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Abstract: Digital forensics has become an increasingly important tool in the fight against cyber and computer-

assisted crime. However, with an increasing range of technologies at people’s disposal, investigators find 

themselves having to process and analyse many systems (e.g. PC, laptop, tablet, Smartphone) in a single case. 

Unfortunately, current tools operate within an isolated manner, investigating systems and applications on an 

individual basis. The heterogeneity of the evidence places time constraints and additional cognitive loads upon 

the investigator. Examplels of heterogeneity include applications such as messaging (e.g. iMessenger, Viber, 

Snapchat and Whatsapp), web browsers (e.g. Firefox and Chrome) and file systems (e.g. NTFS, FAT, and HFS). 

Being able to analyse and investigate evidence from across devices and applications based upon categories 

would enable investigators to query all data at once. This paper proposes a novel algorithm to the merging of 

datasets through a ‘characterisation and harmonisation’ process. The characterisation process analyses the 

nature of the metadata and the harmonisation process merges the data. A series of experiments using real-life 

forensic datasets are conducted to evaluate the algorithm across five different categories of datasets (i.e. 

messaging, graphical files, file system, Internet history, and emails), each containing data from different 

applications across difference devices (a total of 22 disparate datasets). The results showed that the algorithm 

is able to merge all fields successfully, with the exception of some binary-based data found within the messaging 

datasets (contained within Viber and SMS). The error occurred due to a lack of information for the 

characterisation process to make a useful determination. However, upon the further analysis it was found the 

error had a minimal impact on subsequent merged data.  
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1. Introduction  

The rapid development of technology over the last decade has brought various challenges to digital forensics. 

This development, including the variety of devices, operating systems, files and applications, clearly increases 

the complexity, diversity and correlation issues within the forensic analysis (Garfinkel, 2006). Conducting a 

forensic analysis of a case containing multi-resources and applications can be difficult due to the heterogeneity 

of the evidence across these devices. In general, the investigator normally takes each device and examines it 

individually using one of existing forensic tools to understand the nature and relationship of the artefacts. 

Unfortunately, these tools were designed to work on a single forensic image with specific data types (e.g. a 

workstation or a smartphone) (Mohammed et al, 2016).  

With the significant increase in computing, individuals have increasingly become to own several devices (e.g. PC, 

laptop, tablet, Smartphone) with each using different applications across various platforms  (Bennett, 2012). 

Additionally, companies producing electronic devices need to choose an operating system (OS) either open 

source or commercial for their core technology (Almunawar, 2018). Consequently, the files structure will be 

formatted according to the operating system and result in a variety of files across various OSs such as (NTFS, 

FAT, HFS, and Ext4) (Tanenbaum, 2009). Several applications can also run on one platform and achieve similar 

purposes such as web browsers (Google Chrome and Mozilla Firefox, and Apple's Safari), and messaging (SMS, 

Viber, WhatsApp). However, being able to examine and analyse data from across many systems and applications 

based on a data category at once is currently impossible.  
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Data categories, including files, databases, documents, pictures, media files, web browsers, etc., hold valuable 

information that can be used to answer some of the basic questions of a forensic investigation. Examples of the 

questions include, who did something to a file, when they did it and where it was carried out. Although a wide 

range of forensic tools and techniques exist both commercially and via open source (including Encase, 

AccessData FTK, and Autopsy), they only extract and analyse metadata for certain types of systems and 

applications (Ayers, 2009).  

Recently, several researchers have tried to use metadata within the digital forensic domain to reconstruct the 

past events. The metadata describes the attributes of any files or applications in most digital resources (Guptill, 

1999); it provides rich information about files that can lead to facilitate files processing using metadata instead 

of files themselves (Raghavan, 2014). Digital forensic cases can include several categories of similar metadata 

within a single forensic image or across multiple resources resulting in repeating the forensic process many times 

and increasing the workload of the investigator. Consequently, the automated correlation between the 

evidential artefacts from various sources is currently impossible. Therefore, in this paper, an automated 

approach for analysing and merging datasets by applying a novel algorithm of characterisation and 

harmonisation is proposed. This approach seeks to provide a fusion of similar metadata categories across 

multiple and heterogeneous resources within a single case. Consequently, it leads to overcome the 

heterogeneity issues and make the examination and analysis easier.      

The remainder of the paper is structured as follows: Section 2 presents a literature review of the existing 

research which uses metadata in forensic investigations within single and heterogeneous resources.  Section 3 

describes the developed approach for metadata characterisation and harmonisation. Section 4 illustrates the 

entire architecture of proposed algorithms. Section 5 shows a comprehensive evaluation of the proposed via 

experimental results. The conclusion and future works are highlighted in Section 6. 

2. Background Literature 

To the best of authors’ knowledge, there is no study trying to merge the datasets from across devices and 

applications based upon the metadata categories within the digital forensic domain. However, some researchers 

consider metadata as an evidentiary basis for the forensic process as it contains a rich information about 

electronic crimes. Therefore, a number of studies have utilised the metadata to achieve a particular purpose 

such as data reduction, correlation, evidential artefacts identification and many more. Regarding to the data 

reduction, Rowe and Garfinkel (2011) developed a tool (i.e. Dirim) to automatically determine anomalous or 

suspicious files in a large corpus by analysing the directory metadata of files (e.g. the filename, extensions, paths 

and size) via a comparison of predefined semantic groups and comparison between file clusters. Their 

experiment was conducted on a corpus consisting of 1,467 drive images with 8,673,012 files. The Dirim approach 

found 6,983 suspicious files based on their extensions and 3,962 suspicious files according to their paths. 

However, the main challenge with this approach is its inability to find hidden data in a file because the hidden 

data does not appear within the metadata of that file. It also analyses the data in each drive individually which 

leads to repeat the process multiple times. 

Another effort was achieved by Dash and Campus (2014) to  propose an approach to eliminate unrelated files 

for faster processing of large forensics data during the investigation by using five methods. These methods are 

hash values of files, frequent paths, frequent size, clustered creation, and uninteresting extensions. They tested 

the approach with different volumes of data that collected from various operating systems. Their experiment 

comprised of two steps: the first consisted of extracting frequent hashes, frequent paths, and frequent sizes to 

eliminate uninteresting files by matching them against NSRL-RDS database and hashsets.com hashsets; the 

second step was to cluster the files based on the creation time and unknown extensions for further elimination. 

The results of the experiment showed that an additional 2.37% and 3.4% of unrelated files were eliminated from 

Windows and Linux operating systems respectively. However, their approach can only be applied on file systems 

and applications will be excluded.   
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With the concept of the heterogeneity in resources and the correlation between artefacts, Case et al. (2008)  

proposed a Forensics Automated Correlation Engine (FACE), which is used to discover evidential artefacts 

automatically and identify the correlation among them. The FACE provides automated parsing over five main 

objects, namely memory image, network traces, disk images, log files, and user accounting and configuration 

files. FACE was evaluated with a hypothetical scenario, and the application was successful as the authors 

claimed. However, this approach can be applied to a limited number of specific resources and has not been 

tested with multiple resources which contain similar datasets. Raghavan et al (2009) also proposed a four-layer 

Forensic Integration Architecture (FIA) to integrate evidence from multiple sources. The first layer (i.e. the 

evidence storage and access layer) provides a binary abstraction of all data acquired during the investigation; 

while the second layer (i.e. the representation and interpretation layer) has the capability to support various 

operating systems, system logs and mobile devices. The third layer (i.e. a meta-information layer) provides 

interface applications to facilitate metadata extraction from files. The fourth layer (i.e. the evidence composition 

and visualisation layer) is responsible for integrating and correlating information from multiple sources, and 

these combined sources can serve as comprehensive evidentiary information to be presented to a detective. As 

the FIA architecture was merely conceptualised via a car theft case study, further investigation would be 

required for the evaluation of its practicality. Additionally, there is no explanation about how the system will 

work if the resources contain similar evidential categories. 

In attempting to find the evidential artefacts in an automated way, Al Fahdi et al. (2016)  proposed an automated 

approach for identifying the evidence and speeding up the analysis process for computer forensics. Their 

approach mainly consists of three general steps: metadata extraction, clustering and automated evidence 

identification. Real forensic datasets have been utilised to apply their approach, and four metadata categories 

instead of files themselves have been chosen and extracted individually (i.e. File system, Email, EXIF and Internet 

history). They then used unsupervised pattern recognition to cluster evidential artefacts to aid the investigators 

to focus on the evidential files thereby saving their time and efforts. The Self-Organising Map (SOM) was utilized 

for automatically grouping the input data without any supervision. The investigator determined the number of 

clusters before the process starts.  Afterward, the automated evidence profiler (AEP) algorithm was applied to 

analyse and identity the related artefacts across all metadata SOMs. The AEP contain two steps: first is to identify 

the first cluster based on prior work achieved in profiling criminal behaviour; the second step is to identify 

subsequent clusters using the timeline analysis of each file in the first cluster. Their experiment was conducted 

by using four forensic cases, where each case includes a single forensics image. The experiment based on 

clustering has shown that 93.5% of interesting artefacts were grouped in the top five clusters. While the AEP 

algorithm has presented acceptable results and shown that the algorithm can reduce the investigator’s time to 

analyse the cases and present the relevant evidence in a report. However, their approach was only applied to 

single images with a limited number of metadata categories. Moreover, the AEP algorithm does not work with 

all cases because it depends on some prior work completed in profiling criminal behaviour to identify the first 

cluster. There might be new criminal behaviour cases which are not analysed yet.   

As demonstrated above, existing studies have attempted to use metadata for forensic purposes; however, they 

either applied their approaches on a single forensic image or on several forensics images which are different in 

nature. For instance, these cases consist of a hard disk, network packets, a memory dump, and many others 

which they do not contain same evidential resources or datasets. In contrast, more forensics cases that include 

the same evidential artefacts coming from different resources become more common. Therefore, there is a need 

to merge datasets based on metadata categories to process them as a single image thereby saving the 

investigator’s time and effort.  

3. An Automated Approach for Metadata Characterisation and Harmonisation  

The proposed approach seeks to provide an automated framework to merge similar datasets by characterising 

similar metadata categories and then harmonising them in a single dataset. This approach overcomes the 

heterogeneity issues and makes the examination and analysis easier by analysing and investigating the evidential 
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artefacts across devices and applications based upon category to query data once. The proposed approach is 

illustrated in figure 1.  

This approach utilises the metadata categories as a base to merge datasets; also, datasets that contain non-

metadata fields should be eliminated. For example, Skype and SMS applications contain fields describing the 

actual content of messages. Therefore, the variability of string can be used to identify meta from non-metadata 

fields because most metadata of a same field has a specific structure and format; and most non-metadata fields 

are in the string format. For instance, the dimension of an image is presented as (width x height) (e.g. 300x200, 

2000x1500), and this pattern of string can be represented as (NxN) which means (Number, Letter x, Number). 

Additionally, the file name in most operating systems can be represented (Name.exetension) which means 

(String, Full Stop, Short String). Consequently, the string variability has the ability to analyse the string to produce 

a pattern that aids to find the similar metadata fields across multiple categories.  

 
Figure 1: Metadata Characterisation and Harmonisation Process 

The forensic cases can include several categories of similar metadata within a single forensic image or across 

multiple resources. This can lead to repeating the forensic process many times and increase the encumbrance 

placed upon the investigator. As a result, the automated approach for metadata characterisation and 

harmonisation splits the problem of merging the datasets into following aspects: 

 How to characterise the metadata categories. 

 How to merge and harmonise similar metadata categories. 

The solution to the first problem can be achieved by using a rule-based system with a high level of fundamental 

conditions and rules. Rule-based systems are a method used to manipulate the knowledge to interpret 

information in a useful manner (Aronson et al, 2005). There is a limited number of the fundamental conditions 

utilised such as string, consistency, numerical, Boolean, and timestamp. The characterisation algorithm uses 

these rules and conditions which contain all the appropriate knowledge for matching similar categories. 

Regarding the string condition, the string variability algorithm will be utilised to produce a specific pattern which 

aids to check and match a similar field of strings across various categories. The consistency condition means that 

all the string values within the field should have a fixed length of string with the same pattern. While the 

numerical condition can be identified by measuring the range of the field within the category to match with 

another field in the compared category. Additionally, most files do have two sizes: physical and logical size with 
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a slight difference between them. The algorithm can identify the physical and logical size across various 

categories. The Boolean data type is a field with only two possible values: true or false. The timestamp is 

considered as a fundamental condition because it exists within most files and applications. This algorithm can 

characterise most of the timestamp formats across various categories. The final output of the characterisation 

process is a record that contains all similar metadata categories as shown in figure 2. 

 
Figure 2: Characterisation Process 

The second problem can be solved by applying the harmonisation algorithm which utilises to merge the similar 

categories based on the characterisation record.  It can adjust the differences and inconsistencies among 

different measurements, methods, procedures, schedules, specifications, or systems to make them uniform or 

mutually compatible. Many fields within the metadata categories are stored in various forms across 

heterogeneous systems (i.e. timestamp, phone number, and file size). For example, the timestamp can be stored 

in several forms such as ('yyyy-MM-dd', 2014-04-19), ('dd/MM/yyyy', 19/04/2014), ('dd.MM.yyyy', 19.04.2014) 

('yyyy-MM-dd''T''HH:mmXXX', 2014-04-19T21:41-04:00) or can be formed as a Unix timestamp which is just 

number with 10 digit or 13 digit. Likewise, phone numbers can be represented in different ways (i.e. they can be 

stored with country codes or area codes). Additionally, the country code can be placed in a varchar type (e.g. 

+91-9654637894). The file size can also be saved in variety units of measurement (i.e. it is measured from the 

lowest to the highest in bits, bytes, kilobytes, megabytes, gigabytes. Consequently, the core of harmonisation 

process to merge the similar categories in a systematically way and make them uniform as illustrated in table 1.  

Table 1: Harmonisation Process 

 

4. System Architecture for Merging Multi-Images in Digital Forensics 

The proposed architecture attempts to bridge the gap between several evidential resources included in a single 

case. It aims to decrease the burden on the investigator by merging similar datasets from multi-resources and 

producing a single forensic image thereby dealing with all data at once. To achieve this, preliminary steps should 

be undertaken to prepare the datasets before merging them. These steps include resources acquisition, data 

carving, and hashing (pre-processing), and metadata extraction. Therefore, all available suspect resources within 
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a single case should be acquired in a forensically sound manner to produce forensic images becoming authentic, 

reliably obtained, and admissible. The pre-process step can recover and extract files from the unallocated file 

system space (i.e. data carving), it then finds the hash values of all files for identification, verification, and 

authentication purposes. Having established that the metadata can help to recognise patterns, establish 

timelines, and point to gaps in the datasets, it can aid to correlate the evidential artefact in the digital 

investigation. Therefore, automated process of metadata extraction undertakes to obtain the suitable 

information (metadata) for the digital forensic process. This information can be extracted or created from any 

file or application such as file systems, network packets, databases and many more. However, a number of 

metadata categories might contain fields which are not metadata. Thus, the meta and mon-metadata 

identification process eliminates these fields, but at same time it considers an optional step as it can only be 

applied to specific categories. Afterward, the characterisation process identifies and analyse the nature and the 

types of datasets in order to merge them using the harmonisation process. The entire system is illustrated in 

figure 3.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Overview of Proposed Process 

5. Experimental Evaluation 

5.1 Methodology 

The purpose of the experiment is to evaluate and validate that the characterisation and harmonisation. The 

following aims are defined: 

 To differentiate between metadata and non-metadata,  

   

Automated Metadata Extraction  

Forensic Image 1 Forensic Image 2 Forensic Image 3 

Forensic Pre-Processing 

Metadata Characterisation  

Harmonised Image 

Metadata Harmonisation  

Optional  

  

Meta and Non-Metadata Identification  
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 To identify the metadata categories which are equivalent,  

 To merge similar categories.    

There is a need to access real forensic data to make the entire experiment more reliable. As such the experiments 
have been conducted using five images of real forensic data from multiple resources such as smartphones, 
computers, and external hard drives. The experiment considered these evidential resources as a single case to 
validate the proposed framework. In addition, to support the limited number of real cases, an artificial forensic 
image has also been used to validate the reliability and effectiveness of the algorithms. Therefore, six forensics 
images were provided. The public image (image 1) was generated by the National Institute of Standards and 
Technology (NIST) (NIST, 2015). This image is an artificial image describing the computer of a suspected person 
who tried leak sensitive information related to the newest technology in his company.  The remained images 
were obtained from Iraq, and contain information of various crimes committed by convicted criminals. During 
the metadata extraction phase, various metadata were generated and extracted from these resources as 
illustrated in table 1 such as file systems and applications. 

Table 2: Overview of Experimental Datasets 

Id Type OS 
Evidence Type 

Messaging Pics. File List Internet Emails 

1 Personal Computer Microsoft Windows - EXIF NTFS Chrome, Mozella Outlook 

2 Smart phone  Android   SMS EXIF Ext4 
Samsung Internet 

Browser 
- 

3 External Hard Drive  - - EXIF FAT32 - - 

4 Personal Computer Microsoft Windows - EXIF NTSF Chrome - 

5 Personal Computer Microsoft Windows - EXIF NTSF Chrome Outlook 

6 Smart Phone  Android Viber, SMS EXIF Ext4 - - 

The metadata of these images was exported into individual Comma Separated Value (CSV) files. A number of 

CSV files contains missing metadata features within the same category because they have been extracted from 

heterogeneous resources. For instance, the EXIF metadata, which is extracted from smartphone datasets, has 

completed metadata features such as filename, timestamp, camera manufacturer and model, size of image file, 

size of the image (width x height), IOS, latitude, longitude, and GPS timestamp. The EXIF metadata within 

computer datasets, however, contains missing features such as IOS, latitude, longitude, and GPS timestamp. 

Similarly, the internet browsing metadata is differentiated across the forensic images based on platforms and 

applications. In computer images, there are two browsers (Firefox and Chrome) which they have features such 

as URL, visit count, visit timestamp, referrer URL, title, and profile. Whereas the smartphone browsers only have 

(URL, visit count, visit timestamp). The smartphones images contain SMS and Viber application, and both of 

them serve to send and receive messages. Many features between SMS and Viber are similar such as account 

number, sending timestamp, delivery timestamp, message body, status, seen, and recipient number; as well as 

they contain binary-based data such as opened, deleted, seen, etc.  Regarding the file system, heterogeneous 

operating systems (OS) are included across these images, but most of these OS hold common features as file 

name, timestamp, size, etc. Likewise, the emails of two images include mutual features in addition to email body 

that represents as a non-metadata characteristic.   

5.2 Results  

All the metadata categories within the six images (a total of 22 disparate datasets) were provided to the system 

in a single instance. As illustrated in table 1, there are three categories (email, Viber, and SMS) containing non-

metadata fields. Therefore, the meta from non-metadata identification based upon email, Viber, SMS categories 

was achieved successfully, and all non-metadata fields were automatically eliminated.   

In order to identify the categories, the characterisation process was utilised to generate a record file. This record 

contains the categories that are similar as represented in section 3. To make it clear, the algorithm takes a 

dataset and checks it with all datasets in sequence. Then, it will count the number of identical fields (I) within 
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the compared datasets against different fields (D). There is a threshold used to decide whether the two datasets 

are similar or not. This threshold has been modified five times to obtain the ultimate threshold as shown in table 

2. The experiment results prove that when the threshold of I is greater than or equal to D the best results can 

be obtained. Consequently, the algorithm creates the record which contains the similar files.  

Table 3: Experimental results for 22 CSV files 

 Threshold 
True Positive (Merged Correctly) False Positive (Merged Incorrectly) 

Files Num.  % Files Num. % 

1 I < D 0 0 22 100 

2 I <= D 4 18.18 18 81.82 

3 I == D 8 36.36 14 63.64 

4 I >= D 22 100 0 0 

5 I > D 14 63.64 8 36.36 

Table 2 shows the impact upon the performance of characterisation algorithm across different thresholds. The 

worst results have been obtained when using the threshold of I less than D, where the algorithm matched the 

files which are completely different. When the threshold of I less than or equal D matched only four files properly 

with 18.18 % of the true positive. By using the equality threshold, the results were enhanced a little with only 

eight files matched out of 22 files, and this is still unacceptable. While the threshold of I greater than D showed 

a good rate of matching compared with aforementioned thresholds with 63.64 of the true positive. Ultimately, 

the threshold of I greater than or equal to D gave the best results with 100% of the true positive. Noticeably, 

this threshold might be changeable according to the nature of the study cases and their metadata categories. 

To merge the similar categories, the harmonisation algorithm took the record file and the CSV files. The 

algorithm was able to merge and produce new five CSV files representing the main five categories. The main five 

categories were SMS and Viber together, EXIF, emails, file list, and Internet browsing metadata. In addition, the 

performance and the accuracy of this algorithm completely depend on the record which is generated by the 

characterisation algorithm. Accordingly, it merges and harmonises the similar categories together in one file. 

Although the results of this algorithm are encouraging, there are some errors detected due to the only the 

binary-based data that exists within the Viber and SMS categories. Only two fields of binary data within each 

category were wrongly merged. These were the seen field merged with the deleted field, and the read field 

merged with a hidden field. However, the binary data represents with only two values: 0 or 1 and does not 

contain valuable information compared with other fields of SMS and Viber categories.   

6. Conclusions & Future Work 

The evidentiary nature of digital forensics has changed over the years and cases increasingly contain Multiple 

devices and applications. Existing digital forensic tools are struggling to keep pace in achieving modern forensic 

investigations such as examining and analysing many systems and applications at once. Therefore, this paper 

has proposed and demonstrated an automated approach for metadata characterisation and harmonisation to 

overcome the heterogeneity issues. In the experimental study, the live forensic data has been utilised to 

evaluate the novel process. The results have shown that the characterisation and harmonisation process can be 

appropriated to merge and create a common standard across different formats for a similar metadata category. 

Although the harmonisation algorithm has not been able to merge all binary data fields, the binary data has the 

minimal valuable information within the investigation process. Future research will focus upon developing the 

harmonisation process to make it more accurate by using an intelligent procedure to merge the similar fields. A 

further evaluation also requires to be undertaken upon wide range of technologies and applications to make the 

characterisation and harmonisations algorithms more generalise in practice.  
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