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Abstract  Detailed mapping of dolerite slope deposits overlying sedimentary Triassic rocks on the northern 

slopes of the Nicholas Range in north-eastern Tasmania has revealed an extensive mass movement complex. 

Landforms north of the summit plateau of the Nicholas Range include: (1) a cliff of dolerite columns with 

associated scree slopes at its base; (2) a topple landscape consisting of several topples that have fallen in a north-

easterly direction; (3) a “ripple” landscape consisting of a series of long boulder ridges aligned approximately 

east-west. Exposure dating of three large boulders (collapsed dolerite columns) from a ridge within the ripple 

landscape gave a mean age of 52.1±1.9 ka using 36Cl. This is the minimum age for collapse of the dated 

columns from the cliff face c. 750 m to the south. Boulder ages and landscape morphology indicate that the 

ripple landscape developed by physical and chemical degradation and concurrent northern displacement of 

topples over a slip plane formed at the contact between dolerite colluvium and underlying Triassic sedimentary 

rocks. There is no evidence of movement today, other than localised debris flows associated with knickpoints in 

streams, and it is deduced that movement on the slip plane occurred under a cooler climate than that prevailing 

today, possibly under the influence of melting of winter snow during the last glacial cycle. As there is no 

evidence of significant recent mass movement and forests in the area are likely to have experienced many stand-

destroying forest fires in the Holocene, forest harvest is not considered to pose a risk to landscape stability. 

Keywords  Exposure dating, mass movement, dolerite terrain, topples, last glacial 
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Introduction 

Dating of landslides using exposure dating has been found to be useful worldwide (Ballantyne and Stone 2004, 

Sewell et al. 2006, Panek 2015, Margirier et al. 2015, Sturzenegger et al. 2015). Panek (2015) pointed out that 

more research need to be done to date landslides in areas little affected by tectonic activity.  In Australia only 

one landslide has been dated by exposure dating techniques: the South Sister landslide on the Nicholas Range in 

northeast Tasmania (McIntosh and Barrows, 2011). These authors used exposure dating with 36Cl to determine 

that a landslide in dolerite terrain was 80–90 ka old (i.e. collapse occurred and landsliding began during the later 

stages of MIS 5). They suggested landslide initiation in cooler conditions than those currently prevailing, and 

that instability may have resulted from heavy snow accumulation in winter followed by spring snow melt, which 

would have saturated the contact between the dolerite colluvium and underlying subhorizontal Triassic strata. 

This suggestion was supported by Slee et al. (2015) who presented geomorphic evidence for humid 

conditions along the Australian east coast during the last glacial cycle (defined as spanning MIS 5d-2, 109–14 

ka (Liesiecki and Raymo 2005)) and by the work of McIntosh et al. (2012) who attributed a well-developed 

palaeosol dated to 21–16 ka in northeast Tasmania aeolian deposits to wet conditions in eastern Tasmania 

during the Last Glacial Maximum (LGM). These conclusions were supported by an increase in wet-favouring 

taxa in a depression on the Freycinet Peninsula in eastern Tasmania between 22 and 17 ka (Mackenzie 2010; 

Mackenzie and Moss 2014). 

The presence on the north face of the Nicholas Range of dolerite topples, dolerite colluvium, debris mounds 

and large boulders several hundreds of metres from in-situ dolerite indicates extensive mass movement in 

dolerite colluvium, which is a widespread soil parent material in Tasmania (Green et al. 2012), and raises the 

question of whether forest operations on doleritic terrain might reactivate land instability. Further research on 

the landforms of the Nicholas Range were therefore conducted with the following aims: (1) to map and describe 

the landslides; (2) determine their age; (3) to infer the climatic conditions that influenced the formation of the 

mass-movement landscape; and (4) to determine the risk of present-day movement. 

Site characteristics 

The Nicholas Range (Fig. 1) is a 12 km long east-west ridge rising to 859 m asl at 41°32 S 148°06 E, 20 km 

from the coast of north-east Tasmania. The bedrock geology has been mapped by McClenaghan (2006). The 

range is capped by a horizontal Jurassic dolerite sill that forms a summit plateau averaging 820 m asl. 
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Surrounding the summit plateau cliffs up to 80 m high and steep scree slopes grade into gentler slopes mantled 

by dolerite colluvium overlying benches of subhorizontal Triassic strata composed of massive sandstone, 

mudstone and coal measures at approximately 560 m asl. The underlying sedimentary bedrock including 

Permian strata is exposed only in deep gullies, mostly below 500 m asl, which have been over-steepened by 

knick-point retreat and fluvial incision. In places dolerite colluvium and alluvium partly fills valleys to 200 m 

asl. The slope deposits of the Nicholas Range and dolerite terrain of eastern Tasmania broadly correspond with 

the stratigraphically controlled hill country mass-movement terrain described in New Zealand by Crozier 

(2010). 

The study site (Fig. 2), extends north from the crest of the Nicholas range (820 m) to about 500 m altitude 

and covers 280 ha, but detailed observations were restricted to land lying between 780 m and 500 m asl on the 

upper northern slopes of the Nicholas Range. The area is forested and Eucalyptus delegatensis is the dominant 

species. It encompasses the hilly slopes immediately adjacent to steep scree slopes and cliff faces defining the 

edge of the summit plateau and the distal rolling slopes including the wide structural bench formed over Permo–

Triassic strata. 

The study area was selected for its unusual landforms, which include a series of doleritic boulder ridges and 

large isolated dolerite monoliths (displaced dolerite columns), a large enclosed depression, and a large rotational 

slump complex hosting boulder caves (Slee et al. 2011) immediately north of Mt Nicholas. The largest ridges 

are 1 km long and 50 m wide. They are aligned approximately east-west and are roughly parallel to each other, 

producing a “ripple” landscape (described in more detail below). Large dolerite boulders up to 8 m long and 3 m 

wide are clearly derived from columns visible in the dolerite cliffs on the Nicholas Range to the south. The 

boulders are most common on the northern (front) edges of ridges, where they are preferentially oriented with 

long axes north-south. 

At present the east coast of Tasmania has a dry Mediterranean maritime climate with warm summers and 

mild winters. The mean maximum monthly temperature at Fingal at 237 m altitude 16 km southwest of the 

Nicholas Range is 17.8oC and the mean monthly minimum temperature is 5.3oC. During winter, inland frosts are 

common and infrequent snow can fall on the higher summits. Mean annual precipitation, recorded at the 

Cornwall weather station on the southern slopes of the Nicholas Range (41°56’S: 148°14’E; 338 m asl), is 1019 

mm. (All data from Bureau of Meteorology 2017.) Rainfall is fairly constant throughout the year, however cut-

off east coast low pressure systems producing heavy rainfall and precipitation exceeding 150 mm in 24 h are a 

feature of the region’s climate. 
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Methods 

 

Mapping 

Landforms were mapped utilising satellite imagery and aerial photographs supplemented by extensive ground 

traverses using a Garmin GPS, in a similar fashion to the work of Van Eckhaut et al. (2005). The landform map 

was overlaid on a LIDAR-derived hill shade map (DPIPWE 2017) to generate Fig. 2. 

 

Exposure dating 

Three large boulders (NIC-01, 02 and 03), identified as collapsed and transported dolerite columns, now lying 

on on the northern side of a boulder ridge at 148°7’17E,: 41°32’16S were selected for sampling because of their 

large size (6–8 m long) (Figs 2 and 3). A total of five samples were collected (Table 1). Three samples labelled 

‘A’ were collected from the upward-facing sides of the three columns. These were collected 5.5, 5.2 and 3.65 m 

respectively from the presumed tops (identified by their sub-rounded shape) of columns NIC-01, 02 and 03. 

Column NIC-03 was about 40 m east of boulders NIC-01 and 02. Two ‘B’ samples were collected from the 

rounded ends of columns NIC-01 and NIC-02 to determine whether the tops of columns had been exposed 

before column collapse, following the approach of Barrows et al. (2004). Both A and B samples were taken 

from massive unjointed surfaces showing no recent rock spalling. The column from which NIC-01 was sampled 

showed a plumose fracture pattern suggestive of stress release along a joint. 

Sample preparation techniques are described by Barrows et al. (2002). Chemical data for the samples are 

presented in Table 2. The isotopic ratio of 36Cl/Cl was measured by accelerator mass spectrometry on the 14UD 

accelerator at the Australian National University. Exposure ages were calculated using the conventional 

approach (Gosse and Phillips 2001). Production pathways for cosmogenic 36Cl and production rates follow 

Barrows et al. (2002). Exposure ages were calculated using geographic latitude, without any erosion correction 

and include estimated 36Cl production from Fe and Ti (Barrows et al. 2002).  

The exposure ages for A samples are calculated on the basis of a simple exposure history with shielding only 

from the horizon (Table 3). If there has been a significant change in boulder orientation, a significant transport 

time, or soil cover since initial column collapse, these will be minimum ages. The exposure ages for the B 

samples in Table 3 are calculated using the horizon only. The shielding values included in Table 1 represent 

self-shielding by the block in the present orientation. 
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Results  

 

Mapping and landform characterisation 

Seven major landform units were mapped (Fig. 2): plateau, cliffs, topple landscape, ripple landscape, slumped 

ripple landscape, colluvial/alluvial slopes, and sedimentary bedrock (Fig. 2). Within the topple landscape, ripple 

landscape and slumped ripple landscape, topples, dolerite boulder ridges, isolated large boulders, springs, 

creeks, recent landslides and boulder caves were noted. The colluvial/alluvial slopes are dissected by deeply 

incised gullies. 

In the west of the study area below Mt Nicholas, a very large topple (and associated landslide backwall) 

forms a ridge with the original structure of vertical fitting columns still evident, but now tilted to the northeast. 

This topple has similar morphology to topples described by Caine (1983, photographs 18 and 19) and Hungr et 

al. (2014).  Extending 500 m northeast of the most recent topple are the remains of at least two other topples. 

The topples have formed a prominent embayment in the dolerite cliff (Fig. 2), approximately 400 m wide and 

extending 500 m downslope from the cliff.  

Although the most recent topple ridge retains columnar structure, the older (northern) topples in the topple 

landscape have the form of chaotic boulder ridges. The largest boulders are up to 25 m long, and the 

northeastern ridge contains a boulder cave with passages up to 35 m long and chambers 6 m high. The cave 

appears to have formed by disintegration of the columnar structure of the original topple, either by the effect of 

freeze/thaw, or by the effect of mass movement induced by the pressure of the subsequent topples upslope, or 

both processes. Present stability within the cave is indicated by the rare coralline carbonate growths on the lower 

surfaces of some boulders (Slee et al. 2011), but minor rock breakdown is evidenced by fresh dolerite rubble in 

the cave floor. 

North of the topple landscape (in the west), and north of the cliff face of the Nicholas Range (in the east) the 

“ripple” landscape consists of subdued ridges up to 1 km long and 50 m wide, aligned approximately east-west 

and roughly parallel to each other. Large dolerite boulders in these subdued ridges are up to 8 m long and 3 m 

wide and are clearly displaced columns similar to those visible in the dolerite cliffs on the Nicholas Range to the 

south. The boulders are most common on the northern (front) edges of ridges, where they are preferentially 

oriented with long axes aligned approximately north-south. Ridges are separated by depressions, some of which 

contain fine clayey sediments. In the northern part of the ripple landscape slumping has occurred. The largest 

slump is 550 m wide from east to west and 350 m wide north to south.  
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North of the ripple landscape is a gullied landscape formed by stream erosion of the underlying sub-

horizontal Permo-Triassic sedimentary rocks. The streams originate at the numerous seepages which occur at 

the contact of the dolerite colluvium and the underlying impermeable sedimentary strata. 

 

Exposure ages 

The A samples range in age from 51–70 ka (Table 3 and Fig. 4). Ages for NIC-02A and 03A are statistically 

identical, but the age for NIC-01A is ~20 ka older.  The B samples both have 36Cl concentrations higher than 

expected based on the column side ages. If the blocks have remained in their same geometry for the entire 

length of exposure time recorded by the NIC-01A and 02B samples, then the top of the blocks are the equivalent 

of 22 and 10 ka older respectively. However, these are not real differences in age and indicate that there was a 

brief earlier period of exposure for each of the blocks, probably at the Mt Nicholas cliff face before the topple. 

The nearby South Sister landslide was much closer to its source where there is no cliff and the blocks dated 

there were unlikely to have been exposed before mass movement. In contrast, on Mt Wellington in southern 

Tasmania, column ends and column sides show a much higher discrepancy between exposure ages (Barrows et 

al. 2004) indicating long exposure of tops of columns before toppling. 

The simplest explanation for the Mt Nicholas ages is that the columns were exposed in an episode of 

toppling at 52.1 ± 1.9 ka (i.e. in MIS 3 57-29 ka (Liesiecki and Raymo 2005)), the weighted mean of the two 

youngest samples. Given the inheritance on the upper ends of the columns, it is likely sample NIC-01A was 

exposed at the free face. Its greater age matches the approximate age difference of the end of the NIC-02 

column.  

 

 

Discussion and conclusions 

 

Landforms and landform development 

Caine (1983) developed ideas to explain toppling and topple movement in both glaciated and non-glacial 

doleritic landscapes in northeast Tasmania.  Although Caine’s work was mostly at higher altitude than Mt 

Nicholas, many of his observations and the processes he described apply to the study area. At Ben Lomond, 

Caine (1983) noted that high cliffs are generally stable under the present climate and that toppling probably 

occurred in the last glacial cycle. For cliff tops at about 1440 m altitude, he calculated a cliff retreat of 20 m 
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over the last 80 000 years. This can be regarded as a maximum average rate of retreat for the lower-altitude 

cliffs of the Nicholas Range, which would have been subjected to less marked climatic extremes than Ben 

Lomond. Relevant to processes on Mt Nicholas is Caine’s observation (Caine 1983, p. 95) that some topples had 

moved far from their source, notably on the southern slopes of Mt Victoria where, as at Mt Nicholas, dolerite 

colluvium is underlain by sedimentary rocks. He also noted that the weight of 100 m of dolerite will produce a 

stress on underlying sediments approximately equivalent to the bearing capacity of siltstones and mudstones, 

and exceeding the bearing capacity of these rocks if they are saturated. Thus a steep cliff of dolerite resting on 

saturated sedimentary rocks will only remain intact if it is buttressed by deep colluvium. If the colluvium moves 

downslope (for example, as a landslide on a saturated slip plane), the steep cliff face will fail and a topple will 

result. 

We suggest that the topple landscape on the northern slopes of Mt Nicholas, the ripple landscape and the 

slumped ripple landscape are three components of one overall process: mass wasting and downslope movement 

of cliff debris derived from columnar dolerite mountains under a colder climate than at present. We suggest the 

following model to explain these landforms. During the last glacial cycle mass wasting of the very steep cliff 

faces by toppling occurred intermittently. Each topple exerted a force on older topple debris further down slope, 

inducing it to slip over the contact with Triassic rocks below. In the cold climate episodes of the last glacial 

cycle such slippage would have been aided by saturation of the dolerite colluvium/Triassic contact by seasonal 

melting of thick winter snow cover, as suggested by McIntosh and Barrows (2011) for bouldery landslide 

deposits on slopes at nearby South Sister. In this way, the recognisable topples in the topple landscape unit have 

moved up to 750 m from the cliff face from which they are derived. 

We note that Caine (1983, Fig. 5.7) described topples at distances up to 300 m from cliffs which had 

disintegrated into “ridges in talus”. We suggest that the ripple landscape on the northern slopes of Mt Nicholas 

has formed by a similar process of topple disintegration and is the distal and older expression of the topple 

landscape. As the topples slowly moved northwards, many boulders within topples have broken up under the 

combined effects of physical weathering along joints and chemical weathering, the latter accentuated by burial 

of boulders in the acidic doleritic soils (Laffan et al. 1995, p. 155). However, the most massive and least jointed 

columns that were not buried in soils have survived in the older subdued topple landforms, which now take the 

form of low ridges. As in solifluction deposits (restricted to altitudes above 800 m (Caine 1983, p.20)), the 

forward slopes (risers) of the ripples are steeper than the back slopes (treads) because the advancing deposits are 
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attempting to override colluvium downslope. Close to the gullied alluvial landscape in sedimentary rocks the 

restraining effect of colluvium downslope is absent and recent slumping has resulted. 

The coarse debris cascade from the Nicholas Range continues at present. One small rockfall/rockslide 

originating from the cliff exposed in the back-wall of the most recent topple was observed in November 2010.) 

Rockfalls and topples are likely to have been more frequent during the cold conditions of the last glacial cycle. 

Exposures in road cuttings indicate that in the southern parts of the ripple landscape the 0–0.5 m surface 

layer is composed of angular and subangular dolerite cobble/boulder deposits (Fig. 5) with weakly weathered 

clasts having thin weathering rinds. These extremely stony deposits overlie strongly weathered (clayey) deposits 

containing occasional clasts that have developed thick weathering rinds. A veneer of angular stones and 

boulders over more clayey deposits is widespread in dolerite colluvium in Tasmania and attributed to freeze-

thaw processes late in the last glacial cycle (McIntosh et al. 2012). The underlying weathered deposits are 

clearly much older and elsewhere (McIntosh et al. 2012, sites 48 and 49) similar clayey stony dolerite colluvium 

has been radiocarbon dated >45 ka. Close to the cliff the angular surface veneer is likely to be the distal 

component of screes formed by frost shattering of exposed rock on the cliff itself, but further away the boulders 

and debris of the topples will have been the local source. 

Landslide classification and risk 

With some variation in terminology to account for weathering processes, the landslides within the seven 

landscape units mapped can be classified using the Australian Geomechanics Society system (AGS 2007). The 

final phase of toppling must have happened very rapidly. Hence the near-source landslides in the topple 

landscape (Fig. 2) are classified as ‘Very Rapid Rock Topples’. A rock fall was experienced during this study so 

the risk of small-scale rock falls and topples is assessed as high. 

In the discussion above we deduced that the ripple landscape is a result of physical and chemical weathering 

and displacement of topples that originally formed upslope. Technically the AGS classification requires 

displaced material to be described on the basis on what it was like before it was displaced (AGS 2007, p. 87) 

and does not take account of weathering since displacement. For the distal Mt Nicholas deposits which 

originated as rock topples it is more useful to describe the mass-movement material as debris (20%–80% of the 

particles larger than 2 mm and the remainder less than 2 mm) rather than rock. The type of movement which has 

displaced the ridges in the ripple landscape is not readily classified using the AGS scheme, although the ripple 

landscape (Fig. 2) bears comparison to landforms formed by debris creep, and the slumped ripple landscape to 
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landforms formed by debris lateral spread (AGS 2007, Fig. B1). There is no evidence, in the form of curved 

trees or tension cracks in the ground, of active movement at present, so the present rate of movement is assumed 

to be extremely slow (<15 mm per year in the AGS classification). If the modest rate of cliff retreat (20 m in 80 

ka) calculated by Caine (1983) is accepted as a maximum for the lower-altitude Mt Nicholas cliff, then the dated 

boulders have moved about 730 m northwards in 52 ka, giving an average rate of movement of 14 mm per year.  

However, if the snow melt hypothesis discussed above is correct, rates of movement will have been faster in 

periods of cooler climate than at present, and conversely, less than 14 mm per year under the present climate 

regime, and possibly close to zero. 

While forestry activity has been linked with the promotion of unstable slopes particularly within the first 1–

10 years after harvest, due to root strength decline and subsequent soil binding decay (Montgomery et al. 2000; 

Imaizumi et al. 2008), no large-scale slope instability has been noted on the northern slopes of the range where 

harvest operations have occurred in the recent past. In addition, as the forested slopes of Mt Nicholas are likely 

to have experienced numerous vegetation-destroying wildfires in the Holocene, without obvious effects on land 

stability, forest harvest conforming to strict environmental guidelines (Forest Practices Authority 2015) on the 

slopes described and on similar landforms elsewhere is considered unlikely to induce or reactivate mass 

movement.  
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Fig. 1 Location map. Inset shows Tasmania. Map grid is GDA 1994 MGA Zone 55. 

Fig. 2 The seven landscapes present within the study area interpreted from field work and remote mapping. Map 

grid is GDA 1994 MGA Zone 55. 

Fig. 3 Landform map of the study area overlaid on LIDAR imagery. Map grid is GDA 1994 MGA Zone 55. 

Fig. 4 Photographs of the three sites at which dolerite boulders were sampled for 36Cl exposure dating. All 

photographs are taken facing approximately east; the boulders are aligned approximately north-south on the 

northern edges of boulder ‘fronts’ that form the ripple landscape described in the text. Ages obtained are shown. 

Fig. 5 Weakly weathered angular and sub-angular dolerite boulders and cobbles form a veneer over older 

strongly weathered clay-rich dolerite deposits within the ripple landscape. The pick axe is 900 mm long. 
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Table 1  Site data. 

Sample Longitude Latitude Altitude (GPS) Lithology1 Shielding Thickness 

(°E) (°N) (m) correction2 (cm)3

NIC-01A 148.12418 41.53779 622 dolerite 1.9 

NIC-01B 148.12418 41.53779 622 dolerite 0.7698 2.8 

NIC-02A 148.12432 41.5379 624 dolerite 4.6 

NIC-02B 148.12432 41.5379 624 dolerite 0.8698 1.5 

NIC-03A 148.12473 41.53815 623 dolerite 2.2 

-3

2. Self-shielding; Site horizon correction = 0.9978 (included for NIC-01B and NIC-02B)
-2

Table 1
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Table 2 Chemical analyses. 

Target element data 

Sample K2O (wt%) CaO (wt%) TiO2 (wt%) Fe2O3 (wt%) Cl (ppm) 

NIC-01A 0.99 ± 0.04 8.56 ± 0.08 0.7 ± 0.16 12 ± 0.18 13.22 ± 0.31 

NIC-01B 0.95 ± 0.04 8.61 ± 0.08 0.75 ± 0.17 11.57 ± 0.17 21.94 ± 0.49 

NIC-02A 0.96 ± 0.04 8.69 ± 0.08 0.71 ± 0.16 11.49 ± 0.17 4.36 ± 0.15 

NIC-02B 0.88 ± 0.03 8.9 ± 0.08 0.71 ± 0.16 12.49 ± 0.19 8.02 ± 0.21 

NIC-03A 0.85 ± 0.03 9.03 ± 0.08 0.76 ± 0.17 12.8 ± 0.19 5.96 ± 0.18 

Trace element data 

Sample B1 (ppm) Sm (ppm) Gd (ppm) Th (ppm) U (ppm) 

NIC-01A 3 ± 1 3.26 ± 0.110 3.53 ± 0.210 3.34 ± 0.106 1.05 ± 0.097 

NIC-01B 3 ± 1 3.37 ± 0.011 3.76 ± 0.033 2.53 ± 0.077 0.93 ± 0.019 

NIC-02A 3 ± 1 2.94 ± 0.010 3.31 ± 0.023 2.84 ± 0.087 0.85 ± 0.018 

NIC-02B 3 ± 1 2.66 ± 0.013 2.97 ± 0.026 2.98 ± 0.098 0.77 ± 0.017 

NIC-03A 3 ± 1 3.10 ± 0.006 3.46 ± 0.023 3.03 ± 0.092 0.82 ± 0.018 

1B estimated from Barrows et al. (2002) and McIntosh and Barrows (2011). 

Table 2
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Table 3 Exposure ages1. 

Sample Lab code [36Cl]c   (x104 

g-1)2

[36Cl]r   (x103 

g-1)3

Exposure age (ka) 

NIC-01A ANU-C237-18 59.74 ± 2.35 1.61 ± 0.083  69.7 ± 3.6 

NIC-01B ANU-C237-15 60.63 ± 2.32 2.20 ± 0.088 <67.4 ± 3.5 

NIC-02A ANU-C237-20 43.24 ± 1.76 0.447 ± 0.021 53.4 ± 2.8 

NIC-02B ANU-C237-16 51.95 ± 2.10 0.440 ± 0.020 <63.5 ± 3.3 

NIC-03A ANU-C237-17 42.15 ± 1.72 0.444 ± 0.020 50.9 ± 2.6 

1Data are normalised to the GEC standard (36Cl/Cl = 444 x 10-15). Carrier 36Cl/Cl = 1 x 10-15
. 

36Cl decay constant 

2.3 x 10-6 yr-1
.

2 c = cosmogenic component 
3 r = background nucleogenic component 

Table 3

http://www.editorialmanager.com/lasl/download.aspx?id=73264&guid=3ea5b441-4124-42c9-a8ba-73000b441509&scheme=1
http://www.editorialmanager.com/lasl/download.aspx?id=73264&guid=3ea5b441-4124-42c9-a8ba-73000b441509&scheme=1

