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Abstract: In future power grids, a large integration of renewable energy sources is foreseen,
which will impose serious technical challenges to system operators. To mitigate some of the problems
that renewable energy sources may bring, new voltage and frequency control strategies must be
developed. Given the expected evolution of technologies and information systems, these new
strategies will benefit from increasing system observability and resources controllability, enabling a
more efficient grid operation. The ELECTRA IRP project addressed the new challenges that future
power systems will face and developed new grid management and control functionalities to overcome
the identified problems. This work, implemented in the framework of ELECTRA, presents an
innovative functionality for the control room of the cell operator and its application in assistance
with the voltage control designed for the Web-of-Cells. The voltage control method developed uses
a proactive mode to calculate the set-points to be sent to the flexible resources, each minute, for a
following 15-min period. This way, the voltage control method developed is able to mitigate voltage
problems that may occur, while, at the same time, contributes to reduce the energy losses. To enable a
straightforward utilization of this functionality, a user interface was created for system operators so
they can observe the network state and control resources in a forthright manner accordingly.

Keywords: control room; future grids; system operator; voltage control

1. Introduction

The European Union and other countries around the world, concerned with environmental
problems, have set a target to decrease greenhouse gas emissions by 20%, compared to the values
from 1990, as a main goal for 2020 [1]. Renewable energy sources can definitely help that cause
and thus a high integration of those sources in the power system is expected in the near future [2].
Despite representing an important step forward towards sustainability, high levels of renewable energy
sources are bringing new technical challenges [3]. The main problems are essentially related with the
high unpredictability of this type of resources (wind and solar), which will demand new strategies
for real-time energy balancing and voltage control [4]. These new approaches will strongly rely on
information and communication technologies, which will also be essential for control room operators.
These information and communication technologies -based solutions will increase grid observability
and will enable a faster and improved grid management and control [5,6].

The ELECTRA IRP project, financed by the European Commission under the FP7 program, has as
main goals to design the future grid architectures that will undergo beyond 2035 and to develop
new functionalities for voltage and frequency control to mitigate problems that will arise with the
foreseen changes [7]. In ELECTRA, a new concept was developed, the so-called Web-of-Cells (WoC),
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as the representative grid architecture of the future power systems. The WoC consists of a group
of interconnected substructures, the “cells”. A cell is defined as a group of loads, generators and
Distributed Energy Resources (DERs), within a geographical area, which can integrate different voltage
levels [8]. The main characteristic of a cell is that it seeks to use local resources to solve local problems,
thus requiring a certain amount of flexibility to counteract unexpected generation or load deviations [9].
The proper operation of the cells together with new mechanisms of close collaboration between them
will help to make the future power system more stable and secure. A new set of functionalities
were developed in ELECTRA to adapt some of the frequency and voltage control mechanisms that
exist nowadays to future power systems, in particular to the WoC concept, and also to develop new
ones [10].

The work presented in this paper is solely focused on the visualization of the voltage control
mechanisms developed in the project, as well as on the user interface that was created for the cell
operators in order to use the voltage control mechanisms in a straightforward manner.

Today’s control rooms are composed by multiple monitors, varying with the complexity of
the system being monitored, which display different types of information, such as distribution
management systems data, networks alarms, e-mails, etc. Operators also have to get in contact
with crews and other operators through radio, phone or e-mail and sometimes the procedures end up
not being very efficient [11]. With the evolution of distribution networks and its growing complexity,
the control room must be redefined or else the risk of operational errors may occur more frequently [12].
In [13], it was identified some sources of operator errors due to the lack of situational awareness and
identified some improvements and measures to prevent design errors that provoked problems in
past situations.

Given the large amount of grid measurements that are expected to be collected in the future,
grid observability potential will increase significantly. Some works have dealt with the increase of
renewable energy sources, which increase the complexity of the system and its uncertainty, and made
recommendations concerning the way this problem should be treated [14,15]. Thus, advanced grid
control rooms will be required to enable system operators to integrate in an efficient manner all the
information received from grid equipment, filtering or extracting and visualizing a clear portrayal of
the grid state, creating a good situational awareness of the system [16]. The information that appears to
the operators must be well detailed, prioritized and presented in a simplified way, so that it facilitates
their work in understanding the problems of the network and how to manage them in the best way
without disregarding system safety [11]. In the ELECTRA project, this subject was also addressed,
and in the view of the WoC concept, the system operator should have the responsibility to supervise a
highly automated system, while having some degree of control over the system and intervene when
necessary [17].

Considering this, a user interface was specifically developed in ELECTRA for the voltage control.
The aim of the user interface is to provide an enhanced grid observability to system operators, so they
can have some degree of control over the resources, instead of relying only in automatic Optimal
Power Flow-based solutions or local voltage control approaches (e.g., droop control [4,18]).

The structure of the voltage control developed in ELECTRA as well as the detailed operation
of the Post-Primary Voltage Control (PPVC) algorithm are explained in Section 2. The user interface
for the control room is presented in Section 3. The case studies and results obtained are presented in
Section 4. Finally, the conclusions are presented in Section 5.

2. ELECTRA Voltage Control Scheme

Two voltage control functionalities were developed in ELECTRA for the WoC: the Primary Voltage
Control (PVC) and the PPVC. The PVC aims at mitigating voltage deviations in the connection point
of the device while PPVC restores the voltage to their optimal values minimizing active power losses.
The PVC developed for the WoC is based on the utilization of a grid impedance estimation function
to calculate the necessary active or reactive power to be injected/absorbed to reduce the difference
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between actual voltage and the set point value. The PPVC consists in a cell-centralized voltage control
method that uses a proactive algorithm, running every 15 min, to calculate the optimal set-points of
the flexible resources. As the PVC is an automatic control with no real involvement of the cell operator,
this paper is dedicated to the visualization and control of the PPVC resources done by the cell operator
from the control room.

The PPVC [19] restores the voltages in the nodes of the cell to the set point values while minimizing
the power losses in the cell. It ensures the balance between reactive power flow optimization and
robust voltage set-points (within a tolerance band) that do not trigger a new set-point calculation
continuously if the set-points are close to the safe band limits. It is based on the execution of an Optimal
Power Flow algorithm that provides the set-points for the nodes with automatic voltage restoration
capabilities and the status/position for the nodes with discrete control, such as transformers with
on-load tap changers, capacitor banks, shifting transformers, or interruptible loads.

The voltage control scheme PPVC defined within ELECTRA has two operation modes: Proactive
and Corrective. In the Proactive mode the window-ahead planning operations based on short-term
forecasts are included while the Corrective handles the response when reacting to unscheduled events.
The Proactive mode has a cyclic operation with windows lengths of 15 min.

On the basis of widespread deployment of advanced metering infrastructure in the cells,
e.g., remote terminal units, the information up to the node level is collected and sent to the cell
controller in real-time. This goes far beyond current practices, where Distributed System Operators
rely only on the voltage measurements registered on the secondary side of the transformer for the
distribution grid operation. The Corrective mode is launched if the cell controller detects any voltage
out of the safe band. Otherwise, periodically (every 15 min) and automatically, new set-points are
calculated and updated in the DERs controllers, directly or via an aggregator. The timeline of the
PPVC operation can be seen in Figure 1.
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Before the start of the time window comprised between tA−1 and tA (proactive scenario cycle),
the Cell Operator has received the data for the optimization of the voltage profile in the nodes for
the following window. This includes the information about the availability of the resources and their
location, the reactive power flows in the tie-lines that connect the different cells and the generation
and load forecasts. Together with the static information about the grid components and topology,
the algorithm is executed during the cycle of control actions (purple slots in Figure 1) and at tA−1 the
set-points are sent to the resources. To find a tradeoff between accuracy and tractability, it has been
considered that the sampling interval of the forecasts is 1/60 Hz = 16.7 ms. If there were no abnormal
events in the grid, the Proactive operation would continue in 15-min cycles. In case the Cell Monitoring
System detects the violation of the voltage at any node (t’A), it sends a trigger signal to activate the
calculation of new optimal set-points because the previous are no longer valid. The underlying
principles are, in summary, the same between the Proactive and Corrective operation mode but the
need of corrective actions shortens the actual proactive window and makes the following window
start before (t’A+1 instead of tA+1). In normal operation, the Proactive mode is enough to correct the
imbalances coming from generation-load fluctuations and thus, the Corrective mode is only needed in
case of unexpected incidents, such as the loss of a line or the failure of a big power plant . The PPVC



Energies 2018, 11, 1659 4 of 23

shows an evolution over the current voltage control schemes. It gives the optimal voltage set-points to
the DER units for the next operation time window, in a proactive way, thus facilitating the anticipation
to future voltage events. The PPVC reduces the complexity of the traditional voltage schemes
developed in three steps (primary/secondary/tertiary) and, as a consequence, improving the system
efficiency. In practice, nowadays the implementation of a centralized OPF is still troublesome [3,20].
However, the PPVC could be possible in the 2030+ horizon where ELECTRA IRP focuses, thanks to the
advances in grid observability and the rise of the calculation capacities, the communication systems
and the data processing algorithms that are constitutive of the WoC [19].

3. User Interface

The user interface plays an essential role in the grid operation and management. The graphical
design of the tool needs to be simple and clear to facilitate the systems operators’ work. Although
its simplicity is an important aspect, it must provide all the relevant information of the system.
As emphasized in the introduction, it has to highlight the most critical information and create a good
situation awareness for operators responsible for a system that is highly automated, but with some
degree of control.

In the user interface developed, the available information is divided into two parts:
the global information and the network scheme information (Figure 2) or the detailed information
(Figures 3 and 4). The global information is always visible for the operator and represents the
information of the cells under the responsibility of the Cell Operator and neighboring cells.
The network scheme is visible at the beginning, but it is changed to the detailed information when
the operator decides to have an in depth visualization of a given cell. All the information available
in the user interface, as well as the actions that system operators can implement are presented in the
following subsections.

It is important to notice that the user interface presented intends to be a complete visualization
tool for system operators. This is the reason why it contains more information than the one needed for
the PPVC (e.g., branches loading information).
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3.1. Global Information Displayed

As this work is focused on voltage control, the user interface will only display information
considered relevant for this type of control and for the grid operation.

For each cell, the information presented is clustered into three groups (Figure 5), detailed in the
following subsections.
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Figure 5. Global information groups.

• Group A.1: Voltage-related information

Table 1 shows the number of buses that are in each range of voltage values presented in the left
column. Five ranges were considered:

Table 1. Voltage information.

Voltage Total Buses (no.)

<0.9 -
<0.92 -

0.92 < V < 1.08 -
>1.08 -
>1.1 -

− In the range (0.92 < V < 1.08), the cell is in “normal situation” and there should not be any cause
for concern;

− other two ranges (<0.92 and >1.08), called “abnormal situation”, are to show the buses that are
within the safe band but close to the limits. This situation is for the operator to be alert that a
more serious situation may occur in the following moments;

− two of them (<0.9 and >1.1), called “emergency situation”, are to show the buses that already
exceeded the voltage predefined limits and, in this case, the PPVC control is triggered.
These limits are defined following the standard EN 50160 [21].

• Group A.2: Flexibility provided by the resources and associated cost

Table 2 presents the total flexibility being used by each type of resource (flexible loads, PVs and
storage/capacitors) and the costs of the reserves being used. The totals of flexibility are presented
in MW for active power and MVAr for reactive power and the costs for providing active power or
reactive power are presented in thousands of euros. The section “Capacitors” includes storage systems
and capacitors.
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Table 2. Resources information.

Resources Flex (MW) Cost (k€) Flex (MVAr) Cost (k€)

Loads - - - -
PVs - - - -

Capacitors - - - -
Total - - - -

It is important to notice that other flexible resources, e.g., wind farms, may be added to the
visualization tool. The case presented only includes information about the resources available in the
network used as test case (see Section 4).

• Group A.3: Global cell information

Table 3 presents the total load, the total generation, the total PV generation, the losses in the cell
and the energy imports/exports (positive for imports and negative for exports). All the information is
presented in MW.

Table 3. Other information for active power.

Load (MW) -

Gen (MW) -
PV Gen (MW) -
Losses (MW) -

Imp/Exp (MW) -

Table 4 has the same information as Table 3 but for reactive power resources. All the information
is presented in MVAr.

Table 4. Other information for reactive power.

Load (MVAr) -

Gen (MVAr) -
PV Gen (MVAr) -
Losses (MVAr) -

Imp/Exp (MVAr) -

3.2. Network Scheme

In Figure 6, it is possible to observe the network scheme that is initially visible to the operators.
In this scheme, it is possible to see how the cells are connected and the state of the cells and their
tie-lines: if the voltages are in the “normal situation”, the color will be green; if they are in the
“abnormal situation”, the color will be yellow; if they are in the “emergency situation”, the color will
be red. The same principle is applied to the branches. It is also possible to see the active power flow
and the reactive power flow in each tie line as well as their scheduled value (the first value in brackets)
and the difference between the real and the scheduled power flow (the second value in brackets).

The tap position of the transformer is also visible in a screen right next to the transformer (in p.u.).
The operator is able to change the tap position in this scheme by clicking on the buttons “+” or “−“.
The maximum value possible for the tap in p.u. is presented above screen (“max: 1.1”) as well as the
minimum value presented below the screen (“min: 0.9”). The actual tap position is presented right
next to the tap value screen (“Taps: 11/21”), so that the operator can know how many positions the
transformer has.
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3.3. Detailed Information Displayed

If the operators want to have a better knowledge of a specific cell, they can have access to further
information provided in the form of charts. The information that can be accessed for each cell is
described in the following subsections. In this case, the information presented is also clustered into
five groups. First, the operator can observe the voltage information or branch information in a graphic
(group B.1) or in a map (group B.2), as seen in Figure 7. If the operators wants to observe data related
with load, PV, imports or losses profiles (group B.3), the individual state (group B.4) or aggregated
state of flexible resources (group B.5), he can click in the button “Data”, as seen in Figure 8.
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• Group B.1: Buses voltage chart and branches loading chart

This chart presents the voltage in each bus. In case any bus gets in the “abnormal situation” or
“emergency situation”, its number will appear in the x-axis (Figure 9).
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Figure 9. Buses voltage chart.

Figure 10 presents the state of the grid branches in relation to their capacity. If any of the lines
gets above 80% of their capacity, they will be identified in the x-axis. This value has been defined by
the authors, so that the operator is alerted that the branches are getting closer to their capacity limits,
with the aim of avoiding regulatory voltage violations. [21].
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• Group B.2: Buses voltage network map and branches loading network map

Figure 11 presents the map of the network representing the state of the voltages in the buses.
A shape within the map will identify the cell selected for visualization. In this example, it is represented
Cell 1. The color grading between dark blue and red represent increasing voltage values, from 0.9 to
1.1 p.u.
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Figure 12 also presents a map of the network but now representing the state of the branches.
The color grading between dark blue and red represent increasing branches loading values, from 0
to 100%.
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• Group B.3: Load, PV, import/export profiles and losses

The real load profile is also presented, together with the forecasted profile (Figure 13). This helps
the operators understand if there are deviations from the forecasted load or anomalies that may
jeopardize system operation. The profile of the flexible loads is also presented to show the amount of
load flexibility that is being used in each moment of the day (power curtailed) as well as the power
that is being consumed by the loads from the grid (power consumed). In our study, the cell operator
receives measurements every minute, but it is possible to adjust the sampling rates (ex. each second).
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Figure 13. Load profile.

In Figure 14, it is depicted information about the PV profile. It is possible to observe: the forecasted
generation, which is the generation forecasted at the beginning of each day and updated each 15 min;
the real power is the power that all PV panels are able to produce in the cell; the power produced is the
power that is actually being produced by the PV panels and injected into the grid; the power curtailed
is the PV power that is flexibility that is not exploited to maintain voltage within the predefined limits.
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Figure 15. Generator profile.

The profile of the real imports/exports of active and reactive power of the cell with the neighboring
cells are shown in Figures 16 and 17, respectively, as well as their forecasted value. If the value is
negative, it means that the cell is exporting; otherwise, the cell is importing.
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• Group B.4: State of flexible resources—individual flexibility

The operator is able to visualize the resources related with active power flexibility and reactive
power flexibility.

Figure 18 shows a table with information of each resource providing flexibility. The first column
is the identification of the resource; the second column is the flexibility being provided by a certain
resource in kW; the third column is the flexibility being used in percentage; the fourth column is the
cost of the flexibility being provided; the fifth column indicates if the resource is being considered as
a flexibility provider or not. The operator can use the fifth column to decide to stop or start using a
certain resource.
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• Group B.5: State of flexible resources—aggregated per type of resource

The operator is again able to visualize the resources related with active power flexibility and
reactive power flexibility. In Figure 20 it is possible to observe the state of the flexible resources in the
grid that provide active power flexibility. If the actual capacity of the flexible resources is between
0% and 40%, the color will be green; if the capacity is between 40% and 80%, the color will be yellow;
if the capacity is above 80% the color will be red. The “Stop” button can be used by system operators
to curtail the flexibility provided by some type of resource. Further details about the utilization of
flexible resources will be provided in Section 3.3.
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In Figure 21 it is possible to observe the same information as in Figure 20, but for the resources
providing reactive power flexibility.
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3.4. Possible Actions Implemented by System Operators through the User Interface

The first action that operators can take is to choose if they want to see more information about one
cell. To do this, they just have to click on the cell they want to see. As an example, Figure 2 has four
cells: if the operator clicks on cell 4, more information about this cell will appear in the right (“Detailed
information”).

In the “Detailed information” window, a chart of the voltages is presented by default as well as its
contour map. The power flows in the branches can also be visualized. For this, the operator has to click
on the “Branches” button. The operator can also decide to visualize other data and for that, he can click
in the button “Data”. As previously explained, different type of data is now available to the operator.
Initially, the load and PV profiles are presented, but he can change to the active and reactive power
profiles or to the losses profile. The individual and aggregated state of resources will also appear and
by default, only the resources providing active power will be shown. Nonetheless, the operator is also
able to visualize the resources providing reactive power.
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As previously explained, the tool developed has been oriented to the visualization and if needed,
manual operation of the PPVC algorithm. When a problem occurs, the operator has the possibility to
change manually the tap position of the transformer. If changing the tap position does not solve the
problem or if the operator decides that he should not change the actual operation of the transformer,
the PPVC algorithm will be run. This algorithm provides a feasible solution for the system in the form
of set-points that will be sent to the flexible resources. The algorithm’s objective is to minimize active
power losses in the cell. The limits to the voltages in the buses and power flows in the branches are
constraints of the problem. Through this user interface, the operators have the opportunity to modify
the initial solution and they can decide if some specific resource (individual or aggregated) should
be or not activated. In case the operator interferes with the solution found, the PPVC algorithm will
find a new feasible solution taking into account the resources utilization restrictions imposed by the
operator. If the algorithm is unable to find a new feasible solution, a warning is displayed and the
operator will be informed that the algorithm will override its restrictions. To stop using the flexibility
provided by a certain resource, the operator has to check the “State” column of the table presented in
Figures 18 and 19. To stop using all the resources of one kind (flexible load, PV, storage or capacitors),
the operator has to click on the “Stop” button below the selected resources, as shown in Figures 20
and 21. The actions that the operators can implement for the user interface are summarized in the
following bullets:

• Change the tap position of the transformer;
• Visualize detailed information about a specific cell;
• Visualize the voltages in the buses or the power flows in the branches;
• Stop or start the utilization of the flexibility provided by an individual resource;
• Stop or start the utilization of the flexibility provided by an aggregated set of resources (flexible

load, PV or storage).

4. Simulation Results

4.1. Case Studies

The network used in this study to test the voltage controls developed is a typical MV grid from a
rural area in Portugal (15 kV) (Figure 22) that was later divided into four cells. This division was made
taking into account the criteria established by the WoC concept, as previously explained, which states
that each cell should have enough flexibility to solve local problems using local resources. The specified
voltage in the feeding point is 1.05 p.u. Each cell is composed by one storage system and several loads
and PV generators; Cell 1 and 4 also have a capacitor. The resources that are able to provide active
power flexibility are storage systems, flexible loads and PV generators; the resources that are able to
provide reactive power flexibility are the storage systems, capacitors and PV generators. In these case
studies, it was assumed that storage systems did not provide any reactive power. The total flexibility
that the loads are able to provide is 20% of the power consumed, and in the case of the PV generators,
it is 100% of the power generated. The storage systems are also able to provide flexibility, as they
are owned and managed by the cell operator. Some additional details about the cells are presented
in Table 5.
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Table 5. Network resources.

Resource Cell 1 Cell 2 Cell 3 Cell 4

No. loads 23 29 27 33
No. generators 23 29 27 33

No. storage 1 1 1 1
No. Capacitors 1 0 0 1

Peak load (MW) 2.76 3.44 1.55 2.93
Peak generation (MW) 2.49 2.19 1.4 2.65
Storage capacity (MW) 5 5 5 5

Capacitor capacity (MVAr) 2 0 0 2

The results were obtained using the Matpower OPF algorithm in Matlab. It was used a typical
daily load diagram for this network as well as a typical PV generation diagram.
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In order to test the algorithm developed for voltage control, three case studies were created:

• Case study 0: This is the base case where no voltage control mechanism is implemented in the
network. The purpose is solely to serve as basis of comparison with the remaining scenarios.

• Case study 1: The voltage control algorithm developed, with the corrective and proactive controls,
is assumed to be active in the network.

• Case study 2: The voltage control approach is the same as in case study 1. The difference is that a
big forecast error is assumed to exist in the time step between 21h00 and 21h10. The forecast error
is a 50% increase of the load in cell 2 in those instants and its purpose is to simulate a situation
that triggers the corrective control or makes the operator change the tap position. In this case,
the operator will only change the tap position and the corrective mode of the PPVC will not
be used.

• Case study 3: Same situation as case 2, but now the operator will not change the tap position and
the corrective mode of the PPVC will be triggered.

4.2. Results

The most important results obtained for each case study are presented in this section. As this
work is focused on the visualization of a voltage control method in a control room of a cell operator,
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it is important to know the state of the voltages in the buses and to check if any limit is exceeded.
As the objective of the voltage control algorithm is the minimization of power losses, the profile of the
total losses is also presented, together with the flexibility used by the loads and PV generators during
the day. As results are similar for all cells, only cell 2 results are presented, with the aim of balancing
the clearness and the level of detail. The graphics presented in this section are for validation purposes
and they are not included in the user interface for system operators described above.

• Voltages

# Case 0

In Figure 23, it is possible to observe the voltages in some of the buses of case study 0. The voltages
exceed the predefined limits during the night. From hour 17 to hour 0, the voltages in some buses fall
below 0.9. The problem is not solved because no voltage control strategy is implemented.
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# Case 1

In Figure 24, it is possible to observe that with the voltage control implemented, using the
proactive scenario at each 15 min, there are no voltage problems. This means that the voltage control
implemented succeeds in controlling the voltages.Energies 2018, 11, x FOR PEER REVIEW  17 of 22 
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# Case 2

In Figure 25, it is possible to observe a sudden voltage decrease due to a big load forecast
error. This error lead voltage below 0.9 p.u. Nonetheless, by increasing the tap position by one step,
the problem is rectified and it does not occur again.
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In Figure 26, it is also possible to observe how the operator could visualize the tool when the error
occurred. As can be seen by the central message, the operator has the possibility to choose between
modifying the taps of the transformer or the corrective mode.
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# Case 3

In Figure 27, it is also possible to observe a sudden voltage. In this case, the corrective mode is
used and it is able to rectify this deviation.
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# Case comparison

It is possible to observe in Figure 28, the decrease in the voltage in the cases 2 and 3 due to the
occurrence of the problem. In both cases the voltage was corrected but, in case 2, as the tap position
was increased, the voltage after the occurrence of the problem is higher than the case 3, when the
corrective mode is used.
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• Losses

In Figure 29, it is represented the sum of the losses profile during the day for each case. In case
0, the losses are higher than in the other cases. The objective of the algorithm implemented in case 1,
2 and 3 is to minimize losses and that is why the losses decrease in those cases. Between 9 and 14 h,
the losses are almost zero due to the PV generators, whose generation is enough to feed the loads.
Thus, power flows in the lines are minimal, generating few energy losses.

After hour 16, the losses increase because PV generation decreases and demand increases. In case
2 and 3, there is an increase in the losses due to the difference between the forecasted load and the real
load. In cases 1, 2 and 3, although the losses increase after 16 h, they are lower than in case 0. Case 2,
has the highest losses value, due to the manner the problem was corrected when it occurred.
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In Figure 30, a comparison of the sum of the losses for the three study cases is presented. It can
be seen that the losses are lower in case 1 compared with the base case (Case 0) due to the increase
of voltages in the grid as a consequence of the PPVC; in case 2 and 3, they have a small increase
comparing with case 1, due to the load forecast error; case 3 has lower losses than case 2, due to the
manner the problem was rectified
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• Load and PV Generation curtailment

In Figure 31, it is possible to observe the PV generation curtailed in cases 1, 2 and 3 (it is the same in
all cases). Part of the PV generation must be shed because otherwise the generation surpasses the load.
Case 0 is not represented in the figure because there is no voltage control algorithm implemented and
so, there is no PV generation shed. The excess power generated by PV is exported to other networks.
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In Figure 32, it is possible to observe that the load flexibility is used during all day and it is very
similar for cases 1, 2 and 3 until hour 21. Case 1 and case 2 have the same set-points, because the
operator only used the option of changing the tap positon of the transformer and it was not needed to
change the flexible load set-points. In case 3, it was used the corrective mode of the PPVC and thus,
the flexible load set-points were changed.
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5. Conclusions

In this work the integration of the new voltage control algorithm, developed under the ELECTRA
framework, in an operating tool for the cell operators has been developed. The work is part of the
ELECTRA IRP project, which aims at developing new frequency and voltage functions considering the
expected DER integration in power systems from 2035 on. The voltage control method developed runs
a proactive algorithm each 15 min to calculate the optimal set-points of the reserves and a corrective
mechanism to overcome unexpected grid events.

Before the implementation of the method, several voltage problems were detected during the
simulations. After implementing the voltage control algorithm, no problems are detected, proving the
efficacy of the method. Moreover, it is possible to observe a significant reduction in the system losses
(ca. 60%). The algorithm has been also tested when there is a big error in the forecasts. Due to this error,
the voltages in some buses surpasses the admissible limits. When this error occurs, two methods can
be used: changing the tap positions of the transformers or using the corrective mode. Both methods
are able to solve all the detected voltage problems. The difference between the two methods are that
when the corrective mode is used, the voltage values are lower as well as the losses.

This method has been integrated in an operating and visualization tool developed in order to
enhance grid observability and provide all the relevant data in a friendly way to the cell operators.
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It also allows system operators to control some of the flexible resources in the grid in case they do
not want to use them, becoming a perfect complement to visualize the voltage control strategy in the
WoC and to manage cells in an effective way. The algorithm developed only focus on minimization of
losses, but by being integrated in this operating tool, it is possible for operators to take into account
the costs of the actual operation of the system. As operators have the ability to stop resources that are
activated, they can decrease operational costs and assure that the network is operated in a safe mode.
However, as shown by the results obtained from the test cases, different actions taken by operators
will lead to different operating conditions of the network and available resources.
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Funding: The work presented in this paper was funded by the ELECTRA IRP project (Seventh Framework
Programme FP7 2007/2013) under grant agreement No. 609687.

Acknowledgments: The opinions, conclusions and recommendations expressed are those of the authors and do
not necessarily reflect the ones of the European Commission.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Decision No. 406/2009/EC of the European Parliament and of the Council of 23 April 2009. Off. J. Eur. Union.
2009, pp. 136–148. Available online: https://eur-lex.europa.eu/eli/dec/2009/406/oj (accessed on 25 June 2018).

2. Davis, G. Integration of Distributed Energy Resources; The Certs Microgrid Concept California Energy
Commission: Berkeley, CA, USA, 2003.

3. Cecati, C.; Citro, C.; Siano, P. Combined Operations of Renewable Energy Systems and Responsive Demand
in a Smart Grid. IEEE Trans. Sustain. Energy 2011, 2, 468–476. [CrossRef]

4. Lopes, J.A.P.; Moreira, C.L.; Madureira, A.G. Defining Control Strategies for MicroGrids Islanded Operation.
IEEE Trans. Power Syst. 2006, 21, 916–924. [CrossRef]

5. Bhela, S.; Kekatos, V.; Veeramachaneni, S. Enhancing Observability in Distribution Grids Using Smart Meter
Data. IEEE Trans. Smart Grid 2017. [CrossRef]

6. Blair, S.M.; Burt, G.M.; Lof, A.; Hänninen, S.; Kedra, B.; Kosmecki, M.; Merino, J.; Belloni, F.R.; Pala, D.;
Valov, M.; et al. Minimising the Impact of Disturbances in Future Highly-Distributed Power Systems.
In Proceedings of the CIGRE B5 Colloquium, Auckland, New Zealand, 11–15 September 2017.

7. European Liaison on Electricity Committed Towards Long-Term Research Activity Integrated Research
Programme 2017. Available online: http://www.electrairp.eu/ (accessed on 10 February 2018).

8. Coelho, A.; Soares, F.; Moreira, C.; Silva, B. Primary Frequency Control in Future Power Systems; IREP: Espinho,
Portugal, 2017.

9. Guillo-Sansano, E.; Syed, M.H.; Roscoe, A.J.; Burt, G.; Stanovich, M.; Schoder, K. Controller HIL
testing of real-time distributed frequency control for future power systems. In Proceedings of the 2016
IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Ljubljana, Slovenia,
9–12 October 2016; pp. 1–6.

10. Rikos, E.; Caerts, C.; Cabiati, M.; Syed, M.; Burt, G. Adaptive Fuzzy Control for Power-Frequency
Characteristic Regulation in High-RES Power Systems. Energies 2017, 10, 982. [CrossRef]

11. Sanderson, K. From Reaction to Pro-action: Modernizing the Grid Control Room The Grid Control Room Today;
General Electric Company: Boston, MA, USA, 2014.

12. Pertl, M.; Rezkalla, M.; Marinelli, M. A novel grid-wide transient stability assessment and visualization
method for increasing situation awareness of control room operators. In Proceedings of the 2016 IEEE
Innovative Smart Grid Technologies—Asia (ISGT-Asia), Melbourne, Australia, 28 November–1 December
2016; pp. 87–92.

13. Panteli, M.; Kirschen, D.S. Situation awareness in power systems: Theory, challenges and applications.
Electr. Power Syst. Res. 2015, 122, 140–151. [CrossRef]

https://eur-lex.europa.eu/eli/dec/2009/406/oj
http://dx.doi.org/10.1109/TSTE.2011.2161624
http://dx.doi.org/10.1109/TPWRS.2006.873018
http://dx.doi.org/10.1109/TSG.2017.2699939
http://www.electrairp.eu/
http://dx.doi.org/10.3390/en10070982
http://dx.doi.org/10.1016/j.epsr.2015.01.008


Energies 2018, 11, 1659 23 of 23

14. Sand, K.; Heegaard, P. Next Generation Control Centres—State of Art and Future Scenarios; Norwegian University
of Science and Technology: Trondheim, Norway, 2015.

15. Marinelli, M.; Heussen, K.; Prostejovsky, A.; Bindner, H.W.; Catterson, V.M.; Merino, J.; Tornelli, C.
Scenario-based approach adopted in the ELECTRA project for deriving innovative control room functionality.
In Proceedings of the 24th International Conference on Electricity Distribution CIRED, Glasgow, UK,
12–15 June 2017; pp. 1450–1453.

16. Endsley, M.R.; Garland, D.J. Theoretical Underpinnings of Situation Awareness: A Critical Review.
Situat. Aware. Anal. Meas. 2000, 1, 3–32.

17. Marinelli, M.; Heussen, K.; Strasser, T.; Schwalbe, R.; Merino-Fernández, J.; Riaño, S.; Prostejovsky, A.;
Pertl, M.; Rezkalla, M.M.N.; Croker, J.; et al. Demonstration of Visualization Techniques for the Control Room
Engineer in 2030: ELECTRA Deliverable D8.1. WP8: Future Control Room Functionality; Technical University of
Denmark: Lyngby, Denmark, 2017.

18. Gouveia, C.; Moreira, J.; Moreira, C.L.; Pecas Lopes, J.A. Coordinating Storage and Demand Response for
Microgrid Emergency Operation. IEEE Trans. Smart Grid 2013, 4, 1898–1908. [CrossRef]

19. Merino, J.; Rodríguez-Seco, J.E.; García-Villalba, Í.; Temiz, A.; Caerts, C.; Schwalbe, R.; Strasser, T.I.
Electra IRP voltage control strategy for enhancing power system stability in future grid architectures.
CIRED Open Access Proc. J. 2017, 2017, 1068–1072. [CrossRef]

20. Mousavi, O.A.; Cherkaoui, R. Literature Survey on Fundamental Issues of Voltage and Reactive Power Control;
Literature Survey Deliverable of the MARS Project; Ecole Polytechnique Fédérale de Lausanne: Lausanne,
Switzerland, 2011.

21. Voltage Characteristics of Public Distribution Systems. Stand. E. N. 50160. European Committee for
Electrotechnical Standardization, Brussels, 2003. Available online: http://www.orgalime.org/sites/default/
files/position-papers/voltage_140303.pdf (accessed on 25 June 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSG.2013.2257895
http://dx.doi.org/10.1049/oap-cired.2017.0749
http://www.orgalime.org/sites/default/files/position-papers/voltage_140303.pdf
http://www.orgalime.org/sites/default/files/position-papers/voltage_140303.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	ELECTRA Voltage Control Scheme 
	User Interface 
	Global Information Displayed 
	Network Scheme 
	Detailed Information Displayed 
	Possible Actions Implemented by System Operators through the User Interface 

	Simulation Results 
	Case Studies 
	Results 

	Conclusions 
	References

