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Abstract

Sea ice closely interacts with the atmosphere and ocean systems. Land fast sea ice (fast ice) is a 

kind of sea ice attached to the shore, ice shelves, or grounded icebergs. It is widely distributed along 

the Antarctic coast and acts as an interface between the atmosphere and the ocean, affecting heat balance 

feedback, thermal insulation effects, and deep water formation depending on the temporal and spatial 

effects of the environmental conditions. It also plays an important role in the biological aspects of 

Antarctica. Attached to the Antarctic glacier is strongly associated with calving events of ice shelf as it 

is physically coupled with glaciers at the terminus. The existing Antarctic fast ice has been mainly 

focused on the East Antarctic, especially for the research on long-term fast ice. Several case studies for 

West Antarctic fast ice with satellite images were performed in local areas. Various types of satellite 

data and detection techniques were utilized to successfully detect fast ice. In addition, long-term fast 

ice maps specifically focused on the Amundsen sea of West Antarctica were generated to investigate 

the distribution and variability of fast ice.

This thesis reports the results of fast ice detection algorithms that have been developed using 

various satellite images that can be used for fast ice detection. Along with the use of multiple satellite 

data, the proposed fast ice detection algorithms can more effectively detect fast ice, which then allows 

to obtain more accurate fast ice detection and produce long-term fast ice with high accuracy. Especially,

the distribution and variability of time-series fast ice in West Antarctica, which is more concentrated in 

the Amundsen Sea, were analyzed together with bathymetry data and the distribution of glacier icebergs.

In order to detect fast ice, machine learning techniques were basically used in this thesis. Two 

classes (i.e. fast ice and non-fast ice) were classified. Using MODIS images, there was a problem that 

fast ice was not produced in cloud cover areas and the polar night season, which is winter season in 

Antarctica. MODIS and AMSR-E satellite data were selectively used to solve the cloud contamination 

problem. Correlation-related variables were finally added based on the fact that fast ice is motionless 

for a certain period of time, and fast ice detection was performed at 15-day intervals using the improved 

input variables. Active microwave sensor data, ALOS PALSAR, was also used to detect fast ice and to 

validate fast ice detection results. Its high-spatial resolution allows to extract fast ice boundary more 

accurately. Fast ice detections showed good agreement with available ALOS PALSAR SAR images and 

MODIS reflectance images. Nearly decade-long fast ice extents were produced in the Amundsen Sea 

of West Antarctica and analyzed in terms of spatiotemporal variations with bathymetry and icebergs 

calved from ice shelves in study area. In addition, anomalous fast ice breakup events were examined, 

which suggests the importance of fast ice on the stability of ice shelves.
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Chapter 1

Introduction

1.1. Importance of the Antarctic sea ice

Sea ice plays a major role in climate and marine systems, and various satellite observations and 

numerical models have shown that sea ice greatly affect heat balance feedback, thermal insulation 

effects, and deep water formation. Changes in sea ice interact with the atmosphere and the ocean. Since 

sea ice have high albedo, it can change the surface radiation balance by reflecting incoming solar 

radiation (Marsland et al., 2001). It results in a positive feedback between the atmosphere and the ocean, 

which ultimately leads to sea ice re-cooling and further accelerating sea ice growth (Yuan et al., 2001; 

Marsland et al., 2001; Spreen et al., 2008). The Antarctic cryosphere, which includes sea ice and glacier 

ice types, can also contribute to deep water formation and thus ultimately affect global thermohaline 

circulation (Zwally et al., 1983; Bintanja et al., 2013; Ohshima et al., 2013). Brine rejection due to sea 

ice formation produces negative feedback in relation to the ocean. As the density of the surface seawater 

increases during sea ice formation, the vertical stability of the ocean is lowered, enhancing vertical

convection. It makes the temperature of the deep water high and increases the oceanic heat flux, which 

eventually prevents sea ice growth and lead to feedback on sea ice melt. On the other hand, during the 

formation of sea ice, the surface layer of seawater has a lower temperature than that of the below, which 

leads to sea ice growth. If sea ice is fully grown, the salinity of the mixed layer increases and becomes 

equal to deep water. The high salinity of deep water is the starting point of the deep oceanic circulation 

of the deep ocean. As a result, the vertical seawater temperature and salinity become nearly uniform, 

which makes the surface ocean temperature warm. It then results in the occurrence of polynya. At this 

time if the cold atmosphere cools the surface layer, the vertical stability can be reduced again, and 

convection can occur by the influence of the atmosphere. 

The large interannual variability in sea ice extent have been widely studied as one of the critical 

phenomena related to climate change (Cavalieri et al., 2003; Giles et al., 2008; Holland et al., 2012).

The impact of climate change on the Antarctic sea ice is different from the Arctic. The Antarctic sea ice 

extent has been statistically on the rise since the last 1985 (Zwally et al., 2002; Cavalieri and Parkinson, 

2008; Simmonds, 2015; Parkinson and DiGirolamo, 2016; Comiso et al., 2017). On the contrary to the 

global climate change scenarios, the Antarctic sea ice expansion has been considered an exceptional 

phenomenon (Turner et al., 2017; Viñas, 2017). However, Antarctic sea ice cover has dropped to its 

lowest on record, which means that monitoring of Antarctic sea ice has become more important in the 

projection of future sea ice due to climate change (Stuecker et al., 2017; Turner et al., 2017).
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1.2. Background and importance of landfast sea ice

Fast ice is a motionless sea ice that forms along the coastline persisting from few days to multiple 

years, compared to pack ice that drifts on the sea surface by winds (Figure 1. 1). Fast ice is fastened to 

an ice wall, ice front, or between grounded icebergs (WMO, 2014). Fast ice is a prevalent feature around 

the Antarctic coastal regions especially during austral winter. There is no definite standard for the length 

of time that fast ice must be present (Mahoney et al., 2006). Previous studies performed fast ice study 

at intervals of 3 to 20 days (Barry et al., 1979; Mahoney et al., 2006; Fraser et al., 2010). For the East 

Antarctic fast ice, fast ice has been created at intervals of 20 days (Fraser et al., 2010; Fraser et al., 

2012), and the total average fast ice extent for a whole study period was obtained (Nihashi et al., 2015). 

The time period required will depend on the purpose of research and the intra-annual variability of the 

breakup and advance of fast ice in each study area.

Figure 1. 1. Schematic representation of a hypothetical scenario showing some of the most common 
sea-ice related features including fast ice, pack ice, multiyear ice floe, first-year ice floe, and so on. 
Source: Wikipedia.

Fast ice forms in two formation regimes; 1) wind-driven advection of pack ice as dynamic process 

and 2) direct freezing of seawater as a thermodynamic process (Fraser et al., 2012). The regime 1 occurs 

at regions characterized by coastal protrusion such as coastal promontory and tabular grounded icebergs, 

and ice tongues. Fast ice forms at the upstream of the protrusion by the advection of pack ice in the 

direction of wind blowing. It can extend far offshore up to hundreds of kilometers by assistance from 

grounded icebergs as anchor points (Massom et al. 2001; Miles et al., 2017). The regime 2 is the 

mechanism by which fast ice is created thermodynamically between grounded icebergs. The fast ice 

regions are generated without the dependence on the drift of pack ice, and generally show a short 

distance from the coast.

Although fast ice extent is a relatively small portion of total sea ice extent, its thickness and volume 
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can account for much larger part, specifically for East Antarctica up to 40% of total sea ice volume 

(Giles et al., 2008). The distribution of fast ice is widespread along the shoreline of East Antarctica 

compared to West Antarctica (Fraser et al., 2012; Nihashi et al., 2015), while the thickness of the West 

Antarctic sea ice is thicker than that of East Antarctica (Worby et al., 2008). The thickness of fast ice 

determines the patterns of fast ice breakup and further the ratio of first-year ice to multi-year ice. 

Furthermore, even if thin sea ice disappears responding to the climate changes, thick sea ice is retained 

and contributes to the overall sea ice volume.

Fast ice is affected spatially by the atmosphere and the ocean locally, regionally, or remotely from 

a short period of time to a long term (Yuan et al., 2004; Fraser et al., 2012; Aoki et al., 2017). It is 

important to investigate the detection and distribution of fast ice by separating from floating pack ice. 

Fast ice interacts with the atmosphere and the oceans acting as an important interface between the ice 

sheet, pack ice, and the oceans, and also affects the biological processes (Fraser, 2011). The distribution 

of fast ice greatly affects the shape and size of polynya. Major polynyas in Antarctica account for about 

10% of sea ice formation in the Southern Ocean (Tamura et al., 2008; Nihashi et al., 2015). Brine 

rejection by the formation of sea ice in the polynya region forms dense seawater and is thus the source 

of the Antarctic Bottom Water (Massom et al., 2001; Ohshima et al., 2013; Nihashi and Ohshima, 2015). 

Fast ice attached to ice shelves also physically couples with the shelves to serve as a buttress at the 

terminus of ice shelf, thus slowing the calving and affecting the stability of ice shelf, which ultimately 

can affect the Antarctic mass balance (Bintanja et al., 2013). Furthermore, as shown in Figure 1.2, fast 

ice plays an important role in providing extensive habitats and successful breeding places for Antarctic 

microorganisms, Emperor penguins, and Weddell seals (Fuiman et al., 2002; Massom et al., 2009). The 

distribution and seasonality of fast ice can have practical influences on scientific exploration and 

research such as ship navigation and in-situ sampling strategy (Uto et al., 2006; Ushio, 2006; Parkinson 

and Cavalieri, 2012; Normile, 2015).

Figure 1. 2. Schematic representation of key dates in the emperor penguin annual breeding cycle with 
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the timing of fast ice formation and breakup. Source: Massom et al. (2009).

1.3. Satellite remote sensing of fast ice

Monitoring of the Antarctic fast ice has been conducted using in situ observations (Murphy et al., 

1995; Ushio, 2006; Heil et al., 2011) and satellite remote sensing (Fraser et al., 2012; Giles et al., 2008; 

Massom et al., 2010; Fraser et al., 2009; Fraser et al., 2010; Fraser, 2011; Mahoney et al., 2007). Spatial 

distribution and thickness of the fast ice in Prydz Bay, East Antarctica, were investigated by the 

Antarctic Fast Ice Network project, a representative research program of in situ observations of the 

Antarctic fast ice promoted by Antarctic Climate & Ecosystems during the period of 1950–2021 (Heil

et al., 2011). However, the field measurements have limitations in time and space due to the harsh 

weather conditions in polar regions. In-situ measurements for fast ice research are generally limited to 

fixed locations where ice is relatively thick enough for sampling. Satellite remote sensing can be used 

as an alternative way of monitoring fast ice in the unfavorable conditions, and there is no option but to 

use it for long-term sea ice research as it covers vast areas with high temporal resolution. 

Our knowledge of sea ice has increased considerably since the introduction of polar observing 

satellites. Satellite sensors such as passive and active microwave, visible, and infrared sensors extract 

various sea ice surface characteristics and have been used to develop various sea ice models. Sea ice 

have different physical temperatures and radiometric properties depending on salinity, reflectance, and 

surface roughness. Satellite-based research on fast ice can be divided into three categories in terms of 

sensor types by optical, active microwave, and passive microwave sensors. Sea ice has a lower 

temperature in optical sensor images than the surrounding open water. Optical sensor images are useful 

for separating fast ice and non-fast ice that include part of the ocean. Optical sensors such as Landsat, 

MODIS, and AVHRR have low and medium spatial resolution from dozens of meters to a few 

kilometers, while they observe the same area at least every other day (except the Landsat series). 

However, optical sensors have limitations including the fact that they cannot observe the surface under 

cloudy sky or at night. As the cloud cover rate is relatively high (approximately 60-80% cloud cover 

depending on location and season) over the Antarctic regions (Comiso and Stefen, 2001; Spinhirne et 

al., 2005; Suen et al., 2014; Scott et al., 2017), optical sensor data might not be an optimum solution to 

carefully monitor fast ice regions. Considering the effect of cloud contamination, previous studies have 

detected fast ice using optical sensor data by compositing images with dozens of days (Fraser et al. 

2010; Fraser et al., 2012). Fraser et al. (2009) used TIR and visible MODIS data to produce cloud-free 

composite images for fast ice detection at the Mertz Glacier Tongue, East Antarctica. Cloud-free 

TIR/visible AVHRR images were used for investigating the distribution and variations of fast ice along 

the Adélie coast, East Antarctica (Massom et al. 2009).
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Microwave sensors including passive and active microwave remote sensing have been widely used 

to detect and monitor sea ice because they can observe surfaces regardless of atmospheric conditions 

and presence of sunlight. Passive microwave sensors measure radiation emitted from the surface. 

Thermal infrared radiation is affected by the physical temperature of an object, while passive microwave 

radiation is mainly influenced by the emissivity of the radiating object. Emissivity is defined as the rate 

of radiation emitted from a given object to radiation from a black body at the same physical temperature. 

When using microwave radiation for sea ice studies, the emissivity in the microwave region for sea ice 

is affected by the physical composition and characteristics of sea ice such as salinity, surface roughness, 

water vapor contents, and crystalline structure (Shokr and Shinha, 2015). However, some of these 

parameters, such as salinity and the geometrical properties of brine pockets, are affected by the physical 

temperature of the sea ice. Therefore, the sea ice temperature influences the parameters and ultimately 

affects the emitted radiation. Ice crystals emit higher energy, emissivity of sea ice is higher than that of 

open water. Therefore, sea ice is physically cooler than ocean but radiometrically warmer. 

Passive microwave sensors such as AMSR-E, SSM/I, and SSMIS can be successfully utilized for 

global-scale research on sea ice. In the previous study that utilized the optical sensor images, passive 

microwave sensor data were used as supplementary data for parts that are not detected due to cloud 

cover (Fraser et al., 2010). Another study used only the passive microwave data to develop fast ice 

detection model (Nihashi et al., 2015). Furthermore, the passive microwave sensors can be successfully 

used for time series monitoring of sea ice at a global scale because they observe the entire Arctic and 

Antarctic areas every day. Meanwhile, passive microwave data have coarse spatial resolution (~10-50 

km), limiting their applications to narrow fast ice zone near the shoreline.

Active microwave is also known as radar, which is short for radio detection and ranging, and the 

imaging radar systems transmit pulses with a transmitter and measure backscatter of the signal reflected 

or scattered from the surface. Radar systems that are widely used in sea ice research include imaging 

radar, scatterometer, and radar altimetry. Imaging data is generated from observations of the radar 

system in terms of active microwave. Radar systems measure the backscatter, that is, the scattering of 

the emitted radar signal back to the sensor. When radar systems scan the surface with a specific swath, 

the radar pulse is transmitted from one-side-looking antenna. In general, strong backscatter results from 

a rough surface or a volume with multiple scattering elements. Radar systems have been used for sea 

ice studies by providing multiple imaging modes with various resolutions and swath widths for example 

ALOS PALSAR and RadarSat ScanSAR mode. Scatterometer has been mainly used for oceanographic 

studies by measuring wind velocity and wind direction (for example, WindSat), and has been used in 

sea ice research as well such as NASA QuikSCAT satellite. Radar altimeters, nadir-looking instruments, 

have been used to map glacier topography and to determine thickness of sea ice. The ERS satellite -1 

and 2, and CryoSat-2 are representative examples.
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Active microwave sensor data, such as SAR, can be a powerful instrument for fast ice research 

because it can observe sea ice in high spatial resolution. SAR has been used for classification of sea ice 

types because backscattered radar intensity is dependent on surface roughness and sea ice properties 

(Karvonen, 2004; Zakhvatkina et al., 2013; Liu et al., 2015; Ressel et al., 2015; Wang et al., 2016; Casey 

et al., 2016). Mahoney et al. (2004) used vector gradient differences generated from three consecutive 

SAR images to detect fast ice edges. The method was successfully applied in the mid-winter season, 

but manual examination was needed for the other seasons. Image correlation analysis based on a feature-

tracking algorithm was conducted by Giles et al. (2008) for detection of fast ice regions in East 

Antarctica using RADARSAT ScanSAR images in 1997 and 1999. This technique is more feasible 

when image pairs with intervals of several weeks are used. Most recently, InSAR approaches have been 

applied to distinguish fast ice regions (Meyer et al., 2011; Han et al., 2015). However, the scattering 

properties of sea ice can change over time in SAR data with a long repeat cycle (e.g. 46 days for ALOS 

PALSAR), which then results in a loss of coherence and incomplete detection of fast ice regions. Despite 

their advantages, it is difficult to investigate sea ice at a continental or global scale using SAR due to 

their narrow observation area.

As optical and microwave sensors have distinct strengths and weaknesses, several researchers have 

tried to fuse the strengths of each sensor for mapping the fast ice over a wide area. Fraser et al. (2009) 

suggested a method of time series compositing cloud-free imagery from MODIS to detect fast ice in 

the East Antarctic, in which brightness temperature and concentration of sea ice derived by SSM/I with 

25-km spatial resolution were used to define the extent of fast ice. Fraser et al. (2010) improved the 

accuracy of fast ice detection by replacing the products derived by SSM/I with those by AMSR-E, of 

which the spatial resolution is 6.25 km. Ushio (2006) analyzed the distribution and variations of fast ice 

in Lützow-Holm Bay, East Antarctica, with a time series of TIR images from AVHRR data and in situ 

measurements. The distribution of pack ice was determined with sea ice concentration data from SSM/I 

images.

1.4. Machine learning techniques for fast ice detection

Machine learning techniques have been applied to various remote sensing applications to solve 

both classification and regression problems including land cover classification, change detection, and 

biophysical parameter estimation (Maxwell et al., 2014; Ghimire et al., 2012; Li et al., 2013; Kim et al., 

2014; Long et al., 2013; Rhee et al., 2014). In this study, machine learning techniques are used as a 

modeling method for fast ice detection by combining with input variables from multiple satellite data.

A wide range of machine learning methods are used in this dissertation such as DT, RF, ERT, and LR.
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DT uses recursive binary splits to extract patterns or rules in a data-set. As it produces rule-based 

results (if–then rules), users can interpret the results in a more straightforward and easier way than other 

methods such as artificial neural networks. RF is a collection (i.e., ensemble) of DT using a Bagging 

method. It constructs independent trees with random sampling and combines final results from the trees 

using an ensemble method such as voting or weighted voting for classification. RF creates a collection 

of trees based on CART, which is a rule based DT (Breiman, 2001). Each tree is grown using two 

randomizations in selecting training samples and split variables to overcome the limitations of CART, 

including dependency on a single tree and sensitivity to training samples. A subset of the training 

samples (typically 67% of the samples) is randomly selected, and the remaining samples (out-of-bag 

data) are used to internally validate the model. The second randomness is that in each node of a tree, a 

subset of input variables (typically √n with n as the number of input variables) is randomly selected. 

The grown trees are then combined using either a simple majority voting or a weighted majority voting 

strategy.

See5.0, a commercial program developed by RuleQuest Research, Inc. (Quinlan, 2013), was used 

to implement DT. RF was implemented in R software with an add-on package of RF (Liaw and Wiener, 

2002). In this study, options used for constructing a RF model in R were set as default for the number 

of trees (500) and variables sampled at each node (generally √n  where n is the number of input 

variables) and the minimum size of terminal nodes. It also provides relative variable importance as 

MDA. MDA is calculated using OOB data, which is left out of training data in each tree. 

Misclassification rates are calculated using OOB data and a variable-permuted OOB data using a given 

tree, which is repeated for all trees. MDA means the average increase in the misclassification rate. A 

higher MDA indicates more important variable in classifying fast and non-fast class.

ERT is a relatively new tree-based ensemble classifier method compared to RF (Geurts et al., 2006). 

It extends RF by introducing a different randomization to splitting at nodes. While RF finds the best 

node splitting points among the input variables selected at each node when constructing trees, ERT 

performs node splitting fully at random and uses the same variable set with no bagging for each tree, 

further reducing the variance between trees and minimizing the bias. ERT was implemented using the 

add-on package of “ExtraTrees” in R with default parameters. 

LR is a regression model applicable to categorical variables to estimate the probability of an event 

occurrence. Similar to a linear regression model, it models the relationship between independent 

variables and dependent variables with a specific function. LR is used for classification as output 

ranging from 0 to 1 that is divided by a fixed threshold by using a logistic (sigmoid) function (4).

Prob(Y|��, ��, … , ��) =
�

������∑ ����
�
��� �

(4)
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where Prob(Y|X_1,X_2,…,Xn) is the probability of the dependent variable Y given 

(X_1,X_2,…,Xn), n is the number of independent variables, Xi is an ith independent variable, and wi is 

the coefficient for variable Xi. The logistic function estimates the probability of an event (i.e. fast ice 

or non-fast ice). In this study, LR was implemented in R using “glm” add-on package.

Both machine learning models provide relative variable importance that can be used to examine 

the contribution of each input variable for fast ice mapping. See5.0 provides attribute usage information 

that shows how frequently a variable is used at each split. RF provides MDA in classification when a 

variable is permuted, which means that the greater the decrease in accuracy, the more important the 

variable is.

Model performance was evaluated using accuracy metrics that can be obtained from confusion 

matrices based on the test dataset. Accuracy metrics include PA and UA, OA, and kappa coefficients.

Those are calculated by using formulas below. It is based on the classification between fast ice and non-

fast classes.

Producer�s accuracy =
��� ������ �� ���������� ���������� ������

��� ������ �� ��������� ������ ��� � �����
× 100 (Eq. 1)

User�s accuracy =
��� ������ �� ���������� ���������� ������ �� � �����

� ����� ������ �� ������ ���������� �� � �����
× 100 (Eq. 2)

Overall accuracy =
� ����� ������ �� ��������� ���������� ������ ��� ���� �������

� ����� ������ �� ��������� ������ ��� ���� �������
× 100 (Eq. 3)
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1.5. Goals of this dissertation

The goals of this dissertation are classified into three folds and illustrated in Figure 1. 3.

1.   To map fast ice regions in the entire Antarctic coastal zone by combining multisensory data 

including optical and passive microwave sensor data with machine learning techniques during 

the period from 2003-2008 to achieve an automated fast ice classification that resolve the 

limitation of manually classifying fast ice of previous studies.

2.   To detect fast ice regions over the West Antarctic by combining image segmentation, object 

correlation image method, and machine learning techniques with composite SAR images with a 

short time gap (i.e. 5 days), which can detect sea ice regardless of weather conditions, to analyze 

fast changing fast ice regions.

3.   To analyze long-term fast ice distribution and variability in the Amundsen Sea of West 

Antarctica by combining optical and passive microwave sensor data with a machine learning 

method, and then to investigate on an anomalous fast ice breakup event.

Through these three goals, the ultimate achievements of this dissertation are to produce time series 

of fast ice extent in a short time interval and to investigate the distribution and variability of fast ice in 

the West Antarctic coastal regions in a global warming climate. This research will much improve the 

understanding of fast ice in Antarctica especially for West Antarctica and the response of fast ice to 

climate changes.

Figure 1. 3. Diagram of PhD dissertation research
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Chapter 2

Landfast sea ice monitoring using multisensory fusion in the Antarctic

2.1. Abstract

Fast ice means sea ice that is attached to the shoreline with little or no motion in contrast to pack 

ice which drifts on the sea. As fast ice plays an important role in the environmental and biological 

systems of the Antarctic, it is crucial to accurately monitor the spatiotemporal distribution of fast ice. 

Previous studies on fast ice using satellite remote sensing were mostly focused on the Arctic and near-

Arctic areas, whereas few studies were conducted over the Antarctic, especially the West Antarctic 

region. This research mapped fast ice using multisensor data from 2003 to 2008 based on machine 

learning approaches – DT and RF. A total of seven satellite-derived products, including AMSR-E

brightness temperatures and sea ice concentration, MODIS IST and SSM/I ice velocity, were used as 

input variables for identifying fast ice. RF resulted in better performance than that of DT for fast ice 

classification. Visual comparison of the fast ice classification results with 250-m MODIS images for 

selected areas also revealed that RF outperformed DT. Ice velocity and IST were identified as the most 

contributing variables to classify fast ice. Spatiotemporal variations of fast ice in the East and West 

Antarctic were also examined using the time series of the fast ice maps produced by RF. The residence 

time of fast ice was much shorter in the West Antarctic than in the East.
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2.2. Introduction

Much of the original Introduction and literature review of this chapter has been moved to Chapter 

1 to avoid repetition.

While some studies were conducted to map and explore fast ice in the East Antarctic, few were 

performed over West Antarctica. Thus, this research aims at mapping and monitoring fast ice over the 

entire Antarctic area using time series satellite data. The objectives of this study are to (1) develop an 

automated model based on machine learning approaches for mapping fast ice through the synergistic 

use of time series optical and passive microwave data-sets for the entire Antarctic area, (2) explore 

accuracy patterns of the time series mapping results, (3) examine important variables for fast ice 

identification by model and how they affect the fast ice mapping results, (4) compare fast ice mapping 

results with the manually extracted fast ice edges from 250-m MODIS images for specific regions of 

interest, and (5) analyze the spatiotemporal variations of the Antarctic fast ice.
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2.3. Data

2.3.1. Fast ice reference data

Fast ice maps of the East Antarctica from 2003 to 2008 produced by Fraser et al. (2010) were used 

as a reference data-set (Table 2. 1). The reference maps were generated from 20-day composites of 

MODIS imagery in which cloud-covered areas were removed using the MOD35 cloud mask products 

(Fraser et al., 2009; Fraser et al., 2010). Fast ice adjacent to the entire East Antarctic coastline was 

extracted using the MODIS composite images based on manual digitization with the help of AMSR-E 

sea ice concentration data (Fraser et al., 2010). The detailed procedures for deriving the reference data 

are described in Fraser et al. (2009) and Fraser et al. (2010).

Table 2. 1. Input variables and reference data information.

Satellite 

sensors Variables

Spatial resolution 

(km)

Temporal 

interval Units

AMSR-E 18GHz H/V 12 Daily Kelvin (K)

23GHz H/V

36GHz H/V

89GHz H/V

SIC Percentage (%)

MODIS IST 4 Daily Kelvin (K)

SSM/I Ice velocity 25 Daily cm/sec

Fraser reference data by Fraser et al. (2010) 1 20 days

2.3.2. Passive microwave data

Brightness temperature and sea ice concentration data from AMSR-E were used in this study 

(Table 2. 1) (Cavalieri et al., 2014). Since fast ice has radiative properties distinctive from pack ice due 

to emissivity difference, the brightness temperature measured by passive microwave sensors such as 

SSM/I and AMSR-E can be used as powerful tools to identify sea ice types. SSM/I measures vertically 

and horizontally polarized brightness temperature at 19.35, 37.0, and 85.5 GHz and vertically polarized 
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brightness temperature only at 22.235 GHz. AMSR-E is composed of six frequencies: 6.925, 10.65, 

18.7, 23.8, 36.5, and 89.0 GHz (Spreen et al., 2008; Comiso et al., 2003). All frequencies of the AMSR-

E instrument measure both vertically and horizontally polarized brightness temperature, which enables 

a more detailed analysis of the physical properties of sea ice than the SSM/I-derived brightness 

temperature. The brightness temperature data measured at the 18.7, 23.8, 36.5, and 89.0 GHz channels 

of AMSR-E from 2003 to 2008 were used. Those channels are very effective for differentiating the 

radiative properties depending on sea ice types because of the dependency of polarization and spectral 

properties of the channels on emissivity differences (Cavalieri, 1996).

The passive microwave sensors have provided sea ice concentration every day within a few tens 

of kilometers. As fast ice forms over a wide area attached to the coastlines, sea ice concentration of the 

fast ice is about 100%. Over pack ice areas, passive microwave sensors observe brightness temperature 

from both ice and open water, which results in low sea ice concentration. AMSR-E daily sea ice 

concentration over the Antarctic from 2003 to 2008 was used. The grid spacing of AMSR-E sea ice 

concentration is 12.5 km which is finer than that of SSM/I sea ice concentration of 25 km. Sea ice 

velocity derived by SSM/I was also used to classify the ice types (Table 2. 1) (Fowler et al., 2013). The 

motion of fast ice is very small because it is fixed at the coastline or shallow seabed, while pack ice 

may move considerably in a short time period as the ice drifts freely by ocean current and wind.

2.3.3. Optical sensor data

Fast ice and pack ice have different physical properties such as snow depth on ice surface, ice 

thickness, and surface wetness, which determine the IST (Hall et al., 2004). This means that the surface 

temperature of sea ice can be used as a variable to classify sea ice into fast ice and pack ice. The daily 

IST with 4-km spatial resolution measured by MODIS (MOD29E1D product) from 2003 to 2008 was 

used in this study (Table 2. 1) (Hall et al., 2006). Although MODIS IST is also provided with 1-km 

resolution, the aggregated 4-km IST data were used considering the spatial resolution of the other input 

variables, data processing time, and computational demand as the study area covers the entire Antarctic. 

Daily sea ice reflectance from the MOD29E1D product between 2003 and 2008 was used to define the 

extent of sea ice and to mask the open water area.
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2.4. Methods

The original Methods for machine learning techniques of this chapter has been moved to Chapter 

1 to avoid repetition.

Figure 2. 1 summarizes the process flow of the fast ice monitoring conducted in this study. A total 

of 11 input variables were used, including sea ice concentration and eight dual polarization frequency 

channels from AMSR-E, IST from MODIS, and ice velocity from SSM/I. Since the reference fast ice 

data were produced from the 20-day MODIS composite images (Fraser et al., 2010), the daily input 

variables were aggregated into the same 20-day composites using the statistical mean function. During 

the composite process of the MODIS IST data (MOD29E1D product), the sea ice by reflectance (i.e., 

sea ice vs. non-sea ice) variable contained in the MODIS IST product was also used to mask out non-

sea ice pixels. Variables from the passive microwave sensors were all available for the whole Antarctic 

region over the study period (i.e., 2003–2008), whereas the IST data were not always available for some 

areas due to cloud cover during the composite period. Thus, the images <20 could be used in 

compositing IST data. The input variables used in this study have different spatial resolutions. All input 

variables and the fast ice reference data were resampled with 4-km resolution using bilinear spatial 

interpolation.

The sea ice type (i.e., fast ice vs. pack ice) was set to a dependent variable for binary classification. 

Since the fast ice reference data were only available for the East Antarctic, samples to train and validate 

machine learning-based classification models were extracted only from that region. Within the sea ice 

extent determined by AMSR-E sea ice concentration data, the area excluding the reference fast ice was 

considered as pack ice. One million samples (i.e., pixels, approximately 5.2% of the sea ice reference 

pixels) were selected from the sea ice reference data through stratified sampling as the ratio of 1:4 

between fast ice and pack ice for the East Antarctic. Eighty percent of the samples by class were 

randomly extracted to train the machine learning-based models to classify the sea ice. The remaining 

200,000 samples were used as the test data-set to validate the developed models.

Two rule-based machine learning approaches – DT and RF– were used to map fast ice in the 

Antarctic region. As both machine learning models provide relative variable importance, we examined 

the contribution of each input variable for fast ice mapping. The performance of DT and RF models 

were assessed based on the test data.

As the fast ice reference data were available only for the East Antarctic, additional visual 

assessment using relatively high-spatial-resolution MODIS images was conducted. The NSIDC-

provided 250-m MODIS Antarctic ice shelf images were used to delineate the fast ice edges based on 

visual interpretation. Fast ice mapping results of the models were compared with the MODIS-derived 
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fast ice images over selected areas of interest in the Mertz and Abbot Ice Shelf regions in the East and 

West Antarctic, respectively. While the Mertz region documented relatively slow changing of fast ice 

distribution, the Abbot region showed rapid change based on the multiyear sea ice information (Massom 

et al., 2010; Worby et al., 2008).

The spatiotemporal patterns in the fast ice distribution were examined with the 6-year time series 

of the fast ice extent produced. Two frequency metrics of fast ice occurrence were calculated: the 

number of switches between occurrence and disappearance of fast ice (1) by pixel and (2) by applying 

weighted average depending on the number of composites during fast ice residence (Equation (3)).

∑��×�

∑ �
(Eq. 3)

where NC is the number of composites during fast ice residence, and n is the number of each NC 

found throughout the study period.
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Figure 2. 1. The process flow of the research.
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2.5. Results and discussion

2.5.1. Fast ice mapping model performance

The Antarctic fast ice mapping models developed by DT and RF were validated using the 200,000 

test data-set. The DT and RF models produced similar overall accuracies of 93.09% and 94.77%, 

respectively (Table 2. 2-3). The RF model resulted in slightly higher performance of sea ice mapping, 

especially fast ice, than the DT model. The UA and PA of pack ice were higher than those of fast ice for 

both models. This is because the sample size of pack ice was much larger than that of fast ice, and the 

pack ice samples located far from the coast were easily distinguished from fast ice samples due to a 

relatively lower sea ice concentration. While the OA was similar between the two models, the Kappa 

coefficient of agreement resulted in a greater difference, ~6%, which showed the superiority of RF to 

DT.

The box plots of the PA and UA by model calculated using the reference fast ice data-set in the 

East Antarctic for the entire period (Fraser et al., 2009; Fraser et al., 2010) are shown in Figure 2. 2. In 

Austral winter (composites from 6 to 12), the UA and PA of fast ice were significantly low or 

uncalculated because MODIS IST was not available during the season. Both models produced similar 

PA and UA of fast ice through all composites. RF produced a bit higher accuracy than DT for identifying 

fast ice. For the first five composites, the PA was higher than the UA for both models, whereas the other 

composites showed a reversed trend. Both models produced very low PA near the winter season (i.e., 

composites 7 and 11) due to the limited availability of the MODIS IST data.

The relative importance of variables to fast ice mapping for both models is presented in Table 2. 

4-5. Ice velocity and IST were the most contributing variables for fast ice classification regardless of 

the model used. The velocity of fast ice fixed to the shoreline or an ice shelf is close to 0 m/s (Mahoney

et al., 2007; Mahoney et al., 2006), whereas pack ice can be easily moved by ocean currents and winds, 

and thus, it shows larger velocity than fast ice (Heil and Allison, 1999). It reveals that ice velocity can 

be used as a major variable for distinguishing fast ice from pack ice.

MODIS IST was identified as the second contributing variable for the fast ice mapping. The IST 

difference between fast ice and pack ice could be due to the subpixel effects in that fast ice typically 

has higher ice concentration while pack ice, especially far from the coast, has lower concentration 

affected by open water at 4 × 4 km resolution (Hall et al., 2001). Open water has a higher surface 

temperature than sea ice (Hall et al., 2004). Fast ice typically forms at large size, while pack ice is 

distributed in patches, which results in a relatively higher IST for pack ice. However, the unexpected 

high IST values over fast ice regions are occasionally found where fast ice is formed for a small area, 

often occurring in Austral summer (Fraser et al., 2010). IST could also be different between the two 
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types of sea ice due to different physical characteristics. The surface temperature of sea ice depends on 

the physical properties of sea ice such as emissivity, thickness, and salinity (Hall et al., 2004; Maslanik 

and Key, 1993). Thick sea ice typically has a lower surface temperature than that of thin ice due to its 

lower emissivity in the infrared bands (Hall et al., 2004). Fast ice can thicken up to a few meters during 

the ice growing season (Heil et al., 1996), and thus, it would have a lower surface temperature than the

drifting pack ice, which is typically less than 1 m thick (Worby et al., 2008).

While the ice velocity and IST were dominantly important compared to the other variables in the 

RF model, SIC showed a very high importance rating in the DT model following ice velocity and IST 

as SIC varies by sea ice type (Comiso et al., 2003). AMSR-E brightness temperatures at 36-GHz, 

vertically polarized channels and 18-GHz, both vertically and horizontally polarized channels also 

showed high importance ratings in the DT model, which implies that the brightness temperatures varied 

depending on sea ice types and ice thickness (Comiso et al., 1997). The three channels have been used 

to distinguish sea ice types (Comiso et al., 1997). For thick sea ice such as fast ice or multiyear ice, the 

brightness temperatures are very low ~190 K at 18-GHz H and 36-GHz V channels and 220 K at the 

18-GHz V channel, while thin first-year ice such as pack ice and drift ice radiates much higher 

brightness temperatures at the three channels (~240 K at the 18 GHz H and 36 GHz V; and ~250 K at 

18 GHz V) than thick sea ice (Comiso et al., 1997). In addition, as 89-GHz channels are less affected 

by snow or ice layers on sea ice than 36- and 18-GHz channels under clear sky conditions, 89-GHz 

channels can be used to differentiate the types of sea ice on which snow or ice accumulates (Markus 

and Cavalieri, 2000).

The contribution of the brightness temperatures measured at the other AMSR-E channels to the sea 

ice classification was relatively low, especially at 36 GHz H, showing the lowest importance for both 

models. This is because the 36-GHz H channel is sensitive to changes in atmospheric water vapor 

content instead of sea ice properties (Maslanik, 1992).

Table 2. 2. Accuracy assessment results for decision trees using the test data-set.

Reference

Classified as Fast ice Pack ice Sum User’s accuracy

Fast ice 32,274 6099 38,373 84.11%

Pack ice 7726 153,901 161,627 92.22%

Sum 40,000 160,000 200,000

Producer’s accuracy 80.69% 96.19%

Overall accuracy 93.09%
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Kappa coefficient 78.06%

Table 2. 3. Accuracy assessment results for random forest using the test data-set.

Reference

Classified as Fast ice Pack ice Sum User’s accuracy

Fast ice 36,319 6773 43,092 84.28%

Pack ice 3681 153,227 156,908 97.65%

Sum 40,000 160,000 200,000

Producer’s accuracy 90.80% 95.77%

Overall accuracy 94.77%

Kappa coefficient 84.13%

Figure 2. 2. Box plots of the producer’s accuracy and user’s accuracy for quantitative examination of 
the fast ice mapping results of (a) decision trees and (b) random forest. For full color versions of the 
figures in this paper, please see the online version.

Table 2. 4. Attribute usage of the decision trees model.

VEL IST SIC 18H 36V 18V 89V 89H 23V 23H 36H

100% 96% 92% 90% 87% 86% 80% 73% 62% 28% 7%

Table 2. 5. Mean decrease accuracy calculated using out-of-bag data when a variable was permuted in 
random forest. The greater the decrease in accuracy, the more contributing the variable was.
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2.5.2. Comparison with MODIS images

Fast ice mapping results from the DT and RF models were compared with the fast ice area extracted 

from MODIS images with 250-m spatial resolution (band 2) over the Mertz Ice Shelf region in the East 

Antarctic and Abbot Ice Shelf in the West Antarctic with different periods considering the variability of 

fast ice (Figure 2. 3-4). When the fast ice near Mertz Ice Shelf was relatively stable during 13 days of 

the MODIS images (Figure 2. 3a), the RF model detected fast ice better than DT compared with the 

actual fast ice areas (Figure 2. 3c and 3e). This might be because the RF model used the ice velocity 

and IST much more significantly than DT to classify ice types compared to the other variables, such as 

the brightness temperatures at 18 GHz H and V and 36 GHz V. For example, wide ice floes located to 

the right of the fast ice appeared to be dropped out of the fast ice, and thus, they had reflectivity and 

morphology similar to the fast ice. Therefore, the microwave radiation properties, i.e., the brightness 

temperature, of the ice floes were similar to those of the fast ice (not shown). It resulted in 

misclassification between the fast ice and ice floes when the DT model with high importance of the 

brightness temperatures at 18 GHz H and V and at 36 GHz V was used. Since the ice floes and fast ice 

had different ice velocity and IST values, RF was able to identify the fast ice in the region relatively 

better than DT.

For the relatively stable fast ice during 8 days in Abbot Glacier in the West Antarctica (Figure 2. 

3b), both the DT (Figure 2. 3d) and RF (Figure 2. 3f) models mapped much smaller fast ice areas than 

the actual fast ice areas. The low spatial resolution of the passive microwave-derived variables (12–25 

km) could be a major reason as the fast ice was very narrowly attached to the shoreline. In addition, 

MODIS IST with relatively higher spatial resolution was not always available for the period of the 

corresponding composite due to heavy clouds (i.e., ~25% available on average), which resulted in very 

limited examination of the temporal variation of the fast ice areas.

Previous studies reported that the 20-day compositing period well represented the variation, growth, 

and breakup of fast ice, and thus, it is enough to map fast ice areas in the polar region (Fraser et al.,

2010; Mahoney et al., 2006). However, substantial changes in the fast ice areas in 20 days were often 

observed in both the East and West Antarctic from the MODIS images (Figure 2. 4). This implies that 

the 20-day composite interval might not be sufficient to represent the variation of fast ice, especially 

where it rapidly changes over a short period of time. For such areas, fast ice should be monitored with 
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compositing period less than 20 days. For the rapidly changing period around Mertz (Figure 2. 4a) and 

Abbot Ice Shelf (Figure 2. 4b), the performance of the RF (Figure 2. 4e and 4f) model was slightly 

better than DT (Figure 2. 4c and 4d) through the visual validation of the fast ice mapping results with 

the high-resolution MODIS images. This also corresponds to the accuracy assessment results of the 

classification models (Table 2. 2-3).

Figure 2. 3. Comparison of fast ice mapping results by model with the 250-m MODIS images during 
the periods of relatively stable fast ice around (a) Mertz and (b) Abbot Ice Shelf in the East and West 
Antarctica, respectively. The lines in (a) and (b) indicate fast ice edges delineated from the MODIS
images based on visual interpretation. Decision tree results are shown in (c) and (d), while random 
forest results are in (e) and (f). MODIS images with the maximum fast ice cover were used as 
background images in (a) and (b).



22

Figure 2. 4. Comparison of fast ice mapping results by model with the 250-m MODIS images during 
the periods of rapidly changing fast ice around (a) Mertz and (b) Abbot Ice Shelf in the East and West 
Antarctica, respectively. The lines in (a) and (b) indicate fast ice edges delineated from the MODIS 
images based on visual interpretation. Decision tree results are shown in (c) and (d), while random 
forest results are in (e) and (f). MODIS images with the maximum fast ice cover were used as 
background images in (a) and (b).

2.5.3. Spatiotemporal variation of fast ice in the East and West Antarctic

As the RF model produced better fast ice classification results than the DT model, the RF-derived 

maps were used to examine the spatiotemporal variation of fast ice. Fast ice in the entire Antarctic 

Ocean was mapped by composite period (i.e., 20 days) from 2003 to 2008. Although MODIS IST was 

identified as one of the most important variables to detect fast ice, it has a major drawback, which is its 

limited availability. Due to the lack of MODIS IST data during the Australian winter season, fast ice 

mapping results could not be obtained for the sixth (101–120 Julian days) to twelfth (221–240 Julian 

days) composite periods. Figure 2. 5 shows the distribution maps of fast ice produced by the RF model 
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for two composites in 2003. Hatched areas in Figure 2. 5 represent that IST was not available during 

the composite period, which resulted in no fast ice classified in the areas. The limited spatial coverage 

of IST could increase uncertainty of fast ice distribution in the Antarctic. As shown in Figure 2. 6, the 

spatial discontinuity of IST data was larger in the West Antarctica than in the East throughout the entire 

composite period. While the availability of IST is higher in the East Antarctica than in the West, some 

regions in the East Antarctica also had no available IST data for a certain time of period.

The time series of fast ice extent is depicted for the East and West Antarctica between 2003 and 

2008 in Figure 2. 7. While the temporal variation of the fast ice areas in the West Antarctica appeared 

higher than that in the East (with standard deviations of 122,457 km2 in the West Antarctica and 69,158

km2 in the East), it should be noted that the limited availability of IST data might increase temporal 

uncertainty in the fast ice distribution especially around Weddell Sea and Ross Sea in the West 

Antarctica. Fraser et al. (2012) reported that the fast ice extent maximum was found around September 

and the minimum around March in the East Antarctica. Our results for the East Antarctica also showed 

a similar trend (Figure 2. 7). However, such a pattern was not found for the West Antarctica, possibly 

due to the data void problem caused by MODIS IST data. Unlike the East Antarctica, many data voids 

occurred along the coast especially in the Weddell Sea and Ross Sea in the West Antarctica, which 

significantly increased the uncertainty of the fast ice distribution in those regions. No training data from 

the West Antarctica were used in the classification models, which possibly increased the false alarm or 

false negatives of the fast ice detection to lead to the increase in the uncertainty of the fast ice 

distribution. Consequently, the temporal (seasonal and annual) variation of fast ice distribution in the

West Antarctica should deserve further research.

Figure 2. 8 shows the distribution of the frequency of fast ice residence using simple counting of 

the switches (i.e., occurrence and disappearance) and the weighted average approach (Equation (3)). In 

order to mitigate the data void problem, it was excluded in the frequency calculation when a pixel in a 

composite had no data. High values of frequency for the simple counting approach indicated that the 

advance and retreat of fast ice frequently occurred during the study period. While the temporal variation 

of the fast ice based on the simple counting approach was generally high in the edge of fast ice all over 

the East Antarctica, it was only high for specific areas such as Weddell and Amundsen Sea in the West 

Antarctica (Figure 2. 8a). When the weighted average approach was used, high values meant that the 

fast ice residence time was relatively long, while low values indicated that fast ice only existed for a 

short period of time (Figure 2. 8b). While the weighted average of the fast ice residence was very low 

in the West Antarctica, it was relatively high in the East Antarctica, which corresponds to more gradual 

change of fast ice distribution in the East Antarctic region (Figure 2. 7).
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Figure 2. 5. Fast ice maps using random forest in 2003 for (a) composite 5 (81 – 100 Julian days) and 
(b) composite 13 (241 – 260 Julian days). Magenta areas represent fast ice in the Antarctic, and hatched 
areas with gray color indicate that MODIS IST was not available for the composite.
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Figure 2. 6. (a) Temporal variation of the availability of MODIS IST data in the East and West Antarctic 
regions. (b) The ratio of the IST coverage in the West Antarctic (WA) relative to the East Antarctic (EA) 
in percentage. (c) Box plot of the IST coverage in percentage by composite.
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Figure 2. 7. Temporal variation of fast ice areas in the East and West Antarctic. Due to the lack of the 
input data during the Australian winter season, composites 6 – 12 for each year were not available.

Figure 2. 8. Temporal variation of fast ice in the Antarctic using a) the simple counting approach and b) 
the weighted average approach.
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2.6. Conclusions

In this study, fast ice in the East and West Antarctic was mapped using multisensor data and 

machine learning techniques – DT and RF – during the period from 2003 to 2008. RF produced better 

performance than DT for fast ice mapping based on the accuracy assessment and visual interpretation 

of the classification maps in conjunction with 250-m MODIS images. Ice velocity and IST were 

identified as the most contributing variables to classify fast ice regardless of the approach used. Based 

on the time series of the fast ice maps produced by RF, the spatiotemporal variations of fast ice were 

examined over the entire Antarctic. While the temporal pattern of fast ice extent for the East Antarctica 

agreed with the literature, no clear pattern was found for the West Antarctica due to the data void 

problem, which resulted in considerable uncertainty of the fast ice distribution. Fast ice residence time 

was relatively long in the East Antarctica, which indicates gradual changes in advance and retreat of 

fast ice. However, fast ice residence time was very short in the West Antarctica partially due to the no-

data pixels from MODIS IST data.

Since some areas had a high variation of fast ice for a short period of time, composting of input 

variables with a period of less than 20 days is necessary to accurately monitor fast ice in the Antarctic. 

However, since MODIS IST, one of the most contributing variables, is heavily influenced by clouds, 

the number of no-data pixels inevitably increases when compositing IST with a small number of days 

(e.g., 10 days). Thus, spatial and temporal interpolation might be necessary to solve the data void 

problem when using a small number of days for compositing of MODIS IST. Future research includes 

(1) incorporating additional variables such as CryoSat-2-derived sea ice thickness for fast ice mapping 

to improve classification accuracy and (2) linking time series of fast ice distribution to climate change 

indicators to better understand the Antarctic climate system and its relation to other regional climate 

systems.
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Chapter 3

Object-based landfast sea ice classification over West Antarctica using 

synthetic aperture radar of ALOS-1 PALSAR

3.1. Abstract

Fast ice is an important feature prevalent around the Antarctic coast, which is associated with on-

going climate change and energy interaction with the atmosphere and ocean. Previous studies on 

detecting fast ice regions have focused on using optical sensor data with a limitation of cloud 

contamination over the East Antarctic; a relatively less heterogeneous region compared to the West 

Antarctic. This study proposes a method for detection of the West Antarctic fast ice using ALOS 

PALSAR data with a short time interval (5-days). The algorithm combines image segmentation, image 

correlation analysis, and machine learning techniques (i.e., RF, ERT, and LR). It is based on the 

assumption that a highly correlated region using two consecutive SAR images with a 5 day time interval 

is stable with little movement over time and is considered to be fast ice regions. The proposed object-

based approach was well applied to high-resolution SAR images for deriving spatially homogeneous 

fast ice regions. The image segmentation results with the optimized parameters show a distinct 

difference in backscattering between fast ice and non-fast ice objects over time. Correlation and 

standard deviation of scattering were found to be significantly contributing variables for fast ice 

detection. The developed model was applied to various fast ice areas in the West Antarctic ocean sectors 

for validation. The validation results suggest that the proposed algorithm can show stable and superior 

performance for detecting fast ice regions under various environmental conditions.
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3.2. Introduction

Much of the original Introduction and literature review of this chapter has been moved to Chapter 

1 to avoid repetition.

In this paper, we propose a new method that combines image segmentation, image correlation 

analysis, and machine learning techniques for detecting fast ice regions over West Antarctica. 

Specifically, this study develops an algorithm for object-based fast ice detection that adopts object 

correlation image analysis using bi-temporal L-band SAR images with a short time interval (5 days). 

Object-based classification has the potential to achieve accurate feature extraction since pixel-based 

classification might be inappropriate with SAR images of high spatial resolution due to the difficulty of 

interpretation resulting from speckle noise and high spatial heterogeneity. As fast ice regions are 

recognized as being spatially continuous with little change, object-based analysis is desirable for the 

detection of fast ice areas. Based on the segmented SAR composite images, object correlation image 

analysis was conducted based on the characteristics of motionless and stationary fast ice regions, which 

result in highly correlated fast ice regions over time. Machine learning techniques including RF, ERT, 

and LR were applied to the segmented fast ice image pairs to develop fast ice classification models. 

Model validation was conducted in various fast ice regions in ocean sectors of West Antarctica to 

demonstrate the applicability of the proposed approach.
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3.3. Data and Methods

3.3.1. Process description and study area

The whole data processing flow of the proposed approach in this study is illustrated in Figure 3. 1. 

First of all, SAR images, used as main data, are preprocessed and then composited with a pair of images 

(section 3.3.2), then image segmentation is performed for the preprocessed composite images (section 

3.3.3). For each object of segmented images, input variables for fast ice and non-fast ice regions are 

extracted including statistical and contextual variables (i.e. object correlation images). To construct fast 

ice and non-fast ice reference regions, time series of SAR images in a certain time interval are used 

(section 3.3.4). The constructed datasets are applied to machine learning approaches to develop fast ice 

classification models (section 3.3.5). Figure 3. 2 shows study areas with SAR images containing fast 

ice regions over four ocean sectors including Weddell Sea, Bellingshausen Sea, Amundsen Sea, and 

Ross Sea in West Antarctica. From each ocean sector, training and test data to construct fast ice 

classification models and separate validation datasets to evaluate the models are extracted.
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Figure 3. 1. Data process flow chart of the proposed approach in this study.
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Figure 3. 2. Map of study area including landfast sea ice regions over West Antarctica with ALOS 
PALSAR images over the Weddell Sea, Bellingshausen Sea, Amundsen Seas, and Ross Sea sectors. 
Regions (red letters) in Weddell Sea were used for constructing training and test datasets and the other 
regions (blue letters) for validation.

3.3.2. ALOS PALSAR data

Level 1.5 geo-referenced SAR images from ALOS PALSAR were used as main data for the 

detection of fast ice in this study. PALSAR is an active microwave sensor using L-band frequency. It 

has a ScanSAR mode that allows us to observe the surface with hundreds of kilometers in width. 

PALSAR images are distributed free of charge by the ASF to public users. The detailed information of 

SAR image pairs selected for this study is shown in Table 3. 1 with the names of each site, dates of 

images, incidence angle, and usage. All the SAR images are wide-swath ScanSAR mode data with a 

swath width of 350 km at 5 scan operations, HH polarization, descending flight pass direction, and the 

range and azimuth pixel size of 100 m with a time interval of 5 days. Although ALOS PALSAR orbit 

has a repetition period of 44 days, pairs of images in a short time interval can be obtained for areas 

where fast ice areas overlap in polar regions. This approach is intended for use with high temporal 

resolution images even from polar orbiting satellite sensors with long repetition cycles. The model 
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developed in this study has the benefit of being able to interpret short-term fast ice deformation events 

occurring on a time scale of several days.

The ScanSAR mode has a wide range of incidence angles (18-43° for ALOS PALSAR). An 

incidence angle is defined as the angle between the incoming radar vector and the vector perpendicular 

to the ground. Therefore, incidence angle correction is needed since backscattering coefficients may 

change in the same sea ice type as the incidence angle changes (Zakhvatkina et al., 2013; Lang et al., 

2016). However, in this study, incidence angle correction was not performed for several reasons. First, 

accurate reference data on sea ice types should be provided. However, fine resolution (~100 m) 

reference data were not available in this study, while existing reference data such as the Antarctic ice 

charts from the U.S. National Ice Center Naval Ice Center (http://www.natice.noaa.gov/) have relatively 

very coarse resolution, which implies that various sea ice types may be mixed in a class patch. In 

addition, when multiple classes exist in a pixel, incidence angle correction may not work well for all 

sea ice types, which eventually may not preserve the detailed texture and natural signal variability in 

radar data. The L-band SAR data used in this study has larger wavelengths than the other bands, so it is 

relatively less sensitive to small changes in sea ice surface (Dierking and Busche, 2006; Meyer et al., 

2011; Dammann et al., 2016). In addition, as object-based input variables are used through image 

segmentation, the dependence of backscattering on incidence angles can be significantly reduced when 

compared to pixel-based input variables, which compensates for the uncertainty due to the incidence 

angle effect. In this study, the capability of the proposed approach to generate high-quality fast ice 

detection over West Antarctica is demonstrated in a variety of regions and dates, without incidence 

angle correction and post-processing (more in the discussion section). 

Training, test, and validation datasets were extracted from all ocean sectors, the usage of which is 

explained in section 3.3.2. A total of 7 image pairs were selected over 1) Weddell Sea sector including 

East Weddell site, Brunt Ice Shelf, and Larsen Ice Shelf, 2) Bellingshausen Sea sector including Stange

Ice Shelf and Dotson Ice Shelf, and 3) Amundsen Sea sector including Getz Ice Shelf and Nickerson 

Ice Shelf. The image data were collected from July to August in 2007 and from October to November 

in 2010. The selected images were preprocessed in the MapReady software (version 3.1.24) developed 

by the ASF. First, the amplitude of the reflected backscatter in SAR images was converted into a 

radiometrically calibrated power image in order to use SAR data in a quantitative manner. The level 1.5 

geo-referenced SAR images with backscatter values were calibrated into sigma-0 (nought) in power 

scale out of radar backscatter coefficients (σ0, γ0, β0), which intends to use the calibrated values that 

refer to the ground. Then, the values were scaled into decibel (dB) values by applying a logarithmic 

function (10·log10(calibrated values)). SAR geometry was transformed into polar stereographic map 

projection with a bilinear resampling method and a specified pixel size of 100 m. The NESZ was -25 

dB, below which pixel values were discarded, and a low pass filter was applied to the preprocessed 
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images. After all preprocessing steps were conducted, each image in an image pair was masked for the 

overlaid regions and then composited for image segmentation in the following section 3.3.3. A single 

image is not sufficient to identify fast ice area because fast ice maintains spatial consistency over a 

period of time. Therefore, by using two consecutive SAR images with a specific time interval, it is 

possible to determine fast ice regions as stable or unchanged ice parts over time. By compositing SAR 

images at a certain time interval, two consecutive SAR images were used for fast ice detection through 

image segmentation and object-based classification. 

Table 3. 1. The information of ALOS PALSAR image sets. All the image pairs have time interval of 5 
days.

Sector Site
Date (for a pair of 
images)

Incidence 
angle

Usage

Weddell Sea East Weddell site
8 Aug. 2007
13 Aug. 2007

34.112°
34.107°

Training and Test

Brunt Ice Shelf
8 Aug. 2007
13 Aug. 2007

34.078°
34.090°

Validation

Larsen Ice Shelf
20 Aug. 2007
25 Aug. 2007

34.106°
34.086°

Validation

Bellingshausen 
Sea

Stange Ice Shelf
7 Oct. 2010
12 Oct. 2010

34.099°
34.101°

Training and Test

Dotson Ice Shelf
13 Nov. 2010
18 Nov. 2010

34.103
34.103

Validation

Amundsen Sea Getz Ice Shelf
31 Oct. 2010
5 Nov. 2010

34.091°
34.092°

Training and Test

Nickerson Ice Shelf
26 Jul. 2007
31 Jul. 2007

34.095°
33.979°

Validation

3.3.3. Image segmentation and explanatory variables

Image segmentation was implemented in eCognition software (Version 8.7.2) with the SAR 

composite images. Image segmentation is suitable for SAR data with high spatial heterogeneity. This is 

because classification problems caused by local outliers and noise can be mitigated by grouping pixels 

with similar characteristics. The multiresolution segmentation algorithm in eCognition was used, which 

is a bottom-up segmentation method that minimizes the heterogeneity of image objects and maximizes 

homogeneity by producing optimized segmentation results. Segmentation starts with single pixels and 

repeatedly merges them into larger groups by using certain user-defined criteria for homogeneity 

(Belgiu and Drăguƫ, 2014; Witharana and Civco, 2014). The segmentation procedure iterates until each 

image object finds the best neighbor to merge with based on the homogeneity criteria. The homogeneity 

criteria are defined for color, smoothness, and compactness. A scale parameter limits the maximum 

allowable criteria of the homogeneity, influencing the size of resultant objects. In homogeneous images, 

objects will be larger than those in heterogeneous images. Shape and compactness parameters are used 

for the relative homogeneity criteria. The shape criterion affects the relationship between shape and 
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color (color = 1 – shape). It determines the degree of the contribution of spectral values of images for 

object generation. In addition to the spectral homogeneity-related criterion, the degree of compactness 

among objects is determined by the compactness parameter. It is calculated as the ratio of the perimeter 

of an object and its area. The more compact an object is, the smaller its border length is (i.e. pixels in 

an object are closer to the circle boundary). It is useful for images where compact and non-compact 

objects are not clearly distinguishable due to weak spectral contrast (Yan et al., 2006). The compactness 

criterion can enhance the quality of segmentation for strongly textured data such as radar backscattering 

images with highly fractured objects (Lucieer and Lamarche, 2011). In this study, various combinations 

of scale, shape, and compactness parameters were tested, and an optimum combination was determined 

based on visual inspection of resultant objects.

As shown in Table 3. 2, a total of 5 input variables—contextual variables of OCI analysis (i.e., 

correlation, slope, and intercept) and statistical variables such as mean and STD—were extracted from 

objects of the segmented composite images. The contextual variables were calculated with pixels within 

each object of the composite images. The magnitude and direction of changes of spectral pixel values 

in an object of the composite images are used for the OCI analysis (Im and Jensen, 2005; Im et al., 

2008). If there is little or no change between the two dates of images, correlation coefficients of pixel 

values from two dates are assumed to be high. Otherwise, correlation coefficients are generally low or 

intermediate when changes significantly or moderately occur. The other information in the OCI analysis 

are slope and intercept, which can be useful in detecting changes when correlation coefficients are high. 

The correlation, slope, and intercept images are computed as the following equations (1)-(3), 

respectively (Im et al., 2008).
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where N is the image with the number of pixels for each object from the image segmentation, B is 

the number of input bands, which is 2 (i.e. consecutive images of two dates) in this study, ZD1i and 

ZD2i are the images from date 1 and 2 for each channel i zonally summed based on the objects, ZD1D1i, 

ZD1D2i, and ZD2D2i are the images multiplied by each date by itself and date 1 and 2 for each channel 

i and zonally summed based on the objects, and Slp indicates the slope image obtained by the equation 

2.

The mean variable is certainly helpful in distinguishing between sea ice and open water. Open 
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water typically has a lower backscatter coefficient under calm wind conditions than sea ice due to the 

rough surface of sea ice (Dammann et al., 2016). As non-fast ice regions contain deformed sea ice as 

opposed to fast ice regions by experiencing mechanical deformation by winds, ocean current, and 

typhoons (Dammann et al., 2016), a rougher surface of non-fast ice regions exhibits higher 

backscattered signals than undeformed fast ice regions. However, in an image pair with a time gap of a 

few days, backscattering values of both sea ice and open water are mixed in an object of the segmented 

composite image according to the presence of sea ice in non-fast ice regions. The STD variable can be 

used to discriminate fast ice from non-fast ice regions. No significant changes in fast ice regions 

between two dates enable spectral values more relatively intact than in floating pack ice regions. The 

STD of backscattering values may increase in pack ice regions due to a wide range of pixel value 

changes between two dates compared to immobile fast ice regions.

Table 3. 2. Input variable information.

Type Input Features

Contextual variables Correlation

Slope

Intercept

Statistical variables Mean of composite imagery including layer 1 (earlier date) and 

2 (later date)

Standard deviation of composite imagery

3.3.4. Construction of reference for landfast sea ice and non-landfast sea ice

Reference regions for fast ice and non-fast ice were determined based on visual interpretation of

the preprocessed SAR composite images in a 5-day time interval. Mahoney et al. (2007) applied a fast 

ice edge delineation technique with three mosaics of SAR images to define fast ice edges with a time 

interval of 20 days. Seaward fast ice edges were determined by discriminating fast ice and pack ice (i.e. 

non-fast ice) regions by analyzing the characteristics of surrounding features and changes in 

backscattering values measured over time (Figure 3. 3). Fast ice regions are distributed adjacent or 

attached to ice shelves along coastlines and form with an aid of icebergs acting as anchor points for fast 

ice formation (Massom et al., 2001; Giles et al., 2008; Fraser et al., 2012). Icebergs were masked out 

with a certain threshold to backscattering values to separate icebergs and sea ice. The threshold of -11 

dB was empirically determined to remove icebergs in this study. Icebergs generally show higher 

backscatter than the surroundings that are composed of open water and sea ice (Williams et al., 1999; 

Mazur et al., 2017). In particular, icebergs are visually discriminated within relatively flat fast ice 

regions, while icebergs may not always show distinct contrast when compared to the surrounding 
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surface within heavily deformed sea ice (Wesche and Dierking, 2012; Wesche and Dierking, 2015).

Although backscattering within fast ice regions varies, fast ice regions show consistent backscattering 

values over time when compared to pack ice regions. Fast ice edges were delineated along the boundary 

of the consistent backscatter patterns. To assess the validity of visual interpretation-based reference 

regions, time series of MODIS optical images with 250m resolution (MOD02QKM product) were used. 

Previous fast ice studies have used MODIS images to extract fast ice regions as reference data (Massom 

et al., 2010; Kim et al., 2015). Figure 3. 4 shows that SAR and MODIS images available in a 5-day time 

interval (31 Oct. 2010 - 5 Nov. 2010) for fast ice regions at the Getz Ice Shelf over Amundsen Sea sector 

to qualitatively ensure the fast ice regions. Although parts of the images are covered by clouds, fast ice 

regions are recognizable bounded by a fast ice edge (red line) in the MODIS images. Finally, based on 

the reference fast and non-fast ice regions extracted from consequent SAR images, input variables were 

extracted for the use of training (80% randomly selected) and test datasets (20%) to develop fast ice 

classification models with machine learning methods as explained in the next section 3.3.5.



38

Figure 3. 3. Example of SAR images in a 5-day time gap used to detect fast ice edge for reference over 
Amundsen Sea and Bellingshausen Sea sectors. The Antarctic continent and ice shelves are shown in 
dark gray and white, respectively. The text in italic shows fast ice and pack ice (non-fast ice) regions.
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Figure 3. 4. Maps of landfast sea ice region at the Getz Ice Shelf over Amundsen Sea with SAR images 
of two dates (top row) and MODIS images available between 31 October 2010 and 5 November 2010 
(middle and bottom rows).

3.3.5. Machine learning algorithm for classification

The original Methods for machine learning techniques of this chapter has been moved to Chapter 

1 to avoid repetition.

The machine learning approaches used in this study are RF, ERT, and LR for developing fast ice 

classification models. Model performance was evaluated based on the test dataset. RF also provides 

relative variable importance as MDA. MDA means the average increase in the misclassification rate. A 

higher MDA indicates more important variable in classifying fast and non-fast class. The classification 

models were applied to other fast ice regions of interest over the Weddell Sea, Bellingshausen Sea, 

Amundsen Sea, and Ross Sea for model validation. 
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3.4. Results and Discussion

3.4.1. Segmentation parameterization

Figure 3. 5 shows segmentation results tested with various combinations of parameters. The 

optimal parameter combination was determined to be 25, 0.1, and 0.5 for scale, shape, and compactness 

parameters, respectively, based on fast ice reference regions identified by visual inspection. The larger 

the value of the scale parameter, the larger the objects produced (Figure 3. 5a). A scale threshold was 

set that visually identified ice objects which were always larger than the size of the segmented objects 

to avoid objects mixed with pack and fast ice. A scale threshold of 25 was identified to produce the most 

appropriate size of segmentation. Using a smaller scale value results in unnecessarily excessive 

segmentation of images, which is computationally more demanding for the subsequent analyses. The 

segmentation results with a smaller shape value show a distinctive difference of backscatter coefficients 

between objects (Figure 3. 5b). The result for various compactness parameter values show that using a 

larger compactness parameter produces a more compact and smaller size of objects (Figure 3. 5c.). On 

the other hand, in a smaller compactness criterion, the resultant objects are more elongated and 

rectangular, and are relatively bigger.

Figure 3. 6 shows input variables calculated based on segmentation results. Fast ice reference 

regions show high correlation values (bounded by the red solid line). This is because the variations of 

pixel values in the fast ice regions are relatively low, resulting in high correlation when compared to 

floating pack ice regions between two dates. It also indicates that the STD variable is able to distinguish 

fast ice from pack ice, in that lower STD values in fast ice regions appear than non-fast ice. The mean 

variable image shows a distinct contrast between sea ice and opening zones, such as flaws between pack 

ice and fast ice and seemingly polynya regions between sea ice and the Antarctic land with relatively 

low backscatter values. Sea ice is composed of different fractions of ice, brine, and air bubbles 

depending on its age. Radar backscatter is affected by the salinity, temperature, and density of sea ice, 

changing the dielectric constant and penetration depth of radar wave (Kwok et al., 1992; Wesche and 

Dierking, 2015). New and first-year sea ice mainly causes surface scattering showing low backscatter, 

whereas older and less saline sea ice is more dominated by volume scattering, resulting in increasing 

backscatter (Zakhvatkina et al., 2013; Wesche and Dierking, 2015; Casey et al., 2016). Compared to 

fast ice regions, moving pack ice regions have deformed sea ice patches, which can make the surface 

of pack ice rough and increase radar backscattering as well (Wesche and Dierking, 2012). Open water 

generally shows lower backscatter values than sea ice regions, but large wind speeds can roughen the 

surface of open water, increasing the backscattering (Wesche and Dierking, 2015). The backscattering 

of pack ice segments is high in areas where pack ice is dense but low where pack ice is mixed with open 

water.
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Figure 3. 5. Examples of segmentation results at different (a) scale parameters with fixed thresholds for 
shape of 0.1 and compactness of 0.5, (b) shape parameters with scale of 25 and compactness of 0.5, and 
(c) compactness parameters with scale of 25 and shape of 0.1 parameter setting. The red solid line 
indicates reference fast ice edge. The background is a false color composite image of date 1 (green) and 
date 2 (blue).
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Figure 3. 6. Input variables extracted based on segmentation result including (a) correlation, (b) slope, 
(c) intercept, (d) mean of backscatter coefficient (in dB) for combined dates 1 and 2, (e) standard 
deviation of backscatter coefficient for combined dates 1 and 2. Gray area is the Antarctic land, and red 
and blue solid lines over sea ice zone indicate the reference fast ice edge.

3.4.2. Model evaluation and variable importance

Model evaluation results using the test datasets are shown in Table 3. 3-5. All three models 

produced similar results. The ERT model produced the best performance with an OA of 97.21% and a 

kappa coefficient of 0.94, while RF and LR models resulted in slightly lower performances with an OA 

of 96.74% and a kappa of 0.93. The fast ice class shows slightly higher PA than the non-fast ice class 

in all three models although the sample size of the non-fast ice class was twice that of the fast ice class. 

Different sample sizes of the two classes including 1:1, 1:2, and 1:3 for fast versus non-fast ice class 

were tested and 1:2 was identified as the most reasonable to classify fast ice regions with minimum 

commission and omission errors. Meanwhile, UA was lower for fast ice class than non-fast ice class as 

some of the non-fast ice samples were misclassified as fast ice class, which means that fast ice regions 

might have been slightly over-detected. A little over-segmentation might explain such an over-detection 

of fast ice as relatively homogeneous backscatter over time might have occurred by accident in very 

small objects even for the ice located off the shore. Contrarily, small non-fast ice objects nearby seaward 

fast ice edge were misclassified as fast ice due to the stationary backscatter strength of small segments. 

Fast ice objects located at the edge of seaward fast ice were occasionally misclassified into non-fast ice 

class due to low correlation between two dates. Generally, the stability of fast ice decreases toward the 



43

edge of fast ice (Dammann et al., 2016). In particular, offshore-ward young and thin fast ice is less 

stable due to dynamic forcing by pack ice such as ridging and rafting. Sheltered ice which forms in 

areas such as bays where coastal topography protects fast ice from pack ice interaction is usually stable 

and was better detected by the three models (Figure 3. 8 and 3.9 in section 3.4.3) (Fraser et al., 2012; 

Dammann et al., 2016).

Figure 3. 7 shows relative variable importance results identified by RF and LR models with MDA 

and p-value transformed to the negative logarithmic scale, respectively. Correlation and STD variables 

were identified as significantly contributing variables to discriminate fast ice from non-fast ice regions 

in both RF and LR models. Correlation was highly significant since fast ice is an almost motionless 

feature compared to pack ice in a certain time interval (e.g., 5 days used in this study), which produces 

high correlation between two dates of imagery in fast ice regions and low correlation in non-fast ice 

regions. Secondly, the STD variable was considered to be the second significant variable for both 

models. This was because that backscatter variations in objects between two dates are larger in floating 

pack ice regions than relatively stationary fast ice regions.

Table 3. 3. Accuracy assessment result of the random forest model for the test dataset.

Reference

Classified as
Fast ice Non-fast ice Sum

User’s 

Accuracy

Fast ice 70 5 75 93.33%

Non-fast ice 2 138 140 98.57%

Sum 72 143 215

Producer’s accuracy 97.22% 96.50%

Overall accuracy 96.74%

Kappa coefficient 0.93

Table 3. 4. Accuracy assessment result of the extremely randomized trees model for the test dataset.

Reference

Classified as
Fast ice Non-fast ice Sum

User’s 

Accuracy

Fast ice 70 4 74 94.59%

Non-fast ice 2 139 141 98.58%

Sum 72 143 215

Producer’s accuracy 97.22% 97.20%

Overall accuracy 97.21%

Kappa coefficient 0.94
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Table 3. 5. Accuracy assessment result of the logistic regression model for the test dataset.

Reference

Classified as
Fast ice Non-fast ice Sum

User’s 

Accuracy

Fast ice 70 5 75 93.33%

Non-fast ice 2 138 140 98.57%

Sum 72 143 215

Producer’s accuracy 97.22% 96.50%

Overall accuracy 96.74%

Kappa coefficient 0.93

Figure 3. 7. Relative variable importance results indicated by (a) mean decrease accuracy of random 
forest and (b) –log10(p-value) of logistic regression model.

3.4.3. Landfast sea ice detection for model validation

Fast ice detection models were tested for various fast ice regions over the other ocean sectors 

(Figure 3. 8-12). To assess the performance and extendibility of the models, validation sites were 

selected in different ocean sites with various conditions considering surrounding pack ice drift, wind 

exposure, atmospheric temperature, and icebergs that affect the development and stability of fast ice. 

For the qualitative evaluation, fast ice edges were extracted as reference data by visual interpretation of 

successive ALOS PALSAR ScanSAR images in 5-days intervals (red solid lines). Overall, fast ice 

regions over the validation sites were well detected by all three models including binary decision tree-

based models (RF and ERT) and probabilistic statistical model (LR) without significant 

misclassifications or missing. The models did not show a significant performance degradation for the 

validation data, so that the models developed in this study can be well applied to unseen data in the 
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Western Antarctic. A few pact ice objects were misclassified as fast ice by the ERT and LR models 

(Figure 3. 8b and Figure 3. 9c). As explained in section 3.4.2, the misclassifications occurred because 

the small objects have high correlation between two dates of SAR images due to highly compacted pack 

ice with limited motion in a short time frame. Some objects were not detected as fast ice within fast ice 

regions (Figure 3. 11). These objects have a low probability of fast ice occurrence in LR model as well. 

The misclassified fast ice areas show some spatial variation of the surface over time in SAR images. 

Backscattering changes on the sea ice surface are not always related to the detectable movement of sea 

ice. The fast ice region of the Nickerson Ice Shelf showed a relatively low backscatter, which means 

that the ice surface is smooth. As fast ice regions have little or no motion, there is no dynamic 

phenomenon such as ridging or rafting, resulting in homogeneous surface. However, there are several 

factors that affect surface roughness associated with environmental changes. Strong wind speeds 

roughen the sea ice surface, causing changes in surface scattering (Komarov et al., 2017). Rough ice 

surface due to frost flowers occurring in the relatively flat fast ice regions can increase backscattering 

as well (Karvonen, 2004). In the fast ice site at the Nickerson Ice Shelf, it was confirmed that the surface 

of the objects that were misclassified as non-fast ice changed over time. 

While differences in incidence angles can cause a backscattering variation, sea ice itself evolves 

over time, which will result in different backscattering coefficients due to the changing interaction 

between sea ice and radar (Mahoney et al., 2006). In the SAR images used in this study, incidence angle 

effect was not visually obvious. Incidence angle effect usually tends to be more clearly identified in 

open water than in sea ice (Zakhvatkina et al., 2017). We note that there is also no apparent influence 

of incidence angles in fast ice classification results. As a supplement, it was not identified as a 

particularly important variable when the incidence angle was added into the set of input variables (not 

shown). This indicates that the proposed models can detect fast ice without the problem of incidence 

angle effect, especially when the difference in incidence angles is not significant. The differences in 

incidence angles identified in this study range from about 1.5° to 3°, which implies that the proposed 

models can be used to detect fast ice in other regions with similar incidence angle configurations.

Antarctic sea ice chart data were used to evaluate the reliability of fast ice detection models using 

object-based SAR data. Sea ice chart data obtained at 15 November 2010 for the fast ice region of the 

Bellingshausen Sea sector were available. The ice chart superimposed on a model detection result is 

shown in Figure 3. 12. The visual comparison shows a good agreement but a difference at the top of the 

scene. In a closer analysis of the two SAR images for the difference, it was clearly confirmed that there 

are the movements of icebergs trapped in sea ice and the occurrence of openings by leads and rectilinear 

or wedge-shaped cracks. The reason for the difference may be attributed to the length of the time interval 

used to define fast ice. Previous studies explain that using a longer time interval over fast ice tends to 

detect smaller fast ice areas due to a lower likelihood that the ice will remain stationary for the entire 
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period, whereas using a shorter time interval can confuse temporarily frozen drift ice as fast ice. A 

relatively long time interval (e.g., 20 days) has been used as a tradeoff, but generally, it is due to data 

availability constraints by a long revisit time of satellite sensor systems especially for optical sensor 

and InSAR data. There is no fixed time interval that is appropriate for the delineation of fast ice. The 

bi-weekly Antarctic sea ice chart defined a slightly wider area as fast ice despite using a longer time 

interval than this study. Although the two data with different time intervals have different physical 

definitions, they show very consistent results.

Figure 3. 8. Landfast sea ice detection results at the Bellingshausen Sea region of (a) random forest 
(RF), (b) extremely randomized trees (ERT), and (c) logistic regression (LR) models. Red solid lines 
indicate the reference fast ice edge, RF and ERT results are shown in pink color and LR result for the 
probability of fast ice coverage in yellowish-starched color, and gray area is Antarctic land.

Figure 3. 9. Landfast sea ice detection results at the Brunt ice shelf at the eastern Weddell Sea site of (a) 
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random forest (RF), (b) extremely randomized trees (ERT), and (c) logistic regression (LR) models. 
Red solid lines indicate the reference fast ice edge, RF and ERT results are shown in pink color and LR 
result for the probability of fast ice coverage in yellowish-starched color, and gray area is Antarctic land.

Figure 3. 10. Landfast sea ice detection results at the Larsen ice shelf of the Antarctic Peninsula of (a) 
random forest (RF), (b) extremely randomized trees (ERT), and (c) logistic regression (LR) models. 
Red solid lines indicate the reference fast ice edge, RF and ERT results are shown in pink color and LR 
result for the probability of fast ice coverage in yellowish-starched color, and gray area is Antarctic land.
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Figure 3. 11. Landfast sea ice detection results at the Nickerson ice shelf in the east of the Ross Sea of 
(a) random forest (RF), (b) extremely randomized trees (ERT), and (c) logistic regression (LR) models. 
Red solid lines indicate the reference fast ice edge, RF and ERT results are shown in pink color and LR 
result for the probability of fast ice coverage in yellowish-starched color, and gray area is Antarctic land.
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Figure 3. 12. Qualitative analysis results. (a) Backscatter image of L-band HH-pol ALOS PALSAR for 
date 1; (b) backscatter for date 2; (c) comparison between the Antarctic Ice Chart and RF result (pink 
area). The light blue and red hatched areas are from the Antarctic Ice Chart. SD, F, IC are abbreviations 
for ice chart codes meaning Stage of Development, Form of ice, and sea Ice Concentration, respectively. 
The blue solid line is fast ice edge as a reference. (d-f) Results of machine learning models (RF, ERT, 
LR, respectively) with fast ice edge as a reference (red solid line).
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3.5. Conclusions

This study showed that bi-temporal L-band ALOS PALSAR data with a short time interval (i.e., 5 

days) is capable of detecting Antarctic fast ice. This study suggested a novel approach combining image 

segmentation, image correlation analysis, and machine learning techniques to detect fast ice regions. 

As fast ice is a spatially homogeneous sea ice area, the proposed object-based approach is more effective 

than pixel-based ones when using SAR images with high spatial resolution. Fast ice regions have little 

motion over time, so it is possible to distinguish fast ice regions that are highly correlated between the 

two consecutive satellite images compared to non-fast ice regions. In addition, the fast ice detection 

method using SAR data provides an opportunity to study in more detail the rapidly changing interaction 

between fast ice and non-fast ice regions in a short time period, which was not possible in previous 

studies.

The model performance results show that all three models produced high accuracy. Marginally

misclassified or undetected fast ice cases occurred in unstable areas, which are generally affected by 

the surrounding environment at the edge of fast ice. Correlation and STD of backscattering were 

identified as the most important and contributing variables for detecting fast ice. This coincides with 

the physical characteristics of fast ice regions with little motion over time and spatial homogeneity. The 

validation results for several unseen data for the West Antarctic ocean sectors showed that the proposed 

approach did not show significant performance degradation. The results obtained from various reference 

data confirm the robustness and reliability of the proposed algorithm particularly using ALOS PALSAR 

images. We expect this algorithm to show a wider fast ice application for different regions. 

Unlike most previous studies which focused on the East Antarctic, this study focuses on fast ice 

regions in the West Antarctic coast, which implies that the research findings from this study can be used 

as a basis of future fast ice research in the West Antarctic. We have also extracted fast ice regions in a 

short time interval (i.e. 5 days) using spatially overlapped regions of SAR images (considering small 

differences in incidence angles) regardless of repeat cycles. Fast ice detection conducted in earlier 

studies was limited to a longer time interval (e.g. 20 days).

However, this study is limited to the L-band ALOS PALSAR data and temporally in winter and 

spring in two years (i.e., 2007 and 2010), not covering all seasons. Thus, it is not possible to generalize 

the proposed model directly using other SAR images due to the different characteristics of other bands 

to sea ice or different seasons. Nonetheless, in principle, the proposed approach is applicable to other 

fast ice sites but might require a new calibration process using SAR data. In future research, 

RADARSAT-2 and PALSAR-2 will be able to produce fast ice data by using full polarimetric data, 

which provides valuable information on different scattering mechanisms depending on sea ice 

properties.
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Chapter 4

Distribution and variability of landfast sea ice along the Amundsen

Sea of West Antarctica

4.1. Abstract

Fast ice, which is distributed extensively along the Antarctic coastline, interacts with the 

atmosphere and the oceans. It is closely related to the surrounding Polynya regions and ice shelves. 

Although long-term analysis of time series fast ice in East Antarctica has been conducted, the West 

Antarctic fast ice was not well investigated in previous research. This study used MODIS and AMSR-

E images to obtain near decade-long time series of fast ice in the Amundsen Sea of West Antarctica at 

intervals of 15 days from July 2002 to September 2011. The generated fast ice maps well corresponded 

to SAR images from ALOS PALSAR data that were used as reference. The distribution and morphology 

of fast ice were examined with the corresponding bathymetry map and icebergs distribution from a SAR 

imagery. Fast ice distribution showed regional differences depending on the shelves in terms of the 

velocity of calving flux and bathymetry. Time series trends of fast ice extent were analyzed with their 

extent anomaly by showing anomalous fast ice breakup events.



52

4.2. Introduction

Much of the original Introduction and literature review of this chapter has been moved to Chapter 

1 to avoid repetition.

Studies on long-term, large-scale fast ice have been largely concentrated in the East Antarctic 

(Fraser et al., 2012; Miles et al., 2017; Aoki, 2017), and studies focused on the distribution and 

variations of West Antarctic fast ice are rarely conducted (Nihashi et al., 2015). Fraser et al. (2012) 

analyzed time series of fast ice extent only for East Antarctica. By analyzing 20-day cloud-free images 

using MODIS images of time series, they extract long-term East Antarctic fast ice area and analyze 

variability of fast ice along the East Antarctic coastline. Nihashi et al. (2015) investigated the 

relationship between Antarctic coastal polynyas and fast ice using passive microwave data and 

reanalysis data including winds and air temperatures. They used three months of AMSR-E data to 

extract monthly fast ice regions. Then, the frequency of fast ice cover during the whole study period 

was analyzed with the distribution of polynyas. Additionally, as the Antarctic fast ice and ice shelves 

are closely related, previous studies have conducted research on relationship between each other.

Massom et al. (2010) studied the relationship between Mertz Glacier Tongue in East Antarctica and 

perennial fast ice adhered to the eastern edge of the tongue. Miles et al. (2017) analyzed the correlation 

between glacier calving events and breakup timing of fast ice using various satellite data such as 

MODIS and SAR images. Aoki et al. (2017) extracted the time series East Antarctic fast ice edges and 

compared it with tropical Pacific sea surface temperatures. They analyzed the breakups of fast ice and 

calving front changes. However, there has been no study on the regional distribution variability of long-

term time series of the West Antarctic fast ice.

The aim of this study is to conduct a detailed analysis of long-term fast ice extent around West 

Antarctic coast, specifically the Amundsen Sea, using MODIS IST and AMSR-E brightness 

temperature data and additional variables derived from the data with a machine learning technique in a 

short time interval. The distribution and variability of fast ice was analyzed with atmospheric and 

oceanic data from ERA-Interim reanalysis data. This study will improve our understanding of fast ice 

distribution and variations over West Antarctica and give more insights for the response of fast ice to 

climate changes.
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4.3. Study area

This study was conducted focusing on the western side of Amundsen Sea in West Antarctica 

(Figure 4.1). This area is where fast ice is formed along the shoreline in West Antarctica (Nihashi et al., 

2015). During the study period, the ice shelves along the Amundsen and Bellingshausen Sea are 

experiencing rapid thinning (Pritchard, 2012). The relatively thick Land and Getz ice shelves thinned 

between 2003 and 2008, whereas the thinner Nickerson and Sulzberger ice shelves had relatively no 

significant thinning. The ice shelf of the West Antarctic Sea experienced a decrease in the overall basal 

mass balance. In the Land Ice Shelf, the rate of calving flux was higher than that of basal melt, but the 

Sulzberger Ice Shelf showed basal melt rather than glacier calving (Depoorter et al., 2013). Therefore, 

the study area is suitable for analyzing the distribution and variability of fast ice regions due to the 

different types of ice shelves in terms of geographical characteristics.

Figure 4. 1. Process flow diagram.

4.4. Data and Methods

4.4.1. Reference data for landfast and non-landfast sea ice

Fast ice and non-fast ice are the targets to be classified. For the construction of reference data, fast 

ice and non-fast ice regions were extracted using MODIS reflectance and AMSR-E brightness 

temperature images. MODIS reflectance images are usually used during polar summer seasons (i.e. 
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from mid-September to early April). AMSR-E brightness temperature images are used in the absence

of sunlight during polar night (i.e. from mid-April to early September). The images were examined in 

5-day time intervals to discriminate fast ice regions motionless for 5 days from non-fast ice regions. 

Reflectance and brightness temperatures are consistent for fast ice regions over a period, while non-fast 

ice regions show spatial changes in values of reflectance and brightness temperatures. The imagery

were taken from MODIS (Terra and Aqua) corrected reflectance and AMSR-E sea ice brightness 

temperature (horizontally and vertically polarized at 89 GHz) of the NASA Worldview 

(https://worldview.earthdata.nasa.gov/). It is a useful web-based tool to easily identify and record the 

locations of fast and non-fast ice regions.

4.4.2. Generation of landfast sea ice maps

The original Methods for machine learning techniques of this chapter has been moved to Chapter 

1 to avoid repetition.

Fast ice detection models were developed using RF models with TB from AMSR-E channels,

MODIS IST data, and additional variables derived from AMSR-E and MODIS data (Figure 4.2). TB 

images were downscaled into 4 km spatial resolution of MODIS IST data, which means that the final 

spatial resolution maps are generated at 4 km grid resolution. Table 4.1 shows a total of 14 input features 

that were used to develop fast ice detection models. Based on the characteristics of fast ice, which fast 

ice are motionless during a certain period of time, additional correlation variables in 5-day intervals 

called NCI were added in addition to the simple channel brightness temperatures used in the study of 

Chapter 2. MODIS IST data were used as one of main input data for the detection of fast ice. The daily 

MODIS Terra and Aqua IST products including MOD29E1D and MYD29E1D were used for 2002 to 

2011, which are gridded to 4 km spatial resolution Lambert Azimuthal Equal-Area projection. Because 

sea ice is colder than open water, it is relatively easy to discriminate fast ice from the ocean, and there 

is a temperature difference between fast ice and pack ice that partly contains open water. However, due 

to the presence of clouds and polar night in the Antarctic winter, the data were not available during the 

period approximately from mid-April to early September. 

Brightness temperatures from the frequencies of AMSR-E were used as another main input data to 

detect fast ice. The emissivity of ice is considerably higher than that of water (Shokr and Shinha, 2015). 

Sea ice is radiometrically warmer by emitting more energy in the microwave band. This is why passive 

microwave data were used to distinguish sea ice from open water. The horizontal and vertical 

polarization daily data of 6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz channels between 2002 and 2011 

were used. All channels except for 89.0 GHz with 6 km spatial resolution have 12 km spatial resolution 

and were downgraded into 4 km resolution of MODIS IST using bilinear interpolation method (i.e. the 
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output value is a weighted average of pixels in the nearest 2-by-2 neighborhood).

Two separate algorithms were designed to detect fast ice; Algorithm 1, in which AMSR-E and 

MODIS data are both used together, and Algorithm 2, which AMSR-E is used only. To build training 

data for machine learning input, samples were extracted for two classes (i.e. fast ice and non-fastice). 

Reflectance and temperature images from MODIS of Aqua and Terra available in the Worldview 

website were utilized to identify reference fast ice regions for sample extraction. The final fast ice 

detections were post-processed by detecting fast ice regions which are contiguous with the coast. After 

that, fast ice detections in 5-day intervals in a month were collected, and fast ice with high frequency 

was determined as the final fast ice region.

Table 4.2 shows the number of samples constructed for fast ice and non-fast ice according to each 

season and algorithm. As fast ice regions are relatively smaller than non-fast ice regions that include 

floating pack ice and open ocean, samples for non-fast ice class were collected averagely 2.5 times more 

than for fast ice class to cover a wide spectrum of the values of input variables for non-fast ice class. 

Total datasets were used to construct fast ice detection model. The OOB data of RF were used for the 

evaluation of model performance to find the best model that minimized the error for the OOB data. As 

validation data, ALOS PALSAR SAR images were used to quantitatively evaluate fast ice maps. SAR 

data is well suited for accuracy assessment because of its much higher spatial resolution. First year ice 

with a smooth surface shows a relatively low backscatter, while icebergs, ice shelves, multiyear ice, and 

ridged and deformed first year ice shows high backscattering. Depending on the surface roughness, 

backscatter of fast ice may look similar to open water with large surface waves due to wind. Therefore, 

it is difficult to distinguish fast ice from a single SAR image (Mahoney, 2004), so a time-series SAR 

images can be used to identify stable areas over time. We examined the two time-series SAR images 

with specific date intervals and considered the areas where the backscatter was kept constant over time. 

Based on these characteristics, we delineate the edge of the fast ice and use it as a reference. The 

accuracy of the fast ice reference data was compared with fast ice detection results. The accuracy 

matrices include the PA, the UA, the OA, and the kappa coefficient.
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Figure 4. 2. Process flow diagram.

Table 4. 1. Input variables used in this study to detect fast ice.

Input Type Variables
MODIS IST ISTmax
AMSR-E brightness temperatures TB89h*, TB89v
Polarization ratios Polarization Ratio (PR) PR(18)

GR(36V18V), GR(23V18V)
dGR = GR(89H18H) – GR(89V18V)

Spectral Gradient Ratio (GR)
Difference between GRs (dGR)
Simple ratios 18V/18H, 23V/23H, 36V/36H, 89V/89H

Neighborhood Correlation Images Correlation, Slope, Intercept for 89H, 89V
*horizontal or vertical polarization of a frequency (GHz)

Table 4. 2. Number of samples for fast ice and non-fast ice class by season and algorithm.

Algorithm 1 Algorithm 2
Fast ice Non-fast ice Fast ice Non-fast ice

Spring 3626 9350 5973 17141
Summer 8306 21926 12030 27769
Autumn 2405 4662 4454 9498
Winter 953 1798 3546 11831

Table 4. 3. Information of ALOS PALSAR SAR images used for model validation during study period 
from July 2002 to September 2011.
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Location Day1 Day2 Date difference
Land Ice Shelf 26 Jul. 2007 5 Aug. 2007 15

5 Aug. 2007 15 Aug. 2007 10
15 Oct. 2010 27 Oct. 2010 12
30 Nov. 2010 14 Dec. 2010 14
5 Jan. 2011 17 Jan. 2011 12

Sulzberger Ice Shelf 5 Aug. 2007 20 Aug. 2007 15
10 May 2008 21 May 2008 11
21 Oct. 2010 4 Nov. 2010 13
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4.5. Results and Discussion

4.5.1. Performance of landfast sea ice mapping model

Figure 4.3-4 show the relative variable importance of fast ice mapping model for algorithm 1 and 

2, respectively. The top 5 most important variables were identified as ISTmax, GR3618, GR2318, r89, 

and TB89v in algorithm 1 to discriminate fast ice from non-fast ice class, and GR2318, GR3618, r89, 

r36, and TB89v in algorithm 2. In algorithm 1, the IST variable was the most contributing feature in all 

seasons. This is because the IST images at 4-km spatial resolution have the ability to more clearly 

distinguish between fast ice and non-fast ice areas, as compared to 12-km resolution for brightness 

temperatures and other derived variables. GR3618, GR2318, r89, and TB89v variables ranked higher 

among input features for both algorithms in most seasons. Overall, the ratios of TBs were used more 

importantly over the 89-GHz TB, because polarization and gradient ratios are less sensitive to variations 

in physical ice temperatures (Cavalieri et al., 1984; Comiso et al., 2003). Polarization ratios of TBs have 

been widely adopted to classify open water and sea ice types (Tamura et al., 2008; Comiso et al., 2008).

Corr89v calculated with TB89v was also often included in important variables. Although the temporal 

correlation of TBs has not been used as a primary input data other than complementary uses in previous 

studies (Fraser et al., 2010), this study suggests that temporal correlation properties of TBs are 

potentially useful for distinguishing fast ice and non-fast ice regions. Optimal input variables would be 

varied according to extraction of datasets, it is worthy to note that Kwok et al. (1998) used temporal 

correlation of TBs for tracking of sea ice motion and reported that a temporal correlation of TBs as a 

useful feature in detecting temporally correlated sea ice. Figure 4.5 shows the OA for OOB data of RF

model according to season and algorithm. The algorithms have satisfactory performances for each 

season. Meanwhile, algorithm 1 produced higher accuracies than algorithm 2, meaning that IST variable

with high spatial resolution was obviously more effective to discriminate between classes as explained 

in variable importance.
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Figure 4. 3. Relative importance of variables for landfast sea ice mapping model for algorithm 1.

Figure 4. 4. Relative importance of variables for landfast sea ice mapping model for algorithm 2.
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Figure 4. 5. Overall accuracy for out-of-bag error of random forest model by season and algorithm.

4.5.2. Comparison of fast ice maps with SAR images

The generated fast ice maps were compared with SAR images acquired from ALOS PALSAR data. 

All accuracy measures show a significantly good performance for both fast ice and non-fast ice classes 

as shown in Table 4.4. For fast ice regions that are falsely detected as non-fast ice, the errors were 

mainly caused by the early stages of fast ice formation consisting of nilas or young ice. Thin ice 

including new ice and nilas have low backscatter due to its smooth surface (Wakabayashi et al., 2004). 

The corresponding SAR images of ALOS PALSAR show relatively low backscatter over the fast ice 

region. However, when examining the corresponding 89-GHz vertically polarized AMSR-E TB images, 

the thin fast ice regions represent high TBs. Fast ice regions tend to have low TBs than thin ice as fast 

ice is generally covered with thick snow, hence leading to the surface condition of fast ice closer to that 

of ice sheet (Nihashi et al., 2015). Moreover, sea ice is newly formed in polynya areas during wintertime, 

which tend to be high brightness temperatures. Therefore, TB-based models of this study will cause 

misclassification for fast ice in the early stages of formation, TBs of which are similar to new ice in 

polynya area. Figure 4.6 shows fast ice maps with bitemporal SAR images for comparison. Fast ice 

regions detected by RF model are in close agreement with the fast ice reference regions delineated by 

SAR images. In the two SAR images of a certain period interval, the fast ice area shows a consistent 

backscatter over time. It can be seen in the SAR images that fast ice regions form along icebergs spread 

out especially over the Land Ice Shelf region. On the other hand, non-fast ice regions have high 

spatiotemporal variability of backscatter.
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Table 4. 4. Accuracy assessment results of landfast sea ice maps based on SAR images.

Original Sum UA
Fast ice Non-fast ice

Results Fast ice 357,247 5,122 362,369 98.59%
Non-fast ice 21,321 470,740 492,061 95.67%

Sum 378,568 475,862 854,430
PA 94.37% 98.92%
OA 96.91%
Kappa 0.94

Figure 4. 6. Examples of ALOS PALSAR images and corresponding fast ice maps for (a) Land Ice Shelf 
fast ice site on 31 October 2010 and (b) Sulzberger Ice Shelf fast ice site on 15 May 2008. SAR images 
for Land Ice Shelf site were acquired on 15 October 2010 and 27 October 2010, and for Sulzberger Ice 
Shelf site on 10 May 2008 and 21 May 2008. Fast ice maps of the date closest to each date were used. 
The red solid lines indicate reference fast ice edges delineated based on the SAR images. Light blue 
area in the bottom figures are the fast ice region detected by random forest model.
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4.5.3. Spatial distribution of fast ice

Three types of spatial distribution maps for fast ice cover changes during the entire study period 

were generated (Figure 4.7). Fast ice is mainly distributed along the coastline from the Land Ice Shelf 

to the Sulzberger Ice Shelf. The spatial distribution of fast ice is closely related to the distribution of 

bathymetry and grounded icebergs (Mahoney et al., 2007; Fraser et al., 2012). Figure 4.8 presents the 

corresponding bathymetry and SAR images showing the clusters of icebergs calved from the Land Ice 

Shelf. As seen in the SAR image, the Land Ice Shelf region is observed to be relatively shallow in depth. 

The groups of small icebergs are calved from the ice shelves play important anchor points in forming 

extensive fast ice (Massom et al., 2010; Fraser et al., 2012). The large number of assemblages of small 

grounded icebergs that are detached from the ice shelf can be grounded by relative shallow bathymetry. 

Therefore, the grounded icebergs would be the driving force that makes fast ice extensively formed in 

the Land Ice Shelf site and even extend far into the ocean. As the bathymetry over the Sulzberger Ice 

Shelf regions is relatively low, fast ice continuously exists. However, fast ice is not distributed 

meridionally because it may be due to the small number of elements that facilitate anchor points as there 

are relatively low calving events as identified in the SAR image (not shown).

Figure 4.7a exhibits the average coverage distribution of fast ice over the entire study period, by 

counting the number of times when fast ice is present during the entire study period. The higher the 

percentage, the more days fast ice appears on average. The map of fast ice spatial distribution for the 

number of switches between fast ice and non-fast ice is shown in Figure 4.7b. It was obtained by 

counting the switches between fast ice and non-fast ice throughout the study period. The higher values 

indicate a large variability between fast ice and non-fast ice, and vice versa. The areas with 80 % in 

Figure 4.7a mean that fast ice exists more than average, and correspond to the regions with small values

of the number of switches as shown in Figure 4.7b. In Figure 4.7a, the lower percentage is seen as going 

to the edge, while the corresponding regions have lower switches in Figure 4.7b as the stability of 

offshore-ward fast ice decreases at the edge due to advection of pack ice and ocean waves, and the 

fluctuation in fast ice cover is lager rather than inland-ward fast ice (Dammann et al.., 2016). Farther 

offshore, the switch values are low and similarly low in the duration of fast ice with less than 40 % in 

Figure 4.7a. In other words, the edge of fast ice has a high ratio of non-fast ice cover producing low 

switch values. Furthermore, fast ice areas between 60 and 80% of fast ice occurrence include both low 

and high switch values. As seen in the eastern part of the Land Ice Shelf area, regions with low switch 

values mean that even if the rate of fast ice occurrence during the entire study period is the same, it may 

be maintained for longer with fast ice or non-fast ice cover. Accordingly, Figure 4.7c shows the spatial 

distribution of the average fast ice duration by applying different weights depending to fast ice durations. 

In this map, the smaller the value, the less frequently the switch between fast ice and non-fast ice, 
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meaning that it lasts longer as fast ice region. In Figure 4.7c, fast ice zone of the Sulzberger Ice Shelf 

last longer than the Land Ice Shelf.

Figure 4. 7. Total frequency of fast ice residence for the period of from July 2002 to August 2011.

Figure 4. 8. Supplementary data (a) bathymetry from the IBCSO Version 1.0 and (b) ALOS PALSAR 
SAR image acquired on 05 August 2007 for the dashed box in (a).
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4.5.4. Fast ice time series and anomalous fast ice breakup events

The near decade-long mean annual cycle of fast ice is shown in Figure 4. 9 from July 2002 to 

September 2011. The fast ice minimum is in April-May. The West Antarctic fast ice shows a relatively 

later minimum compared to the East Antarctic fast ice, which usually has a minimum in the early mid-

March (Fraser et al., 2012). Subsequently, fast ice rapidly grows at the beginning of June and the 

maximum appears in August-September. The maximal extent of fast ice usually lasts from mid-June to 

mid-September. Fast ice gradually decreases from mid-September. East Antarctica fast ice grows earlier, 

showing a maximal extent until October, followed by a rapid retreat. Therefore, the growth time for the 

West Antarctic fast ice to begin to grow is slower than that of the East Antarctica, and the time to 

maintain the maximal extent is shorter. In addition, fast ice breakup typically starts earlier than East 

Antarctic fast ice. This is because the dynamically formed fast ice is more distributed in West Antarctica 

than in East Antarctica, resulting in physically weaker fast ice causing episodic breakups (Fraser et al., 

2012).

As shown in Figure 4. 10-11, time series fast ice extent exhibits apparently regional difference for 

fast ice trend and interannual variability. The Land Ice Shelf fast ice extent shows a not significant 

negative trend from 2002 to 2011. However, the trend should be further examined whether it is part of 

a much longer-term trend with additional decades of time series data. While the East Antarctica has a 

regular interannual variability for fast ice extent (Fraser et al., 2012), the West Antarctic fast ice in this 

study shows a large variability, especially for the Land Ice Shelf fast ice regions. Meanwhile, the 

Sulzberger Ice Shelf showed relatively strong negative trend for fast ice extent. This seems to be due to 

the variability which becomes stronger more rapidly after 2008 is largely attributable to the negative 

trend.

Anomalous breakup events are observed in the Land Ice Shelf fast ice both between 2004 and 2005 

and in 2011. However, additional analysis is needed to determine whether this variability is due to 

macroscale volatility or due to large-scale atmospheric and oceanic effects or local sea ice dynamics 

that weaken the Antarctic sea ice. However, we confirmed that the anomalous fast ice collapse between 

2004 and 2005 occurred in the Land Ice Shelf. It was reported that the Land Ice Shelf experienced 

relatively fast calving flux rather than basal melt (Rignot et al., 2011; Depporter et al., 2013). Therefore, 

as the ice shelf advances towards the far open ocean, it pushes fast ice further into the open water, 

making fast ice more unstable and eventually leading to breakups (Miles et al., 2017). As shown in 

MODIS images of Figure 4. 12, the Land Ice Shelf breakup starts on the western side of fast ice, and 

finally glacier calving and iceberg dispersal are seen with the entire fast ice collapses. Therefore, fast 

ice should be monitored over a long period of time as it can affect the stability of the ice shelf.
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Figure 4. 9. Mean annual cycle of fast ice extent for the entire study area.

Figure 4. 10. Fast ice time series for the Land Ice Shelf site including (a) fast ice extent and (b) its 
anomaly with a linear trend as a solid line.

Figure 4. 11. Fast ice time series for the Sulzberger Ice Shelf site including (a) fast ice extent and (b) its 
anomaly with a linear trend as a solid line.
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Figure 4. 12. MODIS images that show fast ice breakup event occurred in the Land Ice Shelf. 
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4.6. Conclusions and Future Work

We generated nearly decade-long fast ice in the Amundsen Sea of West Antarctica from July 2002 to

September 2011. Spatiotemporal variability of fast ice extent was investigated particularly focusing on 

the Land and Sulzberger Ice shelf in the Amundsen Sea. Based on AMSR-E and MODIS IST data, 

machine learning and neighborhood correlation images methods were used to detect fast ice in 15-days 

intervals. Spatiotemporal patterns of fast ice have shown regional differences due to fast ice residency 

patterns, seasonality, and yearly trend. An apparent decline in fast ice extent was observed over near-

decadal study period. Ice shelf with high calving flux has large effects on fast ice breakups. Fast ice 

breakup can trigger iceberg calving events as well. Therefore, fast ice variability can be used as 

prediction of calving events. Although it was a case study, the anomalous breakup of fast ice was 

observed. However, it is necessary to analyze various cases for a longer period to generalize the 

influence of the environment by region. This study is a detailed analysis of fast ice in the West Antarctic 

Ocean. However, it is needed to further analyze the factors influencing the formation of West Antarctic 

fast ice based on various differences between East Antarctic and West Antarctic such as fast-flowing ice 

shelves. Therefore, we can understand the complex characteristics of the distribution of the Antarctic 

fast ice by revealing the mechanism of West Antarctic fast ice differentiated from the East Antarctic fast 

ice. This suggests that the projection of fast ice distribution according to climate changes is very useful 

information for the surrounding environments such as the stability of ice shelf and polynya formation.
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Chapter 5

Overall conclusions and Future research

It is expected that this dissertation provides Antarctic scientific community with an effective and 

reliable method to detect fast ice in a high spatiotemporal resolution and a comprehensive and detailed 

analysis of fast ice distribution and variability in a long period of time to extend our knowledge of fast 

ice over the West Antarctic in a global warming climate. Research part 1 was a research to map fast ice 

in the entire Antarctic by combining MODIS and AMSR-E data and machine learning techniques. The 

study achieved an automated fast ice classification compared to manual classification of fast ice in 

previous research. However, as some areas in West Antarctica show a high variation of fast ice for a 

short period of time, the composite period of 20-days is needed to be lowered to accurately analyze fast-

changing fast ice. Due to the data void problem caused by cloud cover using optical sensor data and no 

reference data over the West Antarctic, it was also a problem for the West Antarctic fast ice. The research 

part 2 more focused on the West Antarctic fast ice. The research combined image segmentation, object 

correlation image method, and machine learning techniques by using pairs of SAR images with a short 

time gap. As SAR can penetrate clouds and detect fast ice, this study overcomes the cloud contamination 

problem that previous research has due to optical sensor. Since accurate fast ice regions that persist for 

a certain period of time are indistinguishable in a single SAR image, SAR composite images containing 

two dates of images in 5-days time intervals were used for image segmentation, which is well suited to 

SAR data with high spatial heterogeneity. Based on the segmented SAR composite images, object 

correlation image method was applied, which result in persisting fast ice regions with high correlation

values. Fast ice classification with a short time interval was achieved, which is more appropriate for the 

analysis of fast-changing fast ice regions. However, SAR images have narrow swath width and spatial 

limitation with long repeat cycle, which make it difficult to analyze long-term fast ice changes. The 

final research part 3 used MODIS data selectively with AMSR-E data by overcoming cloud 

contamination problem. A detailed investigation of long-term fast ice extent in West Antarctica focusing 

on the Amundsen Sea was analyzed with the effects of atmospheric and oceanic forcing.

Several studies of fast ice remain for future work. Firstly, in this thesis, fast ice was obtained from 

2002 to 2011. Since AMSR2 data are available, it is possible to apply fast ice detection algorithm in the 

following years to obtain longer-term fast ice. Decades of fast ice data will be used for long-term 

analysis with large-scale climate models and indices such as the Southern Annular Mode (SAM), the 

Southern Oscillation Index (SOI), the El Nino-Southern Oscillation (ENSO). The estimation of fast ice 

thickness and volume can be suggested as future work. As the volume of fast ice can comprise up to 

about 40% of total sea ice, it is needed to analyze the thickness of fast ice as fast ice extent changes. In 

addition, the greatest difference of East and West Antarctica is the change of ice shelf. It is needed to 
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analyze the fast ice of West Antarctica differentiated from East Antarctica such as an analysis for how 

fast-melting ice shelves in the West Antarctic Sea affect the formation of fast ice.
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