent the satisfaction of goals, to quanti-
tative values between 0 (low) to 1 (high).

Our research objective is to design a framework that systematically models the
impact of attack and defense strategies on quality goals and malicious goals. Such
model can be mapped to utility values that guide the decision-making engine to

39

select a countermeasure in response to an uncertain attack type. In the next section
we provide an overview of the proposed IBSP framework.

4.2 A Stochastic Game Approach

An SPS system is capable of detecting security threats and mitigating them through
runtime adaptation techniques [135]. Mature and effective defense mechanisms are
proposed to secure a software system [40] [48] [132]. Each of the proposed mechanisms
protect a particular vulnerability. For example, malicious clients can:

• send a high number requests per second. The system can issue a puzzle
challenge such as CAPTCHA [126] to these requests or blacklist malicious
clients [111].

• send requests to access documents which introduce high workload and result
in decreasing system performance. Such workload-intensive requests can be
mitigated using performance model-driven approaches [8].

• send requests to access documents that contain sensitive information. Such
insider attacks can be mitigated by the use of runtime role based access control
models that are associated with system resources [7].

A software system can be equipped with defense mechanisms to mitigate all the
above-mentioned threats separately. However, the success or failure of each of these
attacks is highly dependent on whether the system correctly detects the type of the
attack at an early stage. This calls for the need for an intelligent security mechanism.
In this chapter, we propose an Incentive-Based Self-Protection (IBSP) framework to
model a decision-making engine that selects proper countermeasures when facing
such scenarios. IBSP does not seek to replace traditional security approaches but
rather to introduce a more-collaborative approach to complete them. The benefits
of having an IBSP framework are as follows:

• Early Attack Mitigation: As soon as malicious behavior is observed, the SPS
will take an action while considering the security preferences of the software
and malicious intentions of attackers.

40

Strategy	
Interdependency	(SI)	

Generator
(Section	4.3.1)	

SI	Evaluation	
Procedure

(Section	4.3.3)

SIGCA

Utility	Calculation	
Function	

(Section	4.4.1)

SI SLAB

Pref (G)

Stochastic	Game	
Model

(Section	4.4.2)

Utility Values
for System
and Attacker

Selected
Countermeasure
to Trigger

Game-Theoretic Strategy Selection Engine
(Section	4.4)

SI SS

Soft-goal	
Interdependency	

Graph	(SIG)	Formation
(Section	4.3.2)

Incentive-Based Evaluation
(Section	4.3)

AC

Figure 4.2: The Architecture of Incentive-Based Self-Protection Framework

• Incorporating Characteristics of Attackers: By modeling and analyzing
intentions of attackers into the decision-making engine, action selection is based
on characteristics of attackers as opposed to characteristics of attacks (as is the
case in intrusion detection systems).

• Multi-Objective Decision Making: In the proposed approach, the interde-
pendencies among strategies are defined with the aid of the SPS system’s qual-
ity goals. Moreover, incorporating various quality goals is beneficial in terms of
capturing the positive/negative impact of a countermeasure on different quality
goals. For example, a countermeasure can increase the high performance qual-
ity goal while it can be adverse to high throughput quality goal. The decision
model uses a utility calculation function in which each quality goal is assigned
a weight. Since the utilities are multi-objective, the proposed decision model
is multi-objective.

To build an SPS system that supports the IBSP framework, a systematic model-
ing process should be in place to incorporate quality goals of the SPS system and ma-
licious goals of attackers and relate them to defense/attack strategies. Consequently,
the decision model is built upon strategy interdependencies in terms of quality goals.
This process is illustrated in Figure 4.2. The architecture of IBSP framework con-
sists of two main phases: (i) Incentive-Based Evaluation, and (ii) Game-Theoretic
Strategy Selection Engine. In the first phase, attacks and countermeasures are paired
to build SIs. Then, the impact of SIs are evaluated using SIGs [29]. In the second
phase, once the labels on quality/malicious goals are generated for all SIs, the utility
calculation function generates utility values by considering the quality-goal prefer-
ences of stakeholders. Finally, the resulting utility values are input to the stochastic
game model, which selects the most proper response in light of the strategy of the

41

attacker. The formal model of the proposed IBSP framework is provided guided by
the following research questions:

• RQ1.1: What is the impact of incorporating quality goals of the software
system along with the malicious goals of the attacker on the result of the
strategy selection engine?

• RQ1.2: What is the impact of the system state on the utility of the SPS
system?

• RQ1.3: What is the impact of the attacker category on the utility of the
attacker?

In a software system, when triggering a defense strategy against an attack, not
only the fulfillment of quality goals need to be guaranteed, but also the response to
the attack must consider the historical data available with regard to the intention
of the attacker, category of the attacker, and the state of the system. Each of these
questions aims at evaluating the impact of various information on the utility of the
system or the attacker. The objective is to maximize the accumulated utility of
the system while minimizing the accumulated utility of the attacker. The next two
sections discuss each of the two phases of the IBSP framework in details.

4.3 Modeling: Incentive-Based Evaluation

For the rest of this chapter, we take the motivating scenario, described in Section 3.1
as a guideline for how the required concepts are captured. The scenario includes
two attacks and two mitigations along with six quality and malicious goals. In re-
ality, there will be many types of simultaneous attacks and countermeasures. But
in this paper, the objective is to provide a comprehensive explanation of the pro-
posed framework. Hence, a simple scenario helps to demonstrate the required steps
in details. The first part of the IBSP framework includes three main processes:
(i) Strategy Interdependency Generator, (ii) Soft-Goal Interdependency Graph For-
mation, and (iii) Strategy Interdependency Evaluation Procedure. The following
subsections elaborate on each of the processes.

42

4.3.1 Strategy Interdependency Generator

Different software systems have different vulnerabilities related to their design and
development. First the system vulnerabilities need to be identified. Second, poten-
tial attacks that can exploit those vulnerabilities are determined. Third, a set of
countermeasures to protect or eliminate the vulnerabilities are defined. For example,
in our motivating scenario, two vulnerabilities exist: (i) the ability to service only a
limited number of requests in a certain amount of time, and (ii) the existence of sen-
sitive data in the system that require privileged access. Here, we define the attacks
and countermeasures for our motivating scenario:

• Set of Attacks: A = { A1, A2 } where A1 is “Application-layer DoS Attack”,
and A2 is “Insider Attack”.

• Set of Countermeasures: C = { C1, C2 } where C1 is “Issue Puzzle”, and C2 is
“Drop Request”.

When the type of an attack is not detected by the SPS system, the decision-
making engine faces the dilemma of which strategy to take. The success or failure of
an attack depends on which of the available countermeasures is taken against that
attack, and similarly the effectiveness of a countermeasure depends on the strategy
and the incentive behind an attack. In a nutshell, there is a need to capture the
inherent interdependencies among countermeasures and attacks. Based on our mo-
tivating scenario, four possible SIs (SI = {SI1, SI2, SI3, SI4}) are defined as shown
in Table 4.2.

Table 4.2: Interdependencies of Strategies
hhhhhhhhhhhhhhhhhhhhhhCountermeasures (C)

Attacks (A)
A1 A2

C1 SI1 SI2

C2 SI3 SI4

While both issuing a puzzle challenge and dropping the request can mitigate
application-layer DoS attacks, issuing a puzzle challenge (SI1) can alleviate application-
layer DoS attacks more effectively than dropping the incoming malicious request
(SI3). Puzzle challenges can effectively identify malicious users who can hence be
blocked, whereas dropping a malicious request does not stop malicious users from

43

sending requests. These requests cause increased load on the system and conse-
quently raise response times for regular users, diminishing their satisfaction. An
insider attacker can successfully pass the puzzle challenge (SI2) and gain access to
the targeted sensitive information, severely compromising a system’s quality goals.
Insider attacks can be mitigated by not providing a response to malicious requests
(dropping the requests – SI4).

In our motivating scenario (that was described in Chapter 3.1), we have con-
sidered all the combinations between attack and defense strategies. In cases that
certain combinations do not make scenes, they can still be considered in the model.
Later, when we model the impact of strategy interdependencies on the goals, the
low/negative impact of such scenarios can be incorporated in the model. Besides, in
our motivating scenario, the number of attacks and defense strategies are considered
to be two. While we acknowledge that software system may deal with more number
of attacks that share similar attack scenarios, in our motivating scenario, we aim at
illustrating phases of our proposed framework. IBSP framework has no limitation
on the number of attacks and defense strategies.

Modeling strategy interdependencies with the aid of soft-goals was proposed in
the earlier work at a very high-level belief with the justification for requiring to de-
sign a framework that facilitates incorporating soft-goal models at the design-time
to decision-making at the runtime [44]. Conceptual modeling of soft-goals supports
security trade-off analysis and also provides a mean to measure goal satisfaction quan-
titatively or qualitatively, which can greatly simplify decision making [38]. Therefore,
we employ conceptual modeling of soft-goals by mapping soft-goals to strategy in-
terdependencies.

4.3.2 Soft-Goal Interdependency Graph Formation

In our proposed approach, we incorporate satisfaction of quality goals as the criteria
on which the SPS system bases its decision. Quality concerns of the SPS system
are defined based on the objectives of stakeholders. In our model, stakeholders are
either: (i) business owners and administrators, or (ii) end-users. Stakeholders start
with articulating high-level goals by specifying the desired behaviors for the system
and then decompose these goals into subgoals that can be related to measurable
attributes [110]. Quality concerns of the SPS system and malicious goals of attackers
in our motivating scenario are summarized in four soft-goals:

• Set of Malicious Goals: MG = { MGA , MGB } where MGA is “Access

44

(a) Access Sensitive Data - SIG1

(b) Break Down the Server - SIG2

Figure 4.3: Malicious Goals Decomposition Graphs

45

Hi
gh

 P
er

fo
rm

an
ce

Re
so

ur
ce

U

til
iza

tio
n

Ti
m

e
Be

ha
vi

ou
r

Lo
w

M

ai
n

M
em

or
y

U
til

iza
tio

n

Lo
w

 S
ec

on
da

ry

St
or

ag
e

U
til

iza
tio

n
Lo

w

Re
sp

on
se

 T
im

e
Hi

gh

Th
ro

ug
hp

ut

Lo
w

 C
PU

Ti

m
e

Lo
w

 I/
O

Ac

tiv
iti

es

Lo
w

 T
im

e
Ru

nn
in

g

Lo
w

 S
ys

te
m

CP

U
 T

im
e

Lo
w

 U
se

r
CP

U
 T

im
e

Dr
op

Re

qu
es

t
Do

S
At

ta
ck

In
sid

er
At

ta
ck

SI
-1

SI
-2

SI
-3

SI
-4

++

+
--

++
-

--
-

Ca
pa

ci
ty

Le
ge

nd

: S
tr

at
eg

y
In

te
rd

ep
en

de
nc

y

: A
tt

ac
k

St
ra

te
gy

: G
oa

l D
ep

en
de

nc
y

: C
on

tr
ib

ut
io

n
Li

nk

: Q
ua

lit
y

Go
al

: D
ef

en
se

 S
tr

at
eg

y
(C

ou
nt

er
m

ea
su

re
)

: I
nt

er
de

pe
nd

en
cy

Li

nk: L
og

ic
al

AN
D

: L
og

ic
al

O
R

Is
su

e
Pu

zz
le

(a
)

H
ig

h
Pe

rf
or

m
an

ce
-S

I
G

3
(b

)
H

ig
h

U
sa

bi
lit

y
-S

I
G

4

11

Hi
gh

 R
el

ia
bi

lit
y

+
--

Dr
op

Re

qu
es

t
Do

S
At

ta
ck

In
sid

er
At

ta
ck

SI
-1

SI
-2

SI
-3

SI
-4

Hi
gh

Av

ai
la

bi
lit

y
Hi

gh
M

at
ur

ity

Hi
gh

Fa
ul

t
To

le
ra

nc
e

++

Le
ge

nd

: S
tr

at
eg

y
In

te
rd

ep
en

de
nc

y

: A
tt

ac
k

St
ra

te
gy

: G
oa

l D
ep

en
de

nc
y

: C
on

tr
ib

ut
io

n
Li

nk

: Q
ua

lit
y

Go
al

: D
ef

en
se

 S
tr

at
eg

y
(C

ou
nt

er
m

ea
su

re
)

: I
nt

er
de

pe
nd

en
cy

Li

nk: L
og

ic
al

AN
D

: L
og

ic
al

O
R

Is
su

e
Pu

zz
le

Hi
gh

Re
co

ve
ra

bi
lit

y

(c
)

H
ig

h
R

el
ia

bi
lit

y
-S

I
G

5

Hi
gh
	S
ec
ur
ity
	

+
--

--

Dr
op
	

Re
qu
es
t

Do
S

At
ta
ck

In
si
de
r

At
ta
ck

SI
-1

SI
-2

SI
-3

SI
-4

Hi
gh
	

Ac
co
un
ta
bi
lit
y

Hi
gh
	

In
te
gr
ity
	

Hi
gh
	N
on
-

re
pu
di
at
io
n

Hi
gh

Co
nf
id
en
tia

lit
y	

Hi
gh

Au
th
en
tic
ity

+	
+

+
++

Is
su
e	

Pu
zz
le

(d
)

H
ig

h
Se

cu
rit

y
-S

I
G

6

Fi
gu

re
4.

4:
Q

ua
lit

y
G

oa
ls

D
ec

om
po

sit
io

n
G

ra
ph

s

46

Sensitive Data” , and MGB is “Break Down the Server” .

• Set of Quality Goals: QG = { QGP , QGU , QGR , QGS } where QGP is “High
Performance”, QGU is “High Usability” , QGR is “High Reliability”, and QGS

is “High Security”.

In order to model goals and incentives of the software system and the attacker,
there are well-studied goal models in the literature that can be employed (e.g.,
[12] [62] [80] [93] [97] [124]). Any goal model that can model the impact of strate-
gies on goals is desired in our framework. The purpose of engaging a goal model
in our framework is twofold: (i) to ease understanding of the impact of attack and
defense strategies via visualization, and (ii) to facilitate countermeasure selection
based on the satisfaction of goals. In this research work, we do not aim at proposing
a brand-new goal model that analysis security aspects of software system. Thus,
the incorporated goal model can be substituted with other goal models that support
quantitative evaluation of goals (such as goal models in [6] and [55]). The novelty
of our framework is to map a design-time goal model to a runtime game-theoretic
decision model that captures strategy interdependencies.

To represent information regarding these goals and the strategies that may af-
fect them, we adopt the Non-Functional Requirement (NFR) Framework proposed
by Chung et al. [29]. The NFR framework introduces the Soft-goal Interdependency
Graph (SIG), which represents each of the goals as a soft-goal and supports system-
atic modeling of quality/Malicious goals.

In our motivating scenario, the malicious goals of access sensitive data and break
down the server are represented in two SIGs (SIG = {SIG1, SIG2}) in Figure 4.3a
and Figure 4.3b. The quality goals of performance, usability, reliability, and security
are illustrated in four SIGs (SIG = {SIG3, SIG4, SIG5, SIG6}) in Figure 4.4a,
Figure 4.4b, Figure 4.4c, and Figure 4.4d, respectively. The quality goals are refined
based on the International Organization for Standardization/ International Elec-
trotechnical Commission (ISO/IEC) 25010:2011 [1] guideline. ISO/IEC 25010:2011
introduces product quality model which categorizes product quality properties into
eight characteristics (functional suitability, reliability, performance efficiency, usabil-
ity, security, compatibility, maintainability and portability). Each characteristic is
composed of a set of related subcharacteristics [1].

Consequently, each SIG is further refined based on domain knowledge regarding
the motivating scenario. This refinement of the performance goal is justified by
referring to the work by Tahvildari et al. [120] and the work by Elahi and Yu [38].

47

The former article considers improving design qualities (such as performance) using
transformations, and the latter focuses on analyzing security trade-offs among the
competing goals of multiple actors.

The high-level quality goals may denote different meanings for different people
(developers, stakeholders, etc.). Hence, it requires that the meaning of each goal be
clarified through an iterative process of soft-goal refinement, which involves domain
experts. In such refinements, the offspring can contribute fully or partially towards
satisfying the goals denoted by the parent goal node. The dependency operators are
denoted by AND, OR labels on the arcs. These two contribution operators relate
a group of offspring to a parent. In addition, the positive/negative contributions of
defense and attack strategies to low-level quality goals can be represented by the aid
of SIG in order to investigate the impact of the strategies and their interdependencies
on quality goals. Doing so facilitates measurement of the level of satisfaction for each
high-level quality goal.

Contribution links between strategies and soft-goals show the impact of actions
on soft-goals. As described in Table 4.1, the set of possible impacts include: IMP =
{++,+, ?,−,−−}. Positive/negative contributions that are strong enough to satis-
fy/deny a soft-goal are represented by Make(++)/ Break(- -) links. Contributions
that are not sufficient to satisfy/deny a soft-goal are represented by Help(+)/Hurt(-
) links. Unknown (?) represents situations where the effect of a contribution is
unknown.

For example, the performance soft-goal shown in Figure 4.4a is refined into time
behaviour, resource utilization, and capacity, where a single arc between edges de-
notes the AND contribution, meaning that the parent soft-goal is only satisfied/sat-
isficed1 when all of its offspring are satisfied/satisficed. Each soft-goal can be further
decomposed into more detailed soft-goals. For instance, time behavior is broken
down into high throughput and low response time with the double arc representing
OR relations. Let us assume that the SPS system considers the use of the strategy
SI1, which is “Issue Puzzle” against a “DoS Attack”, as discussed by [111]; “Issue
Puzzle” strategy (such as CAPTCHA [126]) is one of the potential tactics against
DoS attacks if identifying malicious hosts is problematic. Subsequently, the SPS
system discovers sooner or later that SI1 has a positive impact on “Throughput”
at the expense of a negative impact on “User CPU Time”, as a result of the puzzle
challenge. Similarly, the positive and negative contributions of SIs are illustrated in
Figure 4.4a, Figure 4.4b, Figure 4.4c, and Figure 4.4d.

1Soft goals cannot be clearly evaluated as being satisfied or denied. This is why the term
satisficied (originally from Herbert Simon [116]) is used for them [30].

48

A software engineering concern is to maintain and and update the modeled SIGs.
Any change in the modeled goals or strategies need to be applied to the SIGs and
hence utility values will get updated accordingly. However, goals and strategies do
not change very often.

Using the NFR framework creates a significant step towards filling the gap be-
tween quality goals and SIs. Given a defense and attack strategy, one can examine
how they affect the desired qualities of the SPS system. In the next subsection, we
elaborate on qualitative evaluation of the impact of SIs on quality goals.

4.3.3 Strategy Interdependency Evaluation Procedure

For each SI, the impact of strategies is propagated from offspring to parents in SIG.
The impact on high-level quality goals determines the interdependency between the
defense and attack strategy in terms of the degree to which high-level quality goals
are achieved. Given a SIG, one can decide on the impact of applying an SI on each
soft-goal. This is done through the assignment of labels. We adopt the qualitative
labels used in NFR evaluation [29].

Table 4.3: Propagation Rules Showing Resulting Labels for Contribution Links
(Adopted From [61] [121])
hhhhhhhhhhhhhhhhhhhhLabels (LAB)

Impacts (IMP)
Make (++) Help (+) Unknown (?) Hurt (-) Break (- -)

Denied (×) × W− U W+ W+

Weakly Denied (W−) W− W− U W+ W+

Unknown (U) U U U U U

Conflict (\) \ \ U \ \

Weakly Satisfied (W+) W+ W+ U W− W−

Satisfied (
√

)
√

W+ U W− ×

In Table 4.3, labels in the set of labels (LAB = {×,W−, U, \,W+,
√
}) are defined

using the notion of satisficeable and deniable. The Satisfied (
√

)/Weakly Satisfied
(W+) labels represent the presence of evidence which is sufficient/insufficient to
satisfy an element. Similarly, Denied (×) and Weakly Denied (W−) have the same
definition with respect to negative evidence. Satisfied (

√
) and Denied (×) labels

are considered as full labels. Conflict (\) indicates the presence of both positive
and negative evidence of roughly the same strength. Unknown (U) represents the

49

Table 4.4: Cases where Overall Labels can be Automatically Determined (Adopted
From [61])

Label Bag Contents Resulting Label
1. The bag has only one label : {l} the label: l
2. The bag has multiple full labels (

√
or ×) of the same polarity,

and no other labels. Examples: {
√

,
√

,
√
} or {×, ×}

the full label:
√

or
×

3. All labels in the bag are of the same polarity, and a full label
(
√

or ×) is present. Examples: {
√

,W+ ,
√
} or {×, W−}

the full label:
√

or
×

4. The previous human judgment produced
√

or ×, and a new
contribution is of the same polarity

the full label:
√

or
×

situation where there is evidence, but its effect is unknown. To increase flexibility,
any soft-goal lacking any label is ignored in the evaluation process.

The labels propagate throughout the SIG using the propagation rules in Ta-
ble 4.3. Results propagated through contribution links are placed into a “label bag”
for that soft-goal. Label bags are manually and in some specific cases automatically
(Table 4.4) resolved and produce a single result label. Furthermore, the procedure
causes the labels to propagate through AND/OR dependency links by combining
them into a single label, and by choosing the minimal/maximal label of the bag.
The labels are ordered in increasing order as follows [61]:

× < W− < U < \ < W+ <
√

(4.1)

The evaluation procedure is illustrated in Algorithm 1. The algorithm receives
two inputs: (i) the set of defined SIs (SI), and (ii) the set of SIGs (SIG) for all the
soft goals (G). The output of the algorithm is a set of labels for all SIs and soft-
goals (G). The quantitative evaluation procedure starts with assessing initial label
values to attack/defense strategies (line 1-3). For each SI, the procedure propagates
the impact of strategies in all the defined SIGs. The results of the labels for each
soft-goal via each SI are added to a set (lines 4-10). As the labels are propagated
through the model links using defined rules, human judgment is needed when multiple
conflicting or partial values must be combined, to determine the satisfaction or denial
of a soft-goal.

After applying the evaluation procedure, we obtain a set of labels that represent
the impact of a particular SIi on a soft-goals Gj. In Table 4.5, we present the
impact of the SIs on the quality and malicious goals which are defined earlier. For

50

Algorithm 1: Qualitative Evaluation Procedure
Input : SI: A set of defined SIs
Input : SIG: A set of SIGs
Output : SLAB: A set of labels for all SIs and soft-goals

1 forall SIGi in SIG do
2 Initialize labels of SIGi for each strategy interdependency.
3 end
4 forall SIi in SI do
5 forall SIGj in SIG do
6 while Gj is not evaluated do
7 Propagate SIi contribution labels from offsprings to parents
8 end
9 Add Label(SIi, Gj) (label of goal Gi via strategy interdependency SIi)

to SLAB.
10 end
11 end
12 return SLAB

Table 4.5: Labels Soft-Goals for SIs

@
@@C
A

A1 A2

C1 Label(SI1, QGP) = W+, Label(SI1, QGU) = × Label(SI2, QGP) = ×, Label(SI2, QGU) = ×
Label(SI1, QGR) = W+, Label(SI1, QGS) = \ Label(SI2, QGR) = ×, Label(SI2, QGS) = ×
Label(SI1,MGA) = W+, Label(SI1,MGB) = \ Label(SI2,MGB) =

√
, Label(SI2,MGB) = W−

C2 Label(SI3, QGP) = \, Label(SI3, QGU) = W+ Label(SI4, QGP) = W+, Label(SI4, QGU) = W+

Label(SI3, QGR) = \, Label(SI3, QGR) = W+ Label(SI4, QGR) = W+, Label(SI4, QGS) = W+

Label(SI3,MGA) = W−, Label(SI3,MGB) = W+ Label(SI4,MGA) = \ , Label(SI4,MGB) = ×

example, with the aid of Algorithm 1, the impact of SI1 on the High Performance
goal (Figure 4.4a) can be evaluated as weakly satisfied (Label(SI1, QGP) = W+).
Figure 4.4b models High Usability soft-goal decomposition. In this SIG, SI1 evaluates
to denying the High Usability goal by issuing a puzzle challenge in the face of a DoS
attack. SI1 has impact on Low Annoyance and Low Response Time soft-goals. The
logical OR among all these soft-goals result in a fully denied High Usability soft-goal
(Label(SI1, QGU) = ×). Figure 4.4c models High Reliability soft-goal in which SI1
results in making and hurting the High Availability via issuing puzzle during DoS
attack. Hence, the High Reliability goal is considered weakly satisfied. High Security
quality goal model (Figure 4.4d) illustrates that SI1 impacts High Accountability

51

both by making and breaking the goal. The impacts are evaluated to conflict in High
Security. Next, we need to identify the proper strategy among potential strategies
that can assist in satisfying the desired quality goals as much as possible.

4.4 Designing: Game-Theoretic Strategy Selection
Engine

The second part of the IBSP framework includes two main processes as shown in
Figure 4.2: (i) Utility Calculation Function, and (ii) Stochastic Game Model. The
former quantifies the impact of strategies on the soft-goals to calculate utility values
and the latter maps the utility values to payoffs of a two-player stochastic game in
order to find the proper strategy with regard to the equilibrium of the game. In the
following, we provide the detail of each process.

4.4.1 Utility Calculation Function

To enable the selection of strategies at runtime, our approach provides trade-off anal-
ysis among different strategies by means of utility functions and preferences. The con-
cept of utilities helps to fuse quality goals as well as attacker’s incentives into the de-
cision model. We quantify the satisfaction of the soft-goals to values between 0 (low)
to 1 (high). Table 4.6 summarizes the satisfaction function (Sat(Label(SIi, Gj)) →
[0..1]) based on the labels of the quality goals. The function Label(SIi, Gj) results
in a label from the set LAB. Hence the input of the Sat(Label(SIi, Gj)) function is
LAB. Similar mapping from qualitative evaluation to qualitative evaluation is de-
fined in [6] by Amyot et al. which can also be used. Both mappings capture positive
and negative magnitude of the impacts. They may result in different utility values,
but the order of the values won’t be affected.

A utility value for an SI represents the satisfaction of the soft-goals that con-
tribute to that SI. Using the Sat() function, we define the utility of the system and
the utility of an attacker as follows:
• System utility: The preferences of the quality goals is elaborated by assign-

ing a specific weight to each one of them in such a way that the weight value for
all the goals sums up to 1. Preferences come from stakeholders’ opinions where∑|QG|
k=1 Pref(QGk) = 1. Satisfaction of quality goals for strategy interdependecies

(Sat(Label(SIi, QGk)) is quantified using Table 4.6. By defining a system utility

52

Table 4.6: Utility Function for a Quality/Malicious Goal

Quality/Malicious Goal Label for Gj Quality/Malicious Goal Satisfaction
via SIi Label(SIi,Gj)→ LAB Sat(LAB)→ [0..1]

Label(SIi, Gj) = × Sat(×) = 0
Label(SIi, Gj) = W− Sat(W−) = 0.25
Label(SIi, Gj) = U Sat(U) = 0.5
Label(SIi, Gj) = \ Sat(\) = 0

Label(SIi, Gj) = W+ Sat(W+) = 0.75
Label(SIi, Gj) =

√
Sat(
√

) = 1

(SUtil(SIi)), we measure how “desirable” a SI is for the software system, according
to the preferences of the quality goals. The utility of the system is defined as:

SUtil(SIi) =
|QG|∑
k=1

Pref(QGk) ∗ Sat(Label(SIi, QGk)) (4.2)

• Attacker utility: Preferences of the malicious goals of the attacker come
from user behavior analysis and the sum of the preferences is 1. Hence, we have:∑|MG|
l=1 Pref(MGl) = 1. Satisfaction of malicious goals for strategy interdependecies

(Sat(Label(SIi,MGl)) is quantified using Table 4.6. The utility of the attacker
(AUtil(SIi)) is defined similar to the utility of the system as:

AUtil(SIi) =
|MG|∑
l=1

Pref(MGl) ∗ Sat(Label(SIi,MGl)) (4.3)

In our example, we have defined 4 SIs, 4 quality goals , and 2 malicious goals.
Hence, in Equations 1 and 2 we have: i = {1, 2, 3, 4}, k = {P,U,R, S}, and l =
{A,B}. The state of the system can change the impact of an strategy and hence the
utility value for the system differs. Similarly, the category of the attacker impacts
the strategy of the attacker and accordingly the utility value for the attacker. In our
motivating scenario, four system states and four attacker categories are defined:
• Set of system states: SS = { SSm} 1 ≤ m ≤ 4.
• Set of attacker categories: AC = { ACn} 1 ≤ n ≤ 4.

53

A system state (or an attacker category) vary from another system state (or at-
tacker category) in terms of its preferences of the quality goals (or malicious goals).
Thus, a particular quality (or malicious) goal’s satisfaction value can result in differ-
ent utility value for the system (or the attacker) depending on the system state (or
the attacker category). System state can be configured considering the preferences
of the stakeholders over quality goals. Correspondingly, attacker category can be
determined by recognizing the desirability of malicious goals for adversaries. Such
information can be obtained by looking at the history of attack targeted the software
system.

Determining the maliciousness of a user is a challenge by its own and is out of
the scope of this research. We can use simplistic behavior monitoring to determine
the maliciousness of the action taken by a user. For instance, measures to determine
maliciousness of a user can be the amount of traffic generated by the user or the
sensitivity of the data that has been accessed by the user. Other approaches can be
employed to detect suspicious activities. For example, Lamba et al. [74] describe a
model-based approach to cluster sequences of user behaviors within a system and to
find suspicious, or anomalous, sequences. Yuan and Maled [134] detect anomalous
behavior by mining software component interactions from system execution history.

4.4.2 Stochastic Game Model

Competitive behavior of the software system and the attacker over promoting/de-
grading soft-goals is a natural fit for modeling a game between two players. While
other approaches in the literature consider maximizing the expected utility of the
software system (e.g., [111]), the application of game theory provides the ability to
find the maximum utility of the software system while acknowledging the possible
strategies of the attacker. As a result the selected strategy is the strategy that max-
imizes the utility of the software system while minimizing the utility of the attacker.

Having the utility of the software system and the attacker, the defined two-player
normal form game is represented in Table 4.7 in general format. For a particular
software system, utility values can be calculated considering the system states and
attacker category as described in the previous subsection. By populating the modeled
game in Table 4.7 with the actual utility values, the solution of the game (Nash Equi-
librium [78]) can be calculated. Afterwards, the defense strategy (countermeasure)
is selected according to the Nash Equilibrium.

In game theory, a stochastic game is a dynamic game that is played in a sequence
of stages. The players select actions and each player receives a payoff that depends

54

Table 4.7: Normal Form Game Model
hhhhhhhhhhhhhhhhhhhhCountermeasures (C)

Attacks (A)
A1 A2

C1 SUtil(SI1), AUtil(SI1) SUtil(SI2), AUtil(SI2)
C2 SUtil(SI3), AUtil(SI3) SUtil(SI4), AUtil(SI4)

on the current state and the chosen actions. In our designed strategy selection
engine, the payoff values are calculated at each play depending on the state of the
system. Hence, stochastic game technique fits our modeled game and we employ this
technique in our dynamic game model to solve the game. Moreover, techniques such
as probabilistic model checking provide a means to model and analyze systems that
demonstrate stochastic behavior and enables reasoning quantitatively about strategy
selection. In the next section, we formally model the proposed IBSP framework with
the aid of Stochastic Multiplayer Games (SMGs).

4.5 Realizing: Formal Modeling via Stochastic Mul-
tiplayer Game

We argue that considering the intentions/goals of attackers can enhance the effec-
tivness of selecting a defense strategy. To reason about the impact of incorporating
such information into the proposed strategy selection engine, a formalization of the
decision model as stochastic multiplayer games is used which is based on probabilis-
tic model checking in formal models [23]. Our modeling approach for game-theoretic
strategy selection engine in IBSP framework is based on defining a two-player game
in which one player is the SPS system and the other player is the attacker. The goal
of the system player is to maximize its accumulated utility during the runtime of the
system2. In the remainder of this section, we first introduce some background on
the formal SMG modeling technique that we employed. Next, we provide a detailed
description of our SMG model implemented in the probabilistic model-checker tool
called PRISM-game [24].

2An implementation of IBSP technique is available at https://github.com/mahsa-
emamitaba/IBSP-PRISM

55

4.5.1 Model Checking Stochastic Multiplayer Games

Automatic verification techniques for the modeling and analysis of probabilistic sys-
tems provide a means to enable quantitative reasoning about the probability and
rewards of the system. The systems that incorporate competitive behavior can be
modelled as turn-based SMGs [23]. The logic of this technique for expressing quanti-
tative properties of stochastic multi-player games is called rPTAL. It is the extension
of the logic PATL [25]. PATL is itself a probabilistic extension of ATL [5], a widely
used logic for reasoning about multi-player games and multi-agent systems. The
PRISM-game tool [24] provides a high-level language for modeling SMGs and im-
plements rPATL model checking for their analysis. Reasoning strategies based on
probabilistic model checking of Stochastic Multiplayer Games (SMGs) has been a
subject of recent interest. SMG is employed in analyzing latency-aware proactive
adaptation [16] and human participation in self-adaptive systems [17]. The authors
of these papers model a stochastic game to analyze their proposed technique and
compare it with different approaches.

Similar to the SMG analysis in this section, the interplay between a self-adaptive
system and a potentially adversarial environment as an SMG, and the analysis that
accounts for the strategy of the adversary when selecting counter-measures has been
described in [111] [16] [17] [14] [18] [112] [13] [15] [19]. In our SMG modeling, we
borrow concepts explained in these SMG modelings to formulate the utilities and
define the players. We extend their modelings in the following ways:

• In our modeling, the impact of actions are defined by incorporating strategy
interdependency which consists of actions of both players (the software system
and the attacker). In previous SMG modelings (e.g., in work by Schmerl et
al. [111]), the impact caused by the actions of only one player (the software
system) is considered in the decision model.

• In our modeling, we build the utility functions based on high-level soft-goals.
These soft-goals are defined using SIG and consequently are broken down to
lower-level goals that are measurable with metrics. In previous modelings (e.g.,
in work by Schmerl et al. [111]) the quality objectives are directly quantified
using utility functions.

• In our modeling, we consider the utility of attacker to analyze the decision-
model. In previous modelings (e.g., in work by Cámara et al. [17]), only the
utility of the software system is defined while the utility of the other player is

56

not part of the investigation. When SPS system is uncertain about the attack-
type, incorporating attacker utility helps the system to select more effective
countermeasures which minimizes the utility of the attacker while maximizes
the utility of the system.

In the next subsection, we exploit SMG to provide a formal modeling of our pro-
posed IBSP framework. To compare IBSP with alternative approaches, we model
four decision-making approaches, namely: (i) IBSP mitigation, (ii) Random mitiga-
tion, (iii) Fixed-Drop mitigation, and (iv) Fixed-Puzzle mitigation. Random miti-
gation randomly selects a countermeasure while Fixed-Drop mitigation and Fixed-
Puzzle mitigation select a fixed countermeasure (which is either dropping the request
or issuing a puzzle challenge).

4.5.2 Formal SMG Model of IBSP Mitigation Approach

For the rest of this section, we realize the proposed framework by implementing the
described attack scenario (in Section 3.1) via SMG formal modeling. As shown in
Figure 4.2, IBSP framework consists of five main processes. This section describes
how each process is executed in our IBSP formal modeling preparation.
• Strategy Interdependency Generator: The two players of the game (SPS

system and attacker) are modeled via SMG players and modules. Afterwards, the
actions of players and SIs that are described in Table 4.2 in Section 4.3.1 can be
modeled via SMG actions. Each SI is modeled with the pre-condition specifying
certain actions of players that are combined as SI . For example, SI1 is modeled
so that only gets executed if the action of system player is Issuing Puzzle and the
action of the attacker player is Application-layer DoS Attack.
• Soft-Goal Interdependency Graph Formation: As explained in Sec-

tion 4.3.2, we define two high-level soft-goals for the software system and two high-
level soft-goals for the attacker. These goals are modeled using SIG as illustrated
in Figure 4.4. Consequently these four soft-goals can be modeled via SMG variables
and by defining lower and upper limits for each variable.
• Strategy Interdependency Evaluation Procedure: The impact of the

defined SIs are evaluated using the proposed procedure in Section 4.3.3. The result of
evaluation is illustrated in Table 4.5. These negative/positive impacts on the defined
goals can be modeled via SMG formulas. Each goal has a formula that embodies the
negative/positive impact on the goal’s satisfaction by subtracting/adding from/to
the value of the goal’s variable.

57

The game defined in our modeling is a turn-based game between two players:
the software system and the attacker. Listing 4.1 defines the two players in the
SMG. Player system is in control of asynchronous actions that the software system
can take. These action are defined later in the software module. In our formal
model, depending on the two types of attacks and the two countermeasures, four
pair of strategies (strategy interdependency) are possible (C1 A1, C1 A2, C2 A1,
and C2 A2). For each pair off strategies, we formulate the effect of the actual attack
and its corresponding countermeasure on the attributes.
1 player system
2 software , [C1 A1] , [C1 A2] , [C2 A1] , [C2 A2]
3 endplayer
4 player a t t a c k e r
5 attacker , [DOS] , [INSIDER]
6 endplayer
7 const SYS TURN = 1 , ATTACKER TURN = 2 ;
8 global turn : [SYS TURN . .ATTACKER TURN] i n i t SYS TURN;
9 global t : [0 . . MAX TIME] i n i t 0 ;

10 const MAX P = 100 ;
11 const MAX U = 100 ;
12 const MAX R = 100 ;
13 const MAX S = 100 ;
14 const MAX A = 100 ;
15 const MAX B = 100 ;

Listing 4.1: Players Definition in SMG Model

Player attacker controls malicious requests that are sent to the software. These
requests are defined in the attacker module. In line 8, the global variable turn is
used to ensure that players take actions alternatively. The global variable in line 9
defines the time frame for the game continuation in the model. Each time a player
takes an action, the value of t increments one unit. Both players check whether the
end of execution (MAX TIME) has been reached or not before taking an action.
1 // Case [C1−A1] Puzzle − DoS
2 formula C1 A1 QG P = 75 ;
3 formula C1 A1 QG U = 0 ;
4 formula C1 A1 QG R = 100 ;
5 formula C1 A1 QG S = 100 ;
6 formula C1 A1 MG A = 50 ;
7 formula C1 A1 MG B = 0 ;
8
9 // Case [C2−A1] Drop − DoS

10 formula C1 A2 QG P = 75 ;
11 formula C1 A2 QG U = 0 ;
12 formula C1 A2 QG R = 25 ;
13 formula C1 A2 QG S = 0 ;
14 formula C1 A2 MG A = 100 ;
15 formula C1 A2 MG B = 50 ;
16 . . .

Listing 4.2: Impact of SIs on Attributes

58

Listing 4.2 formulates the impact of strategy pairs on the quality goals. For exam-
ple, lines 2-7 formulate the impact on when taking an issue-puzzle-challenge strategy
against an application-layer DoS attack strategy (C1 A1). Here, C1 A1 QG P,
C1 A1 QG U,C1 A1 QG R,C1 A1 QG S, C1 A1 MG A, and C1 A1 MG B
represent the impact of strategy C1 A1 on the following goals: performance, us-
ability, reliability, security, accessing sensitive data, and breaking down the system.
For example, in line 4, the impact on reliability goal is 75 as the goal will be weakly
satisfied via this strategy. The rest of the strategy interdependencies are formulated
accordingly.
• Utility Calculation Function: Utilities for SIs are defined as described in

Section 4.4.1. For each of the four quality/malicious goals, we have assigned a weight
in order to calculate the utilities. The utilities for each player can be modeled
via SMG rewards. To assign weights to the quality goals, we consider the state of
the software system. The rationale for doing so is that the preferences of quality
goals may vary depending on the state of the software system. For example, high
performance is an essential quality goal when a system is down, but in other states,
high usability has a higher priority. Table 4.8 illustrates the preferences/weights of
the quality goals the defined states of the system.

Table 4.8: Defining Preferences for Each System State
hhhhhhhhhhhhhhhhhhPreferences

System State
SS1 SS2 SS3 SS4

Pref(QGP) 0.70 0.10 0.10 0.10
Pref(QGU) 0.10 0.70 0.10 0.10
Pref(QGR) 0.10 0.10 0.70 0.10
Pref(QGS) 0.10 0.10 0.10 0.70

Each attacker, depending on its malicious intention, has different strategies.
Therefore, the malicious goals’ preferences for each category of attacker differ from
each other. Characterizing these categories helps to identify attackers’ objectives and
consequently the likelihood of certain attacks threatening a system at any point of
time. In Table 4.9, the preferences of attackers in our running example are defined.

Utility functions are essential to enabling quantitative decision making. In our
SMG model, we also formulate utility functions for each quality goal. When the
system takes the correct/incorrect defense strategy, it results in increasing/decreasing
satisfaction of these goals. The total utility of the software system and the attacker

59

Table 4.9: Defining Preferences for Each Category of Attacker
hhhhhhhhhhhhhhhhhhhPreferences

Attacker Category
AC1 AC2 AC3 AC4

Pref(MGA) 0.50 0.90 0.75 0.10
Pref(MGB) 0.50 0.10 0.25 0.90

are formulated as rewards that are gained each time the system takes an action in
its turn.
1 formula SAT QG P = QG P/MAX P;
2 formula SAT QG U = QG U/MAX U;
3 formula SAT QG R = QG R/MAX R;
4 formula SAT QG S = QG S/MAX S;
5
6 // System State : SS1
7 const Pref QG P = 0 . 7 0 ;
8 const Pref QG U = 0 . 1 0 ;
9 const Pref QG R = 0 . 1 0 ;

10 const Pref QG S = 0 . 1 0 ;
11 . . .
12
13 // System u t i l i t y
14 rewards ” s y s u t i l ”
15 (turn = SYS TURN) : (Pref QG P∗SAT QG P + Pref QG U∗SAT QG U + Pref QG R∗

SAT QG R + Pref QG S∗SAT QG S) ;
16 endrewards
17
18 formula SAT MG A = MG A/MAX A;
19 formula SAT MG B = MG B/MAX B;
20
21 // Attacker Category : AC1
22 const Pref MG A = 0 . 5 0 ;
23 const Pref MG B = 0 . 5 0 ;
24 . . .
25
26 // Attacker u t i l i r y
27 rewards ” a t t u t i l ”
28 (turn = SYS TURN) : (Pref MG A∗SAT MG A + Pref MG B∗SAT MG B) ;
29 endrewards

Listing 4.3: Utility Reward Structure for the SPS System

The utilities of the software system and the attacker are defined based on the
impact of strategies on the four quality goals and the two malicious goals. Listing 4.3
illustrates encoding of utility functions for each quality goal. Lines 1-4 formulate the
satisfaction of quality goals. Lines 7-10 define the preferences of goals for SS1. Lines
14-16 define the reward structure for the system (sys util) based on the preferences
defined for each quality goal (which will be varied based on the system state). Lines

60

27-29 define the reward structure for the attacker (att util) based on the preferences
defined for each malicious goal (which will be varied based on the attacker category).
• Stochastic Game Model: As explained in Section 4.4.2, the decision-making

engine is modeled as a game-theoretic strategy selection engine which is based on
stochastic game modeling. When the SMG model is running, both players (SPS
system and attacker) play an strategy without knowing the strategy of the other
player. The SMG model runs for certain time as specified in the modeling. During
the running of the model each player selects an strategy one at a time.
1 module so f tware
2 QG P : [0 . . MAX P] i n i t INIT P ;
3 QG U : [0 . .MAX U] i n i t INIT U ;
4 QG R : [0 . .MAX R] i n i t INIT R ;
5 QG S : [0 . . MAX S] i n i t INIT S ;
6 MG A : [0 . .MAX A] i n i t INIT A ;
7 MG B : [0 . . MAX B] i n i t INIT B ;
8
9 c o u n t e r m e a s u r e s e l e c t e d : bool i n i t f a l s e ;

10
11 // Game−Theret i c Mi t i ga t i on
12 [] (turn = SYS TURN)& (t<MAX TIME) & (! c o u n t e r m e a s u r e s e l e c t e d)−>
13 (s y s a c t i o n ’=C1) & (counte rmeasure se l e c t ed ’= true) ;
14 [] (turn = SYS TURN)& (t<MAX TIME) & (! c o u n t e r m e a s u r e s e l e c t e d)−>
15 (s y s a c t i o n ’=C2) & (counte rmeasure se l e c t ed ’= true) ;
16
17 // Update u t i l i t i e s based on both p l a y e r s a c t i o n s
18 [C1 A1] (turn = SYS TURN)& (t<MAX TIME)& (s y s a c t i o n =C1) & (u s e r a c t i o n=A1) & (

c o u n t e r m e a s u r e s e l e c t e d)−>
19 (t ’= t +1) & (turn ’= ATTACKER TURN) & (counte rmeasure se l e c t ed ’= f a l s e) &
20 (QG P’=C1 A1 QG P) & (QG U’=C1 A1 QG U) & (QG R’=C1 A1 QG R) & (QG S’=

C1 A1 QG S) & (MG A’=C1 A1 MG A) & (MG B’=C1 A1 MG B) ;
21
22 [C1 A2] (turn = SYS TURN)& (t<MAX TIME)& (s y s a c t i o n =C1) & (u s e r a c t i o n=A2) & (

c o u n t e r m e a s u r e s e l e c t e d)−>
23 (t ’= t +1) & (turn ’= ATTACKER TURN) & (counte rmeasure se l e c t ed ’= f a l s e) &
24 (QG P’=C1 A2 QG P) & (QG U’=C1 A2 QG U) & (QG R’=C1 A2 QG R) & (QG S’=

C1 A2 QG S) & (MG A’=C1 A2 MG A) & (MG B’=C1 A2 MG B) ;
25
26 [C2 A1] (turn = SYS TURN)& (t<MAX TIME)& (s y s a c t i o n =C2) & (u s e r a c t i o n=A1) & (

c o u n t e r m e a s u r e s e l e c t e d)−>
27 (t ’= t +1) & (turn ’= ATTACKER TURN) & (counte rmeasure se l e c t ed ’= f a l s e) &
28 (QG P’=C2 A1 QG P) & (QG U’=C2 A1 QG U) & (QG R’=C2 A1 QG R) & (QG S’=

C2 A1 QG S) & (MG A’=C2 A1 MG A) & (MG B’=C2 A1 MG B) ;
29
30 [C2 A2] (turn = SYS TURN)& (t<MAX TIME)& (s y s a c t i o n =C2) & (u s e r a c t i o n=A2) & (

c o u n t e r m e a s u r e s e l e c t e d)−>
31 (t ’= t +1) & (turn ’= ATTACKER TURN) & (counte rmeasure se l e c t ed ’= f a l s e) &
32 (QG P’=C2 A2 QG P) & (QG U’=C2 A2 QG U) & (QG R’=C2 A2 QG R) & (QG S’=

C2 A2 QG S) & (MG A’=C2 A2 MG A) & (MG B’=C2 A2 MG B) ;
33
34 endmodule

Listing 4.4: Software Module with IBSP

61

At each play, the SPS system may either take Drop-Request or Issue-Puzzle.
Similarly, the attacker may either take Application-layer DoS Attack or Insider Attack
strategy. The strategy of the players could be different than their previous strategy.
The stochastic two-player game that is modeled via SMG can be analyzed in terms
of the accumulated value of utilities throughout the execution.

The software system’s defense strategy is described in the module software in
Listing 4.4. The effect of countermeasures on quality goals are captured by updating
the satisfaction level of quality goals based on the formulas in Listing 4.2 for the
four strategy pairs that are defined. For example, in lines 17-19, the strategy of the
software system works for application-layer DoS attacks by issuing a puzzle challenge
(C1 A1). Lines 21-23, 25-27, and 29-31 represent C2 A1, C1 A2, and C2 A2 respec-
tively. Each play results in a utility (reward) value and at the end of the experiments
the accumulated utilities are calculated. The model can be analyzed in terms of the
accumulated value of utilities throughout the execution.

The scalability of the modeled SMG is limited by PRISM-games. The size of
the SMG model can grow with increasing the number of goals and strategies. The
current version of the tool can handle models up to 107 states. Our implemented
model has 877 states. To evaluate the modeled IBSP mitigation approach compare to
other alternatives, we model three mitigation approaches as described in the following
subsection.

4.5.3 Formal SMG Model of Random, Fixed-Drop, and Fixed-
Puzzle Mitigation Approaches

Random mitigation consists of randomly selecting a countermeasure (from the set of
available countermeasures) as the type of attack (either application-layer DoS attack
or insider attack) is not certain. In our SMG modeling of random mitigation, the
player SPS system can be modeled in such a way that the probability of the SPS
system issuing a puzzle challenge is 50%, and the probability of it dropping requests
is 50%. Hence, each countermeasure is selected randomly with the same probability.

In Listing 4.5, the module software is enriched with a random mitigation ap-
proach. Since there are two possible countermeasures to select from, the probability
of the system issuing a puzzle challenge is 50% (line 5), and the probability of it
dropping requests is 50% (line 6).

62

1 module so f tware
2 c o u n t e r m e a s u r e s e l e c t e d : bool i n i t f a l s e ;
3
4 [] (turn = SYS TURN)& (t<MAX TIME) & (! c o u n t e r m e a s u r e s e l e c t e d)−>
5 0 . 5 : (s y s a c t i o n ’=C1) & (counte rmeasure se l e c t ed ’= true) +
6 0 . 5 : (s y s a c t i o n ’=C2) & (counte rmeasure se l e c t ed ’= true) ;
7
8 // Update u t i l i t i e s based on both p l a y e r s a c t i o n s
9 . . .

10 endmodule

Listing 4.5: Software Module with Random Mitigation

When the type of attack is uncertain, another possible mitigation approach is
to choose a fixed countermeasure without considering the uncertainty in the type of
the attack. Hence, the fixed countermeasure either mitigates the attack successfully
or fails to mitigate the attack depending on the attack. We modeled two fixed
mitigation approaches: (i) Fixed-Drop which always drops the suspicious request,
and (ii) Fixed-Puzzle which always issues a puzzle challenge to the malicious user.
countermeasure without considering the strategy of the attacker. In Listing 4.6,
the module software is modeled to always select the countermeasure DROP which
drops any suspicious request.
1 module so f tware
2
3 [] (turn = SYS TURN)& (t<MAX TIME) & (! c o u n t e r m e a s u r e s e l e c t e d)−>
4 (s y s a c t i o n ’=C2) & (counte rmeasure se l e c t ed ’= true) ;
5
6 // Update u t i l i t i e s based on both p l a y e r s a c t i o n s
7 . . .
8 endmodule

Listing 4.6: Software Module with Fixed Mitigation

So far, four mitigation approaches that we modeled via formal SMG model are
described. Hence, four stochastic games are modeled using PRISM-games. In each of
these games the system player employs one of the four mitigation approaches. Each
game also has a second player which is an intelligent attacker that sends malicious
requests that could result in either application-layer DoS attack or insider attack.
The attacker’s SMG model (described in Section 4.5.4) is the same in all the four
modeled games. The modeled attacker targets software systems by changing its
strategy in response to a software system’s strategy. The attacker either issue a DoS
or an insider attack at each run (50 times in our experiments). Each strategy results
in a different impact on the defined quality/malicious goals. This impact is modeled
via SMG formulas.

63

4.5.4 Attacker Formal SMG Model

In the following, attacker player is modeled using the formal SMG model. The
modeled attacker targets software systems by changing its strategy in response to a
software system’s strategy. Listing 4.7, shows the encoding for triggering malicious
requests and then yielding the turn to the system player.
1 module a t t a c k e r
2 a t t a c k t y p e s e l e c t e d : bool i n i t f a l s e ;
3
4 // Attacker p layes the game
5 [] (turn=ATTACKER TURN) & (t<MAX TIME) & (! a t t a c k t y p e s e l e c t e d)
6 −> (u s e r a c t i o n ’=A1) & (a t t a c k t y p e s e l e c t e d ’= true) ;
7 [] (turn=ATTACKER TURN) & (t<MAX TIME) & (! a t t a c k t y p e s e l e c t e d)
8 −> (u s e r a c t i o n ’=A2) & (a t t a c k t y p e s e l e c t e d ’= true) ;
9

10 [DOS] (turn=ATTACKER TURN) & (t<MAX TIME) & (u s e r a c t i o n=A1) & (
a t t a c k t y p e s e l e c t e d)

11 −> (t ’= t +1)&(turn ’=SYS TURN)& (a t t a c k t y p e s e l e c t e d ’= f a l s e) ;
12 [INSIDER] (turn=ATTACKER TURN) & (t<MAX TIME) & (u s e r a c t i o n=A2) & (

a t t a c k t y p e s e l e c t e d)
13 −> (t ’= t +1)&(turn ’=SYS TURN)& (a t t a c k t y p e s e l e c t e d ’= f a l s e) ;
14
15 endmodule

Listing 4.7: User Module Modeling a Strategy-Aware Attacker

In this section, we modeled the interactions between the SPS system and the
attacker as an stochastic game using PRISM-games. In the next section, we provide
analyses of the modeled mitigation approaches in response to the modeled attacker.

4.6 Analyzing IBSP via Stochastic Multiplayer Game

Model checking in PRISM-game [24] is specified in the logic rPATL [23], which
combines elements of the probabilistic temporal logic PCTL for Markov Decision
Processes (MDPs), the logic ATL [5] for games and agent-based systems, and exten-
sions of PRISM’s reward operators. In order to evaluate IBSP in PRISM, we analyze
the maximum utility that a mitigation approach can guarantee, independently of the
behavior of the attacker (real-guarantee scenario). Such analysis via PRISM is also
employed by Cámara et al. [16] where authors also consider the best-case scenario.
However, in the modeled two-player game, the players will not play in favor of each
other and for this reason we omitted analysis on the best-case scenarios.

Our SMG models runs for the specified time frame which is 50 in our experiments.
This means that the system is under attack for 50 times and selects a countermeasure

64

for 50 times. Hence, 50 SIs occur during runtime of the system. For each SI, the
utility of the system and the attacker is calculated. The accumulated utility of
the system/attacker is the sum of all the utilities (for the system/attacker) that
are gained via applying the selected countermeasures against an attack during the
runtime of the system (Equation 4.4 and Equation 4.5).

AUSName =
n∑
j=1

SUtil(SIi) (4.4)

AUAName =
n∑
j=1

AUtil(SIi) (4.5)

Tables 4.10, and 4.11 present the result for the accumulated utility calculated for
the system and the attacker by four different mitigation types: (i) IBSP, (ii) Ran-
dom, (iii) Fixed-Drop, and (iv) Fixed-Puzzle. To understand whether the proposed
incentive-based approach is a suitable solution, we compare the results of IBSP to
those of the three other techniques. We define the delta between the system util-
ity accumulated by the IBSP mitigation (AUSIBSP) and the random mitigation
(AUSRandom) as ∆AUSR (Subscript R stands for Random):

∆AUSR = (1− AUSRandom
AUSIBSP

) ∗ 100 (4.6)

Similarly, the delta between the attacker utility accumulated by the IBSP miti-
gation (AUAIBSP) and the random mitigation (AUARandom) as ∆AUAR (Subscript
R stands for Random):

∆AUAR = (1− AUARandom
AUAIBSP

) ∗ 100 (4.7)

Moreover, the delta between the system utility accumulated by the IBSP mit-
igation (AUSIBSP) and the fixed-drop mitigation (AUSFixed−Drop) is computed as
∆AUSFD (Subscript FD stands for Fixed-Drop):

∆AUSFD = (1− AUSFixed−Drop
AUSIBSP

) ∗ 100 (4.8)

Similar to the above equation, the delta between the attacker utility accumulated
by the IBSP mitigation (AUAIBSP) and the fixed-drop mitigation (AUAFixed−Drop)
is computed as ∆AUAFD (Subscript FD stands for Fixed-Drop):

65

∆AUAFD = (1− AUAFixed−Drop
AUAIBSP

) ∗ 100 (4.9)

Finally, we define the delta between the system utility accumulated by the IBSP
mitigation (AUSIBSP) and the fixed-puzzle (AUSFixed−Puzzle) mitigation as ∆AUSFP
(Subscript FP stands for Fixed-Puzzle):

∆AUSFP = (1− AUSFixed−Puzzle
AUSIBSP

) ∗ 100 (4.10)

For the case of attacker, the above equation changes to ∆AUAFP (Subscript FP
stands for Fixed-Puzzle):

∆AUAFP = (1− AUAFixed−Puzzle
AUAIBSP

) ∗ 100 (4.11)

These values are used to analyze and compare various approaches in the modeled
SMG. The objective is to study the effectiveness of IBSP in face of an intelligent at-
tacker. We assume that the attacker dynamically changes its strategy by considering
the defense strategy taken by the SPS system.

4.6.1 Obtained Results

The rest of this section reports the results of our analysis (presented in Table 4.10
and Table 4.11), whose objective is to answer the following research questions:

• RQ1.1: What is the impact of incorporating quality goals of the software
system along with the malicious goals of the attacker on the result of the
strategy selection engine?
To answer RQ1.1, IBSP mitigation is compared with three other mitigation
approaches that do not consider incorporation of soft-goals in their decision
model. Table 4.10 shows that IBSP mitigation either outperforms the other
three mitigation approaches, or results in the same accrued utility value. The
IBSP approach results in 0% to 86% higher accumulated utility than that of
alternative approaches.
The accumulated utilities of the attacker with different categories are shown
in Table 4.11. We observe that ∆AUAR,∆AUAFD, and ∆AUAFP all have

66

negative values. This implies the effectiveness of IBSP in terms of causing
a lower utility for the attacker (response to RQ1.1). This is due to the fact
that the countermeasure selection is done with the incorporation of attacker’s
strategy and malicious goal.

Table 4.10: The Accumulated Utility of the SPS System
``````````````̀System State

Strategy AUSIBSP AUSRandom ∆AUSR(%) AUSFixed−Drop ∆AUSFD(%) AUSFixed−Puzzle ∆AUSFP(%)

SS1 27.4 20.8 24% 14.2 48% 27.4 0%

SS2 35.8 20.8 41% 35.8 0% 5.7 83%

SS3 43 25.59 40% 8.2 80% 13 69%

SS4 43 24.4 43% 15.4 64% 5.79 86%

Table 4.11: The Accumulated Utility of the Attacker
hhhhhhhhhhhhhhhhhhAttacker Category

Strategy AUAIBSP AUARandom ∆AUAR(%) AUAFixed−Drop ∆AUAFD(%) AUAFixed−Puzzle ∆AUAFP(%)

AC1 13 25 -92% 37 -184% 37 -184%

AC2 22.59 25 -10% 27.4 -21% 46.6 -106%

AC3 19 25 -31% 31 -63% 43 -126%

AC4 22.59 25 -10% 46.6 -106% 27.4 -21%

• RQ1.2: What is the impact of the system state on the utility of the SPS
system?
Regarding research question RQ1.2, as illustrated in Table 4.10, accumulated
utility values for all four strategies varies depending on the preferences of the
quality goals. While IBSP outperforms other alternatives, Random mitigation
results in both higher and lower accumulated utility values compare to fixed-
puzzle and fixed-drop mitigation approaches (in SS1 and SS2 ). In SS3 and
SS4, Random mitigation beats both fixed mitigation approaches. In all four
system states, Ransom mitigation results in very similar accumulated utility
values. Hence, the preferences defined in systems states has the lowest impact
on the outcome of the Random mitigation.
Therefore, in response to RQ1.2, the state of the system has positive/negative
impact on the utility of the system if the selected countermeasure causes posi-
tive/negative contribution in satisfaction of a particular quality goal which has
a major contribution in the state of the system.

67



• RQ1.3: What is the impact of the attacker category on the utility of the
attacker?
To answer research question RQ1.3, we compare the accumulated utility val-
ues in Table 4.11 for the four attacker categories. IBSP produces the lowest
accumulated utility values compare to its alternative mitigation approaches.
Random mitigation results in the same values in all four cases of attacker cat-
egories. Comparing Random mitigation with fixed mitigation approaches, in
all of the categories, it resulted in lower utility outcome. Hence, after IBSP,
Random mitigation is a more attractive mitigation approach than fixed-puzzle
and fixed-drop approaches.
Based on these observations, attacker category can have positive/negative im-
pact on the utility of the attacker without regard to the mitigation strategy
(addressing RQ1.3).

New security challenges have emerged with the exponential growth of software
systems and various threats and attacks have been introduced [63]. Hence, a specific
defense strategy that is capable of addressing diverse types of attacks cannot be
developed. Thus, a coordination among different defense strategies is required to
be able to select and trigger the more proper one. In our proposed decision-making
engine we aim at providing this coordination via incorporating various information
from the system (quality goals and states) and from the attacker (malicious goals
and categories). The result illustrate that using IBSP, the SPS system gains higher
accumulated utility because it considers what could be the action/strategy taken by
the attacker. As a result the SPS system becomes more intelligent when it faces
attacks that seem to be similar in their scenario while they are different in their
malicious goal. Our results at this stage indicate that the IBSP framework can
improve the quality of decision-making when facing various types of attacks.

4.6.2 Threats to Validity

The research presented in this chapter is intended to provide a framework for decision-
making in SPS systems. IBSP framework is augmented with the incorporation of
the soft-goals which include both quality goals and malicious goals. Integrating the
intentions of attackers into the decision model helps to broaden the diverse combina-
tions of countermeasures when facing with uncertainty in the type of the attack. The
decision-making engine of the IBSP framework is modeled with the aid of the formal

68



model checking of SMG model. It is important to describe the possible threats to
validity as well as ways to prevent their occurrence.

There could be several factors that influence the results of the our studies. There-
fore, we cover threats to validity for the proposed IBSP framework along with the
provided formal modeling of the IBSP framework via SMG modeling. IBSP frame-
work has two main components as mentioned in Section 4.2: Incentive-Based Eval-
uation (described in Section 4.3), and Game-Theoretic Strategy Selection Engine
(explained in Section 4.4). Besides, threats to validity of the modeled IBSP via
SMG (detailed in Section 4.5) is discussed.
• Incentive-Based Evaluation: Soft-goals are modeled with the aid of SIG and
are highly dependent on the expert knowledge of the software system and available
metrics to measure the operationalized soft-goals. As with most techniques using
models, the validity of the software artifacts, namely the goal models and accompa-
nying utility functions, are threats to validity. Nonetheless, model-based techniques
are increasingly used to handle system complexity at the design level.
• Game-Theoretic Strategy Selection Engine: An important underlying as-
sumption of the proposed game-theoretic approach is the rationality of the SPS
system and the attacker. However, attacker or the SPS system may not act ratio-
nally in real world mainly because of limited observations and available information.
In a two-player zero-sum game, if a defender chooses a Nash equilibrium strategy,
the rationality of the attacker is not important. We should take into account that
any deviation from the Nash equilibrium decreases the cost of the defender while
increases the the benefit of the attacker [4].
• Modeling IBSP via Stochastic Multiplayer Game: Another concern in the
validity of the analysis is the number of parameters involved in the decision model
that could affect the results, For example, the utility function can be defined in
various ways. We have provided our rational for the defined utility function in
Section 4.4.1, which we believe to be reasonable.

Despite of aforementioned threats to validity, the modeling and analysis via SMG
are conducted aiming to understand the constraints and strength of the IBSP frame-
work. IBSP framework can provide a rational guideline for addressing attack-type
uncertainty using an incentive-based approach.

69



4.7 Summary

Most self-protection research to-date focuses on gathering information about the
incoming attack and providing a defense strategy accordingly. However, an SPS sys-
tem can benefit from fusing information about the attacker that has initiated the
attack such as attackers’ intention and hence taking quick and valid reactions to un-
certain types of attacks. Motivated by the lack of sophisticated decision-making ap-
proaches that incorporate information from attackers in the context of self-protecting
software systems, we have proposed a novel Incentive-Based Self-Protection (IBSP)
framework. This framework allows for reasoning about defense strategies while con-
sidering (i) quality goals that align with the business goals of stakeholders such as
performance, and (ii) malicious goals that motivate attacks on the system such as
accessing sensitive data via an insider attack. The later consideration results in a
decision-making engine that is not specific to a certain type of attack.

Furthermore, we map the decision model as a two-player game between the SPS
system and the attacker in order to find the most proper countermeasure while con-
sidering the possible attack strategies. We argue that considering the intentions of
attackers can produce more desirable decisions when dealing with attack type un-
certainty due to the fusing information regarding the impact of attacker’s intentions
and strategies on the defense strategies. As a proof of concept, we present a for-
mal modeling of our decision-model with the aid of probabilistic model checking
of Stochastic Multiplayer Game (SMG) model [23] implemented in the probabilis-
tic model-checker PRISM-games [24]. Our formal SMG modeling shows that IBSP
framework is capable of making effective decisions.

This chapter has provided our vision on how to build the decision model that not
only considers the quality goals of the system, but also acknowledges the malicious
goals of attackers. We believe incentive-based self-protection can achieve break-
through improvements in software security. Nevertheless, many challenges remain.

The next chapter investigates augmenting the decision-making engine to incor-
porate the success or failure of chosen countermeasures in the later countermeasure
selections.

70



Chapter 5

Decision Making using Markov
Games

Software security is defined by Gary McGraw [90] as: “The idea of engineering soft-
ware so that it continues to function correctly under malicious attack”. Improving
techniques for intrusion detection and prevention has gained a lot of attention in
the literature. On the other hand, intrusion response (attack mitigation techniques)
are either static, or they are performed manually by security administrators after
receiving an alert from the Intrusion Detection System (IDS) [137]. The delay be-
tween the intrusion detection and the intrusion response works to the advantage of
attackers, helping them reach their intended malicious goals. To tackle this problem,
Self-Protecting Software (SPS) systems are growing in importance. SPS systems are
a class of autonomic systems capable of detecting and mitigating security threats at
runtime [132].

The increasing number of successful application-layer attacks calls for new ap-
proaches for developing application-layer security. Most state-of-the-art SPS sys-
tems realize the deciding process with the aid of traditional rule-based [135], goal-
based [99], or policy-based [7] approaches. These approaches either fail to protect a
software system when it is facing attack-type uncertainty or become too complicated
to capture and maintain all possible scenarios. We believe that today’s well-planned
attacks call for sophisticated countermeasure selection techniques that can outsmart
such attacks.

SPS systems are a sub-class of Self-Adaptive Software (SAS) systems [71]. Uncer-
tainty in making adaptation decisions in SAS is analyzed by adapting a possibilistic

71



method which is built on possibility theory to assess the positive and negative conse-
quences of uncertainty [47]. Moreno et al. study decision-making under uncertainty
for proactive self-adaptation [92]. Their approach addresses the uncertainty about
the predictions of the future state of the environment in SAS systems. Incorporat-
ing attack-type uncertainty into the decision-making process is studied in the field
of network security, e.g., wireless ad hoc networks [85], Mobile Ad hoc Networks
(MANETs) [79], and network protection [53]. These approaches address attack-type
uncertainty at the network layer using the network layer data, and hence they do
not tackle such uncertainty in the application-layer attacks. In the field of software
security, modeling and analyzing attack-type uncertainty in SPS systems is inves-
tigated in [46]. The proposed approach in [46] considers the uncertainty about the
type of attack by incorporating the probability for each type of attack with the aid
of Bayesian games.

In the Markov game technique adapted in [45], the application of game-theory
in SPS systems demonstrates promising results in fusing the strategy of attackers.
The cost and benefit of strategies and incorporating their impact on quality goals
into modeling the interdependencies of strategies between the SPS system and the
adversary is proposed in [44]. This approach is further extended to formulate the
type of the adversary into the decision model of the Bayesian game decision-making
technique in [46]. Markov game technique is applied for cyber security monitoring [28]
and moving target defense [87]. What differentiates our proposed decision-making
engine from other Markov-based techniques is the definition of the reward function
and fusing the preferences of quality goals into the decision model.

In this chapter, we explore the possibility of learning the type of an attack with
the aid of Markov game technique. Specifically, we propose a simple yet novel reward
function that is employed by Markov game technique. The proposed learning-based
approach aims at learning the best countermeasure against an uncertain attack-type.
Learning is based on the reward/punishment received from the success/failure of
applying the previous countermeasure. The proposed multi-objective reward function
results in supporting multi-objective decision making. The objectives can be modeled
and employed according to the information available to the software system and the
stakeholders’ preferred goals.

The rest of this chapter is organized as follows. Section 5.1 presents the nota-
tions used throughout this chapter. Section 5.2 provide an overview of the extended
framework employing the Markov game technique. Section 5.3, 5.4, and 5.5 dive
deeper into each phase of the extended framework: Modeling, Designing, and Real-
izing phases respectively. Section 5.6 exhibits the obtained results of the case study

72



that realizes the proposed Markov game decision-making engine. Finally, Section 5.7
summarizes the chapter.

5.1 Notations

Table 5.1 shows the notations used throughout this chapter. Sets are shown by
calligraphic letters such as X = {xi}. Functions are illustrated by italic letters e.g.,
X. Matrices appear in bold capital letters e.g., X = [x(i, j)]. Vectors are shown
using bold small letters e.g., x = [x(i)]. The optimal policy and the parameters are
shown with Greek alphabet letters. Reward value and its magnitude is displayed
using < symbol.

5.2 A Markov Game Approach

To address the aforementioned problem, we employ Markov game technique in order
to learn the type of an attack with the aid of the attack’s impact on the quality
goals (high-level objectives1) of an SPS system. The proposed approach learns the
intention of the adversary as the defense mechanism responds to the attack and gets
rewarded or punished based on the success or failure of the response action.

As discusses in our paper [45], we modified the well-known MAPE-K reference
model [71] and illustrated the incorporation of Markov games into MAPE-K model.
We showed how the raw monitored data can be filtered or transformed and subse-
quently analyzed to be employed in the Markov game formulation. In this chapter,
we provide a more systematic approach on how to engineer the adaptation manager.
More specifically: (i) we provide steps for modeling high-level quality goals to low-
level measurable goals that can be quantified with system/user attributes, (ii) we
formalize the state of the system and the reward function calculation based on the
satisfaction of the defined quality goals, and (iii) we evaluate the proposed approach
and the affect of its parameters in more detail.

Before giving the theoretical design and implementation details, we provide a
high-level architectural view of the proposed MARkov Game decIsion-making en-
giNe (MARGIN) illustrated in Fig. 5.1. To build an SPS system from a software

1Objective and goal are different in some contexts. For instance, Keeney et al. use objectives in
a higher level of abstraction [70]. In this article, without loss of generality, we assume that goals
and objectives are the same. Therefore, we use them interchangeably hereafter.

73



Table 5.1: Summary of Notations Used

Notation Definition
A = {ai} Set of countermeasures/response actions
AT = {ati} Set of attributes
G = {gi} Set of quality goals
O = {oi} Set of possible attacks
S = {si} Set of system states
Cost(ai, oj) The cost fucntion for the response action a ∈ A against action o ∈ O
Des(si) The desirability of a state of the system

R(si, ak, om, sj) The reward function for moving from state si to sj
via countermeasure ak and attacker’s action om

Sat(gi, sj) The satisfaction of a quality goal gi at state sj
T (si, ak, om, sj) The state transition function for moving from state si to sj

via countermeasure ak and attacker’s action om

U(gi, atj , sk) The utility value of the gi goal and attribute atj at state sk
p = [p(gi)] p(gi) is the priority of quality goal gi from stakeholders’ opinion
v = [v(si)] v(si) is the expected reward for the optimal policy at state si

GT = [gt(si, aj , ok)] gt(si, aj , ok) is the quality of action aj against action ok in state si
PD = [pd(si, aj)] pd(si, aj) is the discrete probability distribution for action aj in state si
W = [w(gi, atj)] w(gi, atj) is the weight of attribute atj ’s contribution in quality goal gi

PD(A) The probability distribution over set A
π The optimal policy
α The learning rate
γ The discount factor
ε The explore rate
< The reward value

<+/<− Positive/negative magnitude of the reward value

system, we introduce three high-level components for implementing the adaptive
loop, namely: (i) the IDS component is responsible for monitoring and analyzing the
incoming traffic of requests, (ii) the GAAM component formulates the high-level qual-
ity goals of the system with the aid of Goal-Action-Attribute Model (GAAM) [110],
and (iii) the MARGIN component, which is the focal point of this chapter, is respon-

74



IDS
(Section	5.3.1)

GAAM
(Section	5.3.2)

Reward	
Function

(Section	5.4.2)

Software	System

State	Mapper
(Section	5.4.1)

Se
ns
or

Ef
fe
ct
or Countermeasure

Incoming Traffic

GAAM Model

Reward 

State 

Previous Countermeasure 

Runtime System 
Attributes 

Stakeholders’ Quality Preferences and Security 
Administrators’ Impact Analysis MARkov Game decIsion-making engiNe (MARGIN)

State	Generator
(Section	5.4.1)

Markov	Game	Decision	
and	Learning	Algorithm

(Section	5.4.3)

Attack Type

State 
Vector

Attack Type 

State 

Suspicious Traffic Detected  
Runtime System Attributes 

Parameters:	
α,ϒ,	ϵ

Figure 5.1: High-level Architecture of MARGIN in a SPS System

sible for choosing the next countermeasure (adaptation action).
The IDS component can be integrated with the aid of existing off-the-shelf IDSs.

Building the GAAM component requires the involvement of stakeholders and secu-
rity administrators to prioritize the impact of countermeasures and attacks on both
security and non-security goals of the SPS system. For instance, the confidentiality
of sensitive information in a web application of a financial institute is considered as
a high priority goal but it can be ignored in a news website which does not store
confidential information about its users. Consequently, the GAAM needs to be mod-
eled in a way that captures the preferences of quality goals. Building the MARGIN
component consists of assembling four sub-components (depicted in Fig. 5.1):

• State Generator: This component gets the value of the monitored runtime
attributes and discretizes these values according to predefined thresholds that
are carefully chosen.

• State Mapper: This component takes the discretized values from the State
Generator component and assigns a single number that represents the whole
vector of attribute values. This number serves as the state of the SPS system.

75



• Reward Function: This component systematically calculates the success or
failure of the previous countermeasures taken against an attack based on their
impacts on the quality goals defined in GAAM model. The reward value reflects
the interdependency of a countermeasure’s effectiveness on how the system is
attacked and the interdependency of an attack’s success on how the system
is protected (such interdependency is neglected in the majority of SPS sys-
tems [84]).

• Markov Game Decision and Learning Algorithm: This component is
responsible for: (i) updating the payoff tables, and (ii) selecting the next proper
countermeasure.

In MARGIN, the objective is to automatically select the most proper counter-
measure, using a decision model which: (i) provides learning-based dynamism of
adversary’s type of attack by considering the response actions taken so far, and
(ii) supports multi-objective decision making by incorporating priorities and pref-
erences of the SPS system’s quality goals. We next explain how each objective is
met.

5.3 Modeling: Intrusion Detection and Quality
Goals Model

For the rest of this chapter, we take the motivating scenario, described in Section 5.1
as a guideline to define a two-player game. Before detailing the game, we need to
detect the intrusion and formalize the quality (security and non-security) goals as
detailed in the next two subsections.

5.3.1 The Intrusion Detection System

This component has two main responsibilities: (i) detecting suspicious traffic and
sending an alarm to the decision-making engine, and (ii) gathering and analyzing
malicious symptoms in order to identify the type of intrusion, then sending the de-
tected attack-type to the decision-making engine. Since such analysis takes time, the
SPS system provides the response action as soon as the malicious traffic is detected
even though the actual type of the attack is still ambiguous to the IDS. When the

76



type of an attack is recognized by gathering enough information, this information is
send to the decision-making engine to be used in the learning process.

Our current implementation of the IDS uses simplistic solutions to determine
the likelihood that a request is malicious. However, existing off-the-shelf IDSs can
also be used. Techniques such as user-behavior analysis [129] can also be used to
determine whether a client is malicious. Determining this information is a challenge
in its own right, and not the focus of this research.

5.3.2 The Goal-Action-Attribute Model

This component provides a formal way to describe the SPS system’s security and
non-security goals, and the impact of possible response actions (countermeasures)
on each goal using runtime system attributes. The ability of the GAAM to model
system goals, actions, and monitored attributes along with their dependencies makes
it a suitable model for describing the impact of countermeasures on the high-level
quality goals.

Building the GAAM is the only step that is performed offline by collecting in-
formation from stakeholders and security administrators. A GAAM’s structure is
expressed in a node hierarchy, allowing one to compose and abstract software goals
such as availability into a number of measurable properties that facilitate tracing
goals. For example, the number of requests in a queue to reach the server can be
used to evaluate the goal of achieving the possible maximum service availability. If
the number of requests is higher than a certain threshold, the server will not be able
to serve all the requests, and some of the requests will be timed-out. Hence, the
server is not available to those requests.

Suppose we have a set of quality goals. These goals represent the objectives of
the SPS system. More formally, quality goals are represented as a set of n vari-
ables G = {g1...gn}. In addition, we measure m attributes from the SPS system,
such as load, throughput, response time, etc. These attributes are represented
in a set AT = {at1, ..., atm} GAAM uses a matrix called the activation matrix
(W = [w(gi, atj)], i = 1..n, j = 1..m), defined by security administrators to represent
the relationship among n quality goals and m system attributes. The values in the
AM matrix show how much each attribute participates in satisfying a goal.

Additionally, each goal has certain priority over other goals. Priorities come from
stakeholders’ opinions and are represented by a priority vector p = [p(gi)] with values

77



in [0..1]. We assume that ∑n
i=1 p(gi) = 1. Finally, a set of possible response actions

A and a set of possible attacks O are recognized.
The output of the GAAM component is a systematic model that can be used to

calculate reward values in the Reward Function component. It is noteworthy that
the rationale behind using the GAAM in MARGIN, rather than having the stake-
holders and security administrators to directly model the priorities and preferences
in MARGIN, is that GAAM models are easier to understand and to design manually
(partially because of their tree structure). The purpose of the GAAM component is
to allow stakeholders and security administrators to define high-level security prop-
erties through easy-to-understand linguistic terms.

5.4 Designing: Markov Game Decision-Making En-
gine

In this section, we elaborate on the components that build the proposed decision-
making engine.

5.4.1 The State Generator and the State Mapper

Combining different forms of evidence leads to more-precise attack detection, espe-
cially evidence from the impact of an attack on the software system. In an SPS
system, possible evidence is gathered from monitored attributes and translated into
a state of the system. Runtime attributes that indicate the level of satisfactory of
the defined goals in an SPS system are used to represent the state space in the
SPS system. Values of these attributes can be discrete or continuous. Discrete at-
tributes, e.g. the load of the system, can take certain values (e.g. “high”, “normal”,
and “low”). Continuous attributes indicate a measurement at a certain point. For
example, the number of request a user makes per hour.

Attributes can have continuous domains, sometimes leading to the problem of
state explosion. To deal with this problem, the State Generator component dis-
cretizes attribute values according to predefined thresholds. Each possible tuple of
attribute values (at1, ..., atm) is defined as a state of the system. The State Map-
per takes the vector of discretized values and maps them to a single number that
represents the whole vector. This number serves as the state of the SPS system.

78



5.4.2 The Reward Function

The reward function is one of the most-important factors in formulating the MAR-
GIN. It is what guides the decision-making engine to learn from the success or failure
of previous countermeasures. In [45], we study two types of reward functions that
are defined using high level rule-based definitions. Such reward functions are highly
dependent on the knowledge of the administrator that defines the rules and thresh-
olds. In this chapter, in order to make the reward function definition independent
of such expert knowledge, we formalize the reward value based on the effectiveness
of applying a countermeasure which can be reflected by its impact on the quality
goals of the system. In our proposed reward function, the interdependency between
the defense strategy and the attack strategy is captured in the reward function by
measuring the achievement of quality goals.

In other words, the reward function represents the preferences over countermea-
sures by considering the cost and benefit of each countermeasure, using their effect
on quality goals. Incorporating such information into modeling the interdependen-
cies of strategies between the SPS system and the attacker is proposed in [44]. In
this section, we formulate this information into the reward function in order to learn
how favorable a countermeasure is in face of an ambiguous attack-type. In addition,
incorporating high-level objectives of the system into the decision model results in
supporting multi-objective decision making.

To measure the satisfaction of quality goals, we characterize attribute values us-
ing utility functions. Attribute values can be either: (i) continuous, or (ii) discrete.
For instance, “response time” attributes can have continuous values stated in mil-
lisecond (ms) units, whereas “user annoyance” can be reflected in discrete values such
as annoyed and satisfied. In both cases, utility functions are defined by an explicit
set of value pairs that map attribute values to utility values between 0 and 1. In case
of continuous attributes, intermediate points are linearly interpolated. Such utility
function definition is adopted from the work by Schmerl et al. in [111]. Table 5.2
provides examples of utility functions for the “Usability” goal, which is measured
by one continuous attribute (“response time”) and one discrete attribute (“user an-
noyance”). The utility function UUsability, Response T ime maps low response time with
maximum utility, while response times higher than 2000 ms are highly penalized with
low utility. For response times above 5000 ms, the utility is considered to be 0. The
utility function UUsability, User Annoyance maps user satisfaction to the high utility value
of 1, whereas “user annoyance” caused by issuing puzzle tests yields the low utility
value of 0.

79



Table 5.2: Utility Function Examples for the “Usability” Goal and Its Attributes:
“Response Time” and “User Annoyance” at the state of “Running”

U(Usability, Response T ime,Running) U(Usability, User Annoyance,Running)
0 : 1.00 1000 : 0.50 satisfied : 1.00
100 : 1.00 2000 : 0.25 annoyed : 0.00
500 : 0.75 5000 : 0.00

Each quality goal is affected by the value of one or more attributes. The matrix
AM in the GAAM represents the impact of attributes on quality goals, using weights
(w(gi, atj)). Without loss of generality, we assume ∑n

i=1 w(gi, atj) = 1, and each
weight w(gi, atj) has a value between 0 and 1. Hence, the satisfaction of a quality
goal gi at state s ∈ S is defined as:

Sat(gi, sk) =
m∑
j=1

w(gi, atj) ∗ U(gi, atj, sk), (5.1)

where w(gi, atj) is the the effect of the jth attribute on the gi and U(gi, atj, sk)
is the utility value of the gi goal and attribute atj at state sk ∈ S. Priorities
and preferences of quality goals are captured by assigning a specific weight p =
{p(g1)...p(gn)} to each. We measure how “desirable” a state is according to the
preferences of the defined goals:

Des(sk) =
n∑
i=1

p(gi) ∗ Sat(gi, sk). (5.2)

In addition to considering the quality goals of the system, we must also consider
stakeholders, whose goal is to minimize operational costs. The latter objective is
reflected in the reward function by incorporating the operational cost. Cost(ai, oj)
is the cost function for the response action ai ∈ A against action oj ∈ O, regardless
of the source and destination states. Note that the SPS system can chose not to
take any action; in which case, no cost is assigned. Now we can define the reward
function as represented in Equation 5.3 as follows:

R(si, ak, om, sj) = Des(sj)−Des(si)− Cost(ak, om). (5.3)

In Equation 5.3, R(si, ak, om, sj) is the reward gained by moving from state si ∈ S
to state sj ∈ S via the response action ak ∈ A and the opponent’s (attacker’s) action

80



om ∈ O. The reward value can be either positive or negative represented by <+/<−.
Next, we show how the defined reward function is used in the Markov game decision
and learning algorithm.

5.4.3 The Markov Game Decision and Learning Algorithm

The success or failure of an attack is highly dependent on how the system is pro-
tected, and similarly, the effectiveness of a defense mechanism is dependent on the
type of attack [84]. In such situations, a natural fit is to formulate the decision mak-
ing as a game between the SPS system and the attacker. Markov games, also known
as stochastic games, are the extension of the single agent Markov Decision Pro-
cess (MDP) to the multi-agent case [82]. This makes the Markov game formulation
a powerful tool for modeling decision-making in dynamic multi-agent environments.
In our game model, we plan to incorporate the feedback from previous actions taken
by the system. Markov game technique incorporates the reward from the previous
action. Hence, this technique is employed to solve our modeled two-player game.
In our proposed approach, Markov game modeling allows us (i) to incorporate the
attacker’s actions in the decision model, and (ii) to reason stochastically about un-
certainty in the attack-type.

Definition 1. (Two-Player Markov Game) A Markov game, sometimes called a
stochastic game, is defined by a set of states S; a collection of action sets A,O,
one for each agent (player) in the environment; and a probabilistic transition func-
tion T (si, ak, om, sj) that controls state transitions by the current state and one
action from each agent. Moreover, each agent has an associated reward function,
R(si, ak, om, sj) = <, where < is the set of real numbers. Each agent attempts to
maximize its expected sum of discounted rewards. A discount factor, 0 ≤ γ < 1
controls how much effect future rewards have on the optimal decisions. Small val-
ues of γ emphasize near-term gain and larger values give significant weight to later
rewards.

We model the interactions between the attacker and the decision-making engine
in MARGIN as a two-player zero-sum Markov game [82] in which the number of
players is two and they have diametrically opposed goals. This opposition allows
using a single reward function that one player tries to maximize and the other tries
to minimize. Using Markov games enables us to reason about the behavior of players
using strategies. A strategy selects which action to take in every state.

81



Definition 2. (Strategy) The strategy of each player in Markov games, also referred
to as its policy, is a function that maps states to discrete probability distributions
over actions of that player. π is the optimal policy that maximizes the expected sum
of discounted reward.

Thus, actions are sampled according to their probability distribution. A strategy
is said to be a pure-strategy if probability distribution over set A assigns a proba-
bility 1 to a certain action; otherwise, it is said to be a mixed-strategy. In Markov
games, probabilistic action choices are needed because of (i) the player’s uncertainty
about its opponent’s current action, and (ii) the player’s need to prevent opponents
guessing its strategy [82]. Hence, the strategy of the SPS system in our proposed
approach is a probability distribution over the response actions (countermeasures).
The optimal policy in Markov games is defined as the strategy that maximizes the
reward in the worst case. This resolution (i) eliminates the choice of the opponent,
and (ii) evaluates each policy with respect to the opponent that makes it look the
worst [82].

In this chapter, as defined in Section 5.3.2, A is the set of response actions
(countermeasures) offered by the SPS system, and O is an adversary’s set of actions.
In our defined two-player zero-sum Markov game, the value of each state v(si) is
defined as the expected reward for the optimal policy, starting from state si:

v(si)← max
π∈PD(A)

min
ok∈O

∑
aj∈A

gt(si, aj, ok) ∗ π. (5.4)

The payoff table GT represents the quality of action ak against action om in
state si. The payoffs in GT are calculated as in Equation 5.5, in which < is the reward
when making a transition from si to sj after taking action ak against action om
(< = R(si, ak, om, sj)). Note that the value of r is calculated with the aid of the
reward function defined in the previous section. The discount factor γ, as mentioned
above, determines the importance of earlier versus later rewards.

gt(si, ak, om)← <+ γ
∑
sj∈S

T (si, ak, om, sj) ∗ v(sj). (5.5)

In many Markov game models such as ours, the state transition function T (si, ak, om, sj)
is not known in advance. Accordingly, an alternative approach involves performing
updates without the use of the transition function:

82



gt(si, ak, om)← (1− α) ∗ gt(si, ak, om) + α ∗ (<+ γ ∗ v(sj)). (5.6)

In Equation 5.6, α is the learning rate which determines to what extent the newly
acquired information will override the old information. This learning technique that
updates the GT payoff tables is called minimax-Q [82]. The decision and learning
model in MARGIN is defined using the minimax-Q algorithm in Markov games.
Minimax-Q is similar to Q-learning algorithm [118] for finding optimal policies with
the minimax function replacing the max function in calculating the value of a state.

The learning rate α in the original minimax-Q algorithm proposed in [82] de-
creases over time by a factor of decay, which suggests that the learning phase stops
after a certain time. However, in the dynamic environment that we are modeling,
it is hard to predict when an attack is going to occur and how long the learning
frame should last to guarantee that enough knowledge is acquired. Furthermore,
the strategy of an attacker can change over time. For these reasons, in our decision
model, the learning rate does not decay.

The Markov game decision and learning algorithm that is implemented in MAR-
GIN is shown in Algorithm 2. The algorithm contains three main parts: initialization,
learning, and action selection, as explained below.
• Initialization: In Algorithm 1, lines 1-9 initialize the variables. Table GT

contains the payoff of each countermeasure against possible attacks in each state
of the system. The payoff table GT can be either initialized to 0 as shown in
lines 1-3, or according to the expectation of a system admin. The payoff table
gets updated as the system continues to run. In Markov game, each state has a
value represented by v(si). Lines 4-6 initialize state values to their default value.
The probability distribution of the countermeasures in each state (pd(si, ak)) are
initialized to (1/number of countermeasures) as the selection probabilities of all
the countermeasures are equal initially (lines 7-9).
• Learning: Learning happens after the algorithm receives reward < for moving

from state s′ to s′′ via action a′ and the opponent’s action o′ (all are provided as inputs
to the algorithm). Lines 10-12 provide the learning technique in MARGIN using the
reward value calculated by the reward function in Section 5.4.2. After a certain time,
the type of the current attack is detected by the IDS, and the SPS system moves from
state s′ to s′′ via action a′ and opponent’s action o′. The reward value is calculated
using Equation 5.3 in Section 5.4.2 and the payoff table GT is updated accordingly
(line 10). In line 12, the optimal policy is calculated using linear programming, by
finding the optimal discrete probability distribution over the set of response actionsA

83



Algorithm 2: Markov Game Decision and Learning Algorithm
Input : a′ ∈ A - the previous countermeasure
Input : o′ ∈ O - the previous attack
Input : s′ ∈ S - the previous state
Input : s′′ ∈ S - the current state
Input : < - the reward value computed using the reward function
Output : a′′ ∈ A - the chosen countermeasure to be triggered
Parameter: α - the learning rate
Parameter: γ - the discount factor
Parameter: ε - the explore rate
// Initialization

1 forall si ∈ S, ak ∈ A, and om ∈ O do
2 GT(si, ak, om)← 0|S|×|A|×|O|
3 end
4 forall si ∈ S do
5 v(si)← 1|S|
6 end
7 forall si ∈ S and ak ∈ A do
8 pd(si, ak)← 1/|A||S|×|A|
9 end

// Learning
10 gt(s′, a′, o′)← (1− α) ∗ gt(s′, a′, o′) + α ∗ (<+ γ ∗ v(s′))
11 Use linear programming to find optimal policy over action set A in previous

state s′ such that: pd(s′, ak)← argmax
pd(s′,ak)

min
om∈O

∑
ak∈A

gt(s′, ak, om) ∗ pd(s′, ak)

12 v(s′)← max
π∈PD(A)

min
om∈O

∑
ak∈A

gt(s′, ak, om) ∗ π

// Action Selection
13 r = random()
14 if r < ε then
15 a′′ ← Choose a random action from A
16 else
17 a′′ ← Choose an action from A according to the probability distributions

in PD and the current state s′′
18 end
19 return a′′

84



in state s′ ∈ S. The probability distribution pd(s′, ak) is used in the algorithm to
select the next-best response action based on the current state of the system. The
value of each state v(s′) is defined as the expected reward for the optimal policy in
state s. Line 12 updates v(s′) according to the optimal policy pd(s′, ak) calculated in
the previous line. The learning process results in updating the payoff tables based on
the success or failure of a countermeasure. Hence, the values in the payoff table GT
represent the impact of countermeasures on the quality goals against different types
of attacks. Updating the payoff table guides future action selections toward the right
direction: choosing a countermeasure that maximizes the minimum possible payoff.
• Action Selection: Lines 13-18 present the action selection process. Action

selection is either based on exploring the deviation from the current policy using the
ε probability or based on the current probability distribution values. In line 15, with
probability of ε, the algorithm returns an action uniformly at random. Otherwise,
based on the current state s′′, it returns an action a′′ ∈ A with the probability of
pd(s′′, a′′) (line 17). At the time that MARGIN chooses the next action, the opponent
action (the type of attack) is unknown to MARGIN, so action selection involves
finding an optimal policy that minimizes the maximum damage to the system, which
is the essence of using the minimax technique. The MARGIN acts conservatively by
considering the worst-case scenario in finding the optimal policy.

As mentioned earlier, there is a need for specific decision-making approaches in
SPS systems to respond to attacks as soon as malicious activity is detected, even be-
fore the type of attack is clear to the defense system. Such capability is traditionally
ignored by static policy-based/rule-based approaches. In our proposed approach,
to cope with uncertainties about the attacker’s possible type of attack, we incorpo-
rate the impact of countermeasures that are taken in each attack-type uncertainty
situation, in order to learn the proper (more conservative) countermeasure. More-
over, using the minimax technique, the next possible action of the rational attacker
which maximizes the damage to the system is taken into account when selecting the
response.

5.5 Realizing: Case Study of a Web Application
Using Simulink

This section describes experimental results to demonstrate the value of the proposed
decision-making engine when the type of the ongoing attack has not yet been detected
by the IDS. For this purpose, we model and simulate scenarios in which the type of

85



attack is unknown at the time of making the adaptation decision. The implemented
scenarios are general enough to be used for different types of application-layer attacks
(e.g., an insider attack), but we cannot claim that the following experiments evaluate
MARGIN for all possible attack types. The focus of our experiments is to evaluate
the efficiency of MARGIN in learning the proper countermeasure selection by the
time the type of the attack is detected by the IDS. Accordingly, the objectives of our
experiments are to answer the following research questions:

• RQ2.1: Can MARGIN learn to select a proper countermeasure?

• RQ2.2: What is the effect of the cost of a countermeasure in the action selec-
tion?

• RQ2.3: What is the impact of the explore rate on the performance of the
action selection?

• RQ2.4: What is the effect of the discount factor on the performance of the
action selection?

• RQ2.5: What is the effect of the learning rate on the performance of the action
selection?

• RQ2.6: Is learning a good idea? (How does the proposed technique perform
comparing with other techniques?)

In the rest of this chapter, we describe the implemented attack scenarios and the
experimental setup. The detail for implementation of the three main components
(IDS, GAAM, and MARGIN) is provided, followed by a review of the results and
threats to validity.

5.5.1 Attack-Type Uncertainty Scenarios

For the experiments, we define various possible scenarios in case of attack-type un-
certainty. These scenarios have no special assumptions about the attackers and the
architecture of the system. In the defined scenarios the SPS system can be targeted
by two major threats that exhibit very similar behavior in the beginning but have
different malicious intentions (as described in Section 5.1). The first attack-type is an
application-layer DoS attack [20] that targets the availability of the system, and the
second one is an insider attack [21] that threatens the confidentiality of the system.

86



Both of these attack-types require the attacker to send requests to download a set
of files in order to achieve their malicious goals. Thus, the attacker downloads files
either (i) to overload the server, or (ii) to retrieve as much confidential information
as possible.

In the defined attack scenarios, DoS attacker and insider attacker aim at staying
hidden from the IDS. Hence, they both send requests to the system similar to the
requests from a regular user. Hence, the set of the adversary’s actions, O, can be
defined as: {DoS Attack, Insider Attack, and No Attack}. In the case of a DoS
Attack, the best response action is to identify the user which is sending malicious
requests, by issuing a puzzle test such as a CAPTCHA test [126] to the sender. If
the user fails the test, then the requests are initiated from DoS botnets [89] and are
considered to be a malicious DoS attack. A botnet is a network of compromised
machines (bots) under the control of an attacker (the botnet herder) [57].

In the case of an Insider Attack, the attacker can successfully pass the puzzle
challenge, so the best response is to Drop the malicious request. It is also possible
that the suspicious user is not an attacker and has no malicious intention (No Attack).
For example, a regular user is downloading a large number of files. In such a case, the
SPS system does not need to trigger a countermeasure (No Defense). Consequently,
the response action set, A, for these attack types respectively are defined as: {Issue
Puzzle, Drop, and No Defense}.

Considering the two defined threats to the experimental SPS system, the imple-
mented MARGIN is evaluated for the following attack-type uncertainty scenarios:

• Scenario 1: In the first scenario, the SPS system is under a DoS attack.
However, both DoS attacker and regular users send similar requests to the sys-
tem. The DoS attacker has the malicious intention to decrease the availability
of the system whereas the regular user has no malicious intention.

• Scenario 2: In the second scenario, the SPS system is under an insider attack
which have different impacts on quality goals compared to a DoS attack. Com-
parable to the previous scenario, both insider attacker and regular users send
similar requests to the system whereas their requests differ in their intentions.

• Scenario 3: In the third scenario, the SPS system is targeted by both DoS
and insider attacks simultaneously. In this scenario, the defense mechanism
need to chose the proper action according to DoS attackers, insider attackers,
and regular users. This scenario aims at challenging how the proposed approach
copes with multiple simultaneous attacks.

87



• Scenario 4: In the forth scenario, the SPS system is under a DoS attack first,
followed by an insider attack. Both of these attacks are initiated by the same
attacker. Hence, this scenario challenges the learning ability of the proposed
decision model when the type of attack changes dynamically.

In each scenarios, the attack/attacks occur multiple times and for each occur-
rence, the response action selected by the MARGIN is reported.

5.5.2 Experiment Setup

As a proof of concept, a web application is simulated, and has been chosen because
such applications are the primary targets for attacks in which attackers mimic the be-
havior of legitimate users to stay hidden from intrusion detection systems [127]. The
simulation is implemented using the SimEvents toolbox of MATLAB Simulink [66].
SimEvents provides a Discrete-Event Simulation (DES) model of computation, which
is a proper fit for a web-application simulation. In an event-based simulation, the
entire duration of the simulation study is a sequence of events.

The simulated SPS system2 is a web application based on a queue-server model
supplied with sensors and effectors. The sensors monitor the system and track user
behavior. The effectors execute the adaptable action during runtime. The main
server in the web application handles requests such as HTTP-GET requests and is
equipped with a FIFO queue that stores the incoming requests and dispatches them
to the server as soon as the server becomes available.

We simulate application-layer DoS attacks, insider attacks, and regular user re-
quests by generating traffic on the system. The sending rate of requests coming
from legitimate users is similar to that of malicious users. The attacks are simulated
through a scaled simulation of an insider attack in a chemical company [21]. The
scaled simulation is also used by Bailey et al. [7] to evaluate their insider attack miti-
gation approach. In this scaled simulation, the attacker’s number of downloads is 15
times greater than a normal user’s [21]. This number of downloads can also indicate
an application-layer DoS attack or an active user with no malicious intention tempo-
rary downloading a higher-than-normal number of files. Hence, identifying the type
of attack requires more symptom analysis by the IDS. In the following, we provide
details of each component implemented in the simulated model.

2An implementation of MARGIN technique is available at https://github.com/mahsa-
emamitaba/MARGIN-Simulink

88



5.5.3 MARGIN Realization

The decision-making engine in the simulated model develops the MARGIN described
in Section 5.2. The inputs to the MARGIN are the GAAM model, the attributes
that indicate the state of the system, and the type of the previous intrusion detected
by the IDS. The output of the MARGIN is a response action to mitigate the current
intrusion.

The Intrusion Detection System

The applicability of tackling attack-type uncertainty with a game-theoretic approach
is evaluated by generating traffic on the server. The IDS recognizes suspicious clients
from benign clients by monitoring the number of received requests. However, dis-
tinguishing the type of attack, requires more analysis of various symptoms of the
attack, for example, its effect on the server’s load or the number of requests to access
sensitive information. Next, we model the goals, actions, and attributes used in the
implemented experiments with the aid of the GAAM modeling technique.

The Goal-Action-Attribute Model

The specification of GAAM consists of recognizing the goals, attributes, and response
actions in the system. Fig. 5.2 schematically depicts relationships between entities.
Beside the figure, the list of actions and attributes are available. Each goal here is
reflected by the value of one or two attributes. Hence, the weight w22 and w23 for
attributes of g2 in Equation 5.1 is set to 1/2. The preferences over four of the five
leaf goals are the same in our example. The value of p1...p4 in Equation 5.2 is set
to 1/6. The last goal, which is related to the confidentiality goal is given a higher
preference of 1/3. The set of attributes defined here is further used to define the
states of the SPS system. The values of these attributes are discretized to avoid
state space explosion.

The State Generator and the State Mapper

In the implemented MARGIN, the State Generator, State Mapper are implemented
in MATLAB functions. The former function discretizes the attribute values and the
latter function maps the discretized values to a single number.

89



Min	MTTR	
p (g1)	=1/6

Max	
Usability	

Max	
Availability	

Legend

Goal

Action

Attribute

Max	
Performance

Max	
Throughput
p (g2)	=1/6

Min	
Response	
Time	

p (g3)	=1/6

Min	User	
Annoyance
p (g4)	=1/6

Min	% of	
Malicious	
Clients

p (g5)	=1/3

a1 a2 a3

at1

a1:	Issue	Puzzle	
a2 :	Drop	
a3 :	No	Defend	

at1:	Mean	Time	To	Repair		
at2:	Load
at3:	Throughput
at4:	Response	Time
at5:	Puzzle	Test
at6:	Malicious	Clients	%	

at2

at3

at4
at5

at6

W(g2,at2)=1/2
W(g1, at1)=1

Logical	AND

Contribution	
Link
Relationship	
Link

Max	
Confidentiality	

W(g2,at3)=1/2

W(g3,at4)=1

W(g4,at5)=1

W(g5,at6)=1

Figure 5.2: Composing GAAM for the Experimental Evaluation

The Reward Function

In the implemented MARGIN, the Reward Function is implemented as a MATLAB
function. The priorities determined in the modeled GAAM in Fig. 5.2 are incorpo-
rated as defined in Equations 5.1-5.3.

The Markov Game Decision and Learning Algorithm

The Markov game algorithm, which is discussed in Section 4.5 in detail, is imple-
mented using MATLAB functions. In Markov games, the payoff table GT represents
the countermeasure preferences over each type of attack. Table 5.3 shows an example
of the convergence of an updated GT table in our simulation model with the aid of
the magnitude of reward values for each cell. The payoffs in the GT table represent
the interdependency of countermeasures and attacks. In the proposed decision model,
we define rewards of applying each countermeasure based on denial or satisfaction
of the defined quality goals. The reward aids in considering the interdependency of
the applied countermeasure with the type of attack.

90



Table 5.3: A GT Table Representing Interdependencies of Countermeasures and
Attacks

Action DoS Attack Insider Attack No Attack

Issue Puzzle <++ <−− <−

Drop <+ <++ <−

No Defense <− <− 0

5.6 Obtained Results

In the experimental evaluation, the goal is to observe whether the decision model
learns which countermeasure works best against an uncertain attack-type. Before
describing the results, we give an overview of the measures used for evaluating the
quality of a decision making technique in response to a request from a regular user
or an attacker.

A request to the SPS system can be handled in one of the following ways:

• Successfully handled – When the system provides the desired response to
the request.

• Rejected – When the system either drops the request or issues a puzzle chal-
lenge and the requester fails to solve the puzzle.

• Timed out – When the system fails to provide a response to the request within
a certain time.

It should be noted that we provide experimental results for a time period during
which the type and maliciousness of the incoming requests are unknown to the IDS.
When a request, initiated by an attacker is handled successfully by the SPS system,
it causes degradation of the SPS system’s quality goals’ satisfaction. Hence, the
lower the number of successful attack requests, the better. In such cases, the best
response is to reject such malicious requests by either dropping them or issuing a
puzzle.

Attack requests such as DoS attack requests or high-rate insider attack requests
saturate system resources and cause the SPS system to fail in responding to regular
users’ requests. This results in those non-malicious requests getting timed out. In

91



addition, while the MARGIN learns the proper countermeasure, the SPS system may
reject (drop/issue challenge) some requests from regular users. Getting no response
as a result of timeout or getting rejected by the SPS system affects these regular
users’ experience. Hence, in our experiments, we evaluate to what extent regular
users are affected by the selected countermeasure. In our evaluation, the higher the
number of successful requests for regular users, the better.

Given the research questions stated earlier, we have performed six sets of exper-
iments to evaluate MARGIN. In each set of experiments, we explore the four attack
scenarios introduced in Section 5.5.1. For each scenario, we run the experiment 100
times; Each run includes 30 actions by each of the attackers and 30 actions by a
regular user. In other words, for each user, the MARGIN can choose 30 actions in
response to 30 incoming requests. Each of the actions are selected in one episode of
the simulation. Hence, each run includes 30 episodes. For each user (DoS attacker,
insider attacker, regular user, mix attacker), the percentage values of Success, Reject,
and Timeout requests out of 100 runs are reported. The following subsections pro-
vide the relevant answers for each of the research questions, followed by the threats
to validity of the conducted experiment.

5.6.1 RQ2.1: Can MARGIN learn to select a proper coun-
termeasure?

In this set of experiments, the minimax-Q parameters are set as follows: the discount
factor, γ, is set to 0.5, and the learning rate, α, is set to 0.5. As for the ε, we set
the value to 0.1 so that the system acts more conservatively. Figs 5.3a, 5.3b, 5.3c,
and 5.3d depict the percentage of countermeasure selection for 100 executions over
time for scenario 1, 2, 3, and 4 respectively. In each execution, MARGIN selects a
response action 30 times (70 times in scenario 4).

As seen in the figures, MARGIN is able to learn the proper countermeasure af-
ter a few episodes. It continues to learn although explores other countermeasures
randomly as well. In both cases (i) of Fig. 5.3a and Fig. 5.3b, MARGIN learns the
proper countermeasures against the attacker. In the former, the proper countermea-
sure against the DoS attack is to issue puzzle and in the latter, the proper coun-
termeasure agains the insider attack is to drop the request. In case (ii) of Fig. 5.3a
and Fig. 5.3b, the requests are coming from a regular user. MARGIN rejects few
of the regular users’ requests (by issuing puzzle or dropping them) at the beginning
but after a while learns to successfully handle those requests by issuing No Defense

92



Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 D

oS
 A

tta
ck

er

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(i) DoS Attacker

Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 R

eg
ul

ar
 U

se
r

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(ii) Regular User

(a) Countermeasure Learning in Scenario 1

Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 In

si
de

r 
A

tta
ck

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(i) Insider Attacker

Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 R

eg
ul

ar
 U

se
r

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(ii) Regular User

(b) Countermeasure Learning in Scenario 2

Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 D

oS
 A

tta
ck

er

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(i) DoS Attacker

Episode
0 5 10 15 20 25 30S

el
ec

te
d 

A
ct

io
n 

P
er

ce
nt

ag
e 

F
or

 In
si

de
r 

A
tta

ck
er

0

10

20

30

40

50

60

70

80
Issue Puzzle
Drop
No Defense

(ii) Insider Attacker

Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 R

eg
ul

ar
 U

se
r

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(iii) Regular User

(c) Countermeasure Learning in Scenario 3

Episode
0 10 20 30 40 50 60 70

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 M

ix
 A

tta
ck

er

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(i) Mix Attacker

Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 R

eg
ul

ar
 U

se
r

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(ii) Regular User

(d) Countermeasure Learning in Scenario 4

Figure 5.3: RQ2.1 Scenarios

93



response action. Fig. 5.3c depicts the results when both attacks happen simultane-
ously (scenario 3). It shows that MARGIN learns (as desired) to trigger Issue Puzzle
in case of DoS attack and trigger Drop in case of Insider attack. Fig. 5.3d shows
that when both attacks happen sequentially (scenario 4), MARGIN is able to distin-
guish the change of the type of attack issued by the same attacker that is called mix
attacker (case (i)) while the requests from the regular user are successfully handled
(case(ii)) in more than 80% of times in average.

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

No Cost

C
os

tl
y

(a) Scenario 1

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

No Cost

C
os

tl
y

DoS Attacker Success
DoS Attacker Reject

DoS Attacker Timeout
Insider Attacker Success
Insider Attacker Reject

Insider Attacker Timeout
Regular User Success
Regular User Reject

Regular User Timeout

(b) Scenario 2

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

No Cost

C
os

tl
y

(c) Scenario 3

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

No Cost

C
os

tl
y

DoS Attacker Success
DoS Attacker Reject

DoS Attacker Timeout
Insider Attacker Success
Insider Attacker Reject

Insider Attacker Timeout
Regular User Success
Regular User Reject

Regular User Timeout
Mix Attacker Success
Mix Attacker Reject

Mix Attacker Timeout

(d) Scenario 4

Figure 5.4: RQ2.2 – No Cost Countermeasures vs. Costly Countermeasures

94



5.6.2 RQ2.2: What is the effect of the cost of a countermea-
sure?

In the previous set of experiments, we assumed that the cost of countermeasures
is not significant. Here, we kept the same parameters as in RQ2.1, except that we
introduce a positive cost for the countermeasures. The cost is employed in the reward
function as shown in Equation 3. To understand the effect of a countermeasure’s cost
in the proposed decision model, we compare the results for costly countermeasures
with the results of no cost countermeasures.

Fig. 5.6 reveals that the model which uses action cost rejects fewer requests as
Drop and Issue Puzzle countermeasures introduce cost to the system. Hence, the
number of successful requests for DoS attacker (Scenario 1) and Insider attacker
(Scenario 2) is increased while the number of rejected requests for the attackers is
decreased compare to the model without action cost. Similarly for scenario 3 and 4,
the rejection of attackers’ requests is higher than in the case of No Cost. As a result,
we can argue that there is a trade off between satisfying security goals and cost of
countermeasures (more secure system with higher operational cost or less secure with
lower cost).

Fig. 5.5a shows the result of costly countermeasures in terms of the percentage of
actions selected for scenario 1. Compare to the result of previous research question,
in which the countermeasures had no cost (Fig. 5.3a ), it is obvious that No Defense
response action is selected more than Drop response action when the system is under
DoS attack. Similar results are achieved for scenario 2, 3. Likewise, the results for
scenario 4 show a comparable outcome. As shown in Fig. 5.5d, when the type of
attack changes, MARGIN first attempts to select No Defense as a response to this
change and subsequently it learns the proper countermeasure for the undergoing type
of attack.

5.6.3 RQ2.3: What is the impact of the explore rate?

Here, we study the impact of the explore rate by comparing the result of two signif-
icantly different explore rates (ε = 0.1 and ε = 0.9) while the other parameters in
MARGIN are kept the same (α = 0.5 and γ = 0.5). Fig. 5.6 illustrates the results
for these two values for the four attack scenarios. In all four scenarios, when ε = 0.1,
the outcome is more pleasant as the percentage of rejected requests for the attackers
is higher while the percentage of successfully handled requests for the regular user is
also higher.

95



Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 D

oS
 A

tta
ck

er

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(i) DoS Attacker

Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 R

eg
ul

ar
 U

se
r

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(ii) Regular User

(a) Countermeasure Learning in Scenario 1

Episode
0 5 10 15 20 25 30S

el
ec

te
d 

A
ct

io
n 

P
er

ce
nt

ag
e 

F
or

 In
si

de
r 

A
tta

ck
er

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(i) Insider Attacker

Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 R

eg
ul

ar
 U

se
r

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(ii) Regular User

(b) Countermeasure Learning in Scenario 2

Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 D

oS
 A

tta
ck

er

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(i) DoS Attacker

Episode
0 5 10 15 20 25 30S

el
ec

te
d 

A
ct

io
n 

P
er

ce
nt

ag
e 

F
or

 In
si

de
r 

A
tta

ck
er

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(ii) Insider Attacker

Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 R

eg
ul

ar
 U

se
r

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(iii) Regular User

(c) Countermeasure Learning in Scenario 3

Episode
0 10 20 30 40 50 60 70

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 D

oS
 A

tta
ck

er

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(i) Mix Attacker

Episode
0 5 10 15 20 25 30

S
el

ec
te

d 
A

ct
io

n 
P

er
ce

nt
ag

e 
F

or
 R

eg
ul

ar
 U

se
r

0

20

40

60

80

100
Issue Puzzle
Drop
No Defense

(ii) Regular User

(d) Countermeasure Learning in Scenario 4

Figure 5.5: RQ2.2 Scenarios

96



−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

ε = 0.1

ε
=

0.
9

(a) Scenario 1

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

ε = 0.1

ε
=

0.
9

DoS Attacker Success
DoS Attacker Reject

DoS Attacker Timeout
Insider Attacker Success
Insider Attacker Reject

Insider Attacker Timeout
Regular User Success
Regular User Reject

Regular User Timeout

(b) Scenario 2

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

ε = 0.1

ε
=

0.
9

(c) Scenario 3

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

ε = 0.1

ε
=

0.
9

DoS Attacker Success
DoS Attacker Reject

DoS Attacker Timeout
Insider Attacker Success
Insider Attacker Reject

Insider Attacker Timeout
Regular User Success
Regular User Reject

Regular User Timeout
Mix Attacker Success
Mix Attacker Reject

Mix Attacker Timeout

(d) Scenario 4

Figure 5.6: RQ2.3 – Comparing explore rates ε = 0.1 vs. ε = 0.9

These set of experiments generate some interesting results; when the ε value
increases, the quality of self-protection declines as the success rate of attackers in-
creases, and the success of regular users decreases as more regular users’ requests and
fewer attackers’ requests are rejected. High ε values result in the system dynamically
exploring different response actions and not triggering the proper countermeasure
learned by the decision model.

5.6.4 RQ2.4: What is the effect of the discount factor?

In this set of experiments, we explored two significantly different values for the
discount factor: γ = 0.1 and γ = 0.9. The rest of the parameters are the same

97



−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

γ = 0.1

γ
=

0.
9

(a) Scenario 1

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

γ = 0.1

γ
=

0.
9

DoS Attacker Success
DoS Attacker Reject

DoS Attacker Timeout
Insider Attacker Success
Insider Attacker Reject

Insider Attacker Timeout
Regular User Success
Regular User Reject

Regular User Timeout

(b) Scenario 2

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

γ = 0.1

γ
=

0.
9

(c) Scenario 3

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

γ = 0.1

γ
=

0.
9

DoS Attacker Success
DoS Attacker Reject

DoS Attacker Timeout
Insider Attacker Success
Insider Attacker Reject

Insider Attacker Timeout
Regular User Success
Regular User Reject

Regular User Timeout
Mix Attacker Success
Mix Attacker Reject

Mix Attacker Timeout

(d) Scenario 4

Figure 5.7: RQ2.4 – Comparing discount factors γ = 0.1 vs. γ = 0.9

as in the experiments in RQ2.1. Fig. 5.7 shows the results for these two values
in the four attack scenarios. The results indicate no significant difference in the
percentage values of success, reject, and timeout for attackers and regular users.
This is consistent in all four studied scenarios.

The two studied values for the discount factor (γ = 0.1 and γ = 0.9) represent
the near-term gain versus later rewards. Thus future rewards do not significantly
affect decision making.

98



5.6.5 RQ2.5: What is the effect of the learning rate?

To evaluate the effect of the learning rate, we set its value to 0.1 and 0.9 and compared
the outcome. The rest of the parameters are kept the same as in RQ2.1. Fig. 5.8
show the results for these two values in four studied attack scenarios.

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

α = 0.1

α
=

0.
9

(a) Scenario 1

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

α = 0.1

α
=

0.
9

DoS Attacker Success
DoS Attacker Reject

DoS Attacker Timeout
Insider Attacker Success
Insider Attacker Reject

Insider Attacker Timeout
Regular User Success
Regular User Reject

Regular User Timeout

(b) Scenario 2

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

α = 0.1

α
=

0.
9

(c) Scenario 3

−100 10 20 30 40 50 60 70 80 90100
−10

0
10
20
30
40
50
60
70
80
90

100

α = 0.1

α
=

0.
9

DoS Attacker Success
DoS Attacker Reject

DoS Attacker Timeout
Insider Attacker Success
Insider Attacker Reject

Insider Attacker Timeout
Regular User Success
Regular User Reject

Regular User Timeout
Mix Attacker Success
Mix Attacker Reject

Mix Attacker Timeout

(d) Scenario 4

Figure 5.8: RQ2.5 – Comparing learning rates α = 0.1 vs. α = 0.9

Comparison of the percentage values reveals that when the learning rate is set
to a low value (α = 0.1), attackers are more successful as the percentage of their
rejected requests decreases while the percentage of regular users’ successful requests
also decreases. All the four attack scenarios consistently show that the most-desired
result is achieved when the learning rate is set to a high value (α = 0.9). Hence, as
expected, low learning rate value results in failing to learn the proper countermeasure.

99



DoS
Attacker
Success

MARGIN

DoS
Attacker
Success

No Defense

Regular
User

Success
MARGIN

Regular
User

Success
No Defense

DoS
Attacker

Reject
MARGIN

DoS
Attacker

Reject
No Defense

Regular
User

Reject
MARGIN

Regular
User

Reject
No Defense

DoS
Attacker
Timeout

MARGIN

DoS
Attacker
Timeout

No Defense

Regular
User

Timeout
MARGIN

Regular
User

Timeout
No Defense

−10
0

10
20
30
40
50
60
70
80
90

100

(a) Scenario 1

Insider
Attacker
Success

MARGIN

Insider
Attacker
Success

No Defense

Regular
User

Success
MARGIN

Regular
User

Success
No Defense

Insider
Attacker

Reject
MARGIN

Insider
Attacker

Reject
No Defense

Regular
User

Reject
MARGIN

Regular
User

Reject
No Defense

Insider
Attacker
Timeout

MARGIN

Insider
Attacker
Timeout

No Defense

Regular
User

Timeout
MARGIN

Regular
User

Timeout
No Defense

−10
0

10
20
30
40
50
60
70
80
90

100

(b) Scenario 2

DoS
Attacker
Success

MARGIN

DoS
Attacker
Success
No Def.

Insider
Attacker
Success

MARGIN

Insider
Attacker
Success
No Def.

Regular
User

Success
MARGIN

Regular
User

Success
No Def.

DoS
Attacker

Reject
MARGIN

DoS
Attacker

Reject
No Def.

Insider
Attacker

Reject
MARGIN

Insider
Attacker

Reject
No Def.

Regular
User

Reject
MARGIN

Regular
User

Reject
No Def.

DoS
Attacker
Timeout

MARGIN

DoS
Attacker
Timeout
No Def.

Insider
Attacker
Timeout

MARGIN

Insider
Attacker
Timeout
No Def.

Regular
User

Timeout
MARGIN

Regular
User

Timeout
No Def.

−10
0

10
20
30
40
50
60
70
80
90

100

(c) Scenario 3

Mix
Attacker
Success

MARGIN

Mix
Attacker
Success

No Defense

Regular
User

Success
MARGIN

Regular
User

Success
No Defense

Mix
Attacker

Reject
MARGIN

Mix
Attacker

Reject
No Defense

Regular
User

Reject
MARGIN

Regular
User

Reject
No Defense

Mix
Attacker
Timeout

MARGIN

Mix
Attacker
Timeout

No Defense

Regular
User

Timeout
MARGIN

Regular
User

Timeout
No Defense

−10
0

10
20
30
40
50
60
70
80
90

100

(d) Scenario 4
Figure 5.9: RQ2.6 – MARGIN vs. No Defense Box-plots

100



5.6.6 RQ2.6: Is learning a good idea? (How does the pro-
posed technique perform comparing with other tech-
niques?)

Here, we aim at evaluating whether the proposed MARGIN addresses attack-type
uncertainty with reasonable performance compared to other approaches. Since the
problem of attack-type uncertainty is not studied specifically in the SPS literature,
we compare our approach to three other possible approaches, namely: (i) No Defense,
(ii) Random action selection, and (iii) Fixed action selection. In the latter approach,
a fixed countermeasure is applied to tackle attack-type uncertainty cases. The fixed
countermeasure could be either Issue Puzzle or Drop.

In this set of experiments, we first compare the efficiency of MARGIN approach
to that of not having a decision model in place (No Defense). Fig. 5.9 depicts box-
plot diagrams of 100 executions for each technique. The percentage values of how
the requests are handled in cases of MARGIN and No Defense are reported. On
each box, the central mark is the median, the edges of the box are the 25th and
75th percentiles. In the case of No Defense, the results for all 100 run are the same
because the system always chooses the same response action – No Defense – and
other response actions are not explored. As a result, no request is rejected despite
its maliciousness.

For Scenario 1 (Fig. 5.9 (a)), MARGIN is capable of intelligently learning and
applying the best countermeasure. Hence, high percentage of attack requests are
rejected while high percentage of regular requests are successfully handled. Similar
results can be noted for Scenario 2 in Fig. 5.9 (b). Fig. 5.9 (c) and (d) reveal
that MARGIN can successfully handle multiple attacks, whether simultaneous or one
after another. In all four scenarios, when there is no defense, some of the requests
are timed out due to ongoing attack/attacks. The number of timed-out requests
is decreased substantially using MARGIN as most attackers’ requests are rejected
by the SPS system. Therefore, the number of successful requests for DoS/insider
attackers is much lower compared to the case of No Defense, while the number of
successful requests for regular users is higher.

To validate the observations, these two techniques are compared using the Kruskal-
Wallis one-way analysis of variance [72] . The choice of Kruskal-Wallis one-way anal-
ysis is because our datasets do not have equal variances and do not follow a normal
distribution. Table 5.4 shows the results for the chi-square test and p-value. These
findings indicate that in the significant level of 1% the MARGIN and No Defense
are significantly different from each other. To scrutinize the results, it is essential to

101



look at the box-plots and pairwise comparison of the treatments.
Random action selection and MARGIN techniques are compared using the Kruskal-

Wallis statistical test. Table 5.4 lists the results of the test for success, reject, and
timeout requests for the attacker and regular user. In the significant level of 1%,
these two techniques are different from each other. Comparing MARGIN technique
with Random technique, the number of timeout requests in scenario 1 and scenario
4 for both attacker and regular users indicate less significant difference . However,
the values for both of these two techniques are close to 0% and are not significant
(as illustrated in their related box-plot diagrams in Fig. 5.10).

Moreover, the results for Random action selection (in Fig. 5.10) demonstrate
that all users are treated similarly despite their maliciousness. Since the action
selection is based on a random action out of a set of 3 actions, in average 66% of the
requests are rejected (faced Issue Puzzle or Drop countermeasure) and 33% of the
requests are successfully handled (No Defense countermeasure was applied). Box-
plots in Fig. 5.10 as well as statistical comparisons in Table 5.4 indicate that applying
MARGIN technique can significantly boost the efficiency of decision-making process
compare to applying random action selection techniques.

In the case of Fixed action selection, both Issue Puzzle and Drop countermeasures
reveal very similar results. Therefore, the results for one of them (Issue Puzzle) is
presented here. Fixed action selection and MARGIN techniques are investigated
using the Kruskal-Wallis statistical test in Table 5.4. The results indicate that these
two techniques are statistically significant. The outcome of Fixed action selection
(in Fig. 5.11) reveals that all requests are rejected in all scenarios despite their
maliciousness. This can highly affect the legitimate users’ experience and lowers
the usability of the system. Accordingly, since at the time of decision making, the
SPS system is not aware of the attack type, Fixed techniques are not considerate a
practical choice.

The experimental results show that MARGIN improved the SPS systems’ ability
to effectively handle attack-type uncertainty. It decreases service provision to mali-
cious requests and increases handling legitimate requests during an ongoing attack.
The response to RQ2.6, based on the obtained results, is that MARGIN improves
system’s self-protection at the time of attack-type uncertainty. MARGIN provides
a principled approach to making rational decisions in the face of uncertainty about
the type of attacks that target SPS systems.

102



Table 5.4: Kruskal-Waillis Test Results for RQ2.6

Scenario Comparison
No Defence Random Fix

chi-square p-value chi-square p-value chi-square p-value

Scenario 1

DoS Attacker Success 171.11 < 0.0001 52.88 < 0.0001 171.11 < 0.0001

Regular User Success 112.59 < 0.0001 145.74 < 0.0001 170.86 < 0.0001

DoS Attacker Reject 171.11 < 0.0001 58.7 < 0.0001 171.11 < 0.0001

Regular User Reject 170.88 < 0.0001 145.75 < 0.0001 170.88 < 0.0001

DoS Attacker Timeout 196.15 < 0.0001 3.03 0.08 3.03 0.08

Regular User Timeout 197.07 < 0.0001 2.01 0.15 2.01 0.15

Scenario 2

Insider Attacker Success 171.18 < 0.0001 51.50 < 0.0001 171.18 < 0.0001

Regular User Success 93.57 < 0.0001 148.66 < 0.0001 170.87 < 0.0001

Insider Attacker Reject 171.09 < 0.0001 55.68 < 0.0001 171.09 < 0.0001

Regular User Reject 170.96 < 0.0001 148.72 < 0.0001 170.96 < 0.0001

Insider Attacker Timeout 181.52 < 0.0001 28.26 < 0.0001 28.26 < 0.0001

Regular User Timeout 188.98 < 0.0001 12.68 < 0.0004 12.68 < 0.0004

Scenario 3

DoS Attacker Success 121.65 < 0.0001 18.66 < 0.0001 165.58 < 0.0001

Insider Attacker Success 83.11 < 0.0001 6.95 < 0.009 161.26 < 0.0001

Regular User Success 148.29 < 0.0001 137.20 < 0.0001 170.71 < 0.0001

DoS Attacker Reject 170.93 < 0.0001 4.22 0.04 170.93 < 0.0001

Insider Attacker Reject 171.22 < 0.0001 50.43 < 0.0001 171.22 < 0.0001

Regular User Reject 171.05 < 0.0001 137.65 < 0.0001 171.05 < 0.0001

DoS Attacker Timeout 173.72 < 0.0001 68.08 < 0.0001 68.08 < 0.0001

Insider Attacker Timeout 170.81 < 0.0001 121.87 < 0.0001 121.87 < 0.0001

Regular User Timeout 176.94 < 0.0001 44.57 < 0.0001 44.57 < 0.0001

Scenario 4

Mix Attacker Success 171.18 < 0.0001 34.28 < 0.0001 171.18 < 0.0001

Regular User Success 126.62 < 0.0001 149.92 < 0.0001 171.20 < 0.0001

Mix Attacker Reject 171.18 < 0.0001 34.28 < 0.0001 171.18 < 0.0001

Regular User Reject 171.33 < 0.0001 150.03 < 0.0001 171.33 < 0.0001

Mix Attacker Timeout 197.07 < 0.0001 2.01 < 0.15 2.01 0.15

Regular User Timeout 193.54 < 0.0001 6.15 < 0.01 6.15 0.01

103



DoS
Attacker
Success

MARGIN

DoS
Attacker
Success
Random

Regular
User

Success
MARGIN

Regular
User

Success
Random

DoS
Attacker

Reject
MARGIN

DoS
Attacker

Reject
Random

Regular
User

Reject
MARGIN

Regular
User

Reject
Random

DoS
Attacker
Timeout

MARGIN

DoS
Attacker
Timeout
Random

Regular
User

Timeout
MARGIN

Regular
User

Timeout
Random

−10
0

10
20
30
40
50
60
70
80
90

100

(a) Scenario 1

Insider
Attacker
Success

MARGIN

Insider
Attacker
Success
Random

Regular
User

Success
MARGIN

Regular
User

Success
Random

Insider
Attacker

Reject
MARGIN

Insider
Attacker

Reject
Random

Regular
User

Reject
MARGIN

Regular
User

Reject
Random

Insider
Attacker
Timeout

MARGIN

Insider
Attacker
Timeout
Random

Regular
User

Timeout
MARGIN

Regular
User

Timeout
Random

−10
0

10
20
30
40
50
60
70
80
90

100

(b) Scenario 2

DoS
Attacker
Success

MARGIN

DoS
Attacker
Success
Rand.

Insider
Attacker
Success

MARGIN

Insider
Attacker
Success
Rand.

Regular
User

Success
MARGIN

Regular
User

Success
Rand.

DoS
Attacker

Reject
MARGIN

DoS
Attacker

Reject
Rand.

Insider
Attacker

Reject
MARGIN

Insider
Attacker

Reject
Rand.

Regular
User

Reject
MARGIN

Regular
User

Reject
Rand.

DoS
Attacker
Timeout

MARGIN

DoS
Attacker
Timeout

Rand.

Insider
Attacker
Timeout

MARGIN

Insider
Attacker
Timeout

Rand.

Regular
User

Timeout
MARGIN

Regular
User

Timeout
Rand.

−10
0

10
20
30
40
50
60
70
80
90

100

(c) Scenario 3

Mix
Attacker
Success

MARGIN

Mix
Attacker
Success
Random

Regular
User

Success
MARGIN

Regular
User

Success
Random

Mix
Attacker

Reject
MARGIN

Mix
Attacker

Reject
Random

Regular
User

Reject
MARGIN

Regular
User

Reject
Random

Mix
Attacker
Timeout

MARGIN

Mix
Attacker
Timeout
Random

Regular
User

Timeout
MARGIN

Regular
User

Timeout
Random

−10
0

10
20
30
40
50
60
70
80
90

100

(d) Scenario 4
Figure 5.10: RQ2.6 – MARGIN vs. Random Box-plots

104



DoS
Attacker
Success

MARGIN

DoS
Attacker
Success
Fixed

Regular
User

Success
MARGIN

Regular
User

Success
Fixed

DoS
Attacker

Reject
MARGIN

DoS
Attacker

Reject
Fixed

Regular
User

Reject
MARGIN

Regular
User

Reject
Fixed

DoS
Attacker
Timeout

MARGIN

DoS
Attacker
Timeout

Fixed

Regular
User

Timeout
MARGIN

Regular
User

Timeout
Fixed

−10
0

10
20
30
40
50
60
70
80
90

100
110

(a) Scenario 1

Insider
Attacker
Success

MARGIN

Insider
Attacker
Success
Fixed

Regular
User

Success
MARGIN

Regular
User

Success
Fixed

Insider
Attacker

Reject
MARGIN

Insider
Attacker

Reject
Fixed

Regular
User

Reject
MARGIN

Regular
User

Reject
Fixed

Insider
Attacker
Timeout

MARGIN

Insider
Attacker
Timeout

Fixed

Regular
User

Timeout
MARGIN

Regular
User

Timeout
Fixed

−10
0

10
20
30
40
50
60
70
80
90

100
110

(b) Scenario 2

DoS
Attacker
Success

MARGIN

DoS
Attacker
Success
Fixed

Insider
Attacker
Success

MARGIN

Insider
Attacker
Success
Fixed

Regular
User

Success
MARGIN

Regular
User

Success
Fixed

DoS
Attacker

Reject
MARGIN

DoS
Attacker

Reject
Fixed

Insider
Attacker

Reject
MARGIN

Insider
Attacker

Reject
Fixed

Regular
User

Reject
MARGIN

Regular
User

Reject
Fixed

DoS
Attacker
Timeout

MARGIN

DoS
Attacker
Timeout

Fixed

Insider
Attacker
Timeout

MARGIN

Insider
Attacker
Timeout

Fixed

Regular
User

Timeout
MARGIN

Regular
User

Timeout
Fixed

−10
0

10
20
30
40
50
60
70
80
90

100
110

(c) Scenario 3

Mix
Attacker
Success

MARGIN

Mix
Attacker
Success
Fixed

Regular
User

Success
MARGIN

Regular
User

Success
Fixed

Mix
Attacker

Reject
MARGIN

Mix
Attacker

Reject
Fixed

Regular
User

Reject
MARGIN

Regular
User

Reject
Fixed

Mix
Attacker
Timeout

MARGIN

Mix
Attacker
Timeout

Fixed

Regular
User

Timeout
MARGIN

Regular
User

Timeout
Fixed

−10
0

10
20
30
40
50
60
70
80
90

100
110

(d) Scenario 4
Figure 5.11: RQ2.6 – MARGIN vs. Fixed Box-plots

105



5.6.7 Threats to internal and external validity

The main threats to the validity of this research are as follows:
• A Zero-sum Game: The decision making assumes that the gain of one player
is equal to the lost of the other player. Quantified harm caused by the attacker in
many cases is not necessarily the same as the benefit gained by the attacker.
• Rational Players: An important underlying assumption of the proposed game-
theoretic approach is the rationality of the decision-making engine and the attacker.
However, they may not act rationally in reality, mainly because of limited obser-
vations and available information. In a two-player zero-sum game, if a defender
chooses a Nash equilibrium strategy, the rationality of the attacker is not important.
We should take into account that any deviation from the Nash equilibrium decreases
the cost of the defender while increasing the the benefit of the attacker [4].
• Trial-and-error Nature: Learning-based algorithms have a trial-and-error na-
ture. Thus at the early stages of each attack, the SPS system can make wrong de-
cisions. The outcome of these decisions will guide the adaptation manager towards
selecting the proper action in similar situations. Therefore, when the adaptation
manager faces a new strategy, it requires learning time. This phenomenon may not
be accepted in critical software systems that do not tolerate wrong decisions. The
solution to this problem can be (i) considering a testing phase for the system as
learning time, or (ii) initializing the payoff tables using expert knowledge.

Despite of aforementioned threats to validity, our game-theoretic analysis can
provide a rational guideline for addressing attack-type uncertainty using a learning-
based multi-agent approach (Markov game).

5.7 Summary

This chapter extends the proposed plug-and-play framework to employ Markov game
technique aiming at addressing attack-type uncertainty in SPS systems. Uncertainty
in this respect can be caused by (i) attacks that are well-planned such that they are
indistinguishable from legitimate requests, or (ii) attacks that have the same scenario
but target different quality goals of the SPS system. We presented a Markov game
decision-making approach that learns about the type of attack in order to select the
best countermeasure against it. For this purpose, this work focuses on learning the
type of attack using the positive/negative impact of the applied countermeasure on

106



the quality goals. We utilize a learning technique, known as minimax-Q [82]. In order
to aid in the gradual improvement of the SPS system’s decision quality, we propose
a novel and intuitive reward function that deals with the relations among quality
goals, actions, and system attributes. A comprehensive set of experiments have been
conducted in a simulation environment. Various possible scenarios are modeled in
this environment and the results have demonstrated that the proposed MARGIN
is capable of learning to select a proper countermeasure when facing attack-type
uncertainty. The next chapter focuses on addressing attack-type uncertainty from
a different perspective; Instead of a learning-based approach, a probabilistic-based
approach is taken.

107



Chapter 6

Decision Making using Bayesian
Games

We present a Bayesian game model that captures the uncertainty about an adver-
sary’s motivation for sending malicious requests. Our game-theoretic model for-
malizes possible intentions of adversaries along with the security preferences of the
software system. In such a novel design, the equilibrium of the modeled game bal-
ances the gain from achieving security goals with the loss incurred by mitigating
the attack. We provide an extensive analysis of the proposed game-theoretic model
in the presence and absence of uncertainty about the adversary type. Moreover,
we present a case study to show how such uncertainty can be addressed using the
proposed technique in a real-world scenario.

Preserving the security goals of software systems when confronted with application-
layer attacks requires not only detecting the attack, but also responding in a timely
and appropriate manner. A manual intrusion response introduces a delay between
notification and response, which could be exploited by the adversary to significantly
increase damage to the system [137]. Protecting software systems against today’s
sophisticated attacks calls for intelligent decision-making techniques. However, the
decision-making process needs to deal with various unknown features such as un-
certainty associated with the satisficement of Non-Functional Requirements (NFRs)
given a set of decisions [10] or uncertainty in alert notification [137].

In this chapter, we explore the incorporation of such uncertainty into the decision
model of Self-Protecting Software (SPS) systems. We propose a Uncertainty-Based
Self-Protection (UBSP) approach that can be easily employed in any SPS system
according to its preferences in security goals and the cost of response actions while

108



fusing the cost and benefit of initiating attacks by various types of adversaries. The
decision model is based on a Bayesian game model which acknowledges the interac-
tions between the SPS system and the adversary. The decision model considers the
uncertainty about the type of adversary by incorporating the probability for each
type of adversary. We analyze the achievable Nash equilibrium for both pure and
mix strategies for the SPS system and the rational adversary.

The rest of this chapter is organized as follows. Section 6.1 provides the notations
used throughout this chapter. Section 6.2 elaborates on the detail of the proposed
game that we investigate in this chapter. Section 6.3 presents the modeling technique
in the extended framework. Section 6.4, and 6.5 defines two normal-form games with
complete information about the type of adversary as part of the designing phase of
the decision-making engine. Section 6.6 completes the designing phase of the game by
describing a Bayesian game model to formulate the decision model with uncertainty
about the type of adversary. Section 6.7 realizes the defined Bayesian game by a
case study on a telephony system. Section 6.8 discusses the obtained results of the
case study. Finally, Section 6.9 summarizes the chapter.

6.1 Notations

In our modeled games, two players choose strategies simultaneously under the as-
sumption that both have common knowledge about the cost and benefits of the game.
Table 6.1 summarizes the notations used in our UBSP game model: Cx denotes the
cost of actions for the players (the adversary and the defense system), MT i

ATj repre-
sents the gain by the malicious user (adversary), and SGi denotes the gain by the
SPS system. For both players, all possible strategies incur some cost, which can be
interpreted as the operational cost to conduct the strategy. The benefits of goals G1
and G2 are represented by SG1 and SG2 and are defined by the stakeholders.

In the defined game model, the decision factors are abstract enough to adapt to
the required application. For example, the values of SG1 and SG2 can be dependent
on the type of application and the preferences over security goals in the system. In
Table 6.1, it is reasonable to assume: (i) SG1, SG2 > CCM1, (ii) SG1, SG2 > CCM2,
(iii) MT1

AT1,M
T1
AT2 > CAT1, and (iv) MT1

AT1,M
T1
AT2 > CAT2, since otherwise the defense

system does not have the incentive to defend the system and the adversary does not
have the incentive to attack. The cost of response actions (CCM1 and CCM2) can
be defined as a function of resource consumption with respect to activities to enable
and process the response action. The cost of AT1 (CAT1) and AT2 (CAT2) can be

109



Table 6.1: Summary of Notations Used

Notation Definition
a Adversary (Player)
d Defense System (Player)

ATi Attack i (Action)
CMi Countermeasure i (Action)
Cx Cost of applying action x
Ti Adversary type i

MT i
ATj

Measure of benefit to the Ti type adversary
to achieve its malicious goal via ATj

Gi Security goal i

SGi
Measure of benefit to the defense system

to satisfy security goal Gi
p Probability with which the defense system

plays CM1
1− p Probability with which the defense system

plays CM2
qi Probability with which the type i adversary

plays AT1
1− qi Probability with which the type i adversary

plays AT2
µ Probability of an adversary of type 1

1− µ Probability of an adversary of type 2
EPlayer(Action) Expected payoff of a Player to play an Action

defined as a function of resource consumption to initiate the attack.

6.2 A Bayesian Game Approach

We address the uncertainty about the type of adversary by incorporating such infor-
mation, along with the benefits and costs of attacks and countermeasures, into the

110



decision model. We consider a two-player normal-form game in which, one player is
the adversary, denoted by “a”. The other player is the defense system in the SPS,
denoted by “d”. In this game, the adversary aims at targeting one of the two security
goals of the system: G1, and G2. For instance, the aim of the adversary could be
breaking down the server in order to discount the availability goal (G1) of the SPS
system or to access sensitive information and break the confidentiality goal (G2).
Each targeted security goal calls for a different type of adversary. For example, the
availability goal can be targeted by Denial of Service (DoS) attackers whereas the
confidentiality goal is targeted by insider attackers.

Today’s sophisticated and well-planned attack scenarios have motivated us to
consider attack scenarios in which the adversary adapts more than one pure strat-
egy to mislead the defense system. In this case, a traditional defense system may
select a countermeasure that works to the benefit of the adversary. The benefits
of game theory in providing a holistic decision making in adaptive security is dis-
cussed in [43]. In our UBSP game specification, the SPS system protects two security
goals: G1 and G2. Accordingly, two pure strategies for the adversary are considered:
Attack 1 (AT1) and Attack 2 (AT2), which target G1 and G2, respectively. How-
ever, an intelligent adversary may mix these two strategies, aiming at confusing the
SPS system. For example, a DoS attacker can mix two pure strategies: (i) Heavy
Load: sending malicious requests that introduce high workload to the system, and
(ii) High Sensitive: sending malicious requests that target files with low workload,
yet sensitive data. The former strategy is prone to fast detection by the IDS, whereas
the latter strategy results in misdiagnosing the attack and applying a countermea-
sure that is effective for an insider attacker instead of a DoS attack. Therefore, the
defense system will fail to treat the adversary as a DoS attacker.

In our UBSP game specification, the defense system has two pure strategies to
protect the software system: Countermeasure 1 (CM1) and Countermeasure 2 (CM2),
which protect G1 and G2, respectively. For example, two possible countermeasures
are (i) Issue Puzzle: issuing a puzzle such as CAPTCHA [126] to determine whether
or not the original of the request is from a real user or a botnet [69], and (ii) Drop
Request: providing no respond to the incoming request. These two countermeasures
protect the availability and confidentiality goals, respectively. In many situations,
the defense system can only select and apply one of the available countermeasures to
protect the software system due to the fact that: (i) most of the countermeasures are
mutually exclusive, (ii) the combined cost of applying countermeasures exceeds the
value of the software protected, or (iii) the combination of countermeasures degrades
the level of service to an unacceptable level.

111



6.3 Modeling: Cost and Benefits of Strategies

In the modeling phase, the objective is to facilitate defining payoffs of the players.
Accordingly the satisfaction of the defense system’s (or the adversary’s) quality (or
malicious) goal is considered along with the cost of applying each particular strategy
(a countermeasure or an attack). In other words, the payoffs of the players for each
strategy is defined by measuring the benefit of the strategy for the player (the defense
system or the adversary) minus the cost of applying that strategy.

The benefit of a strategy is quantified by the impact of that strategy on the
quality/malicious goal of the defense system/the adversary. Incorporating such in-
formation into the modeling the interdependencies of strategies (between the SPS
system and the adversary) is proposed in [44]. Here, we simply formulate this in-
formation into the payoff values. The following values are incorporated: (i) The
level of satisfaction of a security goal for the defense system (SGi), (ii) The level of
achievement of a malicious goal for the adversary (MT i

ATj), (iii) The cost of trigger-
ing a strategy for a player (Cx). Based on these information, the following sections
describe two normal-form games [96] with complete information about the type of
adversary. In each game, we model the payoffs of players and analyze the Nash
equilibrium solution of the game along with a numerical example.

6.4 Designing: Type 1 Adversary

In this complete information game, we consider the scenario in which the intention
of the adversary is to target the G1 security goal (a type 1 adversary). Hence, the
adversary initiates AT1 along with AT2 to mislead the other player (the defense
system). Table 6.2 lists the payoffs. Each cell in Table 6.2 has two payoffs that
correspond with player d and player a accordingly. The notations that represent the
gain and cost of players are defined in Table 6.1.

For the SPS system, satisfaction of the two security goals G1 and G2 are denoted
by SG1 and SG2. The cost of applying CM1 is denoted by CCM1. In the case of pure
strategy AT1, applying CM1 can successfully address the attack and G1 security
goal is protected with this strategy. Therefore, the payoff of the SPS system is
SG1 − CCM1. Applying CM2 costs CCM2 and CM2 does not properly satisfy the
security goal of G1. For example, dropping the request will not stop the adversary
from sending malicious requests. The continuation of such requests eventually results

112



Table 6.2: Strategic Form of Type 1 Adversary vs. SPS

@
@
@d
a AT1 AT2

CM1 SG1 − CCM1, −SG2 − CCM1,

−MT1
AT1 − CAT1 −MT1

AT2 − CAT2

CM2 −SG1 − CCM2, SG2 − CCM2,

MT1
AT1 − CAT1 MT1

AT2 − CAT2

in threatening G1 security goal (such as the availability goal). Hence, the payoff for
CM2 in case of AT1 is −SG1 − CCM2.

When an adversary wanting to target G1 security goal issues AT2 in order to stay
hidden from the IDS, the strategy CM1 puts security goal G2 at risk, as represented
by −SG2. In this case, the response action of selecting CM1 results in a payoff of
−SG2−CCM1, whereas selection of CM2 results in protection of security goal G2 and
the payoff of SG2 − CCM2.

Now we turn to the adversary payoffs. The adversary incurs the cost of CAT1 by
issuing AT1 and gains MT1

AT1 if the malicious intention to threat the G1 security goal
is satisfied. If the adversary fails, the gain of the adversary is −MT1

AT1. Here, it can
be seen that the success of an attack depends on the strategy selected by the SPS
system. Only when SPS chooses CM2 will the adversary succeed (MT1

AT1 − CAT1).
The adversary could also choose AT2 to misguide the SPS system and encourage

it to change its strategy to CM2. The gain in this case is MT1
AT2, which is less than

MT1
AT1 because the adversary reaches its malicious goal quicker by issuing AT1 instead

of AT2. Hence, we have: MT1
AT1 > MT1

AT2. AT2 also introduces extra effort for the
adversary that is intended to target G1 security goal. This effort is denoted by CAT2.

6.4.1 Nash Equilibrium Analysis

The well-known concept of Nash equilibrium [96] defines a set of actions for players
such that none have any incentive to deviate from their chosen action. Assuming that
the defense system always takes the pure strategy CM1, then the adversary’s best
response is to select AT2 when −MT1

AT1−CAT1 ≤ −MT1
AT2−CAT2. However, this is not

an equilibrium, as the pure strategy of AT2 by the adversary motivates the rational
defense system to change its strategy to CM2. By switching to CM2, the adversary
is inclined to change its strategy to AT1 when MT1

AT1 − CAT1 ≥MT1
AT2 − CAT2. Since

113



we have MT1
AT1 > MT1

AT2, this can be interpreted thus: if the defense system applies
CM2 then the adversary issues AT1 when CAT1 ≤MT1

AT1 −MT1
AT2 + CAT2.

The above finding is interesting in the decision-making of SPS systems. It sug-
gests that in selecting a response action, the decision-making engine needs to incor-
porate the cost of initiating an attack for adversaries rather than considering the
cost of applying a countermeasure for the defense system. This is contrary to most
approaches for SPS systems, where the decision-making engine considers only the
operational cost of providing a response action. The application of such a decision-
making engine can introduce a perspective system (e.g., by focusing on increasing
the cost of mounting attacks for adversaries) rather than simply deploying a response
action.

6.4.2 Mixed Strategy Equilibrium Analysis

In the previous subsection, we found that there are two pure strategies: (i) (CM1,
AT1) when −MT1

AT1 − CAT1 > −MT1
AT2 − CAT2, and (ii) (CM2, AT2) when MT1

AT1 −
CAT1 < MT1

AT2 − CAT2. Hence, there is no pure strategy Nash equilibrium when
−MT1

AT1−CAT1 ≤ −MT1
AT2−CAT2 and MT1

AT1−CAT1 ≥MT1
AT2−CAT2. Now, we check

for Nash equilibrium when the adversary plays a mixed strategy. A mix strategy is
randomizing over the set of available actions according to some probability distribu-
tion [115]. The expected payoffs of the defense system d are as follows (The notations
that represent the probabilities (q1, 1− q1, p, and 1− p) are defined in Table 6.1)).

Ed(CM1) = q1(SG1 − CCM1) + (1− q1)(−SG2 − CCM1), (6.1)

Ed(CM2) = q1(−SG1 − CCM2) + (1− q1)(SG2 − CCM2). (6.2)

To make CM1 and CM2 indifferent to the defense system, i.e., Ed(CM1) =
Ed(CM2), the adversary’s equilibrium strategy is to play AT1 with q1 = SG2−CCM2+SG2+CCM1

2SG1+2SG2
.

Similarly, the expected payoffs of the adversary are

Ea(AT1) = p(−MT1
AT1 − CAT1) + (1− p)(MT1

AT1 − CAT1), (6.3)

Ea(AT2) = p(−MT1
AT2 − CAT2) + (1− p)(MT1

AT2 − CAT2). (6.4)

114



By a similar calculation it can be shown that to make AT1 and AT2 indifferent
to the adversary, i.e., Ea(AT1) = Ea(AT2), the defense system’s equilibrium strat-
egy is to play CM1 with probability p = MT 1

AT 2−CAT 2−MT 1
AT 1+CAT 1

2MT 1
AT 2−2MT 1

AT 1
. It is noteworthy

that deploying a countermeasure according to probability p is based on the given
circumstances and has a risk of applying the wrong countermeasure.

Table 6.3: Payoffs and Numerical Examples of Type 1 Adversary

Table 6.3.a: Payoffs of Type 1 Adver-
sary in G1 Preferred SPS
@
@@d

a AT1 AT2

CM1 U++, U−− U−, U−

CM2 U−−, U++ U+, U+

Table 6.3.c: Payoffs of Type 1 Adver-
sary in G2 Preferred SPS
@

@@d
a AT1 AT2

CM1 U+, U−− U−−, U−

CM2 U−, U++ U++, U+

Table 6.3.b: Numerical Example of
Type 1 Adversary in G1 Preferred SPS

@
@@d

a Heavy
Load

High
Sensitivity

Issue Puzzle 85,−100 −15,−90
Drop Request −95, 85 5, 50

Table 6.3.d: Numerical Example of
Type 1 Adversary in G2 Preferred SPS

@
@@d

a Heavy
Load

High
Sensitivity

Issue Puzzle 5,−100 −95,−90
Drop Request −15, 85 85, 50

6.4.3 Case Based Analysis

Using the defined game model, in the following, we consider two possible cases:
(i) an SPS system with a much stronger preference to protect G1 security goal than
G2 security goal, and (ii) an SPS system with a much stronger preference to protect
G2 security goal than G1 security goal. We provide a numerical example and analyze
potential responses for each case.

• Case 1: Type 1 Adversary vs. SPS System with G1 Preference
Assuming the benefit to protect G1 is much higher than that for G2, we have:
SG1 >> SG2. The payoffs for the defense system d and the adversary a are as
shown in Table 6.3.a. Here, U represents the outcome related to Table 6.2 while
shows the the magnitude of the gain/lost in the payoff value.

115



Table 6.3.b exemplifies a type 1 adversary versus an SPS system with a high
preference for G1 security goal. The calculated mix strategy Nash equilibrium is:
p = 0.78, 1− p = 0.22, q1 = 0.10, and 1− q1 = 0.90.
The resulting Nash equilibrium illustrates that in the mix strategy the response
action CM1 has a much higher probability to be selected than the response action
CM2. The rational adversary is motivated to attack with the probability of 0.10,
due to the observation of mix strategy by the defense system d, which selects CM1
with the probability of 0.90. Hence, the rational adversary is discouraged from
attacking the SPS system.

• Case 2: Type 1 Adversary vs. SPS System with G2 Preference
The second case considers a low preference of G1 security goal and high prefer-
ence of G2 security goal (SG1 << SG2). Payoffs for both players are shown in
Table 6.3.c. Table 6.3.d provides a numerical example of such a scenario. We get a
mix strategy Nash equilibrium for the game with p = 0.78, 1−p = 0.22, q1 = 0.90,
and 1−q1 = 0.10. Accordingly, the rational response action for the defense system
against AT1 is to choose CM1 with a much higher probability than CM2.

Note that the mix strategy response action selections (p & 1 − p) in both cases
are the same, because the defense system selects a response action by considering
the goal of the adversary and the cost of the attack. In both cases, the intention
behind the attacks and their cost are the same. Hence, the defense system takes the
same strategy in protecting security goals. Comparing the two cases reveals that in
case 1 the rational adversary chooses AT1 with less probability. This is motivated
by the possibility of the defense system benefiting greatly id CM1 is chosen.

6.5 Designing: Type 2 Adversary

In the case of the adversary targeting the G2 security goal, we model a normal form
game in Table 6.4. The notations that represent the gain and cost of players are
defined in Table 6.1. The payoffs for the defense system are based on the gain/lost of
G1 and G2 security goals, and the cost of response actions accordingly. The payoffs
for the player d in Table 6.4 are the same as in Table 6.2. However, in this scenario,
the payoffs for the adversary differ from those in the game modeled in the previous
section, due to the changed intention of the adversary.

In this game, the adversary gains/loses a value of MT2
AT2 if AT2 is successful/un-

successful. Meanwhile the adversary may choose to issue AT1 in order to misguide

116



Table 6.4: Strategic Form of Type 2 Adversary vs. SPS

@
@
@d
a AT1 AT2

CM1 SG1 − CCM1, −SG2 − CCM1,

MT2
AT1 − CAT1 MT2

AT2 − CAT2

CM2 −SG1 − CCM2, SG2 − CCM2,

−MT2
AT1 − CAT1 −MT2

AT2 − CAT2

the defense system. In this case, the gain/loss of applying this action is represented
by MT2

AT1. In the modeled game, the gain/loss of AT2 is higher than in the AT1 at-
tack since the intention of the adversary is to break the G2 security goal. Hence, we
have MT2

AT1 < MT2
AT2. As in the previous scenario, to motivate the rational adversary,

we assume that MT2
AT1,M

T2
AT2 > CAT1, CAT2.

Table 6.5: Payoffs and Numerical Examples of Type 2 Adversary

Table 6.5.a: Payoffs of Type 2 Adver-
sary in G1 Preferred SPS
@
@@d

a AT1 AT2

CM1 U++, U+ U−, U++

CM2 U−−, U− U+, U−−

Table 6.5.c: Payoffs of Type 2 Adver-
sary in G2 Preferred SPS
@

@@d
a AT1 AT2

CM1 U+, U+ U−−, U++

CM2 U−, U− U++, U−−

Table 6.5.b: Numerical Example of
Type 2 Adversary in G1 Preferred SPS

@
@@d

a Heavy
Load

High
Sensitivity

Issue Puzzle 85, 50 −15, 85
Drop Request −95,−90 5,−100

Table 6.5.d: Numerical Example of
Type 2 Adversary in G2 Preferred SPS

@
@@d

a Heavy
Load

High
Sensitivity

Issue Puzzle 5, 50 −95, 85
Drop Request −15,−90 85,−100

6.5.1 Nash Equilibrium Analysis

Assuming that the defense system takes the pure strategy CM1, then the best re-
sponse for the adversary is AT2 when MT2

AT1−CAT1 ≤MT2
AT2−CAT2. However, if the

117



adversary plays AT2, then CM1 will not be the best response for the defense system,
which will play CM2 instead. Hence, the adversary is motivated to trigger AT1 when
−MT2

AT1−CAT1 ≥ −MT2
AT2−CAT2. Accordingly, pure strategy Nash equilibrium exists

when: (i) MT2
AT1 − CAT1 > MT2

AT2 − CAT2, or (ii) −MT2
AT1 − CAT1 < −MT2

AT2 − CAT2.

6.5.2 Mixed Strategy Equilibrium Analysis

We check for Nash equilibrium when the adversary plays mix strategy AT1 with
probability q2 and AT2 with probability 1 − q2. The defense system’s expected
payoffs (Ed(CM1) and Ed(CM2)) are the same as the expected payoffs defined in
Equations (1) and (2). The adversary’s equilibrium strategy is to play AT1 with
q2 = SG2−CCM2+SG2+CCM1

2SG1+2SG2
, similar to the case of the type 1 adversary in the previous

section. This similarity suggests that despite the type of adversary, the probability
of an attack is highly dependent on the security preference of the targeted system as
well as the cost of applying a countermeasure. The expected payoffs of the adversary
are

Ea(AT1) = p(MT2
AT1 − CAT1) + (1− p)(−MT2

AT1 − CAT1), (6.5)

Ea(AT2) = p(MT2
AT2 − CAT2) + (1− p)(−MT2

AT2 − CAT2). (6.6)

The defense system’s equilibrium strategy is to make AT1 and AT2 indifferent
to the adversary (Ea(AT1) = Ea(AT2)). Therefore, the defense system must choose
CM1 with probability p = MT 2

AT 1+CAT 1−MT 2
AT 2−CAT 2

2MT 2
AT 1−2MT 2

AT 2
. As we have pointed out in Sec-

tion 6.4.2, applying a countermeasure using probability, has the risk of applying the
wrong countermeasure. However, considering the costs and benefits of actions in our
analysis aims at decreasing such risk.

6.5.3 Case Based Analysis

In this section, we introduce two cases for the proposed game theoretic model and
analyze the potential responses of the two players.

• Case 1: Type 2 Adversary vs. SPS System with G1 Preference

118



Assuming that the defender benefits much more by keeping the G1 security goal
than the G2 security goal, we have: SG1 >> SG2. Given this assumption, the
payoffs for both the defense system and the adversary are as shown in Table 6.5.a.
Similar to Section 6.4.3, U represents the outcome related to Table 6.4 while shows
the the magnitude of the gain/lost in the payoff value.
Table 6.5.b exemplifies an insider attack on an SPS system with a high preference
for G1 security goal. The equilibrium solution of the game is p = 0.22, 1−p = 0.78,
q2 = 0.10, and 1− q2 = 0.90. The adversary will rationally choose to initiate AT2
with the probability of 0.10. Therefore, the defense system’s best response to the
adversary’s mix strategy is to select CM2 with the probability of 0.78.

• Case 2: Type 2 Adversary vs. SPS System with G2 Preference
Assume that the defender benefits much more from protecting security goal G2
than from protecting security goal G1. Hence, we have: SG2 >> SG1. The payoffs
are shown in Table 6.5.c. An example of payoffs for both players are shown in
Table 6.5.d. In this case, we get a mix strategy equilibrium for the game when
p = 0.22, 1− p = 0.78, q2 = 0.90, and 1− q2 = 0.10. Therefore, the rational action
for the defense system is to choose CM1 only if it believes q2 > 0.90. Otherwise,
CM2 is the best response.

In the above two cases with different goal preferences, the probability of response
action CM2 is identical in both cases, because the intention of the adversary in both
cases is the same. In case 2, the probability of AT2 is lower than in case 1 due to its
higher risk of benefiting the defense system.

In the two game models discussed in Sections 6.4 and 6.5, the defense system
is able to make an intelligent decision that considers both (i) system security goals,
and (ii) adversary intentions in targeting the SPS system. The type of adversary (its
costs and benefits) is considered to be known when deciding on the response action.
However, this is not always the case. Next, we discuss a game theoretic model that
incorporates such uncertainty into the response action selection.

6.6 Designing: Adversary-Type Uncertainty

In this section, we consider scenarios in which the defender is uncertain about the
intention of the adversary in targeting the SPS system. This situation could be in-
terpreted as that of responding to two types of adversaries. Bayesian game technique

119



Nature

Player a

AT1 AT2

SG1 – CCM1 ,
-MT1

AT1 – C3

-SG1 - CCM2  ,
MT1

AT1 - CAT1 

AT1 AT2

µ: Type 1 1-µ: Type 2

CM1

- SG2 - CCM1 ,
-MT1

AT2 - CAT2

SG2 - CCM2  ,
MT1

AT2 - CAT2 

SG1 - CCM1 ,
MT2

AT1 - CAT1

- SG1 - CCM2 , 
- MT2

AT1 - CAT1

- SG2 - CCM1 ,
- MT2

AT2 - CAT2

SG2 - CCM2 ,
- MT2

AT2 - CAT2 

CM2 CM1 CM2 CM1 CM2 CM1 CM2

Player a

Player dPlayer dPlayer dPlayer d

Figure 6.1: Extensive Form of the Modeled Bayesian Game

models the similar situation in which the player is uncertain about the type(s) of
other player(s). Hence, we employ Bayesian technique to solve our modeled game.
We consider a two-player static Bayesian game.

Figure 6.1 illustrates the extensive form of the Bayesian game. Here, node Nature
determines the type of adversary. The objective of both players is to maximize their
expected payoffs. This implies that we assume both players to be rational. This
assumption is a generic assumption for a well-defined adversary-defender game [85].
In the defined game, the adversary plays a Bayesian strategy in order to minimize
his chances of being detected, and the defender plays a Bayesian strategy in order to
maximize his chance of responding to attacks without introducing high cost to the
SPS system.

6.6.1 Bayesian Nash Equilibrium (BNE) Analysis

We analyze BNE based on the assumption that the type of adversary is unknown
to the defense system. We assume that µ is a common prior, meaning that the
adversary a knows the defender’s belief of µ. Obviously, the adversary has private
information behind its intention to target G1 or G2. In the following, we analyze the
four possible pure-strategy BNEs that could exist.

1. If the adversary plays the pure strategy pair (AT1 if type 1, AT1 if type 2),
then the expected payoff of the defense system playing the pure strategy CM1 is

120



Ed(CM1) = µ(SG1 − CCM1) + (1− µ)(SG1 − CCM1). (6.7)

The expected payoff of the defense system playing pure strategy CM2 is

Ed(CM2) = µ(−SG1 − CCM2) + (1− µ)(−SG1 − CCM2). (6.8)

So if Ed(CM1) > Ed(CM2) or if SG1 >
CCM1−CCM2

2 (which is always true since
the assumption is SG1 > CCM1, CCM2), then the best response of the defense
system is to play CM1. However, if the defense system plays CM1, then AT1 is
not the best response when −MT1

AT1 −CAT1 ≤ −MT1
AT2 −CAT2 or MT2

AT1 −CAT1 ≤
MT2

AT2 − CAT2, and the adversary will move on to play AT2 instead. Therefore,
in this case, (AT1 if type 1, AT1 if type 2, CM1) is not a BNE. However, if
−MT1

AT1 − CAT1 > −MT1
AT2 − CAT2 and MT2

AT1 − CAT1 > MT2
AT2 − CAT2, the best

response for the defender is CM1, and thus (AT1 if type 1, AT1 if type 2, CM1)
is a pure-strategy BNE.

2. If the adversary plays the pure strategy pair (AT1 if type 1, AT2 if type 2),
then the expected payoff for the defense system playing the pure strategy CM1 is

Ed(CM1) = µ(SG1 − CCM1) + (1− µ)(−SG2 − CCM1). (6.9)

Similarly, the expected payoff of the defense system playing the pure strategy
CM2 is

Ed(CM2) = µ(−SG1 − CCM2) + (1− µ)(SG2 − CCM2). (6.10)

So if Ed(CM1) > Ed(CM2) or if µ > 2SG2−CCM2+CCM1
2SG1+2SG2

, then the best response
of the defense system is to play CM1. However, if the defense system plays
CM1, then AT1 is not the best response for targeting G1 when −MT1

AT1−CAT1 ≤
−MT1

AT2 − CAT2, and it switches to AT2. If MT2
AT1 − CAT1 ≤ MT2

AT2 − CAT2, then
AT2 is not the best response for targeting G2, and the adversary moves on to play
AT1. Hence, (AT1 if type 1, AT2 if type 2, CM1, µ) is not a pure-strategy BNE.
If µ < 2SG2−CCM2+CCM1

2SG1+2SG2
, then the best response of the defense system is to play

CM2. However, if MT1
AT2−CAT2 ≥MT1

AT1−CAT1 then a type 1 adversary switches
to AT2, and if−MT1

AT1−CAT1 ≥ −MT2
AT2−CAT2, then the type 2 adversary switches

to AT1. Hence, (AT1 if type 1, AT2 if type 2, CM2, µ) is not a pure-strategy
BNE.

121



Table 6.6: Case Based Analysis of Adversary-Type Uncertainty

Type 1 Type 1 Type 2 Type 2
AT1 AT2 AT1 AT2 CM1 CM2
(q1) (1− q1) (q2) (1− q2) (p) (1− p)

Case 1 0.20 0.80 0.00 1.00 0.78 0.22

Case 2 1.00 0.00 0.80 0.20 0.22 0.78

3. If the adversary plays the pure strategy pair (AT2 if type 1, AT1 if type 2),
then the expected payoff of the defense system playing the pure strategy CM1 is

Ed(CM1) = µ(−SG2 − CCM1) + (1− µ)(SG1 − CCM1). (6.11)

The expected payoff of the defense system playing pure strategy CM2 is

Ed(CM2) = µ(SG2 − CCM2) + (1− µ)(−SG1 − CCM2). (6.12)

So if Ed(CM1) > Ed(CM2), or if µ < 2SG1+CCM2−CCM1
2SG1+2SG2

, then the best response
by the defense system is to play CM1. As with the previous case, we can show
that (AT2 if type 1, AT1 if type 2, CM1, µ) and (AT2 if type 1, AT1 if type 2,
CM2, µ) are not pure-strategy BNEs.

4. If an adversary plays the pure strategy pair (AT2 if type 1, AT2 if type 2),
then the expected payoff of the defense system playing the pure strategy CM1 is

Ed(CM1) = µ(−SG2 − CCM1) + (1− µ)(−SG2 − CCM1). (6.13)

The expected payoff of the defense system playing pure strategy CM2 is

Ed(CM2) = µ(SG2 − CCM2) + (1− µ)(SG2 − CCM2). (6.14)

So if Ed(CM2) > Ed(CM1), or if SG2 >
CCM2−CCM1

2 (which is always true since
the assumption is that SG2 > CCM1, CCM2), then the best response of the defense
system is to play CM2. However, if the defense system plays CM2, then AT2 is not
the best attack strategy when MT1

AT2−CAT2 ≤MT1
AT1−CAT1 and −MT2

AT2−CAT2 ≤
−MT2

AT1 − CAT1. Hence, the adversary moves on to play AT1 instead. Therefore,

122



(AT2 if type 1, AT2 if type 2, CM2) is not a BNE. However, if MT1
AT2 − CAT2 >

MT1
AT1−CAT1 and −MT2

AT2−CAT2 > −MT2
AT1−CAT1, then the best response for the

defender is CM2, and thus (AT2 if type 1, AT2 if type 2, CM2) is a pure-strategy
BNE.

We previously showed that pure-strategy BNE exists when (i) AT1 if type 1, AT1
if type 2, CM1, −MT1

AT1−CAT1 > −MT1
AT2−CAT2 and MT2

AT1−CAT1 > MT2
AT2−CAT2,

and (ii) AT2 if type 1, AT2 if type 2, CM2, MT1
AT2 − CAT2 > MT1

AT1 − CAT1 and
−MT2

AT2 − CAT2 > −MT2
AT1 − CAT1. Although there exist a number of BNEs for

particular pure strategies that meet certain criteria, here, we seek to find a mixed-
strategy BNE for cases that do not result in a pure-strategy BNE. For this we
must introduce two new belief probabilities. Setting the expected value of playing
strategies CM1 and CM2 equal to each other we get

µq1(SG1 − CCM1) + µ(1− q1)(−SG2 − CCM1)+
(1− µ)q2(SG1 − CCM1) + (1− µ)(1− q2)(−SG2 − CCM1) =

µq1(−SG1 − CCM2) + µ(1− q1)(SG2 − CCM2)+
(1− µ)q2(−SG1 − CCM2) + (1− µ)(1− q2)(SG2 − CCM2). (6.15)

Thus, the strategy pair (q1 if type 1 adversary, q2 if type 2 adversary, µ) is
a mixed-strategy BNE, if Equation 6.15 is satisfied. Consequently, neither of the
players can improve their payoffs by changing strategies.

6.6.2 Case Based Analysis

Let us describe how the proposed Bayesian game model analyzes potential responses
given uncertainty regarding adversarial intentions. Here, we consider a scenario
where the probability of targeting G1 and G2 (a type 1 adversary and a type 2
adversary) are the same in the SPS system.

We analyzed the response of the SPS system in two cases in which the preference
of the SPS system is to protect either: (i) the G1 security goal or (ii) the G2 security
goal. These two cases are exemplified using the two sets of numerical inputs intro-
duced in Sections 6.4 and 6.5. Consequently, cases 1 and 2 are evaluated. We solved
these two games using GAMBIT software [65]. Table 6.6 shows the probability of
each strategy for both players a and d. In the rest of this subsection, we discuss in
detail the response of the SPS system in each case.

123



• Case 1: Uncertain Adversary Type vs. SPS System with G1 Preference
We exemplify a type 1 adversary in an SPS system where G1 is preferred over G2.
The numerical example of this case is shown in Figure 6.2. This game does not
admit any NE solution in pure strategies. However, a unique NE is numerically
computed in mixed strategies and shown in Table 6.6. At the NE, the type 1
adversary issues AT1 with the probability of 0.20. A reason for this low probability
is the discouraging effect of the SPS system’s capability to correctly respond to
the attack. The NE strategy of the defender is CM1, with the probability of 0.78,
and CM2 with the probability of 0.22.

Figure 6.2: An Example of a Bayesian Security Game and Its Numerical Solution
Obtained Using GAMBIT Software [65]

• Case 2: Uncertain Adversary Type vs. SPS System with G2 Preference
Here, we consider a scenario where the preference of the SPS system is to protect
the G2 security goal in the SPS system. The inputs are the same as in case 2 of
the game model defined in Sections 6.4 and 6.5. At the NE, the probability of
CM1 is 0.22, while the probability of CM2 is 0.78. The outcome of the game is
based on consideration of G2 preference in the SPS system.

In this section, we used Bayesian game technique to model and analyze the un-
certainty about the type of adversary targeting the SPS system. In addition, we

124



provided a detailed analysis for various possible security goal preferences. In the
next section, we describe the case study employing the proposed game-theoretic ap-
proach in selecting a proper countermeasure.

6.7 Realizing: Case Study of a Voice over IP

As a proof of concept for the proposed UBSP approach, we performed a case study
with adversary-type uncertainty. The experiments are executed on a Voice over
IP (VoIP) telephony system. The motivation for choosing such a system is the
increasing number of application-layer flooding attacks in these systems. We study
the case of application-layer attacks in which adversaries trigger various types of
flooding attacks in an attempt to avoid detection. In this experimental evaluation,
the following research questions are particularly taken into account:
• RQ3.1 - Impact of adversary-type uncertainty: What is the impact of con-
sidering uncertainty about adversary’s type in the performance of the action selection
in the SPS system?
•RQ3.2 - Impact of security goal preference: What is the impact of considering
the preferences of various security goals in the performance of the action selection in
the SPS system?

To answer the above questions, we conducted two types of flooding attacks while
the SPS system is uncertain about the type of adversary. We analyzed and compared
the impact of various mitigation approaches, including our proposed Bayesian game
model.

Session Initiation Protocol (SIP) is a core protocol for real-time communication
networks. VoIP communications rely on SIP protocol. Message flooding attacks ex-
ploit the common vulnerability of servers: their limited processing capability. Flood-
ing attacks can be achieved with different SIP messages (REGISTER, INVITE, OP-
TIONS, etc.) [37]. In our experiments, we consider two types of flooding attacks:
(i) REGISTER, and (ii) INVITE.

Protection of SIP servers against flooding attacks requires an online detection
and mitigation technique to recognize such malicious requests and to drop them.
Most research on the detection and mitigation of SIP flood attacks focuses on min-
ing network-layer data [37]. However, this case study aims at incorporating the
adversary-type uncertainty and the preferences of the SPS system when providing a
response action.

125



6.7.1 Implementations

OpenJSIP [68] is an open source SIP service implemented in Java. The current
version of the project, which we use in our experiments, is v0.0.4. OpenJSIP provides
three services: Proxy, Registrar, and Location Service. The project is based on
JainSIP [67], which is the standardized Java interface to the SIP for desktop and
server applications.

To make a phone call, a user first needs to send a registration request, which will be
directed to the Registrar server. If the request is handled successfully, then the user
can make a call request to the Proxy server. In attempting to evolve OpenJSIP to an
SPS system, our proposed decision-making approach is developed and integrated into
OpenJSIP. The implemented adaptation manager monitors the requests and provides
the necessary adaptation action upon receiving malicious requests. In the designed
game model, the payoff values of actions are populated based on stakeholders’ prefer-
ences. The payoff tables provide enough information for the decision-making engine
to select proper actions.

Client traffic is generated using SIPp tool [117]. Three traffic generators are
exploited, all running on the same machine with 3.00 GHz CPU and 4.00 GB memory.
Two of the traffic generators represent legitimate users that try to call each other
by sending REGISTER and INVITE requests to the Registrar and Proxy servers.
The third traffic generator represents adversaries that send malicious traffic while
the system is uncertain about the type of adversary. Two possible attacks studied
in our experiments are (i) flooding the Registrar server with malicious REGISTER
requests (AT1), and (ii) flooding the Proxy server with malicious INVITE requests
(AT2).

6.7.2 Attack Scenario

The case study security goals are to sustain the availability of the Registrar and Proxy
servers during an attack. Hence, the objective is to increase the number of successful
registration and call requests that are initiated by legitimate users. Accordingly,
legitimate users are successfully provided with their expected service. In the experi-
ments, the security goals of the SPS system are (i) availability of the Registrar server
(G1), and (ii) availability of the Proxy server (G2). Consequently, two type of adver-
saries threaten the SPS system: (i) a type 1 adversary which targets the availability
of the Registrar server, and (ii) a type 2 adversary which targets the availability
of the Proxy server. The SPS system can take two countermeasures: (i) dropping

126



the incoming REGISTER requests (CM1), and (ii) dropping the incoming INVITE
requests (CM2).

Two attack scenarios have been designed. In both, the adversary changes its
strategy in order to confuse the SPS system by sending both malicious REGISTER
and INVITE requests. In the first attack scenario, the intention of the adversary is
to target the availability of the Registrar server (a type 1 adversary). In the second
attack scenario, the intention of the adversary is to target the availability of the
Proxy server (a type 2 adversary).

In both attack scenarios, two traffic generators represent legitimate users try to
call each other. First, both caller and callee send a REGISTER request to register
their IDs at the Registrar server. Then, each caller tries to call a predefined callee
by sending an INVITE request to the Proxy server. The server looks for the callee,
and if the callee is available, it informs the caller to establish the call. The caller
holds the line for 1 second and then tries to terminate the call by sending a BYE
message to the server. Both sides terminate the call when they receive an ACK from
the server. The clients keep generating traffic for a total of 1 minute.

Prior to starting the test, we ran a stress test to discover the saturation point
of the server on the running computer. We tested the system with increasing traffic
and monitored at which point the system failed to respond to client requests. The
observed limit was around 40 Calls Per Second (CPS). This rate was used to flood
the Registrar and Proxy servers with malicious requests while the adversary changed
its strategy by changing the type of flooding attack. The attack starts after 5 sec-
onds, when server and both clients start to run. The attack continues for the rest
of the minute or until the system breaks down. The experimental setup satisfacto-
rily illustrates the performance of the proposed approach when facing uncertainty
about the type of adversary. The following subsection presents the outcome of the
experiments.

6.8 Obtained Results

The experiments in this section evaluate the mitigation of attacks in the case of
adversary-type uncertainty. Six approaches are considered for action selection by
the defense system:

1. No Adaptation: selects no mitigation action during the attack.

127



2. Protecting G1: selects countermeasures solely to protect G1, which means
dropping malicious REGISTER requests without considering the uncertainty
about the strategy and intention of adversaries.

3. Protecting G2: selects countermeasures solely to protect G2, which means
dropping malicious INVITE requests without considering the uncertainty about
the strategy and intention of adversaries.

4. Known Adversary-Type: selects countermeasures assuming that the inten-
tion behind the attack is known to the system and it is considered in the action
selection. (Game model in Section 6.4 and Section 6.5)

5. Adversary-Type Uncertainty Case 1: selects countermeasure using Bayesian
game model while the SPS system has higher preference for G1.

6. Adversary-Type Uncertainty Case 2: selects countermeasure using Bayesian
game model while the SPS system has higher preference for G2.

In the following, we aim at providing the relevant answers for each of the two
research questions introduced in the beginning of this section. To make this possible,
we need to measure the effectiveness of all six approaches. An appropriate method is
to assess the percentage of successful registrations and successful calls for legitimate
users during type 1 and type 2 adversary attacks.

Table 6.7 summarizes the result of the first attack scenario, whose intention was
to target the availability of the Registrar server. In this case, Protecting G1, Known
Adversary Type, and Adversary-Type Uncertainty Case 1 are among the successful
approaches. However, Protecting G1 performs best solely in terms of successful reg-
istrations. Known Adversary Type technique is based on the assumption that the
SPS system is aware of the intention and strategy of adversaries, while in Adversary-
Type Uncertainty Case 1, the SPS system is uncertain about the type of adversary.
The results are comparable in both techniques in percentage of successful registra-
tions (addressing RQ3.1 ). In terms of successful calls, Adversary-Type Uncertainty
Case 1 has less value compared to Adversary-Type Uncertainty Case 2 because in
the former the security goal G1 had higher priority. Hence, the SPS system selected
countermeasures that protected this goal (addressing RQ3.2 ).

Table 6.8 summarizes the results of the second attack scenario, whose intention
was to target the availability of the Proxy server. As with the previous attack
scenario, it appears that there is no significant difference between Protecting G2,
Known Adversary Type, and Adversary-Type Uncertainty Case 2 techniques. The

128



Table 6.7: Type 1 Adversary: Targeting the Availability of Registrar Server (G1)

No Protecting Protecting Known Adversary-Type Adversary-Type
Adaptation G1 G2 Adversary-Type Uncertainty Case 1 Uncertainty Case 2

% Suc. Reg. 80 97 78 95 95 86

% Suc. Call 49 70 48 88 83 85

Table 6.8: Type 2 Adversary: Targeting the Availability of Proxy Server (G2)

No Protecting Protecting Known Adversary-Type Adversary-Type
Adaptation G1 G2 Adversary-Type Uncertainty Case 1 Uncertainty Case 2

% Suc. Reg. 44 52 100 92 86 99

% Suc. Call 27 30 100 93 61 95

response to RQ3.1, based on the results, is that our proposed approach to address
uncertainty obtains results comparable to no uncertainty in the type of adversary
(Known Adversary Type). Protecting G2 is the most effective approach as it aims
at protecting the Proxy server, which is reflected during countermeasure selection.
However, this approach assumes that the intention of the adversary is known to the
SPS system.

Comparison of Adversary-Type Uncertainty Case 1 and Adversary-Type Uncer-
tainty Case 2 approaches, indicates that including the preferences of the secu-
rity goals is more satisfactory when the adversary targets the security goal that
is of higher preference. If the adversary targets the availability of the Registrar
server (G1), then the Case 1 uncertainty approach results in more-successful regis-
trations and calls. If the adversary targets the availability of the Proxy server (G2),
then the Case 2 obtains more effective results than Case 1 (addressing RQ3.2 ).

Our case study illustrates that the proposed Bayesian game theoretic approach
effectively addresses uncertainty about adversary type by selecting a countermeasure
that maximizes the expected payoff of the SPS system considering the strategy of
the adversary and the security goals of the SPS system.

6.9 Summary

This chapter extends the proposed framework by providing a decision-making model
that addresses adversary-type uncertainty. For this purpose, this work deals with how

129



to keep security goals in the SPS system and to involve the intention and strategy of
an adversary in the decision model. In our UBSP approach, we used Bayesian game
theoretic technique to analyze the battle between the adversary and defense system.
The defense system forms beliefs and measures uncertainty to evaluate the type of
opponent and selects a countermeasure according to the adversarial strategy. The
adversary keeps evaluating the cost and benefit of initiating an attack and selects
a strategy aiming to minimize punishment. We provide Bayesian Nash Equilibrium
(BNE) analysis of the game, along with a case study. The experiments conducted
on a Java-based VoIP telephony system, reveal that the proposed UBSP approach
efficiently selects proper countermeasures in the case of adversary-type uncertainty.
The selected countermeasures satisfy the preferred security goals while considering
the benefit and the cost of applying countermeasures.

130



Chapter 7

Concluding Remarks and Future
Directions

This thesis investigates the process of engineering a decision-making engine in a
self-protecting software system. This chapter summarizes the findings of this thesis
and presents future directions. Section 7.1 presents the contributions of the thesis,
Section 7.2 sums up the answers to the research questions, Section 7.3 discusses the
future works that would extend this research, finally, Section 7.4, makes concluding
remarks.

7.1 Contributions

The contributions of this thesis are stated in Chapter 1. This section discusses these
contributions in the light of the material that is covered in Chapters 3-6. These
contributions include:

• a novel mapping from high-level quality/malicious goals to quanti-
tative utility values. The advantage of modeling and incorporating goals is
discussed in our paper [44]. With the aid of the employed goal models such
as SIG (in Chapter 4) and GAAM (in Chapter 5), the decision-making engine
considers the trade-offs among quality goals of the software system. What dis-
tinguishes the modeling phase of the proposed framework from other modeling
approaches is the mapping of the satisfaction level of the goals to quantitative
values. For example in Chapter 5, MARGIN models the quality goals with

131



GAAM from high-level perspective of stakeholders down to low-level opera-
tional goals. The model is improved by mapping the satisfaction level of these
goals to the reward values which are used to update the decision model.
By fusing the malicious goals of attackers, the intention behind the attack is
modeled into the decision model which helps the self-protecting software system
to deal with uncertain-type attacks. In Chapter 4, IBSP models malicious goals
of attackers with the aid of SIG. The model is further extended to map the
satisfaction level of these goals to quantitative utility values. In Chapter 6, the
costs and benefits of the adversary to achieve its malicious goal is measured
and incorporated in the probabilistic-based decision model of UBSP.

• a unique modeling of the interdependencies among defense and at-
tack strategies. Self-protection is provided against different attacks by con-
sidering the interdependency among strategies. This information is modeled
into the decision model by capturing the positive/negative impact of the strate-
gies on the quality/malicious goals. This is a distinctive feature of the proposed
framework. In Chapter 4, IBSP evaluates the interdependencies into the utility
values. Accordingly, utility values are used to populate the players’ payoffs in
the stochastic game model.

• a learning-based decision model during runtime. The proposed frame-
work is extended in Chapter 5 to capture the impact of the previous applied
countermeasure and to update the decision model. The learning-base decision-
making engine in Chapter 5, called MARGIN, demonstrates the ability to learn
from the positive/negative impact of the taken countermeasure. MARGIN is
distinguishable in terms of its capability to adjust itself to take effective coun-
termeasure facing dynamic strategies of attackers.

• an innovative decision model for adversary-type uncertainty. Chap-
ter 6 demonstrates that UBSP employs Bayesian game model to handle the
ambiguity about the utilities according to the type of the attacker. What dis-
tinguishes UBSP is the capability to effectively addresses uncertainty about
the adversary type by selecting a countermeasure that maximizes the expected
payoff of the SPS system considering the strategy of the adversary and the
security preferences of the SPS system.

• a step-wise plug-and-play framework. Plug-and-play in our framework is
the ability to employ (i) different goal models depending on the properties of
the available data that can be used in the model and (ii) various game-theory

132



techniques based on the security goal and requirements of the software system.
In order to illustrate the plug-and-play capability of our proposed framework, a
summary of the relations of each approach to the original framework is provided
in Table 7.1. Each row represents a decision-making approach and briefly speci-
fies three phases which are based on the phases in the proposed framework. The
first approach, called IBSP, is a strategy-aware approach employing stochastic
games (explained in Chapter 4). The second approach, called MARGIN, is a
learning-based approach utilizing Markov games (discussed in Chapter 5). The
third approach, called UBSP, is a probabilistic-based approach that takes into
account the adversary-type uncertainty by applying Bayesian games (described
in Chapter 6). These three approaches exhibit the plug-and-play aspect of the
proposed framework. For each of these approaches, we describe the rational
behind the choice of the game-theoretic technique in Sections 4.4, 5.4, and 6.6
where the designing phase is described.

Table 7.1: Publication linked with Research Methodology

XXXXXXXXXXXPublication
Phase Modeling Goals

Designing
Game-Theoretic

Mechanism

Realizing
Adaptation
Manager

Mitigating Dynamic
Attacks Using
Multi-Agent
Game-Theoretic
Techniques [44]

Soft-goal
Interdependency

Graph (SIG)

Multi-Agent
Game-Theoretic

Technique
(Strategy-aware

approach)

Case study
example

considering the
interdependencies

of strategies
Strategy-Aware
Mitigation Using
Markov Games for
Dynamic
Application-Layer
Attacks [45]

Goal-driven models
such as Goal-

Action-Attribute
Model (GAAM)

Markov Game
Technique

(Learning-based
approach)

MATLAB Simulink
- simulation of a
web application

A Bayesian Game
Decision-Making Model
for Uncertain
Adversary Types [46]

Using NFR to
model cost &

benefits of attacks
/countermeasures

Bayesian Game
Technique
(Considers

uncertainty)

VoIP Java-based
telephony system

Each of the IBSP, MARGIN, or UBSP approaches (described in Chapters 4, 5,
and 6) addresses a particular research challenge in adaptive application security.

133



Therefore, they are not comparable with each other. For instance, IBSP tackles
fusing the attacker while UBSP addresses adversary-type uncertainty. MARGIN is
a closed loop approach to incorporate feedback from the previous countermeasures
taken while IBSP and UBSP are open loop approaches.

7.2 A Summary of Research Questions

This section revisits the research questions presented in this thesis and provides short
answers based on the findings presented in the different chapters.

• RQ1: How should the framework incorporate the incentives of the
attacker?
Chapter 4 of this thesis proposes a mitigation technique (IBSP) that aims at
incorporating the strategy of the attacker and hence the inherent interdepen-
dencies between the software system and the attacker into the decision model.
• Modeling Goals: Goals for each player can be modeled by the aid of Soft-goal
Interdependancy Graph (SIG) [29]. SIG has notations that can represent the
magnitude of the impact of strategies on each goal.
• Designing Game-Theoretic Mechanism: Using the modeled goals in SIG and
relating them to the strategies of the system and the attacker, a game theoretic
approach can be employed to find the equilibrium.
• Realizing Adaptation Manager : A case study example is provided to illustrate
the advantage of considering the interdependencies of strategies while applying
a countermeasure. We provided a formal analysis of the proposed modeling and
designing technique with the aid of model checking of Stochastic Multiplayer
Games (SMGs) [23] using PRISM-games [24].

• RQ2: How should the framework learn from previous action selec-
tions?
Chapter 5 of this thesis proposes a learning-based mitigation technique (MAR-
GIN) which is based on Markov game technique. Markov game employs rein-
forcement learning, hence the proposed technique can be adaptive to changes
in the strategy of the attacker (dynamic attacks).
• Modeling Goals: Goal-driven models such as Goal-Action-Attribute Model
(GAAM) [110] can be employed to formulate the high-level quality goals of the
system to actions.

134



•Designing Game-Theoretic Mechanism: Markov games, also known as stochas-
tic games, are the extension of the single agent Markov Decision Process (MDP)
to the multi-agent case. Markov games add an extra concept to game theory
which is a set of system states.
• Realizing Adaptation Manager : As a proof of concept, this research conducts
a study on a case of dynamic application-layer denial of service attacks. The
simulation results demonstrate that our approach performs effectively while
encountering different attack strategies.

• RQ3: How should the framework support adversary-type uncer-
tainty?
Chapter 6 of this thesis proposes an uncertainty-based decision-making ap-
proach (UBSP) to address uncertain adversary types. Our game-theoretic
model formalizes possible intentions of adversaries along with the security pref-
erences of the software system.
• Modeling Goals: Non-Functional Requirement (NFR) modeling techniques
are used to model costs and benefits of attacks/countermeasures.
• Designing Game-Theoretic Mechanism: Our Bayesian game-theoretic model
formalizes possible intentions of adversaries along with the security preferences
of the software system.
• Realizing Adaptation Manager : As a proof of concept for the proposed miti-
gation technique, we performed a case study with adversary-type uncertainty.
The experiments are executed on a java-based Voice over IP (VoIP) telephony
system. The results illustrate that the proposed technique effectively addresses
uncertainty about adversary type by selecting a countermeasure that maxi-
mizes the expected payoffs of the SPS system considering the strategy of the
adversary and the security goal preferences of the SPS system.

7.3 Future Work

The proposed plug-and-play decision-making framework laid the groundwork for sev-
eral future directions. The following is a list of the possible future works:

• extending the game-theoretic decision-making engine in the framework to sup-
port a course of actions. As well-panned multi-stage attacks are becoming

135



more common in application-layer attacks, the goal is to add the capability of
countering such attacks. For attack types that are consist of multiple steps
to fulfill the attacker’s goal, the progress of the attack can be modeled into
the decision engine. For example, if an attack is at its advance stage then the
defense system need to apply a more effective countermeasure even though it
is costly.

• extending the learning of the decision model to not only learn the type of
known attacks, but also to be capable of learning unknown (zero-day) attacks.
A software system always has unknown vulnerabilities that are yet to be dis-
covered. Hence, a software system is threatened by zero-day attacks. One of
the extensions of the decision model could relating system/user attributes to
known attack as well as relating those attributes to possible unknown attacks.
This requires to define additional formulas in the decision model that capture
(i) the relation between an unknown attack and its impact on the system/user
attributes, and (ii) the uncertainty about the maliciousness of the detected
behavior.

• supporting a wider range of game-theoretic approaches. In this thesis, the
plug-and-play framework supports three various game-theoretic techniques. In
the future, I will work on more game-theoretic approaches which are capable
of addressing different security requirements of the software system. We plan
to employ techniques from repeated games and fuzzy games to learn the best
strategy when facing unknown types of attacks.

• extending the framework to support security in cyber-physical systems. Cyber-
physical systems are distributed, software-intensive systems that control tightly
integrated and networked computational and physical components [103]. A
key challenge in these systems is the continuous assurance of quality goals at
runtime. Traditionally, satisfaction of quality goals is gained through a variety
of requirement engineering and analysis at the design and development time
such as security requirement engineering [39]. Since, cyber-physical systems
are at core adaptive, the verification for the satisfaction of the quality goals
(such as security) need to be performed at runtime. New security challenges
have emerged with the exponential growth of cyber-physical systems [105] and
various threats and attacks have been introduced [63]. In the future, I am
planing to support coordinating different defense strategies that tackle various
types of attacks in cyber-physical systems.

136



• further expansion of the framework to support adding/removing strategies dur-
ing runtime. This capability will be beneficial to support self-protection of var-
ious software systems which are working together. A major trend in software
engineering is called Internet of Things (IoT). This research area has intro-
duced challenges in security and specifically collaboration of strategies [22].
When a large number of unsecured devices are connected to the internet, the
decision-making engine requires to add/remove strategies on the fly based on
the connected devices. I am planning to enhance the framework to support
updating: (i) the defined actions in the goal model, and (ii) the defined strate-
gies in the game. Such runtime capability will facilitate deploying our game-
theoretic framework on the IoT and update it based on the edge devices getting
connected/disconnected.

7.4 Conclusion

With the advent of cyber-physical systems and Internet-of-Things, software security
is facing new challenges. A software system, in such complex and heterogeneous
environment, requires to be equipped with advanced self-protection techniques. This
thesis has paved the road to enable intelligent decision-making in self-protecting
software systems. The proposed plug-and-play framework is explored in three various
directions (incentive-based, learning-based, and probabilistic-based) depending on
the security requirements and characteristics of the attacks that the software system
is facing as well as the characteristics of attackers. Accordingly, a game-theoretic
technique is employed considering the modeled knowledge of the software system and
attack scenarios. In these three extensions, the framework is successfully realized in
various self-protecting software systems. The three extensions exhibit the plug-and-
play capability of the framework.

137



References

[1] ISO/IEC 25010:2011. [Online.] Available: http://www.iso.org/iso/
cataloguedetail.htm?csnumber=35733. [Accessed: 7- January- 2018].

[2] Ian Alexander. Misuse cases: Use cases with hostile intent. IEEE Software,
20(1):58–66, 2003.

[3] André Almeida, Nelly Bencomo, Thais Batista, Everton Cavalcante, and Fran-
cisco Dantas. Dynamic decision-making based on nfr for managing software
variability and configuration selection. In Proceedings of the Annual ACM
Symposium on Applied Computing, pages 1376–1382, 2015.

[4] Tansu Alpcan and Tamer Başar. Network security: A decision and game-
theoretic approach. Cambridge University Press, 2010.

[5] Rajeev Alur, Thomas A Henzinger, and Orna Kupferman. Alternating-time
temporal logic. Journal of the ACM, 49(5):672–713, 2002.

[6] Daniel Amyot, Sepideh Ghanavati, Jennifer Horkoff, Gunter Mussbacher, Liam
Peyton, and Eric Yu. Evaluating goal models within the goal-oriented require-
ment language. International Journal of Intelligent Systems, 25(8):841–877,
2010.

[7] Christopher Bailey, Lionel Montrieux, Rogério de Lemos, Yijun Yu, and Michel
Wermelinger. Run-time generation, transformation, and verification of access
control models for self-protection. In Proceedings of International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pages 135–
144, 2014.

[8] Cornel Barna, Mark Shtern, Michael Smit, Vassilios Tzerpos, and Marin Litoiu.
Mitigating DoS attacks using performance model-driven adaptive algorithms.
ACM Transactions on Autonomous and Adaptive Systems, 9(1):3:1–3:26, 2014.

138

http://www.iso.org/iso/catalogue detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue detail.htm?csnumber=35733


[9] Nasim Beigi-Mohammadi, Cornel Barna, Mark Shtern, Hamzeh Khazaei, and
Marin Litoiu. CAAMP: Completely automated ddos attack mitigation plat-
form in hybrid clouds. In Proceedings of the International Conference on Net-
work and Service Management, pages 136–143, 2016.

[10] Nelly Bencomo, Amel Belaggoun, and Valerie Issarny. Dynamic decision net-
works for decision-making in self-adaptive systems: a case study. In Proceed-
ings of International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pages 113–122, 2013.

[11] Jonathan J Blount, Daniel R Tauritz, and Samuel A Mulder. Adaptive rule-
based malware detection employing learning classifier systems: a proof of con-
cept. In Proceedings of Annual Computer Software and Applications Conference
Workshops, pages 110–115, 2011.

[12] Volha Bryl, Fabio Massacci, John Mylopoulos, and Nicola Zannone. Designing
security requirements models through planning. In Proceedings of International
Conference on Advanced Information Systems Engineering, pages 33–47, 2006.

[13] Javier Cámara, David Garlan, Won Gu Kang, Wenxin Peng, and Bradley
Schmerl. Uncertainty in self-adaptive systems. Technical Report CMU-ISR-
17-110, Institute for Software Research, Carnegie Mellon University, July 2017.

[14] Javier Cámara, David Garlan, Gabriel A. Moreno, and Bradley Schmerl. Eval-
uating trade-offs of human involvement in self-adaptive systems. Technical
report, 2016.

[15] Javier Cámara, David Garlan, Gabriel A. Moreno, and Bradley Schmerl. Ana-
lyzing Self-Adaptation via Model Checking of Stochastic Games. Number 9640.
Springer, 2017.

[16] Javier Cámara, Gabriel A. Moreno, and David Garlan. Stochastic game analy-
sis and latency awareness for proactive self-adaptation. In Proceedings of Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pages 155–164, 2014.

[17] Javier Cámara, Gabriel A Moreno, and David Garlan. Reasoning about human
participation in self-adaptive systems. In Proceedings of International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, pages
146–156, 2015.

139



[18] Javier Cámara, Gabriel A Moreno, David Garlan, and Bradley Schmerl. An-
alyzing latency-aware self-adaptation using stochastic games and simulations.
ACM Transactions on Autonomous and Adaptive Systems, 10(4):23, 2016.

[19] Javier Cámara, Wenxin Peng, David Garlan, and Bradley Schmerl. Reasoning
about sensing uncertainty in decision-making for self-adaptation. In Proceed-
ings of the International Workshop on Foundations of Coordination Languages
and Self-Adaptive Systems, 2017.

[20] Enrico Cambiaso, Gianluca Papaleo, and Maurizio Aiello. Taxonomy of slow
DoS attacks to web applications. In Recent Trends in Computer Networks and
Distributed Systems Security, volume 335 of Communications in Computer and
Information Science, pages 195–204. Springer Berlin Heidelberg, 2012.

[21] Dawn M Cappelli, Andrew P Moore, and Randall F Trzeciak. The CERT
Guide to Insider Threats: How to Prevent, Detect, and Respond to Information
Technology Crimes (Theft, Sabotage, Fraud). Addison-Wesley, 2012.

[22] Yassine Chahid, Mohamed Benabdellah, and Abdelmalek Azizi. Internet of
things security. In Proceedings of the International Conference on Wireless
Technologies, Embedded and Intelligent Systems, pages 1–6, 2017.

[23] Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, David Parker, and Aistis
Simaitis. Automatic verification of competitive stochastic systems. Formal
Methods in System Design, 43(1):61–92, 2013.

[24] Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, David Parker, and Aistis
Simaitis. Prism-games: A model checker for stochastic multi-player games. In
Tools and Algorithms for the Construction and Analysis of Systems, volume
7795 of Lecture Notes in Computer Science, pages 185–191, 2013.

[25] Taolue Chen and Jian Lu. Probabilistic alternating-time temporal logic and
model checking algorithm. In Proceedings of International Conference on Fuzzy
Systems and Knowledge Discovery, volume 2, pages 35–39, 2007.

[26] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of com-
puting two-player nash equilibria. Journal of the ACM, 56(3):14:1–14:57, 2009.

[27] Betty H.C. Cheng, RogÃľrio Lemos, Holger Giese, Paola Inverardi, Jeff Magee,
Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Gio-
vanna Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina

140



Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff
Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooy-
ong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon
Whittle. Software engineering for self-adaptive systems: A research roadmap.
In Software Engineering for Self-Adaptive Systems, Lecture Notes in Computer
Science, volume 5525, pages 1–26. Springer, 2009.

[28] Keywhan Chung, Charles A Kamhoua, Kevin A Kwiat, Zbigniew T Kalbar-
czyk, and Ravishankar K Iyer. Game theory with learning for cyber security
monitoring. In Proceedings of the International Symposium on High Assurance
Systems Engineering, pages 1–8, 2016.

[29] Lawrence Chung, Brian Nixon, Eric Yu, and John Mylopoulos. Non-functional
Requirements in Software Engineering, volume 5. The Kluwer International
Series in Software Engineering, 2000.

[30] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos. Non-
functional requirements in software engineering, volume 5. Springer Science
& Business Media, 2012.

[31] Benoit Claudel, Noël De Palma, Renaud Lachaize, and Daniel Hagimont. Self-
protection for distributed component-based applications. In Proceedings of
International Symposium on Stabilization, Safety, and Security of Distributed
Systems, pages 184–198, 2006.

[32] IBM Co. Autonomic computing 8 elements. [Online.] Available: http://
www.research.ibm.com/autonomic/overview/elements.html. [Accessed: 7-
January- 2018].

[33] IBM Co. Towards Autonomic Networking Middleware - IBM Research. [On-
line.] Available: http://www.research.ibm.com/people/a/akeller/Data/
ngnm2005_slides.pdf/. [Accessed: 7- January- 2018].

[34] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou.
The complexity of computing a nash equilibrium. SIAM Journal on Computing,
39(1):195–259, 2009.

[35] Morton D. Davis. Game theory: a nontechnical introduction. Dover Publica-
tions, 1997.

141

http://www.research.ibm.com/autonomic/overview/elements.html
http://www.research.ibm.com/autonomic/overview/elements.html
http://www.research.ibm.com/people/a/akeller/Data/ngnm2005_slides.pdf/
http://www.research.ibm.com/people/a/akeller/Data/ngnm2005_slides.pdf/


[36] Cuong T Do, Nguyen H Tran, Choongseon Hong, Charles A Kamhoua, Kevin A
Kwiat, Erik Blasch, Shaolei Ren, Niki Pissinou, and Sundaraja Sitharama Iyen-
gar. Game theory for cyber security and privacy. ACM Computing Surveys,
50(2):30, 2017.

[37] Sven Ehlert, Dimitris Geneiatakis, and Thomas Magedanz. Survey of network
security systems to counter SIP-based denial-of-service attacks. Computers &
Security, 29(2):225–243, 2010.

[38] Golnaz Elahi and Eric Yu. A goal oriented approach for modeling and analyzing
security trade-offs. In Proceedings of Conceptual Modeling-ER, pages 375–390,
2007.

[39] Golnaz Elahi, Eric Yu, and Nicola Zannone. A vulnerability-centric re-
quirements engineering framework: analyzing security attacks, countermea-
sures, and requirements based on vulnerabilities. Requirements Engineering,
15(1):41–62, 2010.

[40] Ahmed Elkhodary and Jon Whittle. A survey of approaches to adaptive ap-
plication security. In Proceedings of International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems, pages 20–26, 2007.

[41] Mahsa Emami-Taba. Decision-making in self-protecting software systems: a
game-theoretic approach. In Proceedings of the International Conference on
Software Engineering Companion, pages 77–79, 2017.

[42] Mahsa Emami-Taba. A game-theoretic decision-making framework for engi-
neering self-protecting software systems. In Proceedings of the International
Conference on Software Engineering Companion, pages 449–452, 2017.

[43] Mahsa Emami-Taba, Mehdi Amoui, and Ladan Tahvildari. On the road to
holistic decision making in adaptive security. Technology Innovation Manage-
ment Review, 3(8):59–64, 2013.

[44] Mahsa Emami-Taba, Mehdi Amoui, and Ladan Tahvildari. Mitigating dy-
namic attacks using multi-agent game-theoretic techniques. In Proceedings of
IBM International Conference on Computer Science and Software Engineering,
pages 375–378, 2014.

142



[45] Mahsa Emami-Taba, Mehdi Amoui, and Ladan Tahvildari. Strategy-aware
mitigation using Markov games for dynamic application-layer attacks. In Pro-
ceedings of International Symposium on High-Assurance Systems Engineering,
pages 134–141, 2015.

[46] Mahsa Emami-Taba and Ladan Tahvildari. A Bayesian game decision-making
model for uncertain adversary types. In Proceedings of IBM International
Conference on Computer Science and Software Engineering, pages 39–49, 2016.

[47] Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. Taming uncertainty in
self-adaptive software. In Proceedings of the European conference on Founda-
tions of software engineering, pages 234–244, 2011.

[48] Antti Evesti and Eila Ovaska. Comparison of adaptive information security
approaches. ISRN Artificial Intelligence, pages 1–18, 2013.

[49] Andrew Fielder, Emmanouil Panaousis, Pasquale Malacaria, Chris Hankin,
and Fabrizio Smeraldi. Game theory meets information security management.
In Proceedings of Information Security Conference, pages 15–29, 2014.

[50] Dominik Fisch, Martin Jänicke, Edgar Kalkowski, and Bernhard Sick. Tech-
niques for knowledge acquisition in dynamically changing environments. ACM
Transactions on Autonomous and Adaptive Systems, 7(1):16:1–16:25, 2012.

[51] János Fülöp. Introduction to decision making methods. In Proceedings of
Biodiversity and Ecosystem Informatics Workshop, 2005, 15 pages.

[52] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and
Peter Steenkiste. Rainbow: Architecture-based self-adaptation with reusable
infrastructure. Computer, 37(10):46–54, 2004.

[53] Andrey Garnaev, Melike Baykal-Gursoy, and H Vincent Poor. Incorporating
attack-type uncertainty into network protection. IEEE Transactions on Infor-
mation Forensics and Security, 9(8):1278–1287, 2014.

[54] Holger Giese, Nelly Bencomo, Liliana Pasquale, Andres J Ramirez, Paola In-
verardi, Sebastian Wätzoldt, and Siobhán Clarke. Living with uncertainty in
the age of runtime models. In Models@ run.time : Foundations, Applications,
and Roadmaps, pages 47–100. Springer, 2014.

143



[55] Paolo Giorgini, John Mylopoulos, and Roberto Sebastiani. Goal-oriented re-
quirements analysis and reasoning in the tropos methodology. Engineering
Applications of Artificial Intelligence, 18(2):159–171, 2005.

[56] Cleotilde Gonzalez, Noam Ben-Asher, and Don Morrison. Dynamics of decision
making in cyber defense: Using multi-agent cognitive modeling to understand
cyberwar. In Proceedings of the Theory and Models for Cyber Situation Aware-
ness, pages 113–127. 2017.

[57] Assane Gueye. A game theoretical approach to communication security. PhD
thesis, University of California, Berkeley, 2011.

[58] Anna V Guglielmi and Leonardo Badia. Analysis of strategic security through
game theory for mobile social networks. In Proceedings of Workshop on Com-
puter Aided Modeling and Design of Communication Links and Networks, pages
1–6, 2017.

[59] Charles B. Haley, Robin Laney, Jonathan D. Moffett, and Bashar Nuseibeh.
Security requirements engineering: A framework for representation and analy-
sis. IEEE Transactions on Software Engineering, 34(1):133–153, 2008.

[60] Sara Hassan, Nelly Bencomo, and Rami Bahsoon. Minimizing nasty surprises
with better informed decision-making in self-adaptive systems. In Proceedings
of the International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pages 134–144, 2015.

[61] Jennifer Horkoff and Eric Yu. A qualitative, interactive evaluation proce-
dure for goal-and agent-oriented models. In Proceedings of CEUR workshop in
CAiSE Forum, 2009.

[62] Jennifer Horkoff and Eric Yu. Analyzing goal models: different approaches and
how to choose among them. In Proceedings of the ACM Symposium on Applied
Computing, pages 675–682, 2011.

[63] Abdulmalik Humayed, Jingqiang Lin, Fengjun Li, and Bo Luo. Cyber-physical
systems security–a survey. IEEE Internet of Things Journal, PP(99), 2017.

[64] IBM. An architectural blueprint for autonomic computing. Avail-
able: http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%
20Paper%20V7.pdf. IBM White Paper, 2006.

144

http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf


[65] Gambit Inc. Gambit Game Theory Analysis Software and Tools. [Online.]
Available: http://gambit.sourceforge.net/. [Accessed: 7- January- 2018].

[66] MathWorks Inc. Matlab simevents toolbox. [Online.] Available: http://www.
mathworks.com/products/simevents/. [Accessed: 7- January- 2018].

[67] JAIN SIP. The Standardized Java Interface to the Session Initiation Protocol.
[Online.] Available: https://jsip.java.net/, [Accessed: 7- January- 2018].

[68] Open Java SIP. [Online.] Available: https://code.google.com/p/openjsip/
[Accessed: 7- January- 2018].

[69] Srikanth Kandula, Dina Katabi, Matthias Jacob, and Arthur Berger. Botz-4-
sale: Surviving organized DDoS attacks that mimic flash crowds. In Proceedings
of Symposium on Networked Systems Design & Implementation, pages 287–300,
2005.

[70] Ralph L. Keeney and Howard Raiffa. Decisions with multiple objectives: pref-
erences and value tradeoffs. John Wiley, 1976.

[71] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, 2003.

[72] William H Kruskal and W Allen Wallis. Use of ranks in one-criterion vari-
ance analysis. Journal of the American statistical Association, 47(260):583–621,
1952.

[73] Robert Laddaga. Self-adaptive software. Technical report, DARPA BAA. 98–
12, 1997.

[74] Hemank Lamba, Thomas J. Glazier, Javier Cámara, Bradley Schmerl, David
Garlan, and Jürgen Pfeffer. Model-based cluster analysis for identifying suspi-
cious activity sequences in software. In Proceedings of the International Work-
shop on Security and Privacy Analytics, 2017.

[75] Seokcheol Lee, Sungjin Kim, Ken Choi, and Taeshik Shon. Game theory-
based security vulnerability quantification for social internet of things. Future
Generation Computer Systems, 2017.

[76] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. A data mining framework for
building intrusion detection models. In Proceedings of Symposium on Security
and Privacy, pages 120–132, 1999.

145

http://gambit.sourceforge.net/
http://www.mathworks.com/products/simevents/
http://www.mathworks.com/products/simevents/
https://jsip.java.net/
https://code.google.com/p/openjsip/


[77] RogÃľrio Lemos et al. Software engineering for self-adaptive systems: A sec-
ond research roadmap. In Software Engineering for Self-Adaptive Systems II,
Lecture Notes in Computer Science, volume 7475, pages 1–32. Springer, 2013.

[78] Kevin Leyton-Brown and Yoav Shoham. Essentials of Game Theory: A Con-
cise, Multidisciplinary Introduction. Morgan and Claypool Publishers, 2008.

[79] Feng Li and Jie Wu. Hit and run: a bayesian game between malicious and reg-
ular nodes in MANETs. In Proceedings of Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and Networks, pages 432–440,
2008.

[80] Tong Li, Jennifer Horkoff, and John Mylopoulos. Analyzing and enforcing
security mechanisms on requirements specifications. In Proceedings of Inter-
national Working Conference on Requirements Engineering: Foundation for
Software Quality, pages 115–131, 2015.

[81] Xiannuan Liang and Yang Xiao. Game theory for network security. IEEE
Communications Surveys and Tutorials, 15(1):472–486, 2013.

[82] Michael L. Littman. Markov games as a framework for multi-agent reinforce-
ment learning. In Proceedings of International Conference on Machine Learn-
ing, pages 157–163, 1994.

[83] KJ Ray Liu and Beibei Wang. Cognitive radio networking and security: A
game-theoretic view. Cambridge University Press, 2010.

[84] Peng Liu, Wanyu Zang, and Meng Yu. Incentive-based modeling and inference
of attacker intent, objectives, and strategies. ACM Transactions on Informa-
tion and System Security, 8(1):78–118, 2005.

[85] Yu Liu, Cristina Comaniciu, and Hong Man. A bayesian game approach for
intrusion detection in wireless ad hoc networks. In Proceedings of workshop on
Game theory for communications and networks, 2006.

[86] Martina Maggio, Henry Hoffmann, Alessandro V. Papadopoulos, Jacopo
Panerati, Marco D Santambrogio, Anant Agarwal, and Alberto Leva. Compari-
son of decision-making strategies for self-optimization in autonomic computing
systems. ACM Transactions on Autonomous and Adaptive System, 7(4):36,
2012.

146



[87] Hoda Maleki, Saeed Valizadeh, William Koch, Azer Bestavros, and Marten van
Dijk. Markov modeling of moving target defense games. In Proceedings of the
Workshop on Moving Target Defense, pages 81–92, 2016.

[88] Mohammadhossein Manshaei, Quanyan Zhu, Tansu Alpcan, Tamer Başar, and
Jean-Pierre Hubaux. Game theory meets network security and privacy. ACM
Computing Surveys, 45(3):1–25, 2013.

[89] Bill McCarty. Botnets: Big and bigger. IEEE Security & Privacy, 1(4):87–90,
2003.

[90] Gary McGraw. Software security: building security in. Addison-Wesley Pro-
fessional, 2006.

[91] Jelena Mirkovic and Peter Reiher. A taxonomy of DDoS attack and DDoS
defense mechanisms. ACM SIGCOMM Computer Communication Review,
34(2):39–53, 2004.

[92] Gabriel A Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. Effi-
cient decision-making under uncertainty for proactive self-adaptation. In Pro-
ceedings of the International Conference on Autonomic Computing, pages 147–
156, 2016.

[93] Haralambos Mouratidis. Secure software systems engineering: the secure tro-
pos approach. Journal of Software, 6(3):331–339, 2011.

[94] Thanh H Nguyen, Francesco M Delle Fave, Debarun Kar, Aravind S Lakshmi-
narayanan, Amulya Yadav, Milind Tambe, Noa Agmon, Andrew J Plumptre,
Margaret Driciru, Fred Wanyama, et al. Making the most of our regrets:
Regret-based solutions to handle payoff uncertainty and elicitation in green
security games. In Proceedings of Conference on Decision and Game Theory
for Security, pages 170–191, 2015.

[95] Thanh H Nguyen, Arunesh Sinha, and Milind Tambe. Conquering adversary
behavioral uncertainty in security games: An efficient modeling robust based
algorithm. AAAI (Student Abstract), 2016.

[96] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT
press, 1994.

147



[97] Elda Paja, Fabiano Dalpiaz, and Paolo Giorgini. Modelling and reasoning
about security requirements in socio-technical systems. Data & Knowledge
Engineering, 98:123–143, 2015.

[98] Ashutosh Pandey, Gabriel A. Moreno, Javier Cámara, and David Garlan. Hy-
brid planning for decision making in self-adaptive systems. In Proceedings of
the 10th IEEE International Conference on Self-Adaptive and Self-Organizing
Systems, 2016.

[99] Liliana Pasquale, Claudio Menghi, Mazeiar Salehie, Luca Cavallaro, Inah
Omoronyia, and Bashar Nuseibeh. SecuriTAS: A tool for engineering adap-
tive security. In Proceedings of International Symposium on the Foundations
of Software Engineering, pages 19:1–19:4, 2012.

[100] Luis H Garcia Paucar and Nelly Bencomo. Re-pref: Support for reassess-
ment of preferences of non-functional requirements for better decision-making
in self-adaptive systems. In Proceedings of the IEEE International Require-
ments Engineering Conference, pages 411–414, 2016.

[101] Luis Hernan Garcia Paucar, Nelly Bencomo, and Kevin Kam Fung Yuen. Jug-
gling preferences in a world of uncertainty. In Proceedings of the IEEE Inter-
national Requirements Engineering Conferencel, pages 430–435, 2017.

[102] Andres J Ramirez, Adam C Jensen, and Betty HC Cheng. A taxonomy of un-
certainty for dynamically adaptive systems. In Proceedings of the International
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pages 99–108, 2012.

[103] Danda B Rawat, Joel JPC Rodrigues, and Ivan Stojmenovic. Cyber-physical
systems: from theory to practice. CRC Press, 2015.

[104] Sankardas Roy, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, Vivek
Shandilya, and Qishi Wu. A survey of game theory as applied to network
security. In Proceedings of International Conference on System Sciences, pages
1–10, 2010.

[105] Ivan Ruchkin, Ashwini Rao, Dio De Niz, Sagar Chaki, and David Garlan.
Eliminating inter-domain vulnerabilities in cyber-physical systems: An analysis
contracts approach. In Proceedings of the First ACM Workshop on Cyber-
Physical Systems Security and Privacy, 2015.

148



[106] Mazeiar Salehie, Liliana Pasquale, Inah Omoronyia, Raian Ali, and Bashar
Nuseibeh. Requirements-driven adaptive security: Protecting variable assets at
runtime. In Proceedings of International Requirements Engineering Conference,
pages 111–120, 2012.

[107] Mazeiar Salehie and Ladan Tahvildari. Autonomic computing: emerging trends
and open problems. In Proceedings of ICSE Workshop on Design and Evolution
of Autonomic Application Software, pages 82–88, 2005.

[108] Mazeiar Salehie and Ladan Tahvildari. A quality-driven approach to enable
decision-making in self-adaptive software. In Proceedings of International Con-
ference on Software Engineering-Companion, pages 103–104, 2007.

[109] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Transactions on Autonomous and Adaptive Systems,
4(2):14:1–14:42, 2009.

[110] Mazeiar Salehie and Ladan Tahvildari. Towards a goal-driven approach to
action selection in self-adaptive software. Software: Practice and Experience,
42(2):211–233, 2012.

[111] Bradley Schmerl, Javier Cámara, Jeffrey Gennari, David Garlan, Paulo
Casanova, Gabriel A. Moreno, Thomas J. Glazierr, and Jeffrey M. Barnes.
Architecture-based self-protection: Composing and reasoning about denial-of-
service mitigations. In Proceedings of Symposium and Bootcamp on the Science
of Security, pages 2:1–2:12, 2014.

[112] Bradley Schmerl, Javier Cámara, Gabriel A. Moreno, David Garlan, and An-
drew Mellinger. Architecture-based self-adaptation for moving target defense.
Technical Report CMU-ISR-14-109, Institute for Software Research, Carnegie
Mellon University, 2014.

[113] Matthew G Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J Stolfo. Data
mining methods for detection of new malicious executables. In Proceedings of
Symposium on Security and Privacy, pages 38–49, 2001.

[114] Dan Shen, Genshe Chen, Jose B Cruz, Chiman Kwan, and Martin Kruger.
An adaptive markov game model for threat intent inference. In Aerospace
Conference, 2007 IEEE, pages 1–13. IEEE, 2007.

[115] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic,
game-theoretic, and logical foundations. Cambridge University Press, 2008.

149



[116] Herbert A Simon. The new science of management decision. 1960.

[117] SIPp. Traffic Generator for the SIP Protocol. [Online.] Available: http://
sipp.sourceforge.net/. [Accessed: 7- January- 2018].

[118] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An intro-
duction. Cambridge Univ Press, 1998.

[119] Frank Swiderski and Window Snyder. Threat modeling. Microsoft Press, 2004.

[120] Ladan Tahvildari and Kostas Kontogiannis. On the role of design patterns
in quality-driven re-engineering. In Proceedings of European Conference on
Software Maintenance and Reengineering, pages 230–240, 2002.

[121] Ladan Tahvildari, Kostas Kontogiannis, and John Mylopoulos. Quality-driven
software re-engineering. Journal of Systems and Software, 66(3):225–239, 2003.

[122] Gabriel Tamura, NorhaM. Villegas, Hausi A. Müller, João Pedro Sousa, Basil
Becker, Gabor Karsai, Serge Mankovskii, Mauro PezzÃĺ, Wilhelm SchÃďfer,
Ladan Tahvildari, and Kenny Wong. Towards practical runtime verification
and validation of self-adaptive software systems. In Software Engineering for
Self-Adaptive Systems II, Lecture Notes in Computer Science, pages 108–132,
2013.

[123] Security under Uncertainty: Adaptive Attackers Are More Challenging to
Human Defenders than Random Attackers. Moisan, frederic and gonzalez,
cleotilde. Frontiers in Psychology, 8(982):1–10, 2017.

[124] Axel Van Lamsweerde. Elaborating security requirements by construction of
intentional anti-models. In Proceedings of International Conference on Software
Engineering, pages 148–157, 2004.

[125] Axel Van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-
oriented requirements engineering. IEEE Transactions on Software Engineer-
ing, 26(10):978–1005, 2000.

[126] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford.
CAPTCHA: Using hard AI problems for security. In Advances in Cryptology,
volume 2656 of Lecture Notes in Computer Science, pages 294–311, 2003.

150

http://sipp.sourceforge.net/
http://sipp.sourceforge.net/


[127] Sheng Wen, Weijia Jia, Wei Zhou, Wanlei Zhou, and Chuan Xu. CALD: Sur-
viving various application-layer DDoS attacks that mimic flash crowd. In Pro-
ceedings of International Conference on Network and System Security, pages
247–254, 2010.

[128] Qishi Wu, Sajjan Shiva, Sankardas Roy, Charles Ellis, and Vivek Datla. On
modeling and simulation of game theory-based defense mechanisms against
DoS and DDoS attacks. In Proceedings of Spring Simulation Multiconference,
pages 159:1âĂŞ–159:8, 2010.

[129] Yi Xie and Shun-Zheng Yu. Monitoring the application-layer DDoS attacks
for popular websites. IEEE/ACM Transactions on Networking, 17(1):15–25,
2009.

[130] Esk Yu. Modeling Strategic Relationships for Process Reengineering. PhD
thesis, University Virginia, 1995.

[131] Eric Yuan, Naeem Esfahani, and Sam Malek. Automated mining of software
component interactions for self-adaptation. In Proceedings of International
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pages 27–36, 2014.

[132] Eric Yuan, Naeem Esfahani, and Sam Malek. A systematic survey of self-
protecting software systems. ACM Transactions on Autonomous and Adaptive
Systems, 8(4):39:1–39:39, 2014.

[133] Eric Yuan and Sam Malek. A taxonomy and survey of self-protecting software
systems. In Proceedings of International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, pages 109–118, 2012.

[134] Eric Yuan and Sam Malek. Mining software component interactions to de-
tect security threats at the architectural level. In Proceedings of the Working
IEEE/IFIP Conference on Software Architecture, pages 211–220, 2016.

[135] Eric Yuan, Sam Malek, Bradley Schmerl, David Garlan, and Jeffrey Gennari.
Architecture-based self-protecting software systems. In Proceedings of Interna-
tional Conference on the Quality of Software Architectures, pages 33–42, 2013.

[136] Hamzeh Zawawy, Kostas Kontogiannis, John Mylopoulos, and Serge
Mankovskii. Towards a requirements-driven framework for detecting malicious
behavior against software systems. In Proceedings of the Conference of the
Center for Advanced Studies on Collaborative Research, pages 15–29, 2011.

151



[137] Saman A Zonouz, Himanshu Khurana, William H Sanders, and Timothy M
Yardley. RRE: a game-theoretic intrusion response and recovery engine. IEEE
Transactions on Parallel and Distributed Systems, 25(2):395–406, 2014.

152


	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Description and Research Focus
	Approach and Research Questions
	RQ1: How should the framework incorporate the incentives of the attacker?
	RQ2: How should the framework learn from previous action selections?
	RQ3: How should the framework support adversary-type uncertainty?

	Research Contributions
	Document Organization

	Background and Related Works
	Self-Protecting Software Principles and Requirements
	Related Research Projects
	Adaptive Application Security
	Modeling and Analyzing Security in Self-Protecting Software
	Decision Making in Self-Protecting Software
	Application of Game Theory in Cybersecurity
	Attack-Type Uncertainty in Self-Protecting Software

	Summary

	A Framework for Decision Making in Self-Protecting Software Systems
	A Motivating Scenario
	The Game-Theoretic Decision-Making Framework in Nutshell
	Modeling: Goal-Oriented Model
	Concepts and Their Relations in a Goal-Oriented Model

	Designing: Game-Theoretic Decision Making Mechanism
	Realizing: Adaptation Manager for Self-Protecting Software Systems
	Summary

	Decision Making using Stochastic Games
	Concepts and Notations
	A Stochastic Game Approach
	Modeling: Incentive-Based Evaluation
	Strategy Interdependency Generator
	Soft-Goal Interdependency Graph Formation
	Strategy Interdependency Evaluation Procedure

	Designing: Game-Theoretic Strategy Selection Engine
	Utility Calculation Function
	Stochastic Game Model

	Realizing: Formal Modeling via Stochastic Multiplayer Game
	Model Checking Stochastic Multiplayer Games
	Formal SMG Model of IBSP Mitigation Approach
	Formal SMG Model of Random, Fixed-Drop, and Fixed-Puzzle Mitigation Approaches
	Attacker Formal SMG Model

	Analyzing IBSP via Stochastic Multiplayer Game
	Obtained Results
	Threats to Validity

	Summary

	Decision Making using Markov Games
	Notations
	A Markov Game Approach
	Modeling: Intrusion Detection and Quality Goals Model
	The Intrusion Detection System
	The Goal-Action-Attribute Model

	Designing: Markov Game Decision-Making Engine
	The State Generator and the State Mapper
	The Reward Function
	The Markov Game Decision and Learning Algorithm

	Realizing: Case Study of a Web Application Using Simulink
	Attack-Type Uncertainty Scenarios
	Experiment Setup
	MARGIN Realization

	Obtained Results
	RQ2.1: Can MARGIN learn to select a proper countermeasure?
	RQ2.2: What is the effect of the cost of a countermeasure? 
	RQ2.3: What is the impact of the explore rate?
	RQ2.4: What is the effect of the discount factor? 
	RQ2.5: What is the effect of the learning rate? 
	RQ2.6: Is learning a good idea? (How does the proposed technique perform comparing with other techniques?)
	Threats to internal and external validity

	Summary

	Decision Making using Bayesian Games
	Notations
	A Bayesian Game Approach
	Modeling: Cost and Benefits of Strategies
	Designing: Type 1 Adversary
	Nash Equilibrium Analysis
	Mixed Strategy Equilibrium Analysis
	Case Based Analysis

	Designing: Type 2 Adversary
	Nash Equilibrium Analysis
	Mixed Strategy Equilibrium Analysis
	Case Based Analysis

	Designing: Adversary-Type Uncertainty
	Bayesian Nash Equilibrium (BNE) Analysis
	Case Based Analysis

	Realizing: Case Study of a Voice over IP
	Implementations
	Attack Scenario

	Obtained Results
	Summary

	Concluding Remarks and Future Directions
	Contributions
	A Summary of Research Questions
	Future Work
	Conclusion

	References

