

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/160745277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis

Design and Implementation of Bandwidth-aware
Memory Placement and Migration Policies

for Heterogeneous Memory Systems

Seongdae Yu

Department of Computer Science and Engineering

Graduate School of UNIST

2018

Design and Implementation of Bandwidth-aware
Memory Placement and Migration Policies

for Heterogeneous Memory Systems

Seongdae Yu

Department of Computer Science and Engineering

Graduate School of UNIST

Contents

Chapter 1. Introduction 1

Chapter 2. Background and Motivation 2
2.1 Physical Memory Description . 2
2.2 Conventional Memory Placement and Migration Policies 2
2.3 Non-volatile Memory . 3
2.4 Need for Bandwidth-aware Memory Placement and Migration Policies 4

Chapter 3. Design and Implementation 6
3.1 Heterogeneous Memory Description . 6
3.2 BW-aware Memory Placement Policies . 6

3.2.1 The BW-INTERLEAVE Policy . 6
3.2.2 The BW-RANDOM Policy . 7
3.2.3 The BW-LOCAL Policy . 7

3.3 Bandwidth-aware Migration Policy . 8
3.4 Implementation . 9
3.5 Discussion . 9

Chapter 4. Methodology 11

Chapter 5. Evaluation 13
5.1 Performance Impact on Bandwidth-intensive Benchmarks 13
5.2 Sensitivity to the Bandwidth Ratio . 17
5.3 Performance Impact on Bandwidth Non-intensive Benchmarks 17
5.4 Performance Impact on Multiprogrammed Workloads 17

Chapter 6. Related Work 20

Chapter 7. Conclusions 21

List of Figures

2.1 Physical memory description . 2
2.2 Example of local policy . 3
2.3 Example of local policy . 3
2.4 System architecture with heterogeneous memory 4

5.1 Overall performance results with bandwidth-intensive benchmarks 14
5.2 Execution time breakdowns . 14
5.3 Memory traffic . 15
5.4 Memory allocation ratio . 15
5.5 Memory access breakdowns . 16
5.6 Migrated pages . 16
5.7 Performance sensitivity to the bandwidth ratio 17
5.8 Overall performance results with bandwidth non-intensive benchmarks 18
5.9 Overall performance results with multiprogrammed workloads 18

List of Tables

4.1 System specification . 11
4.2 Performance Data collection . 11
4.3 Bandwidth requirements (reads and writes) of the evaluated benchmarks. The

first seven benchmarks are bandwidth-intensive benchmarks, and the next five
benchmarks are bandwidth non-intensive benchmarks. 12

Abstract

Heterogeneous memory systems are composed of several types of memory, and are used in various
computing domains. Each memory node in heterogeneous memory systems has different characteristics
and performances. A particularly significant difference can be found in access latency and memory
bandwidth. Therefore, the heterogeneity between memories must be considered to utilize the perfor-
mance of a heterogeneous memory system. However, most of the previous works did not consider the
bandwidth difference of the memory nodes constituting a heterogeneous memory system.

The present work proposes bandwidth-aware memory placement and migration policies to solve the
problem caused by the bandwidth difference of the memory nodes in a heterogeneous memory system.
We implement three bandwidth-aware memory placement policies and one bandwidth-aware migration
policy on the Linux kernel, then quantitatively experiment on and evaluate them in real systems. In
addition, we prove that our proposed bandwidth-aware memory placement and migration policies can
achieve a higher performance compared to conventional memory placement and migration policies that
do not consider the bandwidth differences between heterogeneous memory nodes.

Chapter 1. Introduction

A heterogeneous memory system consists of several kinds of memory nodes, and each node has
different characteristics and performances. Many advantages can be obtained by the existence of various
kinds of memory nodes in the system. For example, a heterogeneous memory system consisting of
DRAM and NVM can use a DRAM with low access latency and high bandwidth for high-performance
tasks, and can use NVM for tasks, such as logging, where persistence is important [1, 2].

This work proposes bandwidth-aware placement andmigration policies that consider the bandwidth
difference between each memory node in heterogeneous memory systems. These bandwidth-aware poli-
cies aim to maximize the bandwidth of heterogeneous memory systems, which can lead to significant
performance improvements in bandwidth-intensive applications commonly used in HPC. We designed
and implemented three bandwidth-aware placement policies and one migration policy. We then quanti-
tatively evaluated the policies in the real system. The specific contribution of this work is as follows:

• We propose bandwidth-aware memory placement and migration policies. These policies allocate
and migrate pages considering the bandwidth difference of each node constituting a heterogeneous
memory system.

• We implement and experiment on the proposed bandwidth-aware memory placement and migra-
tion policies. The implementation is done by modifying the existing Linux kernel code and adding
a new code.

• The performance of the proposed bandwidth-aware memory placement and migration policies
is quantitatively evaluated in real systems. We prove herein that the bandwidth-aware memory
placement and migration policies considering the heterogeneity of the heterogeneous memory
system can have a large performance improvement compared to the existing policy that does not
consider the heterogeneity.

The remainder of this paper is organized as follows: Section 2 provides the background knowledge
needed to understand this paper and the motivation for this work; Section 3 presents the algorithms and
implementation for the bandwidth-aware memory placement and migration policies; Section 4 describes
the experimental environment and tools; Section 5 explains the experimental results of the proposed
policies and its causes; Section 6 introduces related work and explains the differences from this paper;
and Section 7 describes the conclusions.

1

Chapter 2. Background and Motivation

2.1 Physical Memory Description

Linux is used on a variety of hardware. It uses physical memory management methods that can be
used regardless of the architecture [3]. Figure 2.1 shows the organization of a Linux physical memory
that is hierarchically constituted. The top layer is a memory node, which is the set of DIMMs connected
to the same CPU. A memory node has several zones, and a node in the x86 architecture consists of
three zones. The first is the ZONE_DMA, which occupies 0 MB to 16 MB of space. The second is the
ZONE_NORMAL, which occupies 16 MB to 896 MB of space. The last zone is the ZONE_HIGHMEM, which
occupies from 896 MB to the last space of memory. Each zone is made up of several pages, which are
the basic units of memory placement and migration.

Node

Zone
HIGHMEM

PagePage

Zone
NORMAL

Page Page

Zone
DMA

Page Page

Figure 2.1: Physical memory description

2.2 Conventional Memory Placement and Migration Policies

A system with multiple CPU sockets and DIMMs in one system is called a non-uniform memory
access (NUMA) system. Each CPU socket is locally connected to a memory node consisting of one or
more DIMMs. Moreover, each CPU socket is remotely connected to other CPU sockets and memory
nodes through the interconnection network. Accessing the CPU’s core locally connected memory is
called local access. Meanwhile, accessing the CPU’s core remotely connected memory is called remote
access. The latency of remote access is higher than that of local access because remote access has to go
through the interconnection network [4].

There are two conventional memory placement policies in NUMA systems. The first is local policy.
Local policy is used as Linux’s default policy. It allocates pages to a memory node connected locally
to the CPU socket on which the current task is running. Figure 2.2 shows an example of local policy.

2

CPU 0

Core

Core Core

Core
DRAM Node

CPU 1

Core

Core Core

Core
NVM Node

Page 1 Page 2 Page 3
Task

Figure 2.2: Example of local policy

CPU 0

Core

Core Core

Core
DRAM Node

CPU 1

Core

Core Core

Core
NVM Node

Page 1 Page 3 Page 2
Task

Figure 2.3: Example of local policy

When using local policy, the core in CPU socket 0 allocates pages only to locally connected memory
node 0. The second is the interleave policy. The interleave policy allocates pages in a round-robin
manner. Figure 2.3 shows an example of interleave policy. When using interleave policy, the page is
first allocated to the local memory node of the CPU socket on which the current task is executed. The
page is then alternately allocated to each memory node.

Local access is to access the pages allocated to the local memory of the CPU socket, where the task
is currently located. When local policy is being used, the pages are allocated only to the local memory,
and local access is made unless the task migrates to the core of another CPU socket. Local access has a
lower access latency than remote access; hence, it can be beneficial in performance. However, if tasks
are flocked to a single CPU socket, load balancing will fail because they do not use other memory nodes.
Remote access is to access the page allocated to the remote memory node. The remote access latency
is higher than that of the local access because the data must pass through the interconnection network.
Interleave policy allocates pages to each memory node in a round-robin manner; hence, both local and
remote access occur. Therefore, the interleave policy shows a performance lower than that of the local
policy in access latency, but it can benefit from load balancing by evenly using each memory node.

In the NUMA system, automatic NUMA balancing (ANB) can migrate pages that have already
been allocated to a memory node [5]. When task accesses a page configured as the NUMA page [5], a
NUMA hinting page fault is set. Periodically, ANB checks the NUMA hinting page fault on each NUMA
page and migrates the page where NUMA hinting page fault is set to the local memory node of a task
for access locality if a task frequently causes remote access to the page.

2.3 Non-volatile Memory

Non-volatile memory is a newly emerging technology with various characteristics, such as per-
sistence, byte addressability, and high density. NVMs, such as phase-change memory (PCM) [6], are

3

CPU 0

Core

Core Core

Core
DRAM Node

CPU 1

Core

Core Core

Core
NVM Node

Figure 2.4: System architecture with heterogeneous memory

expected to be 100 times faster than SSD and two to five times slower than DRAM [2]. In this work, a
heterogeneousmemory system consisting of DRAMandNVM is used as a target architecture. Figure 2.4
shows the architecture, where each memory node consists of the same type of DIMM. Previous work [1]
has constructed nodes in this manner to prevent the potential performance overheads of the block device
interface that may occur by configuring nodes with different types of DIMMs.

2.4 Need for Bandwidth-aware Memory Placement and Migration Poli-
cies

The existing NUMA system does not consider the heterogeneity of each memory node to consist of
different kinds of DIMMs. The local and interleave policies treat each node equally without considering
the heterogeneity of each memory node. As a result, system resources may not be fully utilized when
local and interleave policies are used in a heterogeneous memory system with a large performance gap
between memory nodes.

Let us assume that a heterogeneous memory system consists of one DRAM node and one NVM
node. The DRAM node bandwidth in this system is represented by BDRAM , while the NVM node is
represented by BNVM . Let S be the total amount of data required for the application, p be the ratio of
the data allocated to the DRAM node, and 1 − p be the data rate allocated to the NVM node. The time
to transfer the data from the DRAM to the CPU (tDRAM) is expressed in Equation 2.1, and the time
(tNVM) to transfer the data from NVM to the CPU is expressed in Equation 2.2.

tDRAM =
p · S

BDRAM
(2.1)

tNVM =
(1 − p) · S

BNVM
(2.2)

In a bandwidth-intensive application, which is the main target of this work, data transfer takes up
most of the execution time. Therefore, the total execution time (tTOT) is determined to be a larger value
of tDRAM and tNVM .

tTOT = max(tDRAM, tNVM) (2.3)

4

The values of tDRAM and tNVM must be equal to minimize the total execution time. To do this, the
bandwidth of each node and the amount of allocated data should be proportional. As a result, the ratio
of BDRAM to BNVM should be equal to the ratio of p to 1 − p. Therefore, the optimal allocation ratio
(pOPT) to be allocated to the DRAM node is calculated as follows:

pOPT =
BDRAM

BDRAM + BNVM
(2.4)

The bandwidth-aware memory placement and migration policies proposed in this work allocate
memory at the optimal rate considering the bandwidth difference between each node of the heterogeneous
memory system. Moreover, the ratio is maintained even if migration occurs, allowing the system to
make the most of the aggregated bandwidth. In contrast, conventional policies are bandwidth-oblivious
memory policies that perform memory placement and migration without considering the bandwidth
differences between thememory nodes. The amount ofmemory allocated to each node is not proportional
to the bandwidth because of this, and migration can make this worse. This can cause a serious bottleneck
at a particular node, which can significantly degrade the overall performance of the system.

5

Chapter 3. Design and Implementation

This section describes the design and the implementation of the bandwidth-aware memory place-
ment and migration policies. Section 3.1 describes the concept of the memory clusters added to
manage the heterogeneous memory systems. Sections 3.2 and 3.3 describe the algorithm of each
bandwidth-aware memory placement and migration policy. Section 3.4 describes the implementation
of the bandwidth-aware memory placement and migration policies. Section 3.5 discusses some design
issues.

3.1 Heterogeneous Memory Description

We have added the memory cluster concept to efficiently manage the memory organization of the
heterogeneous memory system. A memory cluster consists of one or more memory nodes, all of which
are of the same type. A structure, called memory cluster, is used in the implementation. This structure
has a pointer that points to each node belonging to the cluster. The structure also stores cluster attribute
information, such as cluster bandwidth.

3.2 BW-aware Memory Placement Policies

This subsection describes the pseudocode of each bandwidth-aware memory placement policy. The
pseudocode assumes a heterogeneous memory system to consist of one DRAM cluster and one NVM
cluster. Furthermore, the bandwidth ratios of the DRAM and NVM clusters are expressed as D and N ,
respectively. For example, if the bandwidth of the DRAM cluster is 4GB/s, and that of the NVM cluster
is 2GB/s, D becomes 2, and N becomes 1. A variable, called aCount, is added to the task_structure
that stores task information to store the allocation history of the task. The bandwidth-aware memory
placement policies use this history information to allocate pages according to the optimal allocation
ratio.

3.2.1 The BW-INTERLEAVE Policy

The bandwidth-aware memory placement interleave (BW-INTERLEAVE) policy allocates pages in
a round-robin manner considering each memory cluster bandwidth. Algorithm 1 is the pseudocode of
the BW-INTERLEAVE policy. The page allocation proceeds in the order of (1) determining the cluster to
which the page is to be allocated (Line 8), (2) determining the node to which the page is to be allocated
in a round-robin manner within the cluster (Line 9), and (3) allocating the page (Line 10).

The BW-INTERLEAVE policy determines the memory cluster based on the task’s aCount value.
The DRAM cluster is selected if aCount is less than D, and the NVM cluster is selected if it is equal
to or greater than D (Lines 3–6). aCount is then incremented by 1 and reset to 0 when it is D + N

(Line 5). Therefore, the BW-INTERLEAVE policy allocates memory to the DRAM cluster for D times,
then allocates memory to the NVM cluster for N times. In other words, the page is proportionally

6

Algorithm 1 BW-INTERLEAVE policy
1: procedure getClusterInterleave(task)
2: cluster← DRAM
3: if task.aCount ≥ D then
4: cluster← NVM
5: task.aCount← (task.aCount + 1) % (D + N)
6: return cluster
7: procedure bwAwareInterleave(task)
8: cluster← getClusterInterleave(task)
9: node← getNodeInterleave(task, cluster)
10: page← allocPage(task, node)
11: return page

Algorithm 2 BW-RANDOM policy
1: procedure getClusterRandom(task)
2: cluster← DRAM
3: r ← getRandomInt() % (D + N)
4: if r ≥ D then
5: cluster← NVM
6: return cluster
7: procedure bwAwareRandom(task)
8: cluster← getClusterRandom(task)
9: node← getNodeRandom(task, cluster)
10: page← allocPage(task, node)
11: return page

allocated to the bandwidth ratio, and the allocation ratio is equal to the optimal allocation ratio of
Equation 2.4.

3.2.2 The BW-RANDOM Policy

The bandwidth-aware random memory placement (BW-RANDOM) policy selects a memory cluster
to allocate pages using the probabilistic manner. Algorithm 2 shows the pseudocode of the BW-RANDOM
policy. As with the bandwidth-aware interleave, the BW-RANDOM policy selects a memory cluster, to
which a page is allocated, and a node in the cluster, then allocates a page (Lines 8–10). The BW-RANDOM
policy generates a random variable and performs a modulation operation on the value of D+N (Line 3).
The DRAM cluster is selected as the cluster to which the page is to be allocated if the result of the
modulation operation is less than D. The page is allocated to the NVM cluster if the result is equal to or
greater than D (Lines 4–5). Therefore, the page is allocated to the DRAM cluster with the probability
of D

D+N , and the page is allocated to the NVM cluster with the probability of N
D+N .

3.2.3 The BW-LOCAL Policy

The bandwidth-aware local memory placement (BW-LOCAL) policy preferentially allocate pages to
the local node while maintaining the optimal allocation ratio. Algorithm 3 shows the pseudocode of the
BW-LOCAL policy. The BW-LOCAL policy considers which cluster the current task is in. Page is allocated

7

Algorithm 3 BW-LOCAL policy
1: procedure getClusterLocal(task)
2: currCluster← task.cluster
3: aCount← task.aCount[currCluster]
4: cluster← DRAM
5: if currCluster = DRAM then
6: if aCount ≥ D then
7: cluster← NVM
8: else
9: if aCount < N then
10: cluster← NVM
11: task.aCount[currCluster]← (aCount + 1) % (D + N)
12: return cluster
13: procedure bwAwareLocal(task)
14: cluster← getClusterLocal(task)
15: node← getNodeLocal(task, cluster)
16: page← allocPage(task, node)
17: return page

to the NVM cluster if the cluster in which the task is currently located is a DRAM cluster and the value
of aCount of the cluster is greater than or equal to D (Lines 5–7). And the page is allocated to the NVM
cluster if the cluster, where the current task is located, is an NVM cluster and the value of aCount of the
cluster is less than N (Lines 8–10). In other cases, page is allocataed to the DRAM cluster. The value of
aCount corresponding to the cluster in which the current task is located is then incremented by 1, and
aCount is reset to zero if the value is equal to D + N . Therefore, when a task is located in a DRAM
cluster, it allocates a page to the DRAM cluster for D times, then allocates the page to the NVM cluster
for N times. The page is allocated to the NVM cluster for N times if the task is in the NVM cluster. The
page is then allocated to the DRAM cluster for D times.

3.3 Bandwidth-aware Migration Policy

The bandwidth-aware migration (BW-MIGRATION) policy performs page migration while maintain-
ing the optimal allocation ratio. For this, the number of pages migrated between clusters is kept the
same within the threshold. The BW-MIGRATION policy classifies migration into two types. The first
is intra-cluster migration. Intra-cluster migration is a page migration between nodes belonging to the
same cluster. The second is inter-cluster migration, which performs page migration between different
clusters. The inter-cluster migration uses two global variables. These variables are used to maintain the
optimal allocation ratio. The first is a migration threshold that prevents migration from being overloaded
to a specific cluster because of migration, and is expressed as M in pseudocode. For example, the
inter-cluster migration from the NVM cluster to the DRAM cluster can be performed up to 1010 times
and at least 990 times if the migration count is 10, and the inter-cluster migration from the DRAM cluster
to the NVM cluster is performed for 1000 times. The second variable, migCount, has a value between
-M and M and stores how many more times the inter-cluster migration was performed in a particular
direction.

8

Algorithm 4 BW-aware migration policy
1: migCount← 0
2: procedure bwAwareMigrate(task, page)
3: currCluster← page.cluster
4: destCluster← task.cluster
5: if currCluster , destCluster then
6: interClusterMigAllowed← false
7: currCount← migCount
8: nextCount← 0
9: if destCluster = DRAM then
10: if currCount < M then
11: interClusterMigAllowed← true
12: nextCount← currCount + 1
13: else . destCluster = NVM
14: if currCount > −M then
15: interClusterMigAllowed← true
16: nextCount← currCount − 1
17: if interClusterMigAllowed = false or atomicCompareAndSet(migCount, currCount,

nextCount) = failed then
18: destCluster← currCluster
19: doMigration(task, page, destCluster)

The pseudocode of the BW-MIGRATION policy is Algorithm 4. The intra-cluster migration is per-
formed immediately without any additional process (Line 19). In the case of the inter-cluster migration,
the migration direction, migCount, and migration threshold values determine whether migration is
permitted. When the inter-cluster migration is to be performed from the DRAM cluster to the NVM
cluster, the interClusterMigAllowed is set to true and the nextCount is set to currCount+1 if the current
migCount less than or equal to M (Lines 9–10). On the contrary, when the inter-cluster migration is
to be performed from the NVM cluster to the DRAM cluster, interClusterMigAllowed is set to true
and the nextCount is set to currCount-1 if the current migCount greater than -M (Lines 13– 16). If
the interClusterMigAllowed is true, then atomic compare and set is performed (Line 11). The atomic
compare and set operation compares the migCount and currCount and sets the migCount to nextCount
if they are equal. If the interClusterMigAllowed is false or the migCount and currCount are different,
the atomic compare and set operation returns false, and the inter-cluster migration is not performed.

3.4 Implementation

We developed and tested the bandwidth-aware placement and migration policies in the centos 7,
3.10.0 kernel. Centos 7 is a widely used Linux distribution, and the default kernel is 3.10.0.

3.5 Discussion

Three or more memory clusters: The previous description of the bandwidth-aware memory placement
and migration policies is based on the existence of only two types of clusters in a heterogeneous memory

9

system. However, the bandwidth-aware memory placement and migration policies can normally operate
even in the presence of three or more clusters. Let us assume a heterogeneous memory system to have
three or more clusters (i.e., C1, C2, · · · , CN). The bandwidth of Ci is Bi. The optimal allocation ratio of
each cluster is calculated as follows: pi,OPT =

Bi

B1+B2+· · ·+BN
.

The bandwidth-aware migration policy can also normally operate in the presence of three or more
clusters. For page migration to be performed while maintaining the optimal allocation ratio, the amount
of pages migrated between the clusters must be the same. To do this, a migration count is needed to
store the number of page migrations between two clusters. The migration count specifically stores how
many more times page migration has been performed in a particular direction between two clusters.
Therefore,

(
n
2

)
migration counts are needed when the number of clusters is n.

Latency: The bandwidth-aware memory placement and migration policies focus on optimizing the per-
formance of bandwidth-intensive applications. Moreover, our experimental results showed that latency
did not significantly affect performance in the case of multi-thread bandwidth-intensive benchmarks.
As shown in Figure 5.1 in Section 5.1, the bandwidth-aware local policy allocates memory considering
locality differently from other bandwidth-aware memory placement policies. However, the performance
difference between the bandwidth-aware memory placement policies is very small. Furthermore, as
shown in Figure 5.8 in Section 5.3, the bandwidth-aware memory placement and migration policies have
little or no performance impact on the bandwidth non-intensive benchmark.

10

Chapter 4. Methodology

The experiments of the bandwidth-awarememory placement andmigration policieswere performed
in a NUMA system with two nodes. The NUMA system had two eight-core CPUs, which were directly
connected through the interconnection network, as shown in figure 2.4. Each CPU had 16GB of local
memory. Table 4.1 lists a more detailed specification of the NUMA system used.

NVM is not yet released; hence, the experiment herein emulated one of the two DRAM nodes to
the NVM through Quartz [7]. Quartz can control the thermal throttling of the memory controller. We
reduced the DRAM bandwidth emulated as NVM by 2, 5, and 10 times.

CentOS 7 and kernel 3.10.0 were installed on the NUMA system used in the experiment. The
kernel was modified, and approximately 500 lines of code were added for the implementation of the
bandwidth-aware memory placement and migration policies. We also used OpenJDK 1.8.0 and Spark
1.5.0 [8] for the big-data benchmark. The size of the page used in the experiment was 4KB. Table 4.2
presents the data collection methods.

Seven bandwidth-intensive benchmarks and five bandwidth non-intensive benchmarks were used in

Table 4.1: System specification

Component Description
Processors 2 Intel Xeon Processor E5-2640 v3

CPUs @ 2.6GHz, 8 cores per CPU
L1 I-cache Private, 32KB, 8 ways
L1 D-cache Private, 32KB, 8 ways
L2 cache Private, 256KB, 8 ways
L3 cache Shared, 20MB, 20 ways
Main memory 32GB (2 × 16GB DDR4 (PC4

17000))
SSD 128GB

Table 4.2: Performance Data collection

Perf. data Source
Execution time PARSEC, SPLASH, and Spark

statistics
Time breakdowns Linux statistics (/proc/stat)
Memory bandwidth Intel performance countermonitor

(pcm-memory.x)
Memory allocation Redhat performance monitoring

tool (numastat)
Local memory accesses Performance monitoring counters

(PMCs) – event: 0xB7, mask:
0x01, sub-event: 0x600400001

Remote memory accesses PMCs – event: 0xBB, mask:
0x01, sub-event: 0x67F800001

Page migrations Linux statistics (/proc/vmstat)

11

Table 4.3: Bandwidth requirements (reads and writes) of the evaluated benchmarks. The first seven
benchmarks are bandwidth-intensive benchmarks, and the next five benchmarks are bandwidth non-
intensive benchmarks.

Benchmark Bandwidth Requirements
Reads (MB/s) Writes (MB/s)

canneal (CA) [9] 8082.6 2988.7
FFT (FFT) [10] 6628.7 4678.8
kmeans (KM) [11] 8018.5 7228.5
ocean_cp (OC) [10] 13154.6 4777.0
ocean_ncp (ON) [10] 12047.8 4018.4
streamcluster (SC) [9] 14589.2 168.3
wordcount (WC) [11] 8795.9 6973.7
blackscholes (BL) [9] 2952.3 448.0
facesim (FS) [9] 3420.8 1076.1
freqmine (FM) [9] 1333.0 591.6
raytrace (RT) [10] 196.8 30.9
swaptions (SW) [9] 669.5 81.7

the experiment. The benchmarks used belong to the PARSEC [9], SPLASH [10], andBigDataBench [11]
benchmark suite. The largest dataset was used when executing the PACSEC and SPLASH benchmarks.
Wordcount and Kmeans were used in BigDataBench, with 8GB and 1GB datasets, respectively. A total
of 16 threads were used in all the experiments, except for the multiprogrammed workload experiments.
Two benchmarks each used eight threads in the multiprogrammed workload experiment.

Table 4.3 shows the bandwidth information of each benchmark used in the experiment. Local
policy and 16 threads were used to measure the bandwidth information. Memory throttling was not
used. The Intel performance counter monitor (pcm-memory.x) in Table 4.2 was used as the bandwidth
measurement tool.

12

Chapter 5. Evaluation

This section describes the experiment results of the bandwidth-aware memory placement and mi-
gration policies. The performance evaluation of the bandwidth-aware memory placement and migration
policies are divided into four parts. First, Section 5.1 describes the overall performance of the bandwidth-
aware memory placement and migration policies and the conventional memory placement and migration
policies. Second, Section 5.2 describes how performance varies with the variation of the bandwidth
ratios of memory clusters. Third, Section 5.3 describes the impact of the bandwidth-aware memory
placement and migration policies on the bandwidth non-intensive benchmarks. Fourth, Section 5.4 de-
scribes the impact of bandwidth-aware memory placement and migration policies on multiprogrammed
workloads. Unless otherwise stated, the benchmark used in the experiments is a bandwidth-intensive
benchmark, and the bandwidth ratio of the DRAM and NVM clusters is 2:1.

5.1 Performance Impact on Bandwidth-intensive Benchmarks

Seven memory placement and migration policies were used in the experiment. First, two conven-
tional policies, namely local (Local) and interleave (IL), were used. DRAM-only (D-only) was also
used. It does not use an NVM cluster, but uses a DRAM cluster only. Next, four bandwidth-aware
memory placement and migration policies, namely bandwidth-aware interleave (BW-I), bandwidth-
aware random (BW-R), bandwidth-aware local (BW-L), and bandwidth-aware local augmented with the
bandwidth-aware migration policy (BW-LM), were used.

Figure 5.1 shows the overall performance of the seven policies. The seven bandwidth-intensive
benchmarks in Table 4.3 were used in the experiments. The benchmarks were run multiple times for
each policy. Figure 5.1 presents the average execution time. The average execution time was normalized
to Local policy. The variance of each execution time used in the average run time calculation is very
small. For example, the geometric standard deviation (GSD) of BW-I is 1.029, which is very small. Note
that the GSD 1 means no deviation.

As shown in Figure 5.1, the bandwidth-aware memory placement and migration policies achieved
a higher performance than the conventional policies for bandwidth-intensive benchmarks. For example,
BW-L achieved a 34.8% higher performance than the local policy on average. In contrast, the per-
formance difference between the bandwidth-aware memory placement and migration policies was very
small. The performance difference between BW-I and BW-L was only 0.5%. The performance of BW-LM
was 5.8% lower than that of BW-L because the page migration overhead was larger than the performance
gain of the page migration.

Figure 5.2 shows the details of the execution time. Figure 5.2 classifies the execution time as User,
System, Idle, and I/O. As shown in Figure5.2, the bandwidth-aware memory placement and migration
policies decreased the User time and the Idle time compared to the conventional policies. The reason
for the User time decrement was that the bandwidth-aware memory placement and migration policies
fully utilized all the system bandwidth, and the execution time of bandwidth-intensive benchmark was

13

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Local IL D-Only BW-I BW-R BW-L BW-LM

N
o

rm
. E

xe
cu

ti
o

n
 T

im
e

Figure 5.1: Overall performance results with bandwidth-intensive benchmarks

0.0
0.2
0.4
0.6
0.8
1.0
1.2

L
o

c
a

l
IL

D
-O

n
ly

B
W

-I
B

W
-R

B
W

-L
B

W
-L

M

L
o

c
a

l
IL

D
-O

n
ly

B
W

-I
B

W
-R

B
W

-L
B

W
-L

M

L
o

c
a

l
IL

D
-O

n
ly

B
W

-I
B

W
-R

B
W

-L
B

W
-L

M

L
o

c
a

l
IL

D
-O

n
ly

B
W

-I
B

W
-R

B
W

-L
B

W
-L

M

L
o

c
a

l
IL

D
-O

n
ly

B
W

-I
B

W
-R

B
W

-L
B

W
-L

M

L
o

c
a

l
IL

D
-O

n
ly

B
W

-I
B

W
-R

B
W

-L
B

W
-L

M

L
o

c
a

l
IL

D
-O

n
ly

B
W

-I
B

W
-R

B
W

-L
B

W
-L

M

CA FFT KM OC ON SC WC

N
o

rm
.
E

x
e
c
.
T

im
e

User System Idle I/O

Figure 5.2: Execution time breakdowns

proportional to the data transfer time. The conventional policies allocate pages without considering
the bandwidth, and throttling occurs because of low bandwidth of the NVM cluster. In contrast, the
bandwidth-aware memory placement and migration policies allocate pages according to the optimal
allocation ratio. As a result, throttling does not occur, and the Idle time decreases.

Figure 5.3 shows the bandwidth of the conventional policies and the bandwidth-aware memory
placement and migration policies. The bandwidth of the bandwidth-aware memory placement and
migration policies was higher than that of the conventional policies because the bandwidth-aware
policies allocated pages according to the optimal allocation ratio. Figure 5.4 shows the allocation ratio
of each policy. The conventional policies allocated memory at a rate close to 1:1 without considering
the bandwidth of each cluster. The amount of bandwidth required for each cluster was proportional
to the allocated memory. As a result, the ratio of the bandwidth that each cluster can provide and the
bandwidth required by the application for each cluster were different from each other.

This can lead to a performance degradation of the bandwidth-intensive benchmark. No performance
degradation is caused by the bandwidth if the bandwidth required by the application is less than twice
the bandwidth that the NVM cluster can provide. However, if it is more than two times, throttling occurs

14

0

2000

4000

6000

8000

10000

12000

14000

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

CA FFT KM OC ON SC WC

M
em

o
ry

 T
ra

ff
ic

 (
M

B
/s

)
DRAM NVM

Figure 5.3: Memory traffic

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CA FFT KM OC ON SC WC

D
R

A
M

 A
llo

ca
ti

o
n

 R
at

io

Local IL D-Only BW-I BW-R BW-L BW-LM

Figure 5.4: Memory allocation ratio

because the NVM cluster does not provide all the bandwidth required by the application. When throttling
occurs in the NVM cluster, data is slowly transferred from the NVM cluster to the CPU. Even if the data
is quickly transferred in the DRAM cluster, the CPU cannot process the operations because it needs data
in the NVM cluster. As a result, the Idle time is increased. On the contrary, since the bandwidth-aware
memory placement and migration policies allocate pages according to the optimal allocation ratio, the
application requests bandwidth in proportion to the bandwidth for each cluster. Figure 5.5 showmemory
access breakdowns. A comparison of the memory access of Figure 5.5 with the memory traffic of
Figure 5.3 shows that the allocated memory and bandwidth were proportional. The bandwidth-aware
memory placement and migration policies allocate memory according to the optimal allocation ratio;
hence, the application requires bandwidth in proportion to the bandwidth for each cluster. Therefore,

15

0.0

0.2

0.4

0.6

0.8

1.0

1.2
L

o
ca

l
IL

D
-O

n
ly

B
W

-I
B

W
-R

B
W

-L
B

W
-L

M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

CA FFT KM OC ON SC WC

N
o

rm
al

iz
ed

 A
cc

es
s

DRAM NVM

Figure 5.5: Memory access breakdowns

the bandwidth-aware memory placement and migration policies utilize all the bandwidth of each cluster,
which eliminates throttling caused by the low bandwidth of a particular cluster.

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

CA FFT KM OC ON SC WC

P
ag

e
M

ig
ra

ti
o

n
s

p
er

 S
ec

o
n

d

Local IL D-Only BW-I BW-R BW-L BW-LM

Figure 5.6: Migrated pages

The Local and BW-LM policies have a higher System time than the other policies because of the
migration overhead. Figure 5.6 shows the number of page migration for each policy. Only the local
and BW-LM policies migrated, while the other policies did not perform migration; hence, the number of
migration was zero.

16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

L
o

ca
l

IL
D

-O
n

ly
B

W
-I

B
W

-R
B

W
-L

B
W

-L
M

2:1 5:1 10:1

N
o

rm
. E

xe
cu

ti
o

n
 T

im
e

Figure 5.7: Performance sensitivity to the bandwidth ratio

5.2 Sensitivity to the Bandwidth Ratio

The previous subsection described the experimental results when the bandwidth ratio was 2:1. This
subsection will explain the performance change depending on the DRAM and NVM cluster bandwidth
ratios. Figure 5.7 shows the average execution times for each policy with bandwidth ratios of 2, 5, and 10.
The average execution time of each policy was normalized to a Local policy. As shown in Figure 5.7,
the performance difference between the conventional and bandwidth-aware policies increased as the
bandwidth ratio increased. The BW-L policy showed a 34.8% higher performance than the local policy
when the bandwidth ratio was 2. Meanwhile, it showed an 81.6% performance improvement when the
bandwidth ratio was 10. This finding was attributed to the lower bandwidth of the NVM cluster causing
more severe throttling as the bandwidth ratio increased. In contrast, the performance difference between
the D-Only and bandwidth-aware policies became smaller as the bandwidth ratio increased because the
gain of the NVM cluster became less as the bandwidth of the NVM cluster became smaller despite
utilizing the NVM bandwidth.

5.3 Performance Impact on Bandwidth Non-intensive Benchmarks

Figure 5.8 shows the average execution time for each non-intensive benchmark when using each
policy. The average execution time was normalized to Local policy. The average execution time for
each policy was approximately the same, indicating that the bandwidth-aware memory placement and
migration policies had little or no performance effect on bandwidth non-intensive benchmark.

5.4 Performance Impact on Multiprogrammed Workloads

This subsection describes the effect of the bandwidth-aware memory placement and migration
policies on multiprogrammed workloads. Figure 5.9 shows the average execution time when two

17

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Local IL D-Only BW-I BW-R BW-L BW-LM

N
o

rm
. E

xe
cu

ti
o

n
 T

im
e

Figure 5.8: Overall performance results with bandwidth non-intensive benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Local IL D-Only BW-I BW-R BW-L BW-LM

N
o

rm
. E

xe
cu

ti
o

n
 T

im
e

Figure 5.9: Overall performance results with multiprogrammed workloads

bandwidth-intensive benchmarks were simultaneously executed with eight threads. The average execu-
tion time was normalized to Local policy. Only CA, FFT, OC, ON, and SC were used in the experiment
because KM and WC had a large change during the execution time because of I/O. All combinations that
can be made with five benchmarks (i.e.,

(
5
2

)
= 10) were used in the experiment. Each execution time

was measured with makespan.
As shown in Figure 5.9, the bandwidth-aware memory placement and migration policies can also

improve the performance in multiprogrammed workloads. However, the performance improvement
of BW-L was 18.8% compared with that of the Local policy in multiprogrammed workloads. This
performance gain was less than that of the other performance gains that the bandwidth-aware memory
placement and migration policies obtained from the single-programmed workload. This finding can

18

be attributed to the required bandwidth being reduced if one workload is terminated first in multipro-
grammed workloads. When the required bandwidth was reduced, throttling did not occur or only weakly
occurred even if the bandwidth-aware memory placement and migration policies were not used. In other
words, the performance gain that the bandwidth-aware memory placement and migration policies can
achieve was reduced in multiprogrammed workloads.

19

Chapter 6. Related Work

There are many previous works [2, 12, 13, 14] on heterogeneous memory systems where DRAM
and NVM coexist. Kannan et al. particularly allowed to manage DRAM and NVM in a single virtual
space and studied how NVM can be used to perform tasks that require persistence attributes. However,
they did not study how to maximize the bandwidth of different types of memory clusters on the system.

The most similar previous work was that of [12]. This work studied the bandwidth-aware memory
placement policy that considers the CPU and GPU bandwidths. However, this work only proposed a
policy that corresponded to the bandwidth-aware interleave policy of ourwork. Moreover, the experiment
was performed on a simulator, not in a real system. In contrast, our work presents not only bandwidth-
aware interleave, but also other bandwidth-aware memory placement and bandwidth-aware migration
policies, such as the bandwidth-aware random, bandwidth-aware local, and bandwidth-aware migration
policies. In addition, we implemented the bandwidth-aware memory placement and migration policies
by adding a new code to the Linux kernel or modifying an existing code. We also performed the
experiments on real systems.

20

Chapter 7. Conclusions

This work investigated the design and implementation of bandwidth-aware memory placement and
migration policies to maximize the performance of bandwidth-intensive applications in heterogeneous
memory systems. The bandwidth-aware memory placement and migration policies allocate pages
according to the optimal allocation ratio. In this work, the bandwidth-aware memory placement and
migration policies were implemented and experimented on real systems. As shown in the experimental
results, the policies outperformed the conventional policies for bandwidth-intensive benchmarks even
if the bandwidth ratio changed. In addition, they achieved performance gains in multi-programmed
workloads, and did not have a negative or positive effect on the bandwidth non-intensive benchmark.

21

Bibliography

[1] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and J. Jackson,
“System software for persistent memory,” in Proceedings of the Ninth European Conference on
Computer Systems, ser. EuroSys ’14. New York, NY, USA: ACM, 2014, pp. 15:1–15:15.
[Online]. Available: http://doi.acm.org/10.1145/2592798.2592814

[2] S. Kannan, A. Gavrilovska, and K. Schwan, “pvm: Persistent virtual memory for efficient
capacity scaling and object storage,” in Proceedings of the Eleventh European Conference on
Computer Systems, ser. EuroSys ’16. New York, NY, USA: ACM, 2016, pp. 13:1–13:16.
[Online]. Available: http://doi.acm.org/10.1145/2901318.2901325

[3] M. Gorman, “Understanding the linux virtual memory manager,”
https://www.kernel.org/doc/gorman/html/understand/, 2007.

[4] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova, and V. Quéma, “Large pages may be
harmful on numa systems,” in Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference, ser. USENIX ATC’14. Berkeley, CA, USA: USENIX Association, 2014,
pp. 231–242. [Online]. Available: http://dl.acm.org/citation.cfm?id=2643634.2643659

[5] M. Gorman, “Foundation for automatic numa balancing,” https://lwn.net/Articles/523065/, 2012.

[6] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance main memory
system using phase-change memory technology,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture, ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp.
24–33. [Online]. Available: http://doi.acm.org/10.1145/1555754.1555760

[7] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, “Quartz: A lightweight performance emulator
for persistent memory software,” in Proceedings of the 16th Annual Middleware Conference,
ser. Middleware ’15. New York, NY, USA: ACM, 2015, pp. 37–49. [Online]. Available:
http://doi.acm.org/10.1145/2814576.2814806

[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 2–2.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2228298.2228301

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Characterization
and architectural implications,” in Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’08. New York, NY, USA: ACM, 2008,
pp. 72–81. [Online]. Available: http://doi.acm.org/10.1145/1454115.1454128

22

[10] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 programs:
Characterization and methodological considerations,” in Proceedings of the 22Nd Annual
International Symposium on Computer Architecture, ser. ISCA ’95. New York, NY, USA: ACM,
1995, pp. 24–36. [Online]. Available: http://doi.acm.org/10.1145/223982.223990

[11] L.Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He,W.Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu,
K. Zhan, X. Li, and B. Qiu, “Bigdatabench: A big data benchmark suite from internet services,” in
2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA),
ser. HPCA ’14, Feb 2014, pp. 488–499.

[12] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W. Keckler, “Page placement
strategies for gpus within heterogeneous memory systems,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’15. New York, NY, USA: ACM, 2015, pp. 607–618. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694381

[13] M. R.Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, andG. H. Loh, “Heterogeneous
memory architectures: A hw/sw approach for mixing die-stacked and off-package memories,” in
2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA),
Feb 2015, pp. 126–136.

[14] H. Wang, J. Zhang, S. Shridhar, G. Park, M. Jung, and N. S. Kim, “Duang: Fast and lightweight
page migration in asymmetric memory systems,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), March 2016, pp. 481–493.

23

	Chapter 1. Introduction
	Chapter 2. Background and Motivation
	2.1 Physical Memory Description
	2.2 Conventional Memory Placement and Migration Policies
	2.3 Non-volatile Memory
	2.4 Need for Bandwidth-aware Memory Placement and Migration Policies

	Chapter 3. Design and Implementation
	3.1 Heterogeneous Memory Description
	3.2 BW-aware Memory Placement Policies
	3.2.1 The BW-INTERLEAVE Policy
	3.2.2 The BW-RANDOM Policy
	3.2.3 The BW-LOCAL Policy

	3.3 Bandwidth-aware Migration Policy
	3.4 Implementation
	3.5 Discussion

	Chapter 4. Methodology
	Chapter 5. Evaluation
	5.1 Performance Impact on Bandwidth-intensive Benchmarks
	5.2 Sensitivity to the Bandwidth Ratio
	5.3 Performance Impact on Bandwidth Non-intensive Benchmarks
	5.4 Performance Impact on Multiprogrammed Workloads

	Chapter 6. Related Work
	Chapter 7. Conclusions

<startpage>10
Chapter 1. Introduction 1
Chapter 2. Background and Motivation 2
 2.1 Physical Memory Description 2
 2.2 Conventional Memory Placement and Migration Policies 2
 2.3 Non-volatile Memory 3
 2.4 Need for Bandwidth-aware Memory Placement and Migration Policies 4
Chapter 3. Design and Implementation 6
 3.1 Heterogeneous Memory Description 6
 3.2 BW-aware Memory Placement Policies 6
 3.2.1 The BW-INTERLEAVE Policy 6
 3.2.2 The BW-RANDOM Policy 7
 3.2.3 The BW-LOCAL Policy 7
 3.3 Bandwidth-aware Migration Policy 8
 3.4 Implementation 9
 3.5 Discussion 9
Chapter 4. Methodology 11
Chapter 5. Evaluation 13
 5.1 Performance Impact on Bandwidth-intensive Benchmarks 13
 5.2 Sensitivity to the Bandwidth Ratio 17
 5.3 Performance Impact on Bandwidth Non-intensive Benchmarks 17
 5.4 Performance Impact on Multiprogrammed Workloads 17
Chapter 6. Related Work 20
Chapter 7. Conclusions 21
</body>

