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Abstract The significance of the Schott four-momentum in the energy-momentum conservation account of 
a charged particle and its electromagnetic field is analyzed Periods with preacceleration and run away motion 
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1. Introduction 

The Schott energy-momentum is often neglected in treatises on electrodynamics However, 
it must be included in order to obtain a proper energy-momentum account for an accelerated 
charge and its electromagnetic field [1] 

Consider for example a freely falling charge moving vertically along a geodesic world 
line In this case there is no radiation reaction Hence a neutron and a proton falling 
vertically besides each other will proceed to move together Yet the proton radiates, but 
not the neutron. Where does the radiated energy come from ? What is the difference 
between the energy-momentum accounts of these particles ? 
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We shall here show how the Schott energy-momentum provides an answer to this 
question. It is also made clear that the Schott energy can be localised as a field energy 
which is found in the immediate neighbourhood of the particle. 

2. Electrodynamics of an accelerated charge 

The relativistic equation of motion of a particle with rest mass m0 and charge Q is the 
Lorentz-Abraham-Dirac equation [2-4] (the LAD-equation) and may be written 

F:'xt+r"=m0U", (2.1) 

where 

r'=lQ2(A»-A"AuU»), pa) 

and the dot denotes differentiation with respect to the proper time of the charge. The 
vector rff is called the Abraham four vector and may be written 

r»=y(v.r.r), (2.3) 

where r is the three-dimensional force called the field reaction force [5], and v is the 
ordinary velocity of the particle. The Abraham four vector may be written 

r>l=\Q2
y{v.g,g). (2 4) 

3 

Hence 

r = |Q 2 f f . (2.5) 

According to the relativistic Larmor formula, valid with reference to inertial systems, the 
energy radiated by the particle per unit time is 

a t - f o ^ A r - f o V (2.6) 

1/2 

where g = (AaAa ) is the proper acceleration of the charge. The radiated momentum 
per unit proper time is 

Pg=4LUfl. {2D 

From the equation of motion (2.1) we get the energy equation 

r v . F w ^ m 0 L f 0 - r ° = m 0 A - a - ^ ^ = ^ - / v . / ' , (2.8) 
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where Ek=(r-1)m0 is the kinetic energy of the particle. Note that the energy supplied 
by the external force is equal to the change of the kinetic energy of the charge when the 
Abraham four force vanishes [6]. Hence, it is tempting to conclude from the Abraham 
Lorentz theory, i.e. from eqs. (2.5) and (2.8), that a charge having constant acceleration 
does not radiate. This is, however, not the case. The power due to the field reaction 
force is 

^ d (2^ * \ «> dE* dER r = ̂ F o Q yVa|-<£ = - * * , dTl3"rV"]^-dT dT' <29> 

where ER is the energy of the radiation field, and we have defined the Schott energy, 

4Q2A-a = 4Q 2 ^ (2.10) 

Hence, in the case of constant acceleration, when the Abraham four-force vanishes, the 
charge radiates in accordance with Larmor's formula, eq. (2.6), and the rate of radiated 
energy is equal to minus the rate of change of the Schott energy. The energy equation 
may now be written 

-^-vFext^^:{EK^Es^ER)t (2.11) 

where Wext is the work on the particle due to the external force. 

Let Plxt be the momentum delivered to the particle from the external force. Then 

dPext/dT = F9Xt, and by means of eqs. (2.1), (2.2) and (2.7) we get, 

dPext c dU 2^,dA t . dPM dP* dPR 

*T" , '--" , 'df-3*l5r-»vJ-5f dT dT <2-12> 

Thus, according to eqs. (2.11) and (2.12) the momentum of the particle takes the form 

P" =Pjt}+Pgt (2.13) 

where 

P&=W> Pg^-l&A" (2.14) 

are the mechanical momentum of the particle and the Schott-momentum, respectively. In 
addition we have the momentum of the radiation field, which is not a state function of the 
particle. 
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3. Localization of the Schott energy 

The Schott energy was introduced in the electrodynamics of moving charges in 1915 as 
an "acceleration energy," EA = - Es, because, as stated by Schott, "it must be regarded 
as work stored in the electron in virtue of its acceleration" [7] This sounds somewhat 
mysterious, and does not give us any idea of what sort of energy the Schott energy is it 
vanishes for a charge instantaneously at rest, so one might wonder if it is some sort of 
acceleration dependent kinetic energy However since it vanishes for electrically neutral 
particles, this does not seem to be a natural interpretation 

In order to search for a more natural identification of the Schott energy we have 
investigated the energy of the electromagnetic field of accelerated charges [8] 

The field at a point of time 7 at an arbitrary point P in space originates from the 
particle at an earlier, retarded point 7Q The corresponding point PQ on the world line of 
the particle is given by R = c ( 7 - 7 Q ) where R is the distance from PQ to P Thus, the 
field which a charged particle creates at a certain point of time is later found on a spherical 
surface with center at the source point which is expanding with the velocity of light Such 
a spherical surface is called an eikonal 

The field of a particle may be written in terms of the field tensor as F " = F/n + Fy/ 

where F/" is the generalized Coulomb field, and Fffx is the radiation field The field 

component F/" decreases as 1/P2 and is independent of the particle's acceleration 

while the component F,/" decreases as 1/R and is of first degree in the acceleration 

According to Teitelboim [9] the energy-momentum tensor may be written as the sum of 

three symmetrical terms, F " = 7/," +7/;; +7,/'/, Here 7"/," is the energy-njpmentum 

tensor of the generalized Coulomb field, 7/;; the energy-momentum tensor due to the 

interaction between F/" and Fffx , and 7",,"/, is the energy-momentum tensor of the radiation 

field The tensors 7/" = 7/," +7/;; and 
Tir" ='"//'// a r e covanant divergence free outside 

the world line of the particle 
As an illustration the energy density may be written 

u^^[{Ei+Eii)2+(Bf+Bll)
2] = ull^ul(l^ul(tl^ul^ull (31) 

where u, =uu + U,,, is the "bound energy density" and uu = unil is the radiation energy 

density, 

" ' ' = ^ ( E ' 2 + S ' 2 ) ' " " - & ( * ' E / / + S ' B")f " / / / / = ^ ( E « + S / / ) 0 2 ) 

We have evaluated the bound four-momentum, P/' = Ffi +P/J,, in the total space outside 
the particle (which we consider to be a sphere of radius s in its rest system, / e a 
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Lorentz contracted sphere formed like an ellipsoid in the laboratory system) and found a 
remarkable property of the four-momentum, namely that it is a state function of the particle. 
With the charge concentrated at the midpoint of the ellipsoid, the result of the integration 
is 

Pf^moW-ZQiA^PS+Pf (3.3) 

where the rest mass mQ is introduced by the usual procedure of renormalization. This is 
just eq. (2.13). Hence, we have obtained an interpretation of the Schott energy-momentum 
as contained in the electromagnetic field of the particle. 

Rowe [10] has made a different partition of the bound energy-momentum tensor Tf" 
into two tensors that are divergence free outside the world line of the particle, T{N and 
Tf. Here T/'v is the Coulomb energy-momentum tensor Tff amplified with an interaction 
term, and T2

//V = T/'v -T{". Considering the field from a point particle Rowe notes that in 
spite of the fact that Tf and 72

//v are symmetical outside the particle, this is not the 
case at the particle. He then constructs corresponding tensors that are symmetrical also 
at the position of the particle by adding certain delta-function terms. They are called 

' 1new » ' 2new ' 

We have shown by direct calculation that the integral of the energy over all of space 
of type 1-new is equal to the Coulomb energy, and of type 2-new the Schott energy. 
Furthermore, the energy-momentum of type 2-new (and type 2) in the space outside K 
vanishes [8]. The energy of type 2-new inside K was found to be equal to Es with a 
contribution 2ES localized at the particle represented by the delta function, and a contribution 
- E s between the charge and an eikonal of arbitrary size. The energy of type 1-new contains 
an energy - 2 E S at the particle. Thus, the bound energy, which is the sum of energies of 
type 1-new and type 2-new, contains no Schott energy at the particle, only in the space 
outside the particle and inside the eikonal K. 

The Schott energy can now be localized in space. The surface K (which is spherical 
in the laboratory frame) may be chosen so small that it touches the charged particle 
(having a surface which is a Lorentz contracted sphere in the laboratory frame). This 
means that the Schott energy is field energy localized close to the charge. Assuming 
that the charged particle is spherical with a radius € in its rest frame it is Lorentz 
contracted in the laboratory frame. The radius of the smallest eikonal K is then 
T"TQI * r (1 + v ) * • In the case of an accelerated charge increasing its velocity the Schott 
energy is a sort of energy reservoir. The Schott energy gets increasingly negative for an 
accelerated charge increasing its velocity. Together with the work performed by the external 
force, it accounts for the increase of kinetic energy of the charge and the energy it 
radiates. 
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4. Preradiation and Schott energy 

The LAD-equation has two strange consequences [11-19]; pre-acceleration which is 
accelerated motion before a force acts, and run-away motion which is accelerated motion 
of a charge after a force which acted upon it, has ceased to act. 

It has been claimed that during a period of pre-acceleration, before a charge is acted 
upon by an extemal force, the charge will not emit radiation [20]. In this section we will 
review a recent demonstration we have given where it was shown that a charge emits 
radiation during a period of pre-acceleration and that the radiation energy then comes 
from the Schott energy which decreases during this period [21]. 

We shall consider a particle with charge Q and rest mass mQ moving in an inertial 
frame and acted upon by an extemal force of finite duration. The energy-momentum Pv of 
the particle and its field is 

PM+PS+PZ (4.D 

where 

P£ = )<HU*dr ( 4 2 ) 

is the 4-momentum of the radiation field. 

The LAD-equation can now be written 

F'^P" =mnU
v+F>!+PZ. (4.3) 

In the following we restrict ourselves to linear motion (along the x-axis). The equations will 
be simplified by introducing the rapidity of the particle, 

a = artanh v (4.4) 

Hence, 

v = tanh a, y - cosh a , yv = sinh a, 

dv dr dv v a ,A cx 
a = _ . (4.0) 

dt dt dr cosh a cosh3 a 

Uv = (cosh or, sinh a, 0, 0), Av = Uv = (a sinh a, a cosh a, 0, 0) (4.6) 

where d-aQl i.e. a is the acceleration in the inertial rest frame. The components of 

the mechanical-, Schott- and radiation four-momenta may then be expressed as 

m0U
v = m0 (cosh a, sinh a) (4.7a) 
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2 
ps = — Q 2 < i ( s i n h * . cosh <*) (4.7b) 

2 r 

PR=-Q2 J a 2 (cosh a, sinh a ) d r . (4 7c) 
—en 

Differentiation gives 

m0U
v = m0a(sinh or, cosh a) (4.8a) 

2 2 
P$ = -~Q2#(sinh #, cosh a)-~Q2d2 (cosh a, sinh a ) (4.8b) 

2 
P* = ~ Q 2 ^ 2 (cosh a, sinh a ) (48c) 

with the sum 

( 2 ^ 
Pv = mQUv + Pit + Pp = m0rir - - Q 2 a (sinh a, cosh a ) (4 9) 

In terms of the rapidity the Minkowski force eq. (4.3) reads 

Fv = (yvF, yF) = F(sinh a, cosh a). (4.10) 

The LAD-equation, pv = P*> f o r l>n^ar motion then takes the form 

2 
P=Wn<*--Q 2 £ (4.11) 

or 

F = m0(d-T0d) (4.12) 

where 

2 Q2 

is the time taken by a light signal to travel a distance equal to two thirds of the charged 
particle's classical radius. In the case of an electron r0 = 6,2.10~24s. Note that eq. (4.12) 
transforms into the non-relativistic equatton of motion when a is replaced by vand proper 
time by laboratory time [22]. Eq. (4.12) may be written 

(e-r/r°<*) = ——e-T<T° (4.14) 
dr '"o«o 
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Let r, and r2 be two points of proper time with r, < r2 and F a function of r such that 
F(r) = 0 for T<T2 and r > r2. Then the general solution of eq. (4.14) may be written 

, V o 
e - ^ ( r ) - / ^ i ^ W + q , (4.15) 

where C0 is a constant. For r > r2 the integral is zero, and 

a(r) = C0e
r/r°, i.e. a(r) = C0r0e

r/r° + consf. (4.16) 

When C0 * 0 this is a "run away" solution. The rapidity increases without any boundary, 

and the velocity approaches the velocity of light when r -+ <x>. From a physical point of 
view the "run away" solutions are not acceptable, so we put C0 = 0 which gives the 
following solution of eq. (4.14), 

d(T) = e-^)^e^dr'. ( 4 B 1 7 ) 
_ /77ft Tr\ 

The integral has the same value for all r < r, and is equal to zero for r> r2. For 
convenience we introduce the notation 

« " • ^ " " • d ' ' <««» 

We put cr(-oo) = 0 and get from eqs. (4.17) and (4.18), 

for r < r i > a = er/r°f(r i). a = r0e
r/rQf(rt) (4.19a) 

for r, < r < r2, d = er/r»f(r), a = r0e
r/r°f(r) + — fF(r')cfr' (4.19b) 

1 T* 
for r < r2, d = 0, er = a(r2) = —fF(r')dr'. (4.19c) 

Note that d- = 0 for r-cr, if f t r JsO. That is : there is no pre-acceleration if 

}F(r>" ' / r» dr' « 0 . 
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In order to discuss the energy and momentum of the particle and its field we consider the 
formulation (4.3) of the LAD-equation which is a conservation equation of energy and 
momentum in differential form. Let ra and r be two points of proper time with r < ra. 
Then according to eq. (4.3) 

jF'dr = A(m0U*) + AP£ + AF% . ( 4 2 0 ) 

For v = 0 the left hand side is the work done by the external force, and for v = 1 it is the 

delivered momentum. The A -symbols refer to the increments from ra to r . 

As seen from eq. (4.19a) the energies and momenta in the pre-acceleration period are 

given by eqs. (4.7) when we put a = a/r0. The integrals in eq. (4.17c) are then solved by 

introducing dr = r0da/a. From eq. (4.13) we have (2/3)Q2 = r0m0. We put ra = -oc 

and r <rv Due to the initial condition a(-w) = 0 we get 

A(m0U
v) = (Ew„(r), P(T)) = m0(cosha-1, sinha) (4.21a) 

jp^ = p*(T) = m0(a sinh a, -a cosh a) (4.21b) 

AP% = P£(T)^m0(-a sinhcr, ~COSha + 1, a cosh a- sinh a) (4.21c) 

where 

a^rQer/T°f(Ti) (4.22) 

This leads to 

A(m0U
v) + APV

S + APV
R = 0. (4.23) 

This equation says that the total increment of the energy and momentum of the system 
is zero, as it must be since the external force in the interval is zero. 

A simple illustration of the above results is obtained by considering the special case 

where F is constant. We then put g = F/m0 , and the solution (4.5) takes the form 

T<TV a = grr0e
(r~ri)/r° (l -e"(r7'r')/r°) (4.24a) 

r, < r < r2 , a = gr0(l~e ( r^> / r°) + g (r -r 1 ) (4.24b) 

r > r 2 , a=gf(r2~r1) (4.24c) 
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The rapidity a and its rate of change times r0 are shown graphically in Figure 1 The 

T 

corresponding curves for the work performed by the external force, W = [F°dr, the kinetic 

energy of the particle, the radiation energy and the Schott energy, as gtaen in eqs. (26), 
are shown in Figure 2. 

Figure 1. a is the rapidity of an electron and r0 is the time taken by a light signal to travel a distance 
equal to two thirds of the classical electron radius A constant force acts from the proper time r} = 0 to 

proper time r2=3r0 The electron, originally at rest, gets a motion (pre-acceleration) before the force 
acts 

-2 

Figure 2. The situation is the same as in Figure 1 The graphs show the kinetic energy E^, the radiated 
energy P% . the Schott energy Ps° and the external work W as functions of T/T0 Note that 
W = £ ^ + P£ + fly In the pre-acceleration period P% = E^ 
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In order to obtain some intuition about the quantities involved, we may refer to the 
figures, where we have put r2 - r, = 3r0, and the external force is due to the critical 
electrical field in air, E = 2, 4.106 V/m. Then for an electron, g = 4, 2.1017 m/s2 and 
gr0 =2,6.1(T6 m/s.. In ordinary units, where c is not taken to be 1, the factor gr0 in 
eq. (4.24a), say, should be replaced by gT0/c = 0,88.1(r14. Hence, according to eq. 
(4.24a) the rapidity in the pre-acceleration period is of the order 10~14, a(r,) = 0,84.KT14, 
r(r1) = ctanha(r1) = 2,5.1(T6m/s. To lowest order in a (the next order is of the 
magnitude 10-42) the expressions (36) for the changes of the kinetic energy and the 
Schott energy, and the emitted radiation energy in the pre-acceleration period reduce to 

Em = mo ( c o s h « - 1 ) * 2 m°a2 <4-25a> 

p° = -m0a sinha * -mQa2 (4.25b) 

P° = /7?0 (1 + a sinha- cosher) *-m0a
2 (4.25c) 

where a is given by eq. (4.24a). These expressions show that radiated energy is 
approximately equal to the increase of kinetic energy. 

5. Run away motion and Schott momentum 

Run-away acceleration seems to be in conflict with the conservation laws of energy and 
momentum. The momentum and the kinetic energy of the particle increase even when no 
force acts upon the article. The charge even puts out energy in the form of radiation. 
Where do the energy and the momentum come from ? 

We shall here show that the source of energy and momentum in run-away motion is 
the so-called Schott energy and momentum. During motion of a charge in which the 
velocity increases, the Schott energy has an increasingly negative value and there is an 
increasing Schott momentum directed oppositely to the direction of the motion of the 
charge. 

We shall consider a charged particle performing run aw«y motion along the x-axis. 
Introducing the rapidity a of he particle its velocity and acceleration may be expressed 
as 

v = — = tanh<*, y = ( l - V ) ~ 1 2 = cosh a, yv ^ sinha, (5.1) 

_ dv _ 1 dv _ a _d^ 
dt y dt cosh3 a' dr 

The Lorentz-Abraham-Dirac (LAD) equation then takes the form [23] 
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a - rQa = F/m0 , (5 2a) 

where F is the external force, and r0 = 2Q2/3m0 is the time taken by a light signal to 

travel a distance equal to two thirds of the charged particle's classical radius For an 

electron r0 = 6 , 2 10"2 4s Eq (5 2a) may be written 

1ry f mnrn 
(5 2b) 

For F = 0, / e for a free particle, the solutions of the LAD-equation are 

1) ar = 0, ie a-const, v-const (5 3a) 

which is consistent with Newton's 1 law 

2) a = /cer/r\ /c^O, le a * 0 (53b) 

This is the run away solution 

As pointed out by Dirac [4] a particle in state 1) or 2) will remain in that state as long 
as no external force is acting We shall here consider a particle which is at rest, / e in 

state 1), until it is acted upon by a force F(r) pointing in the positive x-direction, ;e we 

consider a solution of the LAD-equation without pre-acceleration The force is acting from 

^ to r2 For T>T2 the particle is again free 

According to the LAD-equation (5 2b) a is in the present case given by 

a(r ) = _ ^ W ) e - ' A ° d r ' (54) 

The integral vanishes for r > r,, which gives a = 0 (and a = 0 ) For T > T 2 the integral is 
independent of r and we get the run away motion eq (5 3b) If the integral limit - <x> in 
eq (44) is replaced by oo, pre-acceleration is introduced, and run away motion disappears 

In the following we examine eq (5 4) when the force F has constant value F 0 between 
r, and r2 , and is equal to zero outside this interval The solution of the equation of 
motion is then 

T<TV or=0, cr = 0, (5 5a) 

r< <r <r0, a -
r ~ r \ ' r \ hn / \ fnTn 1° 12-o „ = JL0 / r_,. \_if i !f i 
m0 mQ m0 mQ 

e (5 5b) 
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T2<T, a = — 
A77n 

e r°-e r° e \ a = iL(r r)_rofo 
1 m0 m0 

e r° - e r° e' (5.5c) 

Eq. (5.5b) shows a strange aspect of the motion. The quantity d contains two terms. 

The first expresses the relativistic version of Newton's 2 law, i.e. F0 = d(ymQv)/dt. However, 

the second term represents a run away motion oppositely directed relative to the external 

force F0, a highly unexpected mathematical result. According to eq. (5.5b) d and a are 

oppositely directed relative to F0 during the whole of the time interval r, <r < r2. 

At the point of time T-T2% 

*M~^-
mn 

TJZT.\ 

1-e '" (5.6a) 

a(r2) = 5" 
mn 

hzl* ̂  
r2 - f1 + f0 ~ r 0 e (5.6b) 

In order to simplify the expressions we let r2 - ^ -> 0 and F0 - • QO keeping the product 

(r2 - T^/FQ ss P constant. We then find the limits 

«(r2 ) = -P/nVo. i.e. a = -P/m0TQ, 

#(r2) = 0, i.e. v = 0. 

In this limit the external force is expressed by a S -function 

F(T) = S(T-TI)P 

(5.7a) 

(57b) 

(5 8) 

Putting r, = 0 we have the situation : For r < 0 the particle stays at rest. At r = 0 it is 
acted upon by the force 

F = S{r)P (5.9) 

giving the particle an acceleration oppositely directed relatively to the force and a vanishing 
initial velocity, 

a(0) = a 0 =-P /m 0 r 0 l v(0) = 0. (5.10) 
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According to eqs. (5.3) and (5.10) the motion is as follows 

r<0, a = 0, a = 0, (5.11a) 

r r 

r > 0 , a = a0er°, a = r0a0e
T° - r 0 a 0 . (511b) 

The run away motion for r > 0 is accelerated, and the velocity v = tanh a approaches 

the velocity of light as an unobtainable limit. 

Figure 3. The proper acceleration, a, the velocity parameter, a, and the velocity, v - tanh a , as functions 
of the proper time for a particle performing run away motion, starting from rest with positive acceleration 
The quantity r0 is the time taken by a light signal to travel a distance equal to two thirds of the particle's 
classical radius. 

The problem is to explain how this is possible for a particle not acted upon by any 
external force. It must be possible to demonstrate that the energy and momentum of the 
particle and its electromagnetic field is conserved, and find the force causing the 
acceleration. Of essential importance in this connection is the Schott energy and the 
Schott momentum. 
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Noting that d is the acceleration in the instantaneous inertial rest frame of the particle 

and that (2/3)Q2 =mor0 , we find the energies expressed by the rapidity utilizing, from 

eq (5.11b)t that d = a0 +a/r 0 . The kinetic energy of the particle is 

E/an =/r70(7-1) = /7?0(cosha~1). 

The radiation energy is 

(5.12) 

ER = - Q 2 jd2 cosh adr ~ m0(a sinh# + a0r0 sinhcr - cosher + 1). (5.13) 

The Schott energy (also called acceleration energy ) is 

2 
Es =-~Q2y4va = ~m0r0d sinh a = -m0 (a + a0rQ) sinh a . 

o 

The sum of the energies is constant and equal to the initial value zero. 

» rAo 

(5.14) 

Figure 4. The energies of a particle and its electromagnetic field while the particle performs run away 
motion, as functions of r/r0 . Here Ehn is kinetic energy, ER is radiated energy, and Es is Schott (or 
acceleration) energy 

Next we consider the momenta. The momentum of the particle is 

Pkin = m0?V = m 0 S i n h a • 
(5.15) 
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The momentum of the radiation is 

2 

EEriksen and 0 Gun 

PR = - Q 2 jet2 sinh adr = m0 (a cosh a + a0r0 cosh a - sinhar - a0r0). /g 1gv 

The Schott momentum (acceleration momentum) is 

2 2 
Ps =—Q 2 y A a = — Q 2 ^ cosh a = -m0(tf + a0r0 )cosh a. 

O %3 

(5.17) 

The sum of the momenta is constant and is equal to -moa0ro , which is the initial Schott 
momentum. 

> T/T0 

Figure 5. The momenta of a particle and its electromagnetic field while the particle performs run away 
motion, as functions of T/T0 . Here Phn is kinetic momentum, PR is radiated momentum, and Ps is Schott (or 
acceleration) momentum 

The forces which are responsible for the increase in the momentum of the particle 
(internal forces) are the following (for rectilinear motion in general): The radiation reaction 
force, 

r « = - ^ = -§Q 2 a 2 t anha , (5.18) 
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and the acceleration reaction force, 

dP« 
A dt 

= ~ Ps = ~Q2 (a + d2 tanh a). 
cosh a 3 v ' 

(5.19) 

The total field reaction force (also called the self force) is 

By means of eq. (5.11b) the forces are shown as functions of T/T0 in Figure 6. 

force VA r 

(5.20) 

™o/rc 

-"tA 

-»r/r, 

Figure 6. The forces due to the electromagnetic field of a particle acting on the particle while it performs 
run away motion, as functions of T/TQ . Here rR is the radiation reaction force, rA is the Schott (or 
acceleration) reaction force. Their sum is the field reaction force, r = T^ + / A • 

Eq. (5.18) shows that the radiation reaction force rR is a force that retards the 
motion, acting like friction in a fluid. The "push" in the direction of the motion is provided 
by the acceleration reaction force, which is opposite to the change of Schott momentum 
per unit time. This force is opposite to the direction of the external force, i.e. it has the 
same direction as the run away motion. 

There is a rather strange point here. W e have earlier identified the Schott energy as a 
field energy localized close to the charge [8]. Yet, in the present case the Schott 
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momentum is oppositely directed to the motion of the charge. This is due to the fact that 
the Schott energy is negative. Hence even if the Schott momentum has a direction opposite 
to that of the velocity of the charge, it represents a motion of negative energy in the 
same direction as that of the charge. 

In general the Schott energy is 

ES=-1Q2A° (5.21) 

and the Schott momentum is 

Ps-~Q2A (522) 

where (At A) is the four-acceleration of the particle. From the relation A = v.A we get 
Es = v . Ps It follows that for rectilinear motion v and Ps are oppositely directed when £ 
is negative. 

6. Non invariance of electromagnetic radiation 

The nature of electromagnetic radiation is still a mystery. The wave-particle duality is 
something which seems to transcend our intuitive understanding. The waves of 
monochromatic light have infinite extension, but a photon is thought of as something 
having an exceedingly minute extension with a smallness only limited by the Heisenberg 
uncertainty relations. 

Also thinking of electromagnetic radiation as a photon gas, and photons as a sort of 
objects which you can detect with your apparatus, it seems exceedingly strange to claim 
that you can make the object vanish just by changing your state of motion. On the other 
hand that claim does not sound so impossible if you think of electromagnetic radiation as 
waves. The waves are a state of oscillation of electric and magnetic fields moving through 
space with the velocity of light. Maybe they can be transformed away ? 

That should indeed be possible. Think of a uniformly accelerated charge, radiating out 
an electromagnetic power. Transforming to the permanent rest frame of the change the 
magnetic field vanishes. In this frame the charge does not radiate. 

Hence, saying that a charge radiates is not a reference independent statement. This 
conclusion has been arrived at in different ways by some authors. M Kretzschmar and W 
Fugmann have generalized Larmor's formula to a form which is valid not only in inertial 
reference frames, but also with respect to accelerated frames [24,25]. A consequence of 
their formula is that a charge will be observed to emit radiation only if it accelerates 
relative to the observer. Whether it moves along a geodesic curve is not decisive. A freely 
falling charge, /.©. a charge at rest in an inertial frame may be observed to radiate, and a 
charge acted upon by non-geodesic forces may be observed not to radiate. 
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Hirayama [26] has deduced a covariant version of Larmors's formula valid in uniformly 
accelerated reference frames. The significance of this formula in connection with energy 
momentum conservation of a charged particle and its electromagnetic field has been 
thoroughly analysed by Eriksen and Gron [27]. 

in the Rindler frame the non vanishing Christoffel symbols are 

n=g2*> rj^r^yx (6.1) 

The 4-velocity and the 4-acceleration of a particle moving along the x-axis are 

v»=$£- = y{\v,o,0)t y = (g2x2-v2)V2
 (6.2) 

dv" 
dr a" =^- + r^V=/ 

f 2 2v2^ 
a + grx 

x 

M2*.°,0) (63) 

where v = dx/dt and a = dv/dt. Transformation by means of eq. (3.5) gives the following 
4-velocity and 4-acceleration in the laboratory system. 

V - (gxv f , v \ 0,0), A" = (gxa\a\ 0,0) (6.4) 

Inserting v = a = 0 we find the 4-velocity and 4-acceleration of the reference particles in 
the Rindler frame 

u» = (1/gx, 0,0, 0), g" = (0,1/x, 0, 0) (6.5) 

The proper acceleration $ (with respect to an instantaneous inertial rest frame) is given by 

a2=alta" = >\>V\ i.e. 

a = /3grx|a + gr2x ( 6 6 ) 

For a particle instantaneously at rest at the point x = x1 we get 

a = 7^*i (67) 

where 1/x, is the proper acceleration of the point x = x r The difference a-1/x, will be 

denoted at a. We get 

a = a/g2x2 (8.8) 
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which may be interpreted as the acceleration of the particle in the Rindler system, 
measured by a standard clock carried by the particle. 

According to the analysis of Kretzschmar and Fugmann [24,25] the generalized Larmor 
formula as written out in a uniformly accelerated reference frame takes the form, 

P = l&(gxt)2# ( 6 9 ) 

We shall now consider a freely falling charge in the Rindler frame. It is permanently at 
rest in the inertial co-moving frame. Obviously it does not radiate as observed in this 
frame. But according to eq. (6.9) it radiates as observed in the Rindler frame. In order to 
understand this from a field theoretic perspective in a similar way as way obtained with 
reference to an inertial frame in section 3, we may again consider the Teitelboim partition 
of the field into an a generalized Coulomb field I and a radiation field II. Calculating the 
flow of field energy of these types out of the Rindler section we arrived in ref. 25 at, 

P, = -Q2g{v -gx,)[y2g(v ~gx,) + 2ax} (6.10) 

P / , = § Q 2 ( a V r ) 2 (6.11) 

The emitted energy per emission time is 

P = P,+Pu=^%[ax+r2g{v-gxi)]2
 ( 612) 

where 

ax = / ( a + g2x1-2v2 /x1)g2x1
2 (6.13) 

We now apply these formulae to the special case of a freely falling charge in the Rindler 
frame. Then the four acceleration vanishes, ax = 0, which gives 

P / = § Q W ( g X i - v ) 2 , P„=0 (6.14) 

In this case there is no emission of type II energy, only of type I. 

This example shows the inadequacy of the Teitelboim separation with respect to non-
inertial reference frames. In inertial frames radiation is associated with type II energy. 
However, as is seen from the present results, this is not the case in general. The separation 
in type I and II energy is based respectively on the vanishing and the non-vanishing of the 
four-acceleration of the charge, which means whether it is in free fall or not. The emission 
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of radiation, on the other hand depends upon the relative acceleration between the charge 
and the observer Only in an inertial frame does the vanishing of the four-acceleration 
mean that the charge is not accelerated relative to the observer It should also be noted 
that since there is a flux of type-l energy out of the Rindler sector, the type-l energy is 
net a state function of the charge in the Rindler frame, as it is in an inertial frame 

Following Hirayama [26] we shall now present, in a new way, a separation of the 

electromagnetic field energy in two types, Pf and Pu. making use of a modified acceleration 

called a1 We write ax = a* -A*, where A* is a quantity independent of a*, which is 

determined from the condition that there shall be no energy of the new type I emitted out 

of the Rindler system, P, =0 Inserting ax = ax + A* into eq (6 11) and selecting the 

term of second order in a* The result is 

P,i = *Q2(**/yf (615) 

Since the total transport of energy out of the sector is independent of the partition which 

is used, we have Pt =P-Ptl Hence, we get by means of eq (6 13), 

Pi =^—(2<x* +<*" +r29V-r292x^(A* +yZ9V-r292*,) (616) 
J y 

From the requirement that P, = 0 for all values of a* follows 

J*=y2g{gx,-v) (617) 

giving 

a*=a*-r2g(gx,-v) (618) 

and 

p / = o , Pn=P (619) 

Here ax is just the x-component of "the acceleration of the charge relative to the Rindler 
frame" found by Hirayama using Killing vectors 

The covanant expression of the vector is 

a" = a" - (gag
a f u* - g» - (gag

a f vpu*v>< - vag
av>' (6 20) 

Using eqs (6 2) and (6 6) we have in our case 

Ma)1/2=V*,. VpU^-ygx^ vag°=j*/x, (6 21) 
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and Hirayama's vector reads 

a,,a,..di^l{v.g>x;.o.o) (622) 

or, by means of eq (6 3), 

a>= / | a - ^ ] + 4 (v,92*?, 0,0) 
flfX1 

(6 23) 

It follows that (ax/rf ^g2xfa^1 which by means of eq (6 15) gives 

P = P„ =^Q2g2x?ay (6 24) 

for the field energy produced per coordinate time which leaves the Rindler sector 

It is easily seen that the Hirayama separation is a proper generalization of the Teitelboim 

separation to accelerated frames, which reduces to the latter in inertial frames To that 

end we describe the particle by the coordinate x = x1 - 1/g Then the corrdinate time for 

x = 0 is equal to the proper time Keeping x finite and letting g - > 0 we get the limits 

*i-*°q g^-VI, cfc^-dP+cfc2, / -^(l-v2) From eq (6 20) we then find that a" - * a ' 

and from eq (6 22) that P -» (2/3) Q\a" 

Calculating the bound energy in the Rindler frame we found that the total energy of the 
charge and its field is [26] 

0 = 0, + Un = ~Q2g + g2x?ymQ +ES+ER (6 25) 

The first term at the right hand side has no obvious physical interpretation The second is 
the mechanical energy of the particle The third term is the acceleration energy or the 
Schott energy, when the partition of the field is made according to the acceleration a", 

E«=-^Q2va* (626) 

E$ »s analogous to the Schott energy 

E^=~Q2VAX (6 27) 
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,n an inertial system according to the Teitelboim partition. The fourth term is the radiation 
energy in the a" -partition, 

£*=|Q2 jffVa/tf (6.28) 

By differentiation upon the proper time of the particle, i.e. d/dr = /(c//off1), we find the 
formula 

— (yg 2 x f ) = a fg2xf = -a r (6.29) 

by which the energy eq. (6.25) becomes 

dO ~ 
— = - m 0 a , + T 0 (6.30) 

where 

The quantity r0 is interpreted as a component of the Abraham vector in the Rindler 
frame. We will compare it with the time component of the corresponding vector p» given 
by Hirayama [25]. From his eq. (3.24) we get for the motion in the x-direction 

ro = | Q 2 W ^ ~ ^ / (6.32) 

Inserting 

we get 

3 " I' ""' m 

Vr, dat _a fl dat at 
vV>a',B-*!-rr>v a'~*+m ( 633 ) 

2 ~2 Id<*t v 
Fo=:3Q \d7~VtavCX ( 6 3 4 ) 

which is equal to r 0 as given by eq. (6.31). Thus for the Abraham vector in the Rindler 
frame we have 

r0=f0 = lL(Es+ER) (6.35) 
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Note that when r0 = 0 , the radiation energy is supplied by the Schott energy. This is 
quite similar to the corresponding case in an inertial frame. From eq. (3.2) in Ref. [8] we 

o T 

then have / > = — ( £ s +ER), where Es = {2/3)Q2AT and ER^^Q2 [AftA"dT . 

7. Conclusion 

Run away motion, or alternatively, pre-acceleration, is a consequence of the Lorentz-
Abraham-Dirac equation of motion of a charged, radiating particle. We have earlier 
considered the significance of the Schott energy-momentum in connection with energy-
momentum conservation during a period with pre-acceleration [21 J. In the present article 
we follow up with a corresponding analysis of run away motion. 

The run away motion is an accelerated motion that is induced by a force, but proceeds 
after the forced has ceased to act upon the particle. In the limiting case that the charge 
is given a blow of infinitely short duration, the run away motion makes the charge accelerate 
in the opposite direction to that of the blow. During the run away motion it radiates 
positive energy and a net momentum in the same direction as the motion seemingly in 
conflict with energy-momentum conservation. 

However the electromagnetic field of the charge contains an energy and a momentum 
called the Schott energy-momentum. The energy is increasingly negative during the run 
away motion, and the Schott momentum points in the opposite direction of the motion 
and has an increasing value. It represents a motion in the same direction as that of the 
charge, of a negative component of its electromagnetic field energy The sum of the 
kinematic-, radiation- and Schott energy-momentum is conserved during the run away 
motion. 

From the Lorentz invariance of Maxwell's equations follows that the existence of 
electromagnetic radiation is Lorentz invariant. The quantum mechanical photon picture of 
radiation suggests that its existence is generally invariant. However, the equations of 
classical electrodynamics imply that this is not the case. The existence of radiation from 
a charged particle is not invariant against a transformation involving reference frames that 
accelerate or rotate relative to each other. Even if a charge accelerates as observed in an 
inertial frame, it does not radiate as observed from its permanent rest frame. 

It has here been shown how this can be understood by making use of Hirayama's 
generalization of Teitelboim's separation of the electromagnetic field in a generalized Coulomb 
part and a radiation part. Also we have demonstrated that the energy of for example the 
vertically falling proton, mentioned in the introduction, comes from a reservoir of Schott 
energy, which becomes increasingly negative when an accelerated charge increases its 
velocity. 
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