
A method to produce minimal real time geometric

representations of moving obstacles
David Sanders, Qian Wang, Nils Bausch, Ya Huang, Sergey Khaustov, Ivan Popov

School of Engineering

University of Portsmouth

Portsmouth, PO1 3DJ, UK

david.sanders@port.ac.uk, qian.wang@port.ac.uk, nils.bausch@port.ac.uk, ya.huang@port.ac.uk,

sergey.khaustov@port.ac.uk, ivan.popov@port.ac.uk

Abstract — Real time modelling methods are compared for

use with a robot manufacturing work-cell and a simple image

processing system. The static parts of a robotic manufacturing

work-cell are modelled as a number of solid polyhedra. The

robot is modelled as a number of connected spheres and

cylinders. The static model is renewed when an object enters or

leaves the static work-place. Simple polyhedra, spheres and

similar 2-D slices in actuator space are compared with other

models as representations of objects move in and out of the reach

of the robot. Models are compared for their efficiency in

accessing data and ability to update as information about moving

objects changes. Geometric models of the robot and the robot

work-cell are loaded into a path planner to compare the models

for efficiency on planning paths around moving objects

Keywords—model; robot; 2-D Slice; obstacle; path

I. INTRODUCTION (Heading 1)

Navigation through dynamic and changing industrial
settings is demanding, especially if the movement of objects in
the setting is not known or expected and must be updated in
real-time. Computers are becoming quicker and more powerful
but real-time functions still benefit from effective models and
program techniques. Traditional global planning can
sometimes be comparatively slow to react in complicated
changing situations within complex and flexible manufacturing
environments, whereas reactive navigation methods sometimes
only look a short time and distance ahead. Some simple but
quick real-time transformations are presented here that can
provide simple and fast new geometric models of moving
objects in an industrial robot work space. That can improve
real-time trajectory and path planning.

Complicated industrial environments consist of machinery,
objects being worked on and manipulated, and obstacles to
avoid [1-5]. Available free space for moving machinery will
depend on the modelling methods used in a varying situation
and environment. Navigating industrial robots through a
changing and dynamic environment is difficult [6], especially
when the movement of objects is not known or expected in
advance. Traditional planning methods can be slow and
reactive navigation tends not to look far enough ahead.

Vander-Stappen [7] described efficient methods to calculate an
exact solution for motion planning problems if there are only a
few moving objects but even he believed that the algorithms
used for planning frequently used long and worst-case
calculation and computing time [8]. Exact algorithms do not
need to be used in real-time though. The processing time will
depend on processing speed, problem complexity and how
complicated the modelling algorithms are. Processing speed is
still increasing but at the same time, the dynamic problems
being addressed are becoming more complicated.

If some assumptions can be made about the shape,
distribution and size of moving objects then the problem can be
simplified. Complexity of free space increases linearly with
the number of objects. De-Berg [9] considered how
complicated motion planning problems were for bounded-
reach robots with only a few objects around them and Tang
[10] considered how to geometrically and topologically depict
intersections between moving polygon shapes, noting that
manufacturing environments where industrial robots are used
can often contain polygon shaped objects. Large considered
real-time planning based on Non-Linear Vobst [11]. If an
environment could be modelled satisfactorily then the
velocities that could cause a collision could be modeled.

Complexity of the modelling methods used directly affects
planning algorithm complexity. The algorithms need to
calculate a sequence of collision-free orientations left for an
industrial robot when there are objects moving around it.
Complexity results in comparatively lengthy computations and
therefore processing times. If the complexity can be reduced
then the computation time for motion-planning can also be
reduced.

Real time models being used in diverse spaces are studied
in this paper. The models are updated by a simple vision
system. The work-cell for the robot is modelled by static solid
polyhedra stored within computer memory. The static model is
revised when objects enter or leave the robot workcell. Simple
polyhedral, spheres and two-dimensional slices in an actuator
space were compared as potential models for the moving
objects. Spheres appear to be the simplest models for moving

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/160743249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

objects. Halperin [12] explored ways of manipulating loosely
connected spheres. The authors evaluated models based on
spheres and identified the things that made them simple and
efficient to use. The authors described effective algorithms that
calculated places where the spheres touched.

In order to calculate a path, mapping needs to take place
either from a workspace to a joint space (or configuration
space) or from the joint space to a workspace. That is required
so that the robot, the objects and the environment can be
compared within a common space and so that static and
moving objects can be avoided. Sanders studied geometric
modelling in [1, 3-5] and decided that the following were
important for representing a robot work cell with moving
objects within it: quick and simple model creation, quick and
efficient calculation of intersections between models and ease
of use with algorithms that are planning movements. Sharma
investigated the fastest time to transfer a vehicle from one
place to another while avoiding other vehicles [13]. Other
vehicles represented moving obstacles and a conflict was
considered to have happened if the distance between vehicles
was smaller than a safety distance (and that safety distance
depended on their speed). Fiorini described a robot motion
planning method within a dynamic environment that took place
within common velocity space [14].

Models described here are assessed for their capacity to be
revised when new data is available. For example, if an object
enters, leaves or is moving within the robot work cell.

The structure of the robot is modelled as a set of connected
spheres and cylinders and the range of motion of the robot is
quantized. A quick but sub-optimal path is produced using
simple models so that the robot can avoid objects as it moves
towards a goal. The method inspects a 3-D table of quantized
joint space.

Solid polyhedra are used to represent the static parts of the
robot work-cell. As new objects enter or depart from the work
cell then the available free space is updated. A six-sided
parallelepiped, single spheres, multiple spheres and 2-D slices
in joint space are employed to model moving objects. They are
compared and some results are presented.

II. THE ROBOT AND THE STATIC ENVIRONMENT

Industrial environments and robot work cells often consist
of solid floors, walls and objects with linear straight edges and
flat surfaces. Accurate models of these shapes are more
difficult to create, change and use in real-time. If moving
objects and robots are modelled using polyhedral shapes then
although the accuracy might be higher, computation is more
complicated and processing time is lengthened. A static
environment only needs to be modelled once because it then
does not change. Therefore computational complexity and
processing time is not a problem. So, polyhedra can be used to
accurately model a static environment.

Providing any model used to represent the industrial robot
enclosed the whole of the industrial robot, then? the most
important aspect of the model was the time taken to calculate
intersections. Many industrial robots have links (often a
forearm and upper arm) and joints (often base, shoulder and
elbow). The simplest depiction of this type of industrial robot

is two lines that are connected by a joint. If fixed distances are
then defined forming the lines, then the volume can be
considered to enclose the industrial robot casing. This model
gives two cylinders with hemispherical ends that are connected
by a joint. An advantage of this model is that robot links are
efficiently modelled and calculations of intersections between
objects and the robot arm are simplified. An end-effector can
be modelled by an extra sphere at the end of one of the
cylinders with a radius that is large enough to surround the
whole of the end effector. Work-pieces can be encompassed
within the sphere.

The time taken to calculate intersections was recorded for
various models representing moving objects within the work
cell of the industrial robot. Three of the models performed
well: six-sided parallelepiped in cartesian space, spheres and 2-
D slices in joint space. During the testing and comparison, it
was presumed that the 2-D cross section of a moving object
was known in the X-Y plane and that the length or height (Z)
of the moving object could be provided by a sensor system (in
this case a simple vision system was used). Moving objects
were really two-and-a-half-dimensional. That is to say that
they had a height and a 2-D shape. 3-D moving shapes that
were considered in this research were cubes and cylinders. 2-D
planar slices in joint space, spheres and parallelepiped models
were used to model the 3-D moving shapes to a practical
precision. In the specific case of the case of 2-D slices, they
modelled the moving shapes more rapidly in a discrete three-
dimensional space.

A. Modelling using 2-D slices

2-D slices were produced by creating two sets of
boundaries: base joint angles (θ1min and θ1max) that bound the
object and the minimum distance Dmin and the maximum
distance Dmax from the origin (the minimum and maximum
radii). A moving object can then effectively be modelled as a
sequence of 2-D slices. A reference planar slice is determined
within the boundary created by a line from the Origin bounded
by Dmin and Dmax and the Z axis value. These impeded elbow
(θ2) and shoulder (θ3) joints can then be calculated for this
plane and then copied for all θ1 within the bounding angles,
θ1min and θ1max.

That significantly reduced the number of tests and searches
for blocked points. The planning algorithm is largely reduced
by copying values rather than complicated mathematical
calculations.

B. Transformations into joint space

A single point in a Cartesian space does not transform to be
a single point in an actuator space. If a single point lies inside
the operational volume of an industrial robot then it will
transform into one or more complicated 3-D shapes. These
complicated 3-D shapes may be represented by approximating
the profiles of the shapes using mathematical curves to
describe the geometric shapes, or they may be represented by
units of space. In this research, moving objects were
represented as regions of small units within a joint space. That
technique would not be restricted to any particular robot and is
suitable for a robot with any number of degrees of freedom.

A KUKA KR125 robot was used and the research
considered the 3 major axes. A 3-D table was created and
within the table, each dimension corresponded to one of the
degrees of freedom for the industrial robot (θ1/ θ2 / θ3). The
configuration of the wrist was not studied but the wrist and end
effector could easily be included within an extra sphere.

Each table element was set to "free"' and orientations (in
actuator space) where the industrial robot interconnected with
the moving objects were determined. An element denoted a
robot configuration in terms of, (θ1center, θ2center, θ3center), with a
value added to represent some movement away from the
central values. All the units together embodied the whole work
space for the industrial robot. The number of units in the table,
TotalNodes, was:

{(θ1max-θ1min)/2 x δθ1} * {(θ2max–θ2min)/2 x δθ2} *

{(θ3max–θ3min)/2*δθ3} (1)

where, θ1max and θ1min = upper and lower boundaries of θ1.

θ2max and θ2min = upper and lower boundaries of θ2

θ3max ad θ3min = upper and lower boundaries of θ3.

If the body of the industrial robot intersected a moving object

at any configuration in a unit, then that unit was set to

"obstructed". If the industrial robot did not intersect a moving

object at all configurations within a unit then the unit continued

to be set to "free". The global path planning problem then

reduced to searching for a series of neighboring units between

a BEGINNING and an END configuration that were "free".

Free space tends to be bigger than obstructed space so that a

quick and efficient method was to test each transformed

moving object and for nodes which could contain the robot.

This method was adopted. The algorithm was:

Create the Static Model (only done once):

Initialise data structures to create a 3-D table to represent

joint space.

Calculate trigonometric solutions.

Set all units in the table to `"free" status.

Associate flags with each node.

After calculating the static model there were a large number of

free elements remaining that represented a set of configurations

where the industrial robot wouldn’t bump into the static

environment (the work cell).

Data about moving objects was then either simulated or

provided by the vision system.

Repeatedly…

Read the data about moving objects.

Create the two and a half dimensional model.

For an element where the industrial robot could intersect

with a moving object

Recursively test elements next to the original element

to decide whether they can also be reached by the

industrial robot.

III. 2-D SLICES

To begin with, the limits in X were increased by the upper-
arm radius:

StartofRow_clear = StartofRow - UpperlimRad (2)

EndofRow_clear = EndofRow + UpperlimRad (3)

The center point modulus and the ends of an edge
StartofCol were determined.

(TopLeftcorner, Ang) = InvTan (StartofCol / EndofRow_clear)
 (4)

Corner(TopLeft, Modulus) =  (StartCol² + EndRow²) (5)

The subsequent model parameters were calculated: largest

base angle, (1max), smallest base angle, (1min), outside radius
from origin, (Dmax), and inside radius from origin, (Dmin),

If a moving object corresponded to a known template then
a third dimension (a height Z) was obtained for the moving
object from a template, otherwise height was set to infinity.
That segment was then extrapolated on the Y axes and
calculation only took place in a Z, Y plane. The model of the
moving object was expanded by the upper-arm radius in the Z

and Y plane. 1 was changed to a new lower limit and an
inverse kinematic solution was calculated for all points within
the moving objectfor the Z and Y axis:

FOR Y = (MinUpperRad) TO (MaxRadius + UpperRadius)

 FOR Z = 255 TO (Rad(Z) + UpperRadius)

 CALL InvKin

 NEXT Z

NEXT Y
Coordinates in Z and Y were translated into robot joint

angles with an inverse kinematic solution subroutine called
InvKin. Distance from the cartesian point (L3) to the origin

and the angle to a point (Point) were calculated:

 Point = Inv_Tan Z / Y (6)

 sqofL3 = Y² + Z² (7)

 L3 = sqofL3 (8)

L3 was checked against the upper-arm to test whether an
impact was conceivable. If within reach of upper-arm and if

2 was within limits, then 3 was set to "blocked" between its

limits and2 was set to Curve and. If L3 was less than
Forearm plus Upper-arm then the Forearm could collide with

that point.  and 2 were computed using the cosine rule. If

3 and 2 were within limits then a flag was set to
"obstructed".

2-D slice models have been used with sensor systems [15-
16] mobile robots [17-21] and powered wheelchairs [22-23].

IV. SPHERES

The table of data mentioned earlier was initialized. The
limits of the table corresponded to the limits for the angles of
the robot joints inside the work cell. Objects outside the work
cell were disregarded. So, the table was used to conduct
checks for intersections at a limited number of orientation and
positions. That meant that a smaller number of trigonometric
solutions was needed and they could be calculated at the
beginning when calculation time did not matter. Before the
objects were determined, all the elements in the table were set
to `EMPTY'. Another 4 flags were associated with each table
element: `ON LIST', `UPPERARM TESTED', `FOREARM
TESTED', and `NEW OBJECT'. The code representing each
element was kept as a byte of data in an array and the five flags
each used one bit. Object data was extracted from a file or sent
from the vision system and the initial job for the program was
to read this data.

A sub-task then calculated the upperarm and forearm
blocked space in the table. A configuration was calculated at
which the part of the arm being considered was nearest to the
center of the object. If a forearm was being studied, then a
configuration where the Foretip was at the sphere center was
computed. For the upperarm, a configuration was calculated
for which the center line of the upperarm pointed at the center
of the sphere. If the object was within reach of the link being
examined, then this configuration was the first unit for the
transformed object. A base angle was computed from the X,Y
coordinates for the sphere. First, the modulus (L3) and the

angle (Sphere) from the robot to the center of the sphere was
computed and a check was performed to find whether the
sphere was out of the range of the robot.

 Waist1 =InverseTan(Y/X) (9)

 ModulusXY= (X²+Y²) (10)

 Sphere=InverseTan(Z/ModulusXY) (11)

 L3 =  (X² + Y² + Z²) (12)

Shoulder and elbow angles ( andwere calculated

usinghe cosine rule.

Upper-Arm length = L1 = 225mm and ForeArm = L2 - 165mm

= InverseCos [(L1² +L2² -L3²) / (2*L1*L2)] (13)

2= InversCos [(L1²+L3²-L2²) /(2*L1*L3)] +Sphere (14)

If the center of the sphere was close to the robot then 3

would exceed its lower limit (3 < 90). In this case, 3 was

set to 90 and 2 was calculated using InversTan:

If 3 < 90 THEN

 3 = 90

 2 = InversTan (L2 / L1) + Sphere

END

This provided a first configuration that was near the center.

When the lower boundary of 2 was surpassed, (2 < -30),

then the angle was set to -30. A calculation was then made to
find the distance between the center of the sphere and the

upperarm (Mod) using FindtheModulus. The cosine rule could

be used from that to find a new 3:

If -30 < 2 THEN

 2 = -30

 3 = InversCos[(L1²+L2²-Mod²) / (2*L1*Mod)]

END

The table element representing the first configuration was

set to obstructed. Neighboring elements were then tested. If
they were also obstructed then their neighbors were tested.
The position problem was solved using forward kinematic
calculations and the minimum distance between the arm of the
robot and the object (as long as that calculation had not been
performed before). This continued recursively until all of the
object had been transformed. Elements were set to
“obstructed” if they had any two opposite neighboring
elements that were also obstructed. Any elements at the edge
of the now solid model were added to a record. Neighboring
elements that were recorded were tested and that was repeated
until the surface of the transformed sphere was fully outlined.

Obstructed elements were kept so that they could be
expanded later on. When an element was expanded then it was
retrieved from the record store and new obstructed points were
added. When every element had been considered then the
transformation of the object was completed. The time taken to
calculate objects was recorded and some examples are given in
Section VI of this paper.

V. A SIMPLE POLYHEDRAL SHAPE

Polyhedra have often been used to model objects and a
simple polyhedral model was used here. Moving objects were
modelled as simple six-sided-parallelepiped. The edges of the
model in X and Y were obtained by calculating the limits of
the columns and rows set by the vision system. As before, if it
was possible then the height of an object could be retrieved
from a template. Edge positions were expanded by the radius
of the part of the robot being tested (for example the forearm or
upperarm). The example of expanding the forearm in X is
shown here:

ExpandXLow = EdgePos(LowX) – ForRad (15)

ExpandXHigh = EdgePos(HighX) + ForRad (16)

The expanded polyhedral edge limits were then tested
against the cartesian coordinates of the arm.

VI. RESULTS

The time taken to transform objects was recorded.

Time taken for the various models to transform a large cube
into an actuator space are displayed within Table 1.

TABLE I. TRANSFORMATION TIMES FOR A CUBE

A. Static environment

The system needs the time taken to convert moving objects
to be short. It can take a long time to model a static
environment but this only needs to be done once at the start.

In this work that conversion took up to a minute of
computer time depending on the complexity of the static
environment.

B. 2-D Similar Slices

An advantage of this model was that once collision

coordinates for 3 and 2 were computed for a specific 1 then

the collisions could be repeated for all specific 1 that might
collide. This downgraded the principal processing job to a
copy function rather than having to calculate a reverse or a
forward kinematic solution. This model was the quickest to
transform into a discrete 3-D actuator space.

If a moving object enlarged beyond a certain size or if at
relocated nearer the origin, then the moving object could
intersect both the Forearm and Upperarm. So, the actuator
space occupied by the moving object will abruptly increase and
so calculation time will increase.

C. Sphere Model

Initially, the objects were modelled as individual spheres
with the smallest radius that enclosed the object.

If there was time then the object was re-modelled by 2
smaller spheres and then four smaller spheres etc. Elements set
to obstructed that were related to the first sphere would usually
also collided with the models using multiple spheres. Forward
kinematic solutions did not need to be recalculated for these
elements. Despite that, total processing time increased with the
number of spheres. That was because the overhead involved in
calculating intersections for each sphere was more than any
time that was saved because the spheres were smaller. So,
calculations with a single sphere were quicker than multiple
spheres despite the fact that the single sphere had a larger
volume and was less accurate.

A problem with using more than one sphere was that the
center of several spheres could be set to “blocked” (with some
surrounding elements) after the first sphere was expanded. As
these elements were obstructed, later spheres might not retest
and some nodes might not be recorded.

D. Simple Polyhedra Model

 Although this was the most accurate, it took the longest to
calculate.

VII. DISCUSSION

Higher accuracy models tended to need more processing
time and took longer to reach a solution. Lower accuracy
models needed robot links or moving objects to be artificially
increased in size to remove the risk of unnoticed collisions.
Lowering accuracy led to rejecting some potentially useable
solutions.

The speed of calculation was important for moving objects
and their models. The easiest possible intersection calculation
involved spherical models. Computation was slashed to only
calculating distances from a line (representing a robot link) to a
point (the center of a sphere) and then subtracting the sphere
radius to produce a distance from the robot to the sphere
surface.

The use of more than one sphere was studied. As the robot
working environment became more complicated then more
spheres could model it more accurately. Increasing the number
of spheres increased the accuracy of a model. Cubic numbers
of spheres were considered, that is 1 / 8 / 27 / 64 etc. If they
were of equal size then they formed regular lattice patterns. An
infinite number of spheres could model a cube exactly but it
was found that modelling objects using spheres of equal size
was not the most efficient way of doing it. For example, if a
cube is modelled using sixty-four equally sized spheres, eight
of those spheres are completely enclosed. Those eight could be
replaced by one larger sphere and that would not reduce
accuracy or increase the volume of the model.

To compare modelling using single and multiple spheres,
as an extra example, a model of a cylinder using one and two
spheres was compared. The volume of two spheres of radii 35
mm was compared to that of one sphere of 70 mm:

Volume of the two spheres: 2 x 4/3 x π x 353 = 359,188 mm3

Volume of the single sphere:4/3 x π x 703 = 1,436,755 mm3

The area of the two spheres would be much smaller except
that the model of the robot must then be considered to find the
union volume:

 Model  Robot (17)

The Upperarm model radius= 85mm: Union radius for a
single sphere was 70+85 = 155. Union radius for two spheres
is 35+85 = 120.

Union volume of a single sphere is 4/3 x π x 1503 =
14,137,167 mm3. Union volume of two spheres is 2 x 4/3 x π
x 1153 = 12,741,211 mm3.

A similar number of obstructions was recorded for both
models. If elements in a second sphere were not tested for
obstruction during calculations for a previous sphere, then that
would change the number calculated. That partially explains a
lack of reduction in calculation times when using two spheres
to model objects.

The simple six-sided parallelepiped had a volume that was
less than that of the 2-D slice model. The volume for the
Parallelepiped was:

Volume = (60+160)² x (140+80) = 10,648,000 mm3.

 This could reduce the number of obstructed elements, but
shape and therefore the associated computations would be
more complicated. So, the calculation time would increase.

VIII. CONCLUSIONS

Angles for  and  were only calculated for a single slice
so that processing time was reduced because that slice of

 Model
Time

(ms)
Blocked elements.

 Single Sphere 18.7 2425

 2 x Spheres 94.2 2335

 Simple Polyhedra 126.2 1982

 2-D Similar Slices 15.2 2488

"obstructed" elements was just then copied for all the base
angles that might intersect the object. Copying is quicker than
calculating and so this method appears to be faster than
methods requiring real-time calculations.

The number of "obstructed" elements found was similar for
all the models. Intersection volumes were similar and that
implied a corresponding accuracy.

Modelling using similar 2-D slices produced the quickest
intersection calculations. The 2-D slices were simpler than
polyhedra, as the model only required two bounding angles for
the base joint (an inner and outer radius) and a height.

The model using similar 2-D slices were the most effective
of the models considered. 2-D slices in joint space represented
moving objects at least as well as the other models but they
were quicker.

REFERENCES

[1] D.A Sanders. “Recognizing shipbuilding parts using artificial neural
networks and Fourier descriptors”. Proc’ Institution of Mechanical
Engineers Part B-Journal of Eng Man 223 (3) pp: 337-342 (2009).

[2] Z. Rasol and D.A. Sanders. An automatic system for simple spot
welding tasks. Total Vehicle Technology Conf, pp: 263-272 (2001).

[3] D. A. Sanders and P. Harris, "Image modelling for real time
manufacturing applications using 2-D slices in joint space and simple
polyhedra," Journal of Design and Manufacturing 3, pp: 21 - 27 (1993).

[4] D.A. Sanders. “Real time geometric modelling using models in an
actuator space and cartessian space”. Journal of Robotic Systems. 12
(1). pp: 19-28 (1995).

[5] D.A. Sanders, G Lambert and L. Pevy. “Pre-locating corners in images
in order to improve the extraction of Fourier descriptors and subsequent
recognition of shipbuilding parts. Proc’ Institution of Mechanical
Engineers Part B-Journal of Eng Man 223 (9). pp: 1217-1223 (2009).

[6] S. Carpin, " Randomized motion planning: A tutorial ", Int Jrnl of
Robotics & Automation 21 (3): pp 184-196 (2006).

[7] R-P. Berretty, M.H. Overmars and A.F. van der Stappen, “Dynamic
motion planning in low obstacle density environments”, Computational
Geometry 11(3–4), pp 157–173 (1998).

[8] D. A. Sanders, A. Moore and B. L. Luk. "A Joint Space Technique for
Real Time Robot Path Planning". Robots in Unstructured Environments,
IEEE 91TH376-4, pp: 1683 - 1689. (ISBN 0-7803-0078-5. (1991).

[9] M. de Berga, M.J. Katzb, , M.H. Overmarsa, A.F van der Stappena, and
J. Vleugels. "Models and motion planning", Computational Geometry
23 (1), pp 53–68 (2002).

[10] K. Tang, "A geometric method for determining intersection relations
between a movable convex object and a set of planar polygons", IEEE
Transactions on Robotics 20 (4) , pp 636 – 650 (2004).

[11] F.Large, C. Laugier and Z. Shiller, "Navigation Among Moving
Obstacles Using the NLVO: Principles and Applications to Intelligent
Vehicles", Autonomous Robots 19 (2), pp: 159 – 171 (2005).

[12] D. Halperin and M.H Overmars, "Spheres, molecules, and hidden
surface removal ", Proc’ 10th annual symp’ on Computational
Geometry, pp: 113-122 (1994).

[13] V. Sharma, M. Savchenko, E Frazzoli, and P.G. Voulgaris, "Transfer
time complexity of conflict-free vehicle routing with no
communications", International Journal of Robotics Research 26, pp
255-271 (2007).

[14] P. Fiorini, “Robot motion planning among moving obstacles", PhD
disertation, University of California, (1995).

[15] D.A. Sanders. “Environmental sensors and networks of sensors”.
Sensor Review Volume: 28 Issue: 4, pp: 273-274. (2008).

[16] D.A. Sanders, G. Lambert, J. Graham-Jones, J; et al. “A robotic welding
system using image processing techniques and a CAD model to provide
information to a multi-intelligent decision module”. Assembly
Automation 30 (4), pp: 323-332 (2010).

[17] D.A Sanders. “Comparing ability to complete simple tele-operated
rescue or maintenance mobile-robot tasks with and without a sensor
system. Sensor Review 30 (1), pp: 40-50 (2010).

[18] D.A Sanders. “Comparing speed to complete progressively more
difficult mobile robot paths between human tele-operators and humans
with sensor-systems to assist”. Assembly Automation 29 (3), pp: 230-
248 (2009).

[19] [19] D.A Sanders, J. Graham-Jones, and A. Gegov. “Improving ability
of tele-operators to complete progressively more difficult mobile robot
paths using simple expert systems and ultrasonic sensors”. Industrial
Robot 37 (5). Pp: 431-440 (2010).

[20] D.A Sanders, I.J. Stott, D.C. Robinson et al. “Analysis of successes and
failures with a tele-operated mobile robot in various modes of
operation”. Robotica 30, pp: 973-988 (2012).

[21] [21] D.A Sanders, G.E. Tewkesbury, I.J.Stott et al. “Simple expert
systems to improve an ultrasonic sensor-system for a tele-operated
mobile-robot”. Sensor Review 31 (3), pp: 246-260 (2011).

[22] D.A Sanders, M. Langner and G.E. Tewkesbury. “Improving
wheelchair-driving using a sensor system to control wheelchair-veer and
variable-switches as an alternative to digital-switches or joysticks”.
Industrial Robot 37 (2), pp: 157-167. (2010).

[23] D.A Sanders, I.J. Stott and J Graham-Jones. “Expert system to interpret
hand tremor and provide joystick position signals for powered
wheelchairs with ultrasonic sensor systems”. Industrial Robot 38 (6), pp:
585-598. (2011).

