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Abstract—This paper proposes a dynamic 3D reconstruction
method for recovering a surface shape from a set of images that
are captured by a hand-held camera. A light source is attached to
the camera as a photometric constraint. Thus, we can effectively
calculate photometric stereo using the relative moving camera.
The key contributions of our work are a robust pixel matching
method to build effective correspondences between images for
normal estimation, and an optimization method to correct the
deviation in the recovered surface shape that is caused by the non-
ideal illumination in a close-range lighting condition. Specially we
correct the recovered shape by adding an interpolation surface
that is estimated using sparse control points from the structure
from motion. The effectiveness of our method is verified on real
datasets with a digital camera and a smartphone.

Index Terms—3D reconstruction, photometric stereo, shape
from motion and shading

I. INTRODUCTION

High-quality three-dimensional (3D) shape reconstruction
from motion is essential for many practical applications, such
as medical image processing, obstacles avoidance of un-
manned vehicles, Virtual Reality (VR) and Augmented Reality
(AR). However, existing systems based on methods, such as
structure from motion (SfM) and structured light scanning,
still suffer from the resolution or applicability problems. It is
necessary to propose a new solution for recovering surface
shape from motion with more details even using a common
camera.

Photometric stereo is a well-established 3D reconstruction
technique [1] which uses the shading cue and can provide
very detailed surface [2]. Thus, photometric stereo is applied
to enhance the 3D reconstruction performance. However, tra-
ditional photometric stereo assumes images are taken from
the same viewpoint but under different illumination directions,
that increases the difficulty to use this technique in dynamic
environments. To alleviate the problems, researchers have
proposed many photometric stereo variations by incorporating
geometrical methods [3]–[5]. However, these solutions still
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follow some assumptions such as the uniform collimated
illumination from a distant light source. This limits their
applications. Recently, depth sensors were applied in the
dynamic photometric stereo system [6]. But depth sensors can
hardly be adopted in some scenarios.

In this paper, we propose a novel dynamic photometric
stereo method only using a hand-held camera with an at-
tached light source to recover surface shape in a relatively
unconstrained scenario. When the camera moves around an
object, the illumination changes accordingly, which adds a
photometric constraint to make it possible to solve the surface
normal using photometric stereo.

Given a captured sequence of the surface, We first use
SfM [7] to obtain the camera position of each frame, and
produce a sparse 3D point cloud simultaneously. Then A pixel
matching strategy is proposed to adjust the view and lighting
to the selected reference view, that enables us to use the
photometric stereo to recover the surface normal and shape.
Due to the unideal illumination condition and imprecise pixel
matches, the reconstructed surface is probably not accurate
enough. Therefore, we propose to combine the estimated
sparse point cloud to add an interpolation deviation surface
to compensate for the reconstructed surface.

Our method effectively relaxes the assumptions of photo-
metric stereo and simplifies the equipment requirements, while
guaranteeing the reconstruction accuracy. The contributions
are shown as follows:

• Robust pixel matches for the image sequence of a moving
surface. A novel matching strategy is proposed, which re-
alizes the accurate global match by interpolating matched
feature points in rectified images.

• High-quality dense 3D reconstruction from motion. A
dense reconstruction is integrated from the gradient field
estimated by photometric stereo and corrected with sparse
control points from SfM.

The rest of the paper is organized as follows: we first review
the related work in Section II. In Section III, we describe
our approach in detail. Experimental results are presented in
Section IV followed with the conclusions.



II. RELATED WORK

Shape recovery from motion has received increasing atten-
tion in recent years. SfM is the most popular technique which
reconstructs a 3D structure from a series of images taken
from different viewpoints [8], [9]. SfM usually combines with
Multi-view Stereo for a dense 3D reconstruction. Although
SfM excels in recovering large-scale structures, it often fails
to capture high-frequency details [10]. Recently, researchers
blend photometric clues such as photometric stereo with the
geometrical methods for recovering a fine-scale dense shape.

Photometric stereo usually assumes that the photos are
captured under the same view with different light directions.
That makes photometric stereo difficult to be applied in a
dynamic condition. Some works have solved the problem by
merging geometric and photometric methods in one common
frame with two separate datasets [11]–[13]. But they can not
recover surface from consecutive frames. Some works fixed a
light source to the camera and estimated the changing view
and lighting to recover the 3D surface for each frame. Maki et
al. [14] and Simakov et al. [15] added the photometric clues in
multi-view stereo to produce a relative constant intensity for
3D reconstruction. They do not make full use of photometric
clues to compute the surface normals, which can produce more
details.

Therefore, recent works estimated the normal and depth
for each frame simultaneously. The key technical challenges
in these work are to (1) establish correspondences over the
entire image set for normal estimation and (2) merge the
normal and the geometrical based position for a high-quality
dense 3D reconstruction. For a pixel-wise matching, Zhang et
al. [3] present an ”optical flow” based technique to recover the
pixel correspondences and normals, but it requires numerous
images from a dense video sequence. More works solved the
pixel correspondences through a rough estimated dense depth
map, that can be projected to each image with the known
projection matrices of each camera. Lim et al. [4] estimated
the depth map by interpolating a sparse point cloud from SfM.
Joshi et al. [5] solved the depth map with the Multi-view
Stereo technique by minimizing a multi-ocular photometric
cost function. Zuo et al. [6] estimated the depth map using a
depth sensor. Based on the pixel-wise correspondences among
images, photometric stereo produces the normal estimation.

Another challenge occurs in shape recovery from normals.
Because of the complicated lighting situation and imperfect
matching, the reconstructed surface still has deviations. Zhang
et al. [3] and Lim et al. [4] employed an iterative produce to
refine the shape with correcting the bas-relief ambiguity [16].
In reality, the deviation is not only the bas-relief ambiguity.
Joshi et al. [5] and Higo et al. [17] improved the accuracy
of the depth map based on the work of Nehab et al. [10],
which efficiently combines the geometrical based positions and
the normals from photometric stereo. Zuo et al. [6] employed
Zhang’s method [18] to enhance the surface geometry with
structural details, which can further handle the shadow areas.
In these works, the surface shape is further optimized, but the

optimization methods rely on a fine dense depth, which is not
easy to obtain in some conditions.

Compared to the prior works, we do not estimate a depth
map. Our method recovers the pixel correspondences via
the interpolation of feature points in every two images and
optimizes the produced photometric shape by merging a
sparse point cloud from SfM [19]. Our work can effectively
reduce the deviations in dynamic photometric stereo, improve
computation efficiency, and allow high-quality reconstruction
even using a simple hand-held camera.

III. RECONSTRUCTION ALGORITHM

The goal of our work is to recover a surface shape from a
set of images captured by a relative moving hand-held camera.
A light source is attached to the camera and always turns on
when capturing images. With the fixed light, different views
have different illumination directions, that give photometric
constraint to efficiently estimate surface normals. Thus, as
shown in Fig. 1, we transform the dynamic photometric stereo
issue to the form of traditional photometric stereo for normal
estimation.
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Fig. 1. Dynamic photometric stereo.

Algorithm 1 illustrates the flow of the proposed method.
After calibrating the camera [20], we photograph the target
object from different views. Then a sparse point cloud and the
extrinsic parameters for each frame are computed using SfM
and refined with Bundle Adjustment [7]. Based on the camera
intrinsic and extrinsic parameters, we establish the mapping
relationship between the sparse point cloud and the image
coordinate of each frame. Then we pick one frame as the
reference view and propose a robust match strategy to build
the pixel correspondences between the reference view and the
other views. Then images from different views are aligned
to use photometric stereo to recover the surface normal in
the reference camera coordinate system. Finally, the shape is
computed and refined by merging the sparse points from SfM.

A. Dynamic photometric stereo

This section formulates the dynamic photometric stereo.
This work takes shadows and highlights as outliers that are
removed from calculation [21]. In the camera coordinate
system, the measured intensity i for a single pixel p satisfies:

i(p) = ρ(p)n(p) · lc, (1)



Algorithm 1 Dynamic 3D reconstruction algorithm.
1: Calibrate the Camera and Lighting

Calibrate the camera intrinsics and the lighting direction.
2: Estimate Camera Projection Matrices

Using Structure from Motion/Bundle Adjustment, recover
the camera projection matrices for each frame and obtain
a sparse point cloud.
Based on the camera projection matrices, build the corre-
spondences between the sparse point cloud and the image
coordinates of each frame.

3: Estimate Pixel Correspondences and Normal Map
Select one frame to be the reference view, find the pixel
correspondences between the reference view and the other
views, and compute the normal using photometric stereo.

4: Compute Final Surface
Recover the final surface by fusing the normal and the
depth of the sparse point cloud.

where ρ(p) is the reflectance albedo of the point p, n(p) is the
unknown unit surface normal, and lc denotes the known unit
illumination direction.

In a fixed world-space coordinate system, the correspon-
dence between world-space points and image coordinates is
established with the camera projection matrices. For dynamic
photometric stereo, one frame o is selected as the reference
frame. Then the measurement in the kth view for the same
pixel p can be defined as:

i(p)k = ρ(p)(RkR−1
o no(p)) · lc, (2)

where Ro and Rk are the rotation matrix for the selected view
and the measured view k from the world coordinate system
to each camera coordinate system. In another word, when we
turn the kth view into the selected view, only the lighting
changes:

i(p)k = ρ(p)no(p) · (RkR−1
o lc). (3)

We define the lighting in the kth view as lk = (RkR−1
o lc).

Then by joining the k measurements for the same pixel
together, we have:

E(p) = ρ(p)noL, (4)

where the kth column of the matrix E(E ∈ R1×K) represents
the image intensity in the kth view, and the kth column of
L(L ∈ R3×K) is the kth illumination direction lk.

The columns of L should be non-coplanar to make L be
nonsingular and invertible. And a minimum of K = 3 views
is required. Then we can estimate no and ρ(p) by solving the
linear system.

The above description shows how to recover normals using
dynamic photometric stereo. However, there are two key issues
that need to be solved. One is how to establish the image
correspondences between different views, and another is how
to integrate the normals to the final surface with correcting the
deviation caused by the close-range nonuniform lighting [19],
[22]. The solutions are discussed in following sections.

B. Pixel matching

In this section, we present a method to establish the pixel
correspondences between the selected reference frame and the
other frames.

In our algorithm, we first use SfM and Bundle Adjustment
to compute camera projection matrices for each frame [7], that
include rotation matrices R0 ∼ RN and translation matrices
T0 ∼ TN . Then we select one frame as the reference frame
and warp the other frames into the reference frame with the
camera projection matrices.

Pixel matching between the reference frame and one key
frame is a binocular stereo issue. We rectify each two frames
for a better matching using Fusiello’s method [23]. For the
pixel-level match, we first search reliable match by detecting
SURF features, then use these reliable matches as control
points to deform the image into the warped image to meet
a dense match. In detail, we filter the matches only with the
same y coordinates, which are then taken as reliable matches.

In the deformation process, we only need to deform the x
coordinate in the rectified reference frame to find the matches
in the other frame. The match relation is in form of the dispar-
ity, which related to the irregular surface depth is nonlinear.
Thus, we propose to use thin plate spline interpolation (TPS)
to realize the deformation [24]. This approach works well for
a continuous surface, that meets the target of our research. The
approach produces a function that passes through the selected
matches while minimizing the bending energy functional

E(f) =

∫
R2

|D2f |2dxdy. (5)

And the interpolation function is of the form

f(x, y) =
∑
i

wiG(di(x, y)))) + b0 + bxx+ byy, (6)

where di(x, y) is the distance between the i-th control point
and (x, y), G(x) ≡ x2logx and (wi, b0, bx, by) are coefficients.

We compute the function coefficients as described in [25],
and then establish pixel correspondences from the reference
image to other key images. Finally, we transform all frames
into the reference view. Figure 2 shows the matching result of
a Chinese leaf.
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Fig. 2. Images of a Chinese leaf. (a) The input images with different views.
(b) The matched images under the reference view of image 3.



C. Surface reconstruction

Based on the pixel correspondences between images, we
estimate surface normals using photometric stereo. The surface
shape is then integrated from the normal field using the
masked weighted least-squares approach (MWLS) [26]. The
integration method can provide a piecewise-smooth surface on
an arbitrary connected domain.

However, the recovered surface integrated from the original
normal still has the low-frequency bias, which is caused by
the unideal illumination condition when using a hand-held
setup. Fortunately, the low-frequency bias has rules, which
can be approximated to a smooth surface [22]. Inspired by
Horovitz’s method [19], We add an interpolation surface to
fit the low-frequency deviation using the extending thin plate
spline interpolation algorithm [24].

In our algorithm, the surface is reconstructed as the sum
of two surfaces. One is the original surface height integrated
from the gradients. The other is a smooth interpolation surface
that compensates for the bias. The interpolation surface uses
the values of control points that are the difference between
the true control point depths from SfM and the corresponding
depth values related to the original surface height at the control
point locations. Nevertheless, these two datasets are estimated
in different coordinate systems with a different scale. So we
need to transform these two datasets to the same coordinate
system – the reference camera coordinate system.

We use the method in [22] to implement the transformation
of the height estimated by photometric stereo from pixel size to
real size, and obtain the real depths of the target surface. After
transforming the two datasets to the same coordinate system,
the difference values (v) of control points can be packed as:

vr = gr − br. (7)

where g is the depth value from SfM which is taken as ground
truth, b is the depth value estimated from photometric stereo,
and they are all defined in the reference camera coordinate
system.

Finally, we use smoothed thin-plate spline interpolation
(STPS) to find a smooth surface that passes through all
control points. This method has a strong anti-interference
ability and can fit the low-frequency deviation surface well.
Compared to TPS, STPS adds a smoothing parameter for
regularization [27]. The chosen function f does not necessarily
exactly interpolate all the control points but minimizing

E(f) =

m∑
i=1

|f(Xi)− yi|2 + λ

∫
R2

|D2f(X)|2dX, (8)

where λ is the smoothing parameter and is a chosen prior,
(Xi, yi) is control spaced tabulated data (X is the image
coordinate in our algorithm), and m is the number of control
points (m ≤ 20 in our algorithm). And the interpolation
function f about control depth values v is of the form

f(x, y) =
∑
i

wiG(di(x, y)))) + b0 + bxx+ byy, (9)

Fig. 3. The experimental setup including a camera and a LED video light
source.

where di(x, y) is the distance between the i-th control point
and points of (x, y), G(x) ≡ x2logx and (wi, b0, bx, by)
are coefficients. The coefficients are computed as described
in [25].

The final surface Zc is corrected by adding the estimated de-
viation surface from the original surface produced by dynamic
photometric stereo. With the camera projection matrix M, we
can get a dense surface P for each pixel p of the reference
frame in the world coordinate system

P = ZcM−1p. (10)

IV. EXPERIMENTAL RESULTS

Two types of cameras are used as our prototype system:
one is a digital camera with an attached LED video light,
and the other is a smartphone. A light source is fixed to the
camera with a known lighting direction. For the digital camera,
the light source is right above the camera with a distance
of 200mm (Fig. 3). During the capturing, the light source is
always turn on. The target objects are usually right ahead of
the camera and captured in the center of the image.

We have validated our method on real datasets. We respec-
tively use a digital camera (Kodak) and a smartphone (Honor
V9 Play) to take photos of target objects in a room only with
natural light.

A. Results of using a digital camera

We first used a digital camera (Kodak) to recover the shape
of a Chinese leaf. In this experiment, the distance between
the camera and objects was around 300mm. The lighting angle
along the optical axis was 40 degrees. The camera’s resolution
was set to 640×480. Figure 4-a shows the four input images of
a Chinese leaf from different views, and image 1 was chosen
as the reference image. By using our pixel match strategy,
all the other images were transformed to the reference view
(Fig. 4-b). Figure 4 displays our final results on the recovered
3D shape and surface normal map. The shape of the Chinese
leaf fits the ground truth without the low-frequency noise. We
can clearly observe the texture of the leaf and some abnormal
objects on the leaf.

We also tested our method on a human face model. In this
experiment, the distance between the camera and objects along
the optical axis was around 800mm. The light was fixed to
the camera with a slant angle of 15 degrees along the optical
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Fig. 4. Results of the Chinese leaf captured by a digital camera. (a) The input images. (b) The matched images under the reference view of image 1. (C)
Sparse points computed by SfM. (d) The estimated normal map. (e) The final 3D shape of the Chinese leaf recovered by our method.
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Fig. 5. Results on a human face captured by a digital camera. (a) The input face images. (b) The matched images under the reference view of image 1. (c)
Sparse points computed by SfM. (d) The normal map estimated by our method. (e) The final 3D face shape recovered by our method.

axis. The camera’s resolution was set to 2048×1536. Figure 5
shows the recovered face model by our method. We effectively
remove the low-frequency deviation and obtain a good face
shape with details.

B. Results of using a smart phone

We have also used a smartphone (Honor V9 Play) to recover
the 3D model of a Chinese leaf and a rag doll. In these
experiments, the camera’s resolution was set to 612×816. The
flashlight was always on when capturing the target objects. In
this way, the light direction is fixed to 0 degrees along the
optical axis. The distance between the camera and objects
along the optical axis was around 300mm. Figure 2-a and
Figure 6-a show the input images of the Chinese leaf and the
rag doll. As shown in Fig. 2-b and Fig. 6-b, our method obtains
a good match result. Figure 7 and Figure 8 display the final
recovered shape and normal of the Chinese leaf and the doll.
The textures in the leaf and the rag doll are clearly observed.
In comparison with the digital camera, the smartphone has a
smaller work distance, but it also can reconstruct the surface
shape with good details.

V. CONCLUSION

In this paper, we present a novel approach to recover surface
details using a moving hand-held camera with an attached
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Fig. 6. The real dataset of a rag doll captured by a smartphone. (a) The input
images with different views. (b) The matched images under the reference view
of image 3.

light. We extend the classic photometric stereo from handling
static objects to relative dynamic objects. A robust pixel match
strategy is proposed to establish the correspondences between
the reference image and other key images. Then, we estimate
the surface normal and correct the deviation in the integrated
surface shape. We have validated our method on real datasets
for good performances on surface recovery.

Our method is more practical than those in previous work.
Nevertheless, there are some limitations. The proposed pixel
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Fig. 7. Results on the Chinese leaf captured by a smartphone. (a) The
recovered normal map by our method. (b) The final 3D shape recovered by
our method.
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Fig. 8. Results on the rag doll captured by a smartphone. (a) The recovered
normal map by our method. (b) The final 3D shape recovered by our method.

match approach failed in images under partial occlusion and
the pixel match is not good enough. Therefore, we are going
to improve the match strategy for better normal and shape
estimation, while we would like to implement all these proce-
dures in a full 3D model. In the future work, we will optimize
our method to run in real time for practical applications, e.g.,
using in Augmented Reality or in 3D object detection and
recognition.
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