

A minimum electrophilicity perspective of the HSAB principle

P K Chattaraj^{*} and S Giri

Department of Chemistry, Indian Institute of Technology, Kharagpur-721 302, West Bengal, India

E-mail.pkc@chem.iitkgp.ernet.in

Abstract : Some exchange reactions are studied, both at the gas and the solution phases, at the B3LYP/6-31+G(d) level of theory. The favourable direction of a reaction as dictated by the HSAB principle often produces the least electrophilic species. The average electrophilicity of the products is less than that of the reactants in most cases as would have been predicted by a minimum electrophilicity principle.

Keywords : DFT, electrophilicity, HSAB principle.

PACS Nos. : 31 15 Ew, 31.90 +s, 33 15 Ry, 34.50 Lf, 82 30 Cf, 82 30.Hk

1. Introduction

Several popular qualitative chemical concepts like electronegativity [1,2], hardness [3-5], electrophilicity [6] *etc.* have been introduced into the chemistry vocabulary to explain various aspects of chemical bonding and reactivity. Pauling [1] introduced the concept of electronegativity as "the power of an atom in a molecule to attract electron itself" which was later made use of by Sanderson [7] to propose his electronegativity equalization principle [7] which states that, "the electronegativities of all the constituent atoms in a molecule have the same value which can be expressed as the geometric mean of the electronegativity value of the associated isolated atoms". The concept of hardness was introduced by Pearson [3] in the context of his famous hard-soft acids and bases (HSAB) principle [8] which may be stated as, "hard acids prefer to coordinate with hard bases and soft acids prefer to coordinate with soft bases for both their thermodynamic and kinetic properties". Different organic reactions have been analyzed through the behaviour of molecules in terms of their electrophilic ('electron loving') and nucleophilic ('nucleus loving') nature originally proposed by Ingold [9].

Conceptual density functional theory (CDFT) [10] has been quite successful in

providing theoretical definitions of these qualitative concepts and the associated electronic structure principles. For an N-electron system with total energy E, the electronegativity (χ) is defined as [2]

$$\chi = -\mu = -\left(\frac{\partial E}{\partial N}\right)_{\nu(r)} \tag{1}$$

where μ and $v(\mathbf{r})$ are the chemical and external potentials respectively.

The hardness (η) of that system is defined as [5]

$$\eta = \frac{1}{2} \left(\frac{\partial^2 E}{\partial N^2} \right)_{v(r)}.$$
(2)

Parr et al [6(a)] have made use of the above definitions of χ and η to variationally obtain the following quantitative definition of the electrophilicity (ω), originally suggested by Maynard and coworkers [11],

$$\omega = \frac{\mu^2}{2\eta} = \frac{\chi^2}{2\eta}.$$
(3)

Attempts have been made to theoretically justify the electronegativity equalization principle [2] and the HSAB principle [12,13] as well as other structure principles. Another hardness related principle is the maximum hardness principle (MHP) [14] which may be stated as, "there seems to be a rule of nature that molecules arrange themselves so as to be as hard as possible". Owing to the inverse relationships between hardness and polarizability [15] (magnetizability as well) a minimum polarizability principle (MPP) [16] and a minimum magnetizability principle (MMP) [17] have been proposed.

It has been observed through the analysis of some selected molecular vibrations, internal rotations and chemical reactions that the electrophilicity ω often corresponds to a minimum value for the equilibrium configurations/conformations, stable systems and favourable processes [18]. To be precise, the change in ω associated with any physico-chemical process and attainment of an extremum may be analyzed through the following derivative :

$$\frac{\partial \omega}{\partial y} = \frac{\mu}{\eta} \left(\frac{\partial \mu}{\partial y} \right) - \frac{1}{2} \left(\frac{\mu}{\eta} \right)^2 \left(\frac{\partial \eta}{\partial y} \right)$$
(4)

where y may be a bond length (a stretching mode of vibration), bond angle (a bending mode of vibration), dihedral angle (internal rotation) or a reaction coordinate (chemical reaction). The extremal behaviour of ω would be dictated by that of μ and η . Note that if both μ and η attain their extremum (maximum or minimum) values for a given y, ω would also be an extremum at that point. It can be easily shown that the corresponding slopes of μ and η changes will be of opposite sign. According to the MHP [14] when

 μ remains constant $((\partial \mu / \partial y) = 0)$ and hardness gets maximized $((\partial \mu / \partial y) = 0)$ the system attains a stable state which corresponds to an extremal situation for ω which has been numerically verified to be a minimum for a stable state or a favourable process.

It has been shown that the HSAB principle is in conformity with the MHP [12,13,19,20] as well as the MPP [12(d),16(b)]. In the present work we would like to analyze whether the HSAB principle is compatible with a minimum electrophilicity principle (MEP).

2. Exchange reactions in the gas phase :

Ten selected exchange reactions are studied in the gas phase at the B3LYP/6-31+G(d) level of theory. The forward direction of the reactions are considered to be associated with the negative reaction enthalpy values [20] which coincide with that dictated by the HSAB principle. In fact these directions are shown to be favourable in terms of both ΔE and ΔH values. Required χ and η values are obtained through the following approximate formulas derived by using a finite difference approximation and Koopmans' theorem:

$$\chi = \frac{(IP + EA)}{2}; \quad \eta = \frac{(IP - EA)}{2}$$
(5)

$$IP \approx -E_{HOMO}; EA \approx -E_{LUMO}$$

$$\chi = -\frac{1}{2} (E_{LUMO} + E_{HOMO}); \quad \eta = \frac{1}{2} (E_{LUMO} - E_{HOMO}).$$
(6)

Table 1 presents different reactivity descriptors for the molecules present in the studied exchange reactions. As it is shown in Table 2, ΔE values are negative in all cases like the corresponding ΔH values. As prescribed by the MHP [14], $\Delta \eta$ values are positive [20] in all cases. Out of the four molecules involved in a reaction one with the least ω value often (two exceptions) lies in the product side and $\Delta \omega$ is negative in seven reactions. Three exceptions in the latter includes the two obtained in the former. In order to check whether the individual electrophilicity values change with the variation in the level of calculation we calculate the CDFT reactivity descriptors for HF and HCI (Tables 3 and 4) at various levels of theory which are then compared with other available data [20–23]. Wide variation in these values is easily discernible.

3. Exchange reactions in the aqueous phase :

Since most of the reactions were studied experimentally in the aqueous phase we analyze the selected ten reactions within the same level of theory in the aqueous phase as well. Table 5 presents various CDFT reactivity descriptors of all the molecules involved in those reactions. It is transparent that not only the numerical values change as we move from the gas phase to the solution phase the qualitative trends also get

Molecule	IP (eV)	EA (eV)	Energy (<i>E</i> , au)	Electronegativity (χ, eV)	Hardness (η, eV)	Electrophilicity (<i>w</i> , eV)
LiH	5.3228	1.3164	-8.082	3.3196	2.0032	2.7506
LiF	7.6142	1.4772	-107.435	4.5457	3.0685	3.3671
LiCI	6.8907	1.6897	-467.800	4.2902	2.6005	3.5390
LiBr	6.5440	1.7319	2579.330	4.1380	2.4060	3.5583
NaF	6.5334	1.8669	-262.186	4.2001	2.3333	3.7804
NaCl	6.2733	2.1036	-622.564	4.1884	2.0848	4.2073
KF	5.9106	1.4827	-699.799	3.6966	2.2139	3.0861
KCI	5.6918	1.7801	-1060.180	3.7359	1.9559	3.5681
KBr	5.4782	1.8070	-3171.710	3.6426	1.8356	3.6143
HF	11.4513	-0.9883	-100.443	5.2315	6.2198	2.2001
HCI	9.1828	0.4702	-460.798	4.8265	4.3563	2.6737
HBr	8.4541	0.8321	-2572.310	4.6431	3.8110	2.8284
H₂	11.808	-2.7234	-1.176	4.5423	7.2658	1.4198
H₂O	8.6871	-0.6773	-76.423	4.0049	4.6822	1.7128
CH3F	9.6544	-0.2892	-139.751	4.6826	4.9718	2.2051
CH₃SH	6.5818	0.2547	-438.701	3.4183	3.1636	1.8467
CH₃SCH₃	6.0719	-0.1200	-478.018	2.9760	3.0960	1.4303
SiH₄	9.6756	-0.0204	-291.886	4.8276	4.8480	2.4036
SıH3F	9.6821	0.6305	-391.194	5.1563	4.5258	2.9373
HOF	9.1317	2.2791	-175.541	5.7054	3.4263	4.7503

Table 1. Properties of the molecules involved in the exchange reactions (gas phase):

IP = Ionization potential; EA = Electron affinity.

Table 2. Exchange reactions (gas phase):

Reaction : 1	CH₃F+	CH₃SH =	CH₃SCH₃+	HF	ΔH =	-12.9000
Energy (E, au)	-139.7510	-438.7010	-478.0180	-100.4430	$\Delta E =$	-0.0090
Electronegativity (χ , eV)	4.6826	3.4183	2.9760	5.2315	$\Delta \chi =$	0.1067
Hardness (ŋ, eV)	4.9718	3.1636	3.0960	6.2198	$\Delta \eta =$	1.1804
Electrophilicity (ω , eV)	2.2149	1.8467	1.4303	2.2001	Δω =	-0.4312
Reaction : 2	LiCI +	NaF =	LIF +	NaCl	$\Delta H =$	-9.5000
Energy (E, au)	-467.8000	-262.1860	-107.4350	-622.5640	ΔE =	-0.0130
Electronegativity (z, eV)	4.2902	4.2001	4.5457	4.1884	$\Delta \chi =$	0.2438
Hardness (n, eV)	2.6005	2.3333	3.0685	2.0848	$\Delta \eta =$	0.2196
Electrophilicity (ω , eV)	3.5390	2.2038	3.3671	4.2073	Δω =	1.8316
Reaction : 3	LICI +	KF =	LiF +	KCI	$\Delta H =$	-10.0000
Energy (E, au)	-467.8000	-699.7990	-107.4350	-1060.1800	Δ <i>E</i> =	-0.0151
Electronegativity (χ , eV)	4.2902	3.6966	4.5457	3.7359	$\Delta \chi =$	0.2948
Hardness (η, eV)	2.6005	2.2139	3.0685	1.9559	$\Delta \eta =$	0.2099
Electrophilicity(ω , eV)	3.5390	3.0861	3.3671	2.043	$\Delta \omega =$	-1.2150
Reaction : 4	LiBr +	KF =	LiF +	KBr	ΔH ==	-10.5000
Energy (E, au)	-2579.3300	-699.7990	-107.4350	-3171.7100	ΔE =	-0.0160
Electronegativity (χ , eV)	4.1380	3.6966	4.5457	3.6426	$\Delta \chi =$	0.3537
Hardness (η, eV)	2.4060	2.2139	3.0685	1.8356	$\Delta \eta =$	0.2841
Electrophilicity (ω , eV)	3.5583	3.0861	3.3671	3.6143	Δω =	0.3369

Table	2.	(Contd)
-------	----	--------	---

lable 1: (Commercial)						
Reaction 5	LIF +	HBr =	LıBr +	HF	ΔH =	-10 8000
Energy (E, au)	-107 4350	-2572 3100	-2579 3300	-100 4430	$\Delta E =$	0 0280
Electronegativity (x, eV)	4 5457	4 6431	4 1380	5 2315	$\Delta \chi =$	0 1807
Hardness (η, eV)	3 0685	3 8110	2 4060	6 2198	$\Delta \eta =$	1 7463
Electrophilicity (ω , eV)	3 3671	2 8284	3 5583	2 2001	$\Delta \omega =$	-0 4371
Reaction 6	NaF+	HCI=	NaCl+	HF	ΔH =	-16 2000
Energy (E, au)	-262 1860	-460 7980	-622 5640	-100 4430	$\Delta E =$	-0 0230
Electronegativity (x, eV)	4 2001	4 8265	4 1884	5 2315	$\Delta \chi =$	0 3933
łlardness (η, eV)	2 3333	4 3563	2 0848	6 2198	$\Delta \eta =$	1 6150
Electrophilicity (w, eV)	2 2038	2 6737	4 2073	2 2001	Δω =	1 5299
Reaction 7	SıH₄+	HF =	SIH ₃ F+	H₂	$\Delta H =$	26 2000
Energy (E, au)	-291 8860	-100 4430	-391 1940	-1 1760	$\Delta E =$	-0 0410
Electronegativity (x, eV)	4 8276	5 2315	5 156295	4 5423	$\Delta \chi =$	-0 3605
Hardness (η, eV)	4 8156	6 2198	4 507881	7 2658	$\Delta \eta =$	0 7382
Electrophilicity (w, eV)	2 4036	2 2001	2 937287	1 4198	$\Delta \omega =$	-0 2466
Reaction 8	LiH +	HF =	LIF +	H ₂	Δ <i>H</i> =	-49 0000
Energy (<i>E</i> , au)	-8 0822	-100 4430	-107 4350	-1 1760	$\Delta E =$	-0 0858
Electronegativity (x, eV)	3 3196	5 2315	4 5457	4 5423	$\Delta \chi =$	0 5369
Hardness (η , eV)	2 0032	6 2198	3 0685	7 2658	$\Delta \eta =$	2 1112
Electrophilicity (w, eV)	2 7506	2 2001	3 3671	1 4198	$\Delta \omega =$	-0 1638
Reaction 9	HCI+	LIH =	LICI +	H ₂	Δ <i>H</i> =	-56 1000
Energy (<i>E</i> , au)	-460 7980	-8 0822	-467 8000	-1 1760	$\Delta E =$	0 0958
Electronegativity (χ , eV)	4 8265	3 3196	4 2902	4 5423	$\Delta \chi =$	0 6864
Hardness (η, eV)	4 3563	2 0032	2 6005	7 2658	$\Delta \eta =$	3 5067
Electrophilicity (w, eV)	2 6737	2 7506	3 5390	1 4198	$\Delta \omega =$	-0 4655
Reaction 10	HOF +	LIH =	LIF +	H₂O	Δ <i>H</i> =	-144 1000
Energy (E, au)	-175 5400	-8 0822	-107 4350	-76 4230	$\Delta E =$	-0 2358
Electronegativity (x, eV)	5 7054	3 3196	4 5457	4 0049	$\Delta \chi =$	-0 4744
Hard ness (η, eV)	3 3920	2 0032	3 0685	4 6822	$\Delta \eta =$	2 3554
Electrophilicity (w, eV)	4 7503	2 7506	3 3671	1 7128	$\Delta \omega =$	-2 4210

Table 3. Properties of HF molecule at different levels of calculation

Level	IP (eV)	EA (eV)	E (au)	χ (eV)	η(eV)	ω(eV)
HF/6-31G	17 1613	-5 6752	-99 983	5 7431	11 4180	1 4443
HF/6-31+G(d)	17 7303	-5 1960	-100 015	6 2671	11 4630	1 7132
HF/6-311+G**	17 7722	-3 1906	-100 053	7 2908	10 4810	2 5357
HF/6-31+G**	17 7466	5 2583	-100 024	6 2442	11 5020	1 6948
B3LYP/6-31G	10 2184	-1 2900	-100 404	4 4642	5 7542	1 7317
B3LYP/6-31+G(d)	11 4513	-0 9883	-100 443	5 2315	6 2198	2 2001
B3LYP/6-311+G**	11 5338	0 0522	-100 482	5 7408	5 793 0	2 8445
MNDO [®]				4 77	10 05	1 1320
Experimental ^b	16	6		5	11	1 1364

^ataken from Reference 20

^btaken from Reference 4(b) [Experimental values of ionization potential (IP) and electron affinity (EA) are used]

Level	IP (eV)	EA (eV)	E (au)	χ (eV)	η(eV)	ω(eV)
HF/6-31G	13.0352	-4.1691	-460.037	4.4331	8.6022	1.1423
HF/6-31+G(d)	12.9910	-2.3692	-460.061	5.3110	7.6802	1.8363
HF/6-311+G**	12.9903	-2.5243	460.095	5.2330	7.7573	1.7651
HF/6-31+G**	12.9895	-2.3790	-460.067	5.3053	7.6842	1.8314
B3LYP/6-31G	9.0691	0.1088	-460.776	4.5890	4.4801	2.3502
B3LYP/6-31+G(d)	9.1828	0.4702	-460.798	4.8265	4.3563	2.6737
B3LYP/6-311+G**	9.2190	0.3227	-460.834	4.7709	4.4482	2.5585
MNDO				6.04	6.96	2.6208
HF/6-31G(d,p) ^d					7.875	
B3LYP/6-31G(d,p) ^d					8.020	
HF/6-311G***					7.325	
B3LYP/6-311G***					7.475	
B3LYP/6-31++G**'					4.190	
B3LYP/6-31++G**'					6.675	
Experimental ^g	12.7	-3.3		4.7	8	1.3806

Table 4. Properties of HCI molecule at different levels of calculation.

^ctaken from Reference 20; ^dtaken from Reference 21; ^etaken from Reference 22; ^ltaken from Reference 23, ^etaken from Reference 4(b) [Experimental values of ionization potential (IP) and electron affinity (EA) are used] In the References 21–23, $\eta = (I-A)$, where I and A are vertical ionization potential and vertical electron affinity respectively, was used except for the value $\eta = 4.190$ where the frontier orbital energies were used. We have divided their numbers by 2 (*cf.* eq. (5)).

Table 5.	Properties (of the	molecules	involved	in the	exchange	reactions	(aqueous	phase)
----------	--------------	--------	-----------	----------	--------	----------	-----------	----------	--------

Molecule	IP (eV)	EA (eV)	Energy (<i>E</i> , au)	Electronegativity (χ, eV)	Hardness (<i>η</i> , eV)	Electrophilicity (<i>ω</i> , eV)
LiH	5.5786	0.0324	-8.133	2.8055	2.7731	1.4191
LiF	7.8770	0.2411	-107.486	4.0591	3.8180	2.1577
LICI	7.2985	0.2297	467.890	3.7641	3.5344	2.0043
LiBr	6.8498	0.2830	-2579.400	3.5664	3.2834	1.9369
NaF	7.8664	0.3004	-262.270	4.0834	3.7830	2.2038
NaCl	7.2006	0.3317	-622.650	3.7661	3.4344	2.0649
KF	7.6735	0.3102	699.870	3.9918	3.6816	2.1641
KCI	7.1083	0.3328	-1060.300	3.7206	3.3878	2.0430
KBr	6.6928	0.3652	-3171.778	3.5290	3.1638	1.9682
HF	11.216	-1.7716	-100.460	4.7223	6.4939	1.7170
HCI	9.0166	-0.0174	-460.810	4.4996	4.5170	2.2411
HBr	8.2816	0.4343	-2572.300	4.3580	3.9237	2.4201
H ₂	11.806	-2.7507	-1.175	4.5275	7.2781	1.4082
H₂O	8.6250	-1.0035	-76.429	3.8108	4.8143	1.5082
CH₃F	9.7874	-0.323	-139.750	4.7322	5.0552	2.2149
CH₃SH	6.6779	0.1804	-438.700	3.4291	3.2487	1.8098
CH ₃ SCH ₃	6.2646	-0.0805	-478.020	3.0920	3.1725	1.5068
SiH₄	9.4908	-0.1404	-291.890	4.6752	4.8156	2.2695
SiH ₃ F	9.4274	0.4117	-391.200	4.9196	4.5079	2.6844
HOF	8.9238	2.1398	-175.560	5.5318	3.3920	4.5107

IP = Ionization potential; EA = Electron affinity.

altered in some cases Details of these exchange reactions are provided in Table 6 The forward directions are depicted as in Table 2. For three reactions which were

Table 6. Exchange reactions (aqueous phase)

Table of Life 3						
Reaction 1	CH₃F+	CH₃SH =	CH₃SCH₃+	HF		
Energy (E, au)	-139 7500	-438 7000	-478 0200	-100 4600	$\Delta E =$	-0 0300
Electronegativity (χ, eV)	4 7322	3 4291	3 092	4 7223	$\Delta \chi =$	-0 3471
Hardness (η , eV)	5 0552	3 2487	3 1725	6 4939	$\Delta \eta =$	1 3625
Electrophilicity (w, eV)	2 2149	1 8098	1 5068	1 7170	$\Delta \omega =$	-0 8010
Reaction 2	LICI +	NaF =	LIF +	NaCl		
Energy (E, au)	-467 8900	-262 2700	-107 4860	-622 6500	$\Delta E =$	0 0200
Electronegativity (χ , eV)	3 7641	4 0834	4 0591	3 7661	$\Delta \chi =$	-0 0223
Hardness (η, eV)	3 5344	3 7830	3 8180	3 4344	$\Delta \eta =$	-0 0650
Electrophilicity (ω , eV)	2 0043	2 2038	2 1577	2 0649	$\Delta \omega =$	0 0144
Reaction 3	LICI+	KF =	LIF +	KCI		
Energy (E. au)	-467 8900	699 8700	-107 4860	-1060 2550	$\Delta E =$	0 0190
Electronegativity (2. eV)	3 7641	3 9918	4 0591	3 7206	$\Delta \gamma =$	0 0237
Hardness (n. eV)	3 5344	3 6816	3 8180	3 3878	$\Delta n =$	-0.0103
Electrophilicity (a, eV)	2 0043	2 1641	2 1577	2 0430	$\Delta \omega =$	0.0323
Beaction 4	LiBr +	KF=	LIE+	KBr		0 0010
Energy (F au)	-2579 4000	-699 8700	-107 4860	-3171 7780	۸F=	0.0060
Electronegativity (x eV)	3 5664	3 9918	4 0591	3 5290	$\Delta \gamma =$	0 0298
Hardness (n, eV)	3 2834	3 6816	3 818	3 1638	$\Delta n =$	0 0167
Fiectrophilicity (ω, eV)	1 9369	2 1641	2 1577	1 9682	$\Delta \omega =$	0 0248
Beaction 5	1 (F +	HBr =	LiBr +	HE	20 -	0 02 10
Energy (F au)	-107 4860	-2572 3000	-2579 4000	-100 4600	۸F=	-0.0740
Electronegativity ($\gamma = V$)	4 0591	4 3580	3 5664	4 7223	$\Delta \gamma =$	-0 1283
Hardness (n eV)	3 818	3 9237	3 2834	6 4939	$\Delta n =$	2 0357
Electrophilicity (w. eV)	2 1577	2 4201	1 9369	1 717	$\Delta \omega =$	-0 9239
Beaction 6	NaF+	HCI=	NaCl+	HE	L (0 -	0 0200
Energy (F au)	-262 2700	-460 8100	-622 6500	-100 4600	۸E=	0 0300
Electronegativity (γeV)	4 0834	4 4996	3 7661	4 7223	$\Delta r =$	-0.0946
Hardness $(n \in V)$	3 7830	4 5170	3 4344	6 4939	$\Delta n =$	1 6284
Electrophilicity (ω eV)	2 2038	2 2411	2 0649	1 7170	$\Delta \omega =$	-0 6630
Reaction 7	SIH. +	HF =	SIH F +	н		0 0000
Energy (F au)	-291 8900	-100 4600	-391 2000	-1 1750	۸E-	-0 0250
Electronegativity (x eV)	4 6752	4 7223	5 5318	4 5275	$\Delta \gamma =$	0 6618
Hardness (n, oV)	4 8156	6 4030	4 5079	7 2781	$\Delta n -$	0 4764
Flectrophylicity (w. eV)	2 2695	1 7170	2 6844	1 4082	$\Delta \eta =$	0 1061
Reaction 8	1.44	HE-		H-	400 -	0.001
Fnerov (F au)		-100 4600	-107 4860	-1 1750	۸E=	-0.0680
Electronegativity (2 e)/)	2 8055	100 4000	4 0591	4 5275	Ar-	1.0587
Hardness $(n \in V)$	2 7731	6 4030	3 8180	7 2781	$\Delta n =$	1 8201
Electrophilicity (a) eV)	1 4191	1 7170	2 1577	1 4082	$\Delta \eta =$	0 4298
Beaction 9	HCI+	1.H=	LICI+	H.	40 -	0 4200
	-460 8100		-467 8900	-1 1750	٨F=	-0 1220
Electropedativity (2 eV)		2 8055	3 7641	4 5275	<u>A</u> <i>x</i> =	0 9865
Hardness (n, oV)	4 5170	2 7731	3 5344	7 2781	$\Delta n =$	3 5225
Electrophylicity (w, eV)	2 2411	1 4101	2 0043	1 4082	$\Delta \eta =$	-0 2477
Reaction 10	HOF	1.44-	2 0040	H_O	•	-02411
	-175 5600	_R 1330	-107 4860	-76 4290	۸F-	-0 2220
Electronenativity (2 eV/)	5 5318	2 8055	4 0591	3 8108		-0 2220
Hardness (n AV)	3 3020	2 0000	3 8180	4 8143	∴χ = ∧ n	-0 +0/5 2 4671
Flectrophilicity (m eV/)	J 5520	1 /101	2 1577	1 5082	Δη= Δω=	-2 2640
	4 5107	14131	2 (3/1	1 0002	110 =	-2 2040

* AH in kcal mole-1

energetically favourable in the forward direction in the gas phase, have become favourable in the backward directions in presence of water. All three reactions obey the MEP in the backward direction (now energetically favourable) whereas two of them follow the MHP. For the remaining seven reactions forward directions are energetically favourable and the MHP is valid in all cases while the MEP is not valid in two cases although the least electrophilic species lie in the product side.

4. Concluding remarks

Although there are marked variations in numerical values of different conceptual DFT based reactivity descriptors and also in their qualitative trends in some cases for the calculations in the gas and the aqueous phases using different levels of theories and basis sets, the favourable directions of the exchange reactions as dictated by the HSAB principle coincide in many cases with that from the maximum hardness and minimum electrophilicity principles.

Acknowledgments

One of us (PKC) thanks Professor S P Bhattacharyya for kindly inviting him to contribute in this special issue. Financial assistance from BRNS, Mumbai is gratefully acknowledged.

References

- [1] L Pauling The Nature of the Chemical Bond (3rd ed) (Ithaca, NY : Cornell University Press) (1960)
- [2] R G Parr, R A Donnelly, M Levy and W E Palke J. Chem. Phys. 68 3801 (1978)
- [3] R G Pearson J. Am. Chem. Soc. 85 3533 (1963)
- (a) Structure and Bonding Vol. 80: Chemical Hardness eds. K D Sen and D M P Mingos (Berlin . Springer) (1993); (b) R G Pearson Chemical Hardness: Applications from Molecules to Solids (Weinheim : Wiley-VCH) (1997)
- [5] R G Parr and R G Pearson J. Am. Chem. Soc. 105 7512 (1983)
- [6] (a) R G Parr, L v Szentpaly and S Liu J. Am. Chem. Soc 121 1922 (1999); (b) P K Chattaraj, U Sarkar and D R Roy Chem. Rev. 106 2065 (2006); (c) P K Chattaraj and D R Roy Update 1 of (Chem. Rev. 106 2065 (2006)) (2007) (In press)
- [7] R T Sanderson Science 114 670 (1951); R T Sanderson J. Chem. Educ. 31 238 (1954); R T Sanderson Science 121 207 (1955)
- [8] R G Pearson Hard and Soft Acids and Bases (Stroudsberg PA : Dowden, Hutchinson & Ross) (1973);
 R G Pearson Coord. Chem. Rev. 100 403 (1990); R G Pearson Chemical Hardness: Applications from Molecules to Solids (Weinheim : Wiley-VCH) (1997)
- [9] C K Ingold J. Chem. Soc. 1120 (1933); C K Ingold Chem. Rev. 15 225 (1934); C K Ingold Structure and Mechanism in Organic Chemistry (Ithaca, New York : Cornell University Press) (1953)
- [10] R G Parr and W Yang Density Functional Theory of Atoms and Molecules (New York : Oxford University Press) (1989); P Geerlings, F De Proft and W Langenaeker Chem. Rev. 103 1793 (2003)
- [11] A T Maynard, M Huang, W G Rice and D G Covell Proc. Natl. Acad. Sci. USA 95 11578 (1998)
- [12] (a) P K Chattaraj, H Lee and R G Parr J. Am. Chem. Soc. 113 1855 (1991); (b) P K Chattaraj and P V R Schleyer J. Am. Chem. Soc. 116 1067 (1994); (c) P K Chattaraj, B Gomez, E Chamorro, J Santos and P Fuentealba J. Phys. Chem. A105 8815 (2001); (d) P K Chattaraj and B Maiti J. Am. Chem. Soc. 125 2705 (2003); (e) P W Ayers, R G Parr and R G Pearson J. Chem. Phys. 124(19) 194101/1 (2006)

- [13] P K Chattaraj and P W Ayers J. Chem. Phys. 123 086101 (2005); P K Chattaraj, P W Ayers and J Melin Phys. Chem. Chem. Phys. 9 3853 (2007)
- [14] R G Pearson J. Chem. Educ. 64 561 (1987); R G Parr and P K Chattaraj J. Am. Chem. Soc. 113 1854 (1991); P K Chattaraj, G H Liu and R G Parr Chem. Phys. Lett. 237 171 (1995); P W Ayers and R G Parr J Am. Chem. Soc. 122 2010 (2000)
- [15] P Politzer J. Chem. Phys. 86 1072 (1987); P Fuentealba and O Reyes J. Mol. Struct. (Theochem) 282 65 (1993); T K Ghanty and S K Chosh J. Phys. Chem. 97 4951 (1993)
- [16] (a) P K Chattaraj and S. Sengupta J. Phys. Chem. 100 16126 (1996); (b) T K Ghanty and S K Ghosh J. Phys. Chem. 100 12295 (1996); (c) P K Chattaraj and S. Sengupta J. Phys. Chem. A101 7893 (1997); (d) P K Chattaraj, P Fuentealba, P Jaque and A Toro-Labbe J. Phys.Chem. A103 9307 (1999)
- [17] A Tanwar, D R Roy, S Pal and P K Chattaraj J. Chem. Phys. 125 056101 (2006); P K Chattaraj, T V S Arun Murthy, S Giri and D R Roy J. Mole. Struc. (Theochem) 813(1) 63 (2007)
- P K Chattaraj, S Gutierrez-Oliva, P Jaque and A Toro-Labbé Mol. Phys. 101 2841 (2003); E Chamorro, P K Chattaraj and P. Fuentealba J. Phys. Chem. A107 7068 (2003); R Parthasarathi, M Elango, V Subramanian and P K Chattaraj Theor. Chem. Acc. 113 257 (2005)
- [19] P K Chattaraj, D R Roy and S Giri Comp. Lett. A. D. Buckingham Issue (In Press) (2007)
- [20] D Datta Inorg. Chem. 31(13) 2797 (1992)
- [21] P Perez, A Aizman and R Contreras J. Phys. Chem. A106 3964 (2002)
- [22] P Perez, A Toro-Labbe and R Contreras J. Am. Chem. Soc 123 5527 (2001)
- [23] M Torrent-Sucarrat, M Duran and M Sola J. Phys. Chem. A106 4632 (2002)