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A Novel Adaptive Algorithm for 3D Finite Element Analysis to Model 

Extracortical Bone Growth 

Extracortical bone growth with osseointegration of bone onto the shaft of 

massive bone tumour implants is an important clinical outcome for long-term 

implant survival. A new computational algorithm combining geometrical shape 

changes and bone adaptation in 3D Finite Element simulations has been 

developed, using a soft tissue envelope mesh, a novel concept of 

osteoconnectivity, and bone remodelling theory. The effects of varying the initial 

tissue density, spatial influence function and time step were investigated. The 

methodology demonstrated good correspondence to radiological results for a 

segmental prosthesis. 
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1. Introduction 

Bone cancer occurs primarily in children and adolescents during periods of rapid bone 

turnover or growth spurts. Young patients who receive segmental prostheses after the 

surgical removal of bone cancer require implants that last through their growth phase 

and into adult life, but aseptic loosening is the primary mode of implant failure (Unwin 

et al. 1996).  Using finite element (FE) method to analyse the effects of implant on bone 

remodelling, the common approaches are to conduct static stress analysis at different 

stages of follow-up (Galloway et al. 2013, Fromme et al. 2017), model changes in the 

density of existing bone adjacent to an implant (Tomaszewski et al. 2012), the healing 

of the defect (gap) around the implant stem, or ingrowth of bone onto the surface of the 

implant stem, (Dickinson et al. 2012, Tarala et al. 2011). To verify results, clinical 

radiographs are often compared qualitatively with FE predictions, due to difficulties in 

validating the density of the bone (Tomaszewski et al. 2012, Dickinson et al. 2012).  For 

massive segmental prostheses used in bone cancer the presence of extracortical bone 



formation and attachment onto the shaft of the implant has been demonstrated to 

improve the survivorship of these implants at 10 years, from 75% to 98% (Fig. 1) 

(Coathup et al. 2013).  Unlike bone adaption adjacent to hip stems, which is associated 

with changes in bone density, the formation of extracortical bone involves bone growth 

over the shaft of the implant changing the bone shape. Modelling and predicting 

extracortical bone growth using FE could thus advance the design and assessment of 

implants.  

[Fig. 1 near here] 

Bone remodelling algorithms implemented in FEA can overcome the limitations 

of static FEA to evaluate the performance and failure risk of various implant designs as 

they simulate the changes in bone density in the presence of a prosthesis. One of the 

most commonly utilised algorithms is the adaptive elasticity theory (Cowin and 

Hegedus 1976; Cowin and Firoozbakhsh 1981), which was adapted for studying bone 

remodelling around implants using strain energy density (SED) as the stimulus (Huiskes 

et al. 1987, Weinans et al. 1992). Bone remodelling refers both to the internal 

adaptation of bone density (internal remodelling), and the displacement of surface nodes 

leading to a change in periosteal geometry (external or surface remodelling) in 2D and 

3D (Hart et al. 1984, Huiskes et al. 1987). FE models for implant analysis have focussed 

on changes in internal density (Lin et al. 2009, Tarala et al. 2011, Tomaszewski et al. 

2012), rather than geometrical shape changes. Instabilities introduced by the significant 

volume and shape changes make it challenging to employ surface remodelling to 

capture the process of additive bone formation in segmental prostheses. 

Advances in remodelling theories have focussed on mitigating numerical 

stability and problem-dependent convergence (Harrigan and Hamilton 1992, Huiskes et 

al. 1987). This is observed visually as a checkerboard of discontinuities, which would 



violate the continuum assumption in FEA (Mullender et al. 1994). For the element-

based approach, stresses are averaged from each integration point to update the bone 

density at the centroid, causing discontinuities in both stresses and densities across the 

element boundaries. Both higher order elements and finer meshes reduce checker 

boarding, but the use of filtering with linear elements achieves similar results, while 

reducing computational cost (Li et al. 2001). A new method for updating bone density 

has been proposed (Jacobs et al. 1995). Node-based approaches ensure continuity by 

calculating the bone density at each node, averaging stress and strain. However, node-

based approaches require the computationally intensive calculation of the stiffness 

matrix at each integration point through extrapolation of the nodal values (Chen et al, 

2007). 

The influence of spatial functions has only been investigated in 2D and for 

internal remodelling (Marzban et al. 2012, Zhu et al. 2005). Backward Euler integration 

has been recommended as it provides a more stable solution (Harrigan and Hamilton 

1993). However, most literature used the forward Euler method with a small constant 

time step, formulated as a fraction of the time span, so that it does not affect the final 

result, yet minimises computational time, or calculated empirically after a trial run to 

keep the initial change in modulus within 10-20% (Huiskes et al. 1987, Li et al. 2007, 

Marzban, et al. 2012). The long computation time has led authors to propose 

extrapolation methods or raise the order of the remodelling equation, to accelerate the 

simulation process without losing accuracy in 2D (Marzban et al. 2012, Mohaghegh et 

al. 2014, Zhu et al. 2005).  

Recent work in bone remodelling focussed on integrating bone adaption and 

tissue differentiation to model the process of healing better. In mechano-regulatory 

models of fracture healing, a callus is usually assumed and granulation tissue fills the 



space from an origin site through a diffusion process (Lacroix et al. 2002). 

Differentiation rules based on the mechanical stimulus are applied to update the 

material properties and determine types of tissue formed (Huiskes et al. 1997, 

Prendergast 1997). These models assume a fixed predefined gap that would close and 

heal and use a mechanobiological differentiation algorithm. The development of 

extracortical bone adjacent to an implant is a different scenario as bone growth, which is 

largely intramembranous, occurs from bone at the transection site over the implant 

surface. Other advances in the numerical approach for bone adaption include 

anisotropic bone remodelling based on continuum damage mechanics (CDM). CDM 

proposes that the rate and direction of remodelling is based on the micro-damage 

accumulated (Predergast and Taylor, 1994, Doblare and Garcia, 2001). As this study 

focusses on extracortical bone formation, the adaptive elasticity theory was used. 

This paper presents an integrated computational framework combining stress analysis, 

bone remodelling and extracortical bone formation that can be used to evaluate implant 

designs and predict clinical outcome for bone cancer patients. It proposes a novel method 

of osteoconnectivity to model the additive nature of bone formation through the use of a 

soft tissue envelope of low initial modulus, by incorporating the sequential laying down 

of new bone next to existing bone stock (Prendergast 1997). A cylindrical model was 

used to illustrate the development of the enhanced computational algorithm, and 

determine the effects initial density, choice of averaging, and time steps have on the 

distribution, stability and accuracy of the result. The model was applied to predict 

extracortical bone growth around a full sized segmental prosthesis, and compared against 

radiographs of an implanted segmental prosthesis in a 2 years follow-up (Fromme et al. 

2017). This is the first work to develop an adaptive model for extracortical bone growth 

around implants in 3D, accounting for the process of growth observed clinically. 



Moreover, this is the first time that time dependant extracortical bone formation has been 

modelled. This work investigated methods to improve the element-based approach for 

bone remodelling in 3D and introduced adaptive time stepping to improve the efficiency 

of the adaptive solution. 

2. Methodology 

2.1 Enhanced 3D bone formation and adaptation model 

The integrated framework is based on the adaptive elasticity theory (Huiskes et al. 1987, 

Weinans et al. 1992) and a concept of connectivity to control extracortical bone 

formation in a soft tissue envelope mesh around the area of interest (Fig. 2). 

Osteoconnectivity is introduced as a map of neighbouring elements that permits only 

the remodelling of elements that are adjacent to bone stock or elements that have 

remodelled in previous time steps. 

[Fig. 2 near here] 

The material property of each element i is based on the mechanical stimulus Si 

(Huiskes et al. 1987): 

𝑆𝑖 =
𝑈𝑖

𝜌𝑖
− 𝑘  

(1) 

where U is the remodelling signal and k is a reference signal value such that the 

stimulus is zero. The choice of remodelling signal type has been investigated previously 

and SED is used here as it has been found to agree well with clinical data (Schmitz et al. 

2004). For simplicity, k is assumed to be a single value, but it could vary according to 

location and density. Using the idea of a minimum inhibitory signal before remodelling 

occurs (Frost 1988), a bandwidth of  is included to incorporate a lazy zone without 

remodelling: 



S𝑖 =
𝑈𝑖

𝜌𝑖
− (1 + 𝛿)𝑘  if 𝑆 > (1 + 𝛿)𝑘 

S𝑖 = 0                               if (1 − 𝛿)𝑘 ≤ 𝑆 ≤ (1 + 𝛿)𝑘 

S𝑖 =
𝑈𝑖

𝜌𝑖
− (1 − 𝛿)𝑘  if 𝑆 < (1 − 𝛿)𝑘 

(2) 

To reduce the checkerboard problem of discontinuities, a spatial influence 

function fj(x, y, z) that determines the contribution of other elements’ signals to the 

element under consideration is included (Mullender et al. 1994). The remodelling rate, 

in terms of change in density  of each element i is thus regulated by its own stimulus 

value, relative to the signals of the neighbouring elements, and scaled by a time constant 

B: 

𝜕𝜌(𝑖, 𝑡)

𝜕𝑡
= 𝐵∑𝑓𝑗(𝑥, 𝑦, 𝑧)𝑆𝑗

𝑁

𝑗=1

 

(3) 

The Euler forward method is used iteratively to solve ordinary differential 

equations (ODE) to obtain the new density: 

𝜌𝑖(𝑡 + ∆𝑡) = 𝜌𝑖(𝑡) +
𝜕𝜌(𝑖,𝑡)

𝜕𝑡
∆𝑡      0 < 𝜌 ≤ 𝜌𝑐𝑏 (4) 

where Δt is the time step and cb is the upper limit for the density of cortical 

bone. A mathematical relationship that relates density to elastic modulus, using 

constants C and , is used to update the stiffness matrix for the next increment (Carter 

1984): 

𝐸(𝑖, 𝑡 + ∆𝑡) = 𝐶𝜌(𝑖, 𝑡 + ∆𝑡)𝛾  
(5) 



Following literature, the parameters are set as B=1.00gcm-3, k=0.004Jg-1,  

=10%, Ecb=12GPa, C=3790MPa(gcm-3)-2 and  =3 (Carter 1984, Weinans et al. 1992). 

2.2 Effect of averaging 

Two spatial influence functions were assessed for their efficacy to resolve the 

checkerboard problem (Jacobs et al. 1995, Mullender et al. 1994). Standard averaging 

was carried out by averaging the element in question and its nearest neighbours. This 

method is similar to the node-based approach for bone remodelling which reduces 

discontinuities with good results (Jacobs et al. 1995). Weighted averaging (50% 

element, 50% average neighbours) was derived from the method proposed by 

Mullender et al. (1994), but covers a smaller volume (only neighbouring elements) to 

reduce the amount of smoothing.  

2.3 Time step 

To ensure stable simulations and minimise computation time, adaptive time stepping 

was employed and compared to results using fixed time steps (1 and 0.5). The Runge-

Kutta Midpoint Method was used to approximate the time dependent FE solutions for 

Eq. 3. The difference between error estimate  and the target error  was used to 

modify the step size with a safety factor of  =0.9. 0 was varied at 1, 0.1 and 0.01%. 

This was tested for a uniform, cylindrical model using initial densities of 0.8gcm-3, 

0.5gcm-3 and 0.297gcm-3 (100MPa) to cover a range of values used in literature 

(Dickinson et al. 2012, Huiskes et al. 1987, Weinans et al. 1993). Predicted tissue 

densities were compared against the analytical solution, obtained by solving the ODE 

numerically using the stricter Midpoint method, with a time step of 0.001 to keep the 

truncation error below 0.1%. 



2.4 Parametric studies on connectivity for extracortical bone formation 

To understand the influence of connectivity on the distribution of tissue density and the 

accuracy of results, parametric studies for initial density, time step, threshold value, and 

averaging functions were conducted. Initial density was varied as in Section 2.3, but 

only the case for 0.297gcm-3 is reported as the results were similar. Fixed time steps of 

1E-4 or 1E-3 were used until all elements had started remodelling. Adaptive stepping 

using 0 of 0.01% was used once all the elements had started remodelling, according to 

section 2.3.  

2.5 Cylindrical model 

The algorithms were tested using a uniform, cylindrical model of radius 5mm and height 

10mm, with 48000 first-order strain-smoothed tetrahedral elements of size 0.5mm. Linear 

elements with a fine mesh around the grooved collar were used (Section 2.6), as results 

for linear and higher order elements converge with increasing mesh density (Dumont et 

al. 2005; Bright and Rayfield 2011). Strain-smoothed elements with improved accuracy 

in bending and torsion were employed (Nguyen-Thoi et al. 2010). 

The FEA was conducted in Marc 2015.0 (MSC Software Corporation, Santa Ana, USA) 

using custom-written subroutines. Two meshing algorithms available in the FE package 

were used to assess the mesh quality. IsoMesh generated a regular stacked structure 

throughout, but TetMesh yielded 2 different tetrahedral patterns; in the core and the 

outer region. The distal midpoint node was fully constrained and all other nodes on the 

distal face were restricted from axial movement. A constant uniaxial pressure of 2.4kN 

was applied proximally. A Poisson’s ratio of =0.3 and isotropic material formulation 

using Eq. 5 were used. 



2.6 Application to segmental prosthesis 

A distally implanted cemented femoral prosthesis was considered and the middle 50% 

of the femur was modelled as a cylinder 180mm long with a cortical thickness of 

4.5mm (Fig. 3), based on literature values (Gosman et al. 2013). The Stanmore modular 

prosthesis was modelled with a 12mm stem and a 0.75⁰ taper (Taylor and Walker 

2001). The length of the stem was 130mm long, similar to other brands of prosthesis 

(Tomaszewski et al. 2012). A 1x1x1 mm grooved, 18mm tall collar was modelled as 

one piece with the stem. A 1mm gap separates the bone/cement and the distal end of the 

collar as observed in radiographical images (Fromme et al. 2017). The soft tissue 

envelope was modelled as 40mm tall, with a diameter of 42mm and 45⁰ and 59⁰ 

chamfer at the proximal and distal ends respectively.  

[Fig. 3 near here] 

The model was meshed with element lengths of 0.4mm and 1mm for the soft tissue and 

cement respectively. The bone and implant were meshed with a size of 2mm. Mesh 

refinement was conducted at the tip of the stem and collar to give an average size of 

0.5mm. This yielded 1,193,439 first-order tetrahedral elements in the model. Mesh 

refinement studies were conducted with a focus on the contact interfaces and locations of 

stress concentration. Increasing the mesh from 1.2 million to 4.8 million elements led to 

less than 3% change in the von Mises stress around the soft tissue.  

Isotropic material properties were used for the Ti-6Al-4V implant (E=110GPa,  

=0.3), cortical bone (E=12GPa,  =0.3) and PMMA cement (1.8GPa,  =0.4). Soft 

tissue elements have inhomogeneous isotropic material properties as per Eq. 5. 

Remodelling was simulated in the soft tissue envelope, but no remodelling or density 

change was permitted in the existing bone. A friction coefficient of 0.3 was assigned to 

the metal-cement and metal-soft tissue interfaces (Shirazi-Adl et al. 1993), while all 



other interfaces were assumed to be perfectly bonded. The model was fully constrained 

proximally, and axial load, bending moment and torsion, corresponding to the 

physiological walking load for a 75kg person, were applied at the distal face of the 

implant (Fig.3) (Table 1) (Taylor and Walker 2001). 

[Table 1 near here] 

3. Results 

3.1 Effect of mesh quality and time step 

The cylindrical models were used to investigate the effect of the mesh quality and time 

stepping on the uniformity of the time-dependant remodelling. The different tetrahedral 

arrangements using TetMesh and IsoMesh resulted in worst element geometry aspect 

ratios of 7.0 and 5.5 respectively. For the first time increment of 1E-3, the maximum 

deviation from analytical values was 6.7x10-5% for the TetMesh model, increasing to 

6.1% at equilibrium. The IsoMesh model showed no deviation for all time steps. The 

average tissue densities were respectively 0.56% and 0.012% higher than the analytical 

values.  

The choice of time step and initial density affected the type of remodelling 

curve, shown in Fig. 4 for an initial modulus of 100MPa (density 0.297gcm-3). Using a 

fixed time step of 1.0 with initial densities of 0.5 or 0.8gcm-3 produced a hyperbolic 

curve, agreeing with the analytical solution. However, using an initial modulus of 

100MPa caused the density to overshoot to 1.274gcm-3 in the first time step (Fig. 4 

inset). Reducing the fixed time step to 0.5 still caused an overshoot (albeit smaller), 

with an error at t=10 of 10.9% from the analytical result. The system was observed to 

recover to yield an error of 0.00174% at equilibrium (Table 2). Using adaptive time 

stepping with target errors of 0.1% and 0.01% for the 100MPa case, the deviations at 



t=10 were 0.948% and 0.325% respectively and below 0.02% at equilibrium. Adaptive 

stepping gave a computational time saving of more than 75% for all tested initial 

densities. 

[Fig. 4 near here] 

[Table 2 near here] 

3.2 Connectivity 

The inclusion of connectivity only allows successive layers of elements to remodel and 

causes a slight delay and change in the response curve for the first few increments (Fig. 

5 inset). The connectivity and the analytical average tissue density curves are very 

similar. Within each initial time step, the results were very similar, so only the case for 

no averaging is shown. The connectivity cases using initial stepping had a deviation of 

1% at equilibrium. Using an initial step of 1E-4 reduced the deviation to less than 

0.017%.  

[Fig. 5 near here] 

For the first time step, the stress field in the cylinder was uniform, causing the 

first (bottom) layer of elements to remodel uniformly. For the following time steps, the 

remodelled layers are slightly stiffer, restricting the radial movement of the outer 

elements in the layers above slightly. This causes higher SED at the edge, leading to a 

positive feedback loop such that the outer elements become stiffer than the inner 

elements. As subsequent layers remodel, the elements at the circumference become 

stiffer with a core of elements of lower density inside the cylinder. This effect 

diminished towards the top layer(s), where the stresses are relatively uniform.  

The final density distribution is shown in Fig. 6 for two different initial time 

steps and local averaging. For the initial time step of 1E-3, standard and weighted 

averaging reduced the maximum deviation at equilibrium from 15.3% to 4.8% and 6.8% 



respectively (Fig. 6a). Averaging also reduced the checkerboard problem, which is more 

pronounced for tetrahedral elements. Reducing the time step decreases the initial 

density changes and thus non-uniformity of the remodelling. For the smaller initial time 

step of 1E-4, the maximum deviations at equilibrium were reduced to 1.5%, 0.5%, and 

0.7% for no, standard, and weighted averaging respectively. 

[Fig. 6 near here] 

3.3 Segmental prosthesis model 

Fig 7 compares the extracortical bone formation around the grooved implant collar 

predicted by the two algorithms, against radiological results available at 3 different time 

points. Immediately post-surgery, only the resected bone remains (Fig. 7a). At t=0.2, the 

non-connectivity model predicts remodeling throughout the height of the collar (Fig. 

7b), while the connectivity model restricted remodeling to the region below the first 

groove (Fig. 7c). At t=4, the connectivity model predicted the growth of a pedicle that 

extends radially outward. This agrees well with the radiograph for 1 year follow-up, as 

there was limited ingrowth in the lower grooves and no bone growth at the top of the 

collar. At equilibrium, remodeled bone is predicted at the top of the grooved collar in 

the non-connectivity model, which is not observed clinically (2 year follow-up). The 

connectivity model predicted an increase in stiffness and larger extra-cortical bone 

formation on the medial side than the lateral side, which agrees well with the 

radiographs from long-term follow up (Figs 1, 7A). There were only 3 radiographs 

available from the clinical follow-up and exact time correspondence between computer 

time unit and periods of follow-up has not been determined (e.g. t=4 and 150). The 

average tissue density at equilibrium for all remodelled elements was 0.075% lower for 

the connectivity model compared to the non-connectivity one.  

[Fig. 7 near here] 



4. Discussion 

The purpose of this paper was to develop a novel integrated bone remodelling algorithm 

model using adaptive FE simulations to predict extracortical bone growth over the shaft 

of an implant used to treat cancer patients.  This novel approach used the adaptive 

elasticity theory (Huiskes et al. 1987, Weinans et al. 1992) for density changes and a 

concept of osteoconnectivity to enforce sequential bone formation starting at existing 

bone. 

Initially a uniform cylindrical model with a uniaxial load was chosen, as the 

remodelling solution is stable (Harrigan and Hamilton, 1993). The average tissue 

density from FEA matched the expected analytical results, but the density distribution 

varied, depending on the mesh and time steps chosen. For a non-uniform mesh 

(TetMesh), small deviations at the initial steps increased significantly with time. This 

demonstrated the sensitivity of bone remodelling algorithms due to the presence of a 

positive feedback loop. Therefore, the use of meshes with appropriate time steps or 

error criteria is necessary to keep the deviation within acceptable range. The use of 

adaptive stepping is advantageous as it can match the remodelling rate, with initially 

large density changes and a long time to reach convergence. Time gains are achieved by 

keeping the initial time step small and increasing it near equilibrium. Using a suitable 

target error with connectivity, the continuum assumption for FEA can be maintained. 

In the connectivity model, the initially uniform stress field increases at the outer 

elements and decreases at the core when the first layer begins to remodel. Due to the 

positive feedback loop, initial deviations propagate and lead to a higher density of the 

elements at the outer circumference. Using a smaller time step or averaging reduces the 

deviations at equilibrium. The average tissue density obtained using the two initial time 

steps were similar (Fig. 5). Reducing the time step both reduced the deviation of the 



average tissue density and the deviation of values at equilibrium (Fig. 6). This suggests 

that the choice of time step is critical in ensuring the solutions obtained are accurate. 

Some checkerboard problems were observed, similar to literature findings, as bone 

adaption algorithms are susceptible to the problems of discontinuities (Jacobs, et al. 

1995, Mullender, et al. 1994). Both averaging and using a smaller time step have the 

effect of keeping the tissue density variation between elements small, for the continuum 

assumption in FEA to remain valid. The spatial influence functions used in this paper 

are light filtering methods that involved only neighbouring elements. Therefore, their 

ability to reduce discontinuities is expected to be less effective than that of the time 

step.   

The segmental prosthesis model uses a large soft tissue envelope to model extracortical 

bone growth. A low initial density of 0.5gcm-3 was chosen, following histological results 

observing a combination of soft tissue and bone (Coathup et al. 2013), rather than higher 

values often chosen for implant analysis, corresponding to bone (Huiskes et al, 1987). 

Validation, e.g. through quantification of bone density (e.g. using DXA) is difficult, as 

bone cancer patients receive customized segmental prosthesis and due to imaging 

artefacts caused by the metallic implant. Therefore, the simulated bone formation and 

remodelling patterns were verified by visual comparison with clinical results for different 

remodelling stages, an acceptable approach used in implant analysis (Tomaszewski et al. 

2012, Dickinson et al. 2012).  An artefact of remodelling at the proximal end of the soft 

tissue envelope (not observed clinically), was due to higher stresses in the tissue chamfer. 

The final results obtained with or without connectivity were similar as they both 

converged towards a global equilibrium, but connectivity ensures that bone growth only 

occurred at physiologically relevant locations. Connectivity prevented bone formation 

from initiating at the distal end of the collar and predicted more remodelling on the medial 



side of the collar at equilibrium, corresponding well with the follow-up radiographs (Fig. 

7). The FE models underestimated the extent of bone growth, as the pedicle reached about 

half the height of the collar in the radiograph, also observed in retrieval results (Coathup 

et al. 2013). Bone bridging over the collar was observed with little bone growth into the 

grooves (Fig. 7c). This is due to stress-shielding within the grooves. Therefore, clinical 

observations of bone growth into the grooves suggest that other biochemical factors and 

interface conditions should be considered, which may be associated with the use of 

osteoconductive coating.  

This work showed that the integrated bone adaptation and extracortical bone 

formation algorithm is sensitive to changes in stress distribution when the element-

based approach is used. The use of a good quality mesh, with small initial time steps 

and averaging, helps to minimize discontinuities. The use of the Runge-Kutta Midpoint 

method allows for adaptive time stepping, retaining accuracy while reducing 

computational cost. The segmental prosthesis model used a soft tissue envelope to 

model and overcome problems associated with the large 3D geometrical shape. The 

process of additive bone formation was modelled, with good correspondence to clinical 

follow-up results. The enhanced remodelling algorithm has the potential to be 

developed further for other biomedical applications. With the development of new and 

porous implants through additive manufacturing technology, this integrated algorithm 

can be used for predicting additive bone formation into these scaffolds. 
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Table 1: Walking loads applied at distal end (implant) of the FE model, based on Taylor 

and Walker (2001). 

Axial load/N Anterior-

Posterior bending 

/Nm 

Medial-Lateral 

bending/Nm 

Torsion/Nm 

2428 42.0 70.6 4.4 

 

  



Table 2: Average remodelled bone density (gcm-3) for adaptive and fixed time stepping 

with relative difference to analytical solution for different time steps (t = 10, 100, 500); 

number of time steps to t = 500 (equilibrium); cylindrical, uniform model, initial 

modulus: 100MPa. 

Case t = 10 Diff/% t = 100 Diff/% t= 500 Diff/% Steps 

Fixed  

1.0 

1.268 57.7 1.231 11.7 1.210 5.17 500 

Fixed  

0.5 

0.892 10.9 1.108 0.631 1.150 0.00174 1000 

Adaptive 

1% 

0.823 2.45 1.119 1.60 1.151 0.0626 27 

Adaptive 

0.1% 

0.811 0.948 1.108 0.627 1.150 0.0130 69 

Adaptive 

0.01% 

0.806 0.325 1.104 0.219 1.150 0.00609 197 

Analytical 

(1e-3) 

0.804 
 

1.101 
 

1.150 
 

 

 

  



  

Fig. 1: Radiological images taken 8 years after distal femoral prosthesis insertion, 

showing hydroxyapatite (HA) coated collar with osseointegration.  A: anterior 

radiograph; B: lateral radiograph.  

 

Fig. 2: Enhanced 3D bone formation and adaptation algorithm using osteoconnectivity 

matrix (top loop) with adaptive elasticity model (lower loop). 



 

Fig. 3: (A) Segmental prosthesis implant with 1mm grooved collar; (B) Geometry of 

implanted femur model, surrounded by soft tissue scaffold to model bone growth (all 

length in [mm]); (C) Materials and FE mesh. Arrow indicates load application. 

 

Fig. 4: Effect of time step on bone remodelling for uniform, cylindrical model (initial 

modulus: 100MPa, IsoMesh) with uniaxial load of 2.4kN. Inset: zoom on initial steps. 



 

Fig. 5: Remodelling response curves (average density) of cylindrical model (initial 

modulus: 100MPa, IsoMesh) with and without connectivity, compared to analytical 

solution (no connectivity), initial time stepping: 1E-3 and 1E-4. NA: no averaging.  

 

Fig. 6: Effect of initial time step and averaging on tissue density distribution at 

equilibrium (t=500) of cylindrical model (initial modulus: 100MPa, IsoMesh), using 

connectivity; (A): Initial time step: 1E-3; (B): Initial time step: 1E-4.  



 

Fig. 7: Comparison of (A) follow-up radiographs and bone remodelling predicted for 

soft tissue envelope around grooved collar of segmental prosthesis at different time 

points; (B) Adaptive elasticity model; (C) Osteoconnectivity model; (D) Zoom of lower 

layers of osteoconnectivity model (indicated by dashed box in C), time = 150 

(equilibrium). Some remodelling occurred at the lower end of the tissue scaffold (not 

shown). Scale shows elastic modulus. 

 

 


