
Researching Cooperation and Communication in Continuous
Software Engineering

Yvonne Dittrich
Dep. of Computer Science

IT University of Copenhagen
Copenhagen, Denmark

ydi@itu.dk

Jacob Nørbjerg
Dep. of Digitalization

Copenhagen Business School
Copenhagen, Denmark

jno.digi@cbs.dk

Paolo Tell
Dep. of Computer Science

IT University of Copenhagen
Copenhagen, Denmark

pate@itu.dk

Lars Bendix
Dep. of Computer Science

Lund University
Lund, Sweden

bendix@cs.lth.se

ABSTRACT
Continuous Software Engineering (CSE)—continuous development
and deployment of software—and DevOps—the close cooperation
or integration of operations and software development—is about
to change how software is developed. Together with the tighter
integration of development and operations also with usage this
will change coordination and collaboration both between IT profes-
sionals and between developers and users. In this short paper, we
discuss the CHASE dimension of three core research themes that
begin to crystallize in literature. This position paper is intended as
a ‘call to arms’ for the CHASE community to study CSE.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment; Programming teams;

KEYWORDS
Continuous Software Engineering, DevOps
ACM Reference Format:
Yvonne Dittrich, Jacob Nørbjerg, Paolo Tell, and Lars Bendix. 2018. Research-
ing Cooperation and Communication in Continuous Software Engineering.
In CHASE’18: CHASE’18:IEEE/ACM 11th International Workshop on Cooper-
ative and Human Aspects of Software , May 27, 2018, Gothenburg, Sweden.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3195836.3195856

1 INTRODUCTION
Continuous Software Engineering (CSE) evolved from the need
to meet quality-of-service requirements in large online service
providers like Google, Amazon, and Facebook. These companies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHASE’18, May 27, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5725-8/18/05. . . $15.00
https://doi.org/10.1145/3195836.3195856

developed tools and practices to correct errors and update func-
tionality in on-line applications without downtime, resulting in the
automation of build, test, and deployment, and the replacement of
scheduled release cycles by evolving requirements and continuous
development and release of new software versions. The advantages
of these practices are: new features can be quickly deployed and
tested; shorter time to meet changing business needs; user feedback
can be collected and applied on an ongoing basis; different features
and interfaces can be compared in production; higher developer
productivity and satisfaction; and, last but not least, the dynamic
adaptation to demands attracts new customers.

Software companies in other sectors (e.g. financial institutions
and embedded systems) are also beginning to explore CSE. They
may be forced by legislation, customer requirements, and interna-
tional competition to, e.g., quickly implement changes to compli-
ance rules in the financial sector; ward of competitors in the online
payment sector through rapid implementation of new features; and
to survive as a small software company in a highly competitive en-
vironment through rapid response to changing customer demands
while maintaining high quality. The changes to the development
practice will change the cooperation between software engineers
and users, respectively customers as well.

It is, therefore, now generally recognized that CSE will become a
game changer for the software industry [29]. And this will impact
how software development as a collaborative practice will unfold.
CHASE research has an important contribution here: As we argue
below, the core research themes discussed in the context of CSE
all point to CHASE topics as central for handling the outlined
challenges.

This short paper is based on an initial literature study com-
plemented by several student projects and a series of interviews
that have not yet been fully analyzed. The paper, therefore, takes
the form of a position paper that argues for CHASE research on
CSE. The insights into industrial practice gained from the student
projects and the interviews complement the findings from the re-
lated work and especially add a social and collaborative dimension.
The three themes below emerge from core challenges reported in
the interviews with industrial practitioners.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/160744248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3195836.3195856
https://doi.org/10.1145/3195836.3195856

CHASE’18, May 27, 2018, Gothenburg, Sweden Yvonne Dittrich, Jacob Nørbjerg, Paolo Tell, and Lars Bendix

The following section presents a short literature review. Sec-
tion 3 then discusses the three research themes and their CHASE
dimensions. Section 4 presents our research approach before the
conclusion of the paper.

2 CONTINUOUS SOFTWARE ENGINEERING
“Continuous Delivery? Easy! Just Change Everything (Well, Maybe
It Is Not That Easy)” [19]. In spite of the challenges facing com-
panies moving towards CSE, there is a scarcity of documented
and validated guidelines for adopting CSE practices, tools, and pro-
cesses across sectors and within companies of different sizes; c.f.;
[6, 11, 19].

Existing case studies and guidebooks promote solutions to partial
problems without discussing the implications of their application:
For instance, self-contained microservices are suggested as an ar-
chitectural pattern for CSE [2], but such a design requires extra
measures to maintain data consistency and support analysis across
services. Even the best studies, such as the account of Microsoft’s
change of the Team Foundation Server™ to the cloud-based Visual
Studio™ [14], discuss a specific journey to CSE, but do not provide
orientation for the transition of other companies or within other
domains.

Shahin et al. [24] list 13 CSE adoption practices that have been
reported in the literature, but do not present advice on how to select
among them in different circumstances. Neely and Stolt [19] offer
specific advice based on the experiences from their organization,
but the advice is based on one case only. The Gartner group has
published a roadmap for CSE [29], but its empirical foundation is
unclear.

The most comprehensive research-based roadmap, the Stairway
to Heaven framework by Olsson and Bosch [22], specifies 5 stages
on the journey towards CSE: traditional development, R&D orga-
nization all agile, continuous integration, continuous deployment,
and R&D as an Innovation system. This final step is similar to the
continuous loop from business, over development, deployment and
use, and back to business described by Fitzgerald and Stol [11].

The Stairway to Heaven framework is based on observational
studies in the embedded software and telecommunications sectors,
and even though it, and the other studies and experience reports
in [25] comprise a useful milestone in CSE research, it has also
been criticized for assuming an organizational view, and ignoring
the lower level managerial, process, and personal-cognitive issues
involved in changing towards CSE [27]. At the level of software
processes and management, for example, Dennehy and Conboy [8]
discuss the frictions created when plan and control responsibilities
move from the software team to managers external to the team, and
decisions become based on measurements instead of the knowledge
and experience of the team. The framework also fails to integrate
the relationship between the customer and software organizations
at the strategic and budgeting levels [1, 11].

Especially reading and listening to various experience reports,
it becomes very clear that CSE will change how we cooperate and
coordinate software engineering. As there is no common release
cycle anymore, different software engineering activities as well as
different teams will develop their specific rhythm. Crosscutting
tasks require new coordination mechanisms [23]. Coordination

both across different activities and across different modules of a
software system will have to be rethought.

Below, we further discuss three research themes that are recur-
ring both in research literature and our discussions with practition-
ers.

3 THREE RESEARCH THEMES
Whereas related work focuses on continuous processes across busi-
ness, development and operations (e.g. [11]) and proposes maturity
models (e.g. [22]), the industrial practitioners focus on underpin-
ning practices that indicate the core challenges of continuous de-
velopment: design and architecture to support CSE, quality and
test automation, and changing processes and management within
and beyond the software organization. These themes are discussed
below and in relation to specific related work as well as relevant
student projects (MSc theses) and interviews.

3.1 Tooling and Architecting
The technical design of software, and the integration, test and de-
ployment infrastructures must evolve to support CSE processes.
The necessity to treat IT infrastructures as code adds new require-
ments to test and release automation tools. Massive incremental
change adds requirements to the technical design of software. Such
design, in turn, requires new strategies for code and dependency
management. Furthermore, many organizations struggle with re-
designing their legacy systems architecture to fit the demands of
CSE.

Research on architectural design to support CSE is still in an im-
mature stage. There is a fairly clear understanding of the problem—
managing the dependencies between code and (virtual) integration,
test, and deployment infrastructures [15]—and there is a growing
realization that a microservices architecture might be one possible
solution [2]. However, current architectural research is only helpful
for the few companies that can start from scratch. The question of
how companies can migrate from an established monolithic to a
CSE-friendly architecture is still unresolved. Nor is there any help
for companies that for some reason cannot migrate.

An example for unresolved issues is cross-service data integra-
tion and management. CSE based on a microservice architecture
assumes that the data model and the services are partitioned in
similar ways. In data intensive businesses, the common data model
is one of the core assets and dependencies are often through the
data model [26]. Partitioning this data model might result in repli-
cation of data, which again provides additional challenges. Cross
service data analysis requires a whole independent infrastructure
that again needs to be carefully designed so that it can evolve to-
gether with the services and their data. All these dependencies have
to be managed by software engineers and architects [7].

CSE requires a new way of handling code ownership and coordi-
nation of the implementation of cross-cutting features beyond the
decision on a specific architecture. Continuous integration and test-
ing are a prerequisite to be able to discover conflicts and regressions
as soon as possible. Some of our interview partners work internally
with open source like models of code ownership. If changes to sev-
eral services are necessary to implement a feature, multiple teams

Researching Cooperation and Communication in Continuous Software Engineering CHASE’18, May 27, 2018, Gothenburg, Sweden

might be involved, or pull requests for the change of a service
owned by another team are submitted.

Thus, continuous software engineering will require new patterns
of coordination and cooperation in software development.

3.2 Continuous Quality Assurance
Software quality control is often stated as one of the key enablers of
CSE [11]. CSE requires developers to continuously test the software
under development. The implications for the cooperation between
software developers and testers, and their practices, however, are
seldom discussed.

The core measures here are test automation and live site moni-
toring. For CSE, unit test automation needs to be extended to inte-
gration and acceptance test levels. Frameworks and infrastructures
to support such automatisation have been developed, e.g., in the
context of Behavior Driven Development [5, 21]. An initial study
showed that rather than the deployment of tools and methods, the
changes of work practices and the cooperation between different
roles are the core challenges [16]. Testers need to work closer to-
gether with software engineers. The development and maintenance
of the test suite needs to become part of the continuous evolution
of the code. The introduction of code scanning tools in the con-
tinuous integration environment likewise results in challenges for
the individual developer and requires changes to the development
practice: coding standards need to be agreed on in advance; the
team needs to agree on what is considered good coding practices;
the code architecture and architectural design principles need to
be explicated [3].

CSE allows to close the feedback loop between software de-
velopment and use through instrumentation and telemetry. The
challenge here is to use telemetry so the data helps understanding
customer needs. Research on site monitoring [28] focuses on tools
and techniques, and often fails to explore the repercussions for the
software process. The experience report of Microsoft’s Visual Stu-
dio indicates that close contact between the development team and
pilot users is as important as the careful design of instrumentation
and experiments.

In regulated domains, like finance and health care, the need
to re-structure the cooperation for quality control extends into
the business departments: In Denmark, software development and
deployment in these domains require a manual accept by a business
representative, but can a business representative check core test
cases several times a day? This leads to the next theme discussed
below.

3.3 CSE Processes and Interaction with
Business and Users

Most CSE literature focuses on activities within software develop-
ment (cf. [24]), while implications for the cooperation with cus-
tomers and users are mostly ignored or discussed at a superficial
level only. CSE requires a radical change to how software develop-
ment is coordinated and managed, however. This is currently only
rudimentary understood.

User-Centered Design (UCD) in the context of agile development
has been discussed since the dawn of agile development [4]. The
continuous stakeholder involvement, interweaving of UCD and

agile development, and the focus on artefact-mediated cooperation
between different professionals, are all indicated by the systematic
literature study in [4] as examples of principles that can be a starting
point to combine UCD and continuous development. However, as
the development does not follow common release cycles anymore,
and UCD activities according to our experiences have a different
cadence than programming and development, the integration of
UCD and software engineering in continuous software engineering
can be expected to take a different shape.

In one company, developers and managers, implemented and
shadow deployed more innovative developments through an in-
dependent pipeline parallel to the production environment, and
merged the innovations back to the main source code once they
had been proven and accepted.

Further, what changes are needed on the boundary between
development and user organizations? Will users and customers
adapt to short development and release cycles?

In line with [11], we viewCSE as a continuous flow from business
strategy and decision making over development, to operations and
use, and finally returning user feedback and new ideas back to the
business. From this perspective, CSE means the continuous and
incremental change to an organization and the IT systems that it
produces and/or uses. This however raises yet another question:
Will software developers and user organizations be able to combine
the incremental improvement to processes of CSE with creativity
and radical innovation [11]?

Very little research discusses how to transform not only the
software but also user/customer organizations in order to reach the
stage of effective and efficient CSE.

4 HOW TO RESEARCH THE CHASE SIDE OF
CSE

Industrial practice is asking for research-based actionable guidelines
and advice in order to harvest the advantage of CSE [6, 13]. As we
argued above, collaboration and human aspects are central to the
agreed-on research challenges. Researching CSE now will allow
CHASE research to influence the still emerging paradigm and both
develop the CHASE body of knowledge and become influential
in supporting the development of techniques, tools and processes
supporting the collaborative and human aspects of CSE.

Researching companies in the transition from conventional and
agile development to CSE will allow CHASE researchers to ex-
plore the differences between CSE and previous approaches to
coordination and collaboration and will support the development
of theoretical explanations.

A relevant research approach is Action Research. Action Re-
search combines structured, trustworthy empirical research with
method, technique and tool development (see [10, 17, 18, 20]). Co-
operative Method Development (CMD) [10], for example, proposes
a series of action research cycles, each with 3 phases: (1) under-
stand current practices and problems; (2) deliberate change; and (3)
observe and evaluate improvements.

In order to support the adaptation of the research results to het-
erogeneous contexts and sectors, and support Software as a Service
provisioning as well as complex infrastructures, we do not see a
new mega method as the way to move forward. We rather propose

CHASE’18, May 27, 2018, Gothenburg, Sweden Yvonne Dittrich, Jacob Nørbjerg, Paolo Tell, and Lars Bendix

to formulate methods as practice patterns [9]. Applying the concept
of design patterns [12] to Software Engineering methods, relates
the proposed solution not only to the context and the problem, but
allows to detail forces that influence the adaptation of the solution,
as well as consequences and implications for other patterns. Such
patterns can support the transition to CSE as they provide the nec-
essary information to pick and experiment based on the additional
information the method patterns provide.

Above, we argued that the new processes and collaboration
structures are interacting with software architecture, tools, and
QA. However, the changes will affect the interaction with business
stakeholders and users as well. Research and research results in
form of method patterns need to cover this cooperation too.

Action research further provides the opportunity to establish and
support continuous improvement, innovation and experimentation
[11] at the same time as researching both the learning and the CSE
practices.

5 CONCLUSIONS
Continuous software engineering will change how we develop soft-
ware. It therefore will also change how developers collaborate with
each other and with other stakeholders in the software develop-
ment and deployment process. Communication, coordination and
cooperation will take place differently from what we have seen so
far. CHASE research, therefore, has a unique role to play here.

ACKNOWLEDGMENT
The authors would like to thank all the practitioners that con-
tributed time and insights to this research.

REFERENCES
[1] Ritu Agarwal and Amrit Tiwana. 2015. Editorial-Evolvable Systems: Through

the Looking Glass of IS. Info. Sys. Research 26, 3 (Sept. 2015), 473–479. https:
//doi.org/10.1287/isre.2015.0595

[2] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software Architect’s
Perspective. Addison-Wesley Professional.

[3] Brynjolfur Bjarnason. 2016. Managing Technical Depth. Master Thesis. IT
University of Copenhagen. (2016).

[4] Manuel Brhel, Hendrik Meth, Alexander Maedche, and Karl Werder. 2015. Explor-
ing principles of user-centered agile software development: A literature review.
Information and Software Technology 61 (2015), 163–181.

[5] J. Carter and W. B. Gardner. 2016. BHive: Towards Behaviour-Driven Develop-
ment Supported by B-Method. In 2016 IEEE 17th International Conference on Infor-
mation Reuse and Integration (IRI). 249–256. https://doi.org/10.1109/IRI.2016.39

[6] Lianping Chen. 2015. Continuous delivery: Huge benefits, but challenges too.
IEEE Software 32, 2 (2015), 50–54.

[7] Cleidson RB de Souza and David F Redmiles. 2009. On the roles of APIs in
the coordination of collaborative software development. Computer Supported
Cooperative Work (CSCW) 18, 5-6 (2009), 445.

[8] Denis Dennehy and Kieran Conboy. 2017. Going with the flow: An activity
theory analysis of flow techniques in software development. Journal of Systems
and Software 133 (2017), 160–173.

[9] Yvonne Dittrich. 2016. What does it mean to use a method? Towards a practice
theory for software engineering. Information and Software Technology 70 (2016),
220–231.

[10] Yvonne Dittrich, Kari Rönkkö, Jeanette Eriksson, Christina Hansson, and Olle Lin-
deberg. 2008. Cooperative method development. Empirical Software Engineering
13, 3 (2008), 231–260.

[11] Brian Fitzgerald and Klaas-Jan Stol. 2017. Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software 123 (2017), 176–189.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1993. Design
patterns: Abstraction and reuse of object-oriented design. In European Conference
on Object-Oriented Programming. Springer, 406–431.

[13] Peggy Gregory, Leonor Barroca, Helen Sharp, Advait Deshpande, and Katie
Taylor. 2016. The challenges that challenge: Engaging with agile practitionersâĂŹ
concerns. Information and Software Technology 77 (2016), 92–104.

[14] Sam Guckenheimer. 2016. Our journey to cloud cadence lessons learned at Mi-
crosoft developer division. Technical Report. https://www.microsoft.com/en-us/
download/details.aspx?id=4692

[15] Jez Humble andDavid Farley. 2010. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Pearson Education.

[16] Mark Klittgard and Rasmus Rosted. 2017. Introducing new Procedures in a
Busy Environment. A Cooperative Method Development Study on Continuous
Software Engineering in a Mediom Sized Company. Master Thesis. IT University
of Copenhagen. (2017).

[17] Lars Mathiassen. 2002. Collaborative practice research. Information Technology
& People 15, 4 (2002), 321–345.

[18] Lars Mathiassen, Peter Axel Nielsen, and Jan Pries-Heje. 2002. Learning SPI in
practice. Addison-Wesley, Boston.

[19] Steve Neely and Steve Stolt. 2013. Continuous delivery? easy! just change every-
thing (well, maybe it is not that easy). In Agile Conference (AGILE), 2013. IEEE,
121–128.

[20] Peter Axel Nielsen and Karlheinz Kautz. 2008. Software process & knowledge: Be-
yond conventional software process improvement. Software Innovation Publisher.

[21] Dan North. 2006. Behavior Modification: The evolution of behavior-driven
development. Better Software 8, 3 (2006).

[22] Helena Holmström Olsson and Jan Bosch. 2014. Climbing the “Stairway to
Heaven”: evolving from agile development to continuous deployment of software.
In Continuous software engineering. Springer, 15–27.

[23] Kjeld Schmidt and Carla Simonee. 1996. Coordination mechanisms: Towards a
conceptual foundation of CSCW systems design. Computer Supported Cooperative
Work (CSCW) 5, 2-3 (1996), 155–200.

[24] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. 2017. Continuous
integration, delivery and deployment: a systematic review on approaches, tools,
challenges and practices. IEEE Access 5 (2017), 3909–3943.

[25] Daniel Ståhl and Jan Bosch. 2014. Continuous integration flows. In Continuous
software engineering. Springer, 107–115.

[26] Kenn Thisted. 2014. Rethinking Release – A Case Study. Master Thesis. IT
University of Copenhagen. (2014).

[27] Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, and IngoWeber. 2017. Report
from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the
DevOps World. arXiv preprint arXiv:1709.08951 (2017).

[28] André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens Ehlers,
Sören Frey, and Dennis Kieselhorst. 2009. Continuous monitoring of software
services: Design and application of the Kieker framework. (2009).

[29] Nathan Wilson. 2017. Modernizing Application Development Primer for 2017.
Gartner inc. (2017).

https://doi.org/10.1287/isre.2015.0595
https://doi.org/10.1287/isre.2015.0595
https://doi.org/10.1109/IRI.2016.39
https://www.microsoft.com/en-us/download/details.aspx?id=4692
https://www.microsoft.com/en-us/download/details.aspx?id=4692

	Abstract
	1 Introduction
	2 Continuous Software Engineering
	3 Three Research Themes
	3.1 Tooling and Architecting
	3.2 Continuous Quality Assurance
	3.3 CSE Processes and Interaction with Business and Users

	4 How to research the CHASE side of CSE
	5 Conclusions
	References

