
Influencers of Quality Assurance in an Open Source
Community*

ABSTRACT
ROS (Robot Operating System) is an open source community in
robotics that is developing standard robotics operating system
facilities such as hardware abstraction, low-level device control,
communication middleware, and a wide range of software
components for robotics functionality. This paper studies the
quality assurance practices of the ROS community. We use
qualitative methods to understand how ideology, priorities of the
community, culture, sustainability, complexity, and adaptability
of the community affect the implementation of quality assurance
practices. Our analysis suggests that software engineering
practices require social and cultural alignment and adaptation to
the community particularities to achieve seamless
implementation in open source environments. This alignment
should be incorporated into the design and implementation of
quality assurance practices in open source communities.

KEYWORDS
Open Source Software, Quality Assurance, OSS Community.

ACM Reference format:

A. Alami, Y. Dittrich, and A. Wasowski. 2018. Influencers of Quality
Assurance Practices in an Open Source Community. In Proceedings of 11th
International Workshop on Cooperative and Human Aspects of Software
Engineering, Gothenburg, Sweden, May 2018 (CHASE 2018).
https://doi.org/10.1145/3195836.3195853

1 INTRODUCTION
Open Source Software (OSS) communities have become a serious
contender for commercial software supply. The open source
paradigm is gaining momentum in strength and is increasingly
adopted by the traditional software industry [1-2]. This industrial
interest brings its own requirement for OSS, especially regarding
quality. Traditional organizations use a combination of practices,
processes, and techniques to produce quality software. Yet what
can be done and achieved in a traditional setting might not be
reproducible in an open source community. Hence, understanding
the challenges of quality implementation in OSS communities is
timely.

Little is known of how OSS communities perceive quality and
the challenges of implementing quality practices in OSS
communities. Community-based organizations are culturally
different and have been established based on fundamentally

* Camera ready version, accepted at CHASE'18, May 27, 2018, Gothenburg,
Sweden

different sets of values and goals. Software engineering practices
and techniques seem to be designed generically to fit most
circumstances and organizational settings. However, OSS
communities have shown us that they can build highly
professional products using social–technical processes [3, 4].
Although some OSS practices are inspired from the software
engineering knowledge and practices, in most instances, the
adoption deviates from the prescribed conduct. Scacchi [3]
observes some “informalisms” in the adoption process that reflect
the peculiarities of the involved community. He believes
“informalisms” captures the uniqueness of how the community
works and produces software. We want to learn from these
particularities to assist in the implementation and adaptation of
quality assurance practices.

The central objective of this study is to investigate how the
community’s social and cultural traits influence the
implementation of quality assurance (QA) practices, techniques,
and tools. We investigate the following questions:

RQ1: What are the forces influencing the implementation of
quality assurance practices in the ROS community?

RQ2: How do social and cultural variables influence the
implementation and execution of practices?

We define the term “practice” in line with as “… a common
way of acting, acknowledged by a community as the correct way
to do things. It can be taught to newcomers by letting them take
part in this practice as an apprentice [5]. A community maintains
the common practice through more or less formal ‘articulation
work’ [6] which is also the means to handle exceptional situations.
Ad-hoc behavior—always necessary to handle exceptions and to
maintain the ‘normal’ [7]—is as such only perceivable by its
deviation from both the formalized rules and the established
practice.” [8].

The ROS Community is large and diverse. Its Wiki platform
receives over 1.4 million unique visitors a year and has 6,749
registered users. The community “discourse” receives an average
of 150 posts a week. The total downloads of the .deb packages is
over 13.4 million. Over ten years, ROS has become one of robotics’
de facto standard operating systems. The ROS community has
different attributes than the commonly studied ones (i.e., Linux
and Mozilla). First, it produces software components for robotics.
Second, it is a multidisciplinary community. Third, most ROS
developers are not software engineers. Their educational
background is diverse but mainly from mechanics and electronics

Adam Alami
IT University of Copenhagen

Yvonne Dittrich
IT University of Copenhagen

Andrzej Wąsowski
IT University of Copenhagen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/160744240?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CHASE'18, May 27, 2018, Gothenburg, Sweden Alami, Dittrich and Wasowski

2

disciplines. In addition, members have varying professional
experiences (i.e. packages developers, students, CTOs, etc.)

We find that the community has a strong quality awareness.
Some industry-wide accepted practices have been implemented:
(1) well-defined development process, (2) defects management
process and tool, (3) code review, (4) continuous integration, (5)
unit testing, and (6) knowledge sharing. However, these quality
practices are experiencing implementation and execution
challenges. Six forces and constraints—participation motives,
priorities of the community, meritocratic culture, sustainability,
complexity and adaptability of the community—have greatly
influenced the implementation of QA in the ROS community. The
cultural traits of the community also sway the QA
implementation. Furthermore, the quality practices in place are
constrained by sustainability issues and the complexity of the
process of developing robotic systems.

This paper reports on a qualitative research on software QA
practices following a mixed research method. Mixed methods
deepen understanding of the research problem. Three techniques
have been used: interviews with ten participants, virtual
ethnography, and community reach-outs. In the last decade, the
focus of OSS studies has been on “high profile” communities, like
Mozilla, the Linux Kernel, and Apache. We selected ROS for its
uniqueness as robotics software with a large and diverse
participant base. This will contribute to the diversity of the
samples studied previously.

2 RELATED WORK
We identified two streams of related work: (1) what the QA
practices in OSS communities are and (2) how quality is assured
in OSS development.

QA Practices in OSS Communities. ISO defines QA as “focused
on providing confidence that quality requirements will be
fulfilled” [9]. It is a set of activities for ensuring quality in software
engineering processes that ultimately should result in quality
software products. Halloran and Scherlis [10] surveyed eleven
OSS projects to identify the QA practices adopted by the
communities. They observed a variation in the adoption and
implementation of QA. While some communities (i.e., Mozilla and
NetBeans) have dedicated QA teams and well-established QA
practices, other communities seem to follow the practices only
rudimentarily. Unfortunately, no clear pattern emerges on when
a practice succeeds and when it fails. In order to understand why
some communities succeeded in implementing some QA practices
successfully while others did not, we study the influencers of a
successful QA implementation and execution.

Michlmayr and coauthors [11] studied quality practices in
seven OSS communities. They found that the degree of adoption
of quality practices influences the overall quality of the
community product. They identify a set of quality practices taking
place in the studied communities: new members joining, release
management, branch management, peer review, testing, defects
management, and standards and guidelines documentation.
Although these practices are praised industry-wide, some are not
formalized, and the implementation faces challenges. They list six

quality practices issues: unmaintained code, managing variability,
latency in security fixes and updates, ambiguous bugs reporting
process, difficulty attracting new participants, and task
coordination problems. However, they do not analyze the root
causes of these issues.

Zhao and Elbaum [12] report that software development tools
are popular in OSS communities; 75% of the respondents of their
survey use configuration management tools, and 61% of the
projects employ bug tracking tools. At the same time,
documentation is not popular; only 32% of surveyed projects have
design documents, and only 20% have documents to plan releases.
More than half (58%) of the projects spent more than 20% of their
time on testing, but only 15% of the projects spent more than 40%
of their time on testing. It seems that larger projects tend to spend
less time on their testing phase compared to smaller projects.
They find that 20–40% of bugs are identified by end users. This
agrees with a qualitative survey of Halloran and Scherlis [10]. The
implementation of testing practices varies across communities.
Also, non-programing activities (i.e., documentation) are not
favored by contributors. Yet what makes some communities
keenly embrace testing practices while others seem to shy from it
has not been investigated. There is a need for studies to
investigate further why non-programing tasks are not stimulating
for OSS developers.

Rigby et al. [13] argue that despite being difficult to
implement, code peer review is largely adopted by OSS
communities as a central quality control practice. They studied
the efficiency and the effectiveness of the practice in OSS
communities. They found that the efficiency and the effectiveness
of the practice depend on the level of the participation in the
review process, the size of the change, and the author’s experience
and expertise. While the author expertise shortens the review
cycle, the size and the complexity of the change elongates the
cycle.

Lussier [14] recounts the experience of his team joining the
Wine project, an open source implementation of the Windows
API. The team is collocated and affiliated with a software strategy
and research consulting services firm. Their first contribution did
not pass the code review process since it did not meet the
community standards. He recalls, “Team members watch the code
carefully. No one wants to see bugs introduced into the source
tree … a real sense of ownership, of pride in the work, exists on
Wine.” Initially, the team resented the rejection. However, after
three consecutive rejections, they adapted their programing
standards to the community standards and conventions. This
narrative is consistent with the widely accepted assumption that
OSS quality is owed to peer review. Elsewhere, code is also
claimed to be of high quality because it is created with passion,
and developers are highly motivated because they enjoy what
they do [15].
How is quality assured in OSS development? In the closed source
software development, QA relies on procedural rigor, extensive
testing, and high testing coverage. Quality in OSS is assured by
development (code modularity and frequent releases), not by
control. Assuring quality is highly dependent on high

Influencers of Quality Assurance Practices in an Open Source Community CHASE 2018, May 2018, Gothenburg, Sweden

 3

participation in the project. High participation and frequent
releases create energy in the development process. This facilitates
bug discovery and generates a fast feedback cycle. Consequently,
defects are identified and corrected more quickly [15].

Most successful OSS projects are sustainable and apply
structured and organized development processes. Otte and
coauthors [15] suggest that attracting talented contributors with
diverse skills, implementation of a QA knowledge sharing
infrastructure, standards and guidelines, and tools help to ensure
sustainable quality practices. However, sustainability remains the
key parameter for achieving quality in OSS communities [16, 17].

Open source software development necessitates specific
methods and techniques for assuring quality [18]. Wahyudin et
al. [19] claim that quality in the OSS development process is
achieved via sustainability, peer review, and code modularity.
They argue that code modularity enhances features evolution and
minimizes bugs’ introduction in the evolution process. Aberdour
[17] believes that irrespective of the community dedication to
quality, having a sustainability strategy is detrimental to assuring
quality. Khanjani and Sulaiman [18] believe the discovery of bugs
is dependent on the size of the community. The larger the
community is, the more chances there are of bugs being identified,
reported, and fixed, also known as Linus’s law: “enough eyeballs,
all bugs are shallow” [18]. In addition, having a knowledge
sharing and collaboration platform facilitates knowledge
dissemination and subsequently nurtures quality contributions
and effective communication [19-20].

Abdou et al. [21] investigated some high-profile OSS
communities’ (Apache, Mozilla, and NetBeans) software testing
practices and how they conform or deviate from ISO/IEC
standards. The studied communities have matured testing
practices. Still, the implementation of testing practices deviates
from the prescribed industry version. Their study is limited to four
large, successful, and well-established communities (i.e., Mozilla,
Apache, NetBeans, and IDE).

Most of the identified work explored QA in isolation of other
research streams, such as participation motives, culture,
community sustainability, and community development. Practices
execution cannot be completely detached from their milieu (i.e.,
organization, community) and the social context. They have to be
studied in relation to the social, cultural, and organizational
context of their milieu.

There has been a recent shift of interest toward QA in the
context of open source software development [14-15]. It seems to
indicate that quality is assured via the combination of one or more
of these variables: code reviews, dedicated QA team, Linus’s law,
and a sustainability strategy. Simultaneously, other studies [6-8]
appear to agree that software engineering QA practices make
their way to OSS communities. There are significant empirical
evidences that OSS communities adopt QA practices from
software engineering. However, it seems that in some instances,
the implementation of these practices is experiencing challenges
[11, 12]. We cannot understand the success of software
engineering practices in OSS communities without understanding
how the social fabric and cultural variables correlate with these
practices. The dependencies and the correlation between OSS

community social and cultural variables and QA is not well-
understood. Hence, this study suggests investigating what
influences the implementation and the execution of QA practices
in OSS communities. This is an initial step in a three-year research
project to propose an implementation strategy for software
engineering practices in OSS communities.

3 RESEARCH METHOD
This paper presents results of qualitative research in one case
study community (ROS). The data was gathered using a
combination of techniques: in-depth semi-structured interviews
with ten participants, virtual ethnography, and community reach-
outs. Qualitative research methods entail a structured process for
the collection, organization, and interpretation of textual material
derived from conversations, interviews, or observation [22-24].
One researcher spent 120 hours studying the community online
infrastructure, forums, and virtual interactions. The researchers
attended four community events. These community reach-outs
were an opportunity to observe, be part of conversations, and
experience the community atmosphere. Field notes were used to
capture this exposure to the community. This ethnographic
experience was complemented by in-depth interviews with ten
active community members. Their professional roles and
participation in the community varied from core developers to
passive as users of the community code.

The data analysis was achieved by open coding, focus coding,
and theoretical coding [24]. This study did not use grounded
theory as an underlying research methodology, but its grounded
approach has been the guiding process for the empirical data
analysis.

Subject. ROS and ROS Industrial are the community subjects of
this study. The Robot Operating System (ROS) is a middleware
framework that is widely used in robotics. ROS provides standard
operating system facilities such as hardware abstraction, low-level
device control, and commonly used robotics functionality.

The underlying philosophy of ROS is to make universal
software portable to different robotics systems. ROS is based on
the concept of reuse and open source software. Its origins can be
traced back to 2007. The project was incepted by the Stanford
Artificial Intelligence Laboratory [25]. In 2008 a startup, Willow
Garage, inherited the project. Five years later, in 2013, Willow
Garage was absorbed by another company, and ROS
“stewardship” transitioned to the Open Source Robotics
Foundation [25]. Today, ROS is the de facto operating system for
robotics.

ROS Industrial is “an open-source project that extends the
advanced capabilities of ROS software to manufacturing” [26].
ROS Industrial is a branch of ROS with a specific industrial
application focus. Incepted in 2012, ROS Industrial has secured the
collaboration of key players in the robotics industry (e.g., ABB,
Yaskawa, Siemens, John Deere, BMW, Bosch, etc.). ROS
Industrial’s ambition is to become the worldwide open source
standard for industrial robots.

4 FINDINGS

CHASE'18, May 27, 2018, Gothenburg, Sweden Alami, Dittrich and Wasowski

4

In response to RQ1 and RQ2, we observe that QA practices in the
ROS community are influenced and constrained by the following
forces:

1. Participation motives
2. Priorities of the community
3. Meritocratic culture
4. Sustainability
5. Complexity
6. Adaptability

The ROS community retains some of the software engineering
and industry practices and processes. Many of the community QA
activities still evolve; many experience challenges in the
implementation and execution. Some of these issues are of a
mechanical nature (i.e., outdated documentations) and require
straightforward mechanical adjustment. However, a significant
segment of the issues involves cultural alignment and/or
alignment with the particularities of open source software
development practices and processes. These issues manifest the
cultural and social nature of the community. Addressing them will
necessitate aligning the practice or the process with the cultural
setting of the community.

These issues are merely a manifestation of unfit practices and
adaptation failure to the environment ROS community. If there is
a problem, then there might be reasons for it to exist in the first
place. The issues exist because of a reaction to the introduction of
change. The implementation of these practices did not cater to the
social and cultural particularities of the community. It assumed
that a default implementation will fit the community.

In the following, we are discussing the identified influencers
by presenting the grounding for them in our data and in the
existing literature. In the final paragraph of each subsection
discussing an influencing force, we allow ourselves to speculate
in what way it could be used to improve QA practices in this
community.

4.1 Participation Motives
The participants do not consciously demonstrate the motives and
their impact on their engagement in the community. Our analysis
demonstrates that both intrinsic and extrinsic motives have
influenced the implementation of QA practices in the community,
mainly ideology and enjoyment. Some participants have strong
ideological grounds, and it is manifested in their conduct and
engagement in the community. Programming and the challenge
of complexity are sources of enjoyment for some participants.

Intrinsic motivation refers to behavior that is driven by
internal rewards [27] based on internal satisfaction and self-
enjoyment [28]. The motivation to engage in an intrinsic behavior
arises from within the individual because it is naturally satisfying.
This contrasts with extrinsic motivation, which involves engaging
in a behavior in order to earn external rewards [27, 28] that arise
outside of the individual. It can involve tangible or psychological
rewards. Psychological forms of extrinsic motivation can include
praise and public acclaim [27, 28].

4.1.1 Ideology

INFLUENCER 1: OSS ideology is present in the ROS community
thinking and decision making.

Data. Openness is the ideology attriute that influences
practices in the ROS community. Some community members
value this norm highly. In one of the community events (ROSCon
2017) that we attended, members discussed Slack as an online
communication tool adopted by a group of developers for
discussions and collaboration. Several community members
refused to use it, while others were happy to continue using it.
One member got emotional when the item came up for discussion
and asserted, “I refuse to use it. It is not open source!” Another
community member joined the opposition: “It is disappointing to
see some people using a closed source, but I refuse to use it.” There
was an awkward silence before the discussion advanced to
another subject. Apparently, not all community members rank
openness equally high. Some have a relaxed and pragmatic
attitude toward adopting closed source infrastructure and tooling.

Analysis. Openness is a mandated community requirement
rooted in some members’ ideological standpoints. Although
adherence to the ideological beliefs are not shared with the same
enthusiasm across the community, it is a fundamental variable
and should not be dismissed. Similar to the Slack case, the
implementation of a tool, process, or practice that does not
embrace openness and transparency would create division in the
community, and the chances of the practice being abandoned by
a segment of the community members is high.

Openness is a manifestation of two cultural traits of open
source communities: transparency and truth [4]. Pavlicek [29]
believes that truth is a fundamental community asset. He explains
that truth and transparency empower the community to produce
“free software.” Elliot and Scacchi [4] explain that “speaking the
truth” is evident in the community social life and work practices.

“Ideologies are the shared framework of mental models that
groups of individuals possess that provide both an interpretation
of the environment and a prescription as to how that environment
should be structured” [30]. The OSS ideology origins are deeply
established in the “Free Software Movement” of the ’80s led by
Richard Stallman [4, 31, 32]. The movement is widely accredited
for paving the way for the open source development.

There has been considerable interest in understanding the
ideological framework of open source software communities [4,
15, 33, 35]. In settings such as OSS communities, where entry
barriers are nonexistent and institutionalization of control is a
challenge, ideology seems to facilitate order [34]. However,
Ljungberg [34] suggests that commitment to the ideology varies
widely across developers.

Impact. Stewart and Gosain [35] found that open source
participants adhere to this ideology. David et al. [36], David and
Shapiro [37], Ghosh [38], and Ghosh et al.’s [39] surveys suggest
that members’ participation motives have underpinning
ideological beliefs. OSS ideology needs to be analyzed, and its
underlying beliefs and norms must be acknowledged before the
design and the implementation of software engineering practices
in OSS communities. We argue that ideology should be
assimilated into the community practices to ensure its success. For

Influencers of Quality Assurance Practices in an Open Source Community CHASE 2018, May 2018, Gothenburg, Sweden

 5

example, when selecting a tool for a particular process, one should
consider an open source to accommodate the openness feature of
the community ideological values. A closed source tool will create
division, and eventually the associated tool and practice will be
abandoned.

4.1.2 Enjoyment

INFLUENCER 2: Enjoyment is equated with challenge in the
community culture, while the QA tasks are not viewed as
challenging.

Data. We observed that enjoyment is a key driver in
community participation. Non-programing tasks are either being
duly executed or taking place loosely in the community practices.
An attendee at the community yearly conference commented on
a poster that advocated an effort to implement and promote QA
practices in the community: “What you are trying to achieve is
formal; we developers seek fun in writing code and creating new
features.” “Skipping and skimming through pull requests and
during code review are common occurrences,” one participant
stated. This attitude has its consequences. He further explained,
“Things don't get reviewed and don’t get the necessary attention
for a longer time.”

Analysis. Enjoyment as an intrinsic motivation has been
associated with programming (“coding”). However, programming
is not the only activity taking place in an open source software
development environment. Other inherent tasks include code
reviews, release management, documentation writing and
maintenance, etc. There is a need to understand the relationship
between non-programming tasks and enjoyment. In a community
based largely on volunteers, this is a condition sine qua non for
making software development processes function beyond
programing.

Deci and Ryan’s [40] self-determination theory is a widely
supported contemporary intrinsic motivation theory. It suggests
that humans have three intuitive psychological needs: a need to
feel competent, a need to belong, and a need to feel
independent. Intrinsic motivations emerge in people’s behavior
to support these psychological needs. Deci and Ryan [40] explain
that when people feel competent, autonomous, and self-
determined, they will seek to fulfill their internal self-
satisfaction. Freedom of choice, the presence of a challenge, and
the ability to overcome the challenge are the three variables that,
when met, stimulate intrinsic motivation [40]. Non-coding tasks
are not “challenging” or at least are perceived as not being so.
They attract fewer contributors, and consequently, QA practices
in the community (i.e., maintenance and testing) receive less
attention.

Impact. It has been suggested that enjoyment is a key construct
for understanding and explaining the motivation of OSS
participants [27, 41, 42]. Lakhani and Wolf [27] suggest that
enjoyment is a prevalent motivation amongst OSS contributors.
Hence, it’s not a force to ignore. Then what impact does this have
on the implementation of QA and other non-programming tasks
in OSS communities? It appears that one needs to immerse fun
into non-coding tasks. This can be done by reframing the tasks or
the process. For example, developing automated tests (that are

programmed and leave credit in code repositories) may be
perceived as more fun than writing manual tests. That would
make it more challenging and more akin to programming.

4.2 Priorities Of The Community
INFLUENCER 3: QA is not high in the priorities of the community.
Consequently, QA tasks are neglected.

Data. Priorities of the community are determined by the order
of importance between various contributions and initiatives.
Priorities are subject to change with changes in the community or
with changes in people’s objectives, motives, or knowledge.
Innovation and functional depth and breadth are the priorities of
the ROS community. “Everybody is aiming for new things,” one
participant stated. They thrive on innovating and resolving
challenging and complex technical issues. This has been observed
at the community yearly conference (ROSCon 2017). The main
program was dedicated to new innovative features and use cases
running on the community technological platform. One
interviewee stated, “More importantly, our focus is features and
functionality. The process is not always the priority.” Another
participant confirmed, “We want to also focus on the new stuff.”
In addition, new features are commonly announced and
showcased in the community forum (i.e. Monocular Camera, and
New packages for Lunar).

Analysis. Consequently, quality practices and continuous
improvement are under-prioritized. A participant commented on
the current QA processes in the community, “It takes a lot of time
to set things up properly, and a lot of people see that as wasted
time because you are developing a new component that is doing
something. You want to focus on developing your component;
you don't want to focus on setting up tests, gathering data, putting
[out] a simulation, [and] all this kind of collateral work.”

Impact. To counter this de-prioritization of QA, the OSS core
team model could possibly be replicated for QA. In the core team
model, a community sets up a dedicated team guarding and
enhancing the core modules of the project. The core team model
has been successful in the ROS community. This model could
possibly be replicated for quality by creating a dedicated team to
own and guard QA practices in the community. This would
elevate priority rank of quality assurance to the level similar to
programming core modules.

4.3 Meritocratic Culture
INFLUENCER 4: ROS culture of meritocracy is not integrated into
QA practices.

Data. The cultural traits of open source software communities
are grounded in the ideological beliefs and members’ motivations.
The study of the ROS community indicates that status attainment,
openness, freedom of choice, and the strive to innovate constitute
the cultural traits of the community. However, meritocracy is a
significant attribute of ROS culture.

Unfortunately, we observed that the community’s cultural
variables are not crafted into the implementation of QA practices.
Fame and reputation are the rewards for those with superior
technical knowledge, and they generously help others to resolve

CHASE'18, May 27, 2018, Gothenburg, Sweden Alami, Dittrich and Wasowski

6

their technical challenges in the community forums. There is no
such visibility or reward given to those who perform testing
activities or documentation.

If enjoyment is one of the participation drivers, then quality
should be fun. However, this is not the case. Fun is not constructed
into QA practices. Fun is also the intellectual stimulation and
challenge. Quality practices are conformance to rules, standards,
and processes. Consequently, QA activities do not attract
contributions. One participants stated, “Maintenance! No one
wants to do that. I mean I am saying I am not happy that this is
actually a real problem.”

Analysis. Culture stems from a Greek word “cultura,” meaning
“to tend, cultivate, till, educate or refine” [43]. Bennett [44] defines
culture as a shared mental system that distinguishes the members
of one group from another. Culture is transferred from one
generation to another. Fellows & Liu [45] argued that culture is
ever changing as generations add something new to the culture
before passing it to the next generation.

In a social system where meritocracy dictates the social
structure and technical knowledge is awarded by social merits to
attain higher community status, quality practices become trivial.
This becomes more problematic when the innovation’s functional
depth and breadth dominate the community’s priorities. In a local
community meeting, a highly regarded developer was introduced
to the crowd as being “famous worldwide” for developing a
feature that was enthusiastically appreciated. Apparently, his
contribution was of exceptional technical complexity. Others had
unsuccessfully attempted to deliver it previously. In his
presentation, he stated, “When you contribute a new feature, why
think about quality? Just develop it and put it out there.” This
attitude of features first and quality later shows that quality is not
built into the cultural environment.

Impact. According to Crosby [46], quality should be crafted
into its cultural environment. It has to be part of the organization
fabric, not part of the fabric. Culture and practices should be in
synergy with each other. We observed that when a practice is
alienated from the community culture, its implementation and
execution fail. QA practices should be aligned to the meritocracy
system. Non-programming tasks, especially QA, should be
rewarded “karmas” similar to answering community members’
questions. The “karmas” system is a reward scheme whereby
members are rewarded “karmas” (i.e., points) for helping to
answer questions in the community forum. Members with high
“karmas” are highly regarded in the community.

4.4 Sustainability
INFLUENCER 5: The absence of a working sustainability strategy
puts constraints on the execution and the development of QA.

Data. A subject states: “[Sustainability’s] always the problem
because if you don’t have the large exposure, the project does not
have much chance to survive after it has been developed.” Finding
a balance between quality and stimulating growth through
ongoing contributions has been a challenge for ROS. While the
flow of new contributions is steady, the core team does not have
the capacity to ensure their quality.

“The main challenge is basically time and resources.” In
addition, the absence of a working sustainability strategy has led
to a resourcing issue in the software maintenance activities. The
community attempted a few initiatives to attract new maintainers;
however, these have been unsuccessful. One participant
explained, “So it is good to get people in, but it’s hard to get
maintainers in, both of which will actually continuously spend
some of their time triaging and contributing. That’s a huge
challenge, and we have not figured out a good way to get more
people involved, and that, I think, is one of the biggest challenges
for the project.” Consequently, a high number of packages end up
being orphans and unmaintained. This applies to non-code
artifacts as well; some QA Wiki documentation has not been
updated for years.

Analysis. A sustainable community is “one that is
economically, environmentally, and socially healthy and resilient”
[47]. Resilience transcends inception and the ability to produce a
product but rather than the product’s ability to evolve and
continuously innovate and thrive. Failing to create a sustainable
environment to support themselves, OSS communities usually
vanish.

Impact. Sustainability is difficult to achieve; however, a
project’s ability to attract and retain development and user
resources increase the possibility of sustainability [48].
Communities that fail to create a sustainable environment to
support themselves vanish. The evolution of the community
product relies on ongoing creative contributions. Hence, OSS
communities need to design and implement a working
sustainability strategy to support growth and innovation.

4.5 Complexity
INFLUENCER 6: The complexity of robotics systems adds challenges
to the implementations of QA.

Data. An interviewed mechanical engineer defines quality as
the robot functioning defect free. Simulanously, a software
engineer is disappointed that quality practices are not adhering to
software engineering standards.

Analysis. QA of robotic systems is a challenging endeavor.
Robots are complex distributed systems, combining control, AI,
concurrency and mobility. Their development is a complex
interdisciplinary practice. Their life cycle varies from the
traditional software. This complexity of robotics development is
not reflected in the current implementation of QA processes in the
ROS community.

Impact. The complexity and interdisciplinarity of robotics
systems is inherent to the ROS community; it is unlikely that it
can be exploited to provide better QA. We consider it as a force
that additionally complicates an implementation of a successful
quality management strategy for ROS.

4.6 Adaptability
We consider the organic self-alignment of practices to the
community’s social and cultural characeteristics. An organic
modification does not occur via staged implementation nor via a

Influencers of Quality Assurance Practices in an Open Source Community CHASE 2018, May 2018, Gothenburg, Sweden

 7

design change process, but arises informally. The community
implicitly acknowledges non-conformance to industry practices.
For instance, there is no formal requirements engineering process
in place. Instead, requirements are collected from ideas and code
contributions of the members.

The self-alignment of practices is not always successful. The
difference between a community-based adaptation of practices
and a standard change management project lies chiefly not in the
change but in the way the change is developed and integrated into
the community. An adaptation should rooted in the community
context. It requires deep understanding of what the community is
doing, why people participate, how did they cope with past and
present changes, their informality and how an organic adaptation
has developed in the past.

4.6.1 ”Informlisms” Of Processes

INFLUENCER 7: The ROS community does not follow QA practices
as prescribed. It prefers an organic development of practices.

Data. Processes in the ROS community tend to take an organic
course to full implementation, informed by its own trial of a
practice as opposed to a planned implementation that comes from
a well-established change design process known to the software
engineering researchers. Some of the community practices were
intended to be trials, which have since become abiding. “Most of
the current processes in place have been thought in flight,” a
participant states. Another one explains why the adherence to the
code review is fluid: “There is no formal process for that, which is
probably something we could improve on, but there is no fixed
rule [on] what to check for.”

Analysis. These voices from the ROS community are consistent
with earlier analyses. According to Elliot and Scacchi [4], OSS
projects are often managed informally. Scacchi [3] suggests that
OSS practices software “informalisms”, by not adhering to the
traditional engineering practice, standards, and rationale.
Sometimes the informalisms are democratically agreed upon
through a voting system [33]. Sometimes they emerge implicitly.
For instance, the traditional code inspection is fundamentally
different from OSS code review [13].

Impact. We learn from this that the implementation of QA
should be organic and allow for “informalisms.” Prescribing
practices top-down does not work. The OSS communities prefer
to reflect, deliberate, and democratically consult the wider
membership before adopting a change. During this process,
practice adaptation occurs. Action research regarding QA
processes in OSS should definitely take this into account.

4.6.1 ”Ease Of Use

INFLUENCER 8: The ROS community has an affinity for ease of use.

Data. One participant summarized this elegantly:
“Prioritization should also look at how long the task would take
versus how important it is—and how adaptable the community to
the task. You cannot bring a game-changing thing. People would
say this is too complicated; I’m not going to do it. It’s open source,
not everybody aiming for stability. Everybody is aiming for new

things. So you want to make sure those people are not scared
away with complicated processes of testing.”

Analysis. The community definition of ease of use is
“minimum annoyance” and an enjoyable user experience. This is
in line with “effectiveness,” “efficiency,” and “satisfaction of use.”
Consequently, the community members expect that QA practices
are effective and efficient. QA processes should not delay or
constrain developers’ dedication to innovation.

Impact. Tools and processes should facilitate innovation and
not constrain the creativity and participation. Ease of use should
be a factor in the implementation of QA practices, and tools in
OSS communities (which is obviously a challenge).

5 CONCLUSIONS
The ROS community has adopted accepted QA practices, but it is
struggling with their effective implementation and execution. We
focused on what influences this implementation and execution
(RQ1 and RQ2) in order to understand the variables that
contribute to the success and the establishment of QA practices in
an OSS community. The implementation and execution of QA
practices in the ROS community appears to be influenced by
social and cultural factors and is constrained by sustainability and
complexity. This shapes the practices toward a community-
tailored variation rather than following the traditionally
prescribed software engineering recipes.

What does this tell us? The identified influencers should be
weaved into the design and implementation of QA in OSS
communities. This necessitates some ingenuity and boldness. In
commercial software production, QA practices are prescribed and
enforced by management. In the future, We aim to change the
trajectory of the ROS community to prioritize QA practices higher
and to execute them effectively without management in
traditional sense.
External validity. ROS shares the cultural and social attributes of
other OSS communities. Hence, the related influencers will likely
be applicable to other communities as well. The complexity of
robotics software may not be representative of many other OSS
projects, but it clearly is for some.
Acknowledgments. Work partially supported by EU’s H2020
programme under ROSIN project, grant agreement No. 732287.
We thank the interviewees for their participation.

REFERENCES
[1] Ø. Hauge, C.-F. Sørensen, and R. Conradi, “Adoption of open source in
the software industry,” in OSS 2008.
[2] Nagy, D., Yassin, A. M., & Bhattacherjee, A. (2010). Organizational
adoption of open source software: barriers and remedies. Communications
of the ACM, 53(3).
[3] W. Scacchi, “Understanding the requirements for developing open
source software systems,” IEE Proceedings-Software, 149(1), 2002.
[4] M. Elliott, W. Scacchi, Free software: A case study of software
development in a virtual organizational culture ISR 2003.
[5] Wenger, E. Communities of practice: Learning, meaning, and identity.
Cambridge University Press, 1998.
[6] E. M. Gerson, and S. L. Star, “Analyzing due process in the
workplace”. ACM TOIS, 4(3), 1986.
[7] L. A. Suchman, “Office procedure as practical action: models of work
and system design”. ACM TOIS, 1(4), 1983

CHASE'18, May 27, 2018, Gothenburg, Sweden Alami, Dittrich and Wasowski

8

[8] C. Hansson, Y. Dittrich, B. Gustafsson, and S. Zarnak, “How agile are
industrial software development practices?”. JSS, 79(9), 2006.
[9] ISO 9000: Quality management systems — Fundamentals and
vocabulary. 2015.
[10] T. J. Halloran, W. L. Scherlis, “High quality and open source software
practices,” Workshop on Open Source Soft. Eng., 2002.
[11] M. Michlmayr, F. Hunt, and D. Probert, “Quality practices and
problems in free software projects,” in OSS, 2005
[12] L. Zhao, S. Elbaum, “A survey on quality related activities in open
source,” SIGSOFT Soft. Engineering Notes, 25(3), 2000.
[13] P. C. Rigby, D. M. German, L. Cowen, and M. A. Storey, “Peer review
on open-source software projects: Parameters, statistical models, and
theory,” ACM TOSEM, 23(4), 2014.
[14] S. Lussier, “New tricks: How open source changed the way my team
works,” IEEE Software, 21(1), 2004.
[15] E. S. Raymond, The Cathedral & the Bazaar. O’Reilly 2001.
[16] T. Otte, R. Moreton, H. D. Knoell, “Applied quality assurance
methods under the open source development model,” in COMPSAC’08.
[17] M. Aberdour, “Achieving quality in open-source software,” IEEE
software, 24(1), 2007.
[18] A. Khanjani, R. Sulaiman, “The process of quality assurance under
open source software development,” Computers & Informatics 2011.
[19] D. Wahyudin, A. Schatten, D. Winkler, and S. Biffl, “Aspects of
software quality assurance in open source software projects: two case
studies from apache project,” in EUROMICRO, 2007.
[20] R. Stallman, “Transcript of Richard M. Stallman’s speech," free
software: Freedom and cooperation" NYU, 29 May 2001,”
[21] T. Abdou, P. Grogono, and P. Kamthan, “A conceptual framework for
open source software test process,” in Computer Software and Applications
Conference Workshops. IEEE, 2012,
[22] K. Malterud, “Qualitative research: standards, challenges, and
guidelines,” The Lancet, vol. 358, no. 9280, 2001.
[23] A. Howson, “Qualitative research methods,” Research Starters:
Sociology (Online Edition), 2010.
[24] K. Charmaz, “Premises, principles, and practices in qualitative
research: Revisiting the foundations,” Qualitative Health Research, 7(14),
2004.
[25] Open Robotics. https://osrfoundation.org/ [6-Dec-2017].
[26] http://rosindustrial.org/. [Accessed: 06-Dec-2017].
[27] R. M. Ryan and E. L. Deci, “Self-determination theory and the
facilitation of intrinsic motivation, social development, and well-being.”
American Psychologist, 55(1), 2000.
[28] K. R. Lakhani, R. G. Wolf, et al., “Why hackers do what they do:
Understanding motivation and effort in free/open source software
projects,” Perspectives on Free and Open Source Software, vol. 1, 2005.
[29] R. Pavlicek and Foreword by R. Miller, Embracing Insanity: Open
Source Software Development. Sams, 2000.
[30] A. T. Denzau and D. C. North, “Shared mental models: ideologies and
institutions,” Kyklos, vol. 47, no. 1, 1994.
[31] G. Von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin, “Carrots and
rainbows: motivation and social practice in open source software
development.” MIS Quarterly, 36(2), 2012.
[32] S. C. Özbek, “Introducing innovations into open source projects,”
Ph.D. dissertation, Freie Universität Berlin, 2011.
[33] M. Bergquist and J. Ljungberg, “The power of gifts: organizing social
relationships in open source communities,” Information Systems Journal,
vol. 11, no. 4, 2001.
[34] J. Ljungberg, “Open source movements as a model for organising,”
European Journal of IS, 9(4), 2000.
[35] K. J. Stewart, S. Gosain, “The impact of ideology on effectiveness in
open source software development teams,” MIS Quarterly, 2006.

[36] P. A. David, A. Waterman, and S. Arora, “FLOSS-US the
free/libre/open source software survey for 2003,” Stanford Institute for
Economic Policy Research, 2003.
[37] P. A. David and J. S. Shapiro, “Community-based production of open-
source software: What do we know about the developers who
participate?” Information Economics and Policy, 20(4), 2008.
[38] R. A. Ghosh, “Understanding free software developers: Findings from
the FLOSS study,” Perspectives on Free and Open Source Software, 2005.
[39] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles, “Free/libre and open
source software: Survey and study,” 2002.
[40 E. L. Deci and R. M. Ryan, “The general causality orientations scale:
Self-determination in personality,” Journal of Research in Personality,
vol. 19, no. 2, 1985.
[41] B. Luthiger, C. Jungwirth, “The chase for OSS quality: The meaning
of member roles, motivations, and business models,” in Emerging Free and
Open Source Software Practices. IGI, 2007
[42] K. Lakhani, E. Hippel “How open source software works: ‘free’ user-
to-user assistance” Research Policy 32(6) 2003.
[43] L. Smircich, “Concepts of Culture and Organizational
Analysis”. Administrative Science Quarterly, vol. 28, no. 3, 1983.
[44] T. Bennett, “Cultural Studies and the Culture Concept”. Cultural
Studies, vol. 29, no. 4, 2015.
[45] R. Fellows, and A. M. Liu, “Use and misuse of the concept of
culture”. Construction Management & Economics, 31(5), 2013.
[46] B. Crosby Philip, “Quality without tears: The art of hassle-free
management,” 1984.
[47] Institute for Sustainable Communities. [Online]. Available:
https://www.iscvt.org/. [Accessed: 16-Dec-2017].
[48] I. Chengalur-Smith, A. Sidorova, S. Daniel, “Sustainability of Free-
Libre Open Source Software projects: A longitudinal study.” Journal of
Association for Information Systems. 11, 2010

