
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Master’s Thesis

Pricing and Revenue Sharing between ISPs under

Content Sharing

Abylay Satybaldy

Department of Electrical Engineering

Graduate School of UNIST

2018



Pricing and Revenue Sharing between ISPs under

Content Sharing

Abylay Satybaldy

Department of Electrical Engineering

Graduate School of UNIST



Pricing and Revenue Sharing between ISPs under

Content Sharing

A thesis

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Master of Science

Abylay Satybaldy

06.14.2018

Approved by

Advisor

Changhee Joo



Pricing and Revenue Sharing between ISPs under

Content Sharing

Abylay Satybaldy

This certifies that the thesis of Abylay Satybaldy is approved.

06.14.2018

Signature

Advisor: Changhee Joo

Signature

Committee Member: Hyoil Kim

Signature

Committee Member: Jun Moon



Abstract

As sponsored data with subsidized access cost gains popularity in industry, it is essential to understand

its impact on the Internet service market. We investigate the interplay among Internet Service Providers

(ISPs), Content Provider (CP) and End User (EU), where each player is selfish and wants to maximize its

own profit. In particular, we consider multi-ISP scenarios, in which the network connectivity between

the CP and the EU is jointly provided by multiple ISPs. We first model non-cooperative interaction

between the players as a four-stage Stackelberg game, and derive the optimal behaviors of each player in

equilibrium. Taking into account the transit price at intermediate ISP, we provide in-depth understanding

on the sponsoring strategies of CP. We then study the effect of cooperation between the ISPs to the

pricing structure and the traffic demand, and analyze their implications to the players. We further build

our revenue sharing model based on Shapley value mechanism, and show that the collaboration of the

ISPs can improve their total payoff with a higher social welfare.
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I Introduction

As demand for mobile data increases, Internet service providers (ISPs) are turning to new types of smart

data pricing to bring in additional revenue and to expand the capacity of their current network [1]. One

way to keep up funding such investment is content sponsorship. Content providers (CPs) split the cost of

transferring mobile data traffic, and sponsor the user’s access to the content by making direct payment to

the ISPs. For example, GS Shop, a Korea TV home shopping company, has partnered with SK Telecom

to sponsor data incurred from its application, so consumers are incentivized to continue browsing and

making purchases from their mobile devices without ringing up data charges [2]. Content sponsoring

may benefit all players in the market: the ISPs can generate more revenue with CP’s subsidies, and users

can enjoy free or low-cost access to certain services, which in turn increases the demand and attracts

more traffic, resulting in higher revenue of the CP.

There are several studies on content sponsoring despite of a short history. Most of the works either

focus on a simple model with a single ISP and a single CP interacting in a game theoretic setting, or

considers Quality-of-Service (QoS) prioritization and its implications for net neutrality [3, 4, 5, 6]. In

a two-sided market with a single ISP providing connection between CPs and EUs, profit maximization

of the players under sponsoring mobile data has been studied in [7, 8]. In [7], single monopolistic ISP

determines optimal price to charge the CPs and the EUs, while the authors in [8] study the contractual

relationship between the CPs and the ISP under a similar model. Nevertheless, none of them consider

the interaction between multiple ISPs. Although the authors in [9] proposes a model with a transit

ISP and a user-facing ISP, their understanding of the interaction between these non-cooperative ISPs

are limited to the environments without content sponsoring. Other works, e.g. [10, 11], have analyzed

content sponsorship from the economic point of view. They examine the implications of sponsored data

on the CPs and the EUs, and identify how sponsored data influence the CP inequality.

In many Internet markets, there are multiple ISPs that cooperate to provide end-to-end connectiv-

ity service between the CPs and the EUs, in which case the assumption of a single representative ISP

no longer holds. Since each ISP aims to maximize its own profit, the establishment of interconnec-

tion among multiple ISPs is a thorough process that depends on specific profit sharing/inter-charging

arrangements.

As the most commercial traffic originates from the CPs and terminates at the EUs, some ISPs posi-

tioned on the middle of the traffic delivery chain will have more power and request a transit-price. An

ISP serving a large population of users might have a dominant influence in determining the transit price

paid by other relatively weak ISPs for traffic delivery. For an example, a large entertainment company

Netflix directly uses the service provided by ISPs such as Level 3, which is connected with residential

broadband ISPs like Comcast to get access to the customers [12]. Level 3 charges Netflix and Comcast

charges the users. Netflix may partially or fully sponsor its traffic, which is likely to increase the amount

of traffic through both ISPs. Due to high traffic volume, the access ISP (Comcast) may require additional

transit price for traffic delivery, which will impact on the pricing decision at Level 3 and subsequently

on the sponsoring decision at Netflix. In this work, we are interested in the dynamics between the play-
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ers with focus on content sponsoring and transit pricing. To this end, we study the interplay among

two Internet Service Providers (ISPs), Content Provider (CP), and End User (EU), where each player

selfishly maximizes its own profit. We model this non-cooperative interaction between ISP1, ISP2, CP,

and EU as a four-stage Stackelberg game. Specifically, in our model, we assume that the EU-facing ISP

has a dominant power and can be considered as the game leader who decides the transit cost preceding

the choice of the follower ISP. We aim to understand the behaviors of the players in non-cooperative

equilibrium and their decisions to maximize their own utility. Also we investigate the responses of the

players when the ISPs cooperate with each other. We show that, under collaboration with appropriate

revenue sharing, each ISP can achieve a higher revenue while improving the social welfare.

The rest of the paper is organized as follows. We present the basic system model in Section II,

and investigate the strategies of the CP, the EU, and the ISPs to maximize their utility in Section III.

We also study the effect of collaboration and build our revenue sharing model based on Shapley value

mechanism in Section IV and V, respectively. Numerical results are presented in Section VI, followed

by the conclusion and future work in Section VII.

II Two-ISP Pricing Model

We consider an Internet market model with one CP and two ISPs as shown in Figure 1. Two intercon-

nected ISPs have their own cost structures and each provides connectivity to either the CP or the EU.

The CP-facing ISP (ISP1) obtains its profits by directly charging the CP (CP) by pcp per unit traffic

while the EU-facing ISP (ISP2) charges the EU (EU) by peu per unit traffic. Further ISP2 charges ISP1

with transit-price ptr for traffic delivery. CP can sponsor the cost of EU by s · peu per unit traffic with

s ∈ [0,1]. We assume that the sponsored amount is paid to ISP1 and then indirectly delivered to ISP2

through the transit price, which allows both ISPs to benefit from the sponsoring. Let m1 and m2 denote

the marginal costs of traffic delivery for ISP1 and ISP2, respectively. We denote x as the traffic amount

of flow between CP and EU .

Figure 1: Two-sided Internet market.

We assume that the players in this non-cooperative game make decisions in four stages as follows:
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1. ISP2 sets prices peu and ptr to charge EU and ISP1, respectively.

2. ISP1 determines the optimal value of pcp to charge CP.

3. CP decides how much content to sponsor, i.e., the value of s.

4. The traffic volume is decided by both EU and CP.

Each player selfishly maximizes its own profit subject to the others’ decisions. We model this non-

cooperative interaction as a four-stage Stackelberg game and use the backward induction method to find

optimal strategy of each player.

Let us define the utility of EU by the multiplication of a scaling factor σeu ≥ 0 and a utility-level

function. The utility represents user’s desire to obtain traffic. We assume a concave and non-decreasing

function ueu(x) with decreasing marginal satisfaction, i.e., ueu(x) = x1−αeu

1−αeu
with parameter αeu ∈ (0,1).

Given unit price peu that ISP2 charges user, EU will maximize its utility minus the payment by solving

(EU−P)(EU−P)(EU−P) max
x

σeu ·ueu(x)− (1− s) · x · peu,

s.t. x≥ 0, (1)

where s ∈ [0,1] denotes the sponsored percentage, and (1− s) · x · peu denotes the payment of EU to

ISP2. The solution x∗eu to (1) can be obtained as x∗eu(s, peu) = ( σeu
(1−s)peu

)
1

αeu .

Similarly, we model the behavior of CP. The utility of CP is given by σcpucp(x), where σcp ≥ 0

is a scaling factor (e.g., the popularity of the content) and ucp(x) is a concave utility-level function

ucp(x) = x1−αcp

1−αcp
with parameter αcp ∈ (0,1). CP will maximize its payoff by solving

(CP−P)(CP−P)(CP−P) max
x,s

σcp ·ucp(x)− s · x · peu− x · pcp,

s.t. x≥ 0 and 0≤ s≤ 1. (2)

In the objective, the first term denotes its utility, the second term denotes the cost due to sponsorship,

and the third term is from the network usage cost to ISP1. Given s, pcp, and peu, it can be easily shown

that the optimal amount of traffic for CP is x∗cp(s, pcp, peu) = (
σcp

speu+pcp
)

1
αcp .

Since ISP1 obtains its revenue from charging CP, it decides the optimal value of pcp to maximize its

total profit as

(ISP1−P)(ISP1−P)(ISP1−P) max
pcp

(pcp + s∗ · peu− ptr−m1) · x∗(pcp, peu),

s.t. pcp ≥ 0, (3)

where m1 is the marginal cost for traffic delivery and thus pcp+ s∗ · peu− ptr−m1 is the net-gain of ISP1

per unit traffic.

ISP2 obtains its revenue from charging ISP1 with transit-price ptr and charging EU with traffic-price

peu. Therefore, in order to maximize its total profit, it will solve

(ISP2−P)(ISP2−P)(ISP2−P) max
peu,ptr

((1− s∗) · peu + ptr−m2) · x∗(pcp, peu),

s.t. peu ≥ 0 and ptr ≥ 0, (4)
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where m2 is the marginal cost for traffic delivery.

Through the sequential decision, we investigate the interactions of the players described in (1), (2),

(3), (4), and find the optimal strategies for pricing and sponsoring.

III Strategies for Utility Maximization

In this section, we sequentially find the optimal strategies of CP, ISP1, and ISP2 by exploiting the back-

ward induction.

3.1 Sponsoring of Content Provider (CP)

Note that each solution to (1) and (2) results in user-side traffic demand x∗eu and CP-side traffic amount

x∗cp, respectively, and the actual traffic amount x∗ between CP and EU will be determined by their

minimum, i.e., x∗ = min{x∗cp,x
∗
eu}. In general x∗eu 6= x∗cp. For instance, a certain website may restrict the

number of simultaneous on-line clients, which implies x∗cp ≤ x∗eu.

Suppose that peu and pcp are given. The actual traffic x∗(s) will be determined by the sponsoring

rate s, and CP will decide its optimal sponsored percentage s∗ by solving the following problem:

(CP−P)(CP−P)(CP−P) max
s

σcp ·ucp(x∗(s))− s · x∗(s) · peu− x∗(s) · pcp,

s.t. 0≤ s≤ 1. (5)

We assume αeu = αcp = α ∈ (0,1), i.e., EU and CP utility components have the same utility shape.

This assumption is reasonable in the scenarios where CP makes its pricing decision according to the

user response. On the other hand, the scaling factors σeu and σcp of EU and CP can be quite different.

The sponsoring behavior will be affected by whether the traffic volume is constrained by EU or CP. If

x∗eu≤ x∗cp, we have s≤ σcp peu−σeu pcp
(σeu+σcp)peu

and x∗= x∗eu. Similarly, if x∗eu≥ x∗cp, we have s≥max(σcp peu−σeu pcp
(σeu+σcp)peu

,0)

and x∗ = x∗cp. We consider each case.

Case i) When x∗ = x∗cp. The profit of the CP can be written as

V (s) = σcp ·ucp(x∗cp(s))− s · x∗cp(s) · peu− x∗cp(s) · pcp. (6)

By substituting x∗cp(s, pcp, peu) = (
σcp

speu+pcp
)

1
α into (6), it can be easily shown that V (s) is a decreasing

function of s, and we have the optimal value s∗ = max(σcp peu−σeu pcp
(σeu+σcp)peu

,0). Thus, the traffic amount and the

sponsoring rate will be

(x∗cp,s
∗) =

((
σcp
pcp

)
1
α , 0), i f σcp

σeu
≤ pcp

peu
,

((
σcp+σeu
pcp+peu

)
1
α ,

σcp peu−σeu pcp
(σeu+σcp)peu

), i f σcp
σeu

>
pcp
peu

.
(7)

The maximum profit of CP is given as

V ∗(x∗cp,s
∗) =


α(σcp)

1
α

1−α
(pcp)

1− 1
α , i f σcp

σeu
≤ pcp

peu
,

ασcp
1−α

(
peu+pcp
σeu+σcp

)1− 1
α , i f σcp

σeu
>

pcp
peu

.
(8)
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Case ii) When x∗ = x∗eu. In this case, we have s ≤ σcp peu−σeu pcp
(σeu+σcp)peu

, x∗eu(s, peu) = ( σeu
(1−s)peu

)
1
α and σcp

σeu
>

pcp
peu

.

CP will optimize its sponsorship percentage by solving

max
σcp(

σeu
peu

)
1
α −1

1−α
(1− s)1− 1

α − (speu+pcp)(
σeu
peu

)
1
α

(1−s)
1
α

,

s.t. 0≤ s≤ σcp peu−σeu pcp
(σeu+σcp)peu

,
σcp
σeu

>
pcp
peu

. (9)

From the first order condition, the optimal data rate x∗ and the optimal sponsoring rate s∗ can be obtained

as

(x∗eu,s
∗) =


((σeu

peu
)

1
α , 0), i f pcp

peu
<

σcp
σeu
≤ α +

pcp
peu

,

((
σcp+(1−α)σeu

pcp+peu
)

1
α ,

σcp
σeu
−α− pcp

peu
σcp
σeu

+1−α
), i f σcp

σeu
> α +

pcp
peu

,
(10)

and the maximum profit of CP is

V ∗(x∗eu,s
∗) =


(σeu

peu
)

1
α [

σcp peu
(1−α)σeu

− pcp] i f pcp
peu

<
σcp
σeu
≤ α +

pcp
peu

,

α(pcp+peu)
1−α

(
σcp+(1−α)σeu

pcp+peu
)

1
α i f σcp

σeu
> α +

pcp
peu

.

(11)

To summarize, we have

(i) If σcp
σeu
≤ pcp

peu
,

then (x∗,s∗) = (x∗cp,0) and V ∗(x∗cp,s
∗) =

α(σcp)
1
α

1−α
(pcp)

1− 1
α .

(ii) If σcp
σeu

>
pcp
peu

and x∗ = x∗cp,

then (x∗,s∗) = (x∗cp,max(σcp peu−σeu pcp
(σeu+σcp)peu

,0)) and V ∗(x∗cp,s
∗) =

ασcp
1−α

(
peu+pcp
σeu+σcp

)1− 1
α .

(iii) If σcp
σeu

>
pcp
peu

, x∗ = x∗eu, and σcp
σeu
≤ α +

pcp
peu

,

then (x∗,s∗) = (x∗eu,0) and V ∗(x∗eu,s
∗) = (σeu

peu
)

1
α [

σcp peu
(1−α)σeu

− pcp].

(iv) If σcp
σeu

> α +
pcp
peu

and x∗ = x∗eu,

then (x∗,s∗) = (x∗eu,
σcp
σeu
−α− pcp

peu
σcp
σeu

+1−α
) and V ∗(x∗eu,s

∗) =
α(pcp+peu)

1−α
(

σcp+(1−α)σeu
pcp+peu

)
1
α .

From the two-case response of CP, we can obtain the following Proposition.

Proposition 1 Given prices pcp and peu, the optimal sponsorship rate s∗ of the CP is

case 1) if σcp
σeu
≤ pcp

peu
, s∗ = 0,

case 2) if pcp
peu

<
σcp
σeu
≤ α +

pcp
peu

, s∗ = 0,

case 3) if σcp
σeu

> α +
pcp
peu

, s∗ =
σcp
σeu
−α− pcp

peu
σcp
σeu

+1−α
.

(12)

Proof For case 1, the maximum available profit of CP can be easily obtained as V ∗(x∗cp,s
∗)=

α(σcp)
1
α

1−α
(pcp)

1− 1
α

from (8).
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For σcp
σeu

>
pcp
peu

, the CP will choose the largest one among available profits of V ∗(x∗cp,s
∗) and V ∗(x∗eu,s

∗),

given in (8) and (11), respectively. Let σ =
σcp
σeu

and p =
pcp
peu

. We decompose it into two subcases as be-

low.

1) When p < σ ≤ α + p, each profit function can be written as

V ∗(x∗cp,s
∗) = (σeu)

1
α (peu)

1− 1
α

(1−α) ( 1+p
1+σ

)( 1+p
1+σ

)−
1
α ασ ,

V ∗(x∗eu,s
∗) = (σeu)

1
α (peu)

1− 1
α

(1−α) (σ − (1−α)p).

Consider the ratio V ∗(x∗eu,s
∗)

V ∗(x∗cp,s∗)
. By using the generalized form of Bernoulli’s inequality (1+ x)r ≥ 1+ rx

for r ≤ 0 or r ≥ 1 and x >−1, we can obtain

V ∗(x∗eu,s
∗)

V ∗(x∗cp,s∗)
≥ (σ−(1−α)p

ασ
)(1+σ

1+p )(1+
p−σ

(1+σ)α ) = 1+ (1−α)(σ−p)(p+α−σ)
σα2(1+p) .

Hence, if p < σ ≤ α + p, we have V ∗(x∗eu,s
∗)

V ∗(x∗cp,s∗)
≥ 1, implying x∗ = x∗eu and s∗ = 0 from (10)

2) When σ > α + p, we have

V ∗(x∗cp,s
∗) = ( α

1−α
)(peu + pcp)

1− 1
α (σeu)

1
α (σ)(1+σ)

1
α
−1,

V ∗(x∗eu,s
∗) = ( α

1−α
)(peu + pcp)

1− 1
α (σeu)

1
α (1+σ −α)

1
α .

Again we consider the ratio V ∗(x∗eu,s
∗)

V ∗(x∗cp,s∗)
= 1+σ

σ
(1− α

1+σ
)

1
α . Applying the generalized form of Bernoulli’s

inequality, we have V ∗(x∗eu,s
∗)

V ∗(x∗cp,s∗)
≥ 1+σ

σ
(1− 1

1+σ
) = 1, and thus we have x∗ = x∗eu and s∗ =

σcp
σeu
−α− pcp

peu
σcp
σeu

+1−α
from

(10).

According to Proposition 1, CP has no incentive to invest in sponsored data plan when σcp
σeu
≤α+

pcp
peu

.

On the other hand, when σcp
σeu

> α +
pcp
peu

, CP will invest in sponsoring as in (10). The data rate under

sponsoring will be

case 1) if σcp
σeu
≤ pcp

peu
, x∗(pcp, peu) = (

σcp
pcp

)
1
α ,

case 2) if pcp
peu

<
σcp
σeu
≤ α +

pcp
peu

, x∗(pcp, peu) = (σeu
peu

)
1
α ,

case 3) if σcp
σeu

> α +
pcp
peu

, x∗(pcp, peu) = (
σcp+(1−α)σeu

pcp+peu
)

1
α .

(13)

3.2 Utility Maximization of ISP1

ISP1 also tries to maximize its total profit in each region specified in (13). We obtain the optimal response

of ISP1 in each case.

Case 1) When x∗ = (
σcp
pcp

)
1
α and s∗ = 0. From (3), ISP1 maximizes (pcp− ptr−m1) · (σcp

pcp
)

1
α subject to

σcp
σeu
· peu ≤ pcp. The best response p∗cp of ISP1 can be easily obtained as p∗cp =

ptr+m1
1−α

. The maximum

profit P∗1 is

P∗1 = [α(m1+m2)
(1−α) ·

σ

1+σ(1−α) ] · (
σcp(1−α)(1+σ(1−α))

σ(m1+m2)
)

1
α ,

where σ =
σcp
σeu

.
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Case 2) When x∗ = (σeu
peu

)
1
α and s∗ = 0. From (3), ISP1 has the objective of max

pcp≥0
(pcp− ptr−m1) ·

(σeu
peu

)
1
α subject to pcp

peu
− σcp

σeu
≤ 0 and σcp

σeu
−α − pcp

peu
≤ 0. From the constraints, we have pcp ∈ [(

σcp
σeu
−

α)peu,
σcp
σeu

peu]. Note that since the objective is an increasing function of pcp, we set the largest pcp =
σcp
σeu
· peu for the optimal solution, which gives us maximum utility P∗1 = (

σcp
σeu
· peu− ptr−m1) ·(σeu

peu
)

1
α . By

differentiating it with respect to peu, we can find p∗eu =
σeu
σcp
· ( ptr+m1

1−α
) that maximizes P∗1 , which results in

the optimal p∗cp =
ptr+m1
1−α

. The maximum profit is

P∗1 = [α(m1+m2)
(1−α) ·

σ

1+σ(1−α) ] · (
σeu(1−α)(1+σ(1−α))

(m1+m2)
)

1
α .

Case 3) When x∗ = (
σcp+(1−α)σeu

pcp+peu
)

1
α and s∗ =

σcp
σeu
−α− pcp

peu
σcp
σeu

+1−α
. The problem can be rewritten as max

pcp≥0
(pcp +

s∗peu− ptr−m1) · (σcp+(1−α)σeu
pcp+peu

)
1
α , subject to pcp ≤ (

σcp
σeu
−α)peu. From the first order condition, we can

obtain the optimal price p∗cp =
(k+1)(ptr+m1)

k(1−α) − peu, where k = σcp
σeu
−α. The maximum profit is

P∗1 = α(m1+m2
1−α

)1− 1
α · (σcp +(1−α)σeu)

1
α · (1+k(1−α)

1+k )
1
α · k

1+k(1−α) .

3.3 Utility Maximization of ISP2

For the behaviors of ISP2, we also consider the three cases of (13) and find the best strategy of ISP2 for

each case.

Case 1) When x∗(p∗cp, peu) = (
σcp
p∗cp

)
1
α and s∗ = 0. We already have p∗cp =

ptr+m1
1−α

. From (4) and (13), the

ISP2 determines its prices peu and ptr by solving max
peu≥0,ptr≥0

((1− s∗) · peu + ptr−m2) · (σcp
p∗cp

)
1
α , subject to

σcp
σeu
− p∗cp

peu
≤ 0.

Let P denote the objective function. From the Karush-Kuhn-Tucker (KKT) conditions, we have
∂P

∂ peu
= 0, ∂P

∂ ptr
= 0, and λ · [σcp

σeu
− p∗cp

peu
] = 0. By solving these equations, we have the optimal prices

p∗eu =
(m1+m2)

(1−α)(1+(k+α)(1−α)) and p∗tr =
(k+α)(m1+m2)
(1+(k+α)(1−α)) −m1,

at which the maximum profit P∗2 is

P∗2 = [α(m1+m2)
(1−α) ](

σcp(1−α)(1+(k+α)(1−α))
(k+α)(m1+m2)

)
1
α ,

where k = σcp
σeu
−α .

Case 2) When x∗(p∗cp, peu) = (σeu
peu

)
1
α and s∗ = 0. In this case, we have p∗cp = ptr+m1

1−α
. From (4) and

(13), the ISP2 determines its prices by solving max
peu≥0,ptr≥0

((1− s∗) · peu + ptr−m2) · (σeu
peu

)
1
α , subject to

p∗cp
peu
− σcp

σeu
≤ 0 and σcp

σeu
−α− p∗cp

peu
≤ 0.

From the KKT conditions, we have ∂P
∂ peu

= 0, ∂P
∂ ptr

= 0, λ1 ·(
p∗cp
peu
− σcp

σeu
)= 0 and λ2 ·(σcp

σeu
−α− p∗cp

peu
)= 0,

where λi ≥ 0, pcp ≥ 0, and peu ≥ 0. There are three possible subcases: i) λ1 = 0, λ2 6= 0, ii) λ1 6= 0,

λ2 = 0, iii) λ1 = 0 and λ2 = 0. The solution to each subcase can be obtained as follows.

i) When λ1 = 0 and λ2 6= 0, the optimal prices will be

p∗eu =
m1+m2

(1−α)(1+k(1−α)) and p∗tr =
k(m1+m2)
1+k(1−α) −m1,
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Scenario CP: s∗ ISP 1: p∗cp ISP 2: p∗eu , p∗tr

σcp
σeu
≤ α +

pcp
peu

s∗ = 0 p∗cp =
ptr+m1
1−α

p∗eu =
(m1+m2)

(1−α)(1+(k+α)(1−α)) ,

p∗tr =
(k+α)(m1+m2)
(1+(k+α)(1−α)) −m1

σcp
σeu

> α +
pcp
peu

s∗ =
σcp
σeu
−α− pcp

peu
σcp
σeu

+1−α
p∗cp =

(k+1)(ptr+m1)
k(1−α) − peu

p∗eu =
(m1+m2)

(1−α)(1+k(1−α)) ,

p∗tr =
k(m1+m2)
(1+k(1−α)) −m1

Table 1: Optimal sponsoring rate and prices.

where k = σcp
σeu
−α , and we have the maximum profit

P∗
λ1
= [α(m1+m2)

(1−α) ](
(σcp−σeuα)(1−α)2+σeu(1−α)

m1+m2
)

1
α .

ii) When λ1 6= 0 and λ2 = 0, the optimal prices will be

p∗eu =
(m1+m2)

(1−α)(1+(k+α)(1−α)) and p∗tr =
(k+α)(m1+m2)
(1+(k+α)(1−α)) −m1,

and the maximum profit

P∗
λ2
= α(m1+m2)

(1−α) (
σcp(1−α)2+σeu(1−α)

m1+m2
)

1
α .

iii) When λ1 = 0 and λ2 = 0, the two inequality constraints should be an active constraint (i.e., the

equalities hold). However, it is not possible to satisfy both equalities, and hence, this case is infeasible.

From P∗
λ2

> P∗
λ1

, we should have λ2 = 0 and the best response of the ISP2 is that of ii), which also

equals the result of Case 1.

Case 3) In this case, we have the optimal sponsoring rate s∗ =
σcp
σeu
−α− pcp

peu
σcp
σeu

+1−α
and the traffic demand is

x∗(p∗cp, peu) = (
σcp+(1−α)σeu

pcp+peu
)

1
α . As shown in Section 3.2, the best-response p∗cp of ISP1 is (k+1)(ptr+m1)

k(1−α) −
peu. From (4) and (13), ISP2 determines its prices by solving max

peu≥0,ptr≥0
((1−s∗)· peu+ ptr−m2)·(

σcp+(1−α)σeu
p∗cp+peu

)
1
α ,

subject to p∗cp
peu

+α− σcp
σeu
≤ 0.

From the KKT conditions, we have ∂P
∂ peu

= 0, ∂P
∂ ptr

= 0, and λ · [ p∗cp
peu

+α − σcp
σeu

] = 0. By solving the

equations, we can obtain without difficulty that

p∗eu =
(m1+m2)

(1−α)(1+k(1−α)) and p∗tr =
k(m1+m2)
(1+k(1−α)) −m1.

The maximum profit P∗2 will be

P∗2 = α(m1+m2
1−α

)1− 1
α (σcp +(1−α)σeu)

1
α (1+k(1−α)

1+k )
1
α .

To sum up, by investigating the structure of the proposed game, we derived the optimal responses

of the EU, the CP, and two ISPs in a non-cooperative equilibrium. The Table 1 summarizes the best

response of each player when they maximize their utility in a greedy manner. We further investigate the

players’ behaviors when the two ISPs cooperate.
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IV Cooperative Model

In this section, we study the effect of collaboration to the pricing structure and the traffic demand be-

tween CP and EU, and analyze their implications for the total payoff of ISPs. When ISP1 and ISP2

collaborate to deliver traffic from CP to EU, we can consider them as one ISP who obtains its revenue

from charging CP by pcp and EU by peu. The two ISPs are in peering with no transit-cost: neither party

pays the other in association with the exchange of traffic. Instead, they need to fairly redistribute the

total revenue according to their marginal contributions. We will use Shapley value mechanism for this

purpose.

We first obtain the total revenue of the ISPs. The utility maximization of the ISPs can be written as

(ISP−P)(ISP−P)(ISP−P) max
pcp,peu

(pcp + peu−m1−m2) · x∗(pcp, peu),

s.t. pcp ≥ 0 and peu ≥ 0. (14)

Given unit price peu that ISP charges user, EU will maximize its utility minus the payment by solving

(EU−P)(EU−P)(EU−P) max
x

σeu ·ueu(x)− (1− s) · x · peu,

s.t. x≥ 0, (15)

where s ∈ [0,1] denotes the sponsored percentage, and (1−s) ·x · peu denotes the payment of EU to ISP.

The solution x∗eu to (2) can be obtained as x∗eu(s, peu) = ( σeu
(1−s)peu

)
1

αeu .

Similarly, CP will maximize its payoff by solving

(CP−P)(CP−P)(CP−P) max
x,s

σcp ·ucp(x)− s · x · peu− x · pcp,

s.t. x≥ 0 and 0≤ s≤ 1, (16)

where the first term denotes its utility, the second term denotes the cost due to sponsorship, and the third

term is from the network usage cost to ISP. Given s, pcp, and peu, it can be easily shown that the optimal

amount of traffic for CP is x∗cp(s, pcp, peu) = (
σcp

speu+pcp
)

1
αcp .

Since the actual traffic amount x∗ between CP and EU will be determined by their minimum, i.e.,

x∗ = min{x∗cp,x
∗
eu}, we can obtain the optimal sponsorship rate s∗ and the data rate under sponsoring by

considering three cases as before. We omit the detailed derivation and provide the result as

case 1) if σcp
σeu
≤ pcp

peu
, (x∗,s∗) = ((

σcp
pcp

)
1
α , 0),

case 2) if pcp
peu

<
σcp
σeu
≤ α +

pcp
peu

, (x∗,s∗) = ((σeu
peu

)
1
α , 0),

case 3) if σcp
σeu

> α +
pcp
peu

, (x∗,s∗) = ((
σcp+(1−α)σeu

pcp+peu
)

1
α ,

σcp
σeu
−α− pcp

peu
σcp
σeu

+1−α
).

(17)

ISPs cooperate and try to maximize their total profit in each region specified in (17). We obtain the

optimal response of ISPs in each case.
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Case 1) When x∗(pcp, peu) = (
σcp
pcp

)
1
α and s∗ = 0. From (14) and (17), the coalition-ISP determines its

prices peu and pcp by maximizing (pcp + peu−m1−m2) · (σcp
pcp

)
1
α , subject to σcp

σeu
− pcp

peu
≤ 0, peu ≥ 0, and

pcp ≥ 0.

Let P denote the objective function. From the Karush-Kuhn-Tucker (KKT) conditions, we have
∂P

∂ peu
= 0, ∂P

∂ pcp
= 0, and λ · [σcp

σeu
− pcp

peu
] = 0. By solving these equations, it is not difficulty to obtain the

optimal prices of

p∗∗eu = σeu(m1+m2)
(1−α)(σcp+σeu)

and p∗∗cp =
σcp(m1+m2)

(1−α)(σcp+σeu)
, (18)

at which the maximum profit P∗∗ equals

P∗∗ = α(m1+m2
1−α

)1− 1
α (σcp +σeu)

1
α .

Case 2) When x∗(pcp, peu) = (σeu
peu

)
1
α and s∗ = 0. From (14) and (17), the coalition-ISP determines its

prices by solving max
peu≥0,pcp≥0

(pcp + peu−m1−m2) · (σeu
peu

)
1
α , subject to pcp

peu
≤ σcp

σeu
≤ α +

pcp
peu

.

From the KKT conditions, we have ∂P
∂ peu

= 0, ∂P
∂ pcp

= 0, λ1 ·( pcp
peu
− σcp

σeu
)= 0 and λ2 ·(σcp

σeu
−α− pcp

peu
)= 0,

where λi≥ 0, pcp≥ 0, and peu≥ 0. There are four possible subcases: i) λ1 = 0, λ2 6= 0, ii) λ1 6= 0, λ2 = 0,

iii) λ1 = 0 and λ2 = 0, iv) λ1 6= 0 and λ2 6= 0.

i) When λ1 = 0 and λ2 6= 0, the optimal prices will be

p∗∗eu = m1+m2
(1−α)(1+k) and p∗∗cp =

k(m1+m2)
(1−α)(1+k) ,

where k = σcp
σeu
−α , and we have the maximum profit

P∗∗
λ1

= α(m1+m2
1−α

)1− 1
α (σcp +(1−α)σeu)

1
α .

ii) When λ1 6= 0 and λ2 = 0, the optimal prices will be

p∗∗eu = σeu(m1+m2)
(1−α)(σcp+σeu)

and p∗∗cp =
σcp(m1+m2)

(1−α)(σcp+σeu)
, (19)

and the maximum profit P∗∗
λ2

= α(m1+m2
1−α

)1− 1
α (σcp +σeu)

1
α .

iii) When λ1 = 0 and λ2 = 0, the two inequality constraints of pcp
peu
≤ σcp

σeu
≤ α +

pcp
peu

should be an active

constraint (i.e., the equalities hold). However, it is not possible to satisfy both equalities, and hence, it is

infeasible.

iv) Similarly, when λ1 6= 0 and λ2 6= 0, we cannot find a feasible solution for any α > 0.

From P∗∗
λ2

> P∗∗
λ1

, we should have λ2 = 0 and the best response of the ISPs is (19), which is exactly

the same as in (18).

Case 3) In this case, we have the optimal sponsoring rate s∗ =
σcp
σeu
−α− pcp

peu
σcp
σeu

+1−α
and the traffic demand is

x∗(pcp, peu)= (
σcp+(1−α)σeu

pcp+peu
)

1
α . From (14) and (17), ISPs determine their prices by solving max

peu≥0,pcp≥0
(pcp+

peu−m1−m2) ·(
σcp+(1−α)σeu

pcp+peu
)

1
α , subject to pcp

peu
+α− σcp

σeu
≤ 0. From the KKT conditions, we have ∂P

∂ peu
= 0,

∂P
∂ pcp

= 0, and λ · [ pcp
peu

+α− σcp
σeu

] = 0. By solving the equations, we can obtain without difficulty that

p∗∗eu = (m1+m2)
(1−α)(k+1) and p∗∗cp =

k(m1+m2)
(1−α)(k+1) ,
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where k = σcp
σeu
−α , with the maximum profit as

P∗∗ = α(m1+m2
1−α

)1− 1
α (σcp +(1−α)σeu)

1
α .

Comparing the results with those in non-cooperative scenarios, we can obtain the following propo-

sition.

Proposition 2 The ISPs obtain higher total payoff when they collaborate.

P∗∗ ≥ P∗T , (20)

where P∗T denotes the total profit in non-cooperative case, i.e., P∗T = P∗1 +P∗2 .

Proof We consider each case as before.

For Case 1. From our previous results for non-cooperative game, we know that the maximum profits

of ISP1 and ISP2 are [α(m1+m2)
(1−α) ·

σ

1+σ(1−α) ](
σcp(1−α)(1+σ(1−α))

σ(m1+m2)
)

1
α and [α(m1+m2)

(1−α) ] · (σcp(1−α)(1+σ(1−α))
σ(m1+m2)

)
1
α ,

respectively, where σ =
σcp
σeu

. Hence, the total profit is

P∗T = [α(m1+m2)
(1−α) ·

1+σ+σ(1−α)
1+σ(1−α) ](

σcp(1−α)(1+σ(1−α))
σ(m1+m2)

)
1
α .

We can rewrite the total profits of ISPs for each non-cooperative and cooperative case as

P∗T = α(m1+m2
1−α

)1− 1
α (σeu)

1
α (1+σ(1−α))

1
α (1+σ+σ(1−α)

1+σ(1−α) ),

P∗∗ = α(m1+m2
1−α

)1− 1
α (σeu)

1
α (1+σ)

1
α .

Considering the ratio P∗∗
P∗T

= ( 1+σ

1+σ−ασ
)

1
α ( 1+σ−ασ

1+σ+σ−ασ
) and applying the generalized form of Bernoulli’s

inequality, we obtain
P∗∗
P∗T
≥ (1+ σ

1+σ−ασ
)( 1+σ−ασ

1+σ+σ−ασ
) = 1,

which immediately implies P∗∗ ≥ P∗T .

For Case 2, we have the same total profits P∗T and P∗∗ as in Case 1. Thus, we have P∗∗ ≥ P∗T .

For Case 3, from Section 3.2 and 3.3, The total profits in non-cooperative and cooperative cases can

be written as

P∗T = α(m1+m2
1−α

)1− 1
α (σcp +(1−α)σeu)

1
α (1+k(1−α)

1+k )
1
α

k+1+k(1−α)
1+k(1−α) ,

P∗∗ = α(m1+m2
1−α

)1− 1
α (σcp +(1−α)σeu)

1
α ,

where k = σcp
σeu
−α and σ =

σcp
σeu

. Again we apply Bernoulli’s inequality to P∗∗
P∗T

= ( 1+k
1+k(1−α))

1
α

1+k(1−α)
k+1+k(1−α) ,

and obtain

P∗∗
P∗T
≥
(

1+ k
1+k(1−α)

)
· 1+k(1−α)

k+1+k(1−α) = 1.

This completes the proof, and in all three cases, ISPs obtain a higher total payoff when they collaborate.
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V Shapley Revenue Distribution

One remaining task under the collaboration is how to distribute the payoff P∗∗ to each ISP. To this end,

we apply Shapley value mechanism.

Suppose that a network consists of a set of ISPs denoted as N with N = |N|. Any nonempty subset

S ⊆ N is a coalition of ISPs. For any coalition S,P(S) denotes the profit (i.e., revenue minus cost)

generated by the sub-network formed by the set of ISPs S. We define the marginal contribution of ISPi

to a coalition S⊆ N\{i} as4i(S) = P(S∪{i})−P(S). The Shapley value φ is defined by

φi =
1

N! ∑
π∈Π

4i(S(π, i)) ∀i ∈ N, (21)

where Π is the set of all N! orderings of N and S(π, i) is the set of players preceding i in the ordering

π [13, 14]. The Shapley value depends only on the values {P(S) : S ⊆ N} and satisfies desirable ef-

ficiency and fairness properties [15]. Revenue sharing model based on the Shapley value belongs to a

cooperation-based game theory, and the mechanism has a capacity to divide the revenue fairly between

the involved parties [16, 17].

In our model, we have N = {1,2}, and ISP1 and ISP2 receive their Shapley value, which can be

obtained as

φ1 =
1
2 P({1})+ 1

2 [P({1,2})−P({2})],

φ2 =
1
2 P({2})+ 1

2 [P({1,2})−P({1})],
(22)

where P({1,2}) = φ1 +φ2 is the total profit under collaboration, and P({1}) = P∗1 and P({2}) = P∗2 are

the profit of ISP1 and ISP2 in non-cooperative case, respectively.

Recall that letting A = α(m1+m2
1−α

)1− 1
α (σeu)

1
α , σ =

σcp
σeu

and k = σcp
σeu
−α , we have

if σcp
σeu
≤ α +

pcp
peu

, P∗1 = A(1+σ(1−α))
1
α ( σ

1+σ(1−α)),

P∗2 = A(1+σ(1−α))
1
α ,

if σcp
σeu

> α +
pcp
peu

, P∗1 = A(1+ k(1−α))
1
α ( k

1+k(1−α)),

P∗2 = A(1+ k(1−α))
1
α .

(23)

From the results in Section IV, we can also obtain the total payoff P({1,2}) under cooperation as

if σcp
σeu
≤ α +

pcp
peu

, (Cases 1 & 2)

P({1,2}) = α(m1+m2
1−α

)1− 1
α (σeu)

1
α (1+σ)

1
α ,

if σcp
σeu

> α +
pcp
peu

, (Case 3)

P({1,2}) = α(m1+m2
1−α

)1− 1
α (σcp +(1−α)σeu)

1
α .

(24)
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From (22), we obtain the Shapley value for ISP1 and ISP2 as

if σcp
σeu
≤ α +

pcp
peu

, (Cases 1 & 2)

φ1 = A[(1+σ)
1
α − (1+σ(1−α))

1
α

1−ασ

1+σ(1−α) ],

φ2 = A[(1+σ)
1
α +(1+σ(1−α))

1
α

1−ασ

1+σ(1−α) ],

if σcp
σeu

> α +
pcp
peu

, (Case 3)

φ1 = A[(σ +1−α)
1
α − (1+ k(1−α))

1
α

1−αk
1+k(1−α) ],

φ2 = A[(σ +1−α)
1
α +(1+ k(1−α))

1
α

1−αk
1+k(1−α) ].

(25)

The following proposition shows that the collaboration with revenue sharing of Shapley mechanism

improves the profit of each ISP.

Proposition 3 The revenue sharing mechanism assures that an ISPi’s revenue portion at least equals to

the revenue gained without collaboration, i.e.

φi ≥ P({i}) (26)

Proof For case 1, according to a Shapley value based revenue sharing scheme defined in Equation (25),

ISP1 receives φ1 = α(m1+m2
1−α

)1− 1
α (σeu)

1
α [(1+σ)

1
α − (1+σ(1−α))

1
α

1−ασ

1+σ(1−α) ] portion of the total revenue

and from Equation (23) we know the maximum profit of ISP1 obtained without collaboration is P({1})=
α(m1+m2

1−α
)1− 1

α (σeu)
1
α [(1+σ(1−α))

1
α ( σ

1+σ(1−α))]. We consider the ratio φ1
P({1}) =

1
2 [

(1+σ)
1
α (1+σ(1−α))

σ(1+σ(1−α))
1
α

−
1−ασ

σ
] = 1

2 [(
1+σ−ασ+ασ

1+σ−ασ
)

1
α
(1+σ(1−α))

σ
− 1−ασ

σ
]. By using the generalized form of Bernoulli’s inequality

(1+ x)r ≥ 1+ rx for r ≤ 0 or r ≥ 1 and x >−1, we can obtain

φ1
P({1}) ≥

1
2 [(1+

σ

1+σ−ασ
)(1+σ(1−α)

σ
)− 1−ασ

σ
] = 1

2 [
2σ

σ
] = 1.

Similarly, for case 1, ISP2’s profits in cooperative and non-cooperative cases, defined in (25) and (23),

respectively, are as follows

φ2 = α(m1+m2
1−α

)1− 1
α (σeu)

1
α [(1+σ)

1
α +(1+σ(1−α))

1
α

1−ασ

1+σ(1−α) ],

P({2}) = α(m1+m2
1−α

)1− 1
α (σeu)

1
α [(1+σ(1−α))

1
α ].

Again we consider the ratio φ2
P({2}) =

1
2 [(

1+σ

1+σ(1−α) )
1
α + 1−ασ

1+σ(1−α) ] =
1
2 [(

1+σ−ασ+ασ

1+σ−ασ
)

1
α + 1−ασ

1+σ(1−α) ]. Applying

the generalized form of Bernoulli’s inequality, we have φ2
P({2}) ≥

1
2 [(1+

σ

1+σ−ασ
)+ 1−ασ

1+σ(1−α) ] = 1.

Hence, when σcp
σeu
≤ pcp

peu
, we have φ1 ≥ P({1}) and φ2 ≥ P({2}), implying both ISPs gain higher revenue

when they cooperate.

For case 2, pcp
peu

<
σcp
σeu
≤ α +

pcp
peu

, we have the same profits φi and P({i}) as in Case 1. Hence, using

the above method we can easily prove that φ1 ≥ P({1}) and φ2 ≥ P({2}).
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(a) CP (b) ISP2 with σcp = 2,σeu = 1

Figure 2: Payoff changes of CP and ISP2 when α = 0.5.

For case 3, σcp
σeu

> α +
pcp
peu

, ISP1’s profits in cooperative and non-cooperative models, defined in (25)

and (23), respectively, are as follows

φ1 = α(m1+m2
1−α

)1− 1
α (σeu)

1
α [(σ +1−α)

1
α − (1+ k(1−α))

1
α

1−αk
1+k(1−α) ],

P({1}) = α(m1+m2
1−α

)1− 1
α (σeu)

1
α [(1+ k(1−α))

1
α

k
1+k(1−α) ].

Hence, the ratio is φ1
P({1}) =

1
2 [

1+k(1−α)
k ( 1+k

1+k(1−α))
1
α − 1−αk

k ]. Applying the generalized form of Bernoulli’s

inequality, we can obtain φ1
P({1}) ≥

1
2 [

1+k(1−α)
k (1+ k

1+k(1−α))−
1−αk

k ] = 2k
2k = 1.

Similarly, for ISP2 we have

φ2 = α(m1+m2
1−α

)1− 1
α (σeu)

1
α [(σ +1−α)

1
α +(1+ k(1−α))

1
α

1−αk
1+k(1−α) ],

P({2}) = α(m1+m2
1−α

)1− 1
α (σeu)

1
α [(1+ k(1−α))

1
α ].

Hence, the ratio is φ2
P({2}) =

1
2 [(

σ+1−α

1+k(1−α))
1
α + 1−αk

1+k(1−α) ] =
1
2 [(

1+k
1+k−αk )

1
α + 1−αk

1+k(1−α) ]. Applying the gener-

alized form of Bernoulli’s inequality, we can obtain φ2
P({2}) ≥

1
2 [(1+

k
1+k(1−α))+

1−αk
1+k(1−α) ] =

2(1+k(1−α))
2(1+k(1−α)) =

1.

Thus, for all regions specified in (17) we have φi ≥ P({i}), i.e., an ISPi’s revenue portion in cooperative

model is at least equals to the revenue gained in non-cooperative model.

VI Numerical Simulations

We verify our analytical results through numerical simulations. We consider one CP, one EU, and

two ISPs as shown in Figure 1, and assume that CP and the EU share the same utility-level function

αeu = αcp = α ∈ (0,1). Figure 2a shows that, if σ(=
σcp
σeu

)> α + p(= pcp
peu

), CP has the maximum profit

at σ = 0.4 and thus has incentive to invest in sponsored data plan. It implies that when CP has a higher

utility level than EU (or similarly, when the price charged to CP is relatively lower than the price charged

to EU), CP is willing to provide a higher sponsorship rate. In contrast, when σ ≤ α + p, the maximum

payoff is achieved at s∗ = 0, i.e., the best strategy of CP is not sponsoring.

Next we observe the payoff of ISP2 as we change the price per unit traffic peu that charges to EU .

Figure 2b illustrates the results and show that the payoff of ISP2 linearly rises till some point, and then

declines exponentially, which is due to the fact that the demand of users is inversely proportional to
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(a) peu = 4, α = 0.3 (b) pcp = 2, α = 0.3

(c) pcp = 2, peu = 2 (d) peu = 4, α = 0.3

Figure 3: The optimal sponsoring rate with respect to pcp, peu, σ , and ptr.

peu. Although ISP2 obtains its revenue from charging ISP1 with transit-price ptr, the results show that

increasing the ptr does not necessarily increase the payoff of ISP2. As the transit price becomes higher,

CP is forced to increase pcp which in turn results in a decline of the traffic demand. Hence, the maximum

point is achieved at ptr = 1 and peu = 2.

We examine the impact of ISP prices (pcp, peu, and ptr) and σ on the optimal sponsoring rate with

different parameter sets. Figure 3a shows that as pcp increases, the sponsoring rate drops sharply. The

decreasing rate can be mitigated with higher σ . Figure 3b shows that with the increase of peu, the

marginal increase of the sponsoring rate is decreasing. Moreover, a larger σ value indicates a higher and

rapidly growing sponsorship rate. Figure 3c demonstrates the change of the optimal sponsoring rate with

respect to σ under different α values. The sponsorship rate logarithmically increases as σ increases. It

can be explained from the fact that CP with higher revenue level can afford more investment on the

sponsoring content. We can also observe that the variation in α has a little impact on the traffic demand.

Figure 3d will help us to understand the effect of the transit cost ptr to the optimal sponsoring rate s∗.

We can observe that the increase of the transit cost results in a sharp drop of s∗. The rise of transit cost

will incur significant loss in ISP1’s revenue, which forces ISP1 to increase its charge to CP, resulting in

a rapid drop of the sponsoring rate.

We now observe the total payoff of ISPs in cooperative and non-cooperative cases. Figure 4a il-

lustrates the results and show that the ISPs obtain higher total payoff when they collaborate. We also

examine the impact of collaboration on the individual payoff of ISP1 and ISP2. Figure 4b and 4c shows

that each ISP’s revenue portion in cooperative case increases sharply and highly exceeds the revenue

gained without collaboration.
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(a) Total payoff of ISPs (b) ISP1 (c) ISP2

Figure 4: Payoff changes of ISP1 and ISP2 when α = 0.5.

VII Conclusion

In this work, we studied the inter-pricing among ISPs that jointly deliver the sponsored data from CP

to EU. We derived the best response of the EU, the CP, and the ISPs, and analyzed their implications

for the sponsoring strategy of the CP. We investigate the interactions between strategic EU, CP, and two

interconnected ISPs through a sequential Stackelberg game, and verify our results through numerical

simulations. Our results clarify the high impact of the transit price of intermediate ISP on the sponsoring

strategies of the CP, and demonstrate in what scenarios sponsoring helps. The proposed model assists

CPs to make decision on offering content sponsoring services and ISPs to make appropriate pricing

scheme. We then study the effect of cooperation between the ISPs and show that the collaboration can

improve the total payoff of the ISPs and leads to a higher social welfare. Based on the Shapley value

mechanism, we further show that each ISP’s revenue portion in cooperative case exceeds the revenue

gained without collaboration. In our future work, we will consider the network with multiple ISPs for

the service to the EU or the CP which may result in competition between the ISPs and change the system

dynamics.
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