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Abstract—We experimentally demonstrate a novel four-channel
wavelength division multiplexing transmitter operating at 1.3 μm
wavelength employing heterogeneously integrated III-V/Si pho-
tonic circuit copackaged with low-power 32-nm SOI CMOS driver
integrated circuits (ICs). Error-free operation (BER < 10−12 )
has been achieved across all four channels for back-to-back, 2 and
10 km single-mode fiber transmission at 25 Gb/s per each chan-
nel, targeting intra- and inter-datacenter interconnect applications.
Power consumption as low as 19.2 mW for four CMOS driver ICs
has been recorded, which yields 0.19 pJ/bit energy efficiency.

Index Terms—CMOS integrated circuits (ICs), silicon pho-
tonics, tunable lasers, wavelength division multiplexing (WDM)
transmitter.

I. INTRODUCTION

R ECENTLY datacenter interconnects have witnessed ever-
increasing growth in the bandwidth requirement which is

driven by bandwidth-intense applications such as social media
networks, online streaming, and cloud computing. To address
this exponential growth in data traffic, high bandwidth, energy
efficient and low cost optical transceivers are needed. While to-
day the short-reach optical interconnects (<100 m) inside the
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datacenter are dominated by low cost multimode VCSEL-links,
there is a growing demand for longer reach optical links in intra
and inter-datacenter interconnects (up to 10 km) for datacen-
ter expansion. Single-mode fiber (SMF) optical links employ-
ing silicon and/or heterogeneous III-V/Si photonics manifest
themselves as promising candidates for this market due to their
potential for realizing an integrated wavelength division multi-
plexing (WDM) transceiver with low cost [1]–[10]. Integration
technologies varying from monolithic silicon photonics [1]–[4]
to hybrid III-V/Si [5]–[10] have been investigated extensively
in academia as well as industry. The monolithic integration so-
lution would enable low component parasitics, simplify pack-
aging with the tradeoff in tuning fabrication process for best
electronic or photonic device performance [9]. In contrast the
heterogeneous integration approach would benefit from the in-
dependent platforms for electronic and photonics integrated cir-
cuits (ICs) to optimize performance for each part of the system
with the disadvantages in parasitics due to packaging. This issue
could be mitigated by short wire bonds or flip-chip bonding and
co-design, co-package between electronic and photonic parts
[8]–[10]. Moreover reaching the aggressive bandwidth targets
outlined in next generation standards, such as 400 Gb/s Ethernet
[11], requires significant improvements over current commer-
cial technologies, and is more easily achieved when scaling both
data rate and channel count. Here, we investigate the potential of
high-channel-count transmitters by assembling and characteriz-
ing a densely integrated photonic circuit with low-power CMOS
drivers. The density and efficiency afforded by advanced CMOS
electronics and heterogeneously integrated III-V/Si photonics
provide promise for scaling channel counts in the future while
maintaining aggressive cost and power targets.

Previously, four-channel silicon photonic transmitters have
been reported up to 27 Gb/s per channel [3]–[6]. A 4λ ×
12.5 Gb/s WDM silicon photonics link was reported in [5] fol-
lowed by a demonstrating of 25 Gb/s single channel transmis-
sion [6] based on the same technology platform. Hybrid III-
V/Si integration had been introduced to fabricate DBR lasers
for transmitter. In [3] an integrated 4 × 25 Gb/s parallel optical
transceiver had been fabricated on monolithic silicon photon-
ics platform leveraging the 130 nm CMOS SOI process. The
transmitter employed Mach-Zehnder modulators based on p-i-n
junction and a hermetic micro-packed DFB laser as an off-chip
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continuous-wave light source. While the 4 × 25 Gb/s parallel
transmitter in [4] included the Ge-Si transverse PIN structure
electro-absorption modulators (EAMs). In our previous work
reported in [8], we had demonstrated a four-channel silicon pho-
tonics WDM transmitter with integrated lasers and EAMs driven
by 32 nm CMOS driver ICs operating error-free (BER <10−12)
at 4 × 28 Gb/s over 10 km SMF fiber. The key element that
enables good performance with such extremely low power con-
sumption in our (current and previously reported) driver circuits
is the shift from remote drivers interfaced with the photonic
integrated circuit (PIC) through 50Ω transmission lines requir-
ing impedance matching to tightly co-packaged electronics and
photonics.

In this paper, we report the experimental measurements of a
four-channel WDM transmitter with similar PIC but driven by
a modified 32 nm CMOS driver IC. The difference in the IC
design is targeting lower power consumption by reducing the
output stage voltage from 2Vpp [8, 10] to 1Vpp while main-
taining acceptable optical extinction ratio. The new IC design
could achieve extremely low power consumption of 19.2 mW for
driving four channels simultaneously while the lasers consume
∼1.1 W and the EAMs consume 28.5 mW. The state-of-the-art
commercially available four-channel 25/28 Gb/s EAM driver
IC with variable output swing (1.0–2.5 Vpp ) and other bias,
control circuits has power consumption of 0.75 W per channel
at 2.5 Vpp output [12]. The organization of the paper is as fol-
low: Section II discusses the design of the PIC and the driver
ICs employed in the four-channel WDM transmitter, Section III
reports the experimental measurements and results, and finally,
Section IV concludes the paper.

II. PIC AND DRIVER ICS DESIGN

Fig. 1(a) illustrates the conceptual block diagram of the
four-channel WDM transmitter, which consists of the hetero-
geneously integrated PIC co-packaged with the 32 nm SOI
CMOS driver ICs. The photonic device was fabricated using
III-V material heterogeneously integrated with silicon waveg-
uides in an established foundry infrastructure with Aurrion’s
heterogeneous integration process. The four individual driver
ICs were wire-bonded to the four EAMs. The PIC and driver
ICs were co-packaged on a custom printed circuit board (PCB)
for experimental measurements. Fig. 1(b) shows the image of
the custom PCB together with the micrograph of the packaged
four-channel WDM transmitter. The decoupling capacitors have
been deployed to decouple noise from DC power supplies to the
ICs. In the subsequent sections, we present details of the PIC
and the driver IC.

A. Heterogeneous Integrated III-V/Si PIC

As illustrated in Fig. 1(a), the PIC demonstrated in this work
consists of four tunable lasers [8], which are individually cou-
pled to four EAMs. The fundamental design of the tunable
lasers is similar to other well-known III-V material multisec-
tion tunable lasers [13]. The tunable laser in this design con-
stitutes a gain section with two wavelength tuners and a phase
tuning section. The lasers demonstrate side mode suppression

Fig. 1. (a) Conceptual design of the heterogeneously integrated four-channel
WDM transmitter and (b) the custom PCB with micrograph of the transmitter.

ratios exceeding 40 dB with about 1 W power consumption
for all four lasers. The gain section of the lasers was formed
by heterogeneously bonding InP onto the silicon waveguide.
Similar to the laser gain sections, the EAMs were fabricated
simultaneously using Aurrion’s heterogeneous integration pro-
cess. The detailed characterization of the EAMs had been re-
ported in [9] and [10]. The EAMs provide wide bandwidth
(∼30 nm) with low insertion loss (<3 dB) and low drive volt-
age (1–2 Vpp ). Characterization of the wavelength tunability of
the individual tunable laser in the transmitter was carried out
by biasing the gain section at 150 mA, stabilizing the tem-
perature of the entire WDM transmitter at 32 °C and per-
forming wavelength tuning on the two wavelength tuner sec-
tions. Finally the modulated optical signals output from the
EAMs will be multiplexed in the multimode interference (MMI)
combiners. The MMI multiplexer experiences high insertion
loss (∼6 dB) when combining all four channels, but is em-
ployed due to its broad bandwidth to reduce risk in this pro-
totype demonstration. The entire four-channel transmitter PIC
occupies 2.75 mm × 7.6 mm.

B. 32 nm CMOS Driver ICs

The driver ICs were fabricated in IBM’s standard 32 nm SOI
CMOS technology (now Global Foundries) using standard thin
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Fig. 2. Circuit design of the single channel 1 Vpp 32 nm SOI CMOS driver
integrated circuit.

oxide transistors. Each single channel driver IC has a simple
architecture as depicted in Fig. 2, targeting lower power con-
sumption. VDD is dc biased at 1V. The single-ended RF input
signal is received into the on-chip 50Ω termination. This 50Ω
termination at the driver IC input is added for impedance matc
hing with standard 50Ω characteristic impedance of laboratory
equipment (particularly the output from the bit pattern genera-
tor in this work). Subsequently, the signal propagates through
6 consecutive CMOS inverters with increasing transistor gate-
size to provide signal amplification up to full-swing CMOS level
(1Vpp ). The amplified signal then drives the output stage, which
is a CMOS inverter with a separate VDDOUT supply followed by a
series on-chip 45 Ω resistor. This resistor is employed for damp-
ing the ringing potentially caused by the wire-bond inductance
and the EAM capacitance. Finally the driver output was wire-
bonded to the anode of the EAM, while significant decoupling is
applied to the EAM cathode supply. The pad-limited area of each
single channel driver IC is 1mm × 1mm, while the core circuits
occupy 18 μm × 70μm.

Before bonding to the laser-integrated PIC, a 4-channel vari-
ant of the driver IC is characterized by wire-bonding to a
4-channel EAM photonic chip [10] and assembling on a PCB
as in Fig. 3(a) for evaluating the multichannel performance of
the electro-optic interface. A commercial DFB laser emitting at
wavelength of 1310 nm with optical output power of 13 dBm was
employed to couple light into the EAM chip. The fiber-coupled
output power from the EAM was ∼–8 dBm. An O-band optical
amplifier had been used to compensate for the coupling loss.
The test was running with PRBS-31 sequence. The optical eyes
were captured by a 30-GHz Tektronix scope plugin module and
depicted in Fig. 3(b–f).

At target bitrate (25 Gb/s), the optical eye in Fig. 3(c) was
well opened with low jitter. That would suggest a good driving
signal condition for the integrated transceiver at 4 × 25 Gb/s.
The optical extinction ratio at 20 Gb/s as in Fig. 3(b) was 5.2 dB
when biasing the EAM at 2.5 V. The biasing of the EAMs was
adjusted to optimize the optical extinction ratio that would yield
a lower crossing point in the observed optical eyes. Further
characterization results in Fig. 3 demonstrate that the 1Vpp
driver IC could yield an open optical eye up to 35 Gb/s with
relatively low jitter. The measured optical eyes at bitrate above
25 Gb/s indicate an increasing inter-symbol interference level
that leads to a higher vertical eye closure penalty at higher data
rate. This bandwidth limitation is attributed for the bandwidth
limit of the driver ICs based on 32 nm CMOS technology which
would be lower the bandwidth of the EAMs.

Fig. 3. (a) Testing assembly of the driver IC, and (b–f) optical eyes at different
bitrates from 20 to 35 Gb/s.

III. EXPERIMENTS AND RESULTS

In this section we describe the experimental demonstration
and the measurement results of the heterogeneously integrated
four-channel WDM transmitter. The experiment setup to mea-
sure the bit error rate (BER) performance of all four channels
of the transmitter will be first presented, following by the dis-
cussion on the measured BER results.

A. Experiment Setup

The experiment setup is illustrated in Fig. 4(a). As presented
in the previous section, the PIC and driver ICs were wire-bond
co-packaged on a custom PCB. The four single-ended RF input
signals were routed through MMPX connectors at the card edge
across micro-strip transmission lines and terminated into the on-
chip 50Ω terminations. The PCB has cutouts for edge-coupled
access using single-mode tapered-lensed fibers positioned with
3-axis precision stages. DC biases for driver ICs and PIC were
provided through ribbon cables. VDD of the driver ICs was
biased at 1 V. A 12-channel current source was employed to
bias the gain section and two wavelength tuners (heaters) for
all four lasers. In addition, two dual-output low noise Agilent
sources were used for fine-tuning the phase sections of the lasers
(when needed). The operating wavelength of four lasers had
been tuned to match with 100GBASE-LR4 grid. Table I presents
the bias parameters for the lasers (no phase tuning was needed
in this operating condition) and the measured wavelength of
the four lasers. Fig. 4(b) illustrated the optical spectrum of the
four channels being used. The whole WDM transmitter was
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Fig. 4. (a) Experiment setup for BER measurement of the four-channel WDM
transmitter and (b) measured optical spectrum of the multiplexed four channels
at the transmitter output.

TABLE I
OPERATING CONDITION OF WDM TRANSMITTER

Parameters Channel 1 Channel 2 Channel 3 Channel 4

Wavelength 1296.3 nm 1300.3 nm 1304.4 nm 1309 nm
Gain Current 149.75 mA 149.74 mA 149.61 mA 149.43 mA
λ-Tuner-1 14.70 mA 12.95 mA 1.23 mA 0.97 mA
λ-Tuner-2 28.98 mA 24.89 mA 23.96 mA 22.14 mA
EAM Bias 2.30 V 2.40 V 2.90 V 3.30 V
Extinction Ratio 3.49 dB 3.27 dB 3.68 dB 3.87 dB

temperature stabilized at 32 °C by a thermal electric-cooler
(TEC).

Four source-meters were employed to independently bias four
EAMs. Table I shows the biasing voltage for each EAM, rang-
ing from 2.3 to 3.3 V. That yields the extinction ratio of the
modulated optical NRZ signals from 3.3 to 3.9 dB as shown
in the same table. Two super high frequency (SHF) BPG-40A
pattern generators were used to simultaneously provide four
decorrelated 700 mV peak-to-peak RF signals input to the four
single-channel driver ICs. The pattern generators were oper-
ating at 25 Gb/s with an external clock source. All the BER
measurements were running with PRBS-31 sequence.

Light was extracted from the PIC using a single-mode
tapered-lensed fiber with an approximate 2.5μm spot diameter.

Fig. 5. Transmitted optical eyes (left) and received electrical eyes (right) for
all four channels (channel 1 to 4 from top to bottom) at 25 Gbit/s, back-to-back
link.

The light was then passed through an isolator, a praseodymium-
doped fiber amplifier, a spool of SMF (10 km or 2 km), a tunable
Fabry–Perot filter, and a variable optical attenuator. Optical am-
plification is required to compensate for coupling loss. Finally,
an optical switch was used to select between a sampling scope
with a 30-GHz photo-detector plugin, an optical average power
meter, or a reference receiver (Rx). The Rx consists of a custom
130-nm SiGe IC, similar to the receiver used in [14] but with
a DC-coupled transimpedance stage, wire-bonded to a com-
mercial photo-detector with 0.6 A/W responsivity at 1310 nm.
The RX’s differential outputs were connected to an SHF error
detector. The transmitter was tested with all channels running
simultaneously, filtering out one channel at a time on the Rx.

B. Measurement Results

Fig. 5 shows the transmitted optical and received electrical
eyes at 25 Gb/s per channel of all four channels of the WDM
transmitter. The optical eye is open across all channels with the
extinction ratio ranging from 3.3 to 3.9 dB. That is about 3 dB
lower than the extinction ratio of the WDM transmitter driven
by 2Vpp output driver ICs in [8]. It’s worthwhile to note that
for targeting lower driver IC power consumption by deploying
1Vpp output stage driver ICs, we have to trade-off the optical
extinction ratio as well as the operating bitrate of the optical
link. The estimated signal-to-noise ratio from the captured eye
diagrams suggest that error-free transmission would be achieved
across all channels.

The BER measurement results are presented in Fig. 6 con-
firming the error-free operation for all four channels at targeted
bitrate 25 Gb/s per each channel. The BER curves were recorded
for each channel at 25 Gb/s for back-to-back, 2 and 10 km SMF
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Fig. 6. BER measurements of the heterogeneously integrated four-channel
WDM transmitter at 25 Gb/s per each channel over back-to-back, 2 and 10 km
SMF fiber transmission link.

TABLE II
POWER CONSUMPTION OF WDM TRANSMITTER

Part Power Consumption [mW] Energy Efficiency [pJ/bit]

Lasers 1103.85 11.04
EAMs 28.54 0.29
Driver IC 19.2 0.19
Total 1151.6 11.5

transmission. The BER curves are plotted against the measured
optical modulation amplitude. The curves for four channels ex-
hibit a spread of about 1 dB at BER = 10−12 , attributed to the
variation in package parasitic. A negligible penalty, less than
1 dB at BER = 10−12 , is observed between back-to-back and
fiber transmission (2 and 10 km SMF). This penalty could be
attributed to the small fiber dispersion as well as the tempera-
ture variation along the transmission fiber and the lack of clock
& data recovery block at the receiver to correct for these small
fluctuations. The transmission measurement results demonstrate
the feasibility of the designed WDM transmitter for intra and
inter data center interconnect applications.

Table II shows the break down of power consumption of the
heterogeneously integrated WDM transmitter operating at ag-
gregated bitrate of 100 Gb/s. The driver ICs (four single-channel

32 nm CMOS ICs) consume 19.2 mW in total, not counting the
DC current caused by the input termination, which yields an
energy efficiency of 0.19 pJ/bit. In practice, the 50Ω termina-
tion and its’ power consumption is typically considered as part
of the upstream component and not accounted for EAM driver
circuit. As targeting in the IC design, the power consumption
of the 1Vpp driver ICs is significantly lower than that of the
2Vpp driver ICs: 97.6 mW at 4 × 28 Gb/s or 0.87 pJ/bit energy
efficiency [8]. The EAMs consume 28.54 mW while the lasers
consume 1.1 W. That leads to the total power consumption of the
WDM transmitter of 1151.6 mW at 100 Gb/s operation yielding
an energy efficiency of 11.5 pJ/bit. (The calculation above does
not include the additional power consumption of the TEC.)

IV. CONCLUSION

We have demonstrated a four-channel WDM transmitter em-
ploying heterogeneously integrated III-V/Si photonic circuits
and 32 nm SOI CMOS driver ICs. The transmitter achieved
error-free transmission over 10 km SMF at 25 Gb/s per channel.
A power efficiency of 11.5 pJ/bit for the transmitter including
lasers, modulators and driver ICs had been recorded. The driver
ICs themselves consume only 19.2 mW correspondingly 0.19
pJ/bit energy efficiency.

The measurement results show the feasibility of the integrated
WDM transmitter for intra and inter-data centers interconnect
applications. This illustrates the potential of delivering on low
power, low cost, high-channel-count WDM transceivers based-
on hybrid III-V/Si photonic circuits and CMOS ICs technolo-
gies.
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