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1 Introduction

Quantum curves are intriguing objects, identified originally in various problems related

to string theory and supersymmetric gauge theories [1–5], and analyzed from various

mathematical perspectives e.g. in [6–17]. In general, quantum curves take form of dif-

ferential operators Â(x̂, ŷ) imposing Schroedinger-like equations on appropriately defined

wave-functions Ψ(x)

Â(x̂, ŷ)Ψ(x) = 0. (1.1)

The operators x̂ and ŷ satisfy the commutation relation

[ŷ, x̂] = ~, (1.2)

so that ŷ can be identified as ~∂x. In the limit ~ → 0 the operators x̂ and ŷ reduce to

complex commuting variables x and y, and the quantum curve equation (1.1) reduces to a

“classical” algebraic curve

A(x, y) = 0. (1.3)

Conjecturally, in all situations where quantum curves arise, their form can be deter-

mined by means of the topological recursion [18], which can be regarded as a reformulation

and generalization of loop equations in matrix models [19]. From this perspective the clas-

sical curve (1.3) is identified as an algebraic curve that provides the initial condition for the

topological recursion. In case the corresponding matrix model is known, the curve (1.3)

is identified as its spectral curve, and the wave-function Ψ(x) is identified as a determi-

nant expectation value 〈det(x − M)〉, where 〈 · 〉 denotes an expectation value computed

by integrating over matrices M from an appropriate ensemble. Therefore, using the topo-

logical recursion or matrix model formalism, to a given algebraic curve one can associate

the corresponding quantum curve.

In fact, it turns out that to a given algebraic curve one can assign not only one,

but the whole family of quantum curves, which have the structure of singular vectors of

the underlying symmetry algebra [20]. For curves related to hermitian matrix models, or

the original topological recursion formulation [19], this symmetry algebra is the Virasoro

algebra, and corresponding quantum curves have the structure of Virasoro singular vectors,

as found in [20]. In the present paper we also refer to these curves as Virasoro quantum

curves. In this case the determinant form of the wave-function is generalized so that it

depends on an additional parameter α; however consistent quantum curve equations arise

only for certain discrete values of this parameter, which coincide with Virasoro degenerate

momenta. One can also consider β-deformed version of these results — this also leads

to a discrete family of quantum curves with the structure of Virasoro singular vectors,

however in this case the Virasoro algebra has an arbitrary central charge, parametrized by

the parameter β. The matrix (or eigenvalue) model form of the wave-function, depending

on both parameters α and β, is referred to as α/β-deformed matrix integral in [20]. These

results can be regarded as a manifestation of general, intimate links between matrix models

and the Virasoro algebra; for example it has been known for a long time, that matrix model
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loop equations — and the topological recursion itself — can be rewritten in the form of

Virasoro constraints [21–23].

The above results have been generalized to a supersymmetric case in [24], by consid-

ering (β-deformed) super-eigenvalue models for the Neveu-Schwarz sector [25–30]. These

models generalize eigenvalue representation of hermitian matrix models in such a way,

that the underlying algebra takes form of the Neveu-Schwarz version of the super-Virasoro

algebra; in particular corresponding loop equations can be rewritten as super-Virasoro con-

straints. Consequently, to a super-eigenvalue model one can associate an infinite family

of super-quantum curves, which have the structure of Neveu-Schwarz singular vectors of

the super-Virasoro algebra. In the classical limit, such super-quantum curves reduce to

supersymmetric algebraic curves, which are interesting in their own right [31, 32].

To sum up, to a given classical (possibly supersymmetric) curve one can associate

an infinite family of quantum curves, which have the structure of singular vectors of the

underlying algebra. This result was found in [20, 24] upon the analysis of eigenvalue

models, which provide a representation (or generalization) of matrix models; for a summary

see also [33].

The aim of the present paper is twofold. First, we clarify the role of conformal field

theory in the description of quantum curves. In particular, we rederive (in Virasoro and

Neveu-Schwarz case) quantum curves using only conformal field theory techniques (instead

of eigenvalue models). The main feature of this approach is the fact, that the singu-

lar vector structure of quantum curves follows automatically; being a consequence of the

conformal field theory construction, the singular vector structure of quantum curves pos-

tulated in [20, 24] is therefore proven. Moreover, this approach has certain calculational

advantages, and can be rather easily extended to more general algebras (possibly, although

not necessarily, corresponding to more general matrix models, for example multi-matrix

models, or their deformations e.g. see [34, 35]). Second, using the conformal field theory ap-

proach — and to illustrate its power — we find an infinite family of super-quantum curves

corresponding to the Ramond sector of the super-Virasoro algebra. From this analysis we

also derive the super-eigenvalue models representing the Ramond sector, whose form is not

obvious to postulate a priori.

More precisely, we find two types of super-eigenvalue models in the Ramond sector,

and corresponding two types of quantum curves, which have respectively the structure of

Neveu-Schwarz or Ramond singular vectors, and which we call respectively Ramond-NS

and Ramond-R super-quantum curves. Furthermore, we illustrate equivalence of conformal

field theory calculations and eigenvalue models by showing that the same super-quantum

curves arise in both approaches. We also find corresponding classical super-spectral curves

that encode eigenvalue distribution in the super-eigenvalue model. Finally, we consider the

special case of Penner-like potentials, and show that Ramond super-quantum curves in this

case take form of supersymmetric versions of BPZ equations [36]. The identification of the

Ramond super-quantum and super-spectral curves generalizes the analysis in [24], which

was restricted to the Neveu-Schwarz sector.

We stress, that various observations and properties of quantum curves discussed

in [20, 24, 33] also hold (or are expected to hold) for Ramond super-quantum curves found
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in this paper. In particular, Ramond super-quantum curves are “quantum” in a double

sense, and reduce to “classical” objects in two different limits: the ’t Hooft limit corre-

sponding to an infinite number of eigenvalues N , and the classical conformal field theory

limit corresponding to infinite value of the parameter β. These two quantum structures

have an analogous role, which is manifest after replacing parameters 1/N and β by famil-

iar parameters ǫ1 and ǫ2, encoding the Omega-background in gauge theory interpretation.

Analogous two quantum structures have been also discussed e.g. in [37] in the context of

Langlands duality. Another important feature of quantum curves at higher levels is that, in

the classical ’t Hooft limit, they factorize into a product of several classical (spectral) curves.

Let us summarize the most important results and formulae of this work, by presenting

conformal field theory formulation of various eigenvalue models that we derive and analyze,

and corresponding wave-functions and quantum curve equations. We hope that this short

summary could be helpful for a reader; details of the notation are explained in the main

text of the manuscript.

First, in section 2 we recall that the usual β-deformed hermitian matrix model has the

eigenvalue representation, which can be realized as the following integrated expectation

value in the free boson theory, see (2.1)–(2.2)

Z =

∫
dNz

〈
VN

√
β,t

∣∣∣
N∏

a=1

E−
√
β(za)

∣∣∣ 0
〉
=

∫
dNz ∆(z)2β e

−
√
β
~

N∑
a=1

V (za)
, (1.4)

where vertex operators Eα(x) are defined in (2.36), and
〈
VN

√
β,t

∣∣ is the coherent state (2.41).
The eigenvalue model in the right side of the equation involves the usual Vandermonde

determinant ∆(z) =
∏

a<b(za−zb). The wave-function (2.45) is then defined as a correlator

which involves an additional insertion of x- and α-dependent vertex operator E
α
~ (x)

χ̂α(x) =

∫
dNz

〈
VN

√
β−α/~,t

∣∣∣E
α
~ (x)

N∏

a=1

E−
√
β(za)

∣∣∣ 0
〉
=

= e
α
~2

V (x)
∫
dNz

N∏

a=1

(x− za)
− 2α

√
β

~ ∆(z)2β e
−

√
β
~

N∑
a=1

V (za)
.

(1.5)

This wave-function, for special discrete values of α, satisfies quantum curve equations that

take form of Virasoro singular vectors, as shown in section 2.3.

In section 3 we construct the eigenvalue model and quantum curves in the Neveu-

Schwarz (NS) sector of the super-Virasoro algebra. The eigenvalue model has the following

form and conformal field theory representation, see (3.36)–(3.37)

Z =
〈
VN

√
β,t,ξ

∣∣∣QN
NS

∣∣∣ 0
〉
=

∫
dNz dNθ ∆NS(z,θ)

β e−
√
β
~

∑N
a=1 V (za,θa), (1.6)

where the potential involves both commuting times tm and anti-commuting times ξm+1/2

V (z, θ) = VB(z) + VF(z)θ, VB(z) =
∞∑

m=0

tmzm, VF(z) =
∞∑

m=0

ξm+1/2z
m. (1.7)
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The NS screening charge QNS and the coherent state
〈
VN

√
β,t,ξ

∣∣ are defined respectively

in (3.32) and (3.35), and the NS version of the Vandermonde determinant takes form (3.34)

∆NS(z,θ) =
∏

1≤a<b≤N

(za − zb − θaθb) . (1.8)

The NS wave-function in this model (3.40)–(3.41) is defined as the expectation value with

an additional insertion of the vertex operator superfield Φ
α
~ (x, θ) defined in (3.22)

χ̂α(x, θ) =
〈
VN

√
β−α/~,t,ξ

∣∣∣Φ
α
~ (x, θ)QN

NS

∣∣∣ 0
〉
=

= e
α
~2

V (x,θ)
∫
dNz dNθ

N∏

a=1

(x− za − θθa)
−α

√
β

~ ∆NS(z,θ)
β e−

√
β
~

∑N
b=1 V (zb,θb),

(1.9)

and it satisfies equations which take form of super-Virasoro Neveu-Schwarz singular vectors,

derived in section 3.3.

In section 4 we start considering the Ramond sector of the super-Virasoro algebra.

We explain that there are two natural eigenvalue models and wave-functions that can be

considered, having the schematic structure given in (4.1) and (4.2), which satisfy quantum

curve equations that take form of either Neveu-Schwarz or Ramond singular vectors. We

call these models Ramond-NS and Ramond-R respectively. The Ramond-NS eigenvalue

model is introduced in (4.27)

Z =
〈
V +

N
√
β,t,ξ

∣∣∣QN
R

∣∣∣ 0,+
〉
=

∫
dNz dNθ ∆R(z,θ)

β e−
√
β
~

∑N
a=1VR(za,θa), (1.10)

with the coherent state
〈
V +

N
√
β,t,ξ

∣∣ and the screening charge QR defined respectively

in (4.23) and (4.28). The Ramond-NS version of the Vandermonde determinant takes

form (4.22)

∆R(z,θ) =
∏

1≤a<b≤N

(
za − zb −

za + zb
2
√
zazb

θaθb

)
. (1.11)

The Ramond-NS wave-function, of the schematic form (4.1), is introduced in (4.36) in

the conformal field theory language as the expectation value involving the vertex operator

superfield Φ
α
~ (x, θ) defined in (4.12)

χ̂α(x, θ) =

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣Φ
α
~ (x, θ)QN

R

∣∣∣∣ 0,+
〉

(1.12)

and it is written down more explicitly, in the eigenvalue representation, in (6.41). Quantum

curves that annihilate such a wave-function are derived in section 4.3 and they take form

of Neveu-Schwarz singular vectors (however with a specific representation of NS algebra,

relevant for the Ramond sector that we are considering). In section 6 we rederive these

quantum curves using techniques of matrix and eigenvalue models; in addition, in sec-

tion 6.3 we derive super-spectral curves (i.e. spectral curves of the Ramond-NS eigenvalue

model), and in section 6.7 we analyze the Ramond-NS eigenvalue model with the specific

multi-Penner potential.
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Furthermore, in section 5 we analyze the Ramond-R model, with the wave-function of

the schematic form (4.2). In this case we consider directly the wave-function for the model

with the Penner-like potential, which we find to take form (5.20)–(5.21)

χR
α(x, ξ) = x1/8(x− w)−

αγ

~2 e
− γξη

~2

√
x√

w(x−w)

∫ (
Ψ+(x, z,θ) +

√
2

~
e

iπ
4 ξΨ−(x, z,θ)

)
dNz dNθ,

(1.13)

where the x-dependence arises from the insertion of the Ramond chiral primary fields R
α
~

±(x)
defined in (5.12)

Ψ±(x, z,θ) = 〈α0 |R
α
~

±(x)Φ
γ
~ (w, η)

N∏

a=1

Φ−
√
β(za, θa) |σ+ 〉 =

= Θ±(x) (x− w)
αγ

~2 ∆R,x(z,θ)
β e−

√
β
~

∑N
a=1(VB,x(za)+VF,x(za)θa),

(1.14)

see (5.13) and (5.15). The functions Θ±(x) are given in (5.19), and the Ramond-R version

of the Vandermonde determinant takes form (5.16)

∆R,x(z,θ) =
∏

a<b

(
za − zb −

(√
za(x− zb)

zb(x− za)
+

√
zb(x− za)

za(x− zb)

)
θaθb
2

)
. (1.15)

Quantum curves for the Ramond-R model take form of Ramond singular vectors and we de-

rive them in section 5.3. Finally, in section 7 we reconsider the Ramond-R eigenvalue model

from the matrix model perspective, and using matrix (or eigenvalue) model techniques we

rederive Ramond-R super-quantum curves.

Once more, and more succinctly, the plan of this paper is as follows. In section 2 we

derive, from the viewpoint of conformal field theory, quantum curves corresponding to the

underlying Virasoro algebra. In section 3 we similarly derive quantum curves corresponding

to the Neveu-Schwarz sector of the super-Virasoro algebra. In section 4, starting from the

conformal field theory formalism we analyze the Ramond sector of super-Virasoro algebra,

and derive an eigenvalue model for the Ramond-NS sector, as well as Ramond-NS super-

quantum curves. In section 5 we derive eigenvalue model and super-quantum curves in the

Ramond-R sector using conformal field theory approach. In section 6 we rederive super-

quantum curves in the Ramond-NS sector using techniques of matrix or eigenvalue models;

among others, in this section we also find the Ramond super-spectral curve, and confirm

that it agrees with the classical limit of the Ramond super-quantum curve. Similarly, in

section 7 we derive super-quantum curves of Ramond-R type using techniques of eigenvalue

models. In the appendix we collect various proofs and computations.

2 From conformal field theory to Virasoro quantum curves

We start our analysis from a discussion of the Virasoro algebra, which is the underlying

algebra of a (β-deformed) hermitian matrix (or eigenvalue) model

Z =

∫
dNz ∆(z)2β e

−
√
β
~

N∑
a=1

V (za)
, (2.1)

– 6 –
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where dNz =
∏N

a=1 dza, ∆(z) =
∏

a<b(za − zb) is the Vandermonde determinant, and we

consider a generic potential V (z) =
∑∞

m=0 tmzm. We recall first that such a model can

be defined by the following expectation value, which is written completely in terms of

conformal field theory quantities

Z =

∫
dNz

〈
VN

√
β,t

∣∣∣
N∏

a=1

E−
√
β(za)

∣∣∣ 0
〉
, (2.2)

for an appropriately defined state 〈VN
√
β,t| and vertex operators E−

√
β(za). Similarly wave-

functions, defined as determinant-like expectation values from matrix model viewpoint, can

be expressed in terms of conformal field theory quantities as follows1

χ̂α(x) =

∫
dNz

〈
VN

√
β−α/~,t

∣∣∣E
α
~ (x)

N∏

a=1

E−
√
β(za)

∣∣∣ 0
〉
=

= e
α
~2

V (x)
∫
dNz

N∏

a=1

(x− za)
− 2α

√
β

~ ∆(z)2β e
−

√
β
~

N∑
a=1

V (za)
.

(2.3)

These wave-functions are annihilated by quantum curve operators that we are after only

for special values of the parameter α, which correspond to the degenerate momenta.

We recall now a general form of quantum curves associated to the underlying Virasoro

algebra. As found in [20] by generalizing a discussion in [4], such curves can be determined

simply by writing expressions for Virasoro singular vectors (at arbitrary level) in terms of

the following representation of Virasoro generators

L̂−1 = ∂x, L̂−n =
1

~2(n− 2)!

(
1

4
∂n−2
x

(
V ′(x)

)2
+

Q~

2
∂n
xV (x) + ∂n−2

x f̂t(x)

)
, (2.4)

for n ≥ 2, where

Q ≡ β− 1
2 − β

1
2 , (2.5)

and f̂t(x) is a partial differential operator defined by (2.62). Moreover, it is useful to take

advantage of universal expressions for singular vectors (up to a given level) that have been

found in [20]. These expressions depend on the parameter α and reduce to the expression

for a singular vector labeled by integers r, s upon specialization of α to

αr,s =
r − 1

2
β− 1

2 − s− 1

2
β

1
2 , r, s ∈ Z, r, s ≥ 1. (2.6)

For example, singular vectors at level 2 can be obtained from the expression

L2
−1 − 4α2L−2 (2.7)

upon specialization α = α2,1 or α1,2. Moreover, for α = α1,1 = 0 this expression reduces to

the singular vector L−1 at level 1 (up to an additional L−1). Substituting the representa-

tion (2.4) in the formula (2.7), it follows that quantum curves at level 2 (and 1) arise from

the expression

Â2 = ∂2
x −

α2

~4

((
V ′(x)

)2
+ 2Q~V ′′(x) + 4f̂t(x)

)
(2.8)

1The parameter α = αhere in this section is related with the parameter α = αms in [20] by αms = 2αhere

(in ~ = 1 unit).
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(where the superscript of Â2 denotes level 2) upon the specialization α = 0, ~
√
β

2 , or − ~

2
√
β
;

note that in expressions for quantum curves we combine values of αr,s with an additional

factor of ~ when compared to (2.6) — this follows from a factor ~ in the vertex operator

E
α
~ in (2.3), which is natural to include from the matrix model perspective. Similarly,

quantum curves at level 3 (or lower levels) arise from the expression

Â3 = ∂3
x − 4

α2

~2
∂xL̂−2 +

2α2(2α(2α+Q~)− ~
2)

~4
L̂−3 (2.9)

upon the specialization α = 0, ~
√
β

2 , − ~

2
√
β
, ~

√
β, or − ~√

β
, and with L−2 and L−3 given

in (2.4). Such quantum curves, at level n = rs, annihilate the wave-function (2.3),

Ânψα(x) = 0, for relevant specialization α = αr,s.

While in [20] the representation of Virasoro generators (2.4) and the form of quantum

curves, such as (2.8) and (2.9), was derived using matrix model formalism, in this section

we rederive these results from purely conformal field theory viewpoint. We also explain,

from purely conformal field theory perspective, where expressions for singular vectors, such

as (2.7) and its higher level generalizations, come from. To this aim it is of advantage to

consider the background charge representation of the Virasoro algebra, which is therefore

the starting point of our analysis. The approach presented in this section will be generalized

to the supersymmetric case in the following sections, which ultimately will enable us to

derive super-eigenvalue models for the Ramond sector and corresponding Ramond super-

quantum curves.

2.1 Background charge representation of the Virasoro algebra

Consider the Heisenberg algebra

[am, an] =
1

2
mδm+n,0, m, n ∈ Z, (2.10)

and its highest weight states |α 〉 with α ∈ R defined by

am |α 〉 = 0, m > 0, a0 |α 〉 = α |α 〉 . (2.11)

In what follows, to avoid problems with the Dirac notation, we also use the notation

µα ≡ |α 〉. Denote by Hα the free vector space spanned by vectors of the form

a−J |α 〉 ≡ a−j1a−j2 · · · a−jl |α 〉 , 0 < j1 ≤ j2 ≤ . . . ≤ jl. (2.12)

These vectors form the canonical basis in Hα. The space Hα has a natural Z-grading

Hα =
⊕

n≥0

Hn
α, Hn

α ≡ span

{
a−J |α 〉 : |J | ≡

l∑

k=1

jk = n

}
. (2.13)

Fixing a real parameter Q, one can define a hermitian pairing

( . , . )α,Q : HQ−α ×Hα → C,
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by requiring

a†n = −an, n 6= 0, a
†
0 = Q− a0, (µQ−α , µα)α,Q = 1. (2.14)

The Heisenberg module Hα,Q is the pair of representations 〈HQ−α,Hα〉 endowed with the

pairing ( . , . )α,Q.

Furthermore, consider the Virasoro algebra with the central charge c

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0, m, n ∈ Z. (2.15)

The Verma module V∆,c with the highest weight ∆ is defined as the representation of the

Virasoro algebra generated by the vectors of the form

L−I |∆ 〉 ≡ L−i1L−i2 · · · L−il |∆ 〉 , 0 < i1 ≤ i2 ≤ . . . il, (2.16)

where the highest weight vector |∆ 〉 satisfies

Lm |∆ 〉 = 0, m > 0, L0 |∆ 〉 = ∆ |∆ 〉 . (2.17)

The vectors (2.16) form the canonical basis in V∆,c. The Verma module V∆,c has a natural

Z-grading

V∆,c =
⊕

n≥0

Vn
∆,c, Vn

∆,c ≡ span {L−I |α 〉 : |I| = n} . (2.18)

The Virasoro Verma module V∆,c is endowed with the hermitian Schapovalov form

( . , . )∆,c, defined by the conditions

L†m = L−m, m ∈ Z, ( ν∆ , ν∆)∆,c = 1, ν∆ ≡ |∆ 〉 .

Z-grading (2.18) is orthogonal with respect to this form. We say that ξ ∈ V∆,c is a null

vector if it is orthogonal with respect to the Schapovalov form to all vectors in V∆,c. A null

vector ξ ∈ V∆,c is called a singular vector if it satisfies the highest weight state condition

Lnξ = 0, n > 0.

Let

c = 1− 6Q2, ∆ = α(α−Q) ≡ ∆α. (2.19)

In the case under consideration Q is real, so c ≤ 1. The background charge representation

on Hα of the Virasoro algebra with the central charge c and the highest weight ∆α is

defined by the map σα,Q between the universal enveloping algebras of the Virasoro algebra

and the Heisenberg algebra as

σα,Q : End (V∆,c) ∋ Lm → L(α)m ∈ End(Hα),

L(α)0 = 2
∞∑

n=1

a−nan + α (α−Q) , (2.20)

L(α)m =
∑

n 6=0,m

am−nan + (2α− (m+ 1)Q) am, m 6= 0.
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This map satisfies

σα,Q(LmLn) = σα,Q(Lm)σα,Q(Ln). (2.21)

Using σα,Q we define the transition map

Sα,Q : V∆α,c → Hα

by its action on the canonical basis in V∆α,c

Sα,QL−I |∆ 〉 = L(α)−i1L(α)−i2 · · ·L(α)−il |α 〉 . (2.22)

The transition map Sα,Q has the following properties, easily inferred from its definition:

1. Sα,Q is a homomorphism of the Virasoro algebra representations.

2. Sα,Q preserves the Z grading Sα,Q(Vn
∆α,c

) ⊂ Hn
α hence

Sα,Q =
⊕

n≥0

Sn
α,Q, Sn

α,Q : Vn
∆α,c → Hn

α.

3. Sα,Q is compatible with the hermitian form in V∆α,c and the hermitian pairing in

Hα,Q, i.e. for any ξ, ξ′ ∈ V∆α,c

(ξ, ξ′)∆α,c = (SQ−α,Qξ, Sα,Qξ
′)α,Q.

4. The kernel of Sα,Q is the subspace of all null vectors in V∆α,c.

Consider the matrix of Sα,Q with respect to the canonical bases in V∆α,c and Hα

L(α)−Iµα =
∑

|J |=n

[S n
α,Q]IJ a−Jµα. (2.23)

Matrices S n
α,Q were studied (in different parameterization) in [38], where the formula for

their determinant was found

detS n
α,Q = const

∏

1≤ rs≤n
0<r,s

(α− αr,s)
p(n−rs) . (2.24)

Here β is related to Q by Q = β− 1
2 − β

1
2 , values of αr,s agree with those in (2.6)

αr,s =
r − 1

2
β− 1

2 − s− 1

2
β

1
2 , r, s ∈ Z, r, s ≥ 1, (2.25)

and p(n) is the number of partitions of n, which can be read off from the generating function

∞∑

n=0

p(n)xn =
∞∏

m=1

1

1− xm
.
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As proven in [38], for generic values of Q matrix elements of the matrix inverse to S n
α,Q

have at most simple poles at α = αr,s. Arguments from linear algebra then show that null

vectors ξnnull ∈ Vn
∆α,c

can be constructed as residues of (S n
α,Q)

−1

cJ ξ
n
null = lim

α→αr,s

(α− αr,s)
∑

|I|=n

[
(S n

α,Q)
−1

]
JI

L−I ν∆α , (2.26)

where rs ≤ n and cJ are (in the generic case non-zero) numbers. Consequently, if we define

Ân
J (α) = ωn(α,Q)

∑

|I|=n

[
(S n

α,Q)
−1

]
JI

L(α)−I , (2.27)

where

ωn(α,Q) = −(−2)n
∏

rs≤n

(α− αr,s), (2.28)

then for r, s > 0 and rs ≤ n the operators (2.27) are (non-trivial) endomorphisms of Hα

satisfying

lim
α→αr,s

Ân
J (α)µα = 0.

The simplest examples are

Â 1
1 (α) = L(α)−1,

Â 2
2 (α) = L(α)2−1 − 4α2L(α)−2,

Â 2
1,1(α) = (Q− 2α)L(α)2−1 + 2αL(α)−2,

(2.29)
Â 3

3 (α) = L(α)−1Â
2
2 (α)− ω2(α,Q)L(α)−3,

Â 3
1,2(α) = (α−Q)L(α)−1Â

2
2 (α)− ω2(α,Q)L(α)−3,

Â 3
1,1,1(α) = L(α)−1

((
1− α(α−Q)

)
Â 2

1,1(α)− (α−Q)Â 2
2 (α)

)
+ ω2(α,Q)L(α)−3.

These are expressions of the form mentioned in (2.7). They were independently identified

in [20] by matrix model techniques.

We now extend the Heisenberg algebra (2.10) by the operator q satisfying

[am, q] =
1

2
δm,0, m ∈ Z. (2.30)

Then by [
a0, e

2αq
]
= α e2αq,

[
am, e2αq

]
= 0, m 6= 0,

and (2.11) we see that e2αq can be regarded as a linear map

e2αq : Hα′ → Hα+α′ , e2αq a−I

∣∣α′ 〉 = a−I

∣∣α+ α′ 〉 . (2.31)

It is useful to assemble operators am and q into a local bosonic field, defined by

φ(x) = φ>(x) + φ<(x), φ>(x) = a0 log x−
∞∑

m=1

am

m
x−m, φ<(x) = q+

∞∑

m=1

a−m

m
xm.

(2.32)
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We then introduce the energy-momentum tensor

T (x) = :∂φ(x)∂φ(x) : +Q∂2φ(x) =
∑

m∈Z

Lm

xm+2
, (2.33)

which we also write as T (x) = T−(x) + T+(x) so that T+(x) | 0 〉 = 0, where

T−(x) =
−2∑

m=−∞

Lm

xm+2
, T+(x) =

∞∑

m=−1

Lm

xm+2
. (2.34)

The modes of the energy-momentum tensor Lm =
∮
0

dx
2πi x

m+1 T (x) are given explicitly by

L0 = 2
∞∑

n=1

a−nan + a0 (a0 −Q)

Lm =
∑

n 6=0,m

am−nan + (2a0 − (m+ 1)Q) am, m 6= 0,
(2.35)

and they define a natural extension of the background charge representation of the Virasoro

algebra (2.20) to the space

H =

∫

⊕

Hα dα,

since

∀ ξ ∈ Hα ∀m ∈ Z : Lmξ = L(α)mξ.

The pairing ( · , · )α,Q can be naturally extended to the hermitian form ( · , · )Q on H by

requiring that for any ξ ∈ Hα′ , ζ ∈ Hα :

(ξ, ζ)Q =

{
0 for α+ α′ 6= Q,

(ξ, ζ)α,Q for α+ α′ = Q.

In what follows we are interested in calculating products (ξ, ζ)Q for ξ ∈ HQ−α and ζ ∈ Hα,

which can be written as ξ = O†
ξ µQ, ζ = Oζ µ0 for some operators

Oξ : Hα → H0, Oζ : H0 → Hα.

It is then convenient to use the standard bra-ket notation and write 〈 0 | OξOζ | 0 〉 to denote

(
O†

ξ µQ,Oζ µ0

)
Q
=

(
µQ,OξOζ µ0

)
Q
.

2.2 From CFT to α/β deformed eigenvalue integrals...

In the previous subsection we introduced ingredients necessary to construct eigenvalue

integrals and quantum curves. We conduct this construction in the rest of this section.

First, using φ(x) we introduce the normal ordered exponential fields

Eα(x) = e2αφ<(x) e2αφ>(x), (2.36)
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which can be viewed as linear maps from Hα′ to Hα+α′ . They are primary fields with

respect to the Virasoro algebra, i.e. they satisfy commutation relations of the form

[Lm,Eα(x)] = xm ((m+ 1)∆α + x∂x)E
α(x), (2.37)

where ∆α = α(α−Q), see (2.19). It follows that

[T+(y),E
α(x)] =

(
∆α

(y − x)2
+

1

y − x

∂

∂x

)
Eα(x). (2.38)

In the parametrization Q = β−1/2 − β1/2 we have ∆−
√
β = ∆1/

√
β = 1, and consequently

[
T+(y),E

−
√
β(x)

]
=

∂

∂x

(
E−

√
β(x)

y − x

)
,

[
T+(y),E

1/
√
β(x)

]
=

∂

∂x

(
E1/

√
β(x)

y − x

)
. (2.39)

Notice that for |z1| < |z2| we have

[φ>(z1), φ<(z2)] =
1

2
log z1 −

1

2

∞∑

m=1

1

m

(
z2
z1

)m

=
1

2
log(z1 − z2).

Therefore, in terms of the Vandermonde determinant ∆(z) =
∏

1≤a<b≤N (za − zb), we get

N∏

a=1

E−
√
β(za) | 0 〉=

∏

1≤a<b≤N

e4β[φ>(za),φ<(zb)] e
−2

√
β

N∑
a=1

φ<(za) | 0 〉= ∆(z)2β e
−2

√
β

N∑
a=1

φ<(za) | 0 〉 .

(2.40)

In addition, we introduce the coherent “bra” state

〈
VN

√
β,t

∣∣∣ = 〈 0 | e2N
√
βq

∞∏

m=0

e
1
~
tmam . (2.41)

This state satisfies the relation

〈
VN

√
β,t

∣∣∣ e
−2

√
β

N∑
a=1

φ<(za)
= e

−
√
β
~

N∑
a=1

V (za) 〈V0,t | , V (z) =
∞∑

m=0

tmzm. (2.42)

Combining the above ingredients, it follows that the β-deformed eigenvalue inte-

gral (2.1) can be represented as an integrated CFT expectation value (2.2)

Z =

∫
dNz

〈
VN

√
β,t

∣∣∣
N∏

a=1

E−
√
β(za)

∣∣∣ 0
〉
=

∫
dNz ∆(z)2β e

−
√
β
~

N∑
a=1

V (za)
. (2.43)

From the conformal field theory perspective, the relation referred to as the loop equation

in matrix model formalism follows from (2.39) and the equality T+(y) | 0 〉 = 0

〈〈T+(y) 〉〉 ≡
∫
dNz

〈
VN

√
β,t

∣∣∣T+(y)
N∏

a=1

E−
√
β(za)

∣∣∣ 0
〉
=

=

∫
dNz

N∑

b=1

∂

∂za

(
1

y − za

〈
VN

√
β,t

∣∣∣
N∏

a=1

E−
√
β(za)

∣∣∣ 0
〉)

= (2.44)

=

∫
dNz

N∑

b=1

∂

∂za

(
1

y − za
∆(z)2β e

−
√
β
~

N∑
a=1

V (za)
)

= 0.
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It is also immediate to construct the wave-function (or the α/β deformed integral)

χ̂α(x) =

∫
dNz

〈
VN

√
β−α/~,t

∣∣∣E
α
~ (x)

N∏

a=1

E−
√
β(za)

∣∣∣ 0
〉
=

= e
α
~2

V (x)
∫
dNz

N∏

a=1

(x− za)
− 2α

√
β

~ ∆(z)2β e
−

√
β
~

N∑
a=1

V (za)
.

(2.45)

This wave-function is supposed to be annihilated by appropriately constructed quantum

curves, for appropriate values of α.

2.3 ...and to quantum curves

Once we introduced the wave-function (2.45), we identify now the corresponding quantum

curves, and show that they have the structure of singular vectors and can be written in

terms of the representation of the Virasoro algebra in (2.4). In fact, the singular vector

structure of quantum curves follows automatically from the conformal field theory con-

struction of the wave-function — this is the main advantage of the conformal field theory

approach presented in this paper. The only non-trivial aspect is to derive the explicit

representation of the Virasoro generators (2.4), which is the main aim of this section. This

representation can be obtained from correlation functions of the form

〈
VN

√
β−α,t

∣∣∣T (y1) · · ·T (yl)E
α
~ (x)

N∏

a=1

E−
√
β(za)

∣∣∣ 0
〉
, (2.46)

by defining

L−i1(x) · · · L−il(x)E
α
~ (x) =

1

(2πi)l

∮

x

dy1
(y1 − x)i1−1

· · · dyl
(yl − x)il−1

T (y1) · · ·T (yl)E
α
~ (x).

(2.47)

The fact that Lm(x) satisfy the Virasoro algebra can be easily checked by using the OPE

T (y1)T (y2) =
c/2

(y1 − y2)2
+

T (y2)

(y1 − y2)2
+

∂T (y2)

y1 − y2
+ . . . ,

and the standard contour manipulation.

Calculation of the multipoint correlation function (2.46), even if tedious and difficult

to present in a closed form for arbitrary l, is conceptually straightforward. First, using the

commutation relation for T±(y) (defined in (2.34))

[T+(y1), T−(y2)] =
c

2

1

(y1 − y2)4
+

(
2

(y1 − y2)2
+

1

y1 − y2

∂

∂y2

)
T−(y2)+

+

(
2

(y2 − y1)2
+

1

y2 − y1

∂

∂y1

)
T+(y1),

(2.48)

we “normal order” the product T (y1) · · ·T (yl) and reduce the calculation to the situation

where each T−(yi) appears to the left of all T+(yj). From (2.38) and (2.39) it then follows

T+(y) |x, z 〉 =
(

∆α
~

(y − x)2
+

1

y − x

∂

∂x

)
|x, z 〉+

N∑

b=1

∂

∂zb

(
1

y − zb
|x, z 〉

)
, (2.49)
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where we introduced a shorthand notation

|x, z 〉 = E
α
~ (x)

N∏

a=1

E−
√
β(za) | 0 〉 . (2.50)

The integration contour in all the za variables has to be chosen in such a way that integrals

of derivatives are zero. Consequently, the second term in (2.49) does not contribute to the

eigenvalue integral and will be omitted in what follows. We thus have

T+(y1) · · ·T+(yk) |x, z 〉=
(

∆α
~

(yk−x)2
+

1

yk−x

∂

∂x

)
· · ·

(
∆α

~

(y1−x)2
+

1

y1−x

∂

∂x

)
|x, z 〉+ . . .

(2.51)

where . . . at the end of this expression denotes terms which vanish upon the za integration.

Furthermore, from (2.40) and the commutation relations of φ>(x) and φ<(za) fields we get

|x, z 〉 =
N∏

b=1

(x− zb)
− 2α

√
β

~ ∆(z)2β e
2α
~
φ<(x)

N∏

a=1

e−2
√
βφ<(za)

∣∣∣ 0
〉
, (2.52)

so that our final task in calculating the correlation function (2.46) is to compute correlators

of the form

〈
VN

√
β−α/~,t

∣∣∣T−(y1) · · ·T−(yl) e
2α
~
φ<(x)

N∏

a=1

e−2
√
βφ<(za)

∣∣∣ 0
〉
.

Since for m,n < 0

[Lm, q] = am, [Lm, an] = −nam+n,

we have

[T−(y), φ<(x)] =
∞∑

n=0

∞∑

m=2

a−m−nx
nym−2 =

∂φ<(y)− ∂φ<(x)

y − x
, (2.53)

and [
T−(y), e

2αφ<(x)
]

= 2α
∂φ<(y)− ∂φ<(x)

y − x
e2αφ<(x). (2.54)

Using

T−(y) | 0 〉 =
(
(∂φ<(y))

2 +Q∂2φ<(y)
)
| 0 〉 , (2.55)

we finally get

T−(y) e
2α
~
φ<(x)

N∏

a=1

e−2
√
βφ<(za)

∣∣∣ 0
〉

=

(
2α

~

∂φ<(y)− ∂φ<(x)

y − x
+ (2.56)

− 2
√
β

N∑

b=1

∂φ<(y)− ∂φ<(zb)

y − zb
+ (∂φ<(y))

2 +Q∂2φ<(y)

)
e

2α
~
φ<(x)

N∏

a=1

e−2
√
βφ<(za)

∣∣∣ 0
〉
.
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It should be clear how to express — using equations (2.53)–(2.55) — states of the form

T−(y1) · · ·T−(yk) e
2α
~
φ<(x)

N∏

a=1

e−2
√
βφ<(za)

∣∣∣ 0
〉

entirely in terms of (commuting with each other) exponents and derivatives of fields φ<(x)

and φ<(za). Our computation of the correlation function (2.46) is now completed by notic-

ing that

〈
VN

√
β−α/~,t

∣∣∣ e
2α
~
φ<(x)

N∏

a=1

e−2
√
βφ<(za) = e

α
~2

V (x) e−
√
β
~

∑N
a=1 V (za) 〈V0,t | (2.57)

and

〈V0,t | ∂nφ<(x) =
V (n)(x)

2~
〈V0,t | , n > 0. (2.58)

In the simplest case of l = 1, the expectation value (2.46) takes form

〈
VN

√
β−α/~,t

∣∣∣T (y)E
α
~ (x)

N∏

a=1

E−
√
β(za)

∣∣∣ 0
〉
=

=

(
∆α

~

(y − x)2
+

1

y − x

∂

∂x
+

α

~2

V ′(y)− V ′(x)
y − x

−
√
β

~

N∑

a=1

V ′(y)− V ′(za)
y − za

+ (2.59)

+

(
V ′(y)
2~

)2

+
QV ′′(y)

2~

)
Ψα(x, z) +

N∑

a=1

∂

∂za

(
Ψα(x, z)

y − za

)
,

where Ψα(x, z) is a shorthand notation for

Ψα(x, z) =
N∏

a=1

(x− za)
− 2α

√
β

~ ∆(z)2β e
α
~2

V (x) e−
√
β
~

∑N
a=1 V (za). (2.60)

Noticing that

V ′(y)− V ′(x)
y − x

=
∞∑

n=0

ym
∞∑

m=n+2

mtmxm−n−2,

and using the formula

xm e
α
~2

V (x) =
~
2

α
∂tm e

α
~2

V (x)

(and, similarly, for x → za and α → −~
√
β) we get the identity

(
α

~2

V ′(y)− V ′(x)
y − x

−
√
β

~

N∑

a=1

V ′(x)− V ′(za)
x− za

)
Ψα(x, z) =

1

~2
f̂t(y)Ψα(x, z), (2.61)

where

f̂t(y) = ~
2

∞∑

n=0

ym
∞∑

m=n+2

mtm∂tm−n−2 . (2.62)
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Our final representation of the Virasoro algebra generators in a form of differential operators

acting on the wave-function χ̂α(x), defined as

∫
dNz

〈
VN

√
β−α/~,t

∣∣∣T (y)E
α
~ (x)

N∏

a=1

E−
√
β(za)

∣∣∣ 0
〉
=

∞∑

m=−∞

L̂mχ̂α(x)

(y − x)m+2
, (2.63)

takes form advertised in (2.4)

L̂0 = ∆α
~
, L̂−1 = ∂x,

L̂−n =
1

~2(n− 2)!

(
1

4
∂n−2
x

(
V ′(x)

)2
+

Q~

2
∂n
xV (x) + ∂n−2

x f̂t(x)

)
, for n ≥ 2.

(2.64)

Furthermore, it follows that quantum curves have the structure of singular vectors

given in (2.29), with the above representation of Virasoro generators L̂−n. For example,

the form of Â 2
2 (α) in (2.29) yields

(
∂2
x −

α2

~4

((
V ′(x)

)2
+ 2Q~V ′′(x) + 4f̂t(x)

))
χ̂α(x) = 0, (2.65)

for α = 0, ~
√
β

2 , or − ~

2
√
β

(recall that in expressions for quantum curves we include an

additional factor of ~ in the degenerate momenta), while the form of Â 3
3 (α) leads to the

equation
(
∂3
x − 4

α2

~2
∂xL̂−2 +

2α2(2α(2α+Q~)− ~
2)

~4
L̂−3

)
χ̂α(x) = 0, (2.66)

with L̂−2, L̂−3 given explicitly in (2.64) and α = 0, ~
√
β

2 , − ~

2
√
β
, ~

√
β, or − ~√

β
. These

are examples of quantum curves that we already mentioned in (2.8) and (2.9), and it is

straightforward to construct quantum curves at higher levels. In the following section we

generalize the construction presented above to the supersymmetric case.

3 Super-quantum curves in the Neveu-Schwarz sector

In this section we derive super-quantum curves in the Neveu-Schwarz sector from the

conformal field theory perspective, analogously to the derivation of Virasoro quantum

curves in the previous section. While the form of these super-quantum curves have been

postulated in [24], the conformal field theory approach proves that they indeed have the

structure of Neveu-Schwarz singular vectors.

3.1 Background charge representation in the Neveu-Schwarz sector

Similarly as in the Virasoro case, we start our consideration from the analysis of the

background charge representation, this time of the Neveu-Schwarz algebra. First, we extend

the Heisenberg algebra (2.10) by fermionic oscillators and define a superalgebra2

[am, an] = mδm+n,0, {ψk, ψl} = δk+l,0, m, n ∈ Z, k, l ∈ Z+
1

2
. (3.1)

2Note a change of the normalization in the bosonic commutator as compared to the Virasoro case (2.10).
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We denote HNS
α = Hα ⊗ FNS, where Hα is defined as in (2.13), and FNS is a free vector

space generated by negative modes ψ−k out of the fermionic Fock vacuum ΩNS, defined by

the condition ψkΩNS = 0 for k > 0. The hermitian pairing

( · , · )α,Q : HNS
Q−α ×HNS

α → C

is defined by conditions (2.14) supplemented with ψ†
k = ψ−k.

Consider now the Neveu-Schwarz (NS for short) algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m

(
m2 − 1

)
δm+n,0,

[Lm,Gk] =
m− 2k

2
Gm+k, (3.2)

{Gk,Gl} = 2Lk+l +
c

3

(
k2 − 1

4

)
δk+l,0,

where m,n ∈ Z and k, l ∈ Z+ 1
2 . The Verma module VNS

∆,c of the Neveu-Schwarz algebra is

a free vector space generated by L−m,m > 0 and G−k, k > 0 out of the NS highest weight

state νNS
∆ defined by

LmνNS
∆ = Gkν

NS
∆ = 0, m, k > 0, L0ν

NS
∆ = ∆ νNS

∆ . (3.3)

Definitions of Schapovalov hermitian form, as well as singular and null vectors in VNS
∆,c, are

obvious modifications of the corresponding notions for the Virasoro Verma module.

We now fix3

c =
3

2
− 3Q2, ∆ =

1

2
α(α−Q) ≡ ∆α. (3.4)

Analogously as in the Virasoro case (2.20), the background charge representation of the

NS algebra is defined by the map

σNS
α,Q : End

(
VNS
∆,c

)
∋ Lm,Gk → L(α)m, G(α)k ∈ End (HNS

α ) ,

where

L(α)0 =

∞∑

m=1

a−mam +

∞∑

k= 1
2

kψ−kψk +
1

2
α (α−Q) ,

L(α)n =
1

2

∑

m 6=0,n

an−mam +
1

2

∑

k∈Z+ 1
2

kψn−kψk +
1

2
(2α− (n+ 1)Q) an, n 6= 0, (3.5)

G(α)k =
∑

m 6=0

amψk−m +
(
α−

(
k + 1

2

)
Q
)
ψk.

Define a matrix S of the transition map between canonical bases in VNS
∆,c and HNS

α by the

formula

L(α)−IG(α)−K µNS
α =

∑

|J |+|L|=p

[
S p
α,Q

]
IK,JL

a−Jψ−L µNS
α , p = |I|+ |K|, (3.6)

3Note a change in the definition of ∆α as compared to the Virasoro case (2.19).
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where

ψ−L ≡ ψ−l1 · · ·ψ−lm , 0 < l1 < . . . < lm, |L| =
m∑

i=1

li,

and similarly for the multiindices K in G(α)−K . As shown in [38], the matrix
(
S p
α,Q

)−1

has (simple for generic values of α) poles at

α = αr,s =
(r − 1)β− 1

2 − (s− 1)β
1
2

2
, r, s ∈ Z>0,

rs

2
≤ p, r + s ∈ 2Z. (3.7)

As in the Virasoro case we can construct null vectors of the NS algebra as residues of this

matrix

cJL ξp
NS null = lim

α→αr,s

(α− αr,s)
∑

|I|+|K|=p

[(
S p
α,Q

)−1
]

JL,IK

L−IG−K νNS
∆α

, (3.8)

and the endomorphisms of HNS
α vanishing at α = αr,s as

Âp
JL(α) = ωNS

p (α,Q)
∑

|I|+|K|=p

[(
S p
α,Q

)−1
]

JL,IK

L(α)−IG(α)−K , (3.9)

where

ωNS
p (α,Q) =

∏

1≤rs≤2p
r+s∈2Z

(α− αr,s) . (3.10)

The simplest examples are

Â
1/2
1/2(α) = G(α)− 1

2
,

Â
3/2
3/2(α) = α2G(α)− 3

2
−G(α)− 1

2
L(α)−1,

Â
3/2
1,1/2(α) = (α+Q)G(α)− 1

2
L(α)−1 − αG(α)− 3

2
, (3.11)

2Â2
2(α) = (α+Q)G(α)− 1

2
Â

3/2
3/2(α) + ωNS

3/2(α,Q)G(α)− 3
2
G(α)− 1

2
,

2Â2
1,1(α) = (2α+Q)G(α)− 1

2
Â

3/2
1,1/2(α)+G(α)− 1

2
Â

3/2
3/2(α)−(α(α+Q)−1)G(α)− 3

2
G(α)− 1

2
,

Â2
3/2,1/2(α) =

1

2
(α(α+Q)− 1)G(α)− 3

2
G(α)− 1

2
− 1

2
G(α)− 1

2
Â

3/2
3/2(α),

and an example at the level p = 5
2

2Â
5/2
5/2(α) =G(α)− 1

2

(
αÂ2

1,1(α) +
(
α2 +Qα− 2

)
Â2

2(α)− α
(
α2 +Qα− 2

)
Â2

3/2,1/2(α)
)

− 2αωNS
2 (α,Q)G(α)− 3

2
L(α)−1. (3.12)

As in the Virasoro case, we also add to the algebra (3.1) the operator q satisfying

[am, q] = δm,0, (3.13)

and consider eα
′q as a map

HNS
α → HNS

α+α′ , eα
′q µNS

α = µNS
α+α′ . (3.14)
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Finally we consider the bosonic field φ(x) defined by the formula (2.32), together with the

local fermion field

ψ(x) = ψ>(x) + ψ<(x), ψ>(x) =
∞∑

k= 1
2

ψk x
−k− 1

2 , ψ<(x) =
∞∑

k= 1
2

ψ−k x
k− 1

2 , (3.15)

and construct the energy-momentum tensor T (x) and its partner spin 3/2 field S(x)

T (x) =
1

2
:∂φ(x)∂φ(x) : +

1

2
:∂ψ(x)ψ(x) : +

Q

2
∂2φ(x),

S(x) = ψ(x)∂φ(x) +Q∂ψ(x).
(3.16)

Analogously to the bosonic case we denote

T+(x) =
∞∑

m=−1

Lm

xm+2
, T−(x) = T (x)− T+(x) =

∞∑

m=2

L−mxm−2,

S+(x) =
∞∑

k=− 1
2

Gk

xk+
3
2

, S−(x) = S(x)− S+(x) =
∞∑

k= 3
2

G−kx
k− 3

2 ,

(3.17)

so that T+ | 0 〉 = S+ | 0 〉 = 0, where | 0 〉 = µNS
0 . The modes of these fields

Lm =

∮

0

dx

2πi
xm+1 T (x), Gk =

∮

0

dx

2πi
xk+

1
2 S(x), (3.18)

have the explicit form

L0 =
∞∑

m=1

a−mam +
∞∑

k= 1
2

kψ−kψk +
1

2
a0 (a0 −Q) ,

Ln =
1

2

∑

m∈Z
an−mam +

1

2

∑

k∈Z+ 1
2

kψn−kψk −
1

2
Q(n+ 1)an, n 6= 0,

Gk =
∑

m∈Z
amψk−m −Q

(
k + 1

2

)
ψk.

(3.19)

For every ξ ∈ HNS
α these modes satisfy

Lnξ = L(α)nξ, Gkξ = G(α)kξ,

and they provide natural extensions of the operators L(α)m and G(α)k to the space

HNS =

∫

⊕

HNS
α dα.

3.2 α/β deformed eigenvalue integrals in the Neveu-Schwarz sector...

With the ingredients introduced in the previous section, we can now construct an expec-

tation value representing a super-eigenvalue model in the Neveu-Schwarz sector. Again it

is useful to define the normal ordered exponential

Eα(x) = eαφ<(x) eαφ>(x), (3.20)
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which in the present case is defined without the factor 2 in the exponent due to different

(as compared to the Virasoro case) normalization of the Heisenberg algebra (3.1). We have

[Lm,Eα(x)] = xm (x∂x + (m+ 1)∆α)E
α(x), ∆α =

1

2
α(α−Q),

[Gk,E
α(x)] = αxk+

1
2 ψ(x)Eα(x).

(3.21)

We also define a superfield

Φα(x, θ) = e−θG−1/2 Eα(x) eθG−1/2 = (1 + αψ(x)θ)Eα(x) = eαψ(x)θ Eα(x), (3.22)

and in what follows sometimes use the notation

Φα
<(z, θ) = eα(φ<(z)+ψ<(z)θ). (3.23)

Using the Neveu-Schwarz algebra (3.2) as well as the Jacobi identity

{Gk, [Gl,E
α(x)]}+ {Gl, [Gk,E

α(x)]} = [{Gk, Gl} ,Eα(x)]

we get

{Gk, ψ(x)E
α(x)} =

1

α
xk−

1
2
(
x∂x + 2∆α

(
k + 1

2

))
Eα(x), (3.24)

while the Jacobi identity

[Lm, [Gk,E
α(x)]] = [[Lm, Gk] ,E

α(x)] + [Gk, [Lm,Eα(x)]]

gives

[Lm, ψ(x)Eα(x)] = xm
(
x∂x + (m+ 1)

(
∆α + 1

2

))
ψ(x)Eα(x). (3.25)

(Note that the formulae (3.24) and (3.25) can be also obtained directly using (3.19) and

the commutation relations (3.1) and (3.13).) It follows that

[Lm,Φα(x, θ)] = xm
(
x∂x + (m+ 1)

(
∆α + 1

2θ∂θ
))

Φα(x, θ),

[Gk,Φ
α(x, θ)] = xk−

1
2

(
θ
(
x∂x + 2∆α

(
k + 1

2

))
− x∂θ

)
Φα(x, θ),

(3.26)

and in the particular case of α = −√
β, so that ∆−

√
β = 1

2

√
β(Q+

√
β) = 1

2 , we get

[
Lm,Φ−

√
β(x, θ)

]
=

(
∂xx− 1

2(m+ 1)∂θθ
) (

xmΦ−
√
β(x, θ)

)
,

[
Gk,Φ

−
√
β(x, θ)

]
=

(
θ∂x − ∂θ

)(
xk+

1
2Φ−

√
β(x, θ)

)
.

(3.27)

From (3.26) it also follows that

[T+(y),Φ
α(x, θ)] =

∆α + 1
2θ∂θ

(y − x)2
Φα(x, θ) +

1

y − x
∂xΦ

α(x, θ),

[S+(y),Φ
α(x, θ)] =

2∆αθ

(y − x)2
Φα(θ, x) +

1

y − x
(θ∂x − ∂θ) Φ

α(θ, x),

(3.28)
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and in particular

[
T+(y),Φ

−
√
β(x, θ)

]
=

(
∂x −

1

2
∂θ

θ

y − x

)
Φ−

√
β(x, θ)

y − x
,

[
S+(y),Φ

−
√
β(x, θ)

]
=

(
θ∂x − ∂θ

)Φ−
√
β(x, θ)

y − x
.

(3.29)

Since

[θψ>(x), θ
′ψ<(x

′)] = −θθ′{ψ>(x), ψ<(x
′)} = − θθ′

x− x′
, (3.30)

we get

Φα(x, θ)Φα′
(x′, θ′) = eαα

′[φ>(x),φ<(x′)] eαα
′[θψ>(x),θ′ψ<(x′)] :Φα(x, θ)Φα′

(x′, θ′) :

= (x− x′)αα
′
(
1− αα′θθ′

x− x′

)
:Φα(x, θ)Φα′

(x′, θ′) :

= (x− x′ − θθ′)αα
′
:Φα(x, θ)Φα′

(x′, θ′) : .

(3.31)

Consequently, if we define the NS screening charge operator as

QNS =

∫
dz dθ Φ−

√
β(z, θ), (3.32)

then, using the notation (3.23), we get

QN
NS | 0 〉 =

∫
dNz dNθ ∆NS(z,θ)

β
N∏

a=1

Φ−
√
β

< (za, θa) | 0 〉 , (3.33)

where dNz dNθ =
∏N

a=1 dza dθa and

∆NS(z,θ) =
∏

1≤a<b≤N

(za − zb − θaθb) . (3.34)

We also introduce a general coherent “bra” state in the NS sector

〈
VN

√
β,t,ξ

∣∣∣ = 〈 0 | eN
√
β q

∞∏

m=0

e
1
~
(tmam+ξm+1/2ψm+1/2), (3.35)

where

{ξk, ξl} = {ξk, θa} = {ξk, ψl} = 0.

Combining the above ingredients we find that the Neveu-Schwarz β-deformed super-

eigenvalue integral is represented by the following expectation value

Z =
〈
VN

√
β,t,ξ

∣∣∣QN
NS

∣∣∣ 0
〉
=

∫
dNz dNθ ∆NS(z,θ)

β e−
√
β
~

∑N
a=1 V (za,θa), (3.36)

where

V (z, θ) = VB(z) + VF(z)θ, VB(z) =
∞∑

m=0

tmzm, VF(z) =
∞∑

m=0

ξm+1/2z
m. (3.37)
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The loop equations for this model from CFT perspective follow from the relations

T+(x) | 0 〉 = S+(x) | 0 〉 = 0; using (3.29) they take a familiar form

〈〈T+(x) 〉〉 ≡
〈
VN

√
β,t,ξ

∣∣∣T+(x)Q
N
NS

∣∣∣ 0
〉
= (3.38)

=

∫
dNz dNθ

N∑

a=1

(
∂za −

1

2
∂θa

θa
x− za

)(
1

x− za
∆NS(z,θ)

β e−
√
β
~

∑N
b=1 V (zb,θb)

)
= 0,

〈〈S+(x) 〉〉 ≡
〈
VN

√
β,t,ξ

∣∣∣S+(x)Q
N
NS

∣∣∣ 0
〉
= (3.39)

=

∫
dNz dNθ

N∑

a=1

(
∂θa − θa∂za

)(
1

x− za
∆NS(z,θ)

β e−
√
β
~

∑N
b=1 V (zb,θb)

)
= 0.

Furthermore, the Neveu-Schwarz wave-function — also referred to as the α/β eigen-

value integral — is defined as the following expectation value

χ̂α(x, θ) =
〈
VN

√
β−α/~,t,ξ

∣∣∣Φ
α
~ (x, θ)QN

NS

∣∣∣ 0
〉
. (3.40)

An explicit form of this expression defines a super-eigenvalue model considered in [24]

χ̂α(x, θ) = e
α
~2

V (x,θ)
∫

dNz dNθ

N∏

a=1

(x− za − θθa)
−α

√
β

~ ∆NS(z,θ)
β e−

√
β
~

∑N
b=1 V (zb,θb). (3.41)

3.3 ...and Neveu-Schwarz super-quantum curves

In order to derive super-quantum curves, i.e. differential equations satisfied by the wave-

function (3.40), we need to compute correlation functions of the form

〈
VN

√
β−α/~,t,ξ

∣∣∣T (y1) · · ·T (ym)S(w1) · · ·S(wn)Φ
α
~ (x, θ)QN

NS

∣∣∣ 0
〉
.

Since this calculation, even if in principle straightforward, is rather lengthy and a closed

formula for arbitrary m and n is not known, we restrict ourselves to the simplest cases of

m = 1, n = 0 and m = 0, n = 1. First, we need to identify the following representation of

the Neveu-Schwarz algebra

L̂−nχ̂α(x, θ) =

∮

x

dy

2πi

1

(y − x)n−1

〈
VN

√
β−α/~,t,ξ

∣∣∣T (y)Φ
α
~ (x, θ)QN

NS

∣∣∣ 0
〉
,

Ĝ−kχ̂α(x, θ) =

∮

x

dy

2πi

1

(y − x)k−
1
2

〈
VN

√
β−α/~,t,ξ

∣∣∣S(y)Φ
α
~ (x, θ)QN

NS

∣∣∣ 0
〉
.

(3.42)

To evaluate these expressions, first note that

T−(y) | 0 〉 =
1

2

(
∂φ<(y)∂φ<(y) + ∂ψ<(y)ψ<(y) +Q∂2φ<(y)

)
| 0 〉 ,

S−(y) | 0 〉 = (ψ<(y)∂φ<(y) +Q∂ψ<(y)) | 0 〉 .
(3.43)
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Using definitions (3.19), (3.23) and the commutation relations (3.1) and (3.13), we find

[
T−(y),Φ

α
~

<(x, θ)
]
=

α

~

∂φ<(y)− ∂φ<(x)

y − x
Φ

α
~

<(x, θ) (3.44)

+
α

2~

(
∂ψ<(y)− ∂ψ<(x)

y − x
+

ψ<(y)− ψ<(x)− (y − x)∂ψ<(x)

(y − x)2

)
θΦ

α
~

<(x, θ),

[
S−(y),Φ

α
~

<(x, θ)
]
=

α

~

(
ψ<(y)− ψ<(x)

y − x
+ θ

∂φ<(y)− ∂φ<(x)

y − x

)
Φ

α
~

<(x, θ), (3.45)

and similarly for the commutators
[
T−(y),Φ

−
√
β

< (za, θa)
]
and

[
S−(y),Φ

−
√
β

< (za, θa)
]
.

Since

〈
VN

√
β−α/~,t,ξ

∣∣∣∂φ<(y) =
〈
VN

√
β−α/~,t,ξ

∣∣∣V
′
B(y)

~
,

〈
VN

√
β−α/~,t,ξ

∣∣∣ψ<(y) =
〈
VN

√
β−α/~,t,ξ

∣∣∣VF(y)

~
,

(3.46)

we have

α

~2

(
V ′

B(y)− V ′
B(x)

y − x
+

1

2

(
V ′

F(y)− V ′
F(x)

y − x
+

VF(y)− VF(x)− (y − x)V ′
F(x)

(y − x)2

)
θ

)
e

α
~2

V (x,θ) =

=
1

~2
f̂(y) e

α
~2

V (x,θ), (3.47)

where

f̂(y) = ~
2

∞∑

n=0

yn
∞∑

m=n+2

(
mtm∂tm−n−2 +

(
m− n+ 1

2

)
ξm+1/2∂ξm−n−3/2

)
. (3.48)

Similarly

α

~2

(
VF(y)− VF(x)

y − x
+

V ′
B(y)− V ′

B(x)

y − x
θ

)
e

α
~2

V (x,θ) =
1

~2
ĥ(y) e

α
~2

V (x,θ), (3.49)

where

ĥ(y) = ~
2

∞∑

n=0

yn
∞∑

m=n+1

(
ξm+1/2∂tm−n−1 +mtm∂ξm−n−3/2

)
. (3.50)

Combining the above ingredients, and using (3.28) and (3.29) which in particular con-

tributes as surface terms, we get

〈
VN

√
β−α/~,t,ξ

∣∣∣T (y)Φ
α
~ (x, θ)QN

NS

∣∣∣ 0
〉
=

(
∆α

~
+ 1

2θ∂θ

(y − x)2
+

1

y − x
∂x

)
χ̂α(x, θ)+

+
1

2~2

((
V ′

B(y)
)2

+ V ′
F(y)VF(y) +Q~V ′′

B (y) + 2f̂(y)
)
χ̂α(x, θ),

(3.51)

and

〈
VN

√
β−α/~,t,ξ

∣∣∣S(y)Φ
α
~ (x, θ)QN

NS

∣∣∣ 0
〉
=

(
2θ∆α

~

(y − x)2
+

1

y − x
(θ∂x − ∂θ)

)
χ̂α(x, θ)+ (3.52)

+
1

~2

(
VF(y)V

′
B(y) +Q~V ′

F(y) + ĥ(y)
)
χ̂α(x, θ).
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Expanding (3.51) and (3.52) in powers of y, we find that the representation of the Neveu-

Schwarz algebra on the wave-function χ̂α(x, θ) takes form

L̂0 = ∆α
~
+

1

2
θ∂θ, L̂−1 = ∂x, (3.53)

L̂−n =
1

2~2(n− 2)!

(
∂n−2
x

(
V ′

B(x)
)2

+ ∂n−2
x

(
V ′

F(x)VF(x)
)
+Q~∂n

xVB(x) + 2∂n−2
x f̂(x)

)
,

and

Ĝ 1
2
= 2θ∆α

~
, Ĝ− 1

2
= θ∂x − ∂θ,

Ĝ−k =
1

~2
(
k − 3

2

)
!

(
∂
k− 3

2
x

(
VF(x)V

′
B(x)

)
+Q~∂

k− 1
2

x VF(x) + ∂
k− 3

2
x ĥ(x)

)
.

(3.54)

From the above construction it automatically follows that super-quantum curves in

the Neveu-Schwarz sector take form of singular Neveu-Schwarz vectors, such as those in

examples (3.11) and (3.12), expressed in terms of the above generators of the Neveu-

Schwarz algebra (3.53) and (3.54). In this way we reproduce — and prove in general —

the results found in [24] (using the matrix model formalism).

4 Ramond sector and Ramond-NS super-quantum curves

In previous sections, using conformal field theory techniques, we proved that quantum

curves associated to Virasoro and Neveu-Schwarz algebras, found in [20, 24], indeed have

structure of singular vectors for these algebras. In this section we generalize such an

approach to the Ramond sector of the super-Virasoro algebra. In this case taking the

viewpoint of conformal field theory has two important advantages. First of all, it enables

to define the corresponding eigenvalue model, whose form is not obvious to identify a priori.

Second, similarly as in the previous sections, it proves in general that Ramond quantum

curves take form of singular vectors of the Ramond algebra.

When considering the Ramond sector, certain subtleties must be taken into account.

Similarly as in earlier sections, the wave-function χ̂α(x) is identified as an expectation

value of a certain x-dependent operator, evaluated in between two reference states. Such

an expectation value can be defined in two general ways. First, in order to have a well-

defined wave-function, we can choose the two reference states (represented, schematically,

by the bra 〈R| and the ket |R〉) from the Ramond sector, and the x-dependent operator

NS(x) to be of the Neveu-Schwarz type, schematically

χ̂α(x) ∼ 〈R|NS(x) |R〉. (4.1)

As the x-dependent part in this expression is encoded in the operator in the Neveu-Schwarz

sector, it follows that quantum curves — i.e. differential equations satisfied by χ̂α(x) —

have the structure of the Neveu-Schwarz singular vectors, such as those given in (3.11)

and (3.12). Nonetheless, the form of super-Virasoro generators L̂n and Ĝn+1/2 in terms of

which these quantum curves are expressed is now different than in section 3, and it encodes
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properties of the underlying Ramond algebra. We call such quantum curves as Ramond-NS

super-quantum curves.

There is also the second possibility — we can choose the x-dependent operator to be

of the Ramond type, and then one of the reference states to be from the NS sector, and

the other state from the Ramond sector, schematically

χ̂α(x) ∼ 〈NS|R(x) |R〉. (4.2)

In this case the corresponding quantum curves indeed have the structure of Ramond sin-

gular vectors, and we call such curves as Ramond-R super-quantum curves.

The construction of the above two types of Ramond quantum curves is a generaliza-

tion of considerations in sections 2 and 3 — however details of such constructions are not

completely obvious. In what follows, in sections 4.1 and 4.3 we present the construction

of Ramond-NS quantum curves, and in section 6.7 we discuss the case of multi-Penner po-

tential, which gives rise to one particular example of Ramond-NS super-quantum curves.

Subsequently, in section 5, we present a construction of Ramond-R quantum curves. For

brevity, in the Ramond-R case we essentially restrict the analysis to the Penner-like po-

tential, and demonstrate that in this case quantum curves take form of a supersymmetric

generalization of BPZ equations, which provides an independent check of our approach.

Moreover, independently of conformal field theory analysis, in section 6 we derive Ramond-

NS quantum curves from the super-eigenvalue model perspective and using matrix model

techniques. Similarly, in section 7 we rederive Ramond-R quantum curves using eigenvalue

model techniques. This proves that CFT and matrix model methods lead to the same

results, and enables to compare advantages of each of those approaches.

4.1 Background charge representation and singular vectors

The oscillator algebra in the Ramond sector takes the same form as in the Neveu-Schwarz

sector (3.1), however now with all indices integer

[am, an] = mδm+n,0, {ψm, ψn} = δn+n,0, m, n ∈ Z. (4.3)

There are two vacuum states in the Ramond sector, which we denote by | 0,±〉, and which

are defined by equations

am | 0,±〉 = 0, m ≥ 0, ψm | 0,±〉 = 0, m > 0, ψ0 | 0,±〉 = 1√
2
| 0,∓〉 . (4.4)

The super-Virasoro algebra, which now we refer to as the Ramond algebra, takes the same

form as in (3.2), however now with all indices integer. We consider the following free field

realization of this Ramond algebra

L0 =
∞∑

m=1

a−mam +
∞∑

m=1

mψ−mψm +
1

2
a0 (a0 −Q) +

1

16
,

Ln =
1

2

∑

m 6=0,n

an−mam +
1

2

∑

m∈Z
mψn−mψm +

1

2
(2a0 − (n+ 1)Q) an, n 6= 0, (4.5)

Gn =
∑

m∈Z
an−mψm −Q

(
n+ 1

2

)
ψn.
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One can check that the following relations hold

Lm | 0,±〉 = Gm | 0,±〉 = 0, m > 0, (4.6)

and

L0 | 0,±〉 = 1

16
| 0,±〉 , G0 | 0,±〉 = −Q

2
ψ0 | 0,±〉 = − Q

2
√
2
| 0,∓〉 . (4.7)

Due to the presence of the term 1
2ψ−1ψ0 in L−1, there is no state annihilated by L−1 in

the Ramond sector.

By considering a transition map between the oscillator algebra and the Ramond version

of the super-Virasoro algebra one can derive general expressions for singular vectors in the

Ramond sector, analogously to considerations in previous sections. At the level zero the

operator which gives a null vector for α = Q/2 (while acting on the Ramond highest weight

vector |∆α,±〉 with ∆α = 1
2α(α−Q) + 1

16) or the null field (while acting on the Ramond

primary field Rα
±(x)) is given by

Â 0
(·|0) = G0.

At the level 1 the operators which give null vectors/fields for α = Q/2, 1
2

√
β, or − 1

2
√
β
may

be presented in the form

Â 1
(·|1) = 4α(2α−Q)G−1 − 8L−1G0,

Â 1
(1|0) = 4(2α+Q)L−1G0 − (2α−Q)G−1,

Â 1
(·|1,0) = 8αG−1G0 − 2(2α−Q)L−1,

Â 1
(1|·) = 2(2α−Q)(2α+Q)L−1 − 4G−1G0.

(4.8)

As our last example consider operators

Â 2
(1,1|·) = L−1

((
α+ 3

2Q
)
Â 1

(1|·) +
3
2Â

1
(·|1,0)

)
−G−1

(
9
2Â

1
(1|0) +

(
α+ 3

2Q
)
Â 1

(·|1)

)
,

Â 2
(2|·) = G−1

(
3
2αÂ

1
(1|0) +

(
α2 + 3

2Qα− 3
4

)
Â 1

(·|1)

)
− L−1

(
3
2Â

1
(1|·) + 2αÂ 1

(·|1,0)

)
,

Â 2
(1|1,0) = G−1

(
3αÂ 1

(1|0) +
3
2Â

1
(·|1)

)
− L−1

(
3
2Â

1
(1|·) + 2αÂ 1

(·|1,0)

)
,

Â 2
(·|2,0) = L−1

(
αÂ 1

(1|·) +
(
2α2 +Qα− 3

2

)
Â 1

(·|1,0)

)
−G−1

(
2α2Â 1

(1|0) + αÂ 1
(·|1)

)
.

For α = Q/2, 1
2

√
β, − 1

2
√
β
, 3
2

√
β, or − 3

2
√
β
they give rise to the null vectors at level 2.

4.2 Ramond-NS eigenvalue model

We introduce now various fields and operators relevant in the Ramond sector. First, we

consider the bosonic field (2.32) and define a fermionic one

ψ(x) = ψ>(x) + ψ<(x), ψ>(x) =
∞∑

m=0

ψmx−m− 1
2 , ψ<(x) =

∞∑

m=1

ψ−mxm− 1
2 , (4.9)

as well as the corresponding energy-momentum tensor and its superpartner

T (x) =
1

2
:∂φ(x)∂φ(x) : +

1

2
:∂ψ(x)ψ(x) : +

Q

2
∂2φ(x),

S(x) = ψ(x)∂φ(x) +Q∂ψ(x).
(4.10)
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These fields have mode decompositions

T (x) = T+(x) + T−(x), S(x) = S+(x) + S−(x),

T−(x) =
∞∑

m=1

L−mxm−2, T+(x) =
∞∑

m=0

Lm

xm+2
, (4.11)

S−(x) =
∞∑

m=1

G−mxm− 3
2 , S+(x) =

∞∑

m=0

Gm

xm+ 3
2

,

with modes Lm =
∮
0

dx
2πi xm+1T (x) and Gk =

∮
0

dx
2πi xk+

1
2S(x) given in (4.5). Note that

T+(x) | 0,±〉 = 1
16x2 | 0,±〉, S+(x) | 0,±〉 = − Q

2x3/2ψ0 | 0,±〉, and contrary to the definition

in the Neveu-Schwarz sector (3.17), now T−(x) and S−(x) contain singular terms at x = 0

(for modes labeled by m = 1). Furthermore, we introduce the exponential (super)fields

Eα(x) = eαφ<(x) eαφ>(x),

Φα(x, θ) =
(
1 + αψ(x)θ)Eα(x) = eαψ(x)θEα(x).

(4.12)

In what follows we also use the notation

Φα
<(z, θ) = eα(φ<(z)+ψ<(z)θ), Φα

≤(x, θ) = e
−α θ√

x
ψ0Φα

<(x, θ). (4.13)

Note that the following commutation relations hold

[Lm,Φα(x, θ)] = xm
(
x∂x + (m+ 1)

(
∆α + 1

2 − 1
2∂θθ

))
Φα(x, θ), (4.14)

[Gm,Φα(x, θ)] = xm− 1
2

(
θ
(
x∂x + 2∆α

(
m+ 1

2

))
− x∂θ

)
Φα(x, θ), ∆α =

1

2
α(α−Q),

which in the special case α = −√
β, so that ∆−

√
β = 1

2

√
β(Q+

√
β) = 1

2 , take form

[
Lm,Φ−

√
β(x, θ)

]
=

(
∂xx− 1

2(m+ 1)∂θθ
) (

xmΦ−
√
β(x, θ)

)
,

[
Gm,Φ−

√
β(x, θ)

]
=

(
θ∂x − ∂θ

)(
xm+ 1

2Φ−
√
β(x, θ)

)
.

(4.15)

From (4.14) we also find

[T+(y),Φ
α(x, θ)] = ∂x

x

y(y − x)
Φα(x, θ) +

∆α − 1
2 − 1

2∂θθ

(y − x)2
Φα(x, θ),

[S+(y),Φ
α(x, θ)] = (θ∂x − ∂θ)

√
x

y

1

y − x
Φα(x, θ) +

(∆α − 1
2)(y + x)θ

√
yx(y − x)2

Φα(x, θ),

(4.16)

and in particular

[
T+(y),Φ

−
√
β(x, θ)

]
=

(
∂x

x

y(y − x)
− ∂θθ

2(y − x)2

)
Φ−

√
β(x, θ),

[
S+(y),Φ

−
√
β(x, θ)

]
= (θ∂x − ∂θ)

√
x

y

1

y − x
Φ−

√
β(x, θ).

(4.17)

– 28 –



J
H
E
P
0
5
(
2
0
1
8
)
1
3
3

Since

eψ>(x)θ eψ<(x′)θ′ =
(
1− {ψ>(x), ψ<(x

′)}θθ′
)
eψ<(x′)θ′ eψ>(x)θ =

=

(
1− θθ′√

xx′
x′

x− x′

)
eψ<(x′)θ′ eψ>(x)θ,

(4.18)

we get the identity

N∏

a=1

Φ−
√
β(za, θa) | 0,±〉 =

∏

1≤a<b≤N

(
za−zb−θaθb

√
zb
za

)β N∏

a=1

e
√
β θa√

za
ψ0

N∏

a=1

Φ−
√
β

< (za, θa) | 0,±〉 ,

(4.19)

which is relevant for the eigenvalue model of the Ramond-NS type. To simplify this relation,

note that we have

N∏

a=1

e
√
β θa√

za
ψ0 =

N∏

a=1

(
1 +

√
β

θa√
za

ψ0

)
=

(
1 +

√
β

N∑

a=1

θa√
za

ψ0

)
exp

(
− β

2

∑

1≤a<b≤N

θaθb√
zazb

)
,

so that we get

(
za − zb − θaθb

√
zb
za

)β

exp

(
−β

2

θaθb√
zazb

)
= (za − zb)

β

(
1− β

√
zb
za

θaθb
za − zb

)(
1− β

2

θaθb√
zazb

)

= (za − zb)
β

(
1− β

2

θaθb√
zazb

za + zb
za − zb

)
=

(
za − zb −

za + zb
2
√
zazb

θaθb

)β

. (4.20)

Then it follows that

N∏

a=1

Φ−
√
β(za, θa) | 0,±〉 = e

−ψ0
√
β

N∑
a=1

θa√
za ∆R(z,θ)

β
N∏

a=1

Φ−
√
β

< (za, θa) | 0,±〉 , (4.21)

where we introduced a (Ramond-NS) version of the Vandermonde determinant

∆R(z,θ) =
∏

1≤a<b≤N

(
za − zb −

za + zb
2
√
zazb

θaθb

)
. (4.22)

In order to define the Ramond-NS model it is natural to define the following coherent

“bra” states

〈
V ±
N
√
β,t,ξ

∣∣∣ = 〈 0,± | eN
√
β q e

2
~
ξ0ψ0

∞∏

m=0

e
1
~
(tmam+ξm+1ψm+1). (4.23)

Since 〈0,+ | 0,−〉 = 0 (in our choice of normalization), we get

〈 0,+ | e 2
~
ξ0ψ0e

−ψ0
√
β
∑N

a=1
θa√
za | 0,+ 〉 = 1− 2ψ2

0

√
β

~

N∑

a=1

ξ0θa√
za

= e
−

√
β
~

∑N
a=1

ξ0θa√
za , (4.24)

and then

〈
V +

N
√
β,t,ξ

∣∣∣
N∏

a=1

Φ−
√
β(za, θa)

∣∣∣ 0,+
〉
= ∆R(z,θ)

β e−
√
β
~

∑N
a=1VR(za,θa), (4.25)
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where

VR(z, θ) = VB(z) + VF(z)
θ√
z
, VB(z) =

∞∑

m=0

tmzm, VF(z) =
∞∑

m=0

ξmzm. (4.26)

The partition function of the Ramond-NS type is now represented as the integrated expec-

tation value (4.25)

Z =
〈
V +

N
√
β,t,ξ

∣∣∣QN
R

∣∣∣ 0,+
〉
=

∫
dNz dNθ ∆R(z,θ)

β e−
√
β
~

∑N
a=1VR(za,θa), (4.27)

where we defined the Ramond screening charge operator by

QR =

∫
dz dθ Φ−

√
β(z, θ). (4.28)

This partition function (4.27) is regarded as the definition of the super-eigenvalue model

for the Ramond-NS sector.4

In what follows, for an operator O, we also use the notation

〈〈O 〉〉 =
〈
V +

N
√
β,t,ξ

∣∣∣O QN
R

∣∣∣ 0,+
〉
. (4.29)

In particular the partition function (4.27) can be written as Z = 〈〈 1 〉〉 . Using (4.17) with

the relations (4.6) and (4.7) we find

〈〈S+(x) 〉〉 +
Q

2~x3/2

(
ξ0 −

~
2

2
∂ξ0

)
Z = (4.30)

=

∫
dNz dNθ

N∑

a=1

(θa∂za − ∂θa)

(√
za
x

1

x− za
∆R(z,θ)

β e−
√
β
~

∑N
b=1 V (zb,θb)

)
= 0,

〈〈T+(x) 〉〉 − 1

16x2
Z = (4.31)

=

∫
dNz dNθ

N∑

a=1

(
∂za −

x

2
∂θa

θa
za(x− za)

)(
za

x(x− za)
∆R(z,θ)

β e−
√
β
~

∑N
b=1 V (zb,θb)

)
= 0.

These equations are interpreted as loop equations in the matrix model language in sec-

tion 6.2. We now introduce a representation of the Ramond algebra in terms of operators

acting on the partition function as

gn Z = 〈〈Gn 〉〉 , ℓn Z = 〈〈Ln 〉〉 . (4.32)

4Note that, since we defined two “bra” states 〈V ±
N

√
β,t,ξ

| in (4.23), and there are two “ket” Ramond

vacua |0,±〉, one could in principle consider three additional correlators analogous to (4.25). However, since

〈 0,+ | e 2

~
ξ0ψ0e

−ψ0

√
β
∑

N

a=1

θa
√

za | 0,−〉 = 1√
2

(

2

~
ξ0 +

√

β

N
∑

a=1

θa√
za

)

,

we see that 〈V ±
N

√
β,t,ξ

|
N
∏

a=1

Φ−
√
β(za, θa)|0,∓〉 (with opposite Ramond vacua chosen on both sides of the

correlator) is no longer of the desired form, as in the right hand side of (4.25). In what follows we therefore

consider only the correlator (4.25), with both | 0,+ 〉 Ramond vacua in both in and out states (the case of

both | 0,−〉 vacua is equivalent and does not need to be considered separately).
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Then from the loop equations (4.31) and (4.30) we find super-Virasoro constraints

gnZ = −Q

2~
δn,0

(
ξ0 −

~
2

2
∂ξ0

)
Z, ℓnZ =

1

16
δn,0Z, n ≥ 0, (4.33)

where

gn =
∞∑

m=1

mtm∂ξm+n +
∞∑

m=0

ξm∂tm+n +
~
2

2
∂ξ0∂tn + ~

2
n∑

m=1

∂ξm∂tn−m+

−Q~

(
n+

1

2

)
∂ξn − Q

2~
δn,0

(
ξ0 −

~
2

2
∂ξ0

)
,

(4.34)

and

ℓn =
∞∑

m=1

mtm∂tm+n +
∞∑

m=0

(
m+

n

2

)
ξm∂ξm+n +

~
2

2

n∑

m=0

∂tn−m∂tm+

+
~
2

4
n∂ξ0∂ξn +

~
2

2

n−1∑

m=1

m∂ξm−n∂ξm − Q~

2
(n+ 1)∂tn +

1

16
δn,0.

(4.35)

4.3 Wave-function and Ramond-NS super-quantum curves

We define the wave-function in the Ramond-NS sector, representing the expression (4.1),

as the expectation value

χ̂α(x, θ) =
〈〈
Φ

α
~ (x, θ)

〉〉
=

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣Φ
α
~ (x, θ)QN

R

∣∣∣∣ 0,+
〉
. (4.36)

We write down this expression more explicitly (after the replacement θ → η
√
x) in (6.41),

where we analyze the eigenvalue model viewpoint.

One our goal is to find a representation of the Ramond algebra acting on χ̂α(x, θ), as

well as on components χ̂B,α(x) and χ̂F,α(x). To this end we compute expectation values of

operators defined in (4.11). We find

〈〈√
yS(y)Φ

α
~ (x, θ)

〉〉
=

( √
x

y − x
(θ∂x − ∂θ) +

∆α
~
θ(y + x)

√
x(y − x)2

)
χ̂α(x, θ)+ (4.37)

+
1

~2

(
ĥ(y)+

(
V ′

B(y)−
Q~

2y

)(
VF(y)−

1

2
~
2∂ξ0

)
+Q~V ′

F(y)

)
χ̂α(x, θ),

where

ĥ(y) = ~
2

∞∑

n=0

yn
∞∑

m=n+1

(
ξm∂tm−n−1 +mtm∂ξm−n−1

)
, (4.38)

and similarly

〈〈
yT (y)Φ

α
~ (x, θ)

〉〉
=

(
x

y − x
∂x +

y
(
∆α

~
+ 1

2θ∂θ
)

(y − x)2
+

1

16y

)
χ̂α(x, θ)+

+
1

~2

(
f̂(y) +

1

2

(
y
(
V ′

B(y)
)2

+QyV ′′
B (y) + V ′

F(y)

(
VF(y)−

~
2

2
∂ξ0

)))
χ̂α(x, θ),

(4.39)
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where

f̂(y) = ~
2

∞∑

n=0

yn
∞∑

m=n+1

(
mtm∂tm−n−1 +

(
m− n+ 1

2

)
ξm∂ξm−n−1

)
. (4.40)

Computations leading to the above results are straightforward albeit technically involved,

therefore we present them separately in appendices A.1 and A.2. However, at this point

we stress an important subtlety concerning the character of the expansion of the field S(y)

in powers of y. The crucial information about this expansion is encoded in the first term

on the right hand side of (4.37), for which we have

1√
y

( √
x

y − x
(θ∂x − ∂θ) +

∆α
~
θ(y + x)

√
x(y − x)2

)
=

2∆α
~
θ

(y − x)2
+

(
1

y − x
− 1

2x

)
(θ∂x − ∂θ)+

∆α
~
θ

4x2
+ . . .

(4.41)

with the dots denoting terms vanishing for y → x. On one hand, there is a square root

singularity in y for y → 0 or y → ∞, which is a manifestation of the fact that at these

points we inserted Ramond vacua. On the other hand, for y → x the above expression has

(as follows from its right hand side) the second order pole, which means that the operator

inserted at x is identified as a Neveu-Schwarz operator. Furthermore, from the presence

of this second order pole, and since in general the expansion of the supercurrent is of

the form S(y) =
∑

k Gk(x)(y − x)−k−3/2, we deduce that the summation variable k must

take half-integer values, and therefore the modes Gk are relevant for the Neveu-Schwarz

sector. Expanding then (4.37) around y = x and taking advantage of (4.41) we identify

the representation of the Ramond algebra acting on the wave-function

Ĝ 1
2
χ̂α(x, θ) =

〈〈
G 1

2
· Φα

~ (x, θ)
〉〉
= 2∆α

~
θ χ̂α(x, θ),

Ĝ− 1
2
χ̂α(x, θ) =

〈〈
G− 1

2
· Φα

~ (x, θ)
〉〉
= (θ∂x − ∂θ) χ̂α(x, θ), (4.42)

Ĝ− 3
2
χ̂α(x, θ) =

〈〈
G− 3

2
· Φα

~ (x, θ)
〉〉
=

(
∆α

~
θ

4x2
− 1

2x
(θ∂x − ∂θ)

)
χ̂α(x, θ)+

+
x−1/2

~2

((
V ′

B(x)−
Q~

2x

)(
VF(x)−

1

2
~
2∂ξ0

)
+Q~V ′

F(x) + ĥ(x)

)
χ̂α(x, θ).

Similarly, expanding (4.39) around y = x we get in particular

L̂0χ̂α(x, θ) =
〈〈
L0 · Φ

α
~ (x, θ)

〉〉
=

(
∆α

~
+

1

2
θ∂θ

)
χ̂α(x, θ),

L̂−1χ̂α(x, θ) =
〈〈
L−1 · Φ

α
~ (x, θ)

〉〉
= ∂xχ̂α(x, θ), (4.43)

L̂−2χ̂α(x, θ) =
〈〈
L−2 · Φ

α
~ (x, θ)

〉〉
=

( 1

16x2
− 1

x
∂x

)
χ̂α(x, θ)+

+
1

~2

{
1

x
f̂(x) +

1

2

((
V ′

B(x)
)2

+Q~V ′′
B (x) +

1

x
V ′

F(x)

(
VF(x)−

~
2

2
∂ξ0

))}
χ̂α(x, θ).

It then follows that super-quantum curves will take form of Neveu-Schwarz singular

vectors (3.11), expressed in terms of the representation of super-Virasoro generators given

above. We present an explicit example of a super-quantum curve at level 3/2 in section 6.6,

and yet more specific example of the multi-Penner model in section 6.7.
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5 Ramond-R super-quantum curves

In this section we introduce wave-functions and derive super-quantum curves of the

Ramond-R type, which have the structure of Ramond singular vectors, such as those

in (4.8). To define such curves we need to consider wave-functions defined in terms of

expectation values of x-dependent operators R(x) of Ramond type, presented schemati-

cally in (4.2)

χ̂α(x) ∼ 〈NS|R(x) |R〉. (5.1)

It is most natural to define such Ramond fields R(x) by taking advantage of “chiral spin

fields” (or “twist fields”) σ±(x) discussed in [39, 40]. Therefore we first discuss properties

of such fields, and subsequently define the whole correlator (5.1).

In fact, a definition of wave-functions and quantum curves of the Ramond-R type is

much more involved than in previous examples. For this reason we do not discuss mod-

els with generic potentials in the Ramond-R sector, but focus our considerations on the

Penner-like potentials. In principle, an arbitrary potential could be presented as a combi-

nation of various Penner-like potentials, so in this sense our results provide a basic building

block of super-quantum curves corresponding to more general potentials. Furthermore, we

show that the Ramond-R super-quantum curve with the Penner-like potential reduces to

a supersymmetric version of the BPZ equation in conformal field theory, which is a nice

confirmation of our formalism. We rederive these results in section 7 using solely techniques

of eigenvalue models, which proves that both approaches are equivalent.

5.1 Chiral spin fields

As indicated above, to start with we summarize properties of chiral spin fields. These fields

have scaling dimension 1
16 and can be defined by the OPE with the chiral fermion ψ(z)

ψ(z)σ±(w) ∼ e∓
iπ
4

σ∓(w)√
2(z − w)

, (5.2)

and the braiding property

√
w − z σ±(w)ψ(z) = ±i

√
z − wψ(z)σ±(w). (5.3)

It follows from (5.2) that if we define the states |σ± 〉 via an action of the chiral spin fields

on the Neveu-Schwarz vacuum | 0 〉

|σ± 〉 = lim
w→0

σ±(w) | 0 〉 ,

then

ψ0 |σ± 〉 = e∓
iπ
4√
2

|σ∓ 〉 , 〈σ± |ψ0 =
e±

iπ
4√
2

〈σ∓ | .

These relations enable to identify the Ramond vacua as |σ+ 〉 = | 0,+ 〉 and |σ− 〉 =

e
iπ
4 | 0,−〉 . The reason for introducing this phase shift is that the one-point correlation

functions of the σ± fields are equal and thus can be both normalized to be unity

〈
0
∣∣σ±(1)

∣∣σ±
〉
= 1. (5.4)
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In order to determine the x-dependence of the correlators
〈
0
∣∣σ±(x)

∣∣σ±
〉
we use the fact

that with respect to the Virasoro algebra σ±(x) are primary fields of scaling dimension 1
16

[Lm, σ±(x)] = xm
(
x∂x +

1

16
(m+ 1)

)
σ±(x). (5.5)

Therefore, since 〈 0 |L1 = 0 and L1 |σ± 〉 = 0, we get from (5.5):

0 =
〈
0
∣∣L1σ±(x)

∣∣σ±
〉

=
〈
0
∣∣ [L1, σ±(x)]

∣∣σ±
〉

= x

(
x∂x +

1

8

)〈
0
∣∣σ±(x)

∣∣σ±
〉

which, in view of (5.4), yields

〈
0
∣∣σ±(x)

∣∣σ±
〉
= x−1/8. (5.6)

To calculate the one-point correlation functions of the fermion field ψ(x) in the presence

of the spin fields let us consider the functions

s±(z) =
√
z(x− z)

〈
0
∣∣σ∓(x)ψ(z)

∣∣σ±
〉

= ∓i
√
z(z − x)

〈
0
∣∣ψ(z)σ∓(x)

∣∣σ±
〉
. (5.7)

By (5.2), s±(z) is a holomorphic function of z with the only possible singularities (poles)

at 0, x and infinity. Since

s±(z) ∼





e∓
iπ
4
√

x
2

〈
0
∣∣σ∓(x)

∣∣σ∓
〉

for z → 0,

∓ie±
iπ
4
√

x
2

〈
0
∣∣σ±(x)

∣∣σ±
〉

for z → x,

∓i
〈
0
∣∣ψ 1

2
σ∓(x)

∣∣σ±
〉

for z → ∞,

this function is actually a (x-dependent) constant

s±(z) = e∓
iπ
4

√
x

2

〈
0
∣∣σ∓(x)

∣∣σ∓
〉
= e∓

iπ
4

√
x

2

〈
0
∣∣σ±(x)

∣∣σ±
〉
.

In view of (5.6) we obtain the one-point functions of the fermion field

〈
0
∣∣σ∓(x)ψ(z)

∣∣σ±
〉
=

e∓
iπ
4√
2

√
x

z

1√
x− z

x−1/8,

〈
0
∣∣ψ(z)σ∓(x)

∣∣σ±
〉
=

e±
iπ
4√
2

√
x

z

1√
z − x

x−1/8.

(5.8)

Similar technique allows to calculate higher point correlation functions of the fermion fields.

For example, for the two-point functions we get

〈
0
∣∣σ±(x)ψ(w)ψ(z)

∣∣σ±
〉
=

1

2

(√
z(x− w)

w(x− z)
+

√
w(x− z)

z(x− w)

)
x−1/8

w − z
,

〈
0
∣∣ψ(w)σ±(x)ψ(z)

∣∣σ±
〉
= ± i

2

(√
z(w − x)

w(x− z)
−
√

w(x− z)

z(w − x)

)
x−1/8

w − z
,

〈
0
∣∣ψ(w)ψ(z)σ±(x)

∣∣σ±
〉
=

1

2

(√
z(w − x)

w(z − x)
+

√
w(z − x)

z(w − x)

)
x−1/8

w − z
.

(5.9)
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The result for the higher point correlation functions can be summarized by the following

version of the Wick theorem5

〈
0
∣∣σ±(x)

N∏

a=1

eψ(za)θa
∣∣σ±

〉
=
〈
0
∣∣σ+(x)

∣∣σ+
〉
exp

(
−
∑

a<b

〈
σ+(x)ψ(za)ψ(zb)

〉
θaθb

)
,

〈
0
∣∣σ±(x)

N∏

a=1

eψ(za)θa
∣∣σ∓

〉
=∓

N∑

a=1

θa
〈
0
∣∣σ±(x)ψ(za)

∣∣σ∓
〉
× (5.10)

× exp
(
−
∑

a<b

〈
σ+(x)ψ(za)ψ(zb)

〉
θaθb

)
,

where

〈
σ+(x)ψ(za)ψ(zb)

〉
=

〈
0
∣∣σ+(x)ψ(za)ψ(zb)

∣∣σ+
〉

〈
0
∣∣σ+(x)

∣∣σ+
〉 =

√
za(x−zb)
zb(x−za)

+
√

zb(x−za)
za(x−zb)

2(za − zb)
. (5.11)

Modifications appearing in the case when some of the fermions are to the left and some to

the right of the spin field σ±(x) are straightforward.

5.2 Ramond-R wave-function

The key in the current construction is the field denoted schematically R(x) in (5.1). More

precisely, we introduce a pair of such fields, which are Ramond chiral primary fields with

conformal dimension 1
2α(α−Q) + 1

16 ≡ ∆α + 1
16 , and which we define as

Rα
±(x) = Eα(x)σ±(x), (5.12)

with Eα(x) given in (4.12). Furthermore, we introduce a correlator, whose integrated form

represents the Ramond-R eigenvalue model

Ψ±(x, z,θ) = 〈α0 |R
α
~

±(x)Φ
γ
~ (w, η)

N∏

a=1

Φ−
√
β(za, θa) |σ+ 〉 , α+ γ

~
−N

√
β = Q− α0

~
.

(5.13)

Let us clarify the structure of this correlator. First, the insertion of R
α
~

±(x) is analogous

to a determinant-like insertion in a Virasoro (non-supersymmetric) matrix model, and

introduces a dependence of the wave-function on x. Second, Φ
γ
~ (w, η) gives rise to the

Penner-like potential (and it plays a role analogous to more general references states, such

as (2.41) or (3.35) in other models that we considered, which gave rise to more general

potentials). Third, a series of fields Φ−
√
β(za, θa) introduces, as usual, the structure of

the eigenvalue model and gives rise to the Vandermonde-like determinant. To simplify

calculations, we assume the presence of a chiral field at infinity and define

〈α0 | = 〈 0 | e
α0
~
q = lim

z→∞
z−

α0
~
(α0

~
−Q) 〈 0 |Φ

α0
~ (z, θ). (5.14)

5The chiral fermion ψ(z) and the fermionic variable θ anticommute {ψ(z), θ} = 0. We assign the

commutation relation [σ+(x), θ] = 0 between σ+(x) and θ, and then, from the definition (5.2) of the chiral

spin fields, it follows that σ−(x) and θ anticommute {σ−(x), θ} = 0.
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Generalization of the above model to the multi-Penner case can be achieved by replacing

in the correlator (5.13) Φ
γ
~ (w, η) with

∏M
i=1Φ

γi
~ (wi, ηi) with M > 1, and more general

potentials can be introduced by considering yet more general insertions.

Let us now evaluate the correlator (5.13). Using (5.10) and the normal ordering formula

for the bosonic fields E we get its explicit form, which can be presented as

Ψ±(x, z,θ) = Θ±(x) (x− w)
αγ

~2 ∆R,x(z,θ)
β e−

√
β
~

∑N
a=1(VB,x(za)+VF,x(za)θa), (5.15)

where

∆R,x(z,θ) =
∏

a<b

(za − zb) e
−
〈
σ+(x)ψ(za)ψ(zb)

〉
θaθb =

=
∏

a<b

(
za − zb −

(√
za(x− zb)

zb(x− za)
+

√
zb(x− za)

za(x− zb)

)
θaθb
2

) (5.16)

can be viewed as a Ramond version of the Vandermonde determinant, and the analog of

the Penner potential takes form

VB,x(za) + VF,x(za)θa, (5.17)

where

VB,x(z) = α log(x− z) + γ log(z − w),

VF,x(z) = −γ
〈
σ+(x)ψ(w)ψ(z)

〉
η =

γη

2(z − w)

(√
w(x− z)

z(x− w)
+

√
z(x− w)

w(x− z)

)
.

(5.18)

Furthermore, we also denoted

Θ+(x) =
〈
0
∣∣σ+(x)

∣∣σ+
〉
= x−1/8,

Θ−(x) =
γη

~

〈
0
∣∣σ−(x)ψ(w)

∣∣σ+
〉
−
√
β

N∑

a=1

θa
〈
0
∣∣σ−(x)ψ(za)

∣∣σ+
〉
=

=
e−

iπ
4√
2

(
γη

~

√
x√

w(x− w)
−
√
β

N∑

a=1

√
xθa√

za(x− za)

)
x−1/8,

(5.19)

where the explicit forms of Θ+(x) and Θ−(x) are derived in (5.6) and (5.8), respectively.

Introducing yet another fermionic variable ξ we can combine Ψ±(x, z,θ) into a single

super-function

Ψ(x, ξ, z,θ) = Ψ+(x, z,θ) +

√
2

~
e

iπ
4 ξΨ−(x, z,θ). (5.20)

This allows to express the Ramond-R wave-function for the one-Penner potential χR
α(x, ξ)

which we discuss in section 7 in the form

χR
α(x, ξ) = x1/8(x− w)−

αγ

~2 e
− γξη

~2

√
x√

w(x−w)

∫
dNz dNθ Ψ(x, ξ, z,θ). (5.21)
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5.3 Ramond-R super-quantum curves

Analogously as in other cases, super-quantum curves of the Ramond-R type are differential

equations satisfied by integrated form of Ψ±(x, z,θ). In general they can be obtained by

constructing null vectors in the Ramond Verma module. As an example, we consider

correlation functions of the field (cf. the first equation in (4.8))

(
α

~

(
2α

~
−Q

)
G−1 − 2L−1G0

)
· R

α
~

±(x). (5.22)

Such a correlator should vanish for α = ~Q
2 , α = ~

√
β

2 , and α = − ~

2
√
β
. The second and the

third case leads to a pair of the first order differential equations derived below.

We first denote

s±(y) =
√
y
√
y − x 〈α0 |S(y)R

α
~

±(x)Φ
γ
~ (w, η)

N∏

a=1

Φ−
√
β(za, θa) |σ+ 〉 =

= ∓i
√
y
√
x− y 〈α0 |R

α
~

±(x)S(y)Φ
γ
~ (w, η)

N∏

a=1

Φ−
√
β(za, θa) |σ+ 〉 .

(5.23)

Since, as it follows from the mode expansion of the current S(y) around the fields and

states present in the correlation functions s±(y) as well as the commutation formulae (4.16)

and (4.17),

〈α0 |S(y) ∼ y−2,

√
y − xS(y)R

α
~

±(x) ∼
1

y − x
G0 · R

α
~

±(x) =
α
~
−Q/2

y − x

e∓
iπ
4√
2

R
α
~

∓(x),

S(y)Φ
γ
~ (w, η) ∼

(
2∆ γ

~

η

(y − w)2
+

η∂w − ∂η
(y − w)

)
Φ

γ
~ (w, η),

S(y)Φ−
√
β(za, θa) ∼

(
θa

(y−za)2
+

θa∂za−∂θa
(y − za)

)
Φ−

√
β(za, θa) = (θa∂za − ∂θa)

Φ−
√
β(za, θa)

y − za
,

√
y S(y) |σ+ 〉 ∼ 1

y
G0 |σ+ 〉 = −Q

2

e−
iπ
4√

2 y
|σ− 〉 , (5.24)

we see that s±(y) are meromorphic functions, vanishing for y → ∞ and having first order

poles with locations and residues which can be read off from the equations above. s±(y)
can be thus written as a sum of the pole terms and, taking into account the equalities

〈α0 |R
α
~

−(x)Φ
γ
~ (w, η)

N∏

a=1

Φ−
√
β(za, θa) |σ− 〉 = Ψ+(x, z,θ),

〈α0 |R
α
~

+(x)Φ
γ
~ (w, η)

N∏

a=1

Φ−
√
β(za, θa) |σ− 〉 = −iΨ−(x, z,θ),
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which follow from (5.10), we get

〈α0 |S(y)R
α
~

±(x)Φ
γ
~ (w, η)

N∏

a=1

Φ−
√
β(za, θa) |σ+ 〉 =

=
1

2

(
(
2α

~
−Q)

√
x

2y(y − x)3
±Q

√
x

2y3(y − x)

)
e∓

iπ
4 Ψ∓(x, z,θ)+

− i

√
w(x− w)

y(y − x)

(
2∆ γ

~

η

(y − w)2
+

1

y − w

((
1

w
− 1

x− w

)
∆ γ

~

η + η∂w − ∂η

))
Ψ±(x, z,θ)+

− i
N∑

a=1

(θa∂za − ∂θa)

(√
za(x− za)

y(y − x)

Ψ±(x, z,θ)
y − za

)
. (5.25)

Using (5.25) and the definition

S(y)Rα
±(x) =

∑

m∈Z

1

(y − x)m+ 3
2

Gm · Rα
±(x), (5.26)

we get in particular

〈α0 |G0 · R
α
~

±(x)Φ
γ
~ (w, η)

N∏

a=1

Φ−
√
β(za, θa) |σ+ 〉 =

α
~
−Q/2√

2
e∓

iπ
4 Ψ∓(x, z,θ), (5.27)

and

〈α0 |G−1 · R
α
~

±(x)Φ
γ
~ (w, η)

N∏

a=1

Φ−
√
β(za, θa) |σ+ 〉 = −

α
~
−Q/2∓Q

2
√
2x

e∓
iπ
4 Ψ∓(x, z,θ)+

− i

√
w

x(x− w)

(
∆ γ

~

η x

w(x− w)
+ η∂w − ∂η

)
Ψ±(x, z,θ)+

− i
N∑

a=1

(θa∂za − ∂θa)

(√
za(x− za)

x

Ψ±(x, z,θ)
x− za

)
. (5.28)

Defining finally

χ̂R
±,α(x) =

∫
dNz dNθ 〈α0 |R

α
~

±(x)Φ
γ
~ (w, η)

N∏

a=1

Φ−
√
β(za, θa) |σ+ 〉 , (5.29)

and

Ĝmχ̂R
±,α(x) =

∫
dNz dNθ 〈α0 |Gm · R

α
~

±(x)Φ
γ
~ (w, η)

N∏

a=1

Φ−
√
β(za, θa) |σ+ 〉 , (5.30)

and using (5.22), (5.27) and (5.28), we arrive at differential equations for the wave-functions
(

∂

∂x
+

1

8x

)
χ̂R
+,α(x) = −e

iπ
4
α

~

√
2w

x(x− w)

(
∆ γ

~

η x

w(x− w)
+ η∂w − ∂η

)
χ̂R
−,α(x),

(
∂

∂x
+

1

8x
− Qα

~x

)
χ̂R
−,α(x) = e−

iπ
4
α

~

√
2w

x(x− w)

(
∆ γ

~

η x

w(x− w)
+ η∂w − ∂η

)
χ̂R
+,α(x),

(5.31)

which are valid for α = ~

2

√
β or − ~

2
√
β
.
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The equation (5.31) can be further simplified by using the scaling covariance (the

unbroken subgroup of the global SL(2,C) covariance) of the correlation functions (5.13).

Indeed, since

L0 |σ± 〉 = 1

16
|σ± 〉 , 〈α0 |L0 = ∆α0

~

〈α0 | ,

then using commutation relations
[
L0,R

α
±(x)

]
=

(
x∂x +

(
∆α + 1

16

))
Rα
±(x),

[L0,Φ
γ(w, η)] =

(
w∂w +

(
∆γ +

1
2η∂η

))
Φγ(x, η),

[
L0,Φ

−
√
β(za, θa)

]
=

(
∂zaza − 1

2∂θaθa
)
Φ−

√
β(za, θa),

we get

(
x∂x + w∂w + η

2∂η+
N∑

a=1

(
∂zaza − 1

2∂θaθa
))

Ψ±(x, z,θ) =
(
∆α0

~

−∆α
~
−∆ γ

~

− 1
8

)
Ψ±(x, z,θ),

and consequently

(
x∂x + w∂w + 1

2η∂η
)
χ̂R
±,α(x) =

(
∆α0

~

−∆α
~
−∆ γ

~

− 1
8

)
χ̂R
±,α(x). (5.32)

Using (5.32) and defining

χ̂R
±,α(x) = x−

1
8
(
fR
±,α(x)∓ ηgR

±,α(x)
)
, gR

±,α(x) = ∓x
1
8∂ηχ̂

R
±,α(x), (5.33)

we can reduce partial differential equations (5.31) to two pairs of coupled ordinary differ-

ential equations

∂fR
+,α(x)

∂x
= e

iπ
4
α

~

√
2w

x(x− w)
gR
−,α(x), (5.34)

(
∂

∂x
− Qα

~x

)
gR
−,α(x) = e−

iπ
4
α

~

√
2w

x(x− w)

(∆α0
~

−∆α
~
− x∂x

w
+

∆ γ
~

x− w

)
fR
+,α(x),

and

(
∂

∂x
− Qα

~x

)
fR
−,α(x) = e−

iπ
4
α

~

√
2w

x(x− w)
gR
+,α(x), (5.35)

∂gR
+,α(x)

∂x
= e

iπ
4
α

~

√
2w

x(x− w)

(∆α0
~

−∆α
~
− x∂x

w
+

∆ γ
~

x− w

)
fR
−,α(x).

It is straightforward to derive from (5.34) and (5.34) a second order, ordinary differential

equations satisfied by the functions fR
±,α(x) and gR

±,α(x) (we discuss these equations in

section 7). These are Ramond-R super-quantum curve equations we have been after. In the

context of superconformal field theory these equations can be regarded as supersymmetric

versions of BPZ equations, and they were discussed and solved in [39, 41]. The fact that we

reproduce supersymmetric BPZ equations ensures that we have chosen a proper definition

of the Ramond-R wave-functions (and the corresponding eigenvalue model), and it is a nice

test of our formalism.
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6 Ramond-NS super-eigenvalue model and super-quantum curves

In this section we rederive super-quantum curves in the Ramond-NS sector, however in the

formalism of matrix models (or rather eigenvalue models), analogously as in [20, 24]. This

enables us to compare both approaches (i.e. conformal field theory and matrix models)

and confirm that they lead to the same results. However, as an additional result, in this

section we also derive classical curves, which from the matrix model viewpoint would be

interpreted as spectral curves, and which describe equilibrium distribution of eigenvalues.

The interpretation of such classical curves is more natural from matrix model perspective

rather than conformal field theory.

Our starting point is the expression for the partition function (4.27), which we proposed

based on conformal field theory considerations, and which we interpret now as a super-

eigenvalue model with N bosonic and fermionic variables za and θa

Z =

∫
dNz dNθ ∆R(z,θ)

βe−
√
β
~

∑N
a=1 VR(za,θa), (6.1)

with dNz dNθ =
∏N

a=1 dza dθa, the Vandermonde-like determinant given in (4.22)

∆R(z,θ)
β =

∏

1≤a<b≤N

(
za − zb −

1

2
(za + zb)

θaθb√
zazb

)β

, (6.2)

and the potential is given by (4.26)

VR(x, θ) = VB(x) + VF(x)
θ√
x
, VB(x) =

∞∑

n=0

tnx
n, VF(x) =

∞∑

n=0

ξnx
n, (6.3)

with bosonic times and fermionic times tn and ξn, such that {θa, ξn} = 0. In this section

we also use an equivalent notation, with redefined anticommuting variable6

θ = η
√
z. (6.4)

In terms of variables ηa = θa/
√
za defined in (6.4), by dNθ =

∏N
a=1 z

−1/2
a dNη the partition

function (6.1) takes form

Z =

∫
dNz dNη ∆r(z,η)

βe−
√
β
~

∑N
a=1 Vr(za,ηa), (6.5)

where Vr(x, η) = VB(x) + VF(x)η, and

∆r(z,η)
β =

N∏

a=1

z−1/2
a ·

∏

1≤a<b≤N

(
za − zb −

1

2
(za + zb)ηaηb

)β

. (6.6)

6This is the same trick used in [42] to remove the half-integer powers of the variables za in the construction

of Ramond singular vectors.
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We also decompose the partition function as

Z = Z0 +
ξ0
~
Z1,

Z0 ≡ Z
∣∣
ξ0=0

=

∫
dNz dNη ∆r(z,η)

βe
−

√
β
~

∑N
a=1

(
VB(za)+V

(+)
F (za)ηa

)

,

Z1 ≡ ~∂ξ0Z = −
√
β

∫
dNz dNη ∆r(z,η)

β

(
N∑

a=1

ηa

)
e
−

√
β
~

∑N
a=1

(
VB(za)+V

(+)
F (za)ηa

)

,

(6.7)

where

V
(+)
F (x) =

∞∑

n=1

ξnx
n.

The partition functions Z0 and Z1 represent a two-dimensional Ramond vacuum. In this

section the unnormalized expectation value of an operator O is denoted by

〈〈O 〉〉 =

∫
dNz dNηO∆r(z,η)

βe−
√
β
~

∑N
a=1 Vr(za,ηa). (6.8)

6.1 Free field realization

In terms of times in the potential (6.3) the oscillator algebra (4.3) in the Ramond sector

with (3.13) is realized as

q =
1

~
t0, a−n =

1

~
tn, a0 = ~∂t0 , an = ~∂tn ,

ψ0 =
1

~
ξ0 +

~

2
∂ξ0 , ψ−n =

1

~
ξn, ψn = ~∂ξn , n ≥ 1. (6.9)

Here note that the derivatives of the partition function with respect to times can be rep-

resented as the following expectation values

∂tnZ = −
√
β

~

〈〈
N∑

a=1

zna

〉〉
, ∂ξnZ = −

√
β

~

〈〈
N∑

a=1

znaηa

〉〉
. (6.10)

Therefore we can introduce bosonic and fermionic quantum fields, whose negative modes

— normally represented by derivatives with respect of times — can be written as

φ(x) =
1

~

∞∑

n=0

tnx
n −

√
βN log x+

√
β

∞∑

n=1

N∑

a=1

zna
n
x−n =

1

~
VB(x)−

√
β

N∑

a=1

log(x− za),

√
xψ(x)=

1

~
ξ0 −

√
β

2

N∑

a=1

ηa +
1

~

∞∑

n=1

ξnx
n−

√
β

∞∑

n=1

N∑

a=1

znaηax
−m =

1

~
V̂F(x)−

√
β

N∑

a=1

zaηa
x−za

,

(6.11)

where we have defined

V̂F(x) ≡ VF(x)−
√
β~

2

N∑

a=1

ηa = ξ̂0 +
∞∑

n=1

ξnx
n, ξ̂0 ≡ ξ0 −

√
β~

2

N∑

a=1

ηa. (6.12)
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These fields satisfy standard relations

φ(x1)φ(x2) = log(x1 − x2) + . . . , ψ(x1)ψ(x2) =
1

x1 − x2
+ . . . .

The Ramond supercurrent S(x) and the energy-momentum tensor T (x) are constructed as

S(x) ≡
∑

n∈Z
gnx

−n− 3
2 = ψ(x)∂xφ(x) +Q∂xψ(x), (6.13)

T (x) ≡
∑

n∈Z
ℓnx

−n−2 =
1

2
: ∂xφ(x)∂xφ(x) : +

1

2
: ∂xψ(x)ψ(x) : +

1

2
Q∂2

xφ(x), (6.14)

where Q = β−1/2 − β1/2 corresponds to the background charge in N = 1 super-Liouville

field theory. We also write

S(x) = S+(x) + S−(x), S+(x) =
∞∑

n=0

gnx
−n− 3

2 ,

T (x) = T+(x) + T−(x), T+(x) =
∞∑

n=0

ℓnx
−n−2.

(6.15)

The OPEs of these fields are given by

S(x1)S(x2) =
2c

3(x1 − x2)3
+

2

x1 − x2
T (x2) + . . . ,

T (x1)S(x2) =
3

2(x1 − x2)2
S(x2) +

1

x1 − x2
S′(x2) + . . . ,

T (x1)T (x2) =
c

2(x1 − x2)4
+

2

(x1 − x2)2
T (x2) +

1

x1 − x2
T ′(x2) + . . . ,

(6.16)

where the central charge reads

c =
3

2
− 3Q2. (6.17)

The OPEs (6.16) imply that the modes gn and ℓn defined by the expansions (6.13)

and (6.14) satisfy the super-Virasoro algebra (3.2). After some manipulations we also find

√
xS+(x) =

β

2

N∑

a,b=1

(x+ za)ηa
(x− za)(x− zb)

+

√
βQ

2

N∑

a=1

(x+ za)ηa
(x− za)2

−
√
βQ

4x

N∑

a=1

ηa+

− Q

2~x
ξ0 −

√
β

~

N∑

a=1

zaV
′
B(za)ηa + VF(za)

x− za
,

(6.18)

√
xS−(x) =

1

~2
V ′

B(x)V̂F(x) +
Q

~
V ′

F(x)−
Q

2~x
(VF(x)− ξ0)+

−
√
β

~

N∑

a=1

VF(x)− VF(za)

x− za
−

√
β

~

N∑

a=1

(
V ′

B(x)− V ′
B(za)

)
zaηa

x− za
,

(6.19)
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and similarly

xT+(x) =
β

2

N∑

a,b=1

x

(x− za)(x− zb)
+

√
βQ

2

N∑

a=1

x

(x− za)2
− β

4

N∑

a,b=1

zaηaηb
(x− za)2

+

+
β

2

N∑

a,b=1

zazbηaηb
(x− za)(x− zb)2

−
√
β

~

N∑

a=1

za
(
V ′

B(za) + V ′
F(za)ηa

)

x− za
+ (6.20)

−
√
β

2~

N∑

a=1

zaVF(za)ηa
(x− za)2

+
1

16x
,

xT−(x) =
x

2~2
V ′

B(x)
2 +

1

2~2
V ′

F(x)V̂F(x) +
Qx

2~
V ′′

B (x)−
√
β

~

N∑

a=1

xV ′
B(x)− zaV

′
B(za)

x− za
+

−
√
β

2~

N∑

a=1

(
V ′

F(x)− V ′
F(za)

)
zaηa

x− za
−

√
β

2~

N∑

a=1

zaV
(2)
F (x, za)ηa
(x− za)2

, (6.21)

where we denote

V
(2)
F (x, za) ≡ VF(x)− VF(za)− (x− za)V

′
F(za). (6.22)

6.2 Loop equations and super-Virasoro constraints

We can now determine loop equations for the super-eigenvalue model (6.5). As usual, these

equations follow from the invariance of the partition function under changes of integration

variables. The partition function (6.5) is invariant under

za → za +
zaηaδ√
x(x− za)

, ηa → ηa +
δ√

x(x− za)
, (6.23)

with a fermionic constant δ. We see that this invariance leads to the loop equation (4.30):

∫
dNz dNη

N∑

a=1

(
ηa∂zaza − ∂ηa

)[ 1

x− za
∆r(z,η)

βe−
√
β
~

∑N
a=1 V (za,ηa)

]
= 0,

which can be written as

〈〈S+(x) 〉〉 = − Q

2~x3/2

(
ξ0 −

~
2

2
∂ξ0

)
Z, (6.24)

where the supercurrent S+(x) is given by (6.18). The partition function (6.5) is also

invariant under

za → za +
zaǫ

x(x− za)
, ηa → ηa +

zaηaǫ

2x(x− za)2
, (6.25)

with an infinitesimal parameter ǫ. We see that this leads to another loop equation (4.31):

∫
dNz dNη

N∑

a=1

(
∂za − ∂ηa

ηa
2(x− za)

)[
za

x− za
∆r(z,η)

βe−
√
β
~

∑N
a=1 V (za,ηa)

]
= 0,
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which can be written as

〈〈T+(x) 〉〉 =
1

16x2
Z, (6.26)

where the energy-momentum tensor T+(x) is given by (6.20). Therefore by the mode expan-

sion and the realizations (6.10), these loop equations give super-Virasoro constraints (4.33):

gnZ = −Q

2~
δn,0

(
ξ0 −

~
2

2
∂ξ0

)
Z, ℓnZ =

1

16
δn,0Z, n ≥ 0. (6.27)

Note that from the constraints (4.33), by the decomposition (6.7) of the partition

function we obtain

ĝnZ0 −
ξ0
~
ĝnZ1 ≡ gnZ =

(
Q

4
Z1 −

Q

2~
ξ0Z0

)
δn,0,

ℓ̂nZ0 +
ξ0
~
ℓ̂nZ1 ≡ ℓnZ =

1

16

(
Z0 +

ξ0
~
Z1

)
δn,0,

(6.28)

where ĝn and ℓ̂n are abstract operators acting on Z0 and Z1. In particular, the constraints

ĝ0Z0 =
Q

4
Z1, ĝ0Z1 =

Q

2
Z0, ℓ̂0Z0 =

1

16
Z0, ℓ̂0Z1 =

1

16
Z1, (6.29)

are consistent with the relation ĝ20 = ℓ̂0 − c/24 in the super-Virasoro algebra.

Also note, that while right hand sides of equations (6.24) and (6.26) are non-zero

(and so might seem non-standard), this is only a consequence of our conventions. If the

modes L0 and G0 would not be included in the definition of respectively T+(x) and S+(x),

then (6.24) and (6.26) would have zero on the right hand side.

6.3 Super-spectral curve

In the analysis of matrix or eigenvalue models, a spectral curve is an algebraic curve that

encodes equilibrium distribution of eigenvalues. In case of super-eigenvalue models one finds

a supersymmetric spectral curve, defined in terms of supersymmetric algebraic equations.

Such super-spectral curves in the Neveu-Schwarz sector have been derived in [24]. In

this section we derive an analogous super-spectral curve in the Ramond sector, for the

super-eigenvalue model defined by (6.1). To this end we analyze the loop equations (6.24)

and (6.26) in the large N limit

N → ∞, ~ → 0, with µ ≡ β
1
2~N = const. (6.30)

We also use the notation

~̂ ≡
(
β

1
2 − β− 1

2
)
~ = −Q~. (6.31)

By defining

YB(x; ~̂) ≡ YB(x) = lim
N→∞
~̂ fixed

~

Z
〈〈∂xφ(x) 〉〉 , YF(x; ~̂) ≡ YF(x) = lim

N→∞
~̂ fixed

~

Z
〈〈ψ(x) 〉〉 , (6.32)
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the loop equations (6.24) and (6.26) yield

√
xYB(x)YF(x)− V ′

B(x)ṼF(x) + ~̂

(
V ′

F(x)−
1

2x
ṼF(x)−

√
xY ′

F(x)

)
− h(0)(x) = 0, (6.33)

and

xYB(x)
2+xY ′

F(x)YF(x)−xV ′
B(x)

2−V ′
F(x)ṼF(x)+ ~̂x

(
V ′′

B (x)−Y ′
B(x)

)
−2f (0)(x) = 0, (6.34)

respectively. Here

ṼF(x) ≡ ṼF(x; ~) = VF(x) +
1

2
lim

N→∞
~̂ fixed

√
β~

Z

〈〈
N∑

a=1

ηa

〉〉
= VF(x)−

1

2
lim

N→∞
~̂ fixed

~
Z1

Z0
, (6.35)

and

h(0)(x) ≡ h(0)(x; ~̂) =

= − lim
N→∞
~̂ fixed

√
β~

Z

〈〈
N∑

a=1

(
VF(x)− VF(za)

x− za
+

(
xV ′

B(x)− zaV
′
B(za)

)
ηa

x− za

) 〉〉
, (6.36)

f (0)(x) ≡ f (0)(x; ~̂) =

= − lim
N→∞
~̂ fixed

√
β~

Z

〈〈
N∑

a=1

(
xV ′

B(x)− zaV
′
B(za)

x− za
+

(
xV ′

F(x)− zaV
′
F(za)

)
ηa

2(x− za)
+

+
zaV

(2)
F (x, za)ηa

2(x− za)2

) 〉〉
, (6.37)

where V
(2)
F (x, za) is defined in (6.22). For polynomial potentials, h(0)(x) and f (0)(x) are

polynomials of x. For ~̂ = 0, or in particular for β = 1, denoting

yB(x) = YB(x; 0), yF(x) = YF(x; 0), (6.38)

the loop equations (6.33) and (6.34) in the large N limit yield a super-spectral curve

{
AF(x, yB|yF) ≡ yB(x)yF(x) +G(x) = 0,

AB(x, yB|yF) ≡ yB(x)
2 + y′F(x)yF(x) + 2L(x) = 0,

(6.39)

where

G(x) = −x−1/2V ′
B(x)VF(x)− x−1/2h(0)(x; 0),

L(x) = −1

2
V ′

B(x)
2 − 1

2
x−1V ′

F(x)ṼF(x; 0)− x−1f (0)(x; 0).

The equation (6.39) is a supersymmetric algebraic equation, which defines a supersym-

metric algebraic curve. In matrix model interpretation this curve encodes equilibrium

distribution of eigenvalues. We refer to this curve as the super-spectral curve.
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6.4 Wave-function and deformed currents

The quantum curves that we are after are supposed to quantize the super-spectral

curve (6.39). They should take form of differential equations that annihilate the wave-

function, which in the operator formalism we introduced in (4.36). More explicitly, in the

eigenvalue representation this wave-function takes form

χ̂α(x,
√
xη) =

〈〈
e

α
~

(
φ(x)+

√
xψ(x)η

) 〉〉
, (6.40)

where η is a fermionic variable with {η, ηa} = {η, ξn} = 0, and α is a bosonic parameter

that we refer to as the momentum. Using expressions (6.11) we can further write

χ̂α(x,
√
xη) = e

α
~2

VB(x)+
α
~2

VF(x)η
〈〈
χins
α (x,

√
xη)

〉〉
≡ e

α
~2

VB(x)+
α
~2

VF(x)ηχα(x,
√
xη), (6.41)

where we have defined χα(x,
√
xη) as the unnormalized expectation value of the operator

χins
α (x,

√
xη) = e

−
√
β
~

∑N
a=1 α

(
log(x−za)− 1

2
ηηa− za

x−za
ηηa

)

=

=

(
1 +

√
β

~
αη

N∑

a=1

(
1

2
ηa +

zaηa
x− za

)) N∏

a=1

(x− za)
−

√
β
~

α. (6.42)

The wave-function can be decomposed into bosonic and fermionic components as

χ̂α(x,
√
xη) = χ̂B,α(x) +

√
xχ̂F,α(x)η. (6.43)

By analogy with a derivation of loop equations for the partition function, in this section

we derive loop equations for the wave-function χα(x,
√
xη). This analysis is equivalent to

the operator formalism presented in section 4. To proceed we regard the wave-function as

an eigenvalue model with deformed potentials

ṼB(y;x) = VB(y) + α log(x− y),

ṼF(y;x, η) = VF(y)−
αη

2
− αyη

x− y
,

(6.44)

which replace VB(y) and VF(y) in the supercurrent S(y) and the energy-momentum tensor

T (y). Note that the fermionic time ξ0 is also deformed as ξ0 → ξ̃0 ≡ ξ0−αη/2. From (6.18)

and (6.19) we find the deformed super-current

S(y;x, η) = S+(y;x, η) + S−(y;x, η),

where

√
yS+(y;x, η) =

α
√
β

~

N∑

a=1

zaηa
(x−za)(y−za)

+
Q
√
β

2

N∑

a=1

(y+za)ηa
(y−za)2

+
β

2

N∑

a,b=1

(y + za)ηa
(y−za)(y−zb)

+

+
αη

√
β

~

N∑

a=1

za
(x− za)(y − za)

+
αη

√
β

2~

N∑

a=1

1

y − za
+

−
√
β

~

N∑

a=1

yV ′
B(y)ηa + VF(y)

y − za
− h(y)

~2
− Q

2~y

(
ξ̃0 +

√
β~

2

N∑

a=1

ηa

)
, (6.45)
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and

√
yS−(y;x, η) =

2∆α
~
xη

(y − x)2
+

1

y − x

[
xη

(
∂x +

α

~2
V ′

B(y)

)
−
(
∂η −

α

~2
VF(y)

)
+∆α

~
η

]
+

+
1

~2

[
V ′

B(y)

(
VF(y) +

αη

2
+

√
β~

2

N∑

a=1

ηa

)
+Q~V ′

F(y)+

− Q~

2y

(
VF(y)− ξ0

)
+ h(y)

]
. (6.46)

Here

∆α
~
=

α

2~

(
α

~
−Q

)
, (6.47)

and

h(y) = −
√
β~

N∑

a=1

(
VF(y)− VF(za)

y − za
+

(
yV ′

B(y)− zaV
′
B(za)

)
ηa

y − za

)
. (6.48)

As the operator acting on the partition function Z or the wave-function χα(x,
√
xη), h(y)

is equivalently represented by the partial differential operator

ĥ(y) = ~
2

∞∑

n=0

yn
∞∑

m=n+1

(
ξm∂tm−n−1 +mtm∂ξm−n−1

)
, (6.49)

which we found independently in (4.38). In the large N limit (6.30), the expectation value

of this operator reproduces h(0)(y) in (6.36)

lim
N→∞
~̂ fixed

1

Z
〈〈h(y) 〉〉 = lim

N→∞
~̂ fixed

1

Z
ĥ(y)Z = h(0)(y). (6.50)

By considering deformed potentials (6.44), instead of the loop equation (6.24) for the

partition function Z we now obtain a loop equation for χα(x,
√
xη)

〈〈
S+(y;x, η)χ

ins
α (x,

√
xη)

〉〉
= − Q

2~y3/2

(
ξ0 −

αη

2
− ~

2

2
∂ξ0

)
χα(x,

√
xη). (6.51)

Similarly, from (6.20) and (6.21) we find the deformed energy-momentum tensor

T (y;x, η) = T+(y;x, η) + T−(y;x, η),

where

yT+(y;x, η) =
α
√
β

~

N∑

a=1

za
(x−za)(y−za)

+
Q
√
β

2

N∑

a=1

y

(y−za)2
+

β

2

N∑

a,b=1

y

(y−za)(y−zb)
+

− β

4

N∑

a,b=1

zaηaηb
(y−za)2

+
β

2

N∑

a,b=1

zazbηaηb
(y−za)(y−zb)2

+
αη

√
β

~

N∑

a=1

xzaηa
(x−za)2(y−za)

+

+
αη

√
β

2~

N∑

a=1

z2aηa
(x− za)(y − za)2

+
αη

√
β

4~

N∑

a=1

zaηa
(y − za)2

+

−
√
β

2~

N∑

a=1

2yV ′
B(y) + yV ′

F(y)ηa
y − za

−
√
β

2~

N∑

a=1

VF(y)zaηa
(y − za)2

− f(y)

~2
+

1

16y
, (6.52)
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and

yT−(y;x, η) =
1

2(y−x)2

[
2y∆α

~
+ xη

(
∂η−

α

~2
VF(y)

)]
+

1

y−x

[
x∂x +

αy

~2
V ′

B(y)−
αηy

2~2
V ′

F(y)

]

+
1

~2

[
y

2
V ′

B(y)
2 +

1

2
V ′

F(y)

(
VF(y)−

αη

2
+

√
β~

2

N∑

a=1

ηa

)
+

1

2
Q~yV ′′

B (y)+f(y)

]
.

(6.53)

Here

f(y) = −
√
β~

N∑

a=1

(
yV ′

B(y)− zaV
′
B(za)

y − za
+

(
yV ′

F(y)− zaV
′
F(za)

)
ηa

2(y − za)
+

V
(2)
F (x, za)zaηa
2(y − za)2

)
,

(6.54)

where V
(2)
F (x, za) is defined in (6.22). We can also represent f(y) as a partial differential

operator acting on the partition function Z or the wave-function χα(x,
√
xη)

f̂(y) = ~
2

∞∑

n=0

yn
∞∑

m=n+1

(
mtm∂tm−n−1 +

(
m− n+ 1

2

)
ξm∂ξm−n−1

)
, (6.55)

and in the large N limit (6.30) we reproduce f (0)(y) in (6.37)

lim
N→∞
~̂ fixed

1

Z
〈〈 f(y) 〉〉 = lim

N→∞
~̂ fixed

1

Z
f̂(y)Z = f (0)(y). (6.56)

Using the deformed potentials, instead of the loop equation (6.26) for the partition function

Z we obtain now a loop equation for χα(x,
√
xη)

〈〈
T+(y;x, η)χ

ins
α (x,

√
xη)

〉〉
=

1

16y2
χα(x,

√
xη). (6.57)

6.5 Building blocks of super-quantum curves

We introduce now a representation of super-Virasoro operators Gn+ 1
2
and Ln, acting on

the wave-function χα(x,
√
xη) by

Gn+ 1
2
χα(x,

√
xη)=

∮

y=x

dy

2πi
(y − x)n+1S(y;x, η)χα(x,

√
xη) =

=

∮

y=x

dy

2πi
(y−x)n+1

[
S−(y;x, η)−

Q

2~y3/2

(
ξ0−

αη

2
− ~

2

2
∂ξ0

)]
χα(x,

√
xη),

Lnχα(x,
√
xη)=

∮

y=x

dy

2πi
(y − x)n+1T (y;x, η)χα(x,

√
xη) =

=

∮

y=x

dy

2πi
(y − x)n+1

[
T−(y;x, η) +

1

16y2

]
χα(x,

√
xη),
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where we have used the loop equations (6.51) and (6.57). From (6.46) and (6.53) we obtain

for example

G− 1
2
= x1/2η

(
∂x +

α

~2
V ′

B(x)

)
− x−1/2

(
∂η −

α

~2
VF(x)

)
,

G− 3
2
=

x−3/2

4
∆α

~
η − x−3/2

2

(
xη

(
∂x +

α

~2
V ′

B(x)

)
−
(
∂η −

α

~2
VF(x)

))
+

+
x−1/2

~2

[
V ′

B(x)

(
VF(x) +

α

2
η − ~

2

2
∂ξ0

)
+
(
Q~+ α

)
V ′

F(x)+

+ αxηV ′′
B (x)−

Q~

2x

(
VF(x)−

α

2
η − ~

2

2
∂ξ0

)
+ ĥ(x)

]
,

(6.58)

and

L−1 = ∂x +
α

~2
V ′

B(x)−
αη

~2
V ′

F(x)−
x−1η

2

(
∂η −

α

~2
VF(x)

)
,

L−2 =
x−2η

2

(
∂η −

α

~2
VF(x)

)
− x−1∂x +

1

~2

[
1

2
V ′

B(x)
2 +

x−1

2
V ′

F(x)

(
VF(x)−

~
2

2
∂ξ0

)
+

+

(
Q~

2
+ α

)
V ′′

B (x) +
3x−1αη

4
V ′

F(x)−
3αη

4
V ′′

F (x) + x−1f̂(x)

]
+

1

16x2
. (6.59)

For the wave-function χ̂α(x,
√
xη) with the prefactor in (6.41) we define super-Virasoro

operators Ĝn+ 1
2
and L̂n analogously

Ĝn+ 1
2
χ̂α(x,

√
xη) =

∮

y=x

dy

2πi
(y − x)n+1

[
S−(y;x, η)−

Q

2~y3/2

(
ξ0 −

~
2

2
∂ξ0

)]
χ̂α(x,

√
xη),

L̂nχ̂α(x,
√
xη) =

∮

y=x

dy

2πi
(y − x)n+1

[
T−(y;x, η) +

1

16y2

]
χ̂α(x,

√
xη). (6.60)

For example, analogously to (6.58) and (6.59) we obtain

Ĝ− 1
2
= x1/2η∂x − x−1/2∂η (= θ∂x − ∂θ) ,

Ĝ− 3
2
=

x−3/2

4
∆α

~
η − x−1/2

2
η∂x +

x−3/2

2
∂η+

+
x−1/2

~2

[(
V ′

B(x)−
Q~

2x

)(
VF(x)−

~
2

2
∂ξ0

)
+Q~V ′

F(x) + ĥ(x)

]
,

(6.61)

and

L̂−1 = ∂x −
x−1η

2
∂η (= ∂x) ,

L̂−2 = −x−1∂x +
x−2η

2
∂η +

1

~2

[
1

2
V ′

B(x)
2 +

x−1

2
V ′

F(x)

(
VF(x)−

~
2

2
∂ξ0

)
+

+
Q~

2
V ′′

B (x) + x−1f̂(x)

]
+

1

16x2
,

(6.62)

where in the second equalities of Ĝ− 1
2
and L̂−1 we changed variables as in (6.4). Operators

found above agree with those identified in section 4.3 in the operator formalism.
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Furthermore, we can transform (6.61) and (6.62) into operators Ĝn+ 1
2
and L̂n acting

on the bosonic and fermionic components of the wave-function (6.43),

Ĝn+ 1
2
χ̂B,α(x)−

√
xηĜn+ 1

2
χ̂F,α(x) ≡ Ĝn+ 1

2
χ̂α(x,

√
xη),

L̂nχ̂B,α(x) +
√
xηL̂nχ̂F,α(x) ≡ L̂nχ̂α(x,

√
xη).

(6.63)

We find

Ĝ− 1
2
χ̂B,α(x) = χ̂F,α(x), Ĝ− 1

2
χ̂F,α(x) = ∂xχ̂B,α(x),

Ĝ− 3
2
χ̂B,α(x) = −x−1

2
χ̂F,α(x) + Ĝχ̂B,α(x),

Ĝ− 3
2
χ̂F,α(x) =

x−2

4
∆α

~
χ̂B,α(x)−

x−1

2
∂xχ̂B,α(x) + Ĝχ̂F,α(x),

(6.64)

and

L̂−1χ̂B,α(x) = ∂xχ̂B,α(x), L̂−1χ̂F,α(x) = ∂xχ̂F,α(x),

L̂−2χ̂B,α(x) =
(
−x−1∂x + L̂

)
χ̂B,α(x),

L̂−2χ̂F,α(x) =
(
−x−1∂x + L̂

)
χ̂F,α(x),

(6.65)

where

Ĝ =
x−1/2

~2

[(
V ′

B(x)−
Q~

2x

)(
VF(x)−

~
2

2
∂ξ0

)
+Q~V ′

F(x) + ĥ(x)

]
,

L̂ =
1

~2

[
1

2
V ′

B(x)
2 +

x−1

2
V ′

F(x)

(
VF(x)−

~
2

2
∂ξ0

)
+

Q~

2
V ′′

B (x) + x−1f̂(x)

]
+

1

16x2
.

6.6 Super-quantum curves at level 3/2

In order to identify super-quantum curves we consider the loop equation
〈〈 (
c1
√
xS+(x;x, η) + c2ηxT+(x;x, η)

)
χins
α (x,

√
xη)

〉〉
=

=

(
−c1Q

2~x

(
ξ0 −

αη

2
− ~

2

2
∂ξ0

)
+

c2
16x

)
χα(x,

√
xη),

(6.66)

and analyze for which values of c1 and c2 it can be written as a differential equation. We

find that it happens only for c1 = −α2/~2 and c2 = 2α2/~2, and only for special values of

the momentum α

α = 0, β
1
2~, or − β− 1

2~. (6.67)

Indeed, for this choice of parameters, the loop equation (6.66) can be written as a differential

equation
(
∂x∂η +

α

~2
V ′

B(x)∂η −
α

~2
VF(x)∂x −

α2

2~2
V ′

B(x)∂ξ0 −
αQ

2~x

(
∂η −

α

2
∂ξ0

)
+

α2

~4
ĥ(x)+

+η

(
x∂2

x +
3α2

2~2
∂x +

2α

~2
xV ′

B(x)∂x −
α

~2
V ′

F(x)
(
∂η −

α

2
∂ξ0

)
− 2α2

~4
f̂(x)

))
χα(x,

√
xη) = 0.

(6.68)
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Furthermore, using the relations in appendix A.3, we find that this equation, for the

momenta (6.67), can be written in terms of operators (6.61) and (6.62) as follows

(
−∂x

(
1√
x
∂η

)
− α2

~2
Ĝ− 3

2
−√

xη

(
∂2
x −

2α2

~2
L̂−2

))
χ̂α(x,

√
xη) = 0. (6.69)

This is the super-quantum curve at level 3/2. As expected, by defini-

tions (6.32), (6.38), (6.40), and relations (6.50) and (6.56), in the large N limit (6.30) with

β = 1 this equation reduces to the super-spectral curve AF(x, yB|yF) =
√
xηAB(x, yB|yF)

in (6.39). On the other hand, in terms of (6.64) and (6.65), this super-quantum curve can

be rewritten in the form of equations for the bosonic component χ̂B,α(x) defined in (6.43)

(
L̂−1Ĝ− 1

2
− α2

~2
Ĝ− 3

2

)
χ̂B,α(x) = 0,

(
L̂2−1 −

2α2

~2
L̂−2 +

α2

~2
Ĝ− 3

2
Ĝ− 1

2

)
χ̂B,α(x) = 0.

(6.70)

These equations indeed take form of Neveu-Schwarz singular vectors at level 3/2, whose

universal form we derived in (3.11). Quantum curves at higher levels can be found analo-

gously. However, as follows from the operator formalism discussed in section 4, it is clear

that higher level quantum curves will also take form of Neveu-Schwarz singular vectors,

expressed in terms of super-Virasoro generators found above.

6.7 Multi-Penner Ramond-NS super-quantum curves

To provide an explicit example, we specialize now our general considerations to the case of

a supersymmetric multi-Penner model. In the case of the Ramond-NS model it is natural

to consider the multi-Penner potential of the form

Vr(x, η) = VB(x) + VF(x)η =

M∑

i=1

αi log(x− xi −
1

2
(x+ xi)ηηi)+ξ0η, (6.71)

so that

VB(x) =
M∑

i=1

αi log(x− xi), VF(x) = ξ0 +
1

2

M∑

i=1

αiηi
x+ xi
x− xi

. (6.72)

The operators ĥ(x) and f̂(x) introduced in (4.38) and (4.40), in the eigenvalue model can

be represented via functions h(x) and f(x) given in (6.48) and (6.54). For the multi-Penner

potential (6.71) these functions take form

h(x) = ~
√
β

M∑

i=1

N∑

a=1

αixi(ηa + ηi)

(x− xi)(za − xi)
,

f(x) = ~
√
β

M∑

i=1

N∑

a=1

(
αixi

(x− xi)(za − xi)
− αixiηizaηa

(x− xi)(za − xi)2
− αix

2
i ηiηa

2(x− xi)2(za − xi)

)
.
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These functions can be represented by the action of operators expressed only in terms

of parameters of the potential (i.e. xi, ηi, and ξ0), by taking advantage of the following

identifications

∂xi =

√
β

~

∑

i,a

(
αi

za − xi
− αiηizaηa

(za − xi)2

)
, ∂ηi = −

√
β

~

∑

i,a

αiηa
2

za + xi
za − xi

, ∂ξ0 = −
√
β

~

∑

a

ηa,

so that we find

ĥ(x) = ~
2

M∑

i=1

1

x− xi
(xiηi∂xi − ∂ηi) +

~
2

2
V ′

B(x)∂ξ0 ,

f̂(x) = ~
2

M∑

i=1

(
xi

x− xi
∂xi +

xiηi
2(x− xi)2

∂ηi

)
+

~
2

4
V ′

F(x)∂ξ0 .

(6.73)

These formulas can be equivalently expressed in terms of variables x and θ, through ∂η →√
x∂θ and ∂x → θ

2x∂θ + ∂x.

Using (6.73), we can now write the operators Ĝ−3/2 in (6.61) and L̂−2 in (6.62) as

Ĝ−3/2 =
∆α

~
η

4x3/2
− η

2x1/2
∂x +

1

2x3/2
∂η +

1

~2x1/2

[(
V ′

B(x)−
Q~

2x

)
VF(x)+

+Q~V ′
F(x) + ~

2
M∑

i=1

1

x− xi
(xiηi∂xi − ∂ηi) +

Q~
3

4x
∂ξ0

]
,

L̂−2 = −1

x
∂x +

η

2x2
∂η +

1

~2

[
1

2
V ′

B(x)
2 +

1

2x
V ′

F(x)VF(x)+

+
Q~

2
V ′′

B (x) +
1

~2x

M∑

i=1

(
xi

x− xi
∂xi +

xiηi
2(x− xi)2

∂ηi

)]
+

1

16x2
.

(6.74)

It is also convenient to introduce the following normalization factor

C = exp

(
− 1

2~2

∑

i 6=j

αiαj log(xi − xj −
1

2
(xi + xj)ηiηj) +

1

~2

∑

i

αiηiξ0

)
, (6.75)

and to define a modified wave-function χ̃α = C−1χ̂α, its bosonic and fermionic components

χ̃B,α(x) = C−1χ̂B,α(x) and χ̃F,α(x) = C−1χ̂F,α(x), as well as the corresponding modified

operators G̃−r = C−1Ĝ−rC and L̃−n = C−1L̂−nC. For r = 3/2 and n = 2 these operators

take form

G̃−3/2 =
∆α

~
η

4x3/2
− η

2x1/2
∂x +

1

2x3/2
∂η +

Q~

4x3/2

(
∂ξ0 −

2

~2
ξ0

)
+

+
1

x1/2

M∑

i=1

(∆αi
~

ηi(x+ xi)

(x− xi)2
+

1

x− xi
(xiηi∂xi − ∂ηi)

)
, (6.76)

L̃−2 = −1

x
∂x +

η

2x2
∂η +

1

16x2
+

M∑

i=1

( ∆αi
~

(x− xi)2
+

xi
x(x− xi)

∂xi +
xiηi

2x(x− xi)2
∂ηi

)
,
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where ∆α = α
2 (α−Q). Accordingly, for operators Ĝ and L̂ in (6.64) and (6.65) we define

G̃ = C−1ĜC and L̃ = C−1L̂C, which take form

G̃ =
1

x1/2

M∑

i=1

(∆αi
~

ηi(x+ xi)

(x− xi)2
+

1

x− xi
(xiηi∂xi − ∂ηi)

)
+

Q~

4x3/2

(
∂ξ0 −

2

~2
ξ0

)
,

L̃ =
M∑

i=1

( ∆αi
~

(x− xi)2
+

xi
x(x− xi)

∂xi +
xiηi

2x(x− xi)2
∂ηi

)
+

1

16x2
.

(6.77)

Finally, by (6.70) we can write down Ramond-NS multi-Penner quantum curve equations

at level 3/2 (for α = β
1
2~ or −β− 1

2~) in terms of the components χ̃B,α(x) = C−1χ̂B,α(x)

and χ̃F,α(x) = C−1χ̂F,α(x),

∂xχ̃F,α +
α2

2~2x
χ̃F,α − α2

~2
G̃χ̃B,α = 0,

∂2
xχ̃B,α +

3α2

2~2x
∂xχ̃B,α − 2α2

~2
L̃χ̃B,α +

α2∆α
~

4x2~2
χ̃F,α +

α2

~2
G̃χ̃F,α = 0.

(6.78)

In the particular case of M = 1, when certain condition on the parameters α and

α1 is satisfied, one can rewrite the operators (6.76) in the form which does not contain

time derivatives. To this aim equations (4.33) for n = 0 are used. Those equations can

be modified by taking account of the x-deformation of the potential (6.44), the prefactor

appearing in (6.41) and C, as well as excluding the right hand side of the equations (4.33)

for n = 0 (which appears at both sides of those). In this manner we obtain following

equations (for any value of M):

l̃0χ̃α = 0, g̃0χ̃α = 0, (6.79)

where

l̃0 =− x∂x −
M∑

i=1

xi∂xi −∆α
~
−

M∑

i=1

∆αi
~

+∆α∞
~

, (6.80)

g̃0 = ∂η +
M∑

i=1

∂ηi − xη∂x −
M∑

i=1

xiηi∂xi −∆α
~
η −

M∑

i=1

∆αi
~

ηi −
α∞
2~2

(
α̃− ~

√
β
∑

a

ηa

)
,

and we used additional notation α∞ =
√
β~N+Q~−α−∑M

i=1 αi and α̃ = αη+
∑M

i=1 αiηi.

Imposing the constraint α∞ = 0 and M = 1, the modification of operators (6.76), when

acting on the wave function χ̃α, takes form:

x3/2G−3/2 =− 3x+ x1
4(x− x1)

∆α
~
η +

2xx1
(x− x1)2

∆α1
~

η1 +
3x− x1
2(x− x1)

(∂η − xη∂x)+

+
Q

2~

(
~
2

2
∂ξ0 − ξ0

)
,

x2L−2 =

(
x2x1η1η

2(x− x1)2
− (2x− x1)x

x− x1

)
∂x +

(
xx1η1η

2(x− x1)2
− x

x− x1

)
∆α

~
+

− xx1η1
2(x− x1)2

∂η +
1

2
η∂η +

xx1
(x− x1)2

∆α1
~

+
1

16
.

(6.81)
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We can expand the wave function with respect to the ξ0 as χ̃α = χ̃α,++χ̃α,−ξ0. Then, these
operators, when acting on components χ̃α,+ and χ̃α,−, give rise to the level 3/2 quantum

curves without time derivatives, constructed via (6.70) — one should only be careful to

commute first the operator Ĝ−3/2 to the right of Ĝ−1/2, so that it only acts directly on the

wave function.

7 Ramond-R super-eigenvalue model and super-quantum curves

In this section we reconsider the Ramond-R sector and derive super-quantum curves using

the formalism of eigenvalue models. Similarly as in section 5, for brevity we consider a

particular case of supersymmetric Penner potential. As the starting point we consider the

super-eigenvalue model found in (5.15). We stress that the form of this eigenvalue model

is not obvious to postulate a priori — so the first advantage of the CFT approach is that

this model can be identified at all. In this section we find corresponding quantum curves

using eigenvalue model techniques. We confirm that they have the structure of Ramond

singular vectors and show that they agree with relevant supersymmetric BPZ equations in

the Ramond sector.

The Ramond-R wave-function for the one-Penner potential identified in (5.21) can be

written in the form of eigenvalue integral as follows

χR
α(x, ξ) =

∫
dNz dNθ ∆R,x(z,θ)

βe−
√
β
~

∑N
a=1 VR,x,ξ(za,θa), (7.1)

where

∆R,x(z,θ) =
∏

1≤a<b≤N

(
za − zb −

(√
za(x− zb)

zb(x− za)
+

√
zb(x− za)

za(x− zb)

)
θaθb
2

)
, (7.2)

and

VR,x,ξ(z, θ) = VB,x(z) + VF,x,ξ(z)θ,

VB,x(z) = α log(x− z) + γ log(z − w),

VF,x,ξ(z) =
γη

2(z − w)

(√
w(x− z)

z(x− w)
+

√
z(x− w)

w(x− z)

)
+

√
xξ√

z(x− z)
.

(7.3)

By reference to (5.25) we consider the following shift invariance with a fermionic constant

δ of the wave-function (7.1) as

za → za +
θaδ

√
za(x− za)

y − za
, θa → θa +

δ
√
za(x− za)

y − za
, (7.4)

and obtain a loop equation

0 =

∫
dNz dNθ

N∑

a=1

(θa∂za − ∂θa)

(√
za(x− za)

y − za
∆R,x(z,θ)

βe−
√
β
~

∑N
a=1 VR,x,ξ(za,θa)

)
. (7.5)
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Using the notation

〈〈O 〉〉 ξ =
∫
dNz dNθ O∆R,x(z,θ)

βe−
√
β
~

∑N
a=1 VR,x,ξ(za,θa) (7.6)

for an operator O, the loop equation (7.5) at y = x can be written as

〈〈 S+(x) 〉〉 ξ = 0, (7.7)

where

S+(x) =

(
1− β

2
+

α
√
β

~

) N∑

a=1

xθa√
za(x− za)3/2

+
γ
√
β

~

N∑

a=1

wθa

(w − za)
√

za(x− za)
+

+
β

2

N∑

a=1

xf(x, z,θ)

x− za
− (α+ γ)

√
β

~
f(x, z,θ)−

√
βξ

~

N∑

a=1

√
x

x− za
+

+
γ
√
βη

2~

(√
w

x− w

N∑

a=1

1

w − za
+

√
x− w

w

N∑

a=1

za
(w − za)(x− za)

)
. (7.8)

Here we introduced

f(x, z,θ) =
N∑

a=1

θa√
za(x− za)

, (7.9)

and note that f(x, z,θ)2 = 0. The loop equation (7.7) is equivalent to

〈〈 S1,+(x) 〉〉 ξ=0 = 〈〈 S2,+(x) 〉〉 ξ=0 = 0, (7.10)

where

S1,+(x) =

(
1− β

2
+

α
√
β

~

) N∑

a=1

xθa√
za(x− za)3/2

+
γ
√
β

~

N∑

a=1

wθa

(w − za)
√

za(x− za)
+

+
β

2

N∑

a=1

xf(x, z,θ)

x− za
− (α+ γ)

√
β

~
f(x, z,θ)+

+
γ
√
βη

2~

(√
w

x− w

N∑

a=1

1

w − za
+

√
x− w

w

N∑

a=1

za
(w − za)(x− za)

)
, (7.11)

and

S2,+(x) =

(
1− β

2
+

α
√
β

~

) N∑

a=1

xθaf(x, z,θ)√
za(x− za)3/2

+
γ
√
β

~

N∑

a=1

wθaf(x, z,θ)

(w − za)
√

za(x− za)
+

−
N∑

a=1

1

x− za
+

γ
√
βη

2~

(√
w

x−w

N∑

a=1

f(x, z,θ)

w − za
+

√
x− w

w

N∑

a=1

zaf(x, z,θ)

(w−za)(x−za)

)
.

(7.12)
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We now find differential equations for the wave-functions

χR
+,α(x) = χR

α(x, 0), χR
−,α(x) = −~∂ξχ

R
α(x, ξ), (7.13)

from the analysis of the loop equations (7.10). Consider first the following combinations of

these equations

〈〈 c1S2,+(x) + c2ηS1,+(x) 〉〉 ξ=0 = 〈〈 c3S1,+(x) + c4ηS2,+(x) 〉〉 ξ=0 = 0. (7.14)

Here ci for i = 1, . . . , 4 are functions of x and w which are determined by comparing these

equations with differential equations

∂xχ
R
+,α(x) +A1∂ηχ

R
−,α(x) +A2η∂ηχ

R
+,α(x) +A3η∂wχ

R
−,α(x) +A4ηχ

R
−,α(x) = 0,

∂xχ
R
−,α(x) +B1∂ηχ

R
+,α(x) +B2η∂ηχ

R
−,α(x) +B3η∂wχ

R
+,α(x) +B4χ

R
−,α(x) = 0,

(7.15)

where Ai and Bi for i = 1, . . . , 4 are functions of x and w. In the computation we use the

following relations

∂xχ
R
+,α(x) =

〈〈
β

4

N∑

a=1

xθaf(x, z,θ)√
za(x− za)3/2

− α
√
β

~

N∑

a=1

1

x− za
+

+
γ
√
βxη

4~
√
w(x− w)

N∑

a=1

θa√
za(x− za)3/2

− γ
√
βxηf(x, z,θ)

4~
√
w(x− w)3/2

〉〉

ξ=0

,

∂xχ
R
−,α(x) =

〈〈
−αβ

~

N∑

a=1

√
xf(x, z,θ)

x− za
−

√
β

2

N∑

a=1

√
xθa√

za(x− za)3/2
+

√
βf(x, z,θ)

2
√
x

+

+
γβx3/2η

4~
√
w(x− w)

N∑

a=1

θaf(x, z,θ)√
za(x− za)3/2

〉〉

ξ=0

, (7.16)

∂ηχ
R
+,α(x) =

〈〈
γ
√
β

2~

(
N∑

a=1

2
√
w(x− w)θa

(w−za)
√
za(x− za)

+

(√
w

x− w
−
√

x− w

w

)
f(x, z,θ)

)〉〉

ξ=0

,

∂ηχ
R
−,α(x) =

〈〈
γβ

~

N∑

a=1

√
xw(x− w)θaf(x, z,θ)

(w − za)
√

za(x− za)

〉〉

ξ=0

, (7.17)

and

η∂wχ
R
+,α(x)=

〈〈
−γ

√
βη

~

N∑

a=1

1

w−za

〉〉

ξ=0

, η∂wχ
R
−,α(x)=

〈〈
−γβη

~

N∑

a=1

√
xf(x, z,θ)

w − za

〉〉

ξ=0

.

(7.18)

Then we find that ci for i = 1, 2, 3, 4 are determined as

c1 =
α
√
β

~
, c2 =

αγ

~2
√
w(x− w)

, c3 = − 2α

~
√
x
, c4 =

αγ
√
β

~2

√
x

w(x− w)
,
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and only for

α =
β

1
2~

2
or − β− 1

2~

2
, (7.19)

the loop equations (7.14) are rewritten as the differential equations (7.15) with

A1 =
α

~

√
w

x(x− w)
, A2 =

αγ

~2(x− w)
, A3 = −α

~

√
w

x(x− w)
,

A4 = −α

~

√
w

x(x− w)

(
x∆ γ

~

w(x− w)
− αγ

~2(x− w)

)
,

(7.20)

and

B1 = −2α

~

√
w

x(x− w)
, B2 =

αγ

~2(x− w)
, B3 =

2α

~

√
w

x(x− w)
,

B4 =
2α∆ γ

~

γx
+

αγw

~2x(x− w)
,

(7.21)

where ∆γ = γ
2 (γ −Q) and Q = β−1/2 − β1/2.

We can rewrite the above differential equations as differential equations for

χ̃R
+,α(x) = (x− w)

αγ

~2 χR
+,α(x),

χ̃R
−,α(x) =

1

s
√
2

(
(x− w)

αγ

~2 χR
−,α(x)−

γη

~

√
x√

w(x− w)
χ̃R
+,α(x)

)
,

(7.22)

where s is a constant. Then we find differential equations

∂xχ̃
R
+,α(x) =

sα

~

√
2w

x(x− w)

(
η∂w − ∂η +

∆ γ
~

xη

w(x− w)

)
χ̃R
−,α(x),

(
∂x −

αQ

~x

)
χ̃R
−,α(x) = − α

s~

√
2w

x(x− w)

(
η∂w − ∂η +

∆ γ
~

xη

w(x− w)

)
χ̃R
+,α(x),

(7.23)

which hold for special values of α in (7.19). These are one-Penner Ramond-R quantum

curves at level 1 we wished to find. As expected, by multiplying the factor x−1/8 by χ̃R
±,α(x),

and taking s = −e
iπ
4 as in (5.19), they reproduce differential equations (5.31) found using

CFT techniques, and in fact take form of Ramond versions of BPZ equations [41].

In (7.5) we considered the fermionic type loop equation which is generated by the

superconformal current. We can also consider the bosonic type loop equation

0 =

∫
dNz dNθ

N∑

a=1

(
∂za −

1

2
∂θa

θa
y − za

)(
1

y − za
∆R,x(z,θ)

βe−
√
β
~

∑N
a=1 VR,x,ξ(za,θa)

)
, (7.24)

which is obtained by an infinitesimal shift as

za → za +
ǫ

y − za
, θa → θa +

θaǫ

2(y − za)2
, (7.25)
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and this shift is generated by the energy-momentum tensor. The loop equation (7.24) can

be written as

〈〈 T+(y) 〉〉 ξ = 0, (7.26)

where

T+(y) =
1− β

2

N∑

a=1

1

(y − za)2
+

β

2

N∑

a,b=1

1

(y − za)(y − zb)
+

− β

4

N∑

a,b=1

x2θaθb

z
3/2
a (x− za)3/2

√
zb(x− zb)(y − za)

+

− β

8

N∑

a,b=1

θaθb(za − zb)

(y − za)2(y − zb)2

(√
za(x− zb)

zb(x− za)
+

√
zb(x− za)

za(x− zb)

)
+

+

√
β

~

N∑

a=1

[
α

(x−za)(y−za)
+

γ

(w−za)(y−za)
− γx2ηθa

4
√
w(x− w)z

3/2
a (x− za)3/2(y − za)

+

+
γηθa
2

(
1

(w − za)2(y − za)
+

1

2(w − za)(y − za)2

)(√
w(x− za)

za(x− w)
+

√
za(x− w)

w(x− za)

)
+

+
(x− 2za)

√
xξθa

2z
3/2
a (x− za)3/2(y − za)

−
√
xξθa

2
√
za(x− za)(y − za)2

]
. (7.27)

By expanding the loop equation (7.26) around y = ∞ we get Virasoro constraints for

the wave-function (7.1). Especially, by taking the expansion coefficient of y−2 (subleading

order) we get

0 =

〈〈
(1− β)N + βN2

2
−

√
β(α+ γ)N

~
+

√
βαx

~

N∑

a=1

1

x− za
− βx2

4

N∑

a=1

θaf(x, z,θ)√
za(x− za)3/2

+

−
√
βγx2η

4~
√
w(x− w)

N∑

a=1

θa√
za(x− za)3/2

−
√
βξ

√
x

2~

N∑

a=1

√
zaθa

(x− za)3/2
+

+

√
βγw

~

N∑

a=1

1

w − za
+

√
βγwη

2~

N∑

a=1

θa
(w − za)2

(√
w(x− za)

za(x− w)
+

√
za(x− w)

w(x− za)

)
+

−
√
βγη

4~

N∑

a=1

θa
w − za

(√
w(x− za)

za(x− w)
+

√
za(x− w)

w(x− za)

) 〉〉

ξ

. (7.28)

We find that this equation can be written as a differential equation for the wave-

function (7.1):
(
x∂x + w∂w +

1

2
η∂η

)
χR
α(x, ξ) =

(
∆α0

~

−∆α
~
−∆ γ

~

− αγ

~2

)
χR
α(x, ξ), (7.29)

where α0 is given in (5.13):

α0

~
= −α+ γ

~
+N

√
β + β− 1

2 − β
1
2 . (7.30)
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We then obtain the following differential equation for the wave-function (7.22):
(
x∂x + w∂w +

1

2
η∂η

)
χ̃R
±,α(x) =

(
∆α0

~

−∆α
~
−∆ γ

~

)
χ̃R
±,α(x). (7.31)

By including the factor x−1/8 we see that this equation agrees with the equation (5.32)

obtained by the scaling covariance.

As discussed in section 5.3, let us apply the constraint equation (7.31) to the equations

in (7.23). Then by defining

χ̃R
±,α(x) = f̃R

±,α(x)∓ ηg̃R
±,α(x), g̃R

±,α(x) = ∓∂ηχ̃
R
±,α(x), (7.32)

as in (5.33), we obtain two pairs of coupled ordinary differential equations (5.34) and (5.35):

∂xf̃
R
+,α(x) = −sα

~

√
2w

x(x− w)
g̃R
−,α(x),

(
∂x −

αQ

~x

)
g̃R
−,α(x) = − α

s~

√
2w

x(x− w)

(
∆α0

~

−∆α
~
− x∂x

w
+

∆ γ
~

x− w

)
f̃R
+,α(x),

(
∂x −

αQ

~x

)
f̃R
−,α(x) = − α

s~

√
2w

x(x− w)
g̃R
+,α(x),

∂xg̃
R
+,α(x) = −sα

~

√
2w

x(x− w)

(
∆α0

~

−∆α
~
− x∂x

w
+

∆ γ
~

x− w

)
f̃R
−,α(x),

(7.33)

for β1/2~

2 or −β−1/2~

2 . Then we find that the wave-functions f̃R
±,α(x) obey the following

hypergeometric differential equations:
[
∂2
x +

(
2α2

~2x
+

αQ

~(x− w)

)
∂x −

2α2

~2

(
∆ γ

~

(x− w)2
+

∆α0
~

−∆ γ
~

−∆α
~

x(x− w)

)]
f̃R
+,α(x) = 0,

[
∂2
x +

(
2α2

~2x
+

αQ

~(x− w)

)
∂x +

αQ

~x2
− 2α2

~2

(
∆ γ

~

(x− w)2
+

∆α0
~

−∆ γ
~

−∆α
~

x(x− w)

)]
f̃R
−,α(x) = 0.

(7.34)

Assuming that the WKB expansion of f̃R
±,α(x) for

β1/2~

2 or −β−1/2~

2 around ~ = 0 takes form

f̃R
±,α(x) ∼ C exp

(
1

2~

∫ x

y±(x
′)dx′ +O(~0)

)
, (7.35)

where C is an x-independent factor, we obtain a “spectral curve”

Σ =
{
(x, y±) ∈ C

2 |A(x, y±) = 0
}

(7.36)

for the one-Penner Ramond-R wave-function (7.1) at η = 0, where

A(x, y) = y2 −
(

γ2

(x− w)2
+

α2
0 − γ2

x(x− w)

)
. (7.37)

We see that this spectral curve is the same as the spectral curve for the hermitian eigenvalue

model (2.1) with the one-Penner potential V (x) = γ log(x− w).
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A Proofs and computations

A.1 Computations in the Ramond-NS sector: the supercurrent S(y)

In this appendix we compute, in the operator formalism, the expectation value (4.37) of

the supercurrent S(y) in the Ramond-NS sector. First, for the supercurrent S+(y) defined

in (4.11), by (4.6), (4.16) and (4.17) we get

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣
√
yS+(y)Φ

α
~ (x, θ)

N∏

a=1

Φ−
√
β(za, θa)

∣∣∣ 0,+
〉
=

=

( √
x

y − x
(θ∂x − ∂θ) +

∆α
~
θ(y + x)

√
x(y − x)2

)〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣Φ
α
~ (x, θ)

N∏

a=1

Φ−
√
β(za, θa)

∣∣∣ 0,+
〉
+

+
N∑

a=1

(
θa∂za − ∂θa

)( √
za

y − za

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣Φ
α
~ (x, θ)

N∏

a=1

Φ−
√
β(za, θa)

∣∣∣ 0,+
〉)

+

+
1

y

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣Φ
α
~ (x, θ)

N∏

a=1

Φ−
√
β(za, θa)G0

∣∣∣ 0,+
〉
. (A.1)

In the next step we compute the expectation value of S−(y). Using the notation (4.13)

we introduce

|x, θ, z,θ 〉 = Φ
α
~

≤(x, θ)
N∏

a=1

Φ−
√
β

≤ (za, θa) | 0,+ 〉 . (A.2)

Then it follows that

Φ
α
~ (x, θ)

N∏

a=1

Φ−
√
β(za, θa) | 0,±〉 =

=
N∏

a=1

(
x− za − θθa

√
za
x

)−α
√

β
~ ∏

1≤a<b≤N

(
za − zb − θaθb

√
zb
za

)β

|x, θ, z,θ 〉 . (A.3)

For m < 0 we have

{Gm, ψ<(x)} =
∞∑

n=1

xn−
1
2 am−n, [Gm, φ<(x)] =

∞∑

n=0

xnψm−n, (A.4)

and consequently

√
y {S−(y), ψ<(x)} =

∞∑

m=1

ym−1 {G−m, ψ<(z)} =
∞∑

m,n=0

ymxn+
1
2 a−m−n−2

=
√
x
∂φ<(y)− ∂φ<(x)

y − x
,

√
y [S−(y), φ<(x)] =

∞∑

m,n=0

ymxnψ−m−n−1 =

√
y ψ<(y)−

√
xψ<(x)

y − x
,
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so that

√
y
[
S−(y),Φ

α
~

<(x, θ)
]
=

α

~

(√
y ψ<(y)−

√
xψ<(x)

y − x
+

∂φ<(y)− ∂φ<(x)

y − x
θ
√
x

)
Φ

α
~

<(x, θ).

(A.5)

Further

√
y {S−(y), ψ0} =

∞∑

m=0

yma−m−1 = ∂φ<(y),

so that

√
y
[
S−(y),Φ

α
~

≤(x, θ)
]
=

=
α

~

{√
y ψ<(y)−

√
xψ<(x)

y − x
+

(
∂φ<(y)− ∂φ<(x)

y − x
+

∂φ<(y)

x

)
θ
√
x

}
Φ

α
~

≤(x, θ) =

=
α

~

(√
y ψ<(y)−

√
xψ<(x)

y − x
+

y∂φ<(y)− x∂φ<(x)

y − x

θ√
x

)
Φ

α
~

≤(x, θ). (A.6)

Finally

√
yS−(y) | 0,+ 〉 =

(
ψ0∂φ<(y) +

√
yψ<(y)∂φ<(y) +Q

√
y∂ψ<(y)

)
| 0,+ 〉 , (A.7)

and

1

y
G0 | 0,+ 〉 = − 1

2y
Qψ0 | 0,+ 〉 .

Combining the above ingredients we get

√
yS−(y) |x, θ, z,θ 〉+ 1

y
Φ

α
~

≤(x, θ)
N∏

a=1

Φ−
√
β

≤ (za, θa)G0 | 0,+ 〉 =

=
α

~

{√
y ψ<(y)−

√
xψ<(x)

y − x
+

y∂φ<(y)− x∂φ<(x)

y − x

θ√
x

}
|x, θ, z,θ 〉+

−
√
β

N∑

a=1

{√
y ψ<(y)−

√
za ψ<(za)

y − za
+

y∂φ<(y)− za∂φ<(za)

y − za

θa√
za

}
|x, θ, z,θ 〉+

+
√
y
(
ψ<(y)∂φ<(y) +Q∂ψ<(y)

)
|x, θ, z,θ 〉+

+ (∂φ<(y)−Q/2y) Φ
α
~

≤(x, θ)
N∏

a=1

Φ−
√
β

≤ (za, θa)ψ0 | 0,+ 〉 .

On the other hand, note that
〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣
√
y ψ<(y) =

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣
VF(y)− ξ0

~
,

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣ ∂φ<(y) =

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣
V ′

B(y)

~
,

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣
√
y∂ψ<(y) =

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣
√
y

~

∂

∂y

(
VF(y)− ξ0√

y

)
.
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This implies that

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣√yS−(y)
∣∣∣x, θ, z,θ

〉
+

1

y

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣Φ
α
~

≤(x, θ)
N∏

a=1

Φ−
√
β

≤ (za, θa)G0 | 0,+ 〉 =

=
α

~2

{
VF(y)− VF(x)

y − x
+

yV ′
B(y)− xV ′

B(x)

y − x

θ√
x

}〈
V +

N
√
β−α

~
,t,ξ

∣∣∣x, θ, z,θ
〉
+

−
√
β

~

N∑

a=1

{
VF(y)− VF(za)

y − za
+

yV ′
B(y)− zaV

′
B(za)

y − za

θa√
za

}〈
V +

N
√
β−α

~
,t,ξ

∣∣∣x, θ, z,θ
〉
+

+

(
(VF(y)− ξ0)V

′
B(y)

~2
+

Q (V ′
F(y)− VF(y)/2y + ξ0/2y)

~

)〈
V +

N
√
β−α

~
,t,ξ

∣∣∣x, θ, z,θ
〉
+

+

(
V ′

B(y)

~
− Q

2y

)〈
V +

N
√
β−α

~
,t,ξ

∣∣∣Φ
α
~

≤(x, θ)
N∏

a=1

Φ−
√
β

≤ (za, θa)ψ0 | 0,+ 〉 .

We also note that

〈 0,+ | e 2
~
ξ0ψ0e

ψ0

(
α
~

θ√
x
−
√
β
∑N

a=1
θa√
za

)

ψ0 | 0,+ 〉 =

=
ξ0
~

− 1

2

(
α

~

θ√
x
−
√
β

N∑

a=1

θa√
za

)
=

(
ξ0
~

− 1

2
~∂ξ0

)
e

ξ0
~

(
α
~

θ√
x
−
√
β
∑N

a=1
θa√
za

)

.

Since

N∑

a=1

zna e−
√
β
~

∑N
a=1VR(za,θa) = − ~√

β
∂tne

−
√
β
~

∑N
a=1VR(za,θa),

N∑

a=1

z
n− 1

2
a θa e

−
√
β
~

∑N
a=1VR(za,θ) = − ~√

β
∂ξne

−
√
β
~

∑N
a=1VR(za,θa),

and

VF(y)− VF(za)

y − za
=

∞∑

m=1

ξm
ym − zma
y − za

=
∞∑

m=1

m−1∑

n=0

ξmynzm−n−1
a ,

yV ′
B(y)− zaV

′
B(za)

y − za

θa√
za

=
∞∑

m=1

mtm
ym − zma
y − za

θa√
za

=
∞∑

m=1

m−1∑

n=0

mtmynz
m−n− 3

2
a θa,

we get

−
√
β

~

N∑

a=1

{
VF(y)− VF(za)

y − za
+

yV ′
B(y)− zaV

′
B(za)

y − za

θa√
za

}
e−

√
β
~

∑N
a=1VR(za,θa) =

=
∞∑

m=1

m−1∑

n=0

yn
(
ξm∂tm−n−1 +mtm∂ξm−n−1

)
e−

√
β
~

∑N
a=1VR(za,θa) =

=
∞∑

n=0

yn
∞∑

m=n+1

(
ξm∂tm−n−1 +mtm∂ξm−n−1

)
e−

√
β
~

∑N
a=1VR(za,θa) =

≡ ~
−2 ĥ(y) e−

√
β
~

∑N
a=1VR(za,θa),
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which defines the operator (4.38)

ĥ(y) = ~
2

∞∑

n=0

yn
∞∑

m=n+1

(
ξm∂tm−n−1 +mtm∂ξm−n−1

)
.

Similarly

α

~2

{
VF(y)− VF(x)

y − x
+

yV ′
B(y)− xV ′

B(x)

y − x

θ√
x

}
e

α
~2

VR(x,θ) = ~
−2 ĥ(y) e

α
~2

VR(x,θ). (A.8)

Ultimately we find

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣√yS−(y)
∣∣∣x, θ, z,θ

〉
+

1

y

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣Φ
α
~

≤(x, θ)
N∏

a=1

Φ−
√
β

≤ (za, θa)G0 | 0,+ 〉 =

=
1

~2

(
VF(y)V

′
B(y) +Q~V ′

F(y) + ĥ(y)
)〈

V +

N
√
β−α

~
,t,ξ

∣∣∣x, θ, z,θ
〉
+

− 1

~2

(
1

2

(
V ′

B(y)−
Q~

2y

)
~
2∂ξ0 +

Q~VF(y)

2y

)〈
V +

N
√
β−α

~
,t,ξ

∣∣∣x, θ, z,θ
〉
.

Combined with (A.1) this finally gives the equation (4.37).

A.2 Computations in the Ramond-NS sector: the energy-momentum tensor

T (y)

In this appendix, in the operator formalism we compute the expectation value (4.39) of

the energy-momentum tensor in the Ramond-NS sector. To start with, for the energy-

momentum tensor T+(y) defined in (4.11), by (4.6), (4.7), (4.16) and (4.17) we get

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣ yT+(y)Φ
α
~ (x, θ)

N∏

a=1

Φ−
√
β(za, θa)

∣∣∣ 0,+
〉
=

=

(
x

y − x
∂x +

y
(
∆α

~
+ 1

2θ∂θ

)

(y − x)2

)〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣Φ
α
~ (x, θ)

N∏

a=1

Φ−
√
β(za, θa)

∣∣∣ 0,+
〉
+

+

N∑

a=1

(
∂za

za
y − za

− ∂θa

1
2θay

(y − za)2

)〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣Φ
α
~ (x, θ)

N∏

a=1

Φ−
√
β(za, θa)

∣∣∣ 0,+
〉
+

+
1

16y

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣∣Φ
α
~ (x, θ)

N∏

a=1

Φ−
√
β(za, θa)

∣∣∣ 0,+
〉
. (A.9)

Using the same calculational techniques as in appendix A.1 we get

[yT−(x), φ<(x)] =
∞∑

m=1

ym−1[L−m, φ<(x)] =
∞∑

m=1

∞∑

n=0

a−m−ny
m−1xn =

y∂φ<(y)− x∂φ<(x)

y − x
,

and

[yT−(x), ψ≤(x)] =
∞∑

m=1

ym−1[L−m, ψ≤(x)] =
∞∑

m=1

∞∑

n=0

(
n+ 1

2m
)
ψ−m−ny

m−1xn−
1
2 =

=

√
x

2

√
yψ≤(y)−

√
xψ≤(x)− (y−x)∂

(√
xψ≤(x)

)

(y − x)2
+

1

2
√
x

y∂
(√

yψ≤(y))− x∂
(√

xψ≤(x)
)

y − x
,
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where we denoted ψ≤(x) =
ψ0√
x
+ ψ<(x). Consequently

[
yT−(y),Φ

α
~

≤(z, θ)
]
=

α

~

(
y∂φ<(y)− x∂φ<(x)

y − x
+

y∂y
(√

yψ≤(y)
)
− x∂x (

√
xψ≤(x))

y − x

θ

2
√
x
+

+

√
yψ≤(y)−

√
xψ≤(x)− (y − x)∂x (

√
xψ≤(x))

(y − x)2

√
xθ

2

)
Φ

α
~

≤(z, θ).

Further

yT−(y) | 0,+ 〉 = y

2

(
(∂φ<(y))

2 +Qy∂2φ<(y) + ∂ψ<(y)ψ<(y)
)
| 0,+ 〉+

+
1

2

(√
y∂ψ<(y) +

1

2
√
y
ψ<(y)

)
ψ0 | 0,+ 〉 . (A.10)

This gives

〈
V +

N
√
β−α

~
,t,ξ

∣∣∣yT−(y)
∣∣∣x, θ, z,θ

〉
=

=

{
α

~2

(
yV ′

B(y)− xV ′
B(x)

y − x
+

yV ′
F(y)− xV ′

F(x)

2(y − x)

θ√
x
+

V
(2)
F (y, x)

√
xθ

2(y − x)2

)
+

−
√
β

~

N∑

a=1

(
yV ′

B(y)− zaV
′
B(za)

y − za
+

yV ′
F(y)− zaV

′
F(za)

2(y − za)

θa√
za

+
V

(2)
F (y, za)

√
zaθ

2(y − za)2

)
+

+
1

2~2

(
y
(
V ′

B(y)
)2

+QyV ′′
B (y) + V ′

F(y)

(
VF(y)−

~
2

2
∂ξ0

))}〈
V +

N
√
β−α

~
,t,ξ

∣∣∣x, θ, z,θ
〉
=

=
1

~2

{
f̂(y)+

1

2

(
y
(
V ′

B(y)
)2
+QyV ′′

B (y)+V ′
F(y)

(
VF(y)−

~
2

2
∂ξ0

))}〈
V +

N
√
β−α

~
,t,ξ

∣∣∣x, θ, z,θ
〉
,

where f̂(y) was defined in (4.40)

f̂(y) = ~
2

∞∑

n=0

yn
∞∑

k=n+1

(
ktk∂tk−n−1

+

(
k − n+ 1

2

)
ξk∂ξk−n−1

)
.

Ultimately, combined with (A.9) we find the equation (4.39).

A.3 Computations in the Ramond-NS super-eigenvalue model

In this appendix we present results relevant for the computations in the eigenvalue model

in the Ramond-NS sector. First, we find that commutation relations for operators ĥ(x)

in (6.49) and f̂(x) in (6.55) take form

[
ĥ(x), ∂n

xVB(x)
]
=

1

n+ 1
~
2∂n+1

x VF(x),

{
ĥ(x), ∂n

xVF(x)
}
=

[
f̂(x), ∂n

xVB(x)
]
=

1

n+ 1
~
2∂n+1

x

(
xV ′

B(x)
)
,

[
f̂(x), ∂n

xVF(x)
]
=

1

2(n+ 1)(n+ 2)
~
2∂n+1

x

(
(2n+ 3)xV ′

F(x)− VF(x)
)
.

(A.11)
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Second, consider χins
α (x,

√
xη) defined in (6.42)

χins
α (x,

√
xη) =

(
1 +

α
√
βη

~

N∑

a=1

(
1

2
ηa +

zaηa
x− za

)) N∏

a=1

(x− za)
−

√
β
~

α.

Its derivatives with respect to η and x take form

∂ηχ
ins
α (x,

√
xη) =

α
√
β

2~

N∑

a=1

(x+ za)ηa
x− za

χins
α (x,

√
xη),

∂xχ
ins
α (x,

√
xη) = −α

√
β

~

N∑

a=1

(
1

x− za
− zaηaη

(x− za)2

)
χins
α (x,

√
xη),

∂x∂ηχ
ins
α (x,

√
xη) = −α

√
β

~

N∑

a=1

zaηaχ
ins
α (x,

√
xη)

(x− za)2
− α2β

2~2

N∑

a,b=1

(x+ za)ηaχ
ins
α (x,

√
xη)

(x− za)(x− zb)
+

+
α2βη

2~2

N∑

a,b=1

(x+ za)zbηaηbχ
ins
α (x,

√
xη)

(x− za)(x− zb)2
. (A.12)
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