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Abstract — Real time modelling methods are compared for 

use with a robot manufacturing work-cell and a simple image 

processing system.  The static parts of a robotic manufacturing 

work-cell are modelled as a number of solid polyhedra.  The 

robot is modelled as a number of connected spheres and 

cylinders.  The static model is renewed when an object enters or 

leaves the static work-place.  Simple polyhedra, spheres and 

similar 2-D slices in actuator space are compared with other 

models as representations of objects move in and out of the reach 

of the robot.  Models are compared for their efficiency in 

accessing data and ability to update as information about moving 

objects changes.  Geometric models of the robot and the robot 

work-cell are loaded into a path planner to compare the models 

for efficiency on planning paths around moving objects 

Keywords—model; robot; 2-D Slice; obstacle; path 

I. INTRODUCTION (Heading 1) 

Navigation through dynamic and changing industrial 
settings is demanding, especially if the movement of objects in 
the setting is not known or expected and must be updated in 
real-time. Computers are becoming quicker and more powerful 
but real-time functions still benefit from effective models and 
program techniques.  Traditional global planning can 
sometimes be comparatively slow to react in complicated 
changing situations within complex and flexible manufacturing 
environments, whereas reactive navigation methods sometimes 
only look a short time and distance ahead.  Some simple but 
quick real-time transformations are presented here that can 
provide simple and fast new geometric models of moving 
objects in an industrial robot work space.  That can improve 
real-time trajectory and path planning. 

Complicated industrial environments consist of machinery, 
objects being worked on and manipulated, and obstacles to 
avoid [1-5].  Available free space for moving machinery will 
depend on the modelling methods used in a varying situation 
and environment.  Navigating industrial robots through a 
changing and dynamic environment is difficult [6], especially 
when the movement of objects is not known or expected in 
advance.  Traditional planning methods can be slow and 
reactive navigation tends not to look far enough ahead.  

Vander-Stappen [7] described efficient methods to calculate an 
exact solution for motion planning problems if there are only a 
few moving objects but even he believed that the algorithms 
used for planning frequently used long and worst-case 
calculation and computing time [8].  Exact algorithms do not 
need to be used in real-time though. The processing time will 
depend on processing speed, problem complexity and how 
complicated the modelling algorithms are.  Processing speed is 
still increasing but at the same time, the dynamic problems 
being addressed are becoming more complicated. 

If some assumptions can be made about the shape, 
distribution and size of moving objects then the problem can be 
simplified.  Complexity of free space increases linearly with 
the number of objects.  De-Berg [9] considered how 
complicated motion planning problems were for bounded-
reach robots with only a few objects around them and Tang 
[10] considered how to geometrically and topologically depict 
intersections between moving polygon shapes, noting that 
manufacturing environments where industrial robots are used 
can often contain polygon shaped objects.  Large considered 
real-time planning based on Non-Linear Vobst [11].  If an 
environment could be modelled satisfactorily then the 
velocities that could cause a collision could be modeled. 

Complexity of the modelling methods used directly affects 
planning algorithm complexity.  The algorithms need to 
calculate a sequence of collision-free orientations left for an 
industrial robot when there are objects moving around it.  
Complexity results in comparatively lengthy computations and 
therefore processing times.  If the complexity can be reduced 
then the computation time for motion-planning can also be 
reduced. 

Real time models being used in diverse spaces are studied 
in this paper.  The models are updated by a simple vision 
system.  The work-cell for the robot is modelled by static solid 
polyhedra stored within computer memory.  The static model is 
revised when objects enter or leave the robot workcell.  Simple 
polyhedral, spheres and two-dimensional slices in an actuator 
space were compared as potential models for the moving 
objects.  Spheres appear to be the simplest models for moving 
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objects.  Halperin [12] explored ways of manipulating loosely 
connected spheres. The authors evaluated models based on 
spheres and identified the things that made them simple and 
efficient to use. The authors described effective algorithms that 
calculated places where the spheres touched. 

In order to calculate a path, mapping needs to take place 
either from a workspace to a joint space (or configuration 
space) or from the joint space to a workspace.  That is required 
so that the robot, the objects and the environment can be 
compared within a common space and so that static and 
moving objects can be avoided.  Sanders studied geometric 
modelling in [1, 3-5] and decided that the following were 
important for representing a robot work cell with moving 
objects within it:  quick and simple model creation, quick and 
efficient calculation of intersections between models and ease 
of use with algorithms that are planning movements.  Sharma 
investigated the fastest time to transfer a vehicle from one 
place to another while avoiding other vehicles [13].  Other 
vehicles represented moving obstacles and a conflict was 
considered to have happened if the distance between vehicles 
was smaller than a safety distance (and that safety distance 
depended on their speed).  Fiorini described a robot motion 
planning method within a dynamic environment that took place 
within common velocity space [14]. 

Models described here are assessed for their capacity to be 
revised when new data is available.  For example, if an object 
enters, leaves or is moving within the robot work cell. 

The structure of the robot is modelled as a set of connected 
spheres and cylinders and the range of motion of the robot is 
quantized.  A quick but sub-optimal path is produced using 
simple models so that the robot can avoid objects as it moves 
towards a goal.  The method inspects a 3-D table of quantized 
joint space. 

Solid polyhedra are used to represent the static parts of the 
robot work-cell.  As new objects enter or depart from the work 
cell then the available free space is updated.  A six-sided 
parallelepiped, single spheres, multiple spheres and 2-D slices 
in joint space are employed to model moving objects.  They are 
compared and some results are presented. 

II. THE ROBOT AND THE STATIC ENVIRONMENT 

Industrial environments and robot work cells often consist 
of solid floors, walls and objects with linear straight edges and 
flat surfaces.  Accurate models of these shapes are more 
difficult to create, change and use in real-time.  If moving 
objects and robots are modelled using polyhedral shapes then 
although the accuracy might be higher, computation is more 
complicated and processing time is lengthened.  A static 
environment only needs to be modelled once because it then 
does not change.  Therefore computational complexity and 
processing time is not a problem.  So, polyhedra can be used to 
accurately model a static environment. 

Providing any model used to represent the industrial robot 
enclosed the whole of the industrial robot, then? the most 
important aspect of the model was the time taken to calculate 
intersections. Many industrial robots have links (often a 
forearm and upper arm) and joints (often base, shoulder and 
elbow).  The simplest depiction of this type of industrial robot 

is two lines that are connected by a joint.  If fixed distances are 
then defined forming the lines, then the volume can be 
considered to enclose the industrial robot casing.  This model 
gives two cylinders with hemispherical ends that are connected 
by a joint.  An advantage of this model is that robot links are 
efficiently modelled and calculations of intersections between 
objects and the robot arm are simplified.  An end-effector can 
be modelled by an extra sphere at the end of one of the 
cylinders with a radius that is large enough to surround the 
whole of the end effector.  Work-pieces can be encompassed 
within the sphere. 

The time taken to calculate intersections was recorded for 
various models representing moving objects within the work 
cell of the industrial robot.  Three of the models performed 
well: six-sided parallelepiped in cartesian space, spheres and 2-
D slices in joint space.  During the testing and comparison, it 
was presumed that the 2-D cross section of a moving object 
was known in the X-Y plane and that the length or height (Z) 
of the moving object could be provided by a sensor system (in 
this case a simple vision system was used).  Moving objects 
were really two-and-a-half-dimensional.  That is to say that 
they had a height and a 2-D shape.  3-D moving shapes that 
were considered in this research were cubes and cylinders.  2-D 
planar slices in joint space, spheres and parallelepiped models 
were used to model the 3-D moving shapes to a practical 
precision. In the specific case of the case of 2-D slices, they 
modelled the moving shapes more rapidly in a discrete three-
dimensional space. 

A. Modelling using 2-D slices 

2-D slices were produced by creating two sets of 
boundaries:  base joint angles (θ1min and θ1max) that bound the 
object and the minimum distance Dmin and the maximum 
distance Dmax from the origin (the minimum and maximum 
radii).  A moving object can then effectively be modelled as a 
sequence of 2-D slices.  A reference planar slice is determined 
within the boundary created by a line from the Origin bounded 
by Dmin and Dmax and the Z axis value.  These impeded elbow 
(θ2) and shoulder (θ3) joints can then be calculated for this 
plane and then copied for all θ1 within the bounding angles, 
θ1min and θ1max. 

That significantly reduced the number of tests and searches 
for blocked points.  The planning algorithm is largely reduced 
by copying values rather than complicated mathematical 
calculations. 

B. Transformations into joint space 

A single point in a Cartesian space does not transform to be 
a single point in an actuator space.  If a single point lies inside 
the operational volume of an industrial robot then it will 
transform into one or more complicated 3-D shapes.  These 
complicated 3-D shapes may be represented by approximating 
the profiles of the shapes using mathematical curves to 
describe the geometric shapes, or they may be represented by 
units of space.  In this research, moving objects were 
represented as regions of small units within a joint space.  That 
technique would not be restricted to any particular robot and is 
suitable for a robot with any number of degrees of freedom. 



A KUKA KR125 robot was used and the research 
considered the 3 major axes.  A 3-D table was created and 
within the table, each dimension corresponded to one of the 
degrees of freedom for the industrial robot (θ1/ θ2 / θ3).  The 
configuration of the wrist was not studied but the wrist and end 
effector could easily be included within an extra sphere. 

Each table element was set to "free"' and orientations (in 
actuator space) where the industrial robot interconnected with 
the moving objects were determined.  An element denoted a 
robot configuration in terms of, (θ1center, θ2center, θ3center), with a 
value added to represent some movement away from the 
central values.  All the units together embodied the whole work 
space for the industrial robot.  The number of units in the table, 
TotalNodes, was: 

 

{(θ1max-θ1min)/2 x δθ1} * {(θ2max–θ2min)/2 x δθ2} *  

{(θ3max–θ3min)/2*δθ3}                           (1) 

 

where, θ1max and θ1min = upper and lower boundaries of θ1. 

θ2max and θ2min = upper and lower boundaries of θ2 

θ3max ad θ3min = upper and lower boundaries of θ3. 

 

If the body of the industrial robot intersected a moving object 

at any configuration in a unit, then that unit was set to 

"obstructed".   If the industrial robot did not intersect a moving 

object at all configurations within a unit then the unit continued 

to be set to "free".   The global path planning problem then 

reduced to searching for a series of neighboring units between 

a BEGINNING and an END configuration that were "free".  

Free space tends to be bigger than obstructed space so that a 

quick and efficient method was to test each transformed 

moving object and for nodes which could contain the robot.  

This method was adopted.  The algorithm was: 

 

Create the Static Model (only done once): 

 

Initialise data structures to create a 3-D table to represent 

joint space. 

 

Calculate trigonometric solutions. 

 

Set all units in the table to `"free" status. 

 

Associate flags with each node.  

 

After calculating the static model there were a large number of 

free elements remaining that represented a set of configurations 

where the industrial robot wouldn’t bump into the static 

environment (the work cell). 

Data about moving objects was then either simulated or 

provided by the vision system.  

 

Repeatedly… 

 

Read the data about moving objects. 

 

Create the two and a half dimensional model. 

 

For an element where the industrial robot could intersect 

with a moving object 

 

Recursively test elements next to the original element 

to decide whether they can also be reached by the 

industrial robot. 

III. 2-D SLICES 

To begin with, the limits in X were increased by the upper-
arm radius: 

StartofRow_clear = StartofRow - UpperlimRad          (2) 

EndofRow_clear = EndofRow + UpperlimRad          (3) 

The center point modulus and the ends of an edge 
StartofCol were determined. 

(TopLeftcorner, Ang) = InvTan (StartofCol / EndofRow_clear)
                                                        (4) 

Corner(TopLeft, Modulus) =  (StartCol² + EndRow²)          (5) 

The subsequent model parameters were calculated: largest 

base angle, (1max), smallest base angle, (1min), outside radius 
from origin, (Dmax), and inside radius from origin, (Dmin),  

If a moving object corresponded to a known template then 
a third dimension (a height Z) was obtained for the moving 
object from a template, otherwise height was set to infinity.  
That segment was then extrapolated on the Y axes and 
calculation only took place in a Z, Y plane.  The model of the 
moving object was expanded by the upper-arm radius in the Z 

and Y plane.  1 was changed to a new lower limit and an 
inverse kinematic solution was calculated for all points within 
the moving objectfor the Z and Y axis: 

FOR Y = (MinUpperRad) TO (MaxRadius + UpperRadius) 

  FOR Z = 255 TO (Rad(Z) + UpperRadius) 

       CALL InvKin 

  NEXT Z 

NEXT Y 
Coordinates in Z and Y were translated into robot joint 

angles with an inverse kinematic solution subroutine called 
InvKin.  Distance from the cartesian point (L3) to the origin 

and the angle to a point (Point) were calculated: 

 Point = Inv_Tan Z / Y              (6) 

 sqofL3  = Y² + Z²             (7) 

 L3  = sqofL3             (8) 

L3 was checked against the upper-arm to test whether an 
impact was conceivable.  If within reach of upper-arm and if 

2 was within limits, then 3 was set to "blocked" between its 

limits and2 was set to Curve and.  If L3 was less than 
Forearm plus Upper-arm then the Forearm could collide with 

that point.   and 2 were computed using the cosine rule.  If 

3 and 2 were within limits then a flag was set to 
"obstructed". 

2-D slice models have been used with sensor systems [15-
16] mobile robots [17-21] and powered wheelchairs [22-23]. 



IV. SPHERES 

The table of data mentioned earlier was initialized.  The 
limits of the table corresponded to the limits for the angles of 
the robot joints inside the work cell.  Objects outside the work 
cell were disregarded.  So, the table was used to conduct 
checks for intersections at a limited number of orientation and 
positions.  That meant that a smaller number of trigonometric 
solutions was needed and they could be calculated at the 
beginning when calculation time did not matter.  Before the 
objects were determined, all the elements in the table were set 
to `EMPTY'.  Another 4 flags were associated with each table 
element:  `ON LIST', `UPPERARM TESTED', `FOREARM 
TESTED', and `NEW OBJECT'.  The code representing each 
element was kept as a byte of data in an array and the five flags 
each used one bit.  Object data was extracted from a file or sent 
from the vision system and the initial job for the program was 
to read this data. 

A sub-task then calculated the upperarm and forearm 
blocked space in the table.  A configuration was calculated at 
which the part of the arm being considered was nearest to the 
center of the object.  If a forearm was being studied, then a 
configuration where the Foretip was at the sphere center was 
computed.  For the upperarm, a configuration was calculated 
for which the center line of the upperarm pointed at the center 
of the sphere.  If the object was within reach of the link being 
examined, then this configuration was the first unit for the 
transformed object.  A base angle was computed from the X,Y 
coordinates for the sphere.  First, the modulus (L3) and the 

angle (Sphere) from the robot to the center of the sphere was 
computed and a check was performed to find whether the 
sphere was out of the range of the robot.   

 Waist1 =InverseTan(Y/X)                         (9) 

 ModulusXY= (X²+Y²)                               (10) 

 Sphere=InverseTan(Z/ModulusXY)            (11) 

 L3 =  ( X² + Y² + Z²)         (12) 

Shoulder and elbow angles ( andwere calculated 

usinghe cosine rule. 

Upper-Arm length = L1 = 225mm and ForeArm = L2 - 165mm 

= InverseCos [(L1² +L2² -L3²) / ( 2*L1*L2 )]        (13) 

2= InversCos [(L1²+L3²-L2²) /(2*L1*L3)] +Sphere        (14) 

If the center of the sphere was close to the robot then 3 

would exceed its lower limit (3 < 90).  In this case, 3 was 

set to 90 and 2 was calculated using InversTan: 

If 3 < 90 THEN 

  3 = 90   

  2 = InversTan ( L2 / L1) + Sphere 

END 

 
This provided a first configuration that was near the center.   

When the lower boundary of 2 was surpassed, (2 < -30), 

then the angle was set to -30.  A calculation was then made to 
find the distance between the center of the sphere and the 

upperarm (Mod) using FindtheModulus.  The cosine rule could 

be used from that to find a new 3: 

If -30 < 2 THEN  

  2 = -30  

 3 = InversCos[(L1²+L2²-Mod²) / (2*L1*Mod)] 

END 

 
The table element representing the first configuration was 

set to obstructed.  Neighboring elements were then tested.  If 
they were also obstructed then their neighbors were tested.  
The position problem was solved using forward kinematic 
calculations and the minimum distance between the arm of the 
robot and the object (as long as that calculation had not been 
performed before).  This continued recursively until all of the 
object had been transformed.  Elements were set to 
“obstructed” if they had any two opposite neighboring 
elements that were also obstructed.  Any elements at the edge 
of the now solid model were added to a record.  Neighboring 
elements that were recorded were tested and that was repeated 
until the surface of the transformed sphere was fully outlined.   

Obstructed elements were kept so that they could be 
expanded later on.  When an element was expanded then it was 
retrieved from the record store and new obstructed points were 
added.  When every element had been considered then the 
transformation of the object was completed.  The time taken to 
calculate objects was recorded and some examples are given in 
Section VI of this paper. 

V. A SIMPLE POLYHEDRAL SHAPE 

Polyhedra have often been used to model objects and a 
simple polyhedral model was used here.  Moving objects were 
modelled as simple six-sided-parallelepiped.  The edges of the 
model in X and Y were obtained by calculating the limits of 
the columns and rows set by the vision system.  As before, if it 
was possible then the height of an object could be retrieved 
from a template.  Edge positions were expanded by the radius 
of the part of the robot being tested (for example the forearm or 
upperarm).  The example of expanding the forearm in X is 
shown here: 

ExpandXLow = EdgePos(LowX) – ForRad         (15) 

ExpandXHigh = EdgePos(HighX) + ForRad         (16) 

The expanded polyhedral edge limits were then tested 
against the cartesian coordinates of the arm. 

VI. RESULTS 

The time taken to transform objects was recorded. 

Time taken for the various models to transform a large cube 
into an actuator space are displayed within Table 1.  

TABLE I.  TRANSFORMATION TIMES FOR A CUBE 

 

A. Static environment 

The system needs the time taken to convert moving objects 
to be short.  It can take a long time to model a static 
environment but this only needs to be done once at the start. 



In this work that conversion took up to a minute of 
computer time depending on the complexity of the static 
environment. 

B. 2-D Similar Slices 

An advantage of this model was that once collision 

coordinates for 3 and 2 were computed for a specific 1 then 

the collisions could be repeated for all specific 1 that might 
collide.  This downgraded the principal processing job to a 
copy function rather than having to calculate a reverse or a 
forward kinematic solution.  This model was the quickest to 
transform into a discrete 3-D actuator space. 

If a moving object enlarged beyond a certain size or if at 
relocated nearer the origin, then the moving object could 
intersect both the Forearm and Upperarm. So, the actuator 
space occupied by the moving object will abruptly increase and 
so calculation time will increase. 

C. Sphere Model 

Initially, the objects were modelled as individual spheres 
with the smallest radius that enclosed the object. 

If there was time then the object was re-modelled by 2 
smaller spheres and then four smaller spheres etc.  Elements set 
to obstructed that were related to the first sphere would usually 
also collided with the models using multiple spheres.  Forward 
kinematic solutions did not need to be recalculated for these 
elements.  Despite that, total processing time increased with the 
number of spheres.  That was because the overhead involved in 
calculating intersections for each sphere was more than any 
time that was saved because the spheres were smaller.  So, 
calculations with a single sphere were quicker than multiple 
spheres despite the fact that the single sphere had a larger 
volume and was less accurate. 

A problem with using more than one sphere was that the 
center of several spheres could be set to “blocked” (with some 
surrounding elements) after the first sphere was expanded.  As 
these elements were obstructed, later spheres might not retest 
and some nodes might not be recorded.  

D.  Simple Polyhedra Model 

 Although this was the most accurate, it took the longest to 
calculate. 

VII. DISCUSSION 

Higher accuracy models tended to need more processing 
time and took longer to reach a solution.  Lower accuracy 
models needed robot links or moving objects to be artificially 
increased in size to remove the risk of unnoticed collisions.  
Lowering accuracy led to rejecting some potentially useable 
solutions.   

The speed of calculation was important for moving objects 
and their models.  The easiest possible intersection calculation 
involved spherical models.  Computation was slashed to only 
calculating distances from a line (representing a robot link) to a 
point (the center of a sphere) and then subtracting the sphere 
radius to produce a distance from the robot to the sphere 
surface. 

The use of more than one sphere was studied.  As the robot 
working environment became more complicated then more 
spheres could model it more accurately.  Increasing the number 
of spheres increased the accuracy of a model.  Cubic numbers 
of spheres were considered, that is 1 / 8 / 27 / 64 etc.  If they 
were of equal size then they formed regular lattice patterns.  An 
infinite number of spheres could model a cube exactly but it 
was found that modelling objects using spheres of equal size 
was not the most efficient way of doing it.  For example, if a 
cube is modelled using sixty-four equally sized spheres, eight 
of those spheres are completely enclosed.  Those eight could be 
replaced by one larger sphere and that would not reduce 
accuracy or increase the volume of the model. 

To compare modelling using single and multiple spheres, 
as an extra example, a model of a cylinder using one and two 
spheres was compared.  The volume of two spheres of radii 35 
mm was compared to that of one sphere of 70 mm: 

Volume of the two spheres: 2 x 4/3 x π x 353 = 359,188 mm3 

Volume of the single sphere:4/3 x π x 703 = 1,436,755 mm3 

The area of the two spheres would be much smaller except 
that the model of the robot must then be considered to find the 
union volume: 

 Model  Robot           (17) 

The Upperarm model radius= 85mm: Union radius for a 
single sphere was 70+85 = 155.  Union radius for two spheres 
is 35+85 = 120. 

Union volume of a single sphere is 4/3 x π x 1503 = 
14,137,167 mm3.  Union volume of two spheres is 2 x 4/3 x π 
x 1153 = 12,741,211 mm3. 

A similar number of obstructions was recorded for both 
models.  If elements in a second sphere were not tested for 
obstruction during calculations for a previous sphere, then that 
would change the number calculated.  That partially explains a 
lack of reduction in calculation times when using two spheres 
to model objects. 

The simple six-sided parallelepiped had a volume that was 
less than that of the 2-D slice model.  The volume for the 
Parallelepiped was: 

Volume = (60+160)² x (140+80) = 10,648,000 mm3. 

 This could reduce the number of obstructed elements, but 
shape and therefore the associated computations would be 
more complicated.  So, the calculation time would increase.  

VIII. CONCLUSIONS 

Angles for  and  were only calculated for a single slice 
so that processing time was reduced because that slice of 

      Model 
Time 

(ms) 
Blocked elements. 

 Single Sphere     18.7         2425 

 2 x Spheres    94.2         2335 

 Simple Polyhedra    126.2         1982 

 2-D Similar Slices    15.2         2488 



"obstructed" elements was just then copied for all the base 
angles that might intersect the object.  Copying is quicker than 
calculating and so this method appears to be faster than 
methods requiring real-time calculations. 

The number of "obstructed" elements found was similar for 
all the models.  Intersection volumes were similar and that 
implied a corresponding accuracy. 

Modelling using similar 2-D slices produced the quickest 
intersection calculations.  The 2-D slices were simpler than 
polyhedra, as the model only required two bounding angles for 
the base joint (an inner and outer radius) and a height. 

The model using similar 2-D slices were the most effective 
of the models considered.  2-D slices in joint space represented 
moving objects at least as well as the other models but they 
were quicker. 
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