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theory formalism to the case of the Ramond version of the super-Virasoro algebra. We
derive two classes of corresponding Ramond super-eigenvalue models, construct Ramond
super-quantum curves that have the structure of relevant singular vectors, and identify
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1 Introduction

Quantum curves are intriguing objects, identified originally in various problems related
to string theory and supersymmetric gauge theories [1-5], and analyzed from various
mathematical perspectives e.g. in [6-17]. In general, quantum curves take form of dif-
ferential operators E(QE, y) imposing Schroedinger-like equations on appropriately defined
wave-functions W(x)

~

Az,3)¥(z) = 0. (1.1)

The operators T and ¥ satisfy the commutation relation
[y, z] = h, (1.2)

so that y can be identified as hd,. In the limit & — 0 the operators  and y reduce to
complex commuting variables  and y, and the quantum curve equation (1.1) reduces to a
“classical” algebraic curve

Az, y) =0. (1.3)

Conjecturally, in all situations where quantum curves arise, their form can be deter-
mined by means of the topological recursion [18], which can be regarded as a reformulation
and generalization of loop equations in matrix models [19]. From this perspective the clas-
sical curve (1.3) is identified as an algebraic curve that provides the initial condition for the
topological recursion. In case the corresponding matrix model is known, the curve (1.3)
is identified as its spectral curve, and the wave-function W(z) is identified as a determi-
nant expectation value (det(x — M)), where (-) denotes an expectation value computed
by integrating over matrices M from an appropriate ensemble. Therefore, using the topo-
logical recursion or matrix model formalism, to a given algebraic curve one can associate
the corresponding quantum curve.

In fact, it turns out that to a given algebraic curve one can assign not only one,
but the whole family of quantum curves, which have the structure of singular vectors of
the underlying symmetry algebra [20]. For curves related to hermitian matrix models, or
the original topological recursion formulation [19], this symmetry algebra is the Virasoro
algebra, and corresponding quantum curves have the structure of Virasoro singular vectors,
as found in [20]. In the present paper we also refer to these curves as Virasoro quantum
curves. In this case the determinant form of the wave-function is generalized so that it
depends on an additional parameter «; however consistent quantum curve equations arise
only for certain discrete values of this parameter, which coincide with Virasoro degenerate
momenta. One can also consider [-deformed version of these results — this also leads
to a discrete family of quantum curves with the structure of Virasoro singular vectors,
however in this case the Virasoro algebra has an arbitrary central charge, parametrized by
the parameter 8. The matrix (or eigenvalue) model form of the wave-function, depending
on both parameters « and f3, is referred to as a/[-deformed matriz integral in [20]. These
results can be regarded as a manifestation of general, intimate links between matrix models
and the Virasoro algebra; for example it has been known for a long time, that matrix model



loop equations — and the topological recursion itself — can be rewritten in the form of
Virasoro constraints [21-23].

The above results have been generalized to a supersymmetric case in [24], by consid-
ering (S-deformed) super-eigenvalue models for the Neveu-Schwarz sector [25-30]. These
models generalize eigenvalue representation of hermitian matrix models in such a way,
that the underlying algebra takes form of the Neveu-Schwarz version of the super-Virasoro
algebra; in particular corresponding loop equations can be rewritten as super- Virasoro con-
straints. Consequently, to a super-eigenvalue model one can associate an infinite family
of super-quantum curves, which have the structure of Neveu-Schwarz singular vectors of
the super-Virasoro algebra. In the classical limit, such super-quantum curves reduce to
supersymmetric algebraic curves, which are interesting in their own right [31, 32].

To sum up, to a given classical (possibly supersymmetric) curve one can associate
an infinite family of quantum curves, which have the structure of singular vectors of the
underlying algebra. This result was found in [20, 24] upon the analysis of eigenvalue
models, which provide a representation (or generalization) of matrix models; for a summary
see also [33].

The aim of the present paper is twofold. First, we clarify the role of conformal field
theory in the description of quantum curves. In particular, we rederive (in Virasoro and
Neveu-Schwarz case) quantum curves using only conformal field theory techniques (instead
of eigenvalue models). The main feature of this approach is the fact, that the singu-
lar vector structure of quantum curves follows automatically; being a consequence of the
conformal field theory construction, the singular vector structure of quantum curves pos-
tulated in [20, 24] is therefore proven. Moreover, this approach has certain calculational
advantages, and can be rather easily extended to more general algebras (possibly, although
not necessarily, corresponding to more general matrix models, for example multi-matrix
models, or their deformations e.g. see [34, 35]). Second, using the conformal field theory ap-
proach — and to illustrate its power — we find an infinite family of super-quantum curves
corresponding to the Ramond sector of the super-Virasoro algebra. From this analysis we
also derive the super-eigenvalue models representing the Ramond sector, whose form is not
obvious to postulate a priori.

More precisely, we find two types of super-eigenvalue models in the Ramond sector,
and corresponding two types of quantum curves, which have respectively the structure of
Neveu-Schwarz or Ramond singular vectors, and which we call respectively Ramond-NS
and Ramond-R super-quantum curves. Furthermore, we illustrate equivalence of conformal
field theory calculations and eigenvalue models by showing that the same super-quantum
curves arise in both approaches. We also find corresponding classical super-spectral curves
that encode eigenvalue distribution in the super-eigenvalue model. Finally, we consider the
special case of Penner-like potentials, and show that Ramond super-quantum curves in this
case take form of supersymmetric versions of BPZ equations [36]. The identification of the
Ramond super-quantum and super-spectral curves generalizes the analysis in [24], which
was restricted to the Neveu-Schwarz sector.

We stress, that various observations and properties of quantum curves discussed
in [20, 24, 33] also hold (or are expected to hold) for Ramond super-quantum curves found



in this paper. In particular, Ramond super-quantum curves are “quantum” in a double
sense, and reduce to “classical” objects in two different limits: the t Hooft limit corre-
sponding to an infinite number of eigenvalues N, and the classical conformal field theory
limit corresponding to infinite value of the parameter 5. These two quantum structures
have an analogous role, which is manifest after replacing parameters 1/N and /5 by famil-
iar parameters €; and e, encoding the Omega-background in gauge theory interpretation.
Analogous two quantum structures have been also discussed e.g. in [37] in the context of
Langlands duality. Another important feature of quantum curves at higher levels is that, in
the classical 't Hooft limit, they factorize into a product of several classical (spectral) curves.

Let us summarize the most important results and formulae of this work, by presenting
conformal field theory formulation of various eigenvalue models that we derive and analyze,
and corresponding wave-functions and quantum curve equations. We hope that this short
summary could be helpful for a reader; details of the notation are explained in the main
text of the manuscript.

First, in section 2 we recall that the usual S-deformed hermitian matrix model has the
eigenvalue representation, which can be realized as the following integrated expectation
value in the free boson theory, see (2.1)—(2.2)

N N
7= [ (Ve TLEfo) = [ aiepte T 57
a=1

where vertex operators E*(z) are defined in (2.36), and (Vy \/B,t‘ is the coherent state (2.41).
The eigenvalue model in the right side of the equation involves the usual Vandermonde
determinant A(2) =[], (24 —2). The wave-function (2.45) is then defined as a correlator
which involves an additional insertion of z- and a-dependent vertex operator E# (z)

N
o) :/dNZ (Viysapne |EF @) [T EYP(20)] 0) =
a=1

" (1.5)

N
—enzV (@ /sz H(a: — za)_mrz/g A(z)we hg
a=1

M=

V(Za)
1 .

This wave-function, for special discrete values of «, satisfies quantum curve equations that
take form of Virasoro singular vectors, as shown in section 2.3.

In section 3 we construct the eigenvalue model and quantum curves in the Neveu-
Schwarz (NS) sector of the super-Virasoro algebra. The eigenvalue model has the following
form and conformal field theory representation, see (3.36)—(3.37)

VB
Z= < VN\/B,t,’i‘ Ql]\YS 0> - /sz dg Axs(z,0) eiTZi\;l V(za,ea)7 (1.6)

where the potential involves both commuting times ¢,, and anti-commuting times &, /5

V(z,0) = Vi(z) + Ve(2)0, Va(z) = Z tmz", Ve(z) = Z Emg122™. (L.7)
m=0 m=0



The NS screening charge Qys and the coherent state <VN \/th,d are defined respectively
in (3.32) and (3.35), and the NS version of the Vandermonde determinant takes form (3.34)

Avs(2,0) = [ (2a—2 —0abs). (1.8)

1<a<b<N

The NS wave-function in this model (3.40)—(3.41) is defined as the expectation value with
an additional insertion of the vertex operator superfield ®7 (x, 0) defined in (3.22)

0) =

N
= enzV(@0) /sz d™o H(m — Zq — 90a)_%ANS(z, )’ e T V(z0.80)

a=1

Ra(@.0) = { Varyp-asnee| 0 (@,0)QY

(1.9)

and it satisfies equations which take form of super-Virasoro Neveu-Schwarz singular vectors,
derived in section 3.3.

In section 4 we start considering the Ramond sector of the super-Virasoro algebra.
We explain that there are two natural eigenvalue models and wave-functions that can be
considered, having the schematic structure given in (4.1) and (4.2), which satisfy quantum
curve equations that take form of either Neveu-Schwarz or Ramond singular vectors. We
call these models Ramond-NS and Ramond-R respectively. The Ramond-NS eigenvalue
model is introduced in (4.27)

_ VBN Za.0a
2= (Vy el QU 0.4) = / Nz dN9 Ap(z,0)% e Tzt Vinlabe), (1.10)
. + . .
with the coherent state <VN x/ﬁ,t,f‘ and the screening charge Qg defined respectively

in (4.23) and (4.28). The Ramond-NS version of the Vandermonde determinant takes
form (4.22)

Za + 2
Ag(z,0) = H (za — 2y — 9a9b> ) (1.11)
1<a<b<N 2\/%a%

The Ramond-NS wave-function, of the schematic form (4.1), is introduced in (4.36) in
the conformal field theory language as the expectation value involving the vertex operator
superfield ®% (z,0) defined in (4.12)

o7 (z,0)QY

Xao(,0) = <V§¢B—%vta€ 0,+> (1.12)
and it is written down more explicitly, in the eigenvalue representation, in (6.41). Quantum
curves that annihilate such a wave-function are derived in section 4.3 and they take form
of Neveu-Schwarz singular vectors (however with a specific representation of NS algebra,
relevant for the Ramond sector that we are considering). In section 6 we rederive these
quantum curves using techniques of matrix and eigenvalue models; in addition, in sec-
tion 6.3 we derive super-spectral curves (i.e. spectral curves of the Ramond-NS eigenvalue
model), and in section 6.7 we analyze the Ramond-NS§ eigenvalue model with the specific
multi-Penner potential.



Furthermore, in section 5 we analyze the Ramond-R model, with the wave-function of
the schematic form (4.2). In this case we consider directly the wave-function for the model
with the Penner-like potential, which we find to take form (5.20)—(5.21)

R — /80 _ oy~ m £ T N, aN;
Xo(z, &) =2 /°(x —w) 12e \I/+a:z9)+ et EV_(x,2,0)) dVzd,
(1.13)
where the z-dependence arises from the insertion of the Ramond chiral primary fields R} (z)
defined in (5.12)

N

Vs (z,2,60) = (0 |RL(2)®7 (w,1) al;[l 2™VP (2, 00) | 04) = (1.14)

= 04 (2) (z — w) ¥ Apg(z,0)7 =% Zaa (Vo lz) Vs (20)6a),

see (5.13) and (5.15). The functions O (x) are given in (5.19), and the Ramond-R version
of the Vandermonde determinant takes form (5.16)

Ana(z,0) = L[b <za — 2y (\/Z((;C: Zi + ¢:((‘Z: 2‘3) 9“5”) . (1.15)

Quantum curves for the Ramond-R model take form of Ramond singular vectors and we de-

rive them in section 5.3. Finally, in section 7 we reconsider the Ramond-R eigenvalue model
from the matrix model perspective, and using matrix (or eigenvalue) model techniques we
rederive Ramond-R super-quantum curves.

Once more, and more succinctly, the plan of this paper is as follows. In section 2 we
derive, from the viewpoint of conformal field theory, quantum curves corresponding to the
underlying Virasoro algebra. In section 3 we similarly derive quantum curves corresponding
to the Neveu-Schwarz sector of the super-Virasoro algebra. In section 4, starting from the
conformal field theory formalism we analyze the Ramond sector of super-Virasoro algebra,
and derive an eigenvalue model for the Ramond-NS sector, as well as Ramond-NS super-
quantum curves. In section 5 we derive eigenvalue model and super-quantum curves in the
Ramond-R sector using conformal field theory approach. In section 6 we rederive super-
quantum curves in the Ramond-NS sector using techniques of matrix or eigenvalue models;
among others, in this section we also find the Ramond super-spectral curve, and confirm
that it agrees with the classical limit of the Ramond super-quantum curve. Similarly, in
section 7 we derive super-quantum curves of Ramond-R type using techniques of eigenvalue
models. In the appendix we collect various proofs and computations.

2 From conformal field theory to Virasoro quantum curves

We start our analysis from a discussion of the Virasoro algebra, which is the underlying
algebra of a ((-deformed) hermitian matrix (or eigenvalue) model

VB S (s,
:/sz A(z)Pe " P2NE ), (2.1)



where dVz = H(JIV:1 dzq, A(2) = [[4<p(2a — 2) is the Vandermonde determinant, and we
consider a generic potential V(z) = > >°_ t,2™. We recall first that such a model can
be defined by the following expectation value, which is written completely in terms of
conformal field theory quantities

N
= /sz (Vi | TT B (z0)
a=1

for an appropriately defined state (Vy /3| and vertex operators E*‘/B(za). Similarly wave-

0> , (2.2)

functions, defined as determinant-like expectation values from matrix model viewpoint, can

be expressed in terms of conformal field theory quantities as follows!

0>:

N N
SV (@) /dN 208 = X,V

N
Ra(@) = [@% (Viys ane|EF@ [] EV(e0)
o= (2.3)

z (x—2) "7 A(z)Pe "

These wave-functions are annihilated by quantum curve operators that we are after only
for special values of the parameter «, which correspond to the degenerate momenta.

We recall now a general form of quantum curves associated to the underlying Virasoro
algebra. As found in [20] by generalizing a discussion in [4], such curves can be determined
simply by writing expressions for Virasoro singular vectors (at arbitrary level) in terms of
the following representation of Virasoro generators

1 Q

-~ ~ 1 h ~

for n > 2, where

Q=57 -4, (2.5)
and ft(x) is a partial differential operator defined by (2.62). Moreover, it is useful to take
advantage of universal expressions for singular vectors (up to a given level) that have been
found in [20]. These expressions depend on the parameter o and reduce to the expression
for a singular vector labeled by integers r, s upon specialization of « to
r;lﬁ_%_sglﬁ%’ r,s€Z, r,s>1. (2.6)

For example, singular vectors at level 2 can be obtained from the expression

OZT,S =

L* | —40’L_, (2.7)

upon specialization oo = a1 or g 2. Moreover, for o = 1,1 = 0 this expression reduces to
the singular vector L_; at level 1 (up to an additional L_;). Substituting the representa-
tion (2.4) in the formula (2.7), it follows that quantum curves at level 2 (and 1) arise from

the expression

o

2 o~
A=l ((v’(x)) +2QRV" (@) + 4, (=) (2.8)

'The parameter o = here in this section is related with the parameter o = ams in [20] by ms = 20there
(in A =1 unit).




(where the superscript of A? denotes level 2) upon the specialization o = 0, E\Z/B, or —%;

note that in expressions for quantum curves we combine values of o, , with an additional

factor of & when compared to (2.6) — this follows from a factor f in the vertex operator
E% in (2.3), which is natural to include from the matrix model perspective. Similarly,
quantum curves at level 3 (or lower levels) arise from the expression

2042(2a(204hiz Qh) — h?) i 2.9)

A =9}~ 4550 Lo +

upon the specialization a = 0, h,\2//?, —%, hv/3, or —%, and with L_o and L_3 given
in (2.4). Such quantum curves, at level n = rs, annihilate the wave-function (2.3),
A\”wa(x) = 0, for relevant specialization o = ;5.

While in [20] the representation of Virasoro generators (2.4) and the form of quantum
curves, such as (2.8) and (2.9), was derived using matrix model formalism, in this section
we rederive these results from purely conformal field theory viewpoint. We also explain,
from purely conformal field theory perspective, where expressions for singular vectors, such
as (2.7) and its higher level generalizations, come from. To this aim it is of advantage to
consider the background charge representation of the Virasoro algebra, which is therefore
the starting point of our analysis. The approach presented in this section will be generalized
to the supersymmetric case in the following sections, which ultimately will enable us to
derive super-eigenvalue models for the Ramond sector and corresponding Ramond super-
quantum curves.

2.1 Background charge representation of the Virasoro algebra

Consider the Heisenberg algebra

1
[am, an] = §m6m+n,0, m,n € 7, (2.10)
and its highest weight states |« ) with o € R defined by
am | ) =0, m>0, ala) = ala). (2.11)

In what follows, to avoid problems with the Dirac notation, we also use the notation
to = | ). Denote by H, the free vector space spanned by vectors of the form

a_J\a>Ea_jla_jg---a_jlm), 0<jg1<7p2<... <. (2.12)

These vectors form the canonical basis in H,. The space H,, has a natural Z-grading

l
Mo = P HE gzspan{a_J|a>:|J|=ij:n}. (2.13)
k=1

n>0

Fixing a real parameter (), one can define a hermitian pairing

(., -)a,Q: 'HQ_aX'Ha—)(C,



by requiring

ajl = —ap, n#0, a(T) =Q — ao, (NQ—OM Ma)oz,Q =1L (2.14)

The Heisenberg module #H,, ¢ is the pair of representations (Hg—q, Ha) endowed with the

pairing (., . )a,Q-
Furthermore, consider the Virasoro algebra with the central charge ¢

Ly, Ln] = (m — 1) Lynsn + %(m?’ — M)0minos M€ L. (2.15)

The Verma module Va . with the highest weight A is defined as the representation of the
Virasoro algebra generated by the vectors of the form

L_[’A>EL_Z'lL_Z‘Q-HL_Z'l‘A), 0<i; <9<l 9, (216)

where the highest weight vector | A) satisfies

L.|A) =0, m > 0, Lo|]A) =A]A). (2.17)
The vectors (2.16) form the canonical basis in VA .. The Verma module Va . has a natural
Z-grading
Vae=EDVA.  VA.=span{L_|a):|I|=n}. (2.18)
n>0

The Virasoro Verma module VA . is endowed with the hermitian Schapovalov form
(., .)a, defined by the conditions

Li=L.y, meZ,  (va,va)ac=1  va=]|A).

Z-grading (2.18) is orthogonal with respect to this form. We say that { € Va . is a null
vector if it is orthogonal with respect to the Schapovalov form to all vectors in Va .. A null
vector £ € Va . is called a singular vector if it satisfies the highest weight state condition

L.é=0, n>0.

Let
c=1-6Q% A=ala—Q)=A,. (2.19)

In the case under consideration () is real, so ¢ < 1. The background charge representation
on H, of the Virasoro algebra with the central charge ¢ and the highest weight A, is
defined by the map o, ¢ between the universal enveloping algebras of the Virasoro algebra
and the Heisenberg algebra as

00,0 : End(Va,) 3Ly, — L(a)m € End(H,),

L(a)g=2) a pan+a(a-Q), (2.20)
n=1
L(a)m = Z am—nan + (2 — (m 4+ 1)Q) ap, m # 0.
n#0,m



This map satisfies
00,Q(Lmbn) = 0a,0(Lm)oa,q(Ln). (2.21)

Using 04,0 we define the transition map
Sa,Q : VAn,e = Ha
by its action on the canonical basis in Va,, .
Sa,ol—1|A) = L(a)—i, L(a)—ip - - L(c) 4, | ) . (2.22)
The transition map S, ¢ has the following properties, easily inferred from its definition:
1. 5S4, is a homomorphism of the Virasoro algebra representations.

2. S, preserves the Z grading Sa,Q(VZa,c) C H! hence

S0 = @ Sto, Sho:VA. .— ML

n>0

3. Sa,q is compatible with the hermitian form in Va, . and the hermitian pairing in
Mo, Le. for any &,& € Va, ¢

(6. Ane = (S0-0,08, 50,08 ) a,q-

4. The kernel of S, ¢ is the subspace of all null vectors in Va_, ..

Consider the matrix of S, o with respect to the canonical bases in VA, . and H,

L(a)_rpa = Y_ [STolrra—spa. (2.23)
|J|=n

Matrices S, were studied (in different parameterization) in [38], where the formula for

their determinant was found

det Sy o = const | | (a — ay )PV (2.24)
1<rs<n
0<r,s

Here 3 is related to Q by Q = 67% — B%, values of ;. s agree with those in (2.6)

1 1
r2 > 82 B:,  rscZ, rs>1, (2.25)

OZT,S =

and p(n) is the number of partitions of n, which can be read off from the generating function

00 (9] 1
> pa =TT 1=
n=0 m=1 -z

,10,



As proven in [38], for generic values of ) matrix elements of the matrix inverse to S(?Q
have at most simple poles at & = a,. ;. Arguments from linear algebra then show that null
vectors {1 € VA . can be constructed as residues of ( ;Q)_l

cy &y = lim (a—apy) Z [( QQ)—l]JI L_;va., (2.26)

o=
[I|=n

where s < n and ¢ are (in the generic case non-zero) numbers. Consequently, if we define

Al (a) = wa(0, Q) Y [(S2o) Y, Lla)-1, (2.27)

[T|=n

where

wn(a, Q) = —(=2)" [ (e = au0), (2.28)

rs<n

then for r,s > 0 and rs < n the operators (2.27) are (non-trivial) endomorphisms of H,
satisfying
lim A7 (a)pa =0.

a—ap s

The simplest examples are

(a)
3(a) = L(a)?; — 4a*L(a)_2,
A2 (@) = (Q — 2a)L(a)? | + 2aL(a)_s,
. . (2.29)
3(@) = L(a)145(a) — wa(e, Q) L() -3,
Ady(a) = (o = Q)L(e) 143 () — wa(ar, Q) L(a) s,

)

=w

=

2
Il

L)1 (1= ala = @) A2, (0) - (a = Q) A3() ) +wa(a, Q)L(a) 5.

These are expressions of the form mentioned in (2.7). They were independently identified
in [20] by matrix model techniques.
We now extend the Heisenberg algebra (2.10) by the operator q satisfying

1
am,q] = =0m.0, m € Z. 2.30
2 )

Then by
[ag, eQaq] = e, [am, eZO‘q] =0, m#0,

and (2.11) we see that 29 can be regarded as a linear map
e Hor — Hatar e?g_; } o/> =a_g | o+ o/> . (2.31)

It is useful to assemble operators a,, and g into a local bosonic field, defined by

[e.9]

000) = 0-(0) (o), 0 (o) Zsologe = 3 Sha ocle) mak BTN
(2.32)

— 11 —



We then introduce the energy-momentum tensor
L
_ . . 2 _ m
T(x) =:00(x)0¢(x): +Q0*Pp(x) = EEZ 2 (2.33)

which we also write as T'(z) = T_(x) + T+ (=) so that T (z)|0) = 0, where

—2 0o

T ()= 3 % To(w)= 3 xfn";. (2.34)

m=—0co m=—1

dz

o o o™t T(z) are given explicitly by

The modes of the energy-momentum tensor L,, =

LO — 2Zafnan +ag (aO - Q)

n=1 (2.35)
L, = Z am—nan + (239 — (M + 1)Q) an, m # 0,
n#0,m

and they define a natural extension of the background charge representation of the Virasoro
algebra (2.20) to the space
H = / He da,
S5}

since

VEEH, YVmeZ: L& = L(a)mé.

The pairing (-, - )a,@ can be naturally extended to the hermitian form (-, - )g on #H by
requiring that for any € € Hy,( € Ha -

0 for a+ao #Q,

€0 = {(g,g)w for a+a = Q.

In what follows we are interested in calculating products (¢, ()g for § € Hg_q and ¢ € H,,
which can be written as £ = Og 1@, ¢ = O¢ po for some operators

Og s Hao — Ho, OC : Ho — Ha.
It is then convenient to use the standard bra-ket notation and write (0] O¢O¢|0) to denote
(0} g, O¢ o) , = (g, OO o)
§IU'Q7 ¢ Mo Q HQ, Vel o Q-

2.2 From CFT to o/ deformed eigenvalue integrals...

In the previous subsection we introduced ingredients necessary to construct eigenvalue
integrals and quantum curves. We conduct this construction in the rest of this section.
First, using ¢(x) we introduce the normal ordered exponential fields

E%(z) = e?¢<(®) g200>(r), (2.36)

— 12 —



which can be viewed as linear maps from H, to Haro- They are primary fields with
respect to the Virasoro algebra, i.e. they satisfy commutation relations of the form

[Lm, E¥(x)] = 2™ ((m + 1) Ay + 20;) E*(2), (2.37)
where A, = a(a — Q), see (2.19). It follows that
A 1 9
T E = = — | E¥(x). 2.
)] = (20 + e (2.39)
In the parametrization Q = 8~Y2 — 8%/2 we have A_ = A1/\/B =1, and consequently
o (E~VP(x) o [ EVVE(x)
VB A I el 1/vVB _ =2
T (y), EVP(2)] = o ( e ) W EN@] =g (5 ) @)

Notice that for |z1| < |z2| we have

1 11 meoq
(> (21), P<(22)] = §1Og g Z . (2) = §log(zl — ).
m=1

Therefore, in terms of the Vandermonde determinant A(z) =[], ., p<n(2a — 2), We get

N —2\/BN¢ Za —2\/BN¢ Za
HE—\/B(ZG)|0>: H e3810>(2a),0< ()] ¢ Z 0 )|0>:A(z)2ﬁe 0 )|0>_
a=1

1<a<b<N
(2.40)
In addition, we introduce the coherent “bra” state
o0
<VN\/B¢‘ — (0]e2NVFa T entman, (2.41)
m=0
This state satisfies the relation
2B 3 6<(z0) 530 Va) <
— Za — =5 Za
<VN\/B,t ‘ e S o P (Vorl, V(z)= Z tm 2™, (2.42)
m=0

Combining the above ingredients, it follows that the [-deformed eigenvalue inte-
gral (2.1) can be represented as an integrated CFT expectation value (2.2)

al VB
- o Sl FL ) - s
a=1

From the conformal field theory perspective, the relation referred to as the loop equation

M=z

Vizq
V) (2.43)

in matrix model formalism follows from (2.39) and the equality 7' (y)[0) = 0

0>:

N
(@)= [a% (Vyse| 7o) [T E7)

,13,



It is also immediate to construct the wave-function (or the /3 deformed integral)

0) =

N —vB - V(za
= etV /sz [[=- 20) N Az)Pe A
a=1

N
Ra(@) = [d% (Viysoane | EF@ [] E(0)
a=1

(2.45)

This wave-function is supposed to be annihilated by appropriately constructed quantum

curves, for appropriate values of .

2.3 ...and to quantum curves

Once we introduced the wave-function (2.45), we identify now the corresponding quantum
curves, and show that they have the structure of singular vectors and can be written in
terms of the representation of the Virasoro algebra in (2.4). In fact, the singular vector
structure of quantum curves follows automatically from the conformal field theory con-
struction of the wave-function — this is the main advantage of the conformal field theory
approach presented in this paper. The only non-trivial aspect is to derive the explicit
representation of the Virasoro generators (2.4), which is the main aim of this section. This
representation can be obtained from correlation functions of the form

N
<VN\/B—a,t ‘ T(y)---T(E" () [| E*\/B(za)’ 0> , (2.46)
a=1
by defining
L_j(z) Ly (x)E%(w) = (Q;i)l ]{ (1 _d?il)z‘l—l (v _dil)i,—l T(y1)- "T(?Jl)E%(ﬂc)-

xT

(2.47)
The fact that £,,(x) satisfy the Virasoro algebra can be easily checked by using the OPE
2 T oT
c/ -+ (y2) -+ (y2) +
(y1 —v2) (y1 —v2) Y1 — Y2

and the standard contour manipulation.

T(y1)T(y2) =

Calculation of the multipoint correlation function (2.46), even if tedious and difficult
to present in a closed form for arbitrary [, is conceptually straightforward. First, using the
commutation relation for 7 (y) (defined in (2.34))

c 1 2 1 9
[T (1), T- ()] = 5 (y1 —y2)* * <(y1 — 12)? - Y1 — Y2 5@/2) T-{y2)+

+( 2+ 1a>ﬂwm

(y2 —y1)®>  y2—y1 O

(2.48)

we “normal order” the product T'(y;) ---7T(y;) and reduce the calculation to the situation
where each T_(y;) appears to the left of all T (y;). From (2.38) and (2.39) it then follows

Aa 1 o N 9 1
" o —_ _—
(y—$)2+y—x8:ﬂ)|x’z>+;azb (y_Zblx,z>>, (2.49)

7.0) ) = (

— 14 —



where we introduced a shorthand notation

N
|2,2) =Ei(z) [[EVP(24) 0). (2.50)
a=1
The integration contour in all the z, variables has to be chosen in such a way that integrals
of derivatives are zero. Consequently, the second term in (2.49) does not contribute to the
eigenvalue integral and will be omitted in what follows. We thus have

Ton) - Tl |2 2)= (g D) (D L Oy
+ R 5 21= (yp—x)2  yp—x Ox (y1—2)2  y1—x 0z HEIT
(2.51)

where . .. at the end of this expression denotes terms which vanish upon the z, integration.
Furthermore, from (2.40) and the commutation relations of ¢~ (z) and ¢(z,) fields we get

N N
2,2) = [[ (@ — )% A(2) T 9<@ [ o 2VPo<l)
b=1 a=1

0> , (2.52)

so that our final task in calculating the correlation function (2.46) is to compute correlators
of the form

N
2a T — Za
<VN\/Bfa/h,t‘T—(?ﬂ)"'T—(yl)e <@ T e2vio<tea)

a=1

0>.

Since for m,n < 0

[Lim, al = am, [Lims an] = —namn,
we have
[T (y), p<(z)] = i i Aoty = a¢<(y£:i¢<(x), (2.53)
and o
[Tf(y)’emm(z)] _ 2aa¢<(y; - i¢<($) o206 (@), (2.54)
Using
T_()]0) = ((99<(v))* + QP*d<(v)) |0) . (2.55)

we finally get

_ (2« 0 (y) — 0p<(x)
i 0) = (h e T (2.56)
N N
-2VBY 6¢<(y; - ff<(zb) + (09<(y))* + QD*p< (y))e%;’¢<(m) [T e2/Po<te 0> .

a=1

,15,



It should be clear how to express — using equations (2.53)—(2.55) — states of the form

T (y1)---T- (yk) <(z) H e~ 2VBd<(2a)

0)

entirely in terms of (commuting with each other) exponents and derivatives of fields ¢ (z)

and ¢<(z,). Our computation of the correlation function (2.46) is now completed by notic-

ing that
— z SV(z \F N z
<VNfa/m‘eh¢<()He2”’4“)—82 (2) o= Zala Vo) (1 |
and
V) (g
(Voal"6<e) = 2 (1ol >0
2h
In the simplest case of [ = 1, the expectation value (2.46) takes form
<VNf a/ht‘ % HE fza >—
N
(B 10 V) Vi) VBNV Vi),
(y—x)? y—axdx h? y—x h —~ Y — 24
V), Q') 0 (Va(z,2)
\I,oc ) R R
+< 2h * 2h (xz)+(;8za Y — Zq
where ¥, (z, z) is a shorthand notation for
N 2a+/B e VB N
Uo(w,2) = [[(x—20) "7 Az)? enrV® e Zama Vi)
a=1

Noticing that

and using the formula

(and, similarly, for z — 2, and o — —hy/B) we get the identity

(aV’(y)—V’( x) WZV’ — V(%)

h2 y—T T — 2q

)wa<,>— L F) Vala. 2),

where

—hQZy Z MmO, ., -

n=0 m=n+2

,16,
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Our final representation of the Virasoro algebra generators in a form of differential operators
acting on the wave-function Y, (z), defined as

0 =

0>: 3 (me (2.63)

N
[ (Vasoame| T0E @ ] () Tl
a=1

m=—0oQ

takes form advertised in (2.4)
Ly=Ae,  La=0,

~ 1 Q

) I3 - (2.64)
Eon = g (1% V@) + V@) + 27w, forn >

Furthermore, it follows that quantum curves have the structure of singular vectors
given in (2.29), with the above representation of Virasoro generators L_,. For example,
the form of AZ(«) in (2.29) yields

a? 2 i~ ~
(2= 2 (V) + 20070 +47(0)) ) o) = 0 (2.65)
for a = 0, %, or —ﬁ (recall that in expressions for quantum curves we include an

additional factor of /i in the degenerate momenta), while the form of A3(a) leads to the
equation

2 202 (200(2 h) — h?) ~
<a§ —4%6$L_2 4 20°(2a( O‘th ) )L_3>ya(x) — 0, (2.66)

with E_Q,E_g given explicitly in (2.64) and a = 0, %, —ﬁ, hy/B, or —-.. These

are examples of quantum curves that we already mentioned in (2.8) and (2.9

S

, and it is

~—

straightforward to construct quantum curves at higher levels. In the following section we
generalize the construction presented above to the supersymmetric case.

3 Super-quantum curves in the Neveu-Schwarz sector

In this section we derive super-quantum curves in the Neveu-Schwarz sector from the
conformal field theory perspective, analogously to the derivation of Virasoro quantum
curves in the previous section. While the form of these super-quantum curves have been
postulated in [24], the conformal field theory approach proves that they indeed have the
structure of Neveu-Schwarz singular vectors.

3.1 Background charge representation in the Neveu-Schwarz sector

Similarly as in the Virasoro case, we start our consideration from the analysis of the
background charge representation, this time of the Neveu-Schwarz algebra. First, we extend
the Heisenberg algebra (2.10) by fermionic oscillators and define a superalgebra?

1
[am7an] - m6m+n,07 {1/%71/11} - 5k+l,07 m,n S Za k7l S Z + 5 (31)

*Note a change of the normalization in the bosonic commutator as compared to the Virasoro case (2.10).
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We denote H)Y® = Ho ® Fns, where H,, is defined as in (2.13), and Fyg is a free vector
space generated by negative modes ¢ _; out of the fermionic Fock vacuum g, defined by
the condition ¥y = 0 for £ > 0. The hermitian pairing

(.7 ’)04762: HgsiaXHgS%C

is defined by conditions (2.14) supplemented with 1/},1 =_p.
Consider now the Neveu-Schwarz (NS for short) algebra

2

c
L, Ln] = (m —n)Lpgn + —m (m — 1) Om+n,0,

12
m — 2k
2 Gm+k7 (32)

c 1
{Gk, G} = 2Lg g + 3 (kQ - 4> Ok41,05

[Lm> Gk] =

where m,n € Z and k,l € Z + % The Verma module V}°. of the Neveu-Schwarz algebra is
a free vector space generated by L_,,,,m > 0 and G_g, k > 0 out of the NS highest weight
state vX° defined by

LA = Gprr’ = 0, m, k> 0, Lovp® = AR (3.3)

Definitions of Schapovalov hermitian form, as well as singular and null vectors in VR?C, are
obvious modifications of the corresponding notions for the Virasoro Verma module.
We now fix? 3 1
c= 5—3@% A=Za(a-Q)=A,. (3.4)

Analogously as in the Virasoro case (2.20), the background charge representation of the
NS algebra is defined by the map

oo @ End (VX)) 5 L, G = L(@)m, G(@), € End (HY®),

where

Lo =3 a man+ 3 koogis + 500 - Q)
m=1

= _1
k=3

L(a)n = % Z An—mam + % Z Iﬂ/}n—kwk + % (20[ - (n + 1)@) an, n 7& 07 (35)

m#0,n kE€Z+3
Gla)r = amtp—m + (o= (k+ %) Q) tx.
m7#0

Define a matrix S of the transition map between canonical bases in VX, and Hg;® by the
formula

L) 1Glo) k= Y [shg
[J|+|L|=p

g p® =|I K .
e yp amrtbonis p=II+IEL (36)

#Note a change in the definition of A, as compared to the Virasoro case (2.19).
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where .
o=y, 0<lhi <. <lm, |Ll=) 1,
i=1

and similarly for the multiindices K in G(a)_k. As shown in [38], the matrix (‘SiQ)_1

has (simple for generic values of «) poles at

1 1
—1)872 — —1)82
O = Qp g = <T )5 2 (8 )IB ;1,8 € Lso, g <p, r+se2i. (37)
As in the Virasoro case we can construct null vectors of the NS algebra as residues of this
matrix
p : p \ 7! NS
e €hgpun = lim (o — o) g [(Sa Q) ] L ;G g VA, (3.8)
a—o s ’
: TR |=p JL,IK

and the endomorphisms of H}® vanishing at a = a5 as

-~ -1
By =0 ¥ |(20) ]| L@@ 39
|+ K|=p JLIK
where
wy (@, Q) = H (a—ayg). (3.10)

The simplest examples are

AY(e) = Gla) s,

AY5(0) = a*Gla)_y — Gla)_y L(a)-1,
A2 (0) = (0 + Q)G(a)_1L(a) 1 — aG(a) s, (3.11)
243(0) = (a + Q)G(a)_1 A3 (a) + wih(a, Q)G(a) _3G(a)_1,

247 1(0) = (20 + Q)G(a)_1 AY7) (@) +Gla) _1 A5 (@)~ (a(a+Q)~1)G(a)_s G(a)_1,

1 1
A1 2(0) = S(ala + Q) = DG(a)_3Gla)_y — ;G(a)_1 A)3(a),
and an example at the level p = %

247)3(0) =Gla) s (aﬁfl( )+ (0% + Qo — 2) A2(a) — o (a® + Qa — 2) 23/271/2(04))
— 20w (a, Q)G(a)_s L(a)_1. (3.12)

As in the Virasoro case, we also add to the algebra (3.1) the operator q satisfying

I\J\CAD

[am., a] = dm.0, (3.13)
and consider e®'9 as a map

Mo — Hyl o e NS = NS (3.14)

,19,



Finally we consider the bosonic field ¢(x) defined by the formula (2.32), together with the
local fermion field

1

Y(x) = s (@) +Ua(@),  Us(@)=d a2, Yo(a)= w2t (3.15)
k=1 k=1

and construct the energy-momentum tensor 7'(x) and its partner spin 3/2 field S(x)

_ L, L RLOPS
T(z) = 5 :00(x)00(x): +3 :00(2)b(2): + 06 (x), 16
S(z) = ¥(2)0¢(x) + QI (z).
Analogously to the bosonic case we denote
o0 Lm o0 B
)= 3 e @) =T - Ta) = 3 Lona™™
~ . o (3.17)
Sp(z)= > ;;fﬁw S_(x) = S(x) = Sy(x) = > G_pat~2,
k=—1 ° k=3

so that 7. |0) =S4 |0) = 0, where |0) = p5°. The modes of these fields
dx dx 1
Ly=¢ — ™7 =¢ — 2"z 1
fam a™IT@), e f o S, (315)
0 0

have the explicit form

[ele] o 1
Lo = Z a_mam + Z ky_ppr + 520 (a0 — Q),
m=1

— _1
k=3

1 1 1
Ln - 5 Z An—mam + 5 Z lﬂ/]n—kwk - iQ(n + 1)3717 n 7é O’ (319)

meZ keZ+3
Ge=Y amem—Q (k+3) v
me”Z

For every £ € Hy® these modes satisfy
Ln& = L(a)né, Gr€ = G(a)s,

and they provide natural extensions of the operators L(a),, and G(«); to the space
HY = / HY® da.
52

3.2 «/f deformed eigenvalue integrals in the Neveu-Schwarz sector...

With the ingredients introduced in the previous section, we can now construct an expec-
tation value representing a super-eigenvalue model in the Neveu-Schwarz sector. Again it
is useful to define the normal ordered exponential

E%(z) = e*?<(®) 20> () (3.20)
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which in the present case is defined without the factor 2 in the exponent due to different
(as compared to the Virasoro case) normalization of the Heisenberg algebra (3.1). We have

[Lim, EY(z)] = 2™ (20, + (m + 1)Aq) E%(2), A, = %a(a -Q), (3.21)
(G E% (2)] = a2 h(a)E% (a),
We also define a superfield
d¥(x,0) = e 9912 EY(z) 12 = (14 anp(2)0) E¥(z) = e®V@IE(2),  (3.22)
and in what follows sometimes use the notation
D% (2,0) = eV(¢<(2)+¥<(2)0) (3.23)
Using the Neveu-Schwarz algebra (3.2) as well as the Jacobi identity

{Gr, (G, E* ()]} +{G1, [Gr, E* ()]} = { G, Gi}  E*(2))]
we get
(G, th(2)E%(2)} = émk*% (20, + 20, (k + 1)) E*(2), (3.24)
while the Jacobi identity
(L, [Gr, E*(2)]] = [[Lm, Gk] , E*(2)] + [Gk, [Lim, E* (2)]
gives
[Lin, $(2)E*(2)] = 2™ (20, + (m + 1) (Aa + 1)) ¥(2)E*(2). (3.25)

(Note that the formulae (3.24) and (3.25) can be also obtained directly using (3.19) and
the commutation relations (3.1) and (3.13).) It follows that

(L, @ (2,0)] = 2™ (20, + (m + 1) (Ay + 2605)) (2, 6),

Gy, ©°(2,0)] = 23 (9 (20, + 200 (k+ 1)) — xag) (2. 0), (3.26)

and in the particular case of @ = —/3, so that A_ 5 = 3VB(Q + VB) = 3, we get

(L ®V2(2,0)] = (00— S0 + 1)246) (47 % VP(2,0))

(G0 ™VP(@,0)] = (00, - 8y ) (s*T307VP(,0)). (3.27)

From (3.26) it also follows that

Ao+ L00
Dot 2% pay 0) 4 ——0,0°(x.0),

2A,0 1
liisy _ - o
O (60, = 09 #°(0,),

[T+ (y), % (x,0)] =

[S-i-(y)? (I)a(xv 0)] =
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and in particular

[T+(y),¢>*‘/3(x,9)} = (ax 1,0 ) ‘I’_ﬁ(wﬁ),

2 y—=x Yy—x
& Vh(x,0
(54 (4), 2~P(z,0)] = (60, — ) y_(z)
Since »
00 (), 00 ()] = ~00 {1 (2), Y (@)} = ————,
we get

0% (2, 0)0° (', §') = o/ [6> (D) <)) @ 0> @< (7, 0)07 (o, )

aa’ 06’

) D% (z,0) 0 (2, 0'):

= (r— :):’)0‘0‘/ <1 —
= (z— ' — 00 :0%(x,0)0% («/,0): .

r—X

Consequently, if we define the NS screening charge operator as
Qus = /dz g ®V5(2,9),

then, using the notation (3.23), we get

N
QY. |0) = /szdN9 Ane(2,0)° T[ 9=Y%(20,0) 0},

a=1

where dNzd™9 =TI, dz, df, and

Ans(z,0) = [ (20— 2 —0abs).

1<a<b<N

We also introduce a general coherent “bra” state in the NS sector

o0
= <O | eN‘/Bq H e%(tmam+fm+1/2¢m+1/2)’

m=0

<VN¢B,t,5

where

ks &} = {8ks 0a} = {&ks i} = 0.

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

Combining the above ingredients we find that the Neveu-Schwarz §-deformed super-

eigenvalue integral is represented by the following expectation value

7= (Vygseelat

where

0> = / ANz 40 Ans(z,0)% ¢ % Tamt V(zasba)

(3.36)

V(z,0) = Vi(z) + Vi(2)0, Vs(z) = Z tm 2™, Ve(z) = Z Emt122™. (3.37)
m=0 m=0

— 922 —



The loop equations for this model from CFT perspective follow from the relations
Ty (x)]|0) =S4(z)|0) = 0; using (3.29) they take a familiar form

(T4 @) = ( Vivyaee| T (@)QN|0) = (3.38)

N
[z Z(aza—iaea & )( L A(z,0) e“fziiﬂ(%ﬂw):o,
a=1

T — 2, T — 2,

(5+@)) = ( Virypag| S+ @)Q%]0) = (3.39)

N
- / a2 a0 Y (09, — 00, < L A(z,0) e T V<Zb,eb)) _o.
a=1

T — 2

Furthermore, the Neveu-Schwarz wave-function — also referred to as the a/f eigen-
value integral — is defined as the following expectation value

Ra(@,0) = ( Vys-ajnee| @7 (2.0)Q%|0). (3.40)

An explicit form of this expression defines a super-eigenvalue model considered in [24]

N
Xa(z,0) = enzV(@?) /sz d™o H(m — 2 — 99a)_Q}L/EANS(z, 6)° o= s Vast), (3.41)

a=1
3.3 ...and Neveu-Schwarz super-quantum curves

In order to derive super-quantum curves, i.e. differential equations satisfied by the wave-

0>.

Since this calculation, even if in principle straightforward, is rather lengthy and a closed

function (3.40), we need to compute correlation functions of the form

(VayBoasnt T - Tm)S(un) - S(wa)0F (,0)Q),

formula for arbitrary m and n is not known, we restrict ourselves to the simplest cases of
m = 1,n =0 and m = 0,n = 1. First, we need to identify the following representation of
the Neveu-Schwarz algebra

~ ~ dy 1 o
L_nXa(x,0) = j{ i (y —z) 1 < VN\/B—a/h,t,g‘ T(y)® 7 (x,0)Qus 0> ;

* (3.42)

dy 1 a
o (VavBapmae| SwF (,0Q|0).

G_(Xa(r,0) = 2mm

T

To evaluate these expressions, first note that

T(4)]0) = 5 (06<(1)96<(v) + <)< (v) + Q0%6(1)) |0)
S—(y)0) = (<(y)00<(y) + QA< (y))|0).

(3.43)
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Using definitions (3.19), (3.23) and the commutation relations (3.1) and (3.13), we find
0 0¢ a
T @)oo =2 o< y; : <®) 5% (2, 0) (3.44)
+O;i< (yy)_i¢<( z) 7/1<( ) — ¢<((Z):g§)?/2—$)a¢<($)>9 i(x 0),
and similarly for the commutators [T_ (y), Qzﬁ(za, 9(1)} and {S_(y), @;‘/B(za, Qa)} .
Since
Ve
<VN\/B—a/h,t,£ (y) = <VN\/B— éy)) (3.46)
Ve ’
<VN\/37a/h,t,§‘w<(y) = <VN\/B— 729)7
we have
a (Vé(:l/) ~Ve(z) 1 (Vp'(y) — Vel@) | Vely) = Velz) = (y = IE)VF’(ZL')> 0) V@) _
h2 y—T 2 y—x (y — x)?
1~ (z
= /) enzV (@0 (3.47)
where

o] . 00 n+1

n=0 m=n-+2

Similarly
a (Ve(y) = Ve(z) | VE() —Va(@) )\ avee _ 1+, | avee
= < g + g 0|]en = hzh(y)eh , (3.49)
where - -
N=RY S (gm 120y b Oe, /2) . (3.50)

n=0 m=n+1

Combining the above ingredients, and using (3.28) and (3.29) which in particular con-

Aa + 1989 1 .
0>:< R 2 75—+ Oz | Xa(,0)+

(y — ) y—x

tributes as surface terms, we get

< VNﬁ—a/h,t,s‘ T(y)®7 (2,0)Qh,

1
2712

(3.51)
((Vaw)* + E)Velw) + QRVE (9) + 2 (1)) (s 0),

and

QGA% 1 - .
0> - <(y R 2 ae>> Ralz,0)+ (3.52)
1

T

(Vyiasmee| ST (@,0)Q%

(V@)Vi) + QAV(w) + h(v) ) Ral.0).
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Expanding (3.51) and (3.52) in powers of y, we find that the representation of the Neveu-
Schwarz algebra on the wave-function Yo (z, ) takes form

Lo=Aa+ %069, L_i =0, (3.53)
~ 1 n—92 2 n—2 n n—2 7
L_,= m(az (Va())” + 0772 (Va(z)Vi(z)) + QR;Vi(z) + 20 f(x)),
and
@% =20As,  G_1 =00, 0,
~ 1 k—3 , k—1 k— 3~ (354)
G_y = ﬁw(@x 2 (Vi(2)Va(2)) + Qhdy *Vi(z) + O 2h(ac)).

From the above construction it automatically follows that super-quantum curves in
the Neveu-Schwarz sector take form of singular Neveu-Schwarz vectors, such as those in
examples (3.11) and (3.12), expressed in terms of the above generators of the Neveu-
Schwarz algebra (3.53) and (3.54). In this way we reproduce — and prove in general —
the results found in [24] (using the matrix model formalism).

4 Ramond sector and Ramond-NS super-quantum curves

In previous sections, using conformal field theory techniques, we proved that quantum
curves associated to Virasoro and Neveu-Schwarz algebras, found in [20, 24], indeed have
structure of singular vectors for these algebras. In this section we generalize such an
approach to the Ramond sector of the super-Virasoro algebra. In this case taking the
viewpoint of conformal field theory has two important advantages. First of all, it enables
to define the corresponding eigenvalue model, whose form is not obvious to identify a priori.
Second, similarly as in the previous sections, it proves in general that Ramond quantum
curves take form of singular vectors of the Ramond algebra.

When considering the Ramond sector, certain subtleties must be taken into account.
Similarly as in earlier sections, the wave-function X, (z) is identified as an expectation
value of a certain z-dependent operator, evaluated in between two reference states. Such
an expectation value can be defined in two general ways. First, in order to have a well-
defined wave-function, we can choose the two reference states (represented, schematically,
by the bra (R| and the ket |R)) from the Ramond sector, and the z-dependent operator
NS(x) to be of the Neveu-Schwarz type, schematically

Xa(z) ~ (B[ NS(z) |R). (4.1)

As the z-dependent part in this expression is encoded in the operator in the Neveu-Schwarz
sector, it follows that quantum curves — i.e. differential equations satisfied by X (z) —
have the structure of the Neveu-Schwarz singular vectors, such as those given in (3.11)
and (3.12). Nonetheless, the form of super-Virasoro generators L, and én+1 /2 in terms of
which these quantum curves are expressed is now different than in section 3, and it encodes
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properties of the underlying Ramond algebra. We call such quantum curves as Ramond-NS
super-quantum curves.

There is also the second possibility — we can choose the z-dependent operator to be
of the Ramond type, and then one of the reference states to be from the NS sector, and
the other state from the Ramond sector, schematically

Xa(z) ~ (NS| R(z) |R). (4.2)

In this case the corresponding quantum curves indeed have the structure of Ramond sin-
gular vectors, and we call such curves as Ramond-R super-quantum curves.

The construction of the above two types of Ramond quantum curves is a generaliza-
tion of considerations in sections 2 and 3 — however details of such constructions are not
completely obvious. In what follows, in sections 4.1 and 4.3 we present the construction
of Ramond-NS quantum curves, and in section 6.7 we discuss the case of multi-Penner po-
tential, which gives rise to one particular example of Ramond-NS super-quantum curves.
Subsequently, in section 5, we present a construction of Ramond-R quantum curves. For
brevity, in the Ramond-R case we essentially restrict the analysis to the Penner-like po-
tential, and demonstrate that in this case quantum curves take form of a supersymmetric
generalization of BPZ equations, which provides an independent check of our approach.
Moreover, independently of conformal field theory analysis, in section 6 we derive Ramond-
NS quantum curves from the super-eigenvalue model perspective and using matrix model
techniques. Similarly, in section 7 we rederive Ramond-R quantum curves using eigenvalue
model techniques. This proves that CFT and matrix model methods lead to the same
results, and enables to compare advantages of each of those approaches.

4.1 Background charge representation and singular vectors

The oscillator algebra in the Ramond sector takes the same form as in the Neveu-Schwarz
sector (3.1), however now with all indices integer

[amaan] = m5m+n,07 {¢m>wn} = 5n+n,0, m,n € Z. (4'3)

There are two vacuum states in the Ramond sector, which we denote by |0, % ), and which
are defined by equations

1
an0,£) =0, m>0,  ¥n|0,4) =0, m>0,  ¢o|0,%)=—=]0F). (44)

The super-Virasoro algebra, which now we refer to as the Ramond algebra, takes the same
form as in (3.2), however now with all indices integer. We consider the following free field
realization of this Ramond algebra

1

00 00
1
Lo = Z a_mam + Z m¢fm1/)m + 530 (aO - Q) + E’

m=1

m=1
1 1 1
Ln - 5 Z An—mam + 5 Z mqﬁnfmwm + 5 (230 - (TL + 1)@) an; n 75 07 (45)

m#0,n meZL
Gn = Z an-m¥m — Q (n + %) .
meZL
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One can check that the following relations hold
L,|0,£)=G,|0,£)=0, m>0, (4.6)

and 1 0

Due to the presence of the term %1/1—1"% in L_q, there is no state annihilated by L_; in
the Ramond sector.

By considering a transition map between the oscillator algebra and the Ramond version
of the super-Virasoro algebra one can derive general expressions for singular vectors in the
Ramond sector, analogously to considerations in previous sections. At the level zero the
operator which gives a null vector for a« = /2 (while acting on the Ramond highest weight
vector | A, +) with A, = %a(a —-Q)+ 1—16) or the null field (while acting on the Ramond
primary field RS (x)) is given by

~
Acp = Go.
At the level 1 the operators which give null vectors/fields for a = @Q/2, %\fﬁ , O —ﬁ may
be presented in the form
A( 1) = 40[(2@ - Q)G_l - 8L_1G0,
Alijoy =420 + Q) L1 Go — (20 = Q)G 1, s

Al g =8aG 1Go—2(20 — Q)L 1,
A\(l\-) =220 - Q)(2a+ Q)L_1 — 4G_1Gy.

As our last example consider operators

Afiapy = I <(a+%Q) Al + A<|1o>) G- 1( A<11|o> (o +3Q) <|1)
Afyy =G @O‘A(luoﬁ(o‘ +35Qa—3) A<| (% (1 >+20‘A(uo>)

T2 T1 2 1 71
A(.|270) = L,]_ <O[A(1‘) -+ (20[ + Qa — %) A(.|170)> — Gfl (20[ A(llO) + O[A(|1)> .
For a = Q/2, % 5, —ﬁ, %\/B, or —% they give rise to the null vectors at level 2.

4.2 Ramond-NS eigenvalue model

We introduce now various fields and operators relevant in the Ramond sector. First, we
consider the bosonic field (2.32) and define a fermionic one

o0 oo
_m_1 1
P(@) =t (@) + (@), Ps(@) =D Yma ™72, Po(@) =D Yonma™r, (4.9)
m=0 m=1
as well as the corresponding energy-momentum tensor and its superpartner

T(x) = 5 :00()00(x): 4+ :0%(a)b(a): Q

+5 0%6(@) (4.10)
S(x) = ¢Y(2)0¢(x) + QY ().
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These fields have mode decompositions

T(x) = T (2) + T (2), S() = 51(2) + 5_(2),
o0 oo L
o m—2 _ m
T_(z) = mzl L_pa™ 2, Ty (z) = mzo vt (4.11)
5-(0) = 3 G Sin) = 3 S
m=1 m=0 xm+§
with modes Ly, = § 42 2™ T(z) and Gy = §, 2= 2F128(z) given in (4.5). Note that

Ty(z)]0,4) = 15 10,£), S4(x) [0, %) = —5 %54 |0, &), and contrary to the definition
in the Neveu-Schwarz sector (3.17), now T_(z) and S_(z) contain singular terms at x = 0
(for modes labeled by m = 1). Furthermore, we introduce the exponential (super)fields

E%(x) = < (2) ea¢>($)’

% (z,0) = (1 + ap(2)0)E%(z) = eV @E (), (4.12)
In what follows we also use the notation
DY (2,0) = e @<DTV<) 3% (g 0) = e*a%W@g(x, 0). (4.13)
Note that the following commutation relations hold
(L, ®*(2,0)] = 2™ (20, + (m + 1) (Aa + 5 — £990)) (2, 0), (4.14)

1
(G @ (2,0)) = 23 (0 (20, + 280 (m + 5)) — 205 )2°(2,0), Ao = 5a(a - Q),
which in the special case a = —/f3, so that A_ 5 = 3VB(Q + VB) = 3, take form

[Lm, o VB(z, 9)] = (s — L(m + 1)040) (:cm@—ﬂ(x, 9)) ,

4.15
G #7(0,0)] = (00, — 35) (+740~V7(2,0)) o
From (4.14) we also find
(T4 (y), 8 (2,0)] = 0y ®°(2,0) + Be 5__ %899@0‘(&?,0),
y(y — ) (y — ) (4.16)
_1 . :
[S4(y), ®*(x,0)] = (00, — Dp) \/jy i 0%« 6) + (A\a/ﬁ?;(i/ ;2 )%a(x, 0),
and in particular
[T+(y) o VP (2 9)} - (ax T ____9%¢ )@—\/B(g; 0)
’ ’ yly—=x) 20y —a)? n (4.17)
(S0 07 @.0)] = 00~ 00) | [5——0~(w.0).
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Since
o> (2)0 W< (2)0" _ (1 — {¢=(2), ¥ (2')}60) < (@0 (P> (2)0 _
_ (1 . 09, ],‘/ ) ew<(x/)9/ ew>(x)97 (418)

;C;C/$—LU/

we get the identity

N
H@_‘/B(za,ﬁa)\o,:H: H < —2p—0, Qb\/>) H fﬁ;‘—aon@ \an, 0,)]0,4),
a=1

1<a<b<N
(4.19)

which is relevant for the eigenvalue model of the Ramond-NS type. To simplify this relation,

note that we have

N
Heﬁﬁ%wzﬂ(uf

a=1 a=1

@)= (v fen) e (<45 )

1<a<b<N

so that we get

B
[2p B abp \ _ zp 040 B babh
<za —zp — 0,0, 2a> exp< W ) (zq — zb) (1— B P Zb> (1 W >

B
o o8B 0O zat ) _ . Zat
(za — 2p) <1 S i — 2 Za = 2~ — 0.0, . (4.20)

Then it follows that

N
VoVE Lo N
ch VB(20.00) |0, £) = agl‘/%AR(z,O)BH@;\/B(za,@a)|O,:&:), (4.21)
a=1

where we introduced a (Ramond-NS) version of the Vandermonde determinant

Za + 2b
Ag(z,0) = H (za —y— == 9a0b> ) (4.22)
1<a<b<N 2\/%a%
In order to define the Ramond-NS model it is natural to define the following coherent
“bra” states
< = (0, i’eN\fqehﬁo’dJo H ef (tmam+Em+19¥m+1) (4.23)
m=0

Since (0,+ |0, —) = 0 (in our choice of normalization), we get

- N - 0g 0, _ﬁ N £o%
(0,4 [erforoe VB Ram V27 o, 1) = 1 - 243V Z&) PR Vi (424)
and then
s
< H & VP(2,,0,) +>:AR(z,0) e*TBZiV:lVR(Z“’G“), (4.25)
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where
Vi(,0) = Vi () + VF(Z)\%, Vae) = Y tme™, Va(2) = 3 &me™ (426)
m=0 m=0

The partition function of the Ramond-NS type is now represented as the integrated expec-
tation value (4.25)

2= (Ve

where we defined the Ramond screening charge operator by

> = /sz A0 Ag(z,0)7 e % Lol Vi(zaba) (4.27)

Qn = / dzdb ®VP3(z,0). (4.28)

This partition function (4.27) is regarded as the definition of the super-eigenvalue model
for the Ramond-NS§ sector.*
In what follows, for an operator O, we also use the notation

(0) = (Vi sae ). (4.20)

In particular the partition function (4.27) can be written as Z = (1)). Using (4.17) with
the relations (4.6) and (4.7) we find

2
(S (@) + 2hQ3/2 <€0 P )z_ (4:30)

/ dN9 Z aga ( ﬁ 1 AR(Z, 0)5 e_@ Zij)\rzl V(begb)> — 0’
T T — 2

1
1622

N
4 “ VB N

e dN dN9 2 —f a a A 0 ﬂ _fzb: V(Zb,gb) - 0.

Jorsan 32 (on - Gon ) (s otz e #5 0

These equations are interpreted as loop equations in the matrix model language in sec-

(T4 (2)) — (4.31)

tion 6.2. We now introduce a representation of the Ramond algebra in terms of operators
acting on the partition function as

gn 4 = <<Gn>>7 by Z = <<Ln>> (4'32)

4 1 113 ” j: 3
Note that, since we defined two “bra” states <VN\/B,t,£| in

vacua |0, £), one could in principle consider three additional correlators analogous to (4.25). However, since

2 _ N - 0a_ 1 2
(0,4 ehfovoe ™ oViam T2 10, — ) = ﬁ(%mﬁZ
a=1

(4.23), and there are two “ket” Ramond

N g
— V%a '
we see that (Vi Uit £| H & VP(24,04)|0,F) (with opposite Ramond vacua chosen on both sides of the

correlator) is no longer of the desired form, as in the right hand side of (4.25). In what follows we therefore
consider only the correlator (4.25), with both |0, +) Ramond vacua in both in and out states (the case of
both |0, —) vacua is equivalent and does not need to be considered separately).
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Then from the loop equations (4.31) and (4.30) we find super-Virasoro constraints

7= 95 (0-Toz. tz-1ts.z >0 (4.33)
gnd = on n,0{ SO 9 o ) n 16 n,0 n =y, .
where
00 00 772 n
Gn = MtmOey .\ + D mOh,,, + 5 OO + W2 0,00, .+
m=1 m=0 m=1 (434)
—Qhln —l— 0, @ —0 o — h—28
En 2% n,0 0 9 IS E
and

2 n
by, = Z Mty Op, s + Z (m - )gmagmﬂ % > 0, 0+
m=0

K2 B2 Qh 1

(4.35)

4.3 Wave-function and Ramond-NS super-quantum curves

We define the wave-function in the Ramond-NS sector, representing the expression (4.1),
as the expectation value

Ra(@,0) = (0% (2,0)) = <v;¢B

We write down this expression more explicitly (after the replacement 6 — ny/z) in (6.41),

o7 (z,0)QY

0, +> : (4.36)

where we analyze the eigenvalue model viewpoint.

One our goal is to find a representation of the Ramond algebra acting on X, (z,0), as
well as on components Xg o(2) and Xr o (). To this end we compute expectation values of
operators defined in (4.11). We find

(viswat (@.0))= <y\/i (00, — dp) + m> Ra(z,0)+ (4.37)
g (R0 (V) - 20) (et - 51205 )+ ) . 6),
where
y) = h? Zy” Z (&mOtyrriy + MmO, ), (4.38)

n=0 m=n+1

and similarly

N R e e
+ o (R + 3 (v (500 + @6 + 1) () = 05 ) ) Ra0),
(4.39)
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where

fly) =h? Z y" Z (mtmatm_n_l + <m Ul ; 1>§m85mn1>. (4.40)

n=0 m=n+1

Computations leading to the above results are straightforward albeit technically involved,
therefore we present them separately in appendices A.1 and A.2. However, at this point
we stress an important subtlety concerning the character of the expansion of the field S(y)
in powers of y. The crucial information about this expansion is encoded in the first term
on the right hand side of (4.37), for which we have

1 Nz Acf(y + ) AT 1 1 Aaf
(y_x(eax—ag)—kﬁ(y_x)Q _(y—x)2+<y—x_2x> (00, — Op) + 122 +...

(4.41)
with the dots denoting terms vanishing for y — z. On one hand, there is a square root

singularity in y for y — 0 or y — oo, which is a manifestation of the fact that at these
points we inserted Ramond vacua. On the other hand, for y — x the above expression has
(as follows from its right hand side) the second order pole, which means that the operator
inserted at x is identified as a Neveu-Schwarz operator. Furthermore, from the presence
of this second order pole, and since in general the expansion of the supercurrent is of
the form S(y) = >, Gx(2)(y — ©)7%73/2, we deduce that the summation variable k must
take half-integer values, and therefore the modes (G are relevant for the Neveu-Schwarz
sector. Expanding then (4.37) around y = = and taking advantage of (4.41) we identify
the representation of the Ramond algebra acting on the wave-function

G1Ra(,0) = <<G% .q>%(x,e)>> = 2020 %a(2.6),

G_1Xa(@,0) = (G_y - @F (2,0) ) = (00, — D) Xulz,0), (4.42)
G sRala.0) = (G527 (@.0)) = <i{f 5 (00, — 00) )55@(36, )+

x—1/2 Qh 1 ~ .
+ 2 ((VB,(I') — 23;) (VF(x) — 2h28§0> + QhV.(x) + h(m))xa(x,e).
Similarly, expanding (4.39) around y = = we get in particular

LoXa(z,0) = <<L0 - <1>%(a;,9)>> - (A% n %eag)ya(x,e),

L 1Ral(z,0) = <<L_1 : @%(x,9)>> = 0y%a(z,0), (4.43)
Loa%a(w.0) = (Lo ®%(2.0)) = (555 — 05 Rale.0)+
to { Fy+ g ((VE;(Q[;))2 £ QUVY(2) + V() <VF(3:) - ’52@50» } Ral,0).

1622 =«
x 2

It then follows that super-quantum curves will take form of Neveu-Schwarz singular
vectors (3.11), expressed in terms of the representation of super-Virasoro generators given
above. We present an explicit example of a super-quantum curve at level 3/2 in section 6.6,
and yet more specific example of the multi-Penner model in section 6.7.
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5 Ramond-R super-quantum curves

In this section we introduce wave-functions and derive super-quantum curves of the
Ramond-R type, which have the structure of Ramond singular vectors, such as those
in (4.8). To define such curves we need to consider wave-functions defined in terms of
expectation values of z-dependent operators R(z) of Ramond type, presented schemati-
cally in (4.2)

Ral®) ~ (NS| R(x)|R). (5.1)

It is most natural to define such Ramond fields R(x) by taking advantage of “chiral spin
fields” (or “twist fields”) o4 (z) discussed in [39, 40]. Therefore we first discuss properties
of such fields, and subsequently define the whole correlator (5.1).

In fact, a definition of wave-functions and quantum curves of the Ramond-R type is
much more involved than in previous examples. For this reason we do not discuss mod-
els with generic potentials in the Ramond-R sector, but focus our considerations on the
Penner-like potentials. In principle, an arbitrary potential could be presented as a combi-
nation of various Penner-like potentials, so in this sense our results provide a basic building
block of super-quantum curves corresponding to more general potentials. Furthermore, we
show that the Ramond-R super-quantum curve with the Penner-like potential reduces to
a supersymmetric version of the BPZ equation in conformal field theory, which is a nice
confirmation of our formalism. We rederive these results in section 7 using solely techniques
of eigenvalue models, which proves that both approaches are equivalent.

5.1 Chiral spin fields

As indicated above, to start with we summarize properties of chiral spin fields. These fields

have scaling dimension % and can be defined by the OPE with the chiral fermion v (2)

o)) ~ 7 F T 6:2)

and the braiding property
Vw —zor(w)y(z) = tive —wi(z)osr(w). (5.3)

It follows from (5.2) that if we define the states | o4 ) via an action of the chiral spin fields
on the Neveu-Schwarz vacuum |0 )

= 1.
02 ) = lim 0 (w) |0),

then ) .
dolos) = log),  {oslin= (o]
oy) = ox), o =—(oz]|.
These relations enable to identify the Ramond vacua as |o4) = |0,+) and |o_) =

e |0,—). The reason for introducing this phase shift is that the one-point correlation
functions of the o4 fields are equal and thus can be both normalized to be unity

(0loL(1)]| o) =1. (5.4)
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In order to determine the x-dependence of the correlators <O’o’i

’ o4+ > we use the fact
that with respect to the Virasoro algebra o () are primary fields of scaling dimension 116
1
[Li,04(x)] = <x8 + 16(m + 1)) ox(x).
Therefore, since (0| L; =0 and L; | o+ ) =0, we get from (5.5)

1
0= <0}L10i ‘ai> <0} Li,oi(z ’Ui> <:c8x+8> <0‘Ui ‘Ui>
which, in view of (5.4), yields

(5.5)

(0|os(z)]ox ) = z V8,

(5.6)

To calculate the one-point correlation functions of the fermion field 1(z) in the presence
of the spin fields let us consider the functions

s+(2) = Vz(z = 2)(0]ox(2)(2)| 01 ) = Fiv/z(z — 2){0|p(2)ox(2)| o4 ). (5.7)
By (5.2), s+(z

(z) is a holomorphic function of z with the only possible singularities (poles)

at 0, z and infinity. Since
eFT /3 (0o (@)] o)
s1(2) ~ { Tietd T f(O’Ui

Fi(0[¢1ox(z)| o1 )

this function is actually a (z-dependent) constant

si(z) =eFT \/§<O‘U:‘:($)‘ oy ) = e \/§<O‘Uﬂ:(l‘)‘ o4 ).

In view of (5.6) we obtain the one-point functions of the fermion field

for z — 0,
’O':t> for z — x,

for z — oo,

SERNCEE!
<O‘UJF(33)¢(Z)

o) = S [T L
V2 Vzyr—2 ' (5.8)
ET [z 1 —1/8 .
(0¢p(2)o ()| ox ) = 7 \/:mx .

Similar technique allows to calculate higher point correlation functions of the fermion fields
For example, for the two-point functions we get

1 o ~1/8
(0|os(@yp(w)p()]ox) = 5 (\/ \/ > |

;) _1/8 (5.9)
<Ow(w)¢(z)gi($)}ai>—% <\/ \/ z—x >
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The result for the higher point correlation functions can be summarized by the following

version of the Wick theorem®

(0 |ai H e za)Ga‘ o1 ) <0‘0+ )| o4 ) exp ( Z (o4(2)(za)t(2p)) 0a0b>,

a<b
N
(0 |ai(x) H ed’(z“)@“‘ o) =7F Z 04(0 ’o’i(x)@b(za)‘ o )X (5.10)
a=1 a=1
xexp (= (o4 (@) (za)v()) 0uh ).
a<b
where
o (0lon o) VR
(o4 (2)(za)¥(20)) = Ol (@02 ) = o) . (511)

Modifications appearing in the case when some of the fermions are to the left and some to
the right of the spin field o4 (x) are straightforward.

5.2 Ramond-R wave-function

The key in the current construction is the field denoted schematically R(x) in (5.1). More
precisely, we introduce a pair of such fields, which are Ramond chiral primary fields with

1

conformal dimension ja(a — Q) + 1—16 =A,+ 1—16, and which we define as

RE(2) = E*(z)o(x), (5.12)

with E®(x) given in (4.12). Furthermore, we introduce a correlator, whose integrated form
represents the Ramond-R eigenvalue model

N
o ¥ _ o+
V(z,2,0) = {ao |RE@)®H (w,n) [[ 07V (0, 00) [04), "5 - NVB=Q -
a=1

(5.13)
Let us clarify the structure of this correlator. First, the insertion of RE (x) is analogous
to a determinant-like insertion in a Virasoro (non-supersymmetric) matrix model, and
introduces a dependence of the wave-function on z. Second, CD%(w,n) gives rise to the
Penner-like potential (and it plays a role analogous to more general references states, such
as (2.41) or (3.35) in other models that we considered, which gave rise to more general
potentials). Third, a series of fields ® VP (z,,0,) introduces, as usual, the structure of
the eigenvalue model and gives rise to the Vandermonde-like determinant. To simplify
calculations, we assume the presence of a chiral field at infinity and define

<a0|—<0]ehq— lim 2z~ QTO(%)*Q)(OMD%(%O). (5.14)
Z2—r00
®The chiral fermion 1(z) and the fermionic variable § anticommute {¢(z),0} = 0. We assign the

commutation relation [o4 (), 0] = 0 between o4 (x) and 6, and then, from the definition (5.2) of the chiral
spin fields, it follows that o_(z) and 6 anticommute {o_(z),0} = 0.
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Generalization of the above model to the multi-Penner case can be achieved by replacing
in the correlator (5.13) ®7(w,n) with Hf\il <I>%(wi,m) with M > 1, and more general
potentials can be introduced by considering yet more general insertions.

Let us now evaluate the correlator (5.13). Using (5.10) and the normal ordering formula
for the bosonic fields E we get its explicit form, which can be presented as

Uy (2,2,0) = 04(2) (& — w) 7 Apa(z,0)7 e % Tamt (el tVealza)a)  (515)

where

Ana(z,0) = H(Za — ) e*<0+(x)¢(za)w(2b)>9a9b —

a<b

= H o — oz — \/Z(z($ — Zb) n \/Zb(x — Za) 0,0, (516)
AN ’ (T = za) za(r —2) ) 2

can be viewed as a Ramond version of the Vandermonde determinant, and the analog of

the Penner potential takes form
Vi,2(2a) + Viz(2a)ba, (5.17)

where

Vee(2) = alog(z — 2) + ylog(z — w),
w(zr — 2z z(x —w 5.18
Vea(2) = —3{ow(@p()p(z)n = 5 <\/ @z) \/ < >) .

2(z —w) z(x —w) w(x — 2)

Furthermore, we also denoted

Oy (x) = (0ot (z)| oy ) =27/,

O_(z) = %(0}07( w)oy) — 529 0lo-(2)d(z)] o+ ) = (5.19)

LT

e T ('m VT BZ ) _ys
V2 h \/w (x —w \/za Za) ’

where the explicit forms of ©4(z) and ©_(x) are derived in (5.6) and (5.8), respectively.

Introducing yet another fermionic variable { we can combine ¥4 (z,z,0) into a single
super-function

U(r, & 2,0)=V,(x,2,0)+ \h[e4£\11 (,2,0). (5.20)

This allows to express the Ramond-R wave-function for the one-Penner potential x%(z, €)
which we discuss in section 7 in the form

ay

_xén V@
(2, 8) =2 /3@ —w) e P Vee-w) /sz dNo W(z, €, 2,0). (5.21)
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5.3 Ramond-R super-quantum curves

Analogously as in other cases, super-quantum curves of the Ramond-R type are differential
equations satisfied by integrated form of W (z, z,0). In general they can be obtained by
constructing null vectors in the Ramond Verma module. As an example, we consider
correlation functions of the field (cf. the first equation in (4.8))

« 2xy a
<h (h - Q) G,1 - 2L1G0) . Ri ($) (522)
Such a correlator should vanish for oo = %, a= %, and o = — 3 \% The second and the

third case leads to a pair of the first order differential equations derived below.
We first denote

N

s1(y) = Vivy —z{ao| SRE (@)@ (w,n) [[ VP (20,00) |04 ) =
. (5.23)
= Fiyiva —y (ao| RE(@)S(@)@7 (w,n) [] @ VP (20,600) |0 ).
a=1

Since, as it follows from the mode expansion of the current S(y) around the fields and
states present in the correlation functions s4 (y) as well as the commutation formulae (4.16)
and (4.17),

{ao|S(y) ~y 2,

% 1 a %—Q/Qe:':% a
vyfﬂfs(y)Ri(x)NﬁGO'Ri(JU):ﬁ 7 R (@),

2891 pd, — 0,
(y—w)?  (y—w)

S(y) @7 (w, 1) ~ ( ) o7 (w, 1),

0 040,, —0 dVB(2,,0,)
S() 0V (20,0, N( o bad, 9a>q)—\/6 20 0a) = (0uds, — 0y, ) 2 \Farla)
(y) ( ) (y_za,)2 (3/-%) ( ) ( 9a) Y— 24
1 QeJT?r
S ~ =G = =2 |o_), 5.24
VYS(y) loy) ) olot) 2\/§y|" ) (5.24)

we see that si(y) are meromorphic functions, vanishing for y — oo and having first order
poles with locations and residues which can be read off from the equations above. si(y)
can be thus written as a sum of the pole terms and, taking into account the equalities

« ~ N
(ao|RE(@)@% (w,n) [[ @7V (20,00) | 0- ) = ¥y (2, 2,6),

a=1

N
(ao|RE(@)@% (w,n) [[ @7V (20,00) |0~ ) = —i¥ (2, 2,6),

a=1
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which follow from (5.10), we get

N
(a0 | S)RE (@) @7 (w,n) [T @7VP (20, 00) |04 ) =

a=1

1/ 2« x x &
-3 (-9 mr = am =) T w0
_ Ay
w(x w)( 2837 N 1 ((1_ 1w> Agn+778w_an>>\pi(x’z’0)+

(y—w)?2 y—w woox—

N
za(® — 24) Vi(x,2,0)
( yly—=) Y-z ) ' (5:25)

Using (5.25) and the definition

« 1 (63
S(y)R%(z) = Z PN Gm - RE(2), (5.26)
meZ (y - I’) 2
we get in particular
a v N X Q/2 i
(ao|Go - RE(2)®7 (w,n) [T @7 (20, 00) |01 ) = T Ua(@2,6), (527)
a=1
and
(ao|G_1 R (2)®7F (w, 7) lj‘v[qrﬂ(z 0.) |04 ) = AT QRFQ ey (z,2,0)+
0 -1 + » 1 41 arVa + 2\/§ZI) F\Ly <,
Aynz
. w ;
- w v 3 <y
i :c(x—w)(w(x—w)+na &,) +(x,2,0)+
N
. 2a(x — 24) Vi(x, 2,0)
- aUzq — : 2
zazl(e 9., a@( - P (5.28)
Defining finally
N
Ralo) = [d%a% (oo | RE@OF (w,n) [[07P (et 04), (529)
a=1
and
~ [e3 N
GmXto(z) = /sz dNo (ag| Gy - R (x)q)%(w,n) H <I>_\/B(za,9a) oy ), (5.30)
a=1

and using (5.22), (5.27) and (5.28), we arrive at differential equations for the wave-functions

8 1 ~R o i OV 2w A%nx -
<85'3 " 895) Yholz) = —e* ﬁm (w(x —w) + 10 - 877) Xal®),

g i o @ ~R i g 2w A%n‘r B ~R
<81‘ * 8z h:p) XZalz) =es hm (w(w —w) + 10w = Oy | X¥.a(2),

(5.31)

which are valid for a = g\/ﬁ or —2%.
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The equation (5.31) can be further simplified by using the scaling covariance (the
unbroken subgroup of the global SL(2,C) covariance) of the correlation functions (5.13).
Indeed, since

1
L0|Uﬂ:>zﬁ|ﬁi)7 (ao| Lo = Ao (aol,
then using commutation relations
[Lo,R%(2)] = (20, + (Aa + 7)) RL(2),
[Lo, @7 (w,m)] = (wd + (A5 + 310y)) © (z,n),
[L07 cl)i\/B(Zaa 9@)] = (8za2a - %aﬁaoa) (pi\/g(zaa 0(1)7

we get

N
(:Eax + w(?w + g8n+2(8zaza - 5&;@%)) \I’i(x, z, 9) = (Aao —-A

TR
a=1
and consequently
(20, + wdy + 100,) Xo(2) = (A%o ~Aa— Az - %) (). (5.32)
Using (5.32) and defining
~ _1 1.
Xiol@) =278 (fLa(2) Fgko(@)), 9% 0(1) = F 25 0pXE o(2), (5.33)

we can reduce partial differential equations (5.31) to two pairs of coupled ordinary differ-
ential equations

0ffa(x) i« 2w
Bx =t T\ s R (@), (5.34)
. Aog — Ao — :1:835 Al
D Q) g = O B (TR TR T T ),
Jr hx “ h\ z(z —w) w r—w/) T

0 Qa\ _o=ma 2w -
(5= ) a5 [ 20t (o) (5.35)

AL — Ag — .Tax A,
2w < hO h ’Y >f£{’a(x)

_|_ h

w T —w
It is straightforward to derive from (5.34) and (5.34) a second order, ordinary differential
equations satisfied by the functions f} ,(z) and g% ,(7) (we discuss these equations in
section 7). These are Ramond-R super-quantum curve equations we have been after. In the
context of superconformal field theory these equations can be regarded as supersymmetric
versions of BPZ equations, and they were discussed and solved in [39, 41]. The fact that we
reproduce supersymmetric BPZ equations ensures that we have chosen a proper definition
of the Ramond-R wave-functions (and the corresponding eigenvalue model), and it is a nice
test of our formalism.
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6 Ramond-NS super-eigenvalue model and super-quantum curves

In this section we rederive super-quantum curves in the Ramond-NS sector, however in the
formalism of matrix models (or rather eigenvalue models), analogously as in [20, 24]. This
enables us to compare both approaches (i.e. conformal field theory and matrix models)
and confirm that they lead to the same results. However, as an additional result, in this
section we also derive classical curves, which from the matrix model viewpoint would be
interpreted as spectral curves, and which describe equilibrium distribution of eigenvalues.
The interpretation of such classical curves is more natural from matrix model perspective
rather than conformal field theory.

Our starting point is the expression for the partition function (4.27), which we proposed
based on conformal field theory considerations, and which we interpret now as a super-
eigenvalue model with N bosonic and fermionic variables z, and 6,

7 = /sz 40 A (z,0) e Tamt Vilzaba) (6.1)

with dVz dNg = Hivzl dzq df,, the Vandermonde-like determinant given in (4.22)

B
Ar(z,0)° = H <za — 2y — 1(za + 2p) babe > , (6.2)

1<a<b<N 2 Fa%h
and the potential is given by (4.26)

Va(z,0) = Vi (z) + VF(:,;)\;’E, Va(@) =) twa",  Vi(z) =) &a" (6.3)
n=0 n=0

with bosonic times and fermionic times ¢,, and &,, such that {6,,&,} = 0. In this section
we also use an equivalent notation, with redefined anticommuting variable®

0 =nyz. (6.4)

In terms of variables 1, = 0,/,/z, defined in (6.4), by d™ = Hflvzl P d™n the partition

function (6.1) takes form
R Y Be= Y2 Lol Vilza,ma)
Z = [d"zd"n Al(z,m) ek 2=t , (6.5)

where Vi(z,n) = Vg(x) + Vi(z)n, and

N B
1
Ar(za "7)6 = H Za_l/2 . H (Za — 2y — i(za + Zb)nd'?b) . (6'6)
a=1

1<a<b<N

This is the same trick used in [42] to remove the half-integer powers of the variables z, in the construction
of Ramond singular vectors.
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We also decompose the partition function as

7= 7y+27,

h

VB N (+)
_ —E N (Ve(za) + Vi (2a)a
Z():Z|£OO:/d 2dVn A(z,m)Pe (v . >, (6.7)

N
_ VBN 2 ),
7 =g Z = —\/B/szdNn NERE D "7a> o F BT,
a=1

where
o
n
n=1

The partition functions Zy and Z; represent a two-dimensional Ramond vacuum. In this
section the unnormalized expectation value of an operator O is denoted by

() = /d 2 4 OA, (z,m)PeF Tiea Vlzamo), (6.8)

6.1 Free field realization

In terms of times in the potential (6.3) the oscillator algebra (4.3) in the Ramond sector
with (3.13) is realized as

1 1
q= %to, a_n ﬁtn, ag = hoy,, an = hoy,,
1 h 1
QzZ)O = ﬁéO + 58607 Q;Z)—n = ﬁ£n7 ¢n = ha&m n > 1. (69)

Here note that the derivatives of the partition function with respect to times can be rep-
resented as the following expectation values

o, 7 = —‘f<<zlzg>> ¢, 7 = —\23<<le”n>> (6.10)

Therefore we can introduce bosonic and fermionic quantum fields, whose negative modes
— normally represented by derivatives with respect of times — can be written as

e8] oo N
:%Ztnxn_\/ﬁNloga:+\/BZZ —VB BZlog:B—za
A N
Vap(z) **fo—fzna hZ§n:1: - BZZZ Dot m:,ffF@:)_\/gzﬁ,

n=1a=1 a=1

where we have defined

R A N R 00 R h
Ve(z) EVF(w)—\/QBZna—foJernm", go—go—izna. (6.12)
a=1 n=1

a=1
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These fields satisfy standard relations

1
Tl — X2

d(z1)d(z2) = log(x1 —x2) + ...,  P(x)P(a2) =

The Ramond supercurrent S(z) and the energy-momentum tensor 7'(z) are constructed as

S(@) = g2 = 9(2)0i(@) + QOh(x), (6.13)
nez

T(x) = Zﬁnaf"# = % : 0:0(2) 0 () : —&—% s O () () —&—%Q@iqﬁ(m), (6.14)
nez

where Q = 71/2 — /2 corresponds to the background charge in A = 1 super-Liouville
field theory. We also write

S(@) = Si(x) + S-(x),  Si(a) =Y gna "3,
"y (6.15)
T(2) =To (@) +T_(z),  Ti(2) =3 lar 2.
n=0
The OPEs of these fields are given by
2c 2
S(xl)S(x2) - S(Il — I2)3 + T — $2T($2) +.o
— 3 1 /
T(xl)S(:Ez) = 2(1‘1 — $2)2 S(ﬁz) -+ - xQS (.’L‘Q) + ..., (6.16)
c 2
T(x1)T(xg) = + T(x2) + T (z2) + ...,
(z1)T (x2) 3~z T =z (22) pra— (z2)
where the central charge reads
= 2 —3Q% (6.17)

The OPEs (6.16) imply that the modes g, and ¢, defined by the expansions (6.13)
and (6.14) satisfy the super-Virasoro algebra (3.2). After some manipulations we also find

N
\/ES.;.(LL’) _ é Z (_-T + Za)ia \FQ Z -73 ";Za Na Z ot
2 = (x — zq)(z zb) (x — 24 g
g (6.18)
Q 2aV; Za Na + VF(Za)
B %f B Z T — Zq ’
VS () = Va(@) Vi (z) + TVi(w) — o (Vela) — &) +
N VF VF Za V/ V ZaTa (619)
\;132_; Tr — zq \FZ )ﬂf—Z(a )) 777
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and similarly

N N N
"Tie) =5 3 ; +@QZ( - 2—§Z%+

ot (x — zq)(x — 2p) = (r— Za) oo (@ Zq)
+ é i ZaZbMallb _ 7/8 i Za (Vé(za) + VF/(Za)na) + (6 20)
2 o= (v —z)(x — 2) h — T — 2, '
N
VB 3 ZVe(za)a 1
2h = (x = za)? 16x’
T N2 L 5 Qu // wV, 2aVp 5 (%a)
2T() = 55 Va(@)* + S Vi@ Ve(e) + 5oV (@ Z p—— +
\ﬁ al (VFI(x) - VF/(Za Zaa 24V .CI? za Na
V2 V2 21
2ha:1 T — 2, Z (x — 24 ’ (6.21)
where we denote
Vi (2, 20) = Vi(@) — Vie(za) — (& — 20)Vi(2a). (6.22)

6.2 Loop equations and super-Virasoro constraints

We can now determine loop equations for the super-eigenvalue model (6.5). As usual, these
equations follow from the invariance of the partition function under changes of integration
variables. The partition function (6.5) is invariant under

2aMad J
V(T — za)’ V(T — 2a)’

with a fermionic constant §. We see that this invariance leads to the loop equation (4.30):

Za — Za+ Na — Na+ (6.23)

N
1 B
dVzd™n Y (120,70 — A SN Vi(zama) | —
/ z 77 p— (77 a aZ a"']a,) |:.7; — 2 (z TI) L 07

a

which can be written as

2
{(S4(2)) = —hfm (50 - Za@) Z, (6.24)

where the supercurrent Sy (x) is given by (6.18). The partition function (6.5) is also
invariant under

Za€ ZaNa€

— S - L 6.25
Za Za + l'(ﬂj _ Za) na T/a + 2$($ o Za)2 ( )

with an infinitesimal parameter e. We see that this leads to another loop equation (4.31):

_ Na Za Ba— BN\ V(zama)| _
/ Z( 7Ia2x_za)>|:x_zaAr(z7n) € h ! 07
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which can be written as .
T =—7 6.26
(T @) = 155 7, (6.26)
where the energy-momentum tensor 7' () is given by (6.20). Therefore by the mode expan-
sion and the realizations (6.10), these loop equations give super-Virasoro constraints (4.33):

7= 95 (e0-To Nz 2= L0z > 0 (6.27)
gnsd = 2hn,0 0 250 ) n—16n,07 n =u. .

Note that from the constraints (4.33), by the decomposition (6.7) of the partition
function we obtain

nZo — @gnzl =gnd = 921 - Qﬁozo On,0,
h 4 2h
(6.28)
020 + @anl =0,7 = 1 Zo + @Zl Sn0
h 16 h 7

where g, and Zn are abstract operators acting on Zy and Z7. In particular, the constraints

. Q -~ Q > 1 > 1
Zy=—2Z Iy = =2y, loZo=-—=Zy, loZ1=-—=Z 6.29
90041,90120,00 1670 041 = el ( )
are consistent with the relation g3 = Zo — ¢/24 in the super-Virasoro algebra.

Also note, that while right hand sides of equations (6.24) and (6.26) are non-zero
(and so might seem non-standard), this is only a consequence of our conventions. If the

modes Ly and Gy would not be included in the definition of respectively T4 (z) and S (x),
then (6.24) and (6.26) would have zero on the right hand side.

6.3 Super-spectral curve

In the analysis of matrix or eigenvalue models, a spectral curve is an algebraic curve that
encodes equilibrium distribution of eigenvalues. In case of super-eigenvalue models one finds
a supersymmetric spectral curve, defined in terms of supersymmetric algebraic equations.
Such super-spectral curves in the Neveu-Schwarz sector have been derived in [24]. In
this section we derive an analogous super-spectral curve in the Ramond sector, for the
super-eigenvalue model defined by (6.1). To this end we analyze the loop equations (6.24)
and (6.26) in the large N limit

N =00, k-0, with pu=A2kEN = const. (6.30)

We also use the notation
h= (82— B 2)h=—Qh. (6.31)
By defining

Yu(z;h) = Yy(z) = lim E«@mgb(x)», Yi(z; ) = Ye(z) = ngnm%(w(x)», (6.32)
/ﬁﬁxed ﬁﬁxed
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the loop equations (6.24) and (6.26) yield

1

VEYa(@)Ye(x) - Vi(2)TVe(z) + ﬁ(vF'(x) - L) - ﬁYF’u)) @) =0, (6.33)

and
25 ()2 + 2V (2)Ye () — 2V (2)2 = Vi (2) Ve (a) + ha (VY (2) = Yi(e)) —2f O (x) = 0, (6.34)
respectively. Here

2 N—oo Zp’
hfixed

5N = T (e B = 1 VBRI \\ 1.z
Ve(z) = Vi(a; h) —Vp(az)—kfi\}lm <<Z77a>> = Vi(z) — = lim A2t (6.35)

N / !
— _ lim \/,Bh<<z <VF(LL") — VF(Za) i (l‘VB(f) - ZaVB(Za))na> >>7 (636)

FO(z) = fO(a;h) =
N ! / ’ . ’ .
— _ lim \/Bh<<z <:EVB(:L‘) — zaVi(2a) N (2Vi(z) — za Vi( a))na+

T — 2, 2(x — 24)

2V (2 2a)Na
= >> (%40

where VF(Q) (2, 24) is defined in (6.22). For polynomial potentials, h(?)(z) and f©) () are
polynomials of x. For h = 0, or in particular for 5 = 1, denoting

ys(x) = Yu(x;0), yr(x) = Ye(z;0), (6.38)

the loop equations (6.33) and (6.34) in the large N limit yield a super-spectral curve

{ Ar(z,yslyr) = ys(z)ye(z) + G(x) = 0, (6.39)

Ap(z,yslyr) = yu (@) + yp(2)yr(z) + 2L(z) = 0,
where

G(z) = —a 2V} (2)Vi(z) — 27 20O (250,
1 1 ~
L(x) = =5 Va(@)* = 5o V(o) V(s 0) — a7 £ (3.0).
The equation (6.39) is a supersymmetric algebraic equation, which defines a supersym-
metric algebraic curve. In matrix model interpretation this curve encodes equilibrium

distribution of eigenvalues. We refer to this curve as the super-spectral curve.
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6.4 Wave-function and deformed currents

The quantum curves that we are after are supposed to quantize the super-spectral
curve (6.39). They should take form of differential equations that annihilate the wave-
function, which in the operator formalism we introduced in (4.36). More explicitly, in the
eigenvalue representation this wave-function takes form

Xa (T, Van) = <<e%(¢<z)+ﬁ¢(x)”) >> (6.40)

where 7 is a fermionic variable with {n,7,} = {n,&.} = 0, and « is a bosonic parameter
that we refer to as the momentum. Using expressions (6.11) we can further write

Sé\a(xa \/577) _ e,{%VB(w)'i‘g%VF(w)??«Xng(x’ \/577)>> onZ o VB(®)+7 VF(JC)?? ( ’\/En% (6.41)

where we have defined x,(x,+/zn) as the unnormalized expectation value of the operator

(o) = oSl ) _

N N
- (1 + égan; <;na + ;ﬁ;)) [ —z) % (6.42)

a=1

The wave-function can be decomposed into bosonic and fermionic components as

NXo (@, Van) = Xo.a(2) + VaXe.a(®)n. (6.43)

By analogy with a derivation of loop equations for the partition function, in this section
we derive loop equations for the wave-function x,(z,/an). This analysis is equivalent to
the operator formalism presented in section 4. To proceed we regard the wave-function as

an eigenvalue model with deformed potentials

Va(ysz) = Vi(y) + alog(a — y),

an  oayn (6.44)

Ve(y;2,m) = Ve(y) — 2 T a—y

which replace Vi(y) and Vi (y) in the supercurrent S(y) and the energy-momentum tensor
T'(y). Note that the fermionic time & is also deformed as {y — o = &y —an/2. From (6.18)
and (6.19) we find the deformed super-current

S(y;z,n) = S+ (y;z,n) + S—(y; z,n),

where

_|_

6 al Ta Q\/> y+za Na 5 y +Za)77a
VYS+(y; z,m) E E T a—
' 1 a=1

y—za) ) 2 A (y—za)(y—=)

anf Om\f
h Z (x — 24)(y — 2a) Z —za

\/Biyvf Yna+Vely) _hly) Q@ <Eo+\/§h 3 na>, (6.45)
a=1

h — Zg h? 2hy
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and

VYS-(y;x,m) = (ZyA_%;nZ + i " [:cn (f% + ;Vé(y)) = (3n = ;VF(y)) + A%n] +
v v () + 5+ in) QR )+
- P v - @) + 1) (6.46)
Here
A;:—%(Z—Q), (6.47)
and

fhz <VF — Vi (2a) 4 (yVé(y) - ZaVB,(Za))Ua> . (6.48)
Za Y— Za
As the operator acting on the partition function Z or the wave-function x.(x,/an), h(y)
is equivalently represented by the partial differential operator

y) = Ii? Z?/n Z (&mOtmny + mitm0e, ), (6.49)

n=0 m=n+1
which we found independently in (4.38). In the large N limit (6.30), the expectation value
of this operator reproduces k(%) () in (6.36)

1 1~
m = _ 2 — 5O

e (h(y)) = e Zh( y)Z =h"(y). (6.50)

h fixed 7 fixed

By considering deformed potentials (6.44), instead of the loop equation (6.24) for the
partition function Z we now obtain a loop equation for . (x,/zn)

2
S+l =~ 5 (60 5 - ok ) valovin. 650

Similarly, from (6.20) and (6.21) we find the deformed energy-momentum tensor
T(y;x,n) =Ty (y;2,m) + T-(y; 2,m),

where

yTy(y; z,m) = a\}{B

N
T M e T

1(:v—za)(y—za) 52 W=z (y—=)

WE

+

MZﬁ

IR Y

N
zananb B Z zazbnanb 0477\/32 xzana
Za)
1

1(92 ) (y—2p)? h

0“

a,
N

CW?\/B Z a77a CW?\F Z Zalla

2h a:1 a:—za)(y—za2 Y — 2q)?

ZQyV’ ;tZV()a ZVF Vel W) | L 659

— 24)? h? 16y
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R e e O A | B Ky R
N
| 0P + 300 (Vo) = S+ VTS ) + om0+
a=1
(6.53)
Here

yvl — Zav (zll) (yVF/<y) - ZGVF/<2(1))77(1 VF(Q) (-7}7 Za)zana
fhz < — Za * 2(y — 2a) - 2(y — 24)? )7
(6.54)

where VF(Z) (x, 24) is defined in (6.22). We can also represent f(y) as a partial differential
operator acting on the partition function Z or the wave-function x.(x,/zn)

oo o 1
=)y (mtmatmnl + <m e >§ma§m . 1) (6.55)

n=0 m=n+1

and in the large N limit (6.30) we reproduce f(©(y) in (6.37)

Jim S0 = Jim )2 = 1), (6.56)
h fixed h fixed

Using the deformed potentials, instead of the loop equation (6.26) for the partition function
Z we obtain now a loop equation for x(x,+/zn)

(T (ys )X (0, v/am) ) = 12Xa( ;). (6.57)

6.5 Building blocks of super-quantum curves

We introduce now a representation of super-Virasoro operators G, 1 and Ly, acting on
2

the wave-function x,(z, /an) by
dy n
Gl Vo= 3y 2)" S (yirn) o Vi) =
y=a
Q

d h?
=f g[S - g (-5 - k) et V),

211

Loxalw o) = 3%y = )" VT (s, n) o, V) =
f; ) %(y — )" [T— (ysz,m) + 161y2} Xa (2, Van),
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where we have used the loop equations (6.51) and (6.57). From (6.46) and (6.53) we obtain

for example
=a'/%y (8 + Vil >) 1/2(&7—,12 <>),
z=3/2 z—3/2 o
oy a7 o ) - (o0 Site) )+

2172 o 2
T V@) (Vo) + 3= 0 ) + (@0 ) ia)+

G

=

(6.58)

2

2 —~
ramVi(w) - B (Velo) - - T0n ) + 7).

and

= 0+ SV — SV - T (0, ).
szjn(an—;wm) 210+ o [+ S (v - e )+

+ <Q; +a) Vi(z) + 3$_;anVF'(x) 30”71/”( )+ x_lf(x)] +

1622

For the wave-function X, (z, /zn) with the prefactor in (6.41) we define super-Virasoro
operators G, 1 and L, analogously
2

ool = f Bty =y s - gty (- P 0% )| e van),
Lol = § 2o [T s + it v (6.60)

For example, analogously to (6.58) and (6.59) we obtain

@_% = 2230, — 27128, (= 00, — dy),
~ 7—3/2 2—1/2 r—3/2
G_g=—"Qen——5 N0+ ——0pt (6.61)
x—1/2 h2 ~
(v - 2) (VF< )= ) + Qnie) + )|

and

. -1
L,1:61—$2776 (:a)a

1 -1 h2
=+ ”a + 55 { Vi)’ + = Vi(a) <VF(x) - a&]>+ (6.62)

2
+ ?Vé’(m) + :U_lf(:v)] +

b‘)

1
1622’

where in the second equalities of G_1and L1 we changed variables as in (6.4). Operators
2
found above agree with those identified in section 4.3 in the operator formalism.
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Furthermore, we can transform (6.61) and (6.62) into operators Gm; and L, acting

on the bosonic and fermionic components of the wave-function (6.43),

SC\ ( ) \/Enan_;_%j(\F,a(x) = n+1Xa( \Fﬁ)
LoXs.0(®) + VEnlaXe.a(r) = LaXa(z, Van).

G,
2

(6.63)

We find

Xz,a(T) = Xr,al®), a_ Xr,o(T) = 0xXp,a(T),

%
a(®) = = Xpal@) + GXpal@), (6.64)
-2 -1

~ T ~ T

G_3Xra(2) =~ AsXna(®) — 5 0:Xna() + GXral2),

and

|—>

E—ISC\B,Q({B) = axSC\B a(x)
L oXpalz) = ( 2719, +L)

Cooteale) = (—o7'0: + L) %,

(s~ ) - ) i e,

~ 171, X y Qh
L= [gvier + Svio (e - Lo ) + &

), (6.65)

—1Xr,a(Z) = 02 Xr,a(T),
alT
a(@),

where

Q)
I

1
1622

PV + a7 Fw)] +

6.6 Super-quantum curves at level 3/2

In order to identify super-quantum curves we consider the loop equation

((c1vaSt (v z,m) + conzTy (z52,m)) X025 (2, Van) ) =
c1Q an 12 (6.66)
- <_2fl5€<€0_2_28€°>+16 ) o, V),

and analyze for which values of ¢; and ¢z it can be written as a differential equation. We
find that it happens only for ¢; = —a?/h? and co = 2a?/h?, and only for special values of
the momentum «

a=0, B%h, or — (37 2h. (6.67)

Indeed, for this choice of parameters, the loop equation (6.66) can be written as a differential
equation

Q a@ « a?~
(a Ay + h2 QY (), o3 Vi) — 2h2 V’( )06 = 57— (O = 50) + 7M@)+

«

, , o 202 ~
w02+ 300+ 200V, - S0, - 500) — T T@)) Jrale vEn) <0
(6.68)
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Furthermore, using the relations in appendix A.3, we find that this equation, for the
momenta (6.67), can be written in terms of operators (6.61) and (6.62) as follows

<—am (\}5&7> - ;‘zé_g —/an <82 - %L )) Yalz, v/Tn) = 0. (6.69)

This is the super-quantum curve at level 3/2. As expected, by defini-
tions (6.32), (6.38), (6.40), and relations (6.50) and (6.56), in the large N limit (6.30) with
B = 1 this equation reduces to the super-spectral curve Ag(x,yslyr) = VanAs(z, ys|yr)
n (6.39). On the other hand, in terms of (6.64) and (6.65), this super-quantum curve can
be rewritten in the form of equations for the bosonic component g o(z) defined in (6.43)

(6.70)

These equations indeed take form of Neveu-Schwarz singular vectors at level 3/2, whose
universal form we derived in (3.11). Quantum curves at higher levels can be found analo-
gously. However, as follows from the operator formalism discussed in section 4, it is clear
that higher level quantum curves will also take form of Neveu-Schwarz singular vectors,
expressed in terms of super-Virasoro generators found above.

6.7 Multi-Penner Ramond-NS super-quantum curves

To provide an explicit example, we specialize now our general considerations to the case of
a supersymmetric multi-Penner model. In the case of the Ramond-NS model it is natural
to consider the multi-Penner potential of the form

M
1

Vi(z,n) = Vo(a) + Ve(z)n = > ailog(z — z; — 5 (@ +@i)nmi)+Eon, (6.71)

i=1

so that
M T+ x;

g 21 — i) V 1 Z' 672
>_ailog(e — ) () =&+ Zan p— (6.72)

The operators h(z) and f(z) introduced in (4.38) and (4.40), in the eigenvalue model can
be represented via functions h(x) and f(z) given in (6.48) and (6.54). For the multi-Penner
potential (6.71) these functions take form

_ h\[zz ;T 77a+772)

(x — x)(2q — i)’

i=1 a=1
2
QT QLM Zal)a QL1 a
=h - - S :
f;; ( (x —xi)(za — i) (v —x;)(2q — ;)2 2(w—xi)2(za—wi)>
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These functions can be represented by the action of operators expressed only in terms
of parameters of the potential (i.e. z;, 7;, and &), by taking advantage of the following
identifications

VB o QiN;iZa" VB QiNa Za + Tj VB
az = ia , 8,72.:——2 ez s 850:—?27%”

2 Zy— T

~ h2
M) = 13— (@inidn, = On) + 5 Vi) O
o (6.73)
9 T; Tin; K2 ,

These formulas can be equivalently expressed in terms of variables x and ¢, through 9, —
Vg and 0y — L0 + 0. - R
Using (6.73), we can now write the operators G_3/, in (6.61) and L5 in (6.62) as

. Aa
Gyp=—it _ 1 Oy + : oy + ! [(V’() Qj)VF(IB)-F

3/27 432 T 912 2.:3/2 h221/2 2
Qn’
+ th h2 Z xlTh i — 8,71) + E@go s
(6.74)
Loo=—19 ”811V’2 Vi (2)V;
2= "0+ 5 30+ 45| 5Va(2) +% (1) Ve (z)+
Qh 1 U T Tin; 1
124 o 7 v
- Vel@)+ h2x ; <a: —:Eiaxi N 2(x — xi)Qam>} T
It is also convenient to introduce the following normalization factor
1 1
C=exp| — 252 Z oo log(x; — x5 — 5 =(x; + x5)nin;) hQ Z a;niéo |, (6.75)

i#j

and to define a modified wave-function Yo, = C~'X,, its bosonic and fermionic components
Xba(®) = C 0z ) and Xra(z ) =C" XFa( ), as well as the corresponding modified
operators é_r =C~ 1G_TC’ and L_n =CL_ nC. For r = 3/2 and n = 2 these operators
take form

5 Agn 1 Qh 2
Gs/2 = xS/Q 2 1730 + 3/2‘9 13/ <a§0 - hQ§O>+
Aal N l’+ZEz) 1
xl/Q Z ( 1' — .Z' + T — T (xlnlaiﬂz - am) >7 (676)
z :_78 _|_ 77 +i A% €X; o 4 Tin; 5
- T 1622 — \ (v — ) x(:p —x) 7 2x(w—ax)2 ")
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where A, = §(a — Q). Accordingly, for operators G and L in (6.64) and (6.65) we define
G=C"1GC and L = C_lfc, which take form

~ 1 Aaz Th(l’-i-x,) 1 Qh
¢ ' < ( — a7)? * (@ihiOr, 3711')) + W( o — hgéo)

Tr — Iy

=1
6.77
- Ao T Tini 1 o
L:Z( P O. + a.>+1

(x —x)?2  z(x—xy) 20(x —x)2 " (i

Finally, by (6.70) we can write down Ramond-NS multi-Penner quantum curve equations
at level 3/2 (for a = ﬁéh or —/Bféh) in terms of the components Xpq(z) = C7 15 0(7)
and %F,a(l') = 0_15(\1:70[(1‘),

2 2
~ a® o~
Oz Xr,a + WXF,Q - ﬁGXB,a =0,
, , i , (6.78)
9 3o ~ 2ce Aa o
8XBO¢+ hxa:rXB,a* 72 LXBa+42h2XFa+h GXFaZO-

In the particular case of M = 1, when certain condition on the parameters o and
oy is satisfied, one can rewrite the operators (6.76) in the form which does not contain
time derivatives. To this aim equations (4.33) for n = 0 are used. Those equations can
be modified by taking account of the x-deformation of the potential (6.44), the prefactor
appearing in (6.41) and C, as well as excluding the right hand side of the equations (4.33)
for n = 0 (which appears at both sides of those). In this manner we obtain following
equations (for any value of M):

10X = 0, G0Xa =0, (6.79)

where

M M
l}z—x@w—in@wi —A% —ZA%—FA%, (6.80)
i=1 i=1

M M
§o=3n+25i—fvn@x—zﬁmiaxi—A% ZA Silli — 2ﬁ2 (O‘_h\/gzna>
=1 =1

and we used additional notation as = /BAN +Qh—a — Zf\il a; and a = an—kzij\il ;n;.
Imposing the constraint as, = 0 and M = 1, the modification of operators (6.76), when
acting on the wave function Y, takes form:

— 3r+x 2xx 3z —x
3/2 e Rt S kit SN I - N
Y G g9 4(x—x1)Afn+ (x—xl)zATln1+ 2(1:—:01)(877 N0y )+
Q h?
+3 350 o ),
- ) (6.81)
27  _( xTxamn (4l — X)) rrymn T N
7Ly _<2($—x1)2 T — T >5’x—|— <2($—m1)2 x—$1)Ah+

__amm g 1
20r —x)2 " 2
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We can expand the wave function with respect to the £y as Xa = Xa,++Xa,—&0- Then, these
operators, when acting on components Xq,+ and Xq,—, give rise to the level 3/2 quantum
curves without time derivatives, constructed via (6.70) — one should only be careful to
commute first the operator @_3 /2 to the right of @_1 /2, s0 that it only acts directly on the
wave function.

7 Ramond-R super-eigenvalue model and super-quantum curves

In this section we reconsider the Ramond-R sector and derive super-quantum curves using
the formalism of eigenvalue models. Similarly as in section 5, for brevity we consider a
particular case of supersymmetric Penner potential. As the starting point we consider the
super-eigenvalue model found in (5.15). We stress that the form of this eigenvalue model
is not obvious to postulate a priori — so the first advantage of the CF'T approach is that
this model can be identified at all. In this section we find corresponding quantum curves
using eigenvalue model techniques. We confirm that they have the structure of Ramond
singular vectors and show that they agree with relevant supersymmetric BPZ equations in
the Ramond sector.

The Ramond-R wave-function for the one-Penner potential identified in (5.21) can be
written in the form of eigenvalue integral as follows

Xg (.%', 5) = /dNZ dNQ AR,:B (Z7 9)56—@ Zi\;l VR,x,g(zaﬁa), (7'1)

where
— 2 — o — Za(x - Zb) Zb(x - Za) 0405
Aga(z,0) = 1<a|<b|<N ( a2 <\/Zb(x " + \/Za(x — Zb)> 5 ) : (7.2)

Vaae(2,0) = Vaa(2) + Veze(2)0,
Vi,z(2) = alog(x — z) + vlog(z — w),

B n w(r — z) z(x —w) Vg
Ve gl2) = 2(z —w) (\/z(a: —w) " \/w(:v - Z)) " Ve —z)

By reference to (5.25) we consider the following shift invariance with a fermionic constant

and

(7.3)

0 of the wave-function (7.1) as

6(15 a — ~a 5 a — ~a
Za — Za + - (x : )7 9(1 — ga + M? (74)
Y — Za Y—Za

and obtain a loop equation

Y — Za

N
0= /sz A0 3" (040., — 95,) ('W_ZG)AM(Z, g)ﬁefg ZaNzlvR,z,E(Za’ea)> . (7.5)
a=1
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Using the notation
(O) = / ANz A9 OAg (2, 0)Pe 7 Lol Vies(abe) (7.6)

for an operator O, the loop equation (7.5) at y = x can be written as

(Si(z)he =0 (7.7)
where
si= (15050 L ”‘/Bf) e —+
' 2 T Th )& =) h 2 (w2l )
N N
SR R e - Y 2
a=1 @ a=1 @
vv/Bn v 1 T —w Za
+ 2h ( T —w w—za+V w azl(w—za)(x—za)> (7.8)
Here we introduced
al 0
fl@,2,0)=>" . (7.9)
= V(T — z4)

and note that f(z, z,0)? = 0. The loop equation (7.7) is equivalent to

(S1+(@))ep = (S24(2))e—g = 0, (7.10)

where
1-8 N B N wl,
51,+(96’):< );\Fx—z 52 h ;(w—za) za(x—za)+
T B
%fn (\/?Z L FZ = x—%)’ (7.11)
and

1-p3 aﬂ) al 20, f(x,2,0) ’yfz wh, f(z, z,0) N

82,+(x):< 5+ (7 — 24) 3/2 2o

=1
N
1 ’yfn / fa:z@ [x —w zafxze
_Zx_za ( xr— wzl W — Zq Z w Za :ZZ Za)'

- (7.12)

— 2a)\/ Za(T — 24)
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We now find differential equations for the wave-functions

Xa(@) =xa(x,0), X o(2) = —hoexa(,€), (7.13)

from the analysis of the loop equations (7.10). Consider first the following combinations of
these equations

(1824 (2) + 20814 (2) ) ey = (€3S1,4(2) + canSz,+ () ) ¢y = 0. (7.14)

Here ¢; for ¢ = 1,...,4 are functions of  and w which are determined by comparing these
equations with differential equations

OaxX'} a(@) + 410X " o (@) + Ay} o (2) + AsnduwX® o () + Aanx ,(z) =0, (7.15)
aa:Xia(@ + Blaﬁx&,a(‘x) + B277877X1i,a(1') + B3n8wX$,o¢(m) + B4XE70¢(II’.) =0
where A; and B; for i = 1,...,4 are functions of z and w. In the computation we use the

following relations

6] 20, f(x,2,0) ay/B Mooy
axXJFO‘ _<< Z VZa(T — z4) 3/2_ h lev—za+
'fon Z _VBanf(x,2,0)
4h\/ (x —w VZa(® — 24)3?  Ahyw(z — w)3/? c 0’

N o (r,2,0) 20, r,z,0
8xx_,a()—<< 6Z\f§_za \FZ \[_z 3/2+ff2(f s

'yﬂx?’/Q i Ouf(x,2,0) (7.16)
AT (z—w VZa(T — 24)3/? ’ '

VB al 2y/w(x — w) T —w
o= (v AE)sese))
X+ << 2h ;(w za) 2o(x — 24)

=0

D o <<’Yﬁz Vaw(z —w)b,f(x, z,0) >> ’ (7.17)
=0

“ — 2a)\V/ Za (T — 24)

and

nawxi,a($)=<< ””Zw 2 >> : nawxfi,a(fﬂ)=<< vﬁnsz z,%,6) >> .
a £=0 — Zq £=0

(7.18)

Then we find that ¢; for ¢ = 1,2, 3,4 are determined as

sy 20 /B
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and only for

the loop equations (7.14) are rewritten as the differential equations (7.15) with

_a w _ oy _ o« w
A= h\ z(x —w)’ Az h2(x —w)’ As r\ z(z —w)’

o w l"A% oy
As= R\ z(z —w) <w(:c —w) R(z —w)) ’

and
2a w ay 2c0 w
! h\ z(z—w) 7 B2z —w) TR\ alz—w)

v Rz(r —w)’
where A, = %(fy —Q) and Q = B=1/2 _ p1/2,
We can rewrite the above differential equations as differential equations for

~ oy
X a(e) = (z = w) @ XT o (2),

~R 1 23R m VT ~R
) = s (@ w0 - 7 )

w(r —w)

where s is a constant. Then we find differential equations

Axx
~R _ sa 2w B 2T\ o
a:L“X—i-,oz(x) - A .%‘(33‘ o ’UJ) <778w 877 + ’LU(I' o ’LU)) X—,a(m)a

aQ\ » o« 2w A%:vn r
(&c — m) X2 o(2) = _shm (Waw — Oy + w(x_w)> X+.a(?),

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

which hold for special values of a in (7.19). These are one-Penner Ramond-R quantum

curves at level 1 we wished to find. As expected, by multiplying the factor /8 by Xt o),

and taking s = —eT asin (5.19), they reproduce differential equations (5.31) found using

CFT techniques, and in fact take form of Ramond versions of BPZ equations [41].

In (7.5) we considered the fermionic type loop equation which is generated by the

superconformal current. We can also consider the bosonic type loop equation

— Za Y — Za

N
0= / dVzd"o > <62a - ;agay ba ) ( ! A o(z,0)Pe % Tam VR,;,:,E(Za,ea)) , (7.24)
a=1

which is obtained by an infinitesimal shift as

€ 0,¢
— 0, — 0 S —
Zq za—i-y_za, a a+2(y_2a)2,
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and this shift is generated by the energy-momentum tensor. The loop equation (7.24) can
be written as

(T+()he =0, (7.26)
where
_1-8 Yoo LB al
azzl — 24)? 5 ; — 2a)(y — 2p)
e 20,0
4 Z 3/2 . T

ab=1 “a (z — Za)3/2 2p(7 — 20) (Y — 2a)
B N 040y (20 — 2p) za(T — 2p) zp(r — 24)
8 a%zl (y — 24)%(y — 2p)? (\/zb(:v — 2q) + \/za(m - zb)) -
VB _
h azzll (2 —2a)(y—2a) i (W=2a)(Yy=2a) 4 w(x—w)zgﬂ(ﬂ:—za)3/2(y—za)+

b, 1 1 w(r — zq) Za(T — W)
T2 (<w 2y —7a) 2w —z)y— )) (\/@c “w) " \/w@c - za>> "

(x = 22a)vV7E0a NG ]

22 (@ = 2)* Py — ) 2V7 (0 — )y — )]

¥ Y220,

(7.27)

By expanding the loop equation (7.26) around y = oo we get Virasoro constraints for

2

the wave-function (7.1). Especially, by taking the expansion coefficient of y~* (subleading

order) we get

N N
0:<<(1—B)N—|—BN2_\fﬁ(a+’y)]\7+\/ﬁaa¢ 1 _Bx2z Oof(x,2,0)

2 h h a_lx—za 4 = VZa(T — 24)3/?
VByz*n f&f VZaba
4h\/TZ (2 — 24)3/2 E (z — 24 3/2+

RV SN S ey ey

a=1

fvn Z \/ W& = za) | \/Z“(x —w) : (7.28)
— 24 Zo(x — W) w(z — 24) ‘

We find that this equation can be written as a differential equation for the wave-
function (7.1):

1 R _ Y\ r
<:cam + wdy + 2776n> (@, 8) = (Be = Ag — Ay — 1) (. 9), (7.29)
where ag is given in (5.13):
02]2—027+N\/B+,8_%—6%. (7.30)
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We then obtain the following differential equation for the wave-function (7.22):
1
<x8x +wdy, + 2776,,) Wha@) = (Ao = As = A3) ¥ (2). (7.31)

By including the factor 2~ /% we see that this equation agrees with the equation (5.32)
obtained by the scaling covariance.

As discussed in section 5.3, let us apply the constraint equation (7.31) to the equations
in (7.23). Then by defining

Xia(@) = [La(@) F ngt o), 9t 0(®) = FOXE o (@), (7.32)

as in (5.33), we obtain two pairs of coupled ordinary differential equations (5.34) and (5.35):

TR o ~R
8xf+,a(m) - i .73‘(33 — U)) g*,a(x%
AL POV S Y T G S Sk S
T ohx )T sh\l z(z —w) w x—q | TN
(7.33)
A SN N (R
( T hfL‘) f—,a(m) - shmg+,a($)v
Acg — Ao — 20 A
~R B _ﬂ 2w TO 3 T % R
0t ,a(®) = = P P < " +— w) fE (@),
for %ﬁ)h or —%ﬂh. Then we find that the wave-functions fia(az) obey the following
ergeometric differential equations:
hyperg ic diff ial equati
N L Pl e S i S 1 | - SO
v 2z h(zr—w)) © k2 \ (z—w)? z(z — w) e ’
202 a@ a@  2a° Ay Aoy — Ay — Aa _
62 i 81 i 2 I [ h h R =0
x+<h2x + h(x—w)> + B2 R\ (2 —w)? + 2(z — w) f—,a(m)
(7.34)

Assuming that the WKB expansion of fia(aj) for & 1;25 or £ _12/2h around h = 0 takes form

72 o(@) ~ C exp (;ﬁ / C e (@)da + 0(h0)> , (7.35)

where C' is an z-independent factor, we obtain a “spectral curve”
Y= {(z,ys) € C*| A(z,ys) = 0} (7.36)

for the one-Penner Ramond-R wave-function (7.1) at n = 0, where

2

02 — A2
Az, y) =y - <(x . R x(?r _ZU)> : (7.37)

We see that this spectral curve is the same as the spectral curve for the hermitian eigenvalue
model (2.1) with the one-Penner potential V' (z) = vlog(x — w).
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A Proofs and computations

A.1 Computations in the Ramond-NS sector: the supercurrent S(y)

In this appendix we compute, in the operator formalism, the expectation value (4.37) of
the supercurrent S(y) in the Ramond-NS sector. First, for the supercurrent Sy (y) defined
n (4.11), by (4.6), (4.16) and (4.17) we get

<V+ (y)®n m’e)ﬂ O VP (24, 0,) 0,+> =
a=1
ETRITAT S Mt S
_|_;<V t{‘ h(x, ) H(I) fza,G)Go > (A1)

In the next step we compute the expectation value of S_(y). Using the notation (4.13)

we introduce

N

2,0,2,0) = B2 (2,0) [ 22V (20, 04) |0, +). (A.2)
a=1
Then it follows that
N
o7 (2,0) [] 27 (24, 0a) [0, %) =
a=1
Al A \?
:H <x—za—09a a) H <za—zb—0a0b b> |z,0,2z,0). (A.3)
a=1 v 1<a<b<N Fa
For m < 0 we have
(G he(@)} =3 0" 2amp, (G o<l Z & Ym—n, (A4)
n=1
and consequently
VI{S-(y =3y TG () = Yy R s
m=1 m,n=0
— VT o< (y) — 6¢<($)7
y—z
= mon yo<(y) — Vo< (z)
VIS 0), 6@ = S b gy = YL e
m,n=0
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so that

\/gs—(y>7¢)z B y—x Y—x
(A.5)

h

Further

VILS-(), 0} = Dy a w1 = 0<(y),

m=0
so that

Vi [S-(). ®L(@.0)] =
VI<(y) = VEe(a) | (a¢< (v) ~ 99<(x) 8¢<<y>) m} o

y—x y—x

{ (2,0) =
<\/§¢<(y) —Vr () i Y09 (y) — 29¢<(x) i

IN=2

) i (,6). (A.6)

y— y—x NI
Finally

VIS-()[0,+) = (Y0dd<(y) + Vi< (¥)09<(y) + Qvyd<(y)) |0, +), (A7)

and

1 1

Combining the above ingredients we get

N
1_¢ _
VIS (1) [2,0,2,0) + 0L (,0) [T 22" (20.6a)Go 0, +) =

a=1

Ca [VYv<y) —Vaya(@) | yoo(y) —adp(z) 0 0. %
_h{ Yy—x * y—x \/5}| 62,00+

N
S VYW) = VEie(a) | p00<(y) — 2uB0c(ea) B Y|y gy
;{ Y — Zaq Y= Za \/%}

+ Vi (< )90<(y) + QOv<(y)) |2,0,2.0) +

N

+(00<(y) — Q/29) L (,0) [T 22V (20 0u)bo | 0, +)

a=1

On the other hand, note that

VF(?J) B §O
<V§¢B—%,t,£ vri<ly) = <V’¢\/B‘?’5”“L’£ he
Ve(y)
<V§¢B—;§,t,£ a“b<(y):<vf$ﬁ‘?’t’5 h
y 0 (Vely) —&
<V§¢Bﬁ,t,£’\/?3¢<(y): <V§ﬂ2,t7€ h&y( VY >
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This implies that

<V+ ()x,@,z,0> <v+ "y Ex@ H<I> VB (24,04) G0 0,4 ) =
_ % {VF(y;_‘x/F(m) I yVé(y;_zVé(x)\gr}< ;\/B o .6 x79,z,0>+
Z {VF _‘: (7a) " yVB(yL—_ZaaVB(Za) j%} <V+ tg‘a: 9,z,9>+
. << %W — G | QM) ~ ()2 +fo/2y>> (Vi g g gl 0:2.0)+

I/\m\p

Vi) Q N
- (50-2) it s

We also note that

a 0
(0,4 |eFowero (VR 1f)¢o|0 )

-5 ;@f fZ

2
Since
al _ VBN h VB <N
n h Za:lvR(Zavea) =———90 7 ZazlvR(Za,Ga)
Zae \/B 1, € ,
a=1
S — B SN VR (2a,0) h ~VE SN Vi(2a,0a)
Zza 29@6 3 a=1"YR\(%a; — —785716 I3 a=1VYR\(Za,Va ,
a=1 \/B
and
-1
VF(y) B VF(ZUL) - ym - z;n =% n_ m—n—1
= — z ,
Y~ Za ng Y — 2 Z S
m=1 m=1 n=0
—1
W) = 2aVi(2a) Oa _ imt Y =z b im T
- m - m a as
Y= 2 \/% m=1 Y= za \/% m=1 n=0
we get

N
Lo > {VF(y) —Velz) | 9Ve) — 2Vp(z0) } o E TN Vi(zaba) —

R a=1 Y~ ~*a Y — za \/%
oo m—1
- Z Z yn fmatm n—1 +mt aﬁm e 1) fziv 1VR(2a,0a )
m=1 n=0
— VBN Vi (24,0
- Zy Z 5m8tm,n,1 + mtmagm_n_l) e f 2a=1R(2a:0a) —
= m= n+1

=K 2 ﬁ(y) e 5 ZazlvR(za,oa)7
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which defines the operator (4.38)

= h? Z y" Z gmatman + mtmafm—n—l)'

n=0 m=n+1
Similarly
a [(Ve(y) —Ve(z) | yVily) —aVi(z) 0 2V (z,0) 27 2 Vi (,6)
— =+ E—— & ’ = . A
h2{ y—x y—x NZ e B h(y)er (A8)

Ultimately we find

mm%m
=2 (VF( Wi (y) + QhVE(y) +E(y)> <VN\/B x,&,z,0>+

_ % (; (VB'(y) Qj) 120, + Qh;/;( )> <V+ tg‘a; 0,2.0).

Combined with (A.1) this finally gives the equation (4.37).

~(y)

a:,@,z,0> <VJr

t€

A.2 Computations in the Ramond-NS sector: the energy-momentum tensor
T(y)

In this appendix, in the operator formalism we compute the expectation value (4.39) of
the energy-momentum tensor in the Ramond-NS sector. To start with, for the energy-
momentum tensor 7'} (y) defined in (4.11), by (4.6), (4.7), (4.16) and (4.17) we get

+ _
<VN¢B‘;¢7£ 0.+) =

Aa + 169
:< x 5x+y( R 22 9)><V+ tﬁ'@hxg H(I) fZa,Qa)

YTy (y)®7 (x,0) H<I> VB(24,64)

0,+)+

0,+) +

0, +> . (A.9)

y—x (y — )

N 1
Za §6ay
3 (0525 005 ) (W g w0 I 3Pt

(y — Za
1 +
" 1oy <VN¢B

Using the same calculational techniques as in appendix A.1 we get

N
® (x,0) H o VP(2,,0,)
a=1

I (z), ¢ L b (m N Y09« (y) — 20¢< (:c)7
e -2 =
and
[yT—(x)va(w)] = Z ym_l[L—qu/)< Z Z n + m w—m e 1 "_ —
m=1 m=1n=0
_ VEVIEW) = Vave(@) = (=20 (Vavs(@) | 1 yd(yivsW) —20(Vav< (@)
2 (y — )2 2Vx y—x ’
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where we denoted < (z) = 1/)0 N < (x). Consequently

e 1 a(ydp(y) — 200 (x) | ydy (VIV<(y)) — 2de (VI< ()
Vi< (y) = Vav<(@) - (y = 0)0: (Vav< (@) Vit o5
+ o 3 )ol (.0
Further
T-(y)|0,+) =5 ( (90<()) + Qy62¢<(y) + ()< )) 0,+) +
+ 5 (Viowew + 5 N () ol 0.+). (A.10)
This gives
<V;[r y: yT—(y) x,@,z,0> =
o (Vi) —aVa@) | yViw) —aVi@) 0 Vi(y.a)Va
n? y—x 20y—z) Ve 2(y—x)
Vo) — 2aVa(za) | yVi(y) = 2aViza) b Vi (. 2a) /b
;( Y~ za Ty ) Va 2y—za? )
2
g (0 03" + @+ Vi) (Ve = 506 ) )} (Vi el 0.2.0) =
~ 2
= 2 LT3 (v B+ @ )40 ()= 500 ) (Vi sy gl 002:6)

where f(y) was defined in (4.40)

n+1
=n? Zy Z <ktkatkn1 + (k - > Eka&c n— 1) :

= k=n+1

Ultimately, combined with (A.9) we find the equation (4.39).

A.3 Computations in the Ramond-NS super-eigenvalue model

In this appendix we present results relevant for the computations in the eigenvalue model
in the Ramond-NS sector. First, we find that commutation relations for operators h(x)
in (6.49) and f(z) in (6.55) take form
Lh?an-i-lv (x)
n+1 © T

~ ~ 1
{h@). 0 Ve@)} = [Fl@). 02Valw)| = — W00+ 2V (@), (A.11)

I - 1
OEACOIE CESCES)

h(x), O V()|

R2OITH((2n + 3)aVi(z) — Vi(2)).

—
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Second, consider x*(x, /zn) defined in (6.42)

= (05 (e 22 e

Its derivatives with respect to n and = take form

x—l—z
O (, /) = Z oo xoS(z, Van),
T — 24

Duxar™(w, V) = a\FZ(x_Za T Z“nan)2> XS (2, V),

T — Zg

ins af zanaxa f ) x+za naxa S(x, /xn)
Oz 877 ( Z 2ﬁ2 Z

_I_
(x — 24 (x — zq)(x — 2p)

a,b=1

2 ins
81 Z (2 + 2a) 20aTloXa™ (2, v/En) (A.12)

By (x — 2q)(x — 2p)?
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