

CRYSTALLOGRAPHIC COMMUNICATIONS



## 4-(4-Acetyl-5-methyl-1*H*-1,2,3-triazol-1-yl)benzonitrile: crystal structure and Hirshfeld surface analysis

## Julio Zukerman-Schpector, Cássio da S. Dias, Ricardo S. Schwab, Mukesh M. Jotani and Edward R. T. Tiekink

Acta Cryst. (2018). E74, 1195–1200



IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE

This open-access article is distributed under the terms of the Creative Commons Attribution Licence

http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.



electronic reprint

de São Carlos, 13565-905 São Carlos, SP, Brazil, <sup>b</sup>Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, <sup>c</sup>Department of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and <sup>d</sup>Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. \*Correspondence e-mail: julio@power.ufscar.br

The title compound, C<sub>12</sub>H<sub>10</sub>N<sub>4</sub>O, comprises a central 1,2,3-triazole ring (r.m.s. deviation = 0.0030 Å) flanked by N-bound 4-cyanophenyl and C-bound acetyl groups, which make dihedral angles of 54.64 (5) and 6.8 (3) $^{\circ}$  with the fivemembered ring, indicating a twisted molecule. In the crystal, the threedimensional architecture is sustained by carbonyl-C= $O \cdots \pi$ (triazoyl), cyano- $C \equiv N \cdots \pi$ (triazovl) (these interactions are shown to be attractive based on noncovalent interaction plots) and  $\pi - \pi$  stacking interactions [intercentroid separation = 3.9242 (9) Å]. An analysis of the Hirshfeld surface shows the important contributions made by  $H \cdots H$  (35.9%) and  $N \cdots H$  (26.2%) contacts to the overall surface, as well as notable contributions by  $O \cdots H$  (9.9%),  $C \cdots H$ (8.7%), C···C (7.3%) and C···N (7.2%) contacts.

#### 1. Chemical context

The 1,2,3-triazoles comprise an interesting class of heterocyclic compounds, with diverse applications in biological and material chemistry (Struthers et al., 2010; Bonandi et al., 2017; Dheer et al., 2017). In particular, 1,2,3-triazoles containing a carbonyl or carboxyl group in their structures have received considerable attention as they are found in a great number of biologically and pharmaceutically active molecules that exhibit a broad spectrum of properties (Shu et al., 2009; Morzherin et al., 2011; Cheng et al., 2012; Gilchrist et al., 2014). In this context, the organocatalytic cycloaddition reaction of organic azides with  $\beta$ -ketoesters,  $\beta$ -ketoamides, enones and allyl ketones has proven to be a powerful strategy for the synthesis of such class of compounds (John et al., 2015; Lima et al., 2015). Although much progress has been achieved, most of the available methodologies usually employ a homogenous catalyst, which can be difficult to recover. In view of environmental concerns, very recently, we reported for the first time, a heterogeneous strategy for the synthesis of 1,4,5-trissubstituted-1,2,3-triazoles through the 1,3-dipolar cycloaddition between aryl azides and active methylene compounds using CuO nanoparticles as catalyst in DMSO under microwave irradiation (Dias et al., 2018). The title compound, (I), was prepared in this study and despite having been prepared by another route in a different study (Kamalraj et al., 2008), no crystal structure is available. The availability of crystals in the latter study prompted the present structural analysis.

## 4-(4-Acetyl-5-methyl-1H-1,2,3-triazol-1-yl)benzonitrile: crystal structure and Hirshfeld surface analysis

Julio Zukerman-Schpector,<sup>a</sup>\* Cássio da S. Dias,<sup>b</sup> Ricardo S. Schwab,<sup>b</sup> Mukesh M. Iotani<sup>c</sup> and Edward R. T. Tiekink<sup>d</sup><sup>‡</sup>

<sup>a</sup>Laboratório de Cristalografia, Esterodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal

# OPEN O ACCESS



ISSN 2056-9890

Received 27 July 2018

Accepted 29 July 2018

Aberdeen, Scotland

edwardt@sunway.edu.my.

CCDC reference: 1859008

Edited by W T A Harrison University of

**‡** Additional correspondence author, e-mail:

**Keywords:** crystal structure: 1.2.3-triazol-1-vl: nitrile; Hirshfeld surface analysis; NCI plots.

Supporting information: this article has

supporting information at journals.iucr.org/e



#### 2. Structural commentary

The molecular structure of (I), Fig. 1, comprises an essentially planar 1,2,3-triazolyl ring with a r.m.s. deviation of the fitted atoms of 0.0030 Å; the maximum deviation of 0.0037 (9) Å is found for the N2 atom. A 4-cyanophenyl residue is connected to the 1,2,3-triazolyl ring at the N1-position and forms a dihedral angle of 54.64 (5)° with it, indicating a significant twist between the rings. By contrast, the acetyl group connected at the C2-position is approximately co-planar with the central ring, forming a dihedral angle of 6.8 (3)°. The dihedral angle between the phenyl and acetyl groups is  $60.82 (13)^\circ$ , indicating a dis-rotatory relationship. The acetyl-carbonyl group occupies a position approximately *syn* to the ring-bound methyl substituent with the C1-C2-C3-O1 and C4-C1-C2-C3 torsion angles being 6.2 (3) and -1.5 (3)°, respectively.

#### 3. Supramolecular features

The molecular packing of (I) features interactions involving both the five- and six-membered rings. Centrosymmetrically related molecules are connected via carbonyl-C=O··· $\pi$ (triazovl) interactions, Table 1. Further connections between molecules are of the type cyano-C $\equiv$ N $\cdots \pi$ (triazoyl) to the opposite face of the five-membered ring (Fig. 2, Table 1), which together lead to a supramolecular layer parallel to (101). The O··· $\pi$  or N··· $\pi$  separations for these interactions are significantly longer that the van der Waals' separations for these species (3.32 and 3.35 Å, respectively) but the noncovalent interactions plots (see below) indicate that they are weakly attractive in nature. Connections between the layers giving rise to a three-dimensional architecture are weak  $\pi$ - $\pi$ stacking interactions between centrosymmetrically related



#### Figure 1

The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

| Table | 1 |  |  |
|-------|---|--|--|
|-------|---|--|--|

 $\pi$ (Triazolyl) interaction geometry (Å, °).

Cg1 is the centroid of the N1–N3/C1/C2 ring.

| $D - H \cdot \cdot \cdot A$                   | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $C3-O1\cdots Cg1^{i}$ $C12-N4\cdots Cg1^{ii}$ | 1.21 (1) | 3.69 (1)                | 3.7359 (17)  | 83 (1)                               |
|                                               | 1.14 (1) | 3.68 (1)                | 3.8468 (19)  | 90 (1)                               |

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii)  $x - \frac{1}{2}$ ,  $-y + \frac{1}{2}$ ,  $z - \frac{1}{2}$ .

phenyl rings, with the inter-centroid separation being 3.9242 (9) Å; symmetry operation (i): 2 - x, 2 - y, 1 - z. A view of the unit cell contents is shown in Fig. 2. The specified and other weak intermolecular interactions are discussed in more detail below in *Hirshfeld surface analysis*.

#### 4. Hirshfeld surface analysis

The Hirshfeld surface calculations for (I) were performed in accord with related studies (Caracelli *et al.*, 2018) and provide information on the influence of other weak intermolecular interactions instrumental in the molecular packing. In addition to the presence of carbonyl-C= $O \cdots \pi$ (triazolyl) and cyano-C= $N \cdots \pi$ (triazolyl) interactions (Table 1) in the formation of three-dimensional architecture as discussed above, the molecular packing also features weak C-H···N interactions. On the Hirshfeld surface mapped over  $d_{norm}$  in Fig. 3, these interactions are characterized as the bright-red spots near the





A view of the unit-cell contents shown in projection down the *b* axis. The C=  $O \cdots \pi$ (triazoyl), C=N $\cdots \pi$ (triazoyl) and  $\pi$ (tolyl)- $\pi$ (tolyl) contacts are shown as orange, blue and purple dashed lines, respectively.

Table 2 Summary of short interatomic contacts (Å) in (I).

| Contact                                                | Distance                                  | Symmetry operation                                                                                                                                                                        |
|--------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H4C···H4C<br>H10···N3<br>H7···N4<br>H8···N4<br>C4···O1 | 2.39<br>2.48<br>2.58<br>2.53<br>3.208 (2) | $\begin{array}{c}1-x,1-y,1-z\\\frac{1}{2}+x,\frac{5}{2}-y,\frac{1}{2}+z\\-\frac{1}{2}+x,\frac{3}{2}-y,-\frac{1}{2}+z\\\frac{5}{2}-x,-\frac{1}{2}+y,\frac{3}{2}-z\\1-x,1-y,1-z\end{array}$ |

triazolyl-N3, cyano-N4 (Fig. 3*a*), phenyl-H8 and H10 atoms (Fig. 3*b*), and the diminutive-red spots near cyano-N4 (Fig. 3*b*) and phenyl-H7 (Fig. 3*a*) atoms. The influence of short interatomic  $C \cdots O/O \cdots C$  contacts involving methyl-C4 and carbonyl-O1 atoms (Table 2) is also observed as the faint-red spots near these atoms in Fig. 3*b*. The donors and acceptors of intermolecular  $C-H \cdots N$  interactions are also evident as the blue and red regions corresponding to positive and negative electrostatic potentials, respectively, on the Hirshfeld surface



Figure 3 Two views of the Hirshfeld surface for (I) mapped over  $d_{\text{norm}}$  in the range -0.065 to +1.215 a.u.

| Table 3                                                                   |
|---------------------------------------------------------------------------|
| Percentage contributions of interatomic contacts to the Hirshfeld surface |
| for (I).                                                                  |

| Contact                                         | Percentage contribution |
|-------------------------------------------------|-------------------------|
| HH                                              | 35.9                    |
| N···H/H···N                                     | 26.2                    |
| O···H/H···O                                     | 9.9                     |
| $C \cdots H/H \cdots C$                         | 8.7                     |
| $\mathbf{C} \cdots \mathbf{C}$                  | 7.3                     |
| $C \cdot \cdot \cdot N / N \cdot \cdot \cdot C$ | 7.2                     |
| $N \cdots N$                                    | 2.1                     |
| $C \cdot \cdot \cdot O / O \cdot \cdot \cdot C$ | 1.4                     |
| $N \cdots O / O \cdots N$                       | 1.4                     |

mapped over electrostatic potential shown in Fig. 4. Views of the immediate environment about a reference molecule within the Hirshfeld surface mapped over the shape-index property, highlighting intermolecular C=O··· $\pi$ , C=N··· $\pi$  and  $\pi$ - $\pi$  stacking interactions, are illustrated in Fig. 5.

The overall two-dimensional fingerprint plot for (I) (Fig. 6a) and those delineated into  $H \cdots H$ ,  $N \cdots H/H \cdots N$ ,  $O \cdots H/H \cdots O$ ,  $C \cdots H/H \cdots C$ ,  $C \cdots C$ ,  $C \cdots N/N \cdots C$  and  $N \cdots N$  contacts (McKinnon *et al.*, 2007) are illustrated in Fig. 6b-*i*, respectively; the percentage contributions from identified interatomic contacts to the Hirshfeld surface are summarized in Table 3. The short interatomic  $H \cdots H$  contact involving symmetry-related methyl-H4C atoms (Table 2) is viewed as the cone-shaped tip at  $d_e + d_i \sim 2.3$  Å in the fingerprint plot delineated into  $H \cdots H$  contacts (Fig. 6b). The second largest contribution to the Hirshfeld surface, *i.e.* 26.2%, is from  $N \cdots H/H \cdots N$  contacts (Fig. 6c) and arise from the intermolecular  $C - H \cdots N$  contacts involving cyano-N4 and tria-



#### Figure 4

Two views of the Hirshfeld surface mapped over the electrostatic potential in the range -0.092 to +0.055 a.u. The red and blue regions represent negative and positive electrostatic potentials, respectively.

## research communications



Figure 5

Views of the Hirshfeld surface mapped the shape-index property showing (a)  $\pi$ - $\pi$  and C=N·· $\pi$  interactions with black and sky-blue dotted lines, respectively and (b) C=O·· $\pi$  contacts with red-dotted lines.

zolyl-N3 atoms (Table 2) and are viewed as the pair of overlapping green and blue spikes with their tips at  $d_e + d_i \sim 2.5$  Å. Although the carbonyl-O1 atom makes a significant contribution of 9.9% to the overall surface owing to interatomic O···H/H···O contacts, it is evident from the respective delineated fingerprint plot (Fig. 6d) that these are beyond van der Waals separations. The relatively small contribution from



Figure 6

(a) The full two-dimensional fingerprint plot for (I) and (b)-(h) those delineated into  $H \cdots H$ ,  $N \cdots H/H \cdots N$ ,  $O \cdots H/H \cdots O$ ,  $C \cdots H/H \cdots C$ ,  $C \cdots C$ ,  $C \cdots N/N \cdots C$  and  $N \cdots N$  contacts, respectively.





Non-covalent interaction plots for the (a) carbonyl-C=  $O \cdots \pi$ (triazolyl) and (b) cyano-C= $N \cdots \pi$ (triazolyl) interactions. The arrows in (b) indicate attractive phenyl-C- $H \cdots N$ (cyano) interactions (see text).

C···H/H···C contacts to the Hirshfeld surface (Table 3) is indicative of the absence of C-H··· $\pi$  contacts in the molecular packing, Fig. 6e. The weak  $\pi$ - $\pi$  stacking interactions between symmetry related phenyl-(C6-C11) rings are evident from the fingerprint delineated into C···C contacts (Fig. 6f) as the rocket-like tip at  $d_e + d_i \sim 3.6$  Å. The involvement of the triazolyl ring in intermolecular triazolyl-C=N··· $\pi$  and carbonyl C=O··· $\pi$  contacts in the crystal is reflected from the percentage contributions due to C···N/N···C, C···O/O···C, N···N and N···O/O···N contacts to the Hirshfeld surface (Table 3). These intermolecular interactions are also evident from the fingerprint plots delineated into C···N/N···C, C···O/O···C and N···N contacts in Fig. 6f-h, respectively.

#### 5. Non-covalent interaction plots

Non-covalent interaction (NCI) plots are a convenient means by which the nature of an interaction between residues may be assessed in terms of being attractive or otherwise (Johnson *et al.*, 2010; Contreras-García *et al.*, 2011). In NCI plots, a weakly attractive interaction will appear green on the isosurface, whereas attractive and repulsive interactions will result in blue and red isosurfaces, respectively. The NCI plots for the interacting entities of the carbonyl-C=O··· $\pi$ (triazolyl) and cyano-C=N··· $\pi$ (triazolyl) interactions are shown in Fig. 7*a,b*, indicating the weakly attractive nature of these interactions. The arrows in Fig. 7*b*, highlight a weak phenyl-C-H···N(cyano) interaction (Table 2).

#### 6. Database survey

There are four closely related compounds in the literature whereby the cyano group of (I) is replaced by chloride and bromide, which are isostructural (Zeghada *et al.*, 2011), methyl (El-Hiti *et al.*, 2017) and nitro (Vinutha *et al.* (2013); two independent molecules comprise the asymmetric unit of the nitro compound. Key dihedral angle data are included in Table 4. This shows that the greatest variations in dihedral angles between the phenyl and acetyl residues is found for the two independent molecules of the nitro compound. The

 Table 4

 Dihedral angle data (°) for (I) and 4-X-phenyl derivatives.

| Χ        | triazolyl/phenyl | triazolyl/acetyl | phenyl/acetyl | Ref.                  |
|----------|------------------|------------------|---------------|-----------------------|
| Me       | 50.11 (7)        | 6.12 (18)        | 50.14 (12)    | El-Hiti et al. (2017) |
| Cl       | 45.60 (4)        | 6.97 (9)         | 45.19 (6)     | Zeghada et al. (2011) |
| Br       | 47.03 (5)        | 7.08 (12)        | 46.5 (7)      | Zeghada et al. (2011) |
| $NO_2^a$ | 38.26 (15)       | 13.4 (4)         | 27.9 (3)      | Vinutha et al. (2013) |
| -        | 87.11 (18)       | 15.2 (3)         | 74.4 (2)      |                       |
| C≡N      | 54.64 (5)        | 6.8 (3)          | 60.82 (13)    | This work             |

Note: (a) Two independent molecules comprise the asymmetric unit.

different relative conformations in the aforementioned molecules is highlighted in the overlay diagram of Fig. 8.

#### 7. Synthesis and crystallization

Compound (I) was prepared as described in the literature (Dias *et al.*, 2018) and crystals were obtained by the slow evaporation from its ethyl acetate/hexane ( $\nu/\nu$ ) solution. M.p. 426–428 K. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.91 (*d*, *J* = 8.7 Hz, 2H), 7.65 (*d*, *J* = 8.7 Hz, 2H), 2.76 (*s*, 3H), 2.66 (*s*, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 194.30, 144.20, 138.89, 137.42, 133.85, 125.84, 117.51, 114.23, 28.10, 10.43 ppm.

#### 8. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5. The carbon-bound H atoms were placed in calculated positions (C–H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with  $U_{\rm iso}({\rm H})$  set to 1.2–1.5 $U_{\rm eq}({\rm C})$ .

#### Acknowledgements

The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES, National Council for Scientific and Technological Development, CNPq, for a scholarship to JZ-S (303207/2017–5) are acknowledged for support. Funding for this research was provided by the National Council for Scientific and Technological Development, CNPq, (awards No. 303207/2017–5; 475203/2013–5), São Paulo Research Foundation-FAPESP (2013/06558–3) and GlaxoSmithKline-FAPESP (2014/50249–8). We thank



#### Figure 8

Overlay diagram for (I) and 4-X-phenyl derivatives: (I) (red image), X = Cl (green), X = Br (blue), X = Me (pink),  $X = NO_2$  (first independent molecule; aqua) and  $X = NO_2$  (second molecule; yellow). The molecules have been overlapped so that the triazolyl rings are coincident.

| <b>Fable 5</b><br>Experimental details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Crystal data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
| Chemical formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_{12}H_{10}N_4O$                            |
| M <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 226.24                                        |
| Crystal system, space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monoclinic, $P2_1/n$                          |
| Temperature (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 293                                           |
| a, b, c (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.8533 (5), 6.8299 (3), 14.7329 (6)          |
| 3 (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.477 (1)                                   |
| $V(Å^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1137.67 (8)                                   |
| Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                             |
| Radiation type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Μο Κα                                         |
| $\mu \text{ (mm}^{-1}\text{)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.09                                          |
| Crystal size (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.44 \times 0.27 \times 0.12$                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |
| Data collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |
| Diffractometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bruker APEXII CCD                             |
| Absorption correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Multi-scan ( <i>SADABS</i> ; Sheldrick, 1996) |
| $T_{\min}, T_{\max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.726, 0.745                                  |
| No. of measured, independent and<br>observed $[I > 2\sigma(I)]$ reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30812, 2333, 2083                             |
| R <sub>int</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.023                                         |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.625                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |
| $\mathbf{C} = \mathbf{C} + $ | 0.044 0.126 1.10                              |
| $K[F^- > 2\sigma(F^-)], wK(F^-), S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.044, 0.126, 1.10                            |
| NO. OI reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2333                                          |
| No. of parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150                                           |
| -1-atom treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H-atom parameters constrained                 |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.21, -0.20                                   |

Computer programs: APEX2 and SAINT (Bruker, 2009), SIR2014 (Burla et al., 2015), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006), MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Professor Regina H. A. Santos from IQSC-USP for the X-ray data collection.

#### **Funding information**

Funding for this research was provided by: National Council for Scientific and Technological Development, CNPq (grant No. 303207/2017–5); National Council for Scientific and Technological Development, CNPq (grant No. 475203/2013– 5); São Paulo Research Foundation-FAPESP (grant No. 2013/ 06558-3); GlaxoSmithKline-FAPESP (grant No. 2014/50249-8).

#### References

- Bonandi, E., Christodoulou, M. S., Fumagalli, G., Perdicchia, D., Rastelli, G. & Passarella, D. (2017). *Drug Discov. Today*, 22, 1572– 1581.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2009). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
- Caracelli, I., Zukerman-Schpector, J., Traesel, H. J., Olivato, P. R., Jotani, M. M. & Tiekink, E. R. T. (2018). *Acta Cryst.* E**74**, 703–708.
- ChemAxon (2010). Marvinsketch. http://www.chemaxon.com.

Cheng, H., Wan, J., Lin, M.-I., Liu, Y., Lu, X., Liu, J., Xu, Y., Chen, J., Tu, Z., Cheng, Y.-S. E. & Ding, K. (2012). J. Med. Chem. 55, 2144– 2153.

- Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625–632.
- Dheer, D., Singh, V. & Shankar, R. (2017). *Bioorg. Chem.* **71**, 30–54.
- Dias, C. da S., Lima, T. de M., Lima, C. G. S., Zukerman-Schpector, J. & Schwab, R. S. (2018). *ChemistrySelect*, 3, 6195–6202.
- El-Hiti, G. A., Abdel-Wahab, B. F., Alotaibi, M. H., Hegazy, A. S. & Kariuki, B. M. (2017). *IUCrData*, x171782.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gilchrist, J., Dutton, S., Diaz-Bustamante, M., McPherson, A., Olivares, N., Kalia, J., Escayg, A. & Bosmans, F. (2014). *Chem. Biol.* 9, 1204–1212.
- John, J., Thomas, J. & Dehaen, W. (2015). Chem. Commun. 51, 10797– 10806.
- Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498– 6506.
- Kamalraj, V. R., Senthil, S. & Kannan, P. (2008). J. Mol. Struct. 892, 210–215.

- Lima, C. G. S., Ali, A., van Berkel, S. S., Westermann, B. & Paixão, M. W. (2015). *Chem. Commun.* 51, 10784–10796.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Morzherin, Y., Prokhorova, P. E., Musikhin, D. A., Glukhareva, T. V. & Fan, Z. (2011). Pure Appl. Chem. 83, 715–722.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shu, H., Izenwasser, S., Wade, D., Stevens, E. D. & Trudell, M. L. (2009). Bioorg. Med. Chem. Lett. 19, 891–893.
- Struthers, H., Mindt, T. L. & Schibli, R. (2010). Dalton Trans. 39, 675–696.
- Vinutha, N., Madan Kumar, S., Nithinchandra, Balakrishna, K., Lokanath, N. K. & Revannasiddaiah, D. (2013). Acta Cryst. E69, 01724.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zeghada, S., Bentabed-Ababsa, G., Derdour, A., Abdelmounim, S., Domingo, L. R., Sáez, J. A., Roisnel, T., Nassar, E. & Mongin, F. (2011). Org. Biomol. Chem. 9, 4295–4305.

# supporting information

Acta Cryst. (2018). E74, 1195-1200 [https://doi.org/10.1107/S2056989018010885]

4-(4-Acetyl-5-methyl-1*H*-1,2,3-triazol-1-yl)benzonitrile: crystal structure and Hirshfeld surface analysis

# Julio Zukerman-Schpector, Cássio da S. Dias, Ricardo S. Schwab, Mukesh M. Jotani and Edward R. T. Tiekink

#### **Computing details**

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SIR2014* (Burla *et al.*, 2015); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *MarvinSketch* (ChemAxon, 2010) and *publCIF* (Westrip, 2010).

4-(4-Acetyl-5-methyl-1H-1,2,3-triazol-1-yl)benzonitrile

Crystal data

 $C_{12}H_{10}N_4O$   $M_r = 226.24$ Monoclinic,  $P2_1/n$  a = 11.8533 (5) Å b = 6.8299 (3) Å c = 14.7329 (6) Å  $\beta = 107.477$  (1)° V = 1137.67 (8) Å<sup>3</sup> Z = 4

Data collection

Bruker APEXII CCD diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.726, T_{\max} = 0.745$ 30812 measured reflections

#### Refinement

```
Refinement on F^2
Least-squares matrix: full
R[F^2 > 2\sigma(F^2)] = 0.044
wR(F^2) = 0.126
S = 1.10
2333 reflections
156 parameters
0 restraints
```

F(000) = 472  $D_x = 1.321 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9978 reflections  $\theta = 2.6-26.3^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 293 KIrregular, colourless  $0.44 \times 0.27 \times 0.12 \text{ mm}$ 

2333 independent reflections 2083 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.023$  $\theta_{max} = 26.4^\circ, \ \theta_{min} = 1.9^\circ$  $h = -14 \rightarrow 14$  $k = -8 \rightarrow 8$  $l = -18 \rightarrow 18$ 

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0573P)^2 + 0.3916P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$   $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$ 

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$ 

|     | X            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| 01  | 0.39515 (11) | 0.7197 (2)   | 0.36712 (11) | 0.0785 (5)                  |  |
| N1  | 0.73587 (10) | 0.95924 (17) | 0.48424 (8)  | 0.0357 (3)                  |  |
| N2  | 0.70535 (11) | 1.13354 (19) | 0.43684 (10) | 0.0476 (3)                  |  |
| N3  | 0.59641 (11) | 1.11608 (19) | 0.38456 (10) | 0.0462 (3)                  |  |
| N4  | 1.27442 (13) | 0.8725 (3)   | 0.80947 (11) | 0.0623 (4)                  |  |
| C1  | 0.64418 (11) | 0.8326 (2)   | 0.46207 (10) | 0.0364 (3)                  |  |
| C2  | 0.55549 (12) | 0.9350 (2)   | 0.39775 (10) | 0.0364 (3)                  |  |
| C3  | 0.43345 (13) | 0.8728 (2)   | 0.34833 (11) | 0.0451 (4)                  |  |
| C4  | 0.64687 (15) | 0.6346 (3)   | 0.50374 (14) | 0.0614 (5)                  |  |
| H4A | 0.7168       | 0.6210       | 0.5570       | 0.092*                      |  |
| H4B | 0.6473       | 0.5378       | 0.4566       | 0.092*                      |  |
| H4C | 0.5782       | 0.6168       | 0.5246       | 0.092*                      |  |
| C5  | 0.35961 (15) | 1.0069 (3)   | 0.27426 (14) | 0.0668 (6)                  |  |
| H5A | 0.3902       | 1.0108       | 0.2209       | 0.100*                      |  |
| H5B | 0.3615       | 1.1361       | 0.3004       | 0.100*                      |  |
| H5C | 0.2795       | 0.9602       | 0.2538       | 0.100*                      |  |
| C6  | 0.85161 (11) | 0.9389 (2)   | 0.55064 (9)  | 0.0354 (3)                  |  |
| C7  | 0.92321 (13) | 0.7849 (2)   | 0.54291 (11) | 0.0454 (4)                  |  |
| H7  | 0.8976       | 0.6944       | 0.4938       | 0.054*                      |  |
| C8  | 1.03376 (14) | 0.7662 (2)   | 0.60904 (11) | 0.0482 (4)                  |  |
| H8  | 1.0827       | 0.6622       | 0.6050       | 0.058*                      |  |
| C9  | 1.07120 (12) | 0.9032 (2)   | 0.68124 (10) | 0.0403 (3)                  |  |
| C10 | 0.99970 (13) | 1.0600 (3)   | 0.68695 (11) | 0.0494 (4)                  |  |
| H10 | 1.0261       | 1.1532       | 0.7347       | 0.059*                      |  |
| C11 | 0.88901 (13) | 1.0776 (2)   | 0.62138 (11) | 0.0472 (4)                  |  |
| H11 | 0.8401       | 1.1820       | 0.6249       | 0.057*                      |  |
| C12 | 1.18561 (13) | 0.8846 (3)   | 0.75178 (11) | 0.0470 (4)                  |  |
|     |              |              |              |                             |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|------------|-------------|-------------|-------------|-------------|-------------|
| 01 | 0.0477 (7) | 0.0734 (9)  | 0.0927 (10) | -0.0232 (7) | -0.0117 (7) | 0.0290 (8)  |
| N1 | 0.0288 (6) | 0.0351 (6)  | 0.0380 (6)  | -0.0012 (4) | 0.0023 (5)  | 0.0037 (5)  |
| N2 | 0.0366 (6) | 0.0393 (7)  | 0.0589 (8)  | -0.0023 (5) | 0.0022 (6)  | 0.0124 (6)  |
| N3 | 0.0334 (6) | 0.0443 (7)  | 0.0534 (7)  | 0.0003 (5)  | 0.0020 (5)  | 0.0125 (6)  |
| N4 | 0.0443 (8) | 0.0714 (11) | 0.0552 (9)  | 0.0006 (7)  | -0.0094 (7) | -0.0012 (7) |
| C1 | 0.0307 (6) | 0.0376 (7)  | 0.0364 (7)  | -0.0032 (5) | 0.0036 (5)  | 0.0021 (6)  |
| C2 | 0.0302 (7) | 0.0401 (7)  | 0.0361 (7)  | -0.0003 (5) | 0.0054 (5)  | 0.0049 (6)  |
|    |            |             |             |             |             |             |

Acta Cryst. (2018). E74, 1195-1200

# supporting information

| C3  | 0.0317 (7) | 0.0553 (9)  | 0.0424 (8)  | -0.0039 (6) | 0.0024 (6)  | 0.0068 (7)  |  |
|-----|------------|-------------|-------------|-------------|-------------|-------------|--|
| C4  | 0.0469 (9) | 0.0476 (10) | 0.0732 (12) | -0.0105 (7) | -0.0071 (8) | 0.0224 (8)  |  |
| C5  | 0.0377 (8) | 0.0836 (14) | 0.0641 (11) | -0.0017 (9) | -0.0074 (8) | 0.0234 (10) |  |
| C6  | 0.0273 (6) | 0.0391 (7)  | 0.0358 (7)  | -0.0026 (5) | 0.0033 (5)  | 0.0015 (6)  |  |
| C7  | 0.0376 (8) | 0.0462 (8)  | 0.0436 (8)  | 0.0026 (6)  | -0.0009 (6) | -0.0114 (6) |  |
| C8  | 0.0383 (8) | 0.0475 (9)  | 0.0512 (9)  | 0.0077 (6)  | 0.0019 (7)  | -0.0067 (7) |  |
| C9  | 0.0301 (7) | 0.0493 (8)  | 0.0365 (7)  | -0.0029 (6) | 0.0025 (5)  | 0.0008 (6)  |  |
| C10 | 0.0388 (8) | 0.0544 (9)  | 0.0477 (8)  | -0.0026 (7) | 0.0018 (7)  | -0.0157 (7) |  |
| C11 | 0.0356 (8) | 0.0460 (8)  | 0.0538 (9)  | 0.0032 (6)  | 0.0038 (7)  | -0.0120 (7) |  |
| C12 | 0.0385 (8) | 0.0526 (9)  | 0.0434 (8)  | -0.0017 (7) | 0.0025 (7)  | -0.0012 (7) |  |
|     |            |             |             |             |             |             |  |

### Geometric parameters (Å, °)

| 01—C3      | 1.205 (2)   | С5—Н5А      | 0.9600      |  |
|------------|-------------|-------------|-------------|--|
| N1—C1      | 1.3500 (17) | С5—Н5В      | 0.9600      |  |
| N1—N2      | 1.3726 (17) | С5—Н5С      | 0.9600      |  |
| N1—C6      | 1.4326 (16) | C6—C7       | 1.378 (2)   |  |
| N2—N3      | 1.2952 (17) | C6—C11      | 1.379 (2)   |  |
| N3—C2      | 1.3634 (19) | С7—С8       | 1.384 (2)   |  |
| N4—C12     | 1.140 (2)   | С7—Н7       | 0.9300      |  |
| C1—C2      | 1.3762 (19) | C8—C9       | 1.385 (2)   |  |
| C1—C4      | 1.482 (2)   | C8—H8       | 0.9300      |  |
| С2—С3      | 1.4734 (19) | C9—C10      | 1.384 (2)   |  |
| C3—C5      | 1.491 (2)   | C9—C12      | 1.4452 (19) |  |
| C4—H4A     | 0.9600      | C10-C11     | 1.381 (2)   |  |
| C4—H4B     | 0.9600      | C10—H10     | 0.9300      |  |
| C4—H4C     | 0.9600      | C11—H11     | 0.9300      |  |
|            |             |             |             |  |
| C1—N1—N2   | 111.26 (11) | C3—C5—H5C   | 109.5       |  |
| C1—N1—C6   | 129.75 (12) | H5A—C5—H5C  | 109.5       |  |
| N2—N1—C6   | 118.91 (11) | H5B—C5—H5C  | 109.5       |  |
| N3—N2—N1   | 106.62 (11) | C7—C6—C11   | 121.37 (13) |  |
| N2—N3—C2   | 109.42 (12) | C7—C6—N1    | 120.33 (12) |  |
| N1-C1-C2   | 103.53 (12) | C11—C6—N1   | 118.29 (13) |  |
| N1-C1-C4   | 124.68 (12) | C6—C7—C8    | 119.25 (14) |  |
| C2—C1—C4   | 131.77 (13) | С6—С7—Н7    | 120.4       |  |
| N3—C2—C1   | 109.16 (12) | С8—С7—Н7    | 120.4       |  |
| N3—C2—C3   | 121.99 (13) | C7—C8—C9    | 119.71 (14) |  |
| C1—C2—C3   | 128.84 (14) | С7—С8—Н8    | 120.1       |  |
| O1—C3—C2   | 121.25 (14) | С9—С8—Н8    | 120.1       |  |
| O1—C3—C5   | 121.51 (15) | C10—C9—C8   | 120.56 (13) |  |
| C2—C3—C5   | 117.25 (14) | C10—C9—C12  | 118.92 (14) |  |
| C1—C4—H4A  | 109.5       | C8—C9—C12   | 120.52 (14) |  |
| C1—C4—H4B  | 109.5       | C11—C10—C9  | 119.66 (14) |  |
| H4A—C4—H4B | 109.5       | C11—C10—H10 | 120.2       |  |
| C1—C4—H4C  | 109.5       | C9—C10—H10  | 120.2       |  |
| Н4А—С4—Н4С | 109.5       | C6—C11—C10  | 119.42 (14) |  |
| H4B—C4—H4C | 109.5       | C6—C11—H11  | 120.3       |  |
|            |             |             |             |  |

## supporting information

| Н5А—С5—Н5В 109.5                                     |                                                                                                                                                                                                                                             |                                                                                                                                                                                                             |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 17) $C1-C2-C3-C5$ 7 (12) $C1-N1-C6-C7$ 7) $N2-N1-C6-C1$ (13) $N2-N1-C6-C11$ 2 (16) $C11-C6-C7-C8$ (14) $C7-C8-C9-C10$ 16) $C7-C8-C9-C12$ (17) $C8-C9-C10-C11$ 3 (14) $C12-C9-C10-C11$ 0 $N1-C6-C11-C10$ 0 $C7-C6-C11-C10$ 0 $C7-C6-C11-C10$ | $\begin{array}{c} -173.75(16)\\ 57.1(2)\\ -126.64(15)\\ -123.36(17)\\ 52.95(19)\\ 1.7(2)\\ -178.73(14)\\ -0.6(3)\\ -1.0(3)\\ 179.08(15)\\ 1.5(3)\\ -178.55(15)\\ -1.2(2)\\ 179.25(14)\\ -0.4(3)\end{array}$ |

#### Hydrogen-bond geometry (Å, °)

 $\pi$ (Triazolyl) interaction geometry (Å, °) for (I). Cg1 is the centroid of the N1–N3/C1/C2 ring.

| D—H···A                            | D—H      | H···A    | $D \cdots A$ | D—H···A |
|------------------------------------|----------|----------|--------------|---------|
| $\overline{C3}$ — $O1$ ··· $Cg1^i$ | 1.21 (1) | 3.69(1)  | 3.7359 (17)  | 83 (1)  |
| C12—N4···Cg1 <sup>ii</sup>         | 1.14 (1) | 3.68 (1) | 3.8468 (19)  | 90 (1)  |

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1/2, -y+1/2, z-1/2.