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Abstract : When a set of three states appears strongly coupled within the set but interacts very weekly with 
other states of the Hilbert space, these three states form a sub-Hilbert space and thereby, one can express the 
non-adiabatic coupling (NAC) elements in terms of adiabatic-diabatic transformation (ADT)/mixing angles obviously 
representing the same sub-space It has been possible to demonstrate that those explicit forms of the NAC terms 
satisfy the Curl equations - the necessary conditions to ensure the adiabatic-diabatic transformation in order to 
remove the NAC terms (could be singular also at specific point(s) or along a seam in the configuration space) in 
the adiabatic representation of nuclear SE and to obtain the diabatic one with smooth functional form of coupling 
elements among the electronic states. While formulating the extended Born-Oppenheimer (EBO) equations [J 
Chem Phys 124 074101 (2006)] for the ground adiabatic state, we demonstrate the necessity for the existence 
of zero Curls of the NAC terms and discuss briefly about their analytical validity at and around the conical intersection 
Considering a three state diabatic Hamiltonian, namely, the so called induced Renner-Teller model, we calculate 
the NAC terms and their Curls analytically, and explore the nature of these quantities, when the three states are 
either degenerate at a point or approaching to form three states degeneracy at the same point. 
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1. Introduction 

Since the relevant Schr6edinger equation (SE) of any molecular process - essentially 

governed by coulombic interactions, can provide enough accurate solutions, namely, 

the observables such as reactive/non-reactive cross sections or spectroscopic quantities, 

a major theoretical interest has been motivated toward the development of numerical 

algorithm to solve the SE, particularly, with the approximation arising from the Born-

Oppenheimer [1] and Born-Huang [2] treatment. On the other hand, it is well 
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established fact by now that even if a molecular process takes place on the ground 
state, the excited electronic states can affect the ground very strongly due to the 
presence of so called "non-adiabatic coupling" and therefore, the necessity of a 
rigorous theoretical treatment of any BO system has been well accepted. As soon as 
the electronic excitations are included in the molecular processes, the Hellmann-
Feynman theorem [3] predicts the presence of NAC terms with singularity in the 
configuration space and these singularities arise due to the fact that electronic states 
are degenerate at certain points or along a line (seam) in the configuration space [4] 

Though the existence of singularity in non-adiabatic coupling terms had been 
overlooked for a quite longer period of time, Longuet-Higgins demonstrated that such 
singularity destroys the single-valuedness of electronic wavefunction in many molecular 
systems and therefore, any dynamical calculations for the nuclei need to be performed 
with care. Herzberg and Longuet-Higgins' (HLH) [5] corrected the multi-valued electronic 
wavefunction by employing a complex phase factor, known as Longuet-Higgins' phase, 
in an ad hoc manner. In an alternative approach, Mead and Truhlar [6] incorporated 
a vector potential in the nuclear Hamiltonian to generalize the BO equation as a 
reminiscent of the complex phase factor treatment of Herzberg and Longuet-Higgins 
Kuppermann et al [7] and many others [8] evaluated the integral and differential 
scattering cross sections of H3 isotopic system, Adhikari et al [9] calculated the 
transition probabilities of a two arrangement channel pseudo Jahn-Teller model and 
clearly justify the effect of Longuet-Higgins' phase, also known as geometric phase 
(GP), on reactive/non-reactive transition probabilities leading to a demand to explore 
the origin of GP from first principles. 

Any first principle based theory based on BO treatment starts with the fact that 
slow-moving nuclei is distinguishable from fast-moving electrons in molecular systems 
and intends to introduce the BO approximation by neglecting the non-adiabatic 
coupling (NAC) elements. Since such approximation has been considered as 
independent of the eigenspectrum of the system, the ordinary BO equations are being 
frequently used for calculations even for systems with large NAC terms. On the other 
hand, even if the projection of the total wavefunction on the upper electronic state(s) 
are negligibly small at sufficiently low energies, the coupling terms arising due to the 
products between the singularly large NAC terms and the amplitudes of the excited 
state(s) wavefunctions could be finite in magnitude leading to the breakdown of BO 
approximation. Therefore, it is a matter of contemporary research how elegantly one 
can incorporate the NAC terms in the SE and perform the numerical calculations. 
Since the NAC terms appear in the adiabatic representation of SE with singularity in 
the configuration space, it is convenient to perform an unitary transformation to obtain 
the diabatic representation of those SEs, where couplings among the electronic states 
are slowly varying functions of nuclear coordinates and therefore, the dynamical 
calculations on the diabatic PESs are numerically accurate and stable. Such 
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transformation for a given sub-Hilbert space is guaranteed only when the NAC terms 
satisfy the so called Curl conditions. Moreover, the formulation of extended BO 
equations is possible only when the relevant Curls of the NAC terms are zero at and 
around the conical intersection (CI). Therefore, the Curls of the NAC terms is an 
,mportant aspect to explore in order to pursue the first principle based BO treatment. 

Baer et al [10-13] made the first attempts to carry out the first principle based 
BO treatment of two coupled electronic states as sub-Hilbert space and formulated a 
new set of two coupled BO equations by grafting the effects of NAC terms into the 
diagonal to obtain the single surface Extended Bom-Oppenheimer (EBO) equations. 
Varandas and Xu [14] demonstrated an alternative approach for the first principle 
based BO treatment of two state adiabatic nuclear SE by casting the NAC elements 
in terms of electronic basis functions angle (mixing angle), found the one-to-one 
correspondence among mixing [14], adiabatic-diabatic transformation (ADT) [15], and 
Longuet-Higgins' phase [5] angles and derived the single surface EBO equation in the 
vicinity of degeneracy. At the first time again, Baer et al [16] and Adhikari et al [17] 
had performed the BO treatment for any N (> 3) state coupled BO system in the 
adiabatic representation of nuclear SE, and formulated the EBO equations considering 
a model situation of the adiabatic Hamiltonian. This formulation does not have the 
scope to demonstrate (a) how the Curl conditions are being satisfied - a necessity to 
pursue adiabatic-diabatic transformation; (b) how the Curls could be, if at all, are zeros 
around Cl(s) - a necessary condition to formulate EBO equation. Sarkar et al [18,19] 
has performed a generalized BO treatment of any three coupled electronic states with 
a detailed analysis of Curl conditions and thereby, carried out adiabatic-diabatic 
transformation of nuclear SE, and finally formulated [18,19] EBO equations in terms of 
electronic basis functions/ADT angles. 

In this article, we briefly demonstrate the formulation of the explicit forms of the 
non-adiabatic coupling elements in terms of ADT angles by considering the validity of 
ADT condition for any three state sub-Hilbert space and how those explicit forms of 
the NAC terms satisfy Curl conditions, which ensures adiabatic-diabatic transformation. 
Since the NAC terms could be singular in the nuclear configuration space, it is a 
necessity to transform the adiabatic representation of SE to the diabatic in order to 
ensure accurate and stable numerical calculations. On the other hand, since the 
necessary condition to derive the EBO equations is the existence of a relation among 
the ADT angles implicating zero Curls at least around the CIs, we briefly mention 
about the analytical proof for the validity of such relations. With these theoretical 
background, we consider a diabatic Hamiltonian known as induced Renner-Teller 
model, analytically calculate the electronic basis functions, non-adiabatic coupling 
elements, and their Curl and divergence equations. The nature of all these quantities 
are being explored at the situation of three state degeneracy or when those states are 
approaching to form three state degeneracy. 



928 Biplab Sarkar and Satrajit Adhikan 

2. The theoretical background on the Born-Oppenheimer treatment of a three 
state sub-Hilbert space 

We present the outline of the first principles based BO treatment for any three state 
electronic sub-Hilbert space assuming the presence of conical intersection(s) anywhere 
in the nuclear configuration space. Since these three states are considered as either 
decoupled or approximately decoupled from the rest of the states of a molecular 
system, the BO expansion of the wavefunction for this subspace of the Hilbert space 
is given by : 

m*) = !>,(")£(*")> 0) 

where £/(e,n)s are the electronic eigenfunctions with nuclear coordinate dependent 
expansion coefficients, i/s,{ri)s subsequently termed as nuclear wavefunction and the 
sets of nuclear and electronic coordinates are defined as n and e, respectively. 

In the adiabatic representation of Schroedinger equation, the total electron-
nuclei Hamiltonian (H), the nuclear kinetic energy (KE) operator (f„) and the 
eigenvalue (u,(n))-eigenfunction (£(e,n)) equation for the electronic Hamiltonian 
(Ha(e,n)) are presented as : 

H = fn + He(e,n), 

n 2m £ "' 

H,(e.nK,(e,n) = ul(n}5,{*,n) (2) 

The BO expansion for the sub-Hilbert space of molecular wavefunction, y(n,e) [eq. 
(1)] and the total electron-nuclear Hamiltonian, He [eq. (2)] are substituted in the time-
independent Schroedinger equation, H*F(n,e) = EY^e), to obtain the following 
matrix representation of adiabatic nuclear SE : 

£(H,y-E<5,y)^(n) = 0, / = 1, 2, 3 
H 

Hi-~(v2
+2^.7 + r»)+a l(n) i 

i» = (£/(e,n)|7|§;(e,n)), T» = (^(e.n^^e.n)) , 

(6(e,n)|£y(e,n)) = S, , (3) 

where r̂ 1) and rf] are the elements of non-adiabatic coupling matrices of the first 
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[TW] and second [r(2)] kind, respectively and for a given sub-Hilbert space, the two 
kinds of NAC matrices are related as : 

T ( 2 ) = T ( D . T ( 1 ) + W ( i ) j ( 4 ) 

leading to the following compact form of kinetically coupled nuclear equations : 

ft2 

2m (r+r)T+(iy-£)^=0, (5) 

where the adiabatic PES matrix elements are defined as Un = utSv with the NAC 
matrix [r(e r (1)j elements as, 

T = - T , 12 

^13 

M2 

l23 

O 
*23 (6) 

Since the three states constitute the sub-Hilbert space, i.e., the complete space, it is 
possible to transform ( V = AYd) the adiabatic nuclear SE [eq. (5)] to the diabatic one 
and the diabatic matrix equations are presented as below, 

- V 2 y d + (IV - EWd = 0, W = AtUA (7) 
2m 

under the condition: 
VA + TA = 0. (8) 

This equation is known as Adiabatic-Diabatic Transformation (ADT) condition [15]. The 
eq. (8) can ensure meaningful solution only when the chosen form of A matrix has 
the following features : (a) It is orthogonal at any point in configuration space; (b) Its1 

elements are cyclic functions with respect to a parameter, i.e., starting with an unit 
diagonal matrix, the chosen form of A matrix has to generate a diagonal matrix with 
even number (-1)s after completing the cycle. Since the model form of A has to be 
an orthogonal matrix and the ortho-normality conditions demand the fulfillment of six 
relations for a three-dimensional Hilbert space with nine elements, three independent 
variables namely Euler like angles of rotation [#12(n), fy3(n) and 0|3(n)], commonly 
called ADT angles, are the natural requirement to construct the three state A matrix 
by taking the product of three rotation matrices, >*12(^12), A^(0^t and A13(£13) and one 
of the ways of their product yields : 

A(012,023»013) = ^2 (^12) * 4 2 3 ( ^ 2 3 ) ^ 3 ( ^ 1 3 ) 

cos012cos013 cos0l2sin013 

. ^ . ^ . ^ sm012cos023 . 
-sin012sin013sin023 + sin012cos013 sin023 

- s i n 0 ^ 0 0 8 0 ! '13 

-cos012 sin013 sin023 

-sin013cos023 

COS012COS023 

-sin023 

-sin012sin013 

+ sin012 cos013 sin ^23 

COS01 3COS02 3 

(9) 
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When we substitute the above model form of A matrix [eq. (9)] and the anti-symmetric 
form of r matrix [Eq. (6)] in eq. (8), a simple manipulation brings the explicit 
expression of r matrix elements in terms of ADT angles : 

r12 = -17012 - sin023TO13 , (10a) 

r23 = sin012 cos023^013 - cos012F023 , (10b) 

r13 = -cos012 cos023W13 - sin012V023 . (10c) 

In a similar manner, if we replace the so called ADT angles [012(n), 013(/i), and 023(n)] 
by electronic basis functions angles, namely, mixing angles [a(n), P(n), and y(n)] in 
the ADT matrix, A [eq. (9)] and the columns of the A* matrix are substituted in eq 
(3) as electronic basis functions, we obtain the same set of equations for NAC 
elements [eqs. (10)] as functions of mixing angles and thereby, show the one-to-one 
correspondence among ADT and mixing angles. Since the ab initio calculation can 
provide the non-adiabatic coupling elements r12, r23 and r13 for a particular nuclear 
configuration and the solution of eqs. (10) are the ADT angles for the same nuclear 
configuration, one can construct the ADT matrix A and transform the adiabatic SE [eq 
(5)] to the diabatic equations [eq. (7)]. On the other hand, if we have the total 
electron-nuclear Hamiltonian of a molecular system in the diabatic representation, one 
can calculate the ADT matrix by diagonalizing the W matrix [eq. (7)] and thereby, 
obtain the NAC elements through eq. (8). 

At this junction, we may mention that the adiabatic-diabatic transformation 
guarantees the uniquely defined diabatic potential energy matrix in the configuration 
space only when the following Curl conditions of the NAC elements are valid. A Curl 
condition for each NAC element, rIJt has been derived [15] and proved to exist for an 
isolated group of states (sub-Hilbert space) by considering the analyticity of the ADT 
matrix A for a pair of nuclear degrees of freedom, 

Curl r f = ^ r « - i - r ? - ( T V ) , -<* p r% 

where p and q are in Cartesian coordinates with VD = — and V„ = — . 
p dp dq 

At present, for a given three dimensional sub-Hilbert space, we present that the 
explicit forms of the NAC elements in terms of ADT angles satisfy [eq. (10)] the Curl 
conditions, /.&, the difference between the cross derivatives of any two components 

[ 3 0 d p 
of a NAC element with respect to a pair of nuclear coordinates h r j T/y "~r Tn 

appears to be analytically equal with the corresponding element arising from the 
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difference of the products taken at different order between the component NAC 
matrices [(rqr% - (rpr<%] as below : 

Curlr# = [ T X T ] £ = -cosQ23fyqe23V^3 ~ V 2 3 V 1 3 ) (12a) 

Curlrg = [ r x r ] g = cos012 oosd23(y q0,2V ̂ y3 -Vp0,2VQ013) 

-sin01 2 sin023(V7Q0237p013 -Vp023Vq0,3) 

+ s\no,2<yqo,2vpe23 -vpe,2vqe23) (12b) 

Curlr™ = [ T X T ] ^ = sin012 cos023(^Q012V%013 -Vp0,2Vq0,3) 

+ cos012 sin023(V7Q023V7p013 -Vp023Vq0,3) 

-coso,2(vqe,2vpe23 -vpo,2vqe23) (12c) 

where the Divergence of Tifs [eq. (10)] are given by : 

divr12 = 2sin012 cos012 cos2 023O?013 V9A3) 

- 2 Sin 012 COS 01 2(^02 3 • V623 ) - 3 COS2 012 COS 023^13 ' ̂ 2 3 ) 

+ sin2 012 cos 0230^013 TO23) - sin023V2013 - V2012 (13a) 

div r23 = 2 sin 012 sin 023 cos 023(7013 >V013) 

+3cos012 cos023OP012 •V
r023) + 3sin012(7e12 -7023) 

+ sin 012 sin 023(7013 - Vd^) - sin 012 cos 023V2012 - cos 012V2023 (13b) 

divr13 =2sin01 2 sin023 cos 023(7012 -TO12) 

+3sin012 cos023(F012 -701 3)-3cos01 2(701 2 ^ a ) 

-cos01 2 sin023O7013 •702 3)-cos01 2 cos02372013 -sin01 27202 3 . (13c) 

Since V6Hs and in general, V2dfj$ are non-zero around the conical intersection, the 
Divergence of the vector field (rv) are non-vanishing for any arbitrary values of ADT 
angles and therefore, the vector field may show up non-zero Curl [20,21]. On the 
other hand, as the non-adiabatic coupling terms may show up singularity (pole) in the 
configuration space, such vector fields could be resolved into irrotational (longitudinal) 
and solenoidal (transverse) components [20,21]. The theory of electrodynamics reminds 
that the Curl of longitudinal part (of vector field) is zero but Curl of transverse part 
may or may not. The experimental observations on so-called solenoids may bring the 
argument that if the seams due to conical intersection are considered as infinitesimal 
narrow "solenoids", seams should produce zero field outside of them. On the contrary, 
the ab initio calculations [22,23] show the presence of non-zero r in the space around 
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the seams. Thus, it is an important issue to explore the nature of the Curls of the 

vector fields {rus) since the following section demonstrates-in order to carry out further 

theoretical development like the formulation of single surface EBO equation, it is 

necessary to know the nature of Curl T™ quantitatively, at least around the point/seam 

of CI, for a given sub-Hilbert space. 

While formulating EBO equation, we start from the adiabatic represerttation of 

SE [eq. (5)] with kinetic coupling terms, 

2m 
p+T)2¥+(U-Efr=0, Un=ufiv (14) 

and carry out an unitary transformation on eq. (14) by a matrix, G ( y = G<P), such that 
it leads to the following form : 

2/77 
(G t7G + /<tf)20 + (V-E)0=O, V^G^UG, /© = G t r a (15) 

where the eigenvalues {±ico) of the NAC matrix, r should be vectors in order to obtain 

physically meaningful (a scalar) Hamiltonian [eq. (15)] before one can impose the BO 

approximation, | V i | » | ^ , | , '' = 2,3, by considering the upper electronic states as 

classically closed at low enough energy, to formulate the single surface adiabatic 

nuclear SE (EBO) [16-19]. Since the straight forward diagonalization of r matrix [eq. 

(10)] gives scalar eigenvalues, 

/ T 1 2 ' T12 + T 23 ' T 23 + T13 ' T 13 

s ± 
901 12 

»P, \*P,) I dP, J { dP, J { a A J 

1/2 

Pi = x%ytz, (16) 

but the requirement of eq. (15) dictates that the eigenvalues (±ico) of r matrix must 

be vectors, the only possibility remains that the r matrix could be written as the 

product of a vector function, Vr)(r\ = 6n or 023 or 013) and a ADT/mixing angle 

dependent anti-symmetric scalar matrix, fl(012> $>3, #13)- It is quite easy to find from 

the elements of r matrix [eq. (10)] that if the following identities, 
[ V l2 , 

= 
. V12 J 

VJ~)JV£ p v 23 

V12 

23_ 

V&2 
for any pair of nuclear coordinates, namely, p and p are valid 
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at and around the degeneracy point, one can write, 

r= V8,2 

( 
l+sinfla 

I Via J 

sin012 

+ 0050,2 008023 

-1 -s in ft 23 
^ 1 2 

COS ft; 
vpu23 

-s in f t , cosft Jzs 1 ^ 1 2 J 

-sin0. 23 
^ 1 3 

\ \ 

^ 1 2 

-cos 012 cos 023 
r Y£R) 

-COS0, '12 

+sin012cos023 

1 ^ 1 2 

/vith eigenvalues, 

0, ± i(o and o> = V6n 1 + fv^ 
V«, V l 2 

+ 2 sin 023 V i a 
1/2 

(17) 

rherefore, we need to explore the validity of these identities, /.a, Curl rj* = Os [see 
?q. (12)] at and around Cl(s). Since the details of the proof to explore the validity of 
hese identities are demonstrated in our previous articles [18,19], a brief discussion 
)nly is being presented here. We consider one of the above such identities either in 
)olar or in Cartesian coordinates, where the ADT angles are assumed to be 
dependent, let say, on three nuclear coordinates and find its' nature by using the 
lacobian determinant for the transformation from Cartesian to polar, 

J(r,0,0) = 

dx 

dr 
dx 
de 
dx 
dd> 

dy 
dr 
dy 
de 
ay 
dd> 

dz 
dr 
dz 
de 
dz 
dd> 

sin 0 cos 0 

TCOS0COS0 

- r sin 0 sin 0 

sin 0 sin 0 

r cos 0 sin 0 

r sin 0 cos 0 

COS0 

- r sin 0| 

0 

(18) 
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or vice versa. If the origin of the coordinate system [r = 0 (x = 0, y = 0, z = o)] 
coincides with the point of conical intersection, various components of the Jacobian 
determinant vanishes at that point (CI) but the transformation remain valid with zero 
content at r = 0, along with dz/'d</> = 0 (also at r * 0), dy/d# = rsintfcos^ = 0, dz/do 
a -rsintf = 0, dy/dd = rcostfsin^ = 0. Even if the point of conical intersection(s) is 
away from the origin of the coordinate system, parametric representation for the vector 
equation of a conical surface predicts J{r,0) = 0, J(r,</>) = 0 and J{6,<p) = 0 at the 

singularity (CI) (see Appendix B of Ret. [18]). Thus, the quantities 
r V l 3 ^ 

[V« J 
= 

fv e \ 
[Via] 

fv e \ 

< q J 
appear either identically or approximately zero around the conical 

intersection, and we intend to rewrite eq. (15) as, 

2 2 

- — [(V + io>f<P ] - — [ (GV 2G<P -V 20) + {KOGWG^ - icoVQ) 

+(GV GimQ -V to<f>)] + [(V - E)4>} = 0, (19) 

where G is the transformation matrix that diagonalizes the anti-symmetric scalar 
matrix, g(8\2,0M,0n). For symbolic convenience, now onwards we shall replace G f as 
Gd and its' element ( G \ as (G<% (sG*). 

The /'-th BO equation can be written from the matrix equation [eq. (19)] as 
below, 

2m, k 
A- [<y + to)2*} - A- W GlV*vk - 5>2(G>„) + J i(o,GyWk 

- 2 >«/ (Gi¥*) + X GfkV (tkm¥k) - £ 7 (G*rkm¥m) 
km km 

+ [(V-EYPl=0. 

(20) 
We manipulate the eq. (20) by considering the following aspects : 
(a) Since the matrix representation of the ADT is given by, 0 = GdV, one can have 
the general identity 

V * = 4 - * * - £ T S - V ' , M = 1,2,3. (21) 

(b) The product, V<P, for the /-th equation can be rearranged as below, 

( V ^ - u ^ + JGfUiy-e/,)*,. / = 1,2,3. 
/-2 

(22) 
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(C) We impose the BO approximation, | V i | » K | , ' = 2,3 (considering that at low 
enough energy, both the upper electronic states are classically closed) in the eq. (20) 
to write the ground state EBO equation as, 

2m 2m [ Gu ) { Gu ) [ G* J 

+ ( l / , - 5 ) ^ = 0 . (23) 

If we now introduce the approximation namely the transformation matrix (G) elements 
are slowly varying functions of nuclear coordinates and then, the matrix (G) commutes 
with the gradient operator V, both eqs. (19) and (23) lead to the following approximate 
EBO equation [18] for the ground electronic state : 

(y + ioyfh + (u1-E)0 l=O, (24) 
2m 

where this equation [eq. (24)] with simple BO approximation becomes : 

^V^-E^O. (25) 

In the following sections, we explore the validity of the identities leading to zero Curl 
using an induced Renner-Teller type model, when the three states are either degenerate 
at a point or approaching to form three states degeneracy at the same point. At this 
junction, we remind that (a) since we start with a diabatic model Hamiltonian, the 
validity of Curl conditions are inbuilt but (b) the validity of zero Curls bring the 
Extended Bom-Oppenheimer (EBO) equation, on which one can carry out accurate 
calculation on the ground state EBO equation by taking into account the effect of 
upper PESs. 

3. The induced Renner-Teller type model 

Degenerate electronic states are the typical examples for the cause of failure of 
adiabatic (BO) approximation. In the case of linear molecules, the coupling among the 
vibrational modes of degenerate electronic states is known as Renner-Teller (RT) 
effect [24]. Such effect commonly arises due to an isolated 77 states of a molecule, 
namely, those 77 states show negligible interaction with other electronic states. This 
situation corresponds the well-known RT case of two interacting (n) states through 
vibronic coupling with quardatic terms. On the other hand, the interaction between the 
n states can be induced by a E state through a bending mode with linear coupling 
terms and thereby, demonstrate induced RT effect [25,26]. 

T2101 ~ 
Oofs' 

*3101 
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We consider two nuclear coordinates : the bending amplitude is denoted by a 

dimensionless normal coordinate, p and <f> is the vibrational azimuthal angle with 
respect to an arbitrary reference plane. These two coordinates can be termed as polar 
coordinates and related with Cartesian : x = pcos</> and y = pslnfi In the diabatic 
representation (more precisely, crude adiabatic basis), we locate the system at the 
reference geometry given by p = 0 and 0 = 0 {i.e., x = 0 and y = 0). When the 
nuclear vibration is assumed harmonic, the electronic Hamiltonian takes the following 
form after considering symmetry of the problem (RT system) within the first order 
expansion in p : 

HI-

1 i- 1 2 
1 En+-(op'i 

0 

Xp exp(-/0) 

0 

E„+^(op2 

Ap exp(ty) 

Xp exp(/0) 

Xp exp(-/0) 

Ez + - cop2 
1 2 

(26) 

where the frequency of the harmonic potential is co, En and Ex are the energies of the 
n and £ states at the equilibrium geometry and A is a coupling constant. 

The electronic Hamiltonian [eq. (26)] under the following unitary transformation, 

"-•is 
-i 

i 

0 

0 
0 

takes the following form in polar coordinates p and </> 

En+-iop2 

He=utm = En+-copz 

•Jz\p cos <t> 

->/2Apsin0 

•TiAp cos 0 ->/2Ap sin <f> Ez+- cop2 

(27) 

(28) 

where the kinetic energy operator of the nuclear motion is : 

^ col 1 3 d 1 3 2 A 

2{pdp dp p2d<l>2) (29) 

4. The non adiabatic coupling (NAC) elements and their Curl-divergence equations 

We obtain the analytic form of the NAC terms by analyzing the eigenvectors of the 
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potentially coupled diabatic Hamiltoman (He) [eq. (28)] matrix 

^ s i n ^ 

COS0 

v 0 

W+COS0 W_ COS 0} 

-w+son<p - tv_sin0 (30) 

with w± = 
V2 

[(E^En)^BXVf2±(E^En) 
-|1/2 

1/2 

1 

[(^-fnf+WV] 
ie, the energy gap parameter between the 77 and X states. 

The matnx S diagonahze the matrix He as 

[ , p ^ ^ + y 2 and A = 1(E£-En), 

S^HeS=V = 
(vno o <n 

0 V. 0 

0 0 V + , 

where the adiabatic potential energy surfaces are given by . 

1 _2 Vn=En+-0)p 

(31) 

(32) 

V±=l(E, + En) + ̂ (op2±, j(E£+En 
2 ^ 2 + 2Azp (33) 

Figures 1 (a)-(i) present adiabatic PESs as functions of the nuclear coordinate, p only 
(because surfaces are independent of 0) for various parametric values of the energy 
gap, 2A and coupling parameter, A. Though the polar radius, p% is defined either for 
positive or with negative values, figures are plotted for both values just in order to 
keep better views. For any non-zero values of the gap, 2 4 both the n states show 
degeneracy at p = 0 but split at p * 0 gradually with increasing values of A. On the 
other hand, as the gap decreases, the adiabatic surfaces tend to form degeneracy at 
a point. 

Considering the definition of non-adiabatic coupling elements of the first kind 
[eq (3)], the derivative couplings among the electronic states can be calculated as 

-vir 
S^VS* W+V0 

wV0 -W+VW„ + lrV_y lrV+ 0 

(34) 
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Figure 1. The three adiabatic potential energy curves as a function of p where (a), (b) and (c) are for A =1.0, 
o)«1.0 with A values 0.5,0.2 and 0.01, respectively. Figures 1 (d), (e) and (0 are for A = 0.5, to = 1.0 with values 
0.5, 0.2 and 0.01, respectively. Figures 1 (g), (h) and (i) are for A =0.1, to = 1.0 with A values 0.5, 0.2 and 0.01. 
respectively. 

where analytical forms of the p and 0 components (rp and r*) of the NAC elements 
are : 

0 

0 

-wypw. + wypw+ 

i 

0 

w+Vpw. - w.VpW, 

0 
0 

0 

0 
0 

-wypw. + wypw+ 

0 
wypw_-w_Vpw+ 

0 
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0 

0 

o - - 1 * 
>/2(42+2A2p2) 

1 AA 

>/2(42+2A2p2) 

0 

(35) 

and 

T * = -
f ° 

o 

r o -w+ -w_\ 
w+ 0 0 

w_ 0 0 

0 

w+^w_ - wV^w^ 

_L 

j _ 
V2 

1 + -

'42 
1+ 

|V2 

-|1/2 

1 -

(4^+2AV)J 

4 

(42+2A2p2)J 

0 

J_ 1- -
(42+2Azpz)J 

|V2 

|V2 

(4z+2A^pz)J 

(36) 

respectively. 

It is important to note that all the NAC elements, both their p or <p components, are 
independent of the nuclear coordinate, <p but depends on p along with the parameters, 
A and p. It appears that if the <t> components of the NAC terms are non-zero, 
invariably its' p components are zeros and vice versa, i.e., T?2 * 0, T ^ = 0, rf3 * 0, 
ris = 0, T ^ = 0, and r^ * 0, • Moreover, each NAC element shows singularity, 
namely, the denominator approaches to zero in a faster manner than the numerator, 
at p - * 0 under the condition A = a + p" with a = 0 and n = 1. Figures 2(a)-(i) 
display the non-zero components of the NAC elements as functions of p for various 
values of A and A. 
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Figure 2. The components of the non adiabtic coupling elements as a function of p where (a), (b) and (c) are 
the three NAC terms (rf2, rf3% and r£3.) for w- 1.0, ̂  - 1.0 with 4 = 0.5 (blue line), A = 0.2 (green line) and A * 
0.01 (red line). Figures (d), (e) and (f) are for k = 0.5, Figures (g), (h) and (i) are for X = 0.1, respectively. 

The Curl-Divergence equations for NAC elements are given by 

Curl T = 
1(± , d_ ) = ~(rPri-Vp) ri = K 

-V w Y p r r+ 

o 
o 

0 

0 
(37) 
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and 

AX2 

>/2(42+2AV)3'2 

A 
1 + 

^ 2 + 2 A 2 p 2 

>/2(42
+2A2p2)3'2 

A 
1 -

V42+2A2p2 

4A2 

>/i(42+2A2p2)3/2 

4 
1 + 

V42+2A2p2 

4A2 

x/2(42+2A2p2)3/2 

4 
1 -

V42+2A2p2 

(38) 

Divr = 

0 0 

0 0 

0 - ( i v + V > _ - i v . V > + ) 

w+V2w_ -w_V2lv+ 

0 

0 

0 

0 

0 

2>/2Al3p 

(4 2
+ 2A 2 p 2 ) 2 

0 

2A/24A3P 

(42+2A2p2)2 

0 

(39) 

Figures 3(a)-(i) present the Curl of NAC terms as functions of p for three different 
values of the parameters, A and L It is quite clear that as the gap between the n 
and I state, A, and the force constant, A, decreases, Curls of all the NAC elements 
approach to zero as functions of p. The analytical expressions of Curls of the NAC 
elements demonstrate that the Curls are zeros, namely, the numerator of the Curls 
approaches to zero in a faster manner than the denominator at p -> 0 under the 
condition A = a + pn with a - 0 and n = 4. Since rf2 and rf3 are independent of 
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Figure 3. The three Curl components of the NAC terms (Curlr12 (red), Curlr13 (green), and Curlr23 (blue)) as 
a function of where (a), (b) and (c) are for k = 1.0, w = 1.0 with A values 0.5,0.2 and 0.01, respectively. Figures 
(d), (e) and (f) are for X - 0.5, w = 1.0 with A values 0.5, 0.2 and 0.01, respectively. Figures (g), (h) and (i) are 
for A = 0.1, (o = 1.0 with A values 0.5, 0.2 and 0.01, respectively. 

(p and the corresponding p components, rf2 and rfg are zeros, the calculated 
divergence of these two elements are expected to be zeros. On the other hand, we 
find that the <p component of the NAC element, r^ is zero but its' p component, r£3 

is non-zero and therefore, the element shows non-zero divergence as shown in Figure 4. 

5. The NAC elements at three state degeneracy and formulation of extended 
Born-Oppenheimer equation 

When the gap, A, between the 77 and Z states is negligibly small or even at zero, the 
NAC matrices become : 

T^ = 

(0 
0 

10 

0 
0 
0 

°1 
0 

oj 
r' = 1 

1 
12 

1 
H 

1 

Viz 

1 ^ 

12 

0 

0 

(40) 
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Figure 4. The divergence of the NAC terms (divr23) as a function of p where (a), (b) and (c) are for A = 1.0, w 
= 1.0 with A values 0.5, 0.2 and 0.01, respectively. Figures (d), (e) and (f) are for A = 0.5, co = 1.0 with A values 
0 5, 0.2 and 0.01, respectively. Figures (g), (h) and (i) are for A = 0.1, co = 1.0 with A values 0.5, 0.2 and 0.01, 
respectively. 

or in Cartesian coordinates : 

tx = V x 0 

( 
0 

1 

'42 
1 

CIS 

1 

12 
0 

0 

11 
Tz 
0 

0 
) 

; r' = vr0 

f 
0 

1 
"V2 

1 

Cl2 

1 

IS 
0 

0 

1 

IS 
0 

0 

(41) 

Since the components of the NAC matrices commute with each other at the three 
state degenerate point, the total NAC matrix can be written as the product of a vector 
function and a scalar matrix, a condition to formulate EBO equation. The eigenvalues 
of the scalar matrix are 0 and ±i with eigenvector matrix (G) : 
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1 . 
— / 

2 
1 . 
— / 
2 

1 

"V2 

1 . 
— ; 

2 
1 . 
- / 
2 
1 

42 

42 

G= -y/2 ±i ±i (42) 

0 

Since the matrix G is constant at the point of degeneracy, it obviously commute with 
the operator V in eq. (23) and therefore, the EBO equation [eq. (24)] takes the 
following form in Cartesian coordinates : 

" I m ^ * + /Vx0)2+(Vy+f i7^ )2J4>1 + ( E n + i a , ( x 2 + y 2 ) - E ) ^ = 0 -

2m " x2+y*) 
V -i-JL y 2 2 . 

x + y J 
* i + 

( 1 p p ^ 
lEu + ^co(x2^y2)-E\ 

(43) 

(44) 

6. Summary 

Considering any three-state sub-Hilbert space as the complete one, we briefly present 
the generalized BO treatment assuming the validity of adiabatic-diabatic transformation 
condition, VA + TA = 0, where the chosen form of the transformation matrix (A) has 
to be orthogonal at any point in the configuration space and its' elements should be 
cyclic functions with respect to a parameter. We demonstrate how (a) the A matrix 
can be constructed by taking the product of six rotation matrices, (b) the same 
transformation matrix A under the ADT condition can provide the explicit expressions 
of the NAC terms, and (c) the explicit form of Curl-Divergence equations for those 
NAC terms can be derived. The validity of Curl equation to ensure the ADT 
transformation leading to uniquely defined diabatic PESs and the proof of zero Curl at 
and around Cl(s), a necessary condition to formulate EBO equation, are being 
presented. In order to justify these theoretical advancements, we start with a diabatic 
Hamiltonian known as induced Renner-Teller type model, analytically calculate the 
electronic basis functions, non-adiabatic coupling elements, and their Curl and divergence 
equations. The nature of all these quantities are investigated at the situation of three 
state degeneracy or when those states are approaching to form three state degeneracy. 
Finally, we present the analytical form of EBO equation for a three state degeneracy 
at a point. 
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