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Cystic fibrosis (CF) is a genetic lethal disease, originated from the defective function

of the CFTR protein, a chloride and bicarbonate permeable transmembrane channel.

CF mutations affect CFTR protein through a variety of molecular mechanisms which

result in different functional defects. Current therapeutic approaches are targeted to

specific groups of patients that share a common functional defect. We seek to develop

an innovative therapeutic approach for the treatment of CF using anionophores, small

molecules that facilitate the transmembrane transport of anions. We have characterized

the anion transport mechanism of a synthetic molecule based on the structure of

prodigiosine, a red pigment produced by bacteria. Anionophore-driven chloride efflux

from large unilamellar vesicles is consistent with activity of an uniporter carrier that

facilitates the transport of anions through lipid membranes down the electrochemical

gradient. There are no evidences of transport coupling with protons. The selectivity

sequence of the prodigiosin inspired EH160 ionophore is formate > acetate > nitrate

> chloride > bicarbonate. Sulfate, phosphate, aspartate, isothionate, and gluconate are

not significantly transported by these anionophores. Protonation at acidic pH is important

for the transport capacity of the anionophore. This prodigiosin derived ionophore induces

anion transport in living cells. Its low toxicity and capacity to transport chloride and

bicarbonate, when applied at low concentration, constitute a promising starting point

for the development of drug candidates for CF therapy.

Keywords: cystic fibrosis, ionophore, ion transport, phospholipid vesicles, prodigiosin derivatives

INTRODUCTION

Cystic fibrosis (CF), the most common autosomal recessive lethal genetic disease in the Caucasian
population (Strausbaugh and Davis, 2007), is caused by mutations on the gene coding for CFTR
(cystic fibrosis transmembrane conductance regulator), an anion selective channel that transports
chloride and bicarbonate in the apical membrane of epithelium. CFTR regulates salt and water
transport across a variety of epithelium, and malfunction of this protein leads to defective mucus
and airway surface liquid (ASL) properties, resulting in poor mucus clearance and bacterial
infections on the airways (Berger et al., 1991; Saint-Criq and Gray, 2017). More than 1,500
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mutations in CFTR, classified in six classes according to the effect
of the mutation, lead to anion transport defects in epithelium by
various mechanisms (failure to synthesize the protein, processing
flaws, gating or conductance defects, reduced expression). In cell
models, several small molecules, called correctors, increase CFTR
defective expression at the cell membrane, and small molecules
called potentiators to enhance the function of the CFTR channel
(Zegarra-Moran and Galietta, 2017). While the potentiator
ivacaftor (KalydecoTM) is successfully used for treatment in
patients with gating mutations (Ramsey et al., 2011; De Boeck
and Davies, 2017), the corrector lumacaftor, alone or in the
combination with ivacaftor (OrkambiTM) resulted on a limited
clinical outcome (Clancy et al., 2012; Wainwright et al., 2015).

The discovery of small molecules capable to transport
anions across lipid bilayers, named anionophores, has offered
the opportunity of designing new substances to be used for
pharmacological purposes (Davis et al., 2010; Valkenier et al.,
2014; Hernando et al., 2018). The most striking among the
potential applications of anionophores is the proposal to use
these substances to substitute the defective anion transport in
cystic fibrosis (CF). The idea of using anionophores to replace
the defective CFTR protein has the advantage to become a
general therapy for CF, that would be independent of the specific
mutation. Different chemical structures have been described
to transport anions across lipid bilayers, including prodigiosin
and obatoclax derivatives (Seganish and Davis, 2005; Díaz de
Greñu et al., 2011; García-Valverde et al., 2012; Gale et al.,
2013), marine alkaloids such as tambjamines (Iglesias Hernández
et al., 2012; Saggiomo et al., 2012; Hernando et al., 2014;
Soto-Cerrato et al., 2015), steroid-based “cholapods” (Koulov
et al., 2003; McNally et al., 2008; Valkenier et al., 2014), and
calix[4]pyrrole derivatives (Gale et al., 2017), anion channel-
forming peptides (Wallace et al., 2000; Broughman et al., 2004;
Pajewski et al., 2006) and Calix[4]arene amides (Sidorov et al.,
2002).

We have previously identified several triazole derivatives
of prodigiosin with a significant anion transport capacity and
relatively low toxicity (Hernando et al., 2018). There, we show
that these compounds can transport chloride and bicarbonate
across lipid bilayers, and the transport activity increases at acidic
pH. Also evidences of anionophore-driven halides transport in
cells is provided. Hence, to follow the search of “druggable”
anionophores adequate for CF therapy, we have undertaken
the analysis of the transmembrane anion transport mechanism
of these molecules. Thus, for the functional characterization
of this anionophore family, we chose of the most active
substance of that series, EH160 (named 1b in referenceHernando
et al., 2018). Here, we have extended the data previously
reported (Hernando et al., 2018), analysing the selectivity of
the anionophore, demonstrating that the carrier has a good
selectivity for physiologically relevant anions, such as chloride
and bicarbonate. An important finding was that pH influence on
the ionization state determines the anionophore activity, without
any proton transport. We showed that this prodigiosin-inspired
anionophore act as electro-neutral anion exchanger. To reinforce
the concept that anionophores can induce chloride transport
in mammalian cells, we repeated chloride efflux and iodide

influx experiments in cells, similar to those reported elsewhere
(Hernando et al., 2018).

MATERIALS AND METHODS

Synthesis of the Anionophore EH160
EH160 was synthesized as previously described (Hernando
et al., 2018). In brief, it was prepared by acid-catalyzed
condensation of 3-methoxy-5-(1-butyl-1H-1,2,3-triazol-4-yl)-
1H-pyrrole-2-carbaldehyde and 2-methyl-3-pentyl-1H-pyrrole.
The precursor aldehyde was prepared by standard click chemistry
reaction between 1-azidobutane and the corresponding 5-
ethynylpyrrole carbaldehyde. The compound is inspired by the
structure of natural products prodiginines, replacing one of
the pyrrole groups by a 1,2,3-triazole moiety. EH160 was fully
characterized by mass spectroscopy and NMR (Hernando et al.,
2018). Except when indicated, all chemicals were purchased from
Sigma-Aldrich.

Large Unilamellar Vesicles
Asolectin large unilamellar vesicles (LUV) were made from
phospholipids films (Baroni et al., 2014; Nicastro et al., 2016;
Hernando et al., 2018). Soybean phospholipids (20 mg/ml)
were dissolved in chloroform and lipid films were obtained by
evaporation of the solvent under a gentle nitrogen flux; in order
to remove all chloroform, films were further dried overnight in
vacuum. The phospholipids were hydrated in chloride buffer (in
mM: NaCl 450, 20mMHEPES; pH 7.5, unless other composition
was indicated), and vigorously vortex mixed and, to ensure
equilibration, sonicated in 5 cycles of 1.5min each, with 1min
rest, in ice. Liposomes were centrifuged at 2,000 g for 5–10min
to remove any titanium particles released by the sonicator
tip. Large unilamellar vesicles (LUV) were then obtained by
extrusion through polycarbonate filters mounted in a mini-
extruder (Lipofast, Avestin, Mannheim, Germany). Samples were
subjected to 19 passes through a single 100 nm mesh filter
(MacDonald et al., 1991). External solution was exchanged twice
on a Sephadex G25 column previously equilibrated with the
external chloride-free solution: NaNO3 450mM, 20mMHEPES;
pH 7.5 (unless other composition was indicated).

Chloride Efflux Measurements in LUV
To measure the efflux of chloride from LUV, chloride
concentration was measured with an ion-sensitive electrode
(Vernier, Beaverton, Oregon, USA) in a constantly stirred
3.5ml LUV suspension. Data were acquired using a LabQuest
mini interface (Vernier). Ionophores were dissolved in DMSO
to a concentration of 10mM. After an initial equilibration,
chloride efflux was induced by a small volume (<1%) of
ionophore. Control experiments where similar amounts of
DMSO (without anionophores) were added demonstrated that
these concentrations of DMSO do not induce any chloride efflux
(see below). The measurement was concluded with the addition
of the detergent polyoxyethylene 10 tridecyl ether (C13E10)
to break off the bilayers and measure the maximum chloride
encapsulated in the LUV. The time course of the chloride
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concentration, Cl, in the experiment can be described by a single
exponential function:

Cl− (t) = Cl−0 + 1Cl−
(

1− exp
[

−tk
])

(1)

where Cl−0 is the initial chloride concentration, 1Cl− is the
maximum change of the chloride concentration (after addition
of detergent), and k is the rate constant of the process. The
chloride efflux, Jcl, is defined as the time derivative of Cl−(t).
Thus, deriving from equation (1), for t = 0, i.e., after the chloride
gradient was changed, we obtain the initial chloride efflux-rate,
J0:

J0 = 1Cl−k (2)

To compare different data sets, the chloride concentration was
normalized to the maximum concentration change, 1Cl−. Data
are expressed as means ± s.e.m. Experiments were done at 25
± 1◦C. Every experimental condition was repeated at least three
times.

Cell Preparation and Viability
The Human embryonic kidney (HEK) cell lines were grown
in standard conditions, in Ham’s F10 medium supplemented
with 2mM L-glutamine and 10% fetal bovine serum (FBS). Cell
toxicity was evaluated by the trypan blue exclusion staining
method (Louis and Siegel, 2011). Toxicity data is expressed as the
half maximum toxic dose (TD50).

Chloride Efflux in Cells
Cells at 80% confluence were detached from the bottom of the
flask by soft scrapping, washed in chloride-free solution, and
used immediately. For chloride efflux measurement, ∼2 × 106

cells were suspended in 4ml of buffer containing (in mM):
136 NaNO3, 3 KNO3, 2 Ca(NO3)2, 20 HEPES, 11 Glucose, pH
7.4. Ionophores were dissolved in DMSO to a concentration of
10mM. Chloride concentration in the extracellular solution was
continuously measured with a chloride-sensitive electrode. After
an initial equilibration, chloride efflux was induced by a small
volume (<1%) of ionophore. The measurement was concluded
with the addition of the sodium dodecyl sulfate (SDS) to break
off the membranes and measure the total chloride content in the
cells. Experiments were done at 25± 1◦C.

Iodine Influx in Cells
The activity of anionophores was determined in Fisher Rat
Thyroid (FRT) cells expressing the halide-sensitive YFP protein
as previously described (Caci et al., 2008). The assay is based in
the fact that the fluorescence of the YFP protein is quenched to
a greater extend by I− than by Cl− (Galietta et al., 2001). FRT
cells stably transfected with a halide-sensitive yellow fluorescent
protein (YFP-H148Q/I152L) were plated on 96-well micro-plates
at a density of 40,000 cells/well in Coon’s modified medium
supplemented with 10% serum, 2mM L-glutamine, 1 mg/ml
penicillin, 100µg/ml streptomycin, and 0.5 mg/ml hygromycin
as selection agent for the YFP. Cells were maintained at 37◦C in a
5% CO2 /95% air atmosphere. Functional experiments were done
48 h after cell seeding. Cells were washed twice, with an external

solution containing (in mM): NaCl 137, KCl 2.7, Na2HPO4 8.1,
KH2PO4 1.5, CaCl2 1 and MgCl2 0.5 (pH 7.3). The solution
injected during the assay is similar but contained NaI 137mM
instead of NaCl (pH 7.3). To explore the effect of lowering the
extracellular pH, the NaI solution was buffered at pH 6.9 with
HEPES, or at pH 6.6 and 6.2 using MES. For the iodide influx
assay, after washing, cells were incubated in 60 µl of the 137mM
NaCl-external solution, supplemented with the anionophore or
with DMSO as control. A fluorescence baseline was recorded
for 2 s after injection of 165 µl of NaI-external solution, so that
the final concentration of NaI in the well is 100mM. The iodide
influx was observed as quenching of the YFP fluorescence.

RESULTS

Application of micromolar concentrations of anionophores to a
LUV suspension induces a chloride efflux. In Figure 1A we show
the time course of chloride efflux measured upon the application
of 4µM of prodigiosine and the triazole derivative EH160. The
natural product, prodigiosine, is a more effective transporter,
with a J0 of 110.2 ± 1.2 µM/s. Instead, the triazole derivative
EH160 induces a slower chloride efflux of 51.8 ± 0.5 µM/s.
Application of DMSO does not induce a significant chloride
efflux (J0 of 0.2 ± 2.8 µM/s), confirming that the anion efflux
was elicited by the anionophore and not by the solvent. Similar
experiments were done using LUV formed with chemically
defined phospholipids (palmitoyl-oleyl-phosphatidylcholine,

FIGURE 1 | Time course of the external concentration of chloride in a LUV

suspension upon application of 4µM of prodigiosin and EH160, as indicated

by the upper bar. The magenta bar indicates the addition of detergent. A

control trace was obtained after the application of DMSO. Data was

normalized by the maximum chloride change, 1Cl−. The chemical structure of

EH160 is shown at the bottom.
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POPC; palmitoyl-oleyl-phosphatidylethanolamine, POPE) and
cholesterol (chol). Anionophore-driven chloride efflux measured
in LUV composed by POPC:chol (19:1) (48.9 ± 0.4 µM/s),
POPC:POPE (9:1) (52.3 ± 0.2 µM/s) and POPC:POPE:chol
(8.1:0.9:1) (47.1 ± 0.9 µM/s), was very similar to that measured
in asolectin LUV, indicating that the lipid composition is
not critical for the anionophore transport (data not shown).
Similarly, substitution of sodium by potassium in the internal or
in the external solutions does not affect the measured chloride
efflux, confirming that EH160 is an anion selective carrier.

The chloride efflux rate depends on the concentration of
anionophore (see Figure 2A). To evaluate the concentration to
induce half of the maximum rate, EC50, was estimated plotting
the initial efflux rate, J0, against the anionophore concentration,
[EH160] (Figure 2B). Data was fitted with the Equation (3):

J0 =
Jmax

1+ EC50
[EH160]

(3)

where Jmax is the maximum chloride efflux initial rate. The time
course of the traces obtained at EH160 concentration higher
than 10µM was often quite variable. We interpreted these data
as a destabilization of the LUV bilayers. Thus, to remove these
possible outliers, we fitted iteratively the data, removing data
points that lie beyond the 95% confidence prediction interval at
each iteration, until no outliers remain. After this procedure, the
doses-response fit yielded a maximum initial chloride efflux of
87.3± 6.4 µM/s, and an EC50 of 5.64± 1.28µM.

Selectivity of the Anionophore
To evaluate the selectivity of the anionophores, we measured
the chloride efflux from LUV with an internal concentration
of 450mM chloride, and the external solution containing an
isomolar concentration of different anions. Measurements were
done in the presence of 10mM HEPES to adjust the pH at 7.5
in both compartments. As no differences in the chloride efflux
were observed substituting sodium by potassium, neither, in the
internal solution nor in the external solutions, the cationic ion
was used indifferently in this series of experiments. The time
course of the chloride efflux measured with different external
anions is shown in Figure 3A.

As a first approach, we could hypothesize that the
anionophore interchanges the anions from both sides of the
bilayer, and the chloride efflux is proportional to the efficiency
of the counter-anion influx. Thus, the estimation of the initial
rate of the chloride efflux should represent the permeability
of the external anion. From these data (Figure 3B), we can
assert that the anionophore EH160 has a consistent transport
rate for small organic anions, as acetate and formate, and in
less extend for inorganic anions, as nitrate and bicarbonate.
Conversely, transport of bigger, more hydrophilic anions, as
aspartate, gluconate, phosphate, sulfate, and isethionate, is more
than ten-fold reduced.

However, in this experimental design it is not possible to
use external chloride to compare the relative permeability of
this anion with other anions. To overcome this limitation we
designed a series of experiments in which a fraction of the

FIGURE 2 | (A) Time course of external concentration of chloride elicited by

various concentrations of EH160, as shown near each trace. Application of the

anionophore is indicated by the upper horizontal bar, and the addition of

detergent is indicated by the magenta bar. Data was normalized by the

maximum anion change, 1Cl−. (B) The initial chloride efflux rate, J0 is plotted

against the anionophore concentration. When the measurement was repeated

more than once, data represent the average and the bar is the standard error

of the mean. The continuous line is the best fit of data with equation 3, yielding

the concentration for the half of the maximum effect, EC50 = 5.6µM, and a

maximum chloride initial efflux rate of 87.3 µmoles/s. Broken lines represent

the prediction interval for 95% confidence.

internal chloride was substituted by nitrate or bicarbonate.
Thus, the second anion will compete with chloride for
binding the anionophore, and therefore, the chloride efflux
will be modified accordingly. The initial chloride efflux
rates, measured for different combinations of chloride/nitrate
and chloride/bicarbonate at the internal side are shown in
Figures 3C,D, respectively. The reduction of the chloride efflux,
as the concentration of the second anion increases, occurs
because the carrier binds bicarbonate or nitrate instead of
chloride, resembling a competitive inhibition of an enzyme.
Hence, the continuous lines in Figures 3C,D represent the best
fits of data with:

J0
(

Cl−, anion
)

J0
(

Cl−, 0
) =

Cl−

KCl

(

1+ anion
Kanion

)

+ Cl−
(4)
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FIGURE 3 | Permeability of the anionophore EH160 to different anions. (A) Time course of the external concentration of chloride measured in LUV with 450mM

internal chloride and variable external iso-osmotic anions, as indicated in the figure. The application of the anionophore is indicated in the upper bar. Data was

normalized by the maximum anion change, 1Cl−. (B) The initial chloride efflux, J0, measured for different external anions. The red bar is the estimated chloride efflux

in the presence of external chloride, calculated from the apparent dissociation constants of the anionophore for chloride, bicarbonate and nitrate estimates in the

competition experiments. Data represent the average (± s.e.m.) of, at least, three different measurements. Panels (C,D) show the results of the bicarbonate/chloride

and nitrate/chloride competition experiments, respectively. The concentrations of anions are shown in the bottom axes of the figures. The continuous lines represent

the best fit of data with Equation (4).

where Kcl and Kanion are the apparent dissociation constants
of chloride and the second anion (nitrate or bicarbonate),
respectively. The average chloride apparent dissociation constant
is Kcl = 3.17 ± 0.48mM, and the apparent dissociation
constants for nitrate and bicarbonate are KNO3 = 4.79 ±

0.67mM and KHCO3 = 8.18 ± 0.71mM. The higher affinity of
chloride (lower apparent dissociation constant) clearly reflects
a higher permeability of this ion. Thus, we can assume that
the ratio of the apparent dissociation constants KNO3 /KHCO3

= 0.59 is proportional to the bicarbonate:nitrate permeability
ratio. This concept is confirmed by the ratio of the initial
efflux rates of 0.57, measured with bicarbonate and nitrate
in the external solution (Figure 3A). These data allow to
estimate the hypothetical chloride initial efflux rate when the
external solution is chloride, yielding a value of 48 µM/s.
Scaling data to the theoretical chloride initial efflux rate it
is possible to estimate the relative permeability of all assayed
ions with respect of chloride, as shown in the right axis in
Figure 3B.

It is intriguing to notice that when nominally impermeable
anions, such as sulfate and gluconate, are in the external solution,
a tiny chloride efflux induced by anionophores is still measurable,
although it is very small (chloride efflux of 1.96 and 1.75
µM/s for sulfate and gluconate, respectively). As previously

reported (Hernando et al., 2018), in these cases, after the initial
chloride efflux, the system seems to stop transport chloride,
and no further changes in the external chloride concentration
are measured by the ion sensitive electrode (see Figure 4).
The trace in Figure 4 show the time course of the external
chloride concentration upon the addition of 8µM EH160 in a
suspension of LUVwith the internal solution containing 450mM
chloride and the external solution of 450µM gluconate. The
initial chloride efflux is 3.4 µM/s, and the flux is arrested
when the external chloride concentration is 0.11 × 1Cl. The
successive addition of a permeable anion to the external solution,
to a final concentration of 225mM of nitrate, induces again a
chloride efflux. The restarted efflux, J0 = 6.2 µM/s, is larger
than the efflux obtained with only gluconate in the external
solution, even after the 11% reduction of the chloride gradient
and the dilution of the anionophore. In the presence of external
impermeable anions, the initial chloride efflux occurs until
the net charge displacement, occurring when the chloride ions
move outside from the LUV, is balanced by the potential
difference because of the asymmetrical distribution of permeable
ions.

Thus, to avoid the charge accumulation and be independent
of the potential difference, we “shunted” the LUV bilayer with
cationic carriers. The addition of valinomycin (0.5 ng/ml), a
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FIGURE 4 | Time course of the external concentration of chloride induced by

the anionophore EH160 with different external anions, as indicated in the

figure. When gluconate is in the external solution, chloride efflux is small, and is

arrested without reaching the equilibria of concentrations (internal Cl =

49.5mM; external Cl = 0.099mM). Further addition of nitrate, a permeable

anion, restores the normal anionophore-induced chloride efflux. Data was

normalized by the maximum anion change, 1Cl−.

specific potassium transporter, does not induce any chloride
transport in the vesicles (Figure 5A), and does not modify
the typical chloride efflux induced by the anionophore when
the external ion is permeable. Differently, in the presence
of an impermeable anion, as sulfate, addition of valinomycin
restore the chloride efflux (Figure 5B). The same result,
reactivation of the chloride efflux halted by an impermeable
anion, gluconate outside, is obtained by the addition of
25µg/ml of carbonyl cyanide-4-phenylhydrazone (FCCP), a
proton ionophore (Figure 5C). The application of valinomycin
before the addition of EH160 serves to condition the system
to produce a chloride efflux in the presence of an external
impermeable anion, as aspartate (Figure 5A, green trace).

Interestingly, in the presence of external impermeable anions,
the time course of anionophore-driven chloride efflux favored
by valinomycin is not exponential, but linear, as shown by
the regression lines represented in blue in Figure 5; there, the
correlation coefficient for a linear regression is r > 0.999,
confirming the linearity of the traces. The exponential shape of
the chloride efflux is due to the depletion of the anion from the
LUV, that reduce the chloride gradient, and according to the Fick
law, will reduce the anion flux. Conversely, the linear time course
of the chloride efflux reflects a constant chloride gradient during
the experiment.

This paradox may occur because, in the presence of the cation
ionophore, the efflux of chloride driven by EH160 is accompanied
with the facilitated efflux of potassium ions by valinomycin
[or protons by cyanide-4-(trifluoromethoxy)phenylhydrazone,
FCCP], thusmaintaining the electro-neutrality of the process and
resulting in a net solute loss from the LUV, with the consequent
osmotic water withdrawal. The consequence is the maintenance
of the concentration of the solutes, leaving essentially unaltered
the ionic gradients.

To examine whether the anionophore-driven transport
is affected by the electric field, we measured the chloride

FIGURE 5 | Time course of the external concentration of chloride, revealing

the anion efflux induced by the anionophore EH160 recorded in LUV shunted

with a second ionophore. In all cases LUV had 450mM internal potassium

chloride and the application of 4µM of EH160 is indicated by the horizontal

(red) bar over the traces. Application of 0.5 ng/ml of valinomycin or 0.25µg/ml

of FCCP is indicated by the middle horizontal bar. The upper horizontal bar

indicate the addition of detergent. Data was normalized by the maximum anion

change, 1Cl−. In panel (A), the anionophore was added after the application

of valinomicyn in preparations with the external solution containing 450mM

potassium nitrate (black trace) and 450mM potassium aspartate (green trace);

the external solution in panel (B) was 300mM of potassium sulfate, and in

panel (C) was 450mM potassium gluconate. The blue broken lines are the

lineal fitting of the traces after application of the cation ionophores. The red

broken lines in panels (B,C) are the exponential fitting of the traces before the

application of the cation ionophores.

efflux at different electric potential differences. To impose a
membrane potential difference, we prepared LUV with different
combinations of sodium chloride and potassium chloride inside,
and sodium nitrate and potassium nitrate outside. The anion
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gradient was always the same (450mM chloride inside, and
450mM nitrate outside). Because valinomycin is permeable to
potassium, but does not transport sodium, the bilayer potential
difference, according to the Nernst equation, depends on the
potassium concentration at both sides. The initial chloride efflux,
J0, measured at potential differences between 50 to −150mV
(reference at the external side) resulted virtually independent
from the voltage (Figure 6), indicating the EH160 activity is not
voltage dependent.

pH Dependence of EH160 Anionophore
Activity
We have previously reported that the transport efficacy of EH160
in LUV strongly depends on pH (Hernando et al., 2018). In LUV
with the same values of pH in the internal and external buffers,
the rate of the chloride efflux carried by EH160 is faster at acidic
pH than at alkaline (Figure 7A). This pH dependency of the
anionophore activity is similar when the internal pH in the LUV
is kept constant at 7.0, and the external pH is varied from 5.0 to
9.0 (Figure 7B). Conversely, when the external pH is kept fix at
7.0, variations of the internal pH in LUV from 5.0 to 9.0 does not
determine any significant variation of the anionophore induced
chloride efflux (Figure 7C).

An interesting feature of these observations is that the chloride
efflux seems to be independent of the proton gradient. If the
anionophore co-transports anions and protons, in absence of
an active transport mechanism, it is expected that the gradient
of both ligands should determine the transport rate. On the
contrary, the chloride efflux in absence of a pH gradient
(Figure 7A) varies in the same manner as observed in the
experiments where a pH gradient was imposed varying the
external pH (Figure 7B). Moreover, imposing a pH gradient
varying the internal LUV pH, but maintaining the external pH
constant does not modify the chloride efflux (Figure 7C). We
conclude that the anionophore chloride transport is independent
of the pH gradient, but depends only on the external pH.
These data is consistent with the influence of pH in the
ionization state at which the anionophore is incorporated into
the membrane, but does not affect the ionic transport itself.
To test this hypothesis, we compared the pH dependency
of the initial chloride efflux, J0, with the titration curve of
the EH160. The titration curve was constructed plotting the
ratio of absorbance measured at 502 and 474 nm of 20µM
EH160 against the pH of solvent buffer (Figure 7D, blue
circles). These data were fitted with the Henderson–Hasselbach
equation, yielding a pKA of 6.47 ± 0.05. This titration curve
can be superimposed with the plot of J0 vs. the external pH
(Figure 7D, pink squares), confirming that the pH dependence
of the anionophore-driven chloride efflux corresponds to the
ionization state of EH160. Noteworthy, in mammalian cells the
maximum quenching rate of the YFP fluorescence measured
at different extracellular pH can be easily superimposed to the
EH160 titration curve (Figure 7D, green diamonds), further
confirming the similarity of the behavior of EH160 in plasma
membranes and in model bilayers. Remarkably, the pKA values
estimated for the measurement of chloride efflux in LUV, 6.66

FIGURE 6 | EH160-driven chloride initial efflux, J0, measured from LUV with

450mM chloride in the internal solution, and 450mM nitrate in the external

solution. Different potassium concentrations at either side of the bilayer

resulted in a potential difference, Ψ , by the presence of valinomycin (0.5 ng/ml).

Symbols correspond to the mean values of, at least, three experiments, and

the bars are the standard error of the mean. The continuous line is the average

of all data, and the broken lines are the prediction limits with 95% confidence.

± 0.07, and influx of iodide in cells, 6.54 ± 0.19, are not
significantly different from the pKA yielded from the EH160
titration.

To further reinforce the idea that anion transport is not
coupled with proton (or hydroxide) transport, we measured
the EH160 induced chloride efflux in LUV with different pH
gradients, to observe the effect of the collapse of the gradient
with the proton carrier FCCP. In these experiments, 0.25µg/ml
of FCCP were added to the external solution before the
application of the anionophore (Figure 7E). The collapse of
the pH gradient, induced putative proton transport induced
by the FCCP, does not produce any significant chloride efflux;
then, application of the anionophore induced a measurable
chloride efflux corresponding to the external pH. Similarly, a
chloride efflux, correspondent to the external pH, is observed
upon application of EH160, but further application of FCCP
does not modify the chloride efflux time course (Figure 7F).
Application of FCCP will plausibly equilibrate the pH to values
near to the external pH, thus dissipating the pH gradient.
Similar results were obtained in experiments where the pH
gradient was dissipated with nigericin, that is another proton
transporter (data not shown). Thus, the lack of effect of this
action on the chloride efflux rules out the coupling of anion
transport and proton transport for EH160, confirming the
independence between the anion transport and the proton
gradient present.

Anionophore-Driven Transport in
Mammalian Cells
Since the ultimate objective of the characterization and further
optimization of the anionophores is to open the possibility to
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FIGURE 7 | Time course of the external concentration of chloride induced by the anionophore EH-160 was measured in LUV with 450mM internal chloride and

450mM external ions, in symmetric pH buffer (A) and asymmetrical pH buffer, varying either the external pH (B) and the internal pH (C), as indicated in the figure. The

application of the anionophore is indicated by the horizontal bar. (D) The initial influx rate measured in LUV, J0, at different external pH is represented by squares; the

maximum YFP-quenching rate, mQR, representing the iodide influx in FRT cells measured at different extracellular pH values, is pictured by diamonds. The ionic state

of EH160, expressed as the ratios of absorbances at 502 and 474 nm (circles) is also plotted against the pH. The three continuous lines are the corresponding best

fits of data with the Henderson-Hasselbach equation, normalized by the maximum and the minimum asymptotes. The time course of the external concentration of

chloride measured in LUV treated with the proton ionophore FCCP prior the application of EH-160 (E), or applying the proton ionophore FCCP after the induction of

chloride efflux by the anionophore (F), as shown by the horizontal bars.

use them in cells as therapeutic agents, we report the proof of
concept that this class of carriers is able to transport anions in
mammalian cells. Therefore, we have repeated the measurements
of anionophore-driven iodine influx and chloride efflux in
mammalian cells. The toxicity of EH-160 (TD50 = 7.1± 1.1µM)
is reduced respect to that of prodigiosin (TD50 = 2.9 ± 2.4µM).
Figure 8A shows the time course of the iodide quenching of
the YFP fluorescence, representing the influx of the halide into
the FRT cells. The iodide influx is clearly dependent of the
concentration of EH160. Similarly, a chloride efflux was observed
in HEK cells upon the application of the anionophore at different
concentrations (Figure 8C). Quantification of the chloride efflux
under these conditions was difficult because the removal of
chloride from the external solution modifies the membrane

potential and activates endogenous mechanism to maintain the
cell homoeostasis that partially hidden the signal of anionophore-
driven transport. It is, however, clear that EH160 induces halide
transport in living mammalian cells.

Interestingly, the transport capacity of the anionophore
also depends on the extracellular pH. Using both methods to
display the anion transport in cells, the fluorescent probe to
measure the iodide influx (Figure 8B), and the use of ISE to
evaluate the chloride efflux (Figure 8D), we observed that the
efficacy of transport increases as the extracellular pH is more
acidic, similarly as observed for the measurements in LUV. We
conclude that the transport properties of the triazole derivative
of prodigiosine in mammalian cells are similar to those observed
in LUV.
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FIGURE 8 | Anionophore-driven transport in mammalian cells. (A,B) show the time course of the iodide-sensitive YFP fluorescence, normalized by the initial

fluorescence [F(t)/F(0)], measured in FRT cells after the addition of 100mM iodide in the external solution. The decrease of the fluorescence, due to the quenching of

YFP fluorescence by iodide, represents the influx of the halide. Each trace is the average of three measurements. (A) Traces obtained with the treatment of cells with

different concentrations of EH160, at pH 6.6. (B) Different efficacy of 8.2µM EH160 at different extracellular pH. (C,D) represents the time course of the external

concentration of chloride on HEK cells perfused with different EH160 concentrations (C) and at different pH (D). Data was normalized by the maximum anion change,

1Cl−.

DISCUSSION

We have examined the properties of a prodigiosin-inspired

anionophore to characterize its anion transport properties.
A detectable chloride efflux was measured in LUV for

the 1,2,3-triazole heterocycle assayed, EH160 at micromolar
concentrations (Figure 1A). At equimolar concentrations, the

natural product prodigiosin showed a considerable higher

potency than EH160. Notably, the application of the anionophore
solvent, DMSO, does not induce any chloride efflux in LUV
(Figure 1A), confirming that the results reflect the anion
transport driven by the anionophore. The dose-response curves
for anionophores shown in Figure 2 further confirm that the
examined molecules are responsible for the observed chloride
efflux. These data indicated that EH160 in LUV exerts the half
of its maximum activity at 5.6µM (Figure 2B). This value is
two orders of magnitude higher than that we reported before
(Hernando et al., 2018). This discrepancy is due to the different
method employed to calculate this EC50 value. In our previous
work the dose response curves were empirically constructed
plotting the amount of chloride transported after a time interval
(300 s). This is an arbitrary time interval and this measurement
is useful to compare the potency of series of compounds. Here
we have obtained this EC50 value fitting the initial chloride flux
calculated according to Equations (1, 2). This is thus an absolute
measurement of the potency of the compound in the assayed

conditions. The main advantage of the triazole derivatives is
that they exhibit a reduced toxicity while retaining a remarkably
high transport activity. Prodigiosine is a highly toxic compound
(TD50 = 2.9µM), as reported in numerous studies (Manderville,
2001). Although it is likely that cytotoxicity account for some
of the intriguing pharmacological properties of this compound
it jeopardizes its potential application as CFTR replacement
therapy. The TD50 of EH160 is 7.1µM, that is, indeed, no
very different of the EC50 of 5.4µM. Although the difference
is small, it should be possible to optimize the anionophores
to obtain less toxic substances. In any case, to apply these
transporters for therapeutic uses, one have to consider also the
efficacy of the anionophores. The efficacy (maximum quenching
rate) of the iodide influx driven by the anionophore EH160 is
similar to the CFTR activated by applying 20µM forskolin and
10µM genistein in FRT cells (Hernando et al., 2018). Since
the CFTR activity of the CFTR transfected in the FRT cells is
more than 13-fold greater that expected in human bronchial
cells (Taddei et al., 2004; Moran et al., 2005; Kreindler et al.,
2009; Melani et al., 2010; Gianotti et al., 2013, 2016).Thus,
to induce an anion transport equivalent to that expected in
bronchial cells, it would be necessary to apply <0.5µM of
EH160, significantly increasing the width of the therapeutic
window.

Experiments were done with a very simple system, unilamellar
vesicles, to avoid the contribution of other anion transport
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mechanisms present in cells. Another advantage to use such
artificial system is the possibility to create large anion gradients,
up to 450mM, that improves the resolution of themeasurements.
Noteworthy, the phospholipid composition seems not to modify
significantly the transport capacity of the anionophores. We
cannot exclude, however, that mayor modifications in surface
charge or membrane viscosity could induce differences on
chloride efflux. We have also assayed the two most biological
relevant cations, sodium and potassium, and could not find any
difference on chloride efflux. Thus, we concluded that these
cations very unlikely contribute to anionophore-driven chloride
transport.

To better explain the EH160-driven transport we propose the
model presented in Figure 9, where the carrier incorporated in
the bilayer has three states, the free carrier, TH+, the carrier
bound to chloride, THCl, and the carrier bound to a second
anion, THA, for example nitrate, bicarbonate or gluconate. The
binding to the carrier occurs in the aqueous solution-bilayer
interface with the first order equilibrium constants KCl and
KA for chloride and the second ion, respectively. The internal
solution (in) has a high concentration of chloride and there is no
second anion; on the other hand, the concentration of the second
anion is high in the external solution (out), meanwhile chloride
is virtually absent. Thus, when the anionophore is on the internal
face of the bilayer, the binding of chloride and the release of the
second anion are favored, while the unbinding of chloride and
the binding of the second anion takes place on the outer face of

FIGURE 9 | Scheme of the mechanism of transport of anions across a bilayer

driven by the anionophore EH160. TH+, TCl, and TA are anion-free,

chloride-bound, and any other anion-bound forms of the EH160 transporter,

respectively. These three carrier forms are located in the aqueous

solution-bilayer interface, where they can reversibly bind anions, with a binding

equilibrium constant, KCl and KA, for chloride and the second anion,

respectively. Each anionophore form can diffuse across the hydrophobic region

of the bilayer with a rate constant α and β. The high chloride concentration at

the internal side (in), and the high concentration of a second permeable anion

(nitrate or bicarbonate) at the outer side (out), will produce a chloride efflux.

the bilayer. In this manner, as the anionophore diffuses across
the bilayer, a chloride efflux, as a result of the exchange with the
second anion, is established.

These three anionophore forms diffuse across the
hydrocarbon chains with rates of α and β. If we assume
that the bilayer is symmetric and homogeneous, for a given
carrier state, rate constants α and β are equivalent. However,
the diffusion of the carrier will be determined by the binding
state of the anionophore significantly. The diffusion rates
for the free carrier, TH+, are probably lower than for the
chloride bound form, THCl, or the THA form where A− is
a permeable anion as bicarbonate or nitrate. It is possible to
speculate that the energy barrier to cross the hydrophobic region
of the membrane is higher for the TH+ form, bearing a the
positive net charge (see Figure 1), than the complexes THCl

and THA. Complexed anions form a tightly bound ion par
with the carrier which is overall neutral, and undergoes the
diffusion across the hydrophobic environment easily. Thus, the
permeability of different anions will depend on both, the binding
equilibrium constant, and the diffusion rate of the anion-EH160
complex.

Comparing with permeable ions (chloride, nitrate,
bicarbonate), the impermeable anions, such as sulfate, phosphate
or gluconate, are characterized by a more stable interaction
with water, with a more negative hydration enthalpy and
Gibbs energy (Marcus, 1987, 1991). The structural study and
theoretical analysis of synthetic prodigiosines have shown that
anions bind the molecule in a groove formed by the three
N–H groups (Díaz de Greñu et al., 2011; García-Valverde
et al., 2012; Hernando et al., 2018). A similar binding of
anions was also described for analogs of the marine alkaloids
tambjamines (Iglesias Hernández et al., 2012; Hernando et al.,
2014). Accordingly, the difficulty to remove the hydration water
from these impermeable anions, and their larger molecular
volumes (Marcus, 1993) will contribute to reduce the affinity
of these anions for the carrier, and therefore the form THA

is virtually absent, abolishing the flux of these anions across
the bilayer. However, as long as electroneutrality conditions
are maintained, shunting the bilayer with a cation carrier, the
chloride flux is appropriately restored (Figure 5). Albeit, the
chloride efflux occurring in absence of counter-anion influx
(see Figure 5), when the THA state is not present, demonstrates
that the free, unbounded anionophore TH+, is able to diffuse
across the bilayer. At this point we could delineate the transport
mechanism of EH160 as a molecular carrier embedded in the
lipid bilayer. It should bind an anion at the bilayer interface
at one side, cross the bilayer, and release the anion at the
other side; the same mechanism occurs when the second ion
is transported in the opposite direction, closing the transport
cycle.

Interestingly, in the presence of external impermeable anions,
the time course of anionophore-driven chloride efflux favored
by valinomycin is not exponential, as described by equation
1, but becomes linear (Figures 5B,C). The exponential shape
of the chloride efflux curve is due to the depletion of the
anion from the LUV, that reduces the chloride gradient.
According to the Fick law, this results in the reduction of
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the anion flux (observed as the derivative of the time course).
Hypothetically the linear time course of the chloride efflux
is due to a shrinking volume of LUV, as the efflux of a
chloride ion should be accompanied with the efflux of a
potassium ion mediated by valinomycin (or protons through
FCCP), to maintain the electroneutrality. The result should
be a net solute lost, with the consequent water osmotic
withdrawal. These movements, within the measuring time
interval, would result in the maintenance of the concentration
of the solutes, and the consequent maintenance of the ionic
gradients.

In the model depicted in Figure 9 the movement of anions
facilitated by the EH160 carrier has been illustrated. According
to this scheme, EH160 is a reversible uniporter, and the direction
of the flux is driven by the chemical gradient. Conversely, due
to the fact that the measurements of the effect of prodigiosine
and its derivatives in cells have shown that they induce cellular
death accompanied with modifications of intracellular pH levels
(Ohkuma et al., 1998; Castillo-Avila et al., 2005; Seganish and
Davis, 2005; Díaz de Greñu et al., 2011; Gale et al., 2013; Cheung
et al., 2018), it has been suggested that this class of anionophores
are H+/Cl−-symporters. However, we have seen that the pH
influence of the EH160-transport activity is independent of the
H+ gradient (Figures 7, 8), but just on the ionization state
of the carrier (Figure 7D). Indeed, there is no modification
of the chloride efflux when the proton gradient is dissipated
using proton carriers like FCCP (Figures 7E,F) or nigericin (data
not shown). This is consistent with the conformational analysis
showing that the anion binding is favored by the protonated form
of a model prodigiosine (García-Valverde et al., 2012). Therefore,
amount of an active protonated carrier in the bilayer will be
determined by the pH in the external solution, which has a
several orders of magnitude larger volume, and will dominate
the equilibria in the three-compartment system formed by the
internal space, the external space and the bilayer.

To estimate the chloride exchange rate in LUV we have
to take into account the concentration of the anionophore in
the bilayer membrane based on the concentration of EH160 in
the aqueous solution. The average radius of the LUV, 47 nm,
and the bilayer thickness of 3.75 nm, were obtained by small
angle x-ray scattering (Baroni et al., 2014). It follows that the
bilayer volume per vesicle is 3.39 × 10−16 cm3. From the final
external chloride concentration, 1Cl ≈ 0.9mM, and the total
volume of the assay, 3.5 cm3 we can estimate the total number
of vesicles 1.61 × 1013, and the total bilayer volume in the
sample, 1.55 × 10−3 cm3. To estimate the concentration of
the anionophore in the bilayer, we used the water/n-octanol
partition coefficient as calculated by the computational chemistry
suite Marvin Sketch (https://www.chemaxon.com). It allows to
calculate the partition coefficient of ionized and non-ionized
species from the molecular structure (Viswanadhan et al., 1989),
taking into account the ionization at a given pH, and the effect
of the counter ion concentration. Thus, the n-octanol/buffer
partition coefficient for EH160 in 450mM NaCl (or KCl)
at pH 7.5 is Poctanol/buffer = 68.1 (logP = 1.83). Hence, for
an anionophore concentration of 1µM, we expect a bilayer
anionophore concentration of 6.62 × 10−8 moles cm3, that

corresponds to 6.18 × 1013 molecules of EH160 in the bilayers.
The initial chloride efflux expected for 1µM EH160 is 1.31 ×

10−5 M/s, that corresponds to a transport rate of 7.45 × 10−22

moles of chloride/s per anionophore molecule, that represents
449 chloride ions/s per anionophore molecule. It is important
to highlight that the efflux, and consequently the transport rate,
depends on the chloride gradient, that for LUV experiments is
∼450mM. In contrast, in mammalian cells, we could assume
that the chloride gradient is ∼120mM (≥30mM intracellular
and 150mM extracellular), therefore, the transport rate should
be scaled accordingly, resulting in 120 chloride ions/s per
anionophore molecule. These values are similar to the exchange
rates reported for other natural ion carriers in membranes, like
the bacterial sugar transporters 2 × 102 (Waygood and Steeves,
1980), or the sodium calcium exchangers 5 × 103 (Baazov
et al., 1999), but significantly lower than those characteristic
of ion channel transport (6 × 106-12 × 107; Hille, 2001). A
detailed calculation of the chloride turnover is presented as
Supplementary Material.

We assayed the anionophores in a cellular model to assess
whether anionophores could transport halides across the plasma
membrane. By using an iodide-sensitive YFP to monitor
the intracellular iodide concentration, we could demonstrate
that, as described for other small organic molecules such as
calix[4]pyrroles (Ko et al., 2014), tambjamines (Soto-Cerrato
et al., 2015), ortho-phenylene bis-ureas (Dias et al., 2018), and
bis-(p-nitrophenyl)ureidodecalins (Li et al., 2016), EH160 is able
to transport this ion through the cell membrane (Figures 8A,B).
The advantage of the iodide influx measurements is that
the ion gradient driving the flux is well-controlled in the
experiment. On the other hand, measurements of the chloride
efflux revealed difficult because cells regulate the intracellular
chloride concentration maintaining it low: in epithelium
chloride concentration is ≤30mM; in an experiment, when the
extracellular chloride is removed, the effective gradient is 15-fold
smaller that used in LUV experiments, and the efflux must be
proportionally smaller. On the other hand, the cell homoeostasis
implies a series of mechanisms that transport different ions,
including several chloride and bicarbonate transporters, that may
conceal a proper estimation of the anionophore- driven chloride
efflux. Nevertheless, we could demonstrate that anionophores
do induce chloride efflux in mammalian cells, with general
characteristics similar to those observed in LUV bilayers
(Figures 8C,D). Chloride efflux was observed when substituting
the extracellular chloride by nitrate.

Here we have complemented the data previously reported
(Hernando et al., 2018), designing a series of experiments useful
to understand the transport mechanism of triazol derivatives
of prodigiosine. These experiments demonstrate that these
anionophores could be used to promote chloride and bicarbonate
transport in cells, i.e., are good candidates to replace the defective
or missing CFTR in an attempt to design a new cystic fibrosis
therapy, as proposed for other anion transporters (Shen et al.,
2012; Valkenier et al., 2014; Li et al., 2016, 2017; Liu et al.,
2016; Dias et al., 2018). The analysis of anionophore-induced
anion transport in cells needs, in any case, to be extended,
studying the anionophore-induced ion transport in epithelial
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models, where the polarization of cells plays a fundamental role
on the directionality of ion transport, to find the best suited
compounds to become candidates for cystic fibrosis therapy.
Preliminary experiments on other prodigiosine and tambjamine
derivatives have shown that the properties of the anionophore
EH160 could be extended to other analogous compounds,
opening the possibility to design molecules optimized for clinical
development. This proof of concept represents an encouraging
promise for future developments toward a mutant-independent
cystic fibrosis therapy.
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