Propriedades ópticas e transporte electrónico transiente, relacionados com a desordem, em semicondutores de grande hiato Manfred Niehus¹

SE-DEETC-ISEL, R. Conselheiro Emídio Navarro, 1, 1949-014 Lisboa, Portugal

Neste trabalho estudamos as propriedades ópticas e o transporte electrónico em semicondutores de grande hiato, usando uma abordagem relacionada com a desordem estrutural frequentemente encontrada nestes materiais. Observamos uma variedade de características da fotocorrente transiente (TPC) e fotoluminescência transiente (TPL) que não podem ser explicados no âmbito dos mecanismos "canónicos" de relaxação electrónica, que são, para TPC, o modelo de Captura Múltipla (MT) de portadores livres e, para TPL, o modelo de recombinação entre pares de dadores e aceitadores (DAP) localizados. Em consequência, desenvolvemos um novo modelo analítico (Modelo TR) que integra a evidência experimental complementar de dispersão espacial (DAP) e dispersão energética (caudas das bandas). O modelo baseia-se na competição entre a termalização e recombinação (TR) de portadores minoritários capturados em estados energéticos, distribuídos exponencialmente em energia, e localizados no espaço. O modelo descreve a dependência da TPL da energia e do tempo, em excelente concordância com os dados experimentais, e revela a correlação entre TPL e TPC.

Introdução

A família de semicondutores de grande hiato com elevado interesse tecnológico inclui o óxido de zinco (ZnO) e as ligas ternárias entre o azoto (N) e os metais do grupo III da tabela periódica, o índio (In), o gálio (Ga) e o alumínio (Al). Em particular, a possibilidade de ajustar continuadamente o hiato energético E_G através da composição dos metais proporciona expectativas elevadas relativas à integração destes semicondutores em dispositivos de comunicação óptica. A gama de energias de hiato `à temperatura ambiente estende-se desde o infravermelho ($E_G(InN) = 0.7 \text{ eV}$), passando pelo azul/violeta ($E_G(GaN) = 3.4 \text{ eV}$) até ao ultravioleta profundo ($E_G(AlN) = 6.2 \text{ eV}$). Não há actualmente conhecimento de alguma combinação de ternários que cobra um intervalo energético com esta dimensão. Tendo em conta ainda a estabilidade térmica e química, não é de estranhar que, desde que o problema fundamental da dopagem com lacunas tenha sido ultrapassado no início dos anos noventa, muitos novos dispositivos electrónicos e optoelectrónicos tenham sido desenvolvidos [cf. 1].

Uma das características que - apesar do evidente progresso - continua a intrigar a comunidade científica são os decaimentos prolongados tanto da fotoluminescência como da fotocorrente, e que se podem estender até vários milhares de segundos [1]. Os processos envolvidos estão em competição directa com outros ligados ao funcionamento dos dispositivos, e podem eventualmente limitar o desempenho dos mesmos, quer em termos de eficiência interna de emissão/absorção, quer em termos da frequência máxima. É por isso de elevado interesse esclarecer as origens microscópicas desses processos persistentes.

¹ Contacto do autor: mniehus@deetc.isel.ipl.pt

De um modo geral, existe um consenso geral que os decaimentos prolongados estão ligados com a captura de portadores injectados em estados energéticos localizados dentro da banda proibida. Sabe-se que a concentração de impurezas introduzidas - sem intenção - durante o crescimento do filme é bastante elevada, sendo comparável a dos semicondutores amorfos e não-cristalinos [1].

Resultados experimentais

Caracterização estrutural com microscopia electrónica de varrimento (SEM) e microscopia de força atómica (AFM), com amostras de GaN crescidas pela deposição por laser pulsado (PLD) a baixas temperaturas, revelam estruturas nano cristalinas com diâmetros das colunas na ordem dos 200 nm [1]. Espectros de absorção (transmissão, reflexão e fotocorrente) de GaN do tipo n mostram caudas da banda de valência com energias de Urbach da ordem dos 150-200 meV, e que diminuem com a temperatura [1]. Mapas de localização da catodoluminescência (CL) confirmam a presença de flutuações espaciais e energéticas significativas [1]. Espectros de fotoluminescência (PL) revelam a presença de bandas de emissão largas, centradas na região espectral do amarelo, do azul e do vermelho [1]. Amostras PLD mostram uma banda de emissão perto do hiato E_G , com uma largura a meia altura (FWHM) de 200 meV [1].

Medidas transientes da fotocorrente (TPC), fotoluminescência (TPL) e fotoreflectância (TPR) mostram claramente decaimentos não-exponenciais, que na maioria dos casos podiam ser caracterizadas por leis de potência [1].

Conceito do modelo TR

Consideremos uma concentração de dadores hidrogénicos N_D, e uma concentração de aceitadores distribuídos exponencialmente em energia: $N_A(E) = N_V \cdot exp(-E/E_0)$, com o parâmetro de Urbach $E_0 = k_B \cdot T_0$ e a densidade efectiva de estados na banda de valência N_V . As impurezas dadoras estão em média separados no espaço por $r_D = N_D^{-1/3}$, e as aceitadoras por $r_A(E) = N_A(E)^{-1/3}$. A separação espacial média entre dadores e aceitadores depende da energia E através de $r_{DA}(E) = [r_D + r_A(E)]/2$.

Na figura 1 apresentamos um esquema dos processos de relaxação mais importantes de lacunas capturadas e armadilhadas em estados localizados da cauda da banda de valência (a). Os processos de relaxação por passo singular espontâneo incluem a termalização dentro da própria cauda (b), a recombinação entre pares de dadores e aceitadores (c), e a recombinação do tipo Shockley-Read-Hall (SRH) de electrões livres (d). Processos de passos múltiplos do tipo excitação-transporte-relaxação tornam se mais importantes quanto maior for a temperatura. Após excitação para o limiar da banda de valência E_V (ou algum nível de transporte localizado E_T [10]) e transporte subsequente, as lacunas livres poderão ser re-capturadas em níveis pouco profundos ("Multiple Trapping") (e), muito profundos (tipo SRH) (f), ou então recombinarem-se directamente com electrões livres (g).

Figura 1. Vários mecanismos da relaxação electrónica de lacunas capturadas na cauda da banda de valência (a). A distinção entre transições espontâneas de passo singular (b-d) e transições de passos múltiplos com activação térmica (e-g) é fundamental para o modelo TR.

Taxas de relaxação

Todos os saltos quânticos entre estados localizados podem ser descritos por taxas de transição que dependem, antes de tudo, da sobreposição espacial das funções de onda e da diferença energética entre o estado inicial e o final. Encontramos a dependência das taxas de recombinação e termalização determinando as distâncias *médias* e as diferenças energéticas *médias* das transições.

Termalização A taxa de transição do processo directo e espontâneo de termalização (figura 1(b)), pode ser expresso por [2]

$$v_T(E) = v_0 \cdot exp\left(-2\frac{N_V^{-1/3}}{a_A}exp\left(\frac{E}{3E_0}\right)\right)$$
(Eq. 1)

usando a frequência da tentativa de salto v_0 (da ordem das frequências dos fonões, isto é $v_0 \approx 10^{12} s^{-1}$) e o raio de Bohr dos aceitadores a_A .

O processo MT de três passos (figura 1(e)) é limitado pela activação térmica das lacunas capturadas para o limiar da banda de valência [1] :

$$v_{MT}(E) = v_0 \cdot exp\left(-\frac{E}{k_BT}\right)$$
 (Eq. 2)

Recombinação irradiante De acordo com a teoria de Thomas-Hopfield (TH) [3], a taxa da transição irradiante entre dadores e aceitadores ocupados (figura 1(c)) pode ser escrita como

$$v_{R}(E) = v_{opt} \cdot exp\left(-2\frac{r_{DA}(E)}{a_{D}}\right)$$
 (Eq. 3)

onde a_D representa o raio de Bohr do dador, e v_{opt} é uma frequência típica da transição óptica, da ordem de 10^8 Hz.

Apresentamos as taxas de relaxação em função da energia dos electrões obtidas no gráfico da figura 2. Além da termalização por passo singular T1 e por passos múltiplos T2, e da recombinação directa e espontânea R1, mostramos as taxas esperados para a recombinação do tipo SRH, para defeitos repulsivos (R2), neutros (R3) e atractivos (R4), e a termalização incluindo activação térmica para um nível de transporte localizado (T3). A conclusão mais importante da figura 2 é a existência dum limiar que separa claramente três regimes energéticos. Para baixas energias é a taxa de termalização que domina a taxa total, para energias intermédias é a taxa de recombinação. Para energias elevadas, ambas as taxas têm valores desprezáveis.

Figura 2. Taxas de relaxação (Calibração da energia: E_V = 0 eV)
 Termalização: T1. Termalização directa, espontânea; T2. Termalização indirecta (via E_V);
 T3. Termalização indirecta (via E_T);

Recombinação: R1. Recombinação DAP (irradiante); R2. SRH (não irradiante): e-N_A⁺/h-N_A⁻; R3. SRH (não irradiante): e-N_A⁰/h-N_A⁰; R4. SRH (não irradiante): e-N_A⁻/h-N_A⁺.

Cálculo do decaimento da fotoluminescência total

Para o cálculo do decaimento da fotoluminescência usamos as taxas de relaxação para dividir os estados, em função da energia, em rápidos e lentos, comparados com o instante de observação t_{obs} . A energia de demarcação E_d é definida por [4]:

$$V_{typ}(E \equiv E_d) \times t_{obs} = 1$$
(Eq. 4)

A correlação entre o instante de observação tobs e as taxas instantâneas totais é dado por:

$$t_{obs} = \left(v_R \left(E_d(t) \right) + v_{NR} \left(E_d(t) \right) \right)^{-1}$$
 (Eq. 5)

A equação 5 é uma versão da relação $\tau_{PL}(E) = (1/\tau_R + 1/\tau_{NR})^{-1}$ que é usada frequentemente. Considerando que o transiente da fotoluminescência é uma medida duma distribuição de tempos de vida [5]

$$g(\tau) = I_{PI}(t) \times \tau \tag{Eq. 6}$$

obtemos para o decaimento da fotoluminescência total a seguinte expressão:

$$I_{PL}(t) \propto \frac{N_A}{t} \times \left(\frac{\nu_T}{\nu_R} + 1\right)^{-1}$$
 (Eq. 7)

A dependência temporal do decaimento da fotoluminescência é uma função da competição entre a termalização e a recombinação, sendo cada instante característico para um nível energético específico. O resultado da equação 7 é visualizado na figura 3, usando vários valores para os dois parâmetros mais importantes, a temperatura T e a energia de Urbach E₀. Uma alteração abrupta é observada no andamento das curvas no regime temporal de microsegundos no caso de caudas pronunciadas e/ou baixas temperaturas. O salto no declive representa a transição do regime de relaxação electrónica. Para tempos curtos, a eficiência quântica interna é limitada pela taxa de termalização, enquanto para tempos prolongados, fica limitada pela taxa da recombinação irradiante. Sublinhamos que o salto no declive foi observado claramente em experiências realizadas por vários grupos [6].

Figura 3. Decaimento calculado da fotoluminescência, para as temperaturas e energias de Urbach indicados.

Discussão

Os transitórios da figura 4 dão uma explicação "simples" para a observação experimental que o decaimento fica mais lento quanto mais profunda for a sua origem dentro do hiato proibido [7]. Os decaimentos temporais da fotoluminescência seguem em boa aproximação as leis de potência ao longo de intervalos de tempo consideráveis, como previsto pela teoria da recombinação DAP [3]. No entanto, uma vez que o modelo TR inclui a dispersão energética explica pela primeira vez, de uma forma consistente, o salto brusco no decaimento da fotoluminescência que tem sido objecto de estudo de vários grupos de investigação [6]. No âmbito do nosso modelo, o salto é característico para a competição entre os processos de termalização e recombinação. Sublinhamos aqui que o salto desaparece quando as caudas ficam muito estreitas, isto é quando a captura e termalização dos minoritários perde importância. Neste caso, as curvas encontradas tem um decaimento suave para todos os tempos, como está previsto pela teoria TH [3]. Ao contrário deste, o nosso modelo explica também a alteração da curvatura do decaimento frequentemente observado [7].

As curvas da figura 4 sugerem ainda uma segunda interpretação interessante, que é capaz de fazer a ligação entre os decaimentos semelhantes da fotoluminescência e fotocorrente. O decaimento depende da *razão* entre a temperatura e a energia de Urbach. Portanto, obtemos decaimentos semelhantes quando T e E₀ são elevados comparados com o caso quando ambos são baixos, desde que a razão T/E_0 fique constante. Uma situação análoga serve de explicação para o decaimento da fotocorrente em semicondutores amorfos, onde o parâmetro de dispersão $\alpha=T/E_0$ governa a dependência temporal [1]. No caso dos semicondutores de grande hiato, esta relação entre TPL e TPC explica qualitativamente a dependência da fotocorrente transiente da temperatura [1].

Embora, dum modo geral, o modelo TR esteja complementar com outros mais elaborados, é preciso sublinhar ainda dois pontos importantes. Primeiro, o modelo não inclui efeitos excitónicos. E segundo, o modelo assume uma ocupação de níveis energéticos constante. Embora esta hipótese esteja em óbvio contraste com processos de relaxação em geral, a ocupação é em geral constante pelo menos em largos intervalos de energia [4].

Referências

- [1] M.Niehus, Disorder-related optical properties and electronic transport in gallium nitride, Tese de Doutoramento, Instituto Superior Técnico, Lisboa, Set. 2005.
- [2] D.Monroe, Phys.Rev.Lett. 54, 146 (1985).
- [3] D. G. Thomas, J. J. Hopfield and W.M. Augustyniak, Phys. Rev. 140, A202 (1965).
- [4] J. Orenstein and M. Kastner, Phys.Rev.Lett. 46, 1421 (1981), and J. Orenstein and M. Kastner, Solid State Commun. 40, 85 (1981).
- [5] G.S.Higashi and M.A.Kastner, Philosophical Magazine B 47, 83 (1983).
- [6] D. M. Hofmann, D. Kovalev, G. Steude, B. K. Meyer, A. Hoffmann, L. Eckey, R. Heitz,
- T.Detchprom, H. Amano, I. Akasaki, Phys. Rev. B **52**, 16702 (1995); M. A. Reshchikov, H. Morkoç, S. S. Park, and K. Y. Lee, Appl. Phys. Lett. **78**, 2882 (2001); Appl.Phys.Lett. **83**, 266 (2003).
- [7] M.Niehus, P.Sanguino, R.Schwarz, A.Fedorov, J.M.G.Martinho, M.J. Soares, T.Monteiro, F.

Wünsch, M. Kunst, Journal of Non-Crystalline Solids **338**, 460 (2004).