
Virtual by Design: How a Work Environment can Support Agile
Distributed Software Development

Pernille Lous
IT University of Copenhagen

Copenhagen, Denmark
pelo@itu.dk

Paolo Tell
IT University of Copenhagen

Copenhagen, Denmark
pate@itu.dk

Christian Bo Michelsen
IT University of Copenhagen

Copenhagen, Denmark
chmi@itu.dk

Yvonne Dittrich
IT University of Copenhagen

Copenhagen, Denmark
ydi@itu.dk

Marco Kuhrmann
Clausthal University of Technology

Clausthal, Germany
kuhrmann@acm.org

Allan Ebdrup
Debitoor

Copenhagen, Denmark
aeb@debitoor.com

ABSTRACT
Even though agile methods have been flourishing in the last decades,
their implementation in (globally) distributed arrangements still
present hard challenges. Due to this tension, practices are either
modified or added to compensate with the additional control re-
quired by the setup. In this paper, we present a case study about
a company that managed to incrementally design a process that
does not compromise the foundations of the agile philosophy by
embracing the characteristics of distributed development. We show
how a virtual work environment has been crafted by continuously
improving practices and carefully selecting technologies to allow
each team member to fully participate regardless of the actual phys-
ical location. Aware of the single nature limitation of the reported
case, we present extensive information to frame the context allow-
ing meaningful comparisons by researchers and providing concrete
examples for practitioners.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment; Programming teams;

KEYWORDS
Agile development, global software engineering, virtual teams

ACM Reference Format:
Pernille Lous, Paolo Tell, Christian Bo Michelsen, Yvonne Dittrich, Marco
Kuhrmann, and Allan Ebdrup. 2018. Virtual by Design: How a Work Envi-
ronment can Support Agile Distributed Software Development. In ICGSE
’18: ICGSE ’18: 13th IEEE/ACM International Conference on Global Software
Engineering , May 27–29, 2018, Gothenburg, Sweden. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3196369.3196374

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICGSE ’18, May 27–29, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5717-3/18/05. . . $15.00
https://doi.org/10.1145/3196369.3196374

1 INTRODUCTION
Global software engineering (GSE) and agile software development
(ASD) are streams in the software development industry that are
increasingly gaining momentum—notably in their combination
Agile Distributed Software Development (ADSD) from hereon. Yet,
this combination has shown to be fairly complicated to implement
[23, 32] if the core of the followed process ought to be adhering to
the agile values and principles expressed in the Agile Manifesto [1].
Even though evidence in the literature provides examples of cases
combining GSE and ASD, implementations that do not compromise
the agile philosophy and achieve the extra level of control required
by distributed development are rare. Specifically, cooperation in
GSE is considered challenging due to the limited communication,
the harder coordination, the inadequate collaboration, and the in-
sufficient awareness among the sites involved in the endeavour
[13, 16]. Independent of whether the team is distributed, dispersed,
or partially dispersed [38, 39], geographical, temporal, cultural, and
linguistic distances are characteristics hampering cooperation that
need to be alleviated by special precautions [6, 21, 23].

The case reported in this paper describes a different approach:
instead of compensating for the distribution, the whole work envi-
ronment has been crafted to embrace the distributed setup.

Case Subject. Debitoor has 40 employees, and its business is
based on an online invoicing and accounting software solution for
small businesses and companies. Fourteen employees, which are
distributed across four countries in Europe, are directly involved in
the development of the product and represent our case subject. This
study does not focus on the system architecture (microservices in
the specific case), as this decision was never challenged. Instead,
we focus on the team and study the practices and the ecosystem of
tools used by the virtual development team.

Problem Statement and Objectives. Our research aims to study
the virtual work environment at Debitoor and to show how the
challenges of ADSD reported in the literature (as aggregated in [23])
are avoided by design. In particular, we are interested in answering
the following research question: “How can a work environment
support agile distributed software development?”

Contribution. By reflecting on a one-year long investigation of
Debitoor, we provide insights regarding the practices, the ecosystem
of tools used, and their configuration, which showcases how a work

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/160744247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ICGSE ’18, May 27–29, 2018, Gothenburg, Sweden Lous et al.

environment can be crafted to support a virtual agile distributed
software development team. Our study provides inspiration to prac-
titioners and—as a case study reporting a successful implementation
of a virtual work environment—provides detailed information about
the context to lay the foundation for future research.

Outline. The remainder of this paper is organized as follows:
Section 2 presents related work, and Section 3 describes the re-
search design. Results are presented in Section 4, before we discuss
implications in Section 5.

2 RELATEDWORK
Agile software development in GSE constitutes numerous chal-
lenges regarding proper implementation of key components of the
agile philosophy. For instance, in their literature review, Lous et al.
[23] study whether agile methods—specifically Scrum—are fit for
GSE. They name 45 challenges in 19 categories that practitioners
face when using Scrum in distributed settings. Challenges have
been identified in the Scrum “core process” (e.g., on-/off-site Scrum
Master, team cohesion, and attendance in meetings), as well as in
the “extended practices” (e.g., cultural and technical challenges,
stakeholder separation, and distributed requirements engineering).
Lous et al. [23] conclude that scaling Scrum for GSE is the most
challenging problem. A similar conclusion is drawn by Paasivaara
et al. [32], who study a large-scale agile transformation at Erics-
son. Among other things, authors conclude that larger teams might
have an increased need for specialization, which limits team in-
terchangeability and, thus, flexibly of staffing, and they also con-
sider out-of-the-box agile frameworks inappropriate. In this regard,
Diebold et al. [9] provide a study that particularly investigates the
actual way of adopting Scrum to specific a context. They find Scrum
barely used by the book, but many practitioners modifying Scrum
on-demand. A broader perspective is provided by Kuhrmann et al.
[22]. In their study, authors investigate the use and combination of
different development approaches. Their major findings comprise
that independent from size or industry sector, companies combine
different traditional and agile development methods/practices. Par-
ticipants in the study mentioned project/product management and
commitment, and improved project flexibility (across project sites)
as major drivers. These exemplarily selected studies concern the
process perspective and how distributed teams approach these chal-
lenges. In 2014, an IEEE Software special issue on virtual teams
[39] discussed the particularities of work patterns, challenges com-
ing along with virtual teams, and experiences from implementing
virtual teams [10, 14].

Modern technology helps distributed virtual teams collaborat-
ing. For instance, different communication technologies like video
conferencing or instant messaging help creating a virtual work
environment [29]. Yet, building awareness regarding “real-time”
distributed workspaces is a topic discussed since the mid 1990’s
[19]. In 2012, Portillo-Rodríguez et al. [34] conducted a systematic
review to develop a big picture of tools and technologies used inGSE.
In total, they identified 132 tools that have been used in distributed
software projects mainly addressing communication, coordination,
and control. That is, tools used to compile a distributed workspace
mainly address the issues coming along with distributed team se-
tups, notably concerned with enabling teams to collaborate across

different sites. Yet, most of the tools address specific issues, such as
management of artifacts in distributed projects [4, 15], collabora-
tive software development practices, e.g., using pair-programming
[20, 44], dashboards [3], and many more.

In their systemic review, Šmite et al. [43] conclude that “ma-
jority of the studies represent problem-oriented reports focusing on
different aspects of GSE management rather than in-depth analysis of
solutions for example in terms of useful practices or techniques”. A re-
flection on the ICGSE conference series by Ebert et al. [12] provides
an overview of the fields of interest finding project management,
collaboration and teams, and processes and organization the most
frequently addressed issues. The study at hand thus contributes to
the body of knowledge by providing experiences of “solutions [. . .]
of useful practices” using a practical case on processes and tools
and their integration in a virtual workspace in distributed teams.

3 RESEARCH DESIGN
Given the exploratory nature of this research, a mixed-method ap-
proach with a concurrent triangulation strategy “to confirm, cross-
validate, and corroborate findings” [11] was chosen. As suggested by
Miles et al. [25], we collected data from a single subject through ob-
servations, interviews, questionnaires, and off-site data collection.
Table 1 presents a summary to characterize the empirical context to
ease future comparisons. The taxonomy has been adapted from the
one suggested in [42]. Further details on the data collection proce-
dures are presented in Section 3.1, and the data analysis procedure
is presented in Section 3.2. A brief description of the study subject
is presented in Section 3.3. Finally, Section 3.4 discusses threats to
validity and measures taken to improve the validity of our study.

Table 1: Characterization of the empirical context.

Attribute Value

Year 2017
Empirical focus Empirically based
Empirical background Industry
Industry sector Accounting
Subject of investigation Practitioners
Study results Successful practices
Empirical research method Case study
Source of empirical evidence Observ., interview, survey
Location Offshore
Legal entity Outsourcing (insourcing)1
Geographic distance Distant (within Europe)
Temporal distance Small (1 hour max)

of sites 4 (2x Denmark, Ukraine, Lithuania)
Team size 14 (12 developers, 1 PO, 1 CTO)

3.1 Data Collection
The data collection was performed in 12 visits to Debitoor between
November 2016 and October 2017. During this period, the research
team was granted access to the entire ecosystem of tools used by
1Note: Debitoor’s business arrangement with the Ukraine part of the team is outsourc-
ing. However, all members of the development team consider the relation much more
in line with what would be expected in an insourcing arrangement.

Virtual by Design: How a Work Environment can
Support Agile Distributed Software Development ICGSE ’18, May 27–29, 2018, Gothenburg, Sweden

Interview (CTO)

Observation (full day)

Observation (full day)

Observation (full day), Interview (CTO, PO)

Observation (full day, including retrospective)

Observation (stand-up)

Observation (full day)

Observation (stand-up)

Observation (full day, including retrospective),
Interview (CTO, Developer)

Observation (stand-up)

Interview (CTO), Questionnaire

16th Nov
2016

30th Jan
2017

15th Feb

1st Mar

3rd Mar

22nd Mar

28th Mar

31st Mar

4th Apr

21st Apr

6th Oct Interview (CTO)

23rd Mar

Figure 1: Overview of the research activities performed dur-
ing the study.

the development team: Slack, Google Sheet/Slide, Github, and the
Waffle.io board (see Table 4). Figure 1 visualizes a breakdown of the
different activities, i.e., observations, interviews, and a survey.

3.1.1 Observations. Nine observations were conducted at the
Danish site. Three visits were fully concerned with the 9:15 CET
stand-up meeting. The remaining six full-day observations included
the stand-up meetings, an observation of the daily work practice
in the company, and we also observed two full retrospective meet-
ings. Debitoor and the members of the development team had been
open to collaboration and we were allowed to join the team in any
activity. This included lunches and coffee breaks, which were ex-
tremely useful to engage in one-on-one conversations with specific
individuals to clarify and discuss any interesting observation. Field
notes were taken during all observations and were re-written after
the observation ended according to the process described in [25].

3.1.2 General Interviews. In total, seven semi-structured inter-
views have been performed throughout the research period. One
with the product owner (PO), one with a developer from Ukraine,
and five with the CTO. Semi-structured interviews were chosen
to ensure the openness of the conversation, while allowing the
topics of interest to be fully explored [36]. All interviews have
been carried out using the interview guide proposed by Yin [45].
Each interview lasted about one hour and was recorded for post
analysis. All but one interview, which was performed through a
Slack-call (Ukraine developer), were conducted face-to-face in a
meeting room at the Danish site. Besides discussing general aspects
of the work practices at Debitoor, the interviews were all organized
with key members to explore recurring insights captured during
the observations. An exception was the first interview, as it was the
project kick-off in which more general aspects of Debitoor were
explored and discussed.

Table 2: Overview of the questionnaire (questions and data
types collected).

Q1 Do you perceive the developers in Kiev/Copenhagen as one or two teams?
[Multiple choice: 1 team, 2 teams, free text]

Q2 Please rate your satisfaction with regards to the amount of interaction
between Kiev/Copenhagen during working hours. [1: I would prefer
less interaction; to 5: I would like to have more interaction than we
already have]

Q3 If the entire team would be located in one site: how much would you
change the way of doing stand-ups/retrospective? [1: I would change a
lot and make it more co-located; to 5: I would not change anything. I
prefer the way it is now]

3.1.3 Short Interview. To understand the particularities of the
communication network within the development team, a short
interview was performed with each member of the team to capture
the perceived communication paths. This interview comprised one
question only: “Who do you contact directly regarding work? This
includes private messages on Slack, but excludes group channels, social
interactions not regarding workor contact outside work.”

3.1.4 Questionnaire. An online questionnaire was designed to
gather further details from the team members regarding their per-
ception of specific topics. Besides other advantages, this collection
technique allowed us to reach all sites of the development team
equally: Denmark, Lithuania, Ukraine, and the single home office
in Denmark. Table 2 shows the three questions of interest. Two of
the questions use a 5-point Likert scale, and one question asks the
participant to select options.

3.1.5 Off-site Data Collection. Finally, our main contact at Deb-
itoor was available for off-site data collection via email throughout
the study. This contact was leveraged several times using the ap-
proach suggested in [25].

3.2 Data Analysis
Based on the field notes, specific moments of the observations
were selected for in-depth analyses. The audio recordings from this
selection and all interviews were manually transcribed by two of
the authors. The resulting transcription—including field notes—was
coded using qualitative coding2. The coding was used to create
clusters, which then were abstracted into themes. Once the data
analysis of the field material was concluded, we obtained a detailed
picture of the set of practices followed at Debitoor, the technologies
utilized by the development team, and how the former are supported
by the latter.

To better understand the implications of the findings from the
observations, these have been related to the challenges faced in
GSE. In particular, as presented in Section 2, we used the catalog
presented in [23]. After consolidating the set of 45 initial challenges
by removing duplicates and unifying closely related ones, we were
left with 33 unique ones, of which, eight were used to explore
how Debitoor manages to successfully designed their work envi-
ronment using a hybrid method adhering to the agile philosophy

2The tool Atlas.ti was used to perform the coding activities.

ICGSE ’18, May 27–29, 2018, Gothenburg, Sweden Lous et al.

with a virtual team by mitigating—if not ignoring—the challenges
reported.

3.3 The Virtual Development Team at Debitoor
As introduced in Section 1, the subject of this study is the software
development team of Debitoor, which consists of fourteen members
distributed across Denmark (headquarter in Copenhagen), Ukraine,
and Lithuania. Figure 2 visualizes the team setup of the studied
case. Even though the business arrangement with the Ukraine
team is—formally—outsourcing, all members of the development
team consider the relation much more in line with what would be
expected in an insourcing arrangement, which leads to a virtual
team.

To better characterize the team: (i) together with seven devel-
opers, the product owner (PO) is located in Ukraine and travels
regularly between Denmark and Ukraine; (ii) together with three
developers, the CTOworks in the Danish office, and he is considered
to be a part of the development team as his daily work is mainly
in service of it; (iii) one developer in Denmark works remotely
from his home office and rarely visits the office in Denmark due
to perfume allergy, hence, he is considered as an independent site
(i.e., teleworking); and, (iv) one developers works remotely from
Lithuania.

PO
Devs

Ukraine

CTO
Devs

Denmark

Home
office

Home
office

Lithuania

Figure 2: Overview of the development team of Debitoor.

3.4 Threats to Validity
We discuss the threats to the validity of this study following the
basic scheme that distinguishes among construct validity, inter-
nal validity, external validity, and reliability [45]. Internal validity
will be skipped, for with this study as we, based on qualitative
data, not attempt to prove logical relationships among the concepts
presented.

Construct Validity. Threats to construct validity were minimized
by using different sources of data including observations, semi-
structured interviews, project artifacts, and off-site data collection.
As suggested by [25, 36], this triangulation allowed us to clarify
and confirm insights by accessing a wide range of perspectives.

Reliability. To ensure reliability [45] and to reduce the risk of
single-researcher bias, all field activities, but three interviews, were
performed by at least two researchers. With regards to the data

analysis, this was initially performed by two researchers until the
coding scheme stabilized and, afterwards, meetings were arranged
including often up to four researchers to discuss, clarify, and pro-
ceed in the generation of clusters and themes. Additionally, an open
communication with the company contact was kept to verify con-
stantly the findings, hence, decreasing the risk of misinterpretation.

External Validity. The main limitation of single case studies is
their generalizability [45]. This study is no exception; however no
statistical significance or generalizability of the results were sought.
Our results and discussions are grounded in the case analyzed and
are affected by the specific context. We have therefore provided de-
tailed information of the context to allow future studies to replicate
or compare results.

4 RESULTS
In this section, we describe the set of practices implemented at
Debitoor. Section 4.1 introduces these practices that represent a
unique way of working, which is not covered by any available
standard process. In Section 4.2, we elaborate on the interplay
between tools and practices that Debitoor uses. Additionally, a list
of tools used by the development team to work on the code artifacts
and cooperate among the distributed team members is presented
in Table 4. To help the reader, in the remainder of this section, we
highlight practices in boldfaced and tools in italic text.

4.1 Practices and Tools
The process model at Debitoor is significantly influenced by the
agile philosophy, however it is not restricted to a specific method
such as Scrum or XP. A schematic representation is provided in
Figure 3, and each of its comprising practices is described in the
following.

Debitoor

Retrospective
every 3rd week

One-on-Ones,
Growth Hack

every 2nd week

OPS-Duty
weekly

Stand-up
daily

Continuous practices:

Continuous Deployment
Code standards

Ad-hoc practices:

Pair Programming
Code Review

Grooming
Task allocation

Figure 3: Schematic representation of the software process
followed at Debitoor.

Table 3 provides a detailed description of the practices from
Figure 3 followed at Debitoor. The practices are complemented by
a set of tools Debitoor uses. These tools are summarized in Table 4.
Beyond the practices from Table 3, Debitoor implements a rather
uncommon approach to requirements engineering and division of
labour. As there are no explicit iterations, deadlines are less relevant,

Virtual by Design: How a Work Environment can
Support Agile Distributed Software Development ICGSE ’18, May 27–29, 2018, Gothenburg, Sweden

Table 3: Overview of the practices used at Debitoor.

Practices Description

Three-
week
Cadence

In line with the 12th principle of the Agile Manifesto [1],
which is related to the theme of ‘inspect and adapt’, the
set of practices are reviewed at regular intervals to ensure
that the team—part of this process—can be as effective as
possible. In particular, the development team performs a
retrospective meeting (inspired by Scrum) every third
week.

Two-week
Cadence

To ensure the well-being, satisfaction, and happiness of
each team member, the CTO conducts one-on-ones last-
ing approximately half an hour every second week. These
meeting are short conversations between the CTO and
each member of the team. This practice is an opportunity
to express dissatisfaction or concern due to events hap-
pening either inside or outside the company. Additionally,
every second week, the development team holds growth
hacks—events in which the developers are encouraged
to work on anything they can conceive that could benefit
Debitoor in any way.

Weekly
Cadence

Each week, a new team member is assigned to OPS-duty.
This practice has evolved over several iterations due to
requests expressed during the retrospectives, and it is now
involving all team members from all sites.

Daily
Cadence

Stand-up is also a practice inspired by Scrum that is
adopted at Debitoor. This ceremony happens daily at 09.15.

Continuous
Practices

In line with the 3rd principle [1], which is related to de-
livery frequency, Debitoor invested a significant effort in
setting up a complete continuous deployment pipeline,
which includes, among others, automated checks to en-
force the adherence to coding standards every time a
commit is performed.

Ad-hoc
Practices

In line with the 8th principle [1], which is related to techni-
cal excellence, several technical practices are in use at Deb-
itoor. These occur on-demand, hence, triggered by team
members when needed. In particular, quality assurance
(QA) at Debitoor is entirely delegated to the development
team. No teammember or external team is dedicated to QA.
Contrarily, team members can request when they deem
necessary to be supported by a colleague either in real
time through pair programming (practice taken from
XP) or asynchronously via code reviews.

and these are in general not communicated to the development
team. Exceptions to this practice only occur in the presence of a
large marketing campaign for which specific features need to be
ready. Besides these events, the only members of the team aware
of upcoming deadlines are the CTO and the PO. Also related to
the absence of iterations, planning and estimation of features are
performed in unusual manners. In particular, task management
is performed by the PO and CTO. Team members are organically
assigned to tasks based on their knowledge or their wish to follow
a feature, e.g., to improve their set of skills or their knowledge of
the code base. Accordingly, grooming is performed by the PO in
collaboration with the team members that will follow through the
implementation of a specific task. “We have this rule: the people who
are going to do the tasks, they groom together. I mean, there is no

Table 4: Overview of the tools used in the studied ecosystem.

Tool Description

Slack At Debitoor, the enterprise version of Slack is the only tool
used for communication within the team. This includes
synchronous and asynchronous communication. The adop-
tion of Slack completely removed the use of e-mails for
internal communication. Slack supports four types of com-
munication: calls (one-to one audio), channels (one-to-
many text), private messages (PM) (one-to-one text), and
screen sharing. In the remainder of this paper, these four
types of communication will be kept separate to emphasize
the feature of Slack used in each specific practice.

Waffle.io
board

Waffle.io is an automated project management tool for
GitHub that automatically updates changed tasks created
in GitHub. The Waffle.io board is a task board that is used
to keep track of the development process when a developer
makes progress on a task. The stages used at Debitoor are:
“Next Awesome Thing”, “In Progress”, and “In Production”.
Debitoor uses the paid version and, for historic reasons,
Debitoor kept it even after project features became avail-
able on GitHub.

GitHub GitHub is the choice for version control (paid business
plan), and it is used on a daily basis by all the team mem-
bers. This choice also impacted others, e.g., Waffle.io was
picked due to its simplicity and functionalities of course,
but mainly as it needed to be compatible with GitHub.

Google
Products

At Debitoor, mainly two Google products are used: Google
Sheets and Google Slides. As it will be more clear in the
next section, these are primarily used to support retrospec-
tive meetings, stand-ups, and grooming. Minor usage of
Google Sheet also includes activities like monitoring of
licenses and similar less relevant purposes.

TeamCity TeamCity is a continuous integration tool, and it is used
at Debitoor for automated testing. This software is also
used to check conformity of commits to code standards.

Mirror Two monitors are set up in the two main offices, i.e., Den-
mark and Ukraine. Themonitors are connected to a camera
on the top which live-streams the office to the other site.
The stream is running continuously to simulate a virtual
window. Sound has been deactivated eventually, as it was
considered too intrusive and disturbing.

Others Google e-mails are used to create calendar invites as this
coordination feature is not supported by Slack.

reason to sit there and do grooming for an hour about something, that
you should not be a part of yourself—CTO.”

4.2 Configuration
Based on the practices (Table 3) and the set of tools (Table 4) pre-
sented, we describe how the former are supported by the latter
providing details on their use. This description will be grouped
by categorizing the practices into three different groups: technical
practices, automation, and organisational practices. Table 5 presents
an overview of the observed interplay. To avoid repeating informa-
tion, we start by describing an additional group representing the

ICGSE ’18, May 27–29, 2018, Gothenburg, Sweden Lous et al.

Table 5: Tools used to support the different practices.

Organizational Automation Technical

Stand-up Retro- One- Task Grooming Growth Continuous deployment Ops-duty Code Pair
spective on-one allocation hacks [Coding standards] review programming

Google Slide ✓ ✓ ✓
Google Sheet ✓

Slack call ✓ ✓ (✓) (✓) (✓) ✓ ✓

Slack channels ✓ ✓
Slack PM ✓ ✓

Waffle.io board ✓

Mirror (✓) (✓) (✓)
GitHub ✓ ✓ ✓ ✓ ✓

Screen sharing ✓ ✓

Calendar ✓ ✓ ✓
TeamCity ✓
FaceToFace (✓) (✓) (✓)

configuration used to support general communication both when
scheduled and when performed ad-hoc.

4.2.1 General communication. Common to the majority of the
practices is the configuration used to communicate. When required,
team members would use their headset to participate to a Slack call,
while sitting at their desk. Additionally, we observed two slight
variations that, depending on the meetings, are either scheduled,
recurring, or ad-hoc.

Scheduled or recurring meetings are almost always coordinated
by blocking a time slot in the calendar. Once the time arrives, par-
ticipants join an audio conference using Slack calls and, depending
on the type of meetings, they might use other tools to provide ad-
ditional shared workspaces like Google Slide or Google Sheet. This
configuration was observed during stand-ups, retrospectives, and
remote one-on-ones.

Contrary, ad-hoc meetings are triggered via Slack private mes-
sages. These meetings usually require access to the code base via
GitHub and might require the screen sharing functionality of Slack.
Finally, if the parties involved are located both in the Ukraine and
Denmark, it is not uncommon for the initiator to use the mirror to
verify whether the others are available at their desk: “[...] if I am try-
ing to reach someone and they are not answering then I check if they
are sitting at their place. If they are not, okay then I have to wait; and
if they are, I can tell one of the others: ‘Can you please poke?’—CTO.”
This configuration was observed during pair programming or
code review sessions as well as task allocation meetings.

4.2.2 Technical Practices. Technical practices are those practices
that directly involve the handling of code artifacts thus directly
interacting with the product’s code base through GitHub. These
practices are: OPS-duty, code review, and pair programming.

OPS-duty involves the smallest set of technologies. As men-
tioned before, OPS-duty is a weekly rotating responsibility that
requires a team member to be in charge of dealing with external
requests for the development team, e.g., the customer support and
other relevant teams at Debitoor. Such external groups have direct

access to a Slack channel named #OPS-channel and, if for instance a
serious issue was identified or reported by a customer, this issue is
listed on the #OPS-channel to be taken care of by the development
team member on OPS-duty this week.

The other two technical practices, i.e., pair programming and
code review, share the same tool configuration. This includes
GitHub and the screen sharing feature of Slack. The communica-
tion is established as a regular ad-hoc communication (see above).
Because code reviews are not mandatory, it is well understood by
all team members that, if a review is requested through a private
message, it is important. According to Debitoor’s internal culture,
code reviews are the only reason that justifies the interruption of
a colleague. Quoting the CTO: “once they are done, it is up to the
developers to do code reviews and ask for code reviews and do auto-
mated testing and do whatever it takes to make sure that this thing
[the code] is production quality. We do not have any testers or QAs so
they [the developers] make sure that the quality is great—CTO.”

4.2.3 Automation. A significant effort has been devoted to intro-
duce continuous deployment. Currently, the deployment pipeline
includes several steps that automate test execution and the adher-
ence to coding standards. This is managed through TeamCity.

4.2.4 Organizational practices. Among the organizational prac-
tices, there are scheduled and ad-hoc events of which stand-up and
retrospective meetings are particularly interesting. Even thought
their label is inspired by Scrum, these practices have been evolved
through extensive experimentation to fit the team’s needs.

Stand-upmeetings are conducted with developer sitting at their
own personal computer wearing a headset. A Google slide presenta-
tion is used as main tool to drive the meetings. The duration of the
meetings is carefully tuned to never exceed 15 minutes. The initial
slide is automatically generated by using calendars data to make
people aware of vacation periods as well as data from GitHub to
alert the team about potentially critical issues in the system cap-
tured from mining error messages in the production logs. Finally,
developers have the ability to add an individual slide to present

Virtual by Design: How a Work Environment can
Support Agile Distributed Software Development ICGSE ’18, May 27–29, 2018, Gothenburg, Sweden

interesting aspects of currently active tasks for knowledge sharing
purposes: ”[...] so one of the principles in Debitoor is that we are not
enforcing people a lot of things, right, they should share things by
themselves—Ukraine developer.”.

Sharing the configuration with the stand-ups, retrospective
meetings differ in that they use a Google sheet document rather
than a slide set for knowledge management. The meeting is lead
by the developer in Lithuania and comprises five steps:

(1) Assessing results based on the action points agreed upon
during the previous retrospective.

(2) Sharing good and bad thoughts since the last meeting.
(3) Generating ideas on how to solve the bad thoughts identified

in the previous step.
(4) Defining a plan on how to implement the ideas.
(5) Eventually assigning tasks to developers if necessary to en-

sure their execution.

One-on-onemeetings differ slightly from other recurring events as
their nature is more personal. The CTO prefers to perform them in
a more relaxed fashion than through Slack calls. It is not uncommon,
for instance, that meetings performed with the team members in
Copenhagen are done face-to-face while having a walk along the
shores of the lakes in Copenhagen.

The management of the backlog is left to the PO. When features
are close to be handed over to the development team, the PO per-
forms the final grooming by creating a presentation using Google
slides. The presentation is sent to the team members that will take
charge of the feature(s). This task allocation is either performed
via Slack calls or with the PO addressing the specific team mem-
ber(s) face-to-face. Results from the meeting are recorded on the
Waffle.io board.

Finally, growth hacks are quite an exception. As mentioned
before, these two-day events happen every other week and, due to
their spontaneous nature, can be supported by any of the configura-
tions presented here. They very often result in some development
in parallel to the main GitHub product projects, and they might in-
volve individuals or a group people. Depending on their needs, the
people involved might decide to rely either on virtual tools to sup-
port communication or to rely on face-to-face communication. We
do not have additional insights on this practice as they were not the
main focus of our study. However, based on the interviews, there
seems to be no preference regarding the communication channel
related to the physical location.

5 DISCUSSION
This section presents three main observations made at Debitoor.
Section 5.1 challenges the assumptions that a co-located work envi-
ronment is better than a virtual one; Section 5.2 provides an initial
validation by relating known challenges identified in the litera-
ture against Debitoor’s environment; and, Section 5.3 highlights
the importance of embedding in a company culture a continuous
improvement focus.

5.1 Co-located vs. Virtual Work Environment
In cooperative work [37], for the purpose of collaborating on the
shared code base, individuals involved need to coordinate their

Table 6: Assessment of tools related to the dimensions of co-
operation.

Communi- Coordi- Collabo- Aware-
cation nation ration ness

Google Slides ✓ ✓ ✓ ✓
Google Sheets ✓ ✓ ✓
Slack call (headset) ✓

Slack channels ✓ ✓ ✓ ✓
Slack PM ✓ ✓
Waffle.io ✓ ✓

Mirror ✓
GitHub ✓ ✓
Screen sharing ✓ ✓

Calendar ✓ ✓
TeamCity ✓

Table 7: Communication network at Debitoor. Developers
are identified with: D for Denmark, U for Ukraine, and L for
Lithuania. The darker gray cells show how to read U1 as an
example.

CTO PO L1 D1 D2 D3 D4 U1 U2 U3 U4 U5 U6 U7

L1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
D1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
D3 ✓ ✓ ✓ ✓ ✓ ✓

D4 ✓ ✓ ✓ ✓ ✓
U1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
U2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

U3 ✓ ✓ ✓

U4 ✓ ✓ ✓ ✓
U5 ✓ ✓ ✓
U6 ✓ ✓ ✓

U7 ✓ ✓

actions. This coordination will eventually entail engaging in di-
rect communication for alignment and agreement or for solving
doubts, misunderstandings, and, in general, lack of clues, when one
of them is not sufficiently aware of what is required to work on the
product. Hence, cooperation links together four terms: communi-
cation, collaboration, coordination, and awareness [13, 40]. These
terms emphasize high-level requirements that a work environment
needs to provide to improve cooperation in distributed software
development—either through practices or software tools.

Focusing on communication as a dimension of cooperation, we
argue that even though media richness theory [8] identifies face-to-
face communication as the channel through which the maximum
throughput of information can be obtained, task/technology fit [18]
explains how a leaner media can be a better fit given a specific
task. Therefore, a co-located environment in which face-to-face
communication is possible, does not necessarily represent the most
suited environment to support a software team. Practice has shown

ICGSE ’18, May 27–29, 2018, Gothenburg, Sweden Lous et al.

that communication media are used opportunistically by switching
between rich and lean media, e.g., [5, 30].

Expanding this observation to the remaining dimensions of coop-
eration and to cooperation itself, it could be hypothesized that the
traditional co-located work environment is not necessarily the ideal
setup for group work when considering software development. We
argue that currently available tools can be used to support carefully
selected practices, making the resulting virtual work environment
extremely effective for supporting cooperation in a specific context.
We therefore expand Berczuk’s idea [2] that “agile is about people,
but distributed agile requires good tools to help people communicate
effectively over distances” by stressing the fact that the tools used
should be facilitating all dimensions of cooperation and should
support ad-hoc practices. Table 6 relates the set of tools used at
Debitoor with the dimensions of cooperation just discussed, by
highlighting dimension(s) mostly supported by the tool.

Debitoor opted for the primacy of a virtual work environment
over a co-located one. It is important to emphasize that Debitoor’s
environment is the result of conscious decisions often experimented
and carefully tweaked, rather then a compromise that had to be
accepted to allow the virtual development team to cooperate. As
a result, the team at Debitoor does not feel separated by physi-
cal boundaries (Q1. N=7. One team: 5; Other: 2) and, if anything,
when asking the team members, they might identify smaller sub-
groups focused on development areas in the product: “we have
several teams based on what we’re working on, location doesn’t mat-
ter that much—Anonymous team member.” To further investigate
the communication network, we asked team members to state their
perceived interactions within Debitoor. Table 7 shows the density
of the communication network, and the table confirms that physical
boundaries are not hampering communication.

QuestionQ2 also confirms satisfactionwith regards to the amount
of interaction across the two main geographical locations (Q2. N=7.
Neutral (3): 6; I would like to have more interaction than we already
have (5): 1). Interestingly, challenging the teammembers and propos-
ing a co-located alternative to their implementation of the stand-up
and retrospective meetings, no respondent considered the absence
of physical separation a problem (Q3. N=7. Neutral (3): 2; (4): 1; I
would not change anything. I prefer the way it is now (5): 4).

5.2 Addressing Known Challenges
A holistic approach to provide an initial validation of the hypoth-
esis that a virtual work environment can be designed to support
an agile development team that is distributed across different sites
is to assess the case of Debitoor against known problems in dis-
tributed agile software development identified in the literature. As
mentioned in Section 2, Lous et al. [23] systematically identified
challenges. Based on their results, we identified eight challenges
(from the 45) related to the virtual work environment. Table 8 sum-
marizes the challenges and relates them solutions. Specifically, for
each challenge, we describe the impact according to the reference in
literature that named and studied this specific challenge. Challenges
and respective impact are related to the solution approach imple-
mented at Debitoor. We discuss how Debitoor addressed specific
challenges by virtual work environment, i.e., the set of practices
and supporting tools, or even entirely removed a challenge.

One of the most interesting aspects of how Debitoor has set up
the virtual work environment relates to communication and the
culture around it. Regardless of whether it is a one-to-one or a
many-to-many communication, regardless of whether it involves
co-located or distributed people, communication is always medi-
ated through tools. Team members are comfortable with executing
any kind of communication while sitting at their own desk with a
personal headset. As mentioned in Section 4, only one exception
exist: the one-on-one meetings. These meetings address personal
issues, and executing them in an environment outside the team
space is generally preferred.

Debitoor’s setup effectively creates a work environment in which
physical presence is not required to participate to any project activ-
ity. As a result, meeting rooms or cost-intensive video-conferencing
systems are not required, which reduces the cost of running the
virtual team. Most of the infrastructure used—and accepted—by the
team (see Table 4) are low-cost or even free solutions that have been
adapted to serve the work practices appropriately. That is, the team
uses the tools that its developers use anyway in an efficient and
effective manner that is accepted by the team thus representing an
organically grown consensus on the way the virtual team operates.

5.3 Continuous Improvement
Tweaking the work practices, i.e., pragmatically adapting practices
to the actual context (see also [22]), constitutes an important success
factor of Debitoor’s virtual work environment. The practices at
Debitoor, which we exemplarily described, are constantly under
inspection for continuous improvement opportunities. The team is
encouraged to challenge the current modus operandi during each
retrospective, and the team is also welcomed to discuss urgent
and/or paining aspects during the one-on-onemeetings. From the
very beginning on, the CTO’s mission has been to reduce waste
[28] as much as possible, and to allow for the continuous evolution
of and experimentation with the practices.

This constant strive for effectiveness captures the essence of the
12th principle of the Agile Manifesto [1]. Inspect and adapt is one
of the core engines that through articulation-work [41] and meta-
work [17] generates hybrid approaches [22]. Additional exploration
of this topic can be found in [24].

6 CONCLUSION AND FUTUREWORK
Distributed agile software development is a stream that increasingly
gains momentum. The combination is hard and complicated to
implement, and organizations often tend to compromise agility in
favor of additional control under the assumption that this is required
to cope with the challenges created by the physical separation.

In this paper, we have extensively described and provided exam-
ples from a small Danish single-product company that managed to
design and implement a virtual work environment in which tools
and practices have been carefully picked and improved to support
the distributed agile development team. From our one-year obser-
vation, we conclude that the smart adaptation and alignment of
standard practices in combination with tools well-accepted by the
development team supports the efficient and effective operation
of distributed development projects. Neither of the team members
would change the current project setup. Even though our findings

Virtual by Design: How a Work Environment can
Support Agile Distributed Software Development ICGSE ’18, May 27–29, 2018, Gothenburg, Sweden

Table 8: Challenges related to the virtual work environment identified from [23], their impact, and their presence at Debitoor.

Challenge Impact Observed Solution at Debitoor

Lack of attendance The lack of attendance at the daily stand-up
creates a feeling of lost importance of the
meeting [7].

Daily stand-up meetings at Debitoor are a peculiar practice that has been con-
tinuously modified until it reached the format described in Section 4.2.4. In
particular, the participation to the daily stand-up (and, in general, all meetings)
is not a barrier, as: (i) by conducting it via online platforms at their workstation
and not in meeting rooms, the meeting does not require physical presence;
and, (ii) by collaboratively agreeing on a different format in terms of content, it
becomes more appealing to team members.

Meetings at only one site/
keep meetings jointly

Having meetings at only one site isolates the
rest of the distributed team members and
lowers the feeling of being united as a team
[31].

Since all meetings in the development team are conducted online using computer-
mediated communication, this challenge is not faced at Debitoor.

Lacking team cohesion Lack of team cohesion is a common problem
among distributed teams, in which the mem-
bers do not necessarily perceive themselves
as part of on-/off-site team. This might affect
the shared views of goals [35].

The improved cooperation facilitated via Slack PM, calls, and channels together
with the company culture promoted by the CTO (see, e.g., the use of the mirror)
clearly mitigated this issue. Additionally, all team members have access to the
same amount of documentation through GitHub, theWaffle.io board, and Google
Products. Due to the way the virtual work environment has been designed, team
cohesion has not been observed to be an issue. An insight that was confirmed
by the team members through the questionnaire (see Q1).

Create transparency
among sites

Lack of transparency among sites is likely
to be one of the most subtle and danger-
ous threats in GSE, which is related to the
idiosyncratic distances of the arrangement
[6, 33]. It causes a series of negative effects,
e.g., poor knowledge sharing and lack of
team cohesion.

Even though the individual cultures and different mother tongues within the
team, even though physical and temporal distances are a fact at Debitoor, the
virtual work environment is designed to maximize transparency. The most
visible elements of the environment that facilitate such transparency are the
communication centralized around Slack open to all team members, the daily
stand-up meetings, the Waffle.io board, and the mirror.

Balance between formal
and informal communi-
cation and documenta-
tion

Agile development relies on informal face-to-
face communication, but GSE traditionally
requires more formal communication [7, 35].

Formal documentation at Debitoor takes place only in the Waffle.io board and
GitHub. During stand-up and retrospective meetings, knowledge is captured and
archived via Google products. However, most communication is informal and is
supported by the Slack channels or Slack private messages. Far from claiming
that Debitoor’s approach to documentation is the silver bullet, we certainly
observed that through these rather simple artifacts, the team managed to reach
an efficient balance between formal and informal documentation.

Knowledge fragmenta-
tion

Generalizing the findings from [7] (i.e., syn-
chronizing use cases and user stories when
they are managed through different software
tools), the issues related to knowledge being
fragmented into several repositories can lead
to problems like traceability.

One of the goals of Debitoor that impacted the design of the virtual work envi-
ronment was to reduce waste by following the 10th agile principle [1], hence,
achieve simplicity. The tool ecosystem at Debitoor comprises a limited number
of software tools, which together with the found balance between formal and in-
formal documentation (see Challenge above), allows members of the development
team at Debitoor to not experience this problem.

Practices and tools adop-
tion

The adoption of common practices and tools,
among all sites, has been reported to be a
success factor (e.g., [26]), which, if not ad-
dressed might generate friction and issues
across sites.

This problem has never been experienced at Debitoor as all changes at Debitoor
are a shared responsibility, which are discussed, decided, and implemented
together during retrospective meetings.

Cost and impact of main-
tenance of team knowl-
edge

Knowledge sharing needs to be prioritized to
work efficiently, but establishing and main-
taining knowledge sharing across sites is
costly [27].

Knowledge sharing at Debitoor is continuously achieved via the established
practices, and dedicated Slack channels have been created to allow communi-
ties of practices to thrive. Therefore, Debitoor is able to create and maintain
knowledge across the different sites with little to no cost.

do not yet allow for generalization, however, we claim to have pre-
sented a prototype scenario of how to organize and run distributed
projects efficiently. Key to the success of Debitoor is an apprecia-
tion of the development team’s needs in terms of work practices
and supporting tools. No out-of-the-box process was dogmatically

implemented, and no huge standard tool that dictates certain pro-
cedures was used. We observed a general agreement on the work
environment and the components it was made of. However, we
have to acknowledge that our findings relate to a very specific
context (see Table 1). Hence, we do not claim to have presented
findings that can be extended to other contexts.

ICGSE ’18, May 27–29, 2018, Gothenburg, Sweden Lous et al.

In this paper, we focused on the practices implemented at Deb-
itoor and the tools used to support the practices. Specifically, we
selected those data from our one-year observation that helped us
understanding team-related issues, e.g., regarding communication
and collaboration. Yet, the study revealed further insights, e.g., re-
garding effectiveness of specific practice-tool combinations or the
efficiency of particular interaction patterns. An extended in-depth
analysis of such aspects to develop an even better picture of the pre-
sented case and to help improving the conclusions draws, however,
remains subject to further work.

REFERENCES
[1] Kent Beck, Mike Beedle, A Van Bennekum, Alistair Cockburn,Ward Cunningham,

Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon
Kern, BrianMarick, Robert C. Martin, SteveMellor, Ken Schwaber, Jeff Sutherland,
and Dave Thomas. 2001. Manifesto for Agile Software Development. (2001).
http://www.agilemanifesto.org

[2] Steve Berczuk. 2007. Back to Basics: The Role of Agile Principles in Success with
an Distributed Scrum Team. In Agile Conference (AGILE). IEEE, Washington, DC,
USA, 382–388.

[3] Jacob T. Biehl, Mary Czerwinski, Greg Smith, and George G. Robertson. 2007.
FASTDash: A Visual Dashboard for Fostering Awareness in Software Teams. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI). ACM, New York, NY, USA, 1313–1322.

[4] Bernd Bruegge, Andrea De Lucia, Fausto Fasano, and Genoveffa Tortora. 2006.
Supporting Distributed Software Development with Fine-grained Artefact Man-
agement. In Proceedings of the IEEE International Conference on Global Software
Engineering (ICGSE). IEEE, Washington, DC, USA, 213–222.

[5] Fabio Calefato, Daniela Damian, and Filippo Lanubile. 2012. Computer-mediated
communication to support distributed requirements elicitations and negotiations
tasks. Empirical Software Engineering 17, 6 (2012), 640–674.

[6] Erran Carmel and Ritu Agarwal. 2001. Tactical approaches for alleviating distance
in global software development. IEEE Software 18, 2 (2001), 22–29.

[7] M. Cristal, D. Wildt, and R. Prikladnicki. 2008. Usage of SCRUM Practices within
a Global Company. In 2008 IEEE International Conference on Global Software
Engineering. 222–226.

[8] Richard L. Daft and Robert H. Lengel. 1986. Organizational Information Require-
ments, Media Richness and Structural Design. Management Science 32, 5 (1986),
554–571.

[9] Philipp Diebold, Jan-Peter Ostberg, Stefan Wagner, and Ulrich Zendler. 2015.
What Do Practitioners Vary in Using Scrum? In International Conference on Agile
Software Development (XP). Lecture Notes in Business Information Processing,
Vol. 212. Springer, Cham, 40–51.

[10] Kevin Dullemond, Ben van Gameren, and Rini van Solingen. 2014. Collaboration
Spaces for Virtual Software Teams. IEEE Software 31, 6 (Nov 2014), 47–53.

[11] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting empirical methods for software engineering research. Guide to
advanced empirical software engineering (2008), 285–311.

[12] Christof Ebert, Marco Kuhrmann, and Rafael Prikladnicki. 2016. Global Software
Engineering: Evolution and Trends. In Proc. of the IEEE International Conf. on
Global Software Engineering (ICGSE). IEEE, Washington, DC, USA, 144–153.

[13] Clarence A. Ellis, Simon J. Gibbs, and Gail Rein. 1991. Groupware: Some Issues
and Experiences. Commun. ACM 34, 1 (Jan. 1991), 39–58.

[14] Fabian Fagerholm, Alejandro Sanchez Guinea, Jay Borenstein, and Jürgen Münch.
2014. Onboarding in Open Source Projects. IEEE Software 31, 6 (Nov 2014),
54–61.

[15] Jon Froehlich and Paul Dourish. 2004. Unifying Artifacts and Activities in a
Visual Tool for Distributed Software Development Teams. In Proceedings of the
International Conference on Software Engineering (ICSE). IEEE Computer Society,
Washington, DC, USA, 387–396.

[16] Hugo Fuks, Alberto Raposo, Marco A Gerosa, et al. 2008. The 3c collaboration
model. In Encyclopedia of E-collaboration. IGI Global, 637–644.

[17] Elihu M Gerson. 2008. Reach, bracket, and the limits of rationalized coordination:
Some challenges for CSCW. In Resources, Co-Evolution and Artifacts. Springer,
193–220.

[18] Dale L. Goodhue and Ronald L. Thompson. 1995. Task-Technology Fit and
Individual Performance. MIS Quarterly 19, 2 (1995), 213–236.

[19] Carl Gutwin, Saul Greenberg, and Mark Roseman. 1996. Workspace Awareness in
Real-Time Distributed Groupware: Framework, Widgets, and Evaluation. Springer
London, London.

[20] Lile Hattori and Michele Lanza. 2010. Syde: A Tool for Collaborative Software De-
velopment. In Proceedings of the International Conference on Software Engineering
(ICSE). ACM, New York, NY, USA, 235–238.

[21] James D. Herbsleb. 2007. Global Software Engineering: The Future of Socio-
technical Coordination. In Future of Software Engineering (FOSE). IEEE, Washing-
ton, DC, USA, 188–198.

[22] Marco Kuhrmann, Philipp Diebold, Jürgen Münch, Paolo Tell, Vahid Garousi,
Michael Felderer, Kitija Trektere, Fergal McCaffery, Christian R. Prause, Eckhart
Hanser, and Oliver Linssen. 2017. Hybrid Software and System Development
in Practice: Waterfall, Scrum, and Beyond. In Proceedings of the International
Confernce on Software System Process (ICSSP). ACM, New York, NY, USA, 30–39.

[23] Pernille Lous, Marco Kuhrmann, and Paolo Tell. 2017. Is Scrum Fit for Global
Software Engineering?. In Proceedings of the IEEE International Conference on
Global Software Engineering (ICGSE). IEEE, Washington, DC, USA, 1–10.

[24] Pernille Lous, Paolo Tell, Christian Bo Michelsen, Yvonne Dittrich, and Allan
Ebdrup. 2018. From Scrum to Agile: a Journey to Tackle the Challenges of Dis-
tributed Development in an Agile Team. In Proceedings of the ACM International
Conference on Software and System Process (ICSSP). ACM (in press).

[25] M.B. Miles, A.M. Huberman, and J. Saldaña. 2013. Qualitative Data Analysis.
SAGE Publications.

[26] S. Modi, P. Abbott, and S. Counsell. 2013. Negotiating Common Ground in
Distributed Agile Development: A Case Study Perspective. In Proceedings of
the IEEE International Conference on Global Software Engineering (ICGSE). IEEE,
Washington, DC, USA, 80–89.

[27] Nils Brede Moe, Tor Erlend Fægri, Daniela S. Cruzes, and Jan Edvard Faugstad.
2016. Enabling Knowledge Sharing in Agile Virtual Teams. In Proceedings of
the IEEE International Conference on Global Software Engineering (ICGSE). IEEE,
Washington, DC, USA, 29–33.

[28] Shahid Mujtaba, Robert Feldt, and Kai Petersen. 2010. Waste and Lead Time
Reduction in a Software Product Customization Process with Value Stream Maps.
In Australian Software Engineering Conference (ASWEC). IEEE, 139–148.

[29] Tuomas Niinimaki. 2011. Face-to-face, email and instant messaging in distributed
agile software development project. In Proc. of the IEEE International Conf. on
Global Software Engineering (ICGSE). IEEE, Washington, DC, USA, 78–84.

[30] Tuomas Niinimaki, Arttu Piri, Casper Lassenius, and Maria Paasivaara. 2010.
Reflectingof communication tools in GSD projects with media synchronicity
theory. In Proc. of the IEEE International Conf. on Global Software Engineering
(ICGSE-Workshops). IEEE, Washington, DC, USA, 3–12.

[31] Maria Paasivaara. 2011. Coaching Global Software Development Projects. In
Proceedings of the IEEE International Conference on Global Software Engineering
(ICGSE). IEEE, Washington, DC, USA, 84–93.

[32] Maria Paasivaara, Benjamin Behm, Casper Lassenius, and Minna Hallikainen.
2018. Large-scale agile transformation at Ericsson: a case study. Empirical
Software Engineering (11 Jan 2018). https://doi.org/10.1007/s10664-017-9555-8

[33] Maria Paasivaara, Casper Lassenius, Ville T. Heikkilä, Kim Dikert, and Chistian
Engblom. 2013. Integrating Global Sites into the Lean and Agile Transformation
at Ericsson. In Proceedings of the IEEE International Conference on Global Software
Engineering (ICGSE). IEEE, Washington, DC, USA, 134–143.

[34] Javier Portillo-Rodríguez, Aurora Vizcaíno, Mario Piattini, and Sarah Beecham.
2012. Tools Used in Global Software Engineering: A Systematic Mapping Review.
Inf. Softw. Technol. 54, 7 (July 2012), 663–685.

[35] Balasubramaniam Ramesh, Lan Cao, Kannan Mohan, and Peng Xu. 2006. Can
Distributed Software Development Be Agile? Commun. ACM 49, 10 (Oct. 2006),
41–46.

[36] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. 2012. Case study
research in software engineering: Guidelines and examples. John Wiley & Sons.

[37] K. Schmidt. 1994. Cooperative Work and its Articulation: Requirements for
Computer Support. Le Travail Humain 57, 4 (1994), 345–366.

[38] Helen Sharp, Rosalba Giuffrida, and Grigori Melnik. 2012. Information flow
within a dispersed agile team: a distributed cognition perspective. In International
Conference on Agile Software Development. Springer, 62–76.

[39] Darja Šmite, Marco Kuhrmann, and Patrick Keil. 2014. Virtual Teams [Guest
editors’ introduction]. Software, IEEE 31, 6 (Nov. 2014), 41–46.

[40] Igor Steinmacher, Ana Paula Chaves, and Marco Aurélio Gerosa. 2013. Awareness
Support in Distributed Software Development: A Systematic Review andMapping
of the Literature. Computer Supported Cooperative Work (CSCW) (2013), 113–158.

[41] Anselm Strauss. 1985. Work and the division of labor. The sociological quarterly
26, 1 (1985), 1–19.

[42] Antônio R. D. R. Techio, Rafael Prikladnicki, and Sabrina Marczak. 2015. Re-
porting Empirical Evidence in Distributed Software Development: An Extended
Taxonomy. In Proceedings of the IEEE International Conference on Global Software
Engineering (ICGSE). IEEE, Washington, DC, USA, 71–80.

[43] Darja Šmite, Claes Wohlin, Tony Gorschek, and Robert Feldt. 2010. Empirical
Evidence in Global Software Engineering: A Systematic Review. Empirical Softw.
Engg. 15, 1 (Feb. 2010), 91–118.

[44] Dietmar Winkler, Stefan Biffl, and Andreas Kaltenbach. 2010. Evaluating Tools
That Support Pair Programming in a Distributed Engineering Environment. In
Proc. of the International Conf. on Evaluation and Assessment in Software Engi-
neering (EASE). BCS Learning & Development Ltd., Swindon, UK, 54–63.

[45] Robert K Yin. 2013. Case study research: Design and methods. Sage publications.

