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Abstract This paper presents an analysis of the target residues in aS - AgBr and 160 - AgBr interactions 
at 200 AGeV and 60AGeV respectively in terms of fractal moment by Takagi method and void probability scaling 
The study reveals a interesting feature of the production process In 1bO - AgBr interactions multifractal behaviour 
is present in both hemispheres and void probability does not show a scaling behaviour, but at high energy the 
situation changes In ̂ S - AgBr interactions for both hemisphere monofractal behaviour is indicated by that data 
and void probability also shows good scaling behaviour This suggests that a possible correlation of void 
probability with fractal behaviour of target residues 

Keywords Multifractality, monofractality, fractal dimensions, void probability, forward hemisphere, backward 
hemisphere, fluctuations 
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1. Introduction 
For scrutinizing multifractality in high-energy multiparticle production process, Hwa first 

suggested the fractonal moment method [1-3] These fractal moments, statistically known 

as frequency moments, were extensively used to investigate whether multiparticle possesses 

fractal properties [4-7]. The scaling property of fractal moment can also be interpreted in 

terms of fractal properties of particle density fluctuations. 

Apart from studying fractal properties of particle density fluctuations, the statistical 

counting variable, the scaled factorial moment is the main tool for detecting large dynamical 

fluctuations and investigating the pattern of fluctuation. 
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But the scaled factorial moment method has a common disadvantage - the experimental 
data sets do not show the linearity in a log-log plot of moment against bin size as 
expected from the mathematical formulations. This may be due to the fact that the assumed 
mathematical limit is not valid for the real experimental data where number of particles in 
each event is always finite. The difficulty has been overcome in Takagi Moment method. 

Now in high-energy physics the multiparticle production process is investigated 
extensively through the study of both fluctuation and correlation. The correlation can give 
direct information about the late stage of the reaction when nuclear matter is highly excited 
and diffused. Generally, two and three particle correlation are studied. But the multiparticle 
production in high energy collisions is one of the rare fields of physics where higher order 
correlation are directly accessible in their full dimensional characteristics under well 
controlled experimental conditions. Actual higher order correlations have been studied using 
UA1 data [8] and Na22 data [9] in terms of cumulant correlation function. However, the 
data on higher order correlation are scanty. In this context, it will be interesting to study 
higher order correlation through the void probability because that probability have some 
important features to make it very useful to study correlations of higher orders. Void 
probability is defined as the probability of occurrence of events with no particle in a 
specified region of phase space. The distribution of voids and multiplicity moments of all 
orders are known to be intimately linked, and the study of one can reveal information 
about the other. 

In an analysis on short range two particle correlation [10] it was pointed out that 
higher order cumulant correlation function could be expressed in terms of the two particle 
cumulant correlation function. This investigation has suggested that the two particle cumulant 
correlation function can be written in terms of the inclusive single and two particle densities 

Pi and Pi as C2(XV X2) = p2(X1f X 2 ) - p ^ X J p1(X2)[10]. The two particle reduced 
cumulants can be expressed as 

c2(X1,X2) = C2(X1,X2)/p1(X1)p1(X2). 

Further it was conjectured that the reduced cumulants of order greater than or equal 
to three could be expressed in terms of linked pairs of two particle cumulants. In general 
cN is thus proportional to the product of (N-1) two particle reduced cumulants summed 
over all permutations [10]. 

CN{XV*2 *N) = 4V S r i c 2 ( x " x y ) . (1) 
perm 

where AN is the linking coefficient of order N. Groth and Peebles [11-12] studying the two-
dimensional galaxy catalogs, proved the above scheme to be successful in describing 
galaxy-galaxy correlations. The same relation has been suggested independently by 
Mandelbrot [13] on the theoretical grounds. In multiparticle phenomenology the above 
linking scheme (linked pair ansatz) for the N particle cumulant correlation function is 
known as linked pair approximation. 
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If such a relation of linked pair ansatz holds good, the void probability will follow 
certain scaling relations. Hegyi [14] while investigating the void probability in pseudo rapidity 
space, found a scaling behaviour, which implies the validity of the linked-pair approximation. 

A good number of papers have been reported so far where a fractal study of pion 
spectra was performed. Also void probability study was also made with same data. However 
the detail investigation of fractality and void probability in case of target residues has not 
been attempted so far. 

In view of this in this paper we have investigated the fractal nature of target residues 
[Takagi's method] in the interactions initiated by 32S and 160 at an energy value of 200 
and 60 AGeV for full space, forward hemisphere and backward hemisphere separately in 
emission angle space. Also a study of higher order correlation through the void probability 
in the same interactions and also in the same space have been performed. The study 
reveals a possible correlation among the fractal nature and void probability scaling. 

2. Experimental details 

The data were obtained by exposing 200 AGeV sulphur beam and 60AGeV oxygen beam 
on llford G5 emulsion stacks at CERN SPS [15]. A Leitz Metalloplan microscope with a 
10X objective and ocular lens provided with a semi-automatic scanning stage is used to 
scan the plates. Each plate is scanned by two independent observers to increase the 
scanning efficiency. For measurement 100X oil-immersion objective is used. The measuring 
system fitted with it has 1 urn resolution along the X and Y axes and 0.5 urn resolution 
along the Z axis. 

Details of events selection criteria and classification of tracks can be found from our 
earlier communication [16]. 

For our present analysis we have considered 207 events in "S-AgBr interactions at 
200 AgeV [17] and 250 events of 60O-AgBr interactions at 60AGeV [18]. We have 
considered black tracks only because they represents the target residues. 

The emission angle (0) with respect to the beam direction are measured for each 
black track by taking the coordinates of the interaction point (X0, Y0, Z0), coordinates 
(Xv Yv Zj) at the end of the linear portion of each secondary track and coordinates (X0, 
Yi% Z) of a point on the incident beam. 

Nuclear emulsion covers An geometry and provides very good accuracy in the 
measurements of angles of produced particles and fragments due to high spatial resolution 
and thus, is suitable as a detector for the study of fluctuations in the fine resolution of 
the phase space considered. 

3. Method of analysis 

a. Multifracial moments using the Takagi method: 

The selected phase space interval of length x has been divided into M bins of equal size, 
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the width of each bin being 8x = x/M. Then the multiplicity distribution for a single bin is 

denoted as Pn(Sx) for n = 0, 1, 2, etc. where we assume that the inclusive particle 

distribution dn/dx is constant and Pn(5x) is independent of the location of the bin. n 

target residues, contained in a single event, is distributed in the interval xmin < x < xmax. 

The multiplicity n changes from event to event according to the distribution Pn(x), where 

x = ^ a x - xmin. If the number of independent event is Q , then the particle produced in 

those events are distributed in QM bins of size 8x. Let N be the total number of target 

associated slow particles produced in these Q event and naj the multiplicity of black 

particles in the fh bin of the ath event. 

The theory of multifractals [19,20] has been motivated to consider the normalized density 

Paj defined by Paj=naj/N. 

This is of course also true when N - »« . Then one has to consider the Takagi moment 

of order q as 

12 M 

Tq(8x) = \n%2P2 

a=1 y-1 

which behaves like a linear function of the logarithm of the "resolution" R(8x) 

Tq(8x) = Aq + Bq\nR(8x) 

where A and B are constants independent of Sx. If such a behavior is observed for a 

considerable range of R(Sx), a generalised dimension may be determined as 

Now evaluating the double sum of P* for sufficiently large Q, a linear relation is 

expected [21] 

\r\(nq) = Aq + (Bq+tynR(8x) 

While analyzing real data [22] it was observed [23] that plot of ln/nq \ against 8x 

saturates for large x region. This deviation may be due to the nonflat behaviour of dn/dx 

in the large x region. Takagi suggested that <n> would be a better choice of the "resolution" 

R(Sx) because dn/(n) is flat by definition. Choosing R(8x) = (n) one has 

\n(n(>) = Aq+(Bq + ̂ )\n(n) (3) 
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a simple linear relation between !„(„") and ln(n). This <..> symbol indicates averaging 
over events. The generalised dimension Dq can be obtained from the slope values using 
eq. (1). 

The case with q = 1 can be obtained by taking an appropriate limit [20]. The value of 
information dimension D, can also be determined from a new and simple relation suggested 
by Takagi 

(n In n) _ 

V^ + £ , ' n < n ) w 
where C^ is a constant. 

b. Scaled gap probability: 

For gap analysis in emission angle space the method enunciated by Hegyi [14] is followed. 
If Q{X) is the probability generating function for Pn(A0), 

0 ( A ) - £ ( 1 - A ) n Pn(A6) (5) 

n=0 

where Pn(A6) is the probability of detecting exactly n particles AO in region. 

Mueller [24] and White [25] proposed that the above equation can be expressed as the 
integral form of N particle correlation functions in a similar way to cluster expansion of 
statistical mechanics. In terms of the reduced factorial cumulant RN, 0(A) can be written 
as, 

(-AS)" -
Q(A) = exp v ' KK (6) 

A/=1 / V * 

With n is the average number of particles in Ad region, the probability of finding no 
particles in AO is related to the generating function through the relation 

PO(40) = O(A = 1). (7) 

The emission angle gap probability P0(Ad) can be used as a generating function 

0(A) for Pn [26, 27] as 

= t±!L(±]n PJA6). (8) Pn(A6)~ , . a - . 
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This equation expresses the relation between the n-particle and zero-particle probabilities 
in a region AG • This equation has been obtained by allowing only n to vary in P0(A0) 
and all other parameters of P0(A0) are taken to be fixed with respect to the n variation. 
This important feature of the gap probability was first emphasized by White and discussed 
in details by Balian and Schaeffer [28]. Another property worth noticing that PQ(A0) is 
symmetrically dependent on the hierarchy of correlation function. Besides serving as a 
generating function gap probability is also related to the probability Pn(A6) with n±o 
through various kinds of moments. P0(A6) can be written as an expansion in cumulants 
as 

A/-1 / V ' 

Thus gap probability fundamental relationship to all of the probabilities Pn(A0) 
Furthermore P0(A0) can provide a good discriminator between various theoretical models 
making predictions for higher order correlations. 

If the cumulant correlation functions satisfy the linked pair ansatz, then the reduced 
factorial moment takes the form 

KN = ANK^' (10) 

We can define a parameter X , with P0(A6) = exp( -n x), called the scaled emission 
angle gap probability. Thus 

X = -\nP0(A9)/n. (11) 

If the linking coefficient AN becomes independent of the collision energy and bin size 
[29, 30], X depends only on the single moment combination n K2 so that we can write 

A/=1 , V -

It is seen from equation (11) that for the poisson distribution n = - In P0. So X = 1. X 
therefore can be interpreted as the gap probability which normalizes out the contribution 
from totally uncorrelated particle emission. The overall shape of the scaling function for 
X < 1 is affected only by the clustering properties of the secondaries involving correlation 
from all the orders. This feature makes the scaled gap probability well suited to investigate 
the production of target residues and their structure in the emission angle space. 

Although expansion given in (11) is technically only valid for small values of n K2, the 
implication for clustering do extend beyond this. For large values of n K2. models with 
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different hierarchical amplitudes, AN gives different values of scaled 

n R2 increases the value of x gets smaller. 
gap probability x . As 

Results 

In the present case, we have considered emission angle as the phase space variables 
and we have analyzed the data of target residues produced in 32S - AgBr and 160 -
AgBr interactions at 200 AGeV and 60 AGeV respectively. 

For the analysis of Takagi moment method, the cosine of emission angle interval is 
divided into overlapping bins, whose size is increased symmetrically in steps of 0.1 around 
the central value 0 (zero) for full space, 0.5 for forward hemisphere and - 0 5 for backward 
hemisphere. Now for each bin we have calculated (nQ) with q = 2, 3, 4, 5 and (n In n)/(n) 
for all hemispheres of both the spaces in 32S - AgBr and 160 - AgBr interactions at 200 
AGeV and 60 AGeV respectively. Figure 1(a) and (b) represent the nature of variation of 

i » i • i » i 
-0 4-0 200020406081012141618 

In < n > 

(b) 

0 0 0 2 0 4 0 6 0 8 1 0 1 2 1 4 1 6 1 8 2 0 

In < n > 

(a) 

Figure 1. The dependence of ln(nq) on \n{n) for order q = 2, 3, 4 and (n In n)/(n) on ln(n) for order 

q = 1 for (a) in forward hemisphere and (b) in backward hemisphere for costf space in 32S - AgBr 

interactions at 200 AGeV 

In (nq) with ln(n) for q = 2, 3, 4, 5 and (nIn n)/{n) with \n{n) for forward and 
backward hemispheres for ^S - AgBr interactions respectively. Figure 2(a) and (b) represent 
the same for same hemispheres for 160 - AgBr interactions. 

Both (n In n)/(n) and In (n«) in 32S - AgBr and 160 - AgBr interactions exhibit a 

linear behavior as function of In (n). We have performed best linear fits to the data sets 

and using equation (1) and (2) we have calculated the values of generalized dimension Dq 
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Table 1 Parameters of Takagi moment analysis in cos0 space for ^ S - AgBr interaction at 200 AGeV 

Interaction Space Hemisphere D„ 

Full [31] 

32S - AgBr costf Forward 

Backward 

Table 2. Parameters of Takagi moment analysis in 

Interaction Space Hemisphere 

Full [31] 

160 - AgBr cosfl Forward 

Backward 

4 = 2 

84 

80 ± 03 

70 ± 04 

cosfl space 

Q = 2 

87 

78 ± 01 

79 ± 02 

Q = 3 

79 

80 ± 07 

70 ± 08 

for 16S - AgBr 

Da 

Q = 3 

83 

76 ± 02 

78 ± 04 

g = 4 

75 

80 ± 12 

70 ± 14 

interaction at 60 AgeV 

q = 4 

75 

74 ± 11 

77 ± 06 

given in Table 1 and Table 2 The information dimensions D1 is obtained using equation 
(3) The values are listed in Table 1 and Table 2 for 3 2 S - AgBr and 1 6 0 - AgBr interactions 
respectively. The values of D have been plotted against q in Figure 2(a) and (b) for 3 2 S -
AgBr and 1 6 0 - AgBr interactions respectively The results for full hemisphere in both 
interactions have given in our earlier work [31 ] 

* 4 

A q = 4 

i 

* 

T A 

i q = 3 

4 
A q = 2 

<n In n > / < n J 

0 0 0 2 0 4 0 6 0 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 
ln< n> 

(a) 

I » I ' 1 » I ' I ' » 

-0 20 00 2 0 4 0 6 0 8 1 01 2141 61 82 0 

ln<n> 

(b) 

Figure 2. The dependence of In (nqS) on In (n) for order q = 2, 3, 4 and (n In n)/(n) on In (n) for order 

q = 1 for (a) in forward hemisphere and (b) in backward hemisphere for cosO space in 16S - AgBr 

interactions at 200 AGeV 
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Both (n In n)/(n) and in(n' ) in all cases exh.bit a linear behavior as function of 
In (n) We have performed best linear fits to the data sets and using equation (1) and (2) 
we have calculated the values of generalized dimension Dq given in Table 1 and Table 2 
The information dimension D, is obtained using equation (3) The values are listed in 

1 5-

1 0-

0 5-

oo-

* 

•——1 » T ' 

i i 

' — l ' 1 

1 5^ 

1 OH 

0 5-

0 0 

2 3 

q 

(a) 

2 3 

q 

(b) 

Figure 3. The q dependence of generalized dimension Dq for (a) in forward hemisphere and (b) in 

backward hemisphere for cosfl space in 32S - AgBr interactions at 200 AGeV 

Table 1 and Table 2 for 32S - AgBr and 1 60 - AgBr interactions respectively The values 
of D have been plotted against q in Figure 4(a) and (b) and in 5(a), 5(b) and it is 
observed that the values of generalized dimension D decrease with the increase of order 

0 78-

0 77-

0 76-

0 75-

0 74-

( 

i l I 

i i 1 

i 

I • r1 • 1 
) 1 2 

r • • ' i ) ' 

• I 

X 5 

0 790 

0 785 

0 780 

0 775 

0 770 

q 
(a) 

Figure 4. The q dependence of generalized dimension Dq for (a) in forward hemisphere and (b) in 

backward hemisphere for cosfl space in 16S - AgBr interactions at 60 AGeV 
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q in full hemisphere for 32S - AgBr interactions but the same result has been observed 
for each hemisphere (full, forward, backward) in 1 6 0 - AgBr interactions. These results 
reflect the presence of multifractal geometry. 

Figure 5. Void probability scaling for (a) in full hemisphere (b) in forward hemisphere (c) in backward 

hemisphere for costf space in 32S - AgBr interactions at 200 AGeV 

But D gives a unique value for different orders of moments in forward and backward 
hemispheres in 32S - AgBr interactions which reflects the presence of monofractal geometry. 

Now we wanted to find the void probability P0. For that in emission angle space we 
have taken the centre at 0 (bin centre) for full space, 0.5 for forward hemisphere and -
0.5 for backward hemisphere. Then we have shifted the centre in steps of 0.001 units 
from 0 to 0.006 for each of the window sizes AcosO = 0.001, 0.002, 0.003, 0.004, 
0.005, 0.006 and separately found the void probability in each of the cases. 

We have calculated the single moment combination (fi K2) and scaled void probability 

(Xobs) for each of the bin centers and window sizes and plotted the values of the above 

in figure 5(a), (b), (c) and 6(a), (b), (c) for the 32S - AgBr interactions and 1 6 0 - AgBr 

interactions respectively. 

Moreover we assumed that the uncertainty in the measurement of emission angle 
does not introduce any systematic error in P0 values. On the same figures we have also 
shown the values of X obs obtained from two hierarchical models of galaxy clasterization 
represented by the outer solid line (negative binomial model) and inner solid line (minimal 
model). To show the scaling of the data points bounded by the two curves we have 
plotted the two theoretical models in the same figures along with the experimental points 
for full, forward and backward hemispheres in 32S - AgBr interaction and 1 6 0 - AgBr 
interactions respectively. 
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From the figure ,t « ev.dent that for forward and backward hemispheres in emission 
angle space in *S - AgBr interactions there are a nice scaling behaviour and we may 
say that void probability scaling holds good in the above two scases We have also 

1 2-

1.0-

0.8-

^0.6-

0 4 -

0.2-

0.0-

ml 

' • • " ^ ** » ' 

mi 

\ 
\ \ 

\ 

""^ •» »•""<—l 
0.01 0 1 1 

n k2 

(a) 

10 100 

0 0 

n k2 

(b) 

n k2 

(c) 

Figure 6. Void probability scaling for (a) in full hemisphere (b) in forward hemisphere (c) 

hemisphere for cosfl space in 1 6 0 - AgBr interactions at 60 AGeV. 

10 100 

in backward 

observed that void probability scaling is not seen in the full hemisphere in emission angle 
space of 32S - AgBr interactions and in the all hemispheres for the same space in 1 60 -
AgBr interactions. 

Therefore, from this study we have observed that in 1 60 - AgBr interactions multifractal 
behaviour is present in both hemispheres and void probability does not show a scaling 
behaviour. But at high energy the situation changes. In 32S - AgBr interactions in emission 
angle space for forward and for also backward hemisphere monofractal behaviour is indicated 
by that data and void probability also shows good scaling behaviour in that region. 

Thus we may conclude that this investigation reveals a possible correlation between 
fractality and void probability scaling in case of target residues in relativistic interactions. 
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