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ABSTRACT 

This dissertation investigates the methods to enable a robot to interact with human 

using spatial language. A prototype system of human-robot interaction using spatial 

language running on an autonomous robot is proposed in the dissertation. The system 

includes two complementary works. One is to control the robot by human natural spatial 

language to find the target object to fetch it. Another work is to generate a natural spatial 

language description to describe a target object in the robot working environment. The first 

task is called spatial language grounding and the second work is named as spatial language 

generation. The spatial language grounding and generation are both end-to-end process 

which means the system will determine the output only by the natural language command 

from a human during the interaction and the raw perception data collected from the 

environment. Furniture recognizers are designed for the robot to detect the environment 

during the tasks. A hierarchy system is designed to translate the human spatial language to 

the symbolic grounding model and then to the robot actions. To reduce the ambiguity in 

the interaction, a human demonstration system is designed to collect the spatial concept of 

the human user for building the robot behavior policies under different grounding models. 

A language generation system trained by real human spatial language corpus is proposed 

to automatically edit spatial descriptions of the location of a target object. All the modules 

in the system are evaluated in the physical environment, and a 3D robot simulator 

developed on ROS and GAZEBO. 
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Chapter 1. Introduction 

1.1 Motivations 

For a social robot designed as an assistant for the daily life of its human user, a 

fundamental skill is to interact with humans by spatial language. Spatial language is a kind 

of human language that contains spatial information ([1]). The usages of spatial language 

include describing locations or using spatial relationships to identify targets. For example, 

in the scenario of a cocktail party, a guest is asking the host to identify a VIP. The host can 

describe the VIP by the gender, the dress or the age, or just use spatial language to tell the 

guest that the VIP is the man standing by the round bar table beside the door. Here, spatial 

language can help the guest to lock in on the VIP quickly even though there may be several 

potential VIPs in the room. 

Human use of spatial language is a complex activity which relies on both linguistic and 

non-linguistic representations and processes. This creates a great challenge in the 

interaction between humans and robots. Consider two scenarios of using spatial description 

on the same target object, i.e., a cellphone. The instructions are: (a) “Go down the hallway, 

then, turn right. Walk forward and then turn left. You will find the cellphone.” (b) “The 

cellphone is on the table to the left of the bed in the bedroom.” For sentence (a), the 

addressee was given a sequence of actions from the spatial command to find the cellphone, 

while in (b) the addresser gave a description of the cellphone position by using references 

based on advanced knowledge (the addressee knowing where the bedroom is). Both (a) 

and (b) are spatial descriptions based on human memory or learned associations, which can 

make it difficult for a robot when it takes on a human position to complete a task and 
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process the command language. There are four main factors as described below, which 

have proven to be problematic for human-robot spatial language interaction.  

(1) Quantitative Expression vs. Qualitative Expression: In both descriptions, the 

predicates used qualitative spatial references (such as “down, right, forward” with 

verbs) rather than quantitative terms to describe an action or a position. Although 

it is natural to people to use qualitative expressions, a robot can only “think” in 

terms of mathematical expressions and numbers which creates a gap between 

human and machine [2, 3]. 

(2) Ambiguous in Perspective: The directional description (“down, right, forward”) 

depends upon the reference frame that defines the terms, which could be based on 

the perspective of the speaker or addressee, the orientation of the room, or the axes 

of the reference objects (e.g., couch and table) [4, 5]. Apart from the diversity in 

reference selections, ambiguity is another challenge. Selecting a reference frame 

must also allow for reinterpretation if the initial selected frame is incorrect [4, 5].  

(3) Environment Modeling: There must be a prioritization of the many possible 

features that define a good reference object or beacon, requiring integration of 

conceptual, functional, perceptual, and spatial information. Interpretations cannot 

be based strictly on geometric information as assumed from a traditional viewpoint 

[6]. However, using traditional approaches, i.e., laser, sonar or stereo camera, for 

environment reconstruction can only produce a simple and rough map exclusively 

for 2D navigation. The information needed for spatial language interaction by a 

robot should include the class, dimension, pose and shape of possible reference 

objects and beacons, which is difficult to register by traditional methods. 
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(4) Common Ground and the Cognitive Burden: A human speaker and an addressed 

robot can hardly agree on the complexity of the context and environment. A human 

user may give a spatial description, which is beyond the robot’s capability of 

processing [7].  

A key motivation of this research was to create a more natural interface for human-

robot interaction in spatial language. The goal was to provide robots with the ability to 

produce and comprehend these spatial descriptions through integration with more general 

cognitive characterizations that include reference frames, reference object features, 

complexity, and speaker/addressee assumptions. These ideas were tested within several 

home scenes to illustrate their real-world applicability. Human subject experiments were 

run with both young and elder participants to ensure generalizability. It is anticipated that 

the products of this research will be applicable to many assistive settings. 

The methods presented in this dissertation build a closed-loop workflow of human-

robot interaction using spatial language. The loop can be divided into two paths that 

represent two complimentary robot tasks in a home-like environment. One is a natural 

language directive for the fetch task. In this task, a human user orders a robot to fetch a 

target object by giving a spatial command. Another is spatial description generation, which 

lets a robot answer to a human user with the location of a target object by using natural 

spatial language. To support the first task, a robot needs to have the capability to ground 

the human addressed natural spatial command to robot behavior and then execute actions 

in its working environment to find it. For the second task, a robot needs to have the 

capability of natural spatial description generation by the information it collects from the 

working environment. The functions for the two tasks were developed and integrated into 
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a Kinect-based differential-drive autonomous robot, which represents a good prototype of 

an eldercare and household agent.  

1.2 Primary Goal 

The principle objectives of the research that formed this dissertation include the following: 

(1) To build a generalized natural language processing (NLP) model, which uses 

spatial language in an in-room environment.  

(2) To design a prototype autonomous social robot with the capacity of navigation and 

perception in an in-room environment. The perception system should contain an 

environment model of a home environment which can match the human’s home 

with an accurate understanding of the spatial relations in his or her environment. 

(3) To develop a natural language grounding system that allows the robot to follow the 

spatial description given by a human user to perform a fetch task in an indoor 

environment. 

(4) To develop a natural language generation system that enables the robot to give a 

human-like description on the position of a target object for a missed object as part 

of the searching task in an indoor environment. 

1.3 Research Overview 

A prototype autonomous robot system was demonstrated and assessed in this proposal. 

The capabilities of the system include: recognizing and processing a natural spatial 

language command given by the human user, programing robot behavior to follow the 

command, environment modeling for navigation in a home environment, and the 

generation of a natural spatial description answer for the human inquirer.  
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The work started from a human experiment conducted by our collaborators, Dr. Laura 

Carlson, Dr. Xiaoou Li, Dr. Jared Miller from Notre Dame to discover the usage of spatial 

language in an indoor environment [8, 9]. The scenario studied was a home setting in which 

the elderly resident had misplaced an object, such as eyeglasses, and the robot helped the 

resident find the object. A corpus of spatial descriptions, the Carlson-Skubic Indoor Spatial 

Language (CSISL) corpus, was collected and reorganized from both young subjects and 

elder subjects. To explore the spatial language used in the context of the fetch task and 

investigate generational understanding of language, a set of human subject experiments 

was planned, studying both young and elder subjects. Experiments were conducted in a 

virtual environment (VE), which provided a controlled setting that made it easier to capture 

potentially subtle metrics between test conditions. In each test, a subject explored the 

virtual house with the assistance of an experimenter and found a designated target. Then 

they were asked to provide a spatial description. This experiment resulted in the CSISL 

having 1024 spatial commands, which were then summarized and transferred to a 149-

command corpus. The key features of the spatial descriptions were summarized, including 

their dynamic versus static nature and the perspective adopted by the speaker. The critical 

cognitive and perceptual processing capabilities necessary for the robot were also 

investigated from the collected language samples [7, 10, 11]. 

A system which enables spatial language interaction between a human and robot was 

assessed on an autonomous robot platform. The robot was designed to match the 

requirements based on capability of perception and locomotion, and the required 

interaction for each service task. These tasks included but were not limited to human-

machine dialog (voice recognition and speech generation) as well as fetching and searching 
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for missed objects. The P3DX robot was chosen as the chassis part to give the robot an 

adequate load capability as well as maneuverability. The sonar array which surround the 

upper edge of the chassis, provide a close obstacle detection to prevent collision. The laser 

range finder on the top of the chassis provides a more accurate estimation of the obstacle 

objects. A Kinect camera worked as a main sensor placed 1.05 m from the floor. The Kinect 

camera was sustained by a metal frame structure on top of the chassis. The robot software 

was developed on the robotic operating system (ROS) and ran on an HP laptop. 

Using a robot in a home environment illustrates challenges in object recognition and 

environment modeling. The work was done to assure the success of an autonomous human-

robot interaction using spatial language. To allow the robot to follow spatial language 

commands and execute tasks such as fetching objects, the recognition goal was not only to 

recognize objects by labeling their names but to find detailed geometry features that could 

help the robot obtain the spatial relationships between objects. I built a fuzzy classifier 

using RGB and depth data on a restricted number of furniture items in the M.S. study [12]. 

However, this classifier had a low accuracy when the robot was in some viewing locations 

and had an unsatisfying performance for another furniture database. In addition, the 

processing speed of the fuzzy classifier was too slow to work on real-time spatial relations 

problems. During my PhD study, my team and I developed an innovative method to 

recognize furniture items and their dimensions, locations and orientations by using depth 

data only. In this classification model, the depth data were structured to generate point 

cloud normal vectors in real time, which were then used as features for recognition. The 

real-time modeling approach provided a higher accuracy on furniture recognition. Also, it 

allowed the robot to work in a room with rearranged furniture placement. 



 

 

7 

 

The robot platform was integrated with the perception system to process robot fetch 

tasks driven by natural language. An innovative natural spatial language grounding system 

was proposed to process natural spatial language and interpret it to a robot’s understandable 

navigation instructions to initiate actions [13, 14]. The system’s first process used spatial 

referencing language according to the part-of-speech (POS) and extracted a tree structure 

of language chunks, which was conducted by my collaborator, Tatiana Alexenko [15]. This 

step employs a semantic spatial language grammar and a novel chunking method that 

allows nested structures to be encoded as a single label. The semantic grammar is based on 

an interdisciplinary analysis of a corpus of human-generated indoor spatial language. A 

“deep” chunking method facilitates encoding deep grammatical structures into a single-

level label. After obtaining a tree structured spatial command, the spatial language 

description was then grounded to a robot navigation instruction in the form of a sequence 

of actions which referred to as the reference-direction-target (RDT) model. This model was 

based on spatial references to furniture and room structure. Furthermore, the best 

navigation instruction was selected by scoring in a probabilistic model. The initial form of 

the RDT node was proposed in the M.S. research and was further developed when we 

finished the probabilistic model for grounding. To control the robot for the fetch task, a 

behavior model was designed based on the RDT model. The policy model of robot behavior 

was built by robot learning, which implements programming by demonstration (PbD). An 

interface was designed to provide a mapping between the robot state, which includes the 

spatial command, and the environment state, as a means to robot action. The natural 

language processing and grounding both work together to enable a robot to follow spatial 

language commands in a physical indoor environment.  
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The last task in completing the dissertation research was natural spatial language 

generation, which is the opposite of spatial language following tasks such as fetching [16, 

17] The language generation task described the location of a target object found by a robot. 

The system generates a spatial description in three steps. First, the robot searches and finds 

the target object indicated by the human user. Second, an RDT grounding model is inferred 

to best match that location. Finally, the grounding model is converted to a natural spatial 

description. Structure prediction is employed to train the mapping from robot state domain 

to a grounding model domain and ultimately to a natural language domain.  

Several contributions were proposed during the Ph.D. study, which include: 

 A framework of an end-to-end system for human-robot interaction using spatial 

language. The framework includes: 

o A furniture detection system which can detect the category and pose of the 

furniture items in the indoor environment.  

o An environment model which extracts the information of the spatial 

relationships between objects in the robot’s working space.  

o A spatial language model which can parse a natural spatial description to: 

1) a tree structure using part-of-speech tagging; 2) a reference-direction-

target grounding model. 

o A robot behavior model which can navigate a robot to move to the target 

place by the grounding model and the environment model. 

o A spatial language generation system which can let the robot to edit the 

language to describe the position of a target object.  
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 A 3D robot simulator which provides a virtual environment to evaluate the system 

by end-to-end tasks. 

The components of the human-robot spatial language interaction system are shown in 

Figure 1.1 

 

Figure 1.1 The diagram of two complementary works for the research of human-robot 

interaction using spatial language. The left side supports human control of robots using spatial 

commands; the right side provides robot-generated spatial descriptions to navigate humans. 

1.4 Organization 

Chapter 2 is a review of the results of the human spatial language experiment which 

was conducted by the author and collaborators. This chapter introduces the approach used 
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to edit a template of spatial descriptions for an indoor environment through a human subject 

experiment. 

Chapter 3 introduces the robotic platform used to research a spatial language-driven 

robot. The hardware components and software platform are listed. It also presents an entity 

model to encode the home environment, which provides sufficient information for the robot 

to achieve the spatial language interaction task. The sensory information was collected by 

Kinect. A new furniture recognition system is proposed which is faster and more accurate 

than the one used in the M.S. research. The objectives of the system include furniture 

classification, dimension modeling, and furniture orientation regression. Both SVM and 

deep network object detection models are tested and compared on different databases in 

this chapter. 

Chapter 4 demonstrates a method to ground a human spatial language command to a 

robot navigation instruction model referred to as the reference-direction-target (RDT) 

model and then delineates robot control factors for a robot fetch task. It builds a bridge 

between natural spatial language commands and robot behavior. This chapter includes a 

published paper and an add-on section of a grounding model built from a recurrent neural 

network (RNN). 

Chapter 5 proposes an approach that builds the policy model for a mobile robot to 

follow a human’s spatial commands. The system implements programming by 

demonstration (PbD) to develop policies for different robot spatial commands. This chapter 

is also a draft paper prepared for the Journal of Human-Robot Interaction. 
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Chapter 6 proposes a natural spatial language generation system. It is an inverse of the 

language grounding work. The system was validated by both statistical metrics and a 

human scorer. The chapter consists of a conference paper and a section of additional results. 

Chapter 7 is the conclusion and contributions. 

Since the content of each chapter is mostly independent from the others, I include an 

introduction of the related literature into the respective chapters but have not composed 

them into a single chapter. 
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Chapter 2. Background on the Human Spatial Language Model 

The research in this section is conducted by a multi-discipline research group from the 

University of Missouri and the University of Notre Dame. The contributions of this work 

include: (1) Collect a human spatial language corpus; (2) Build a spatial language template; 

(3) Find the difference between elder adults and younger adults on using spatial language. 

2.1 Introduction 

Human comprehension of spatial language is a complex activity. Consider an utterance: 

“Your eyeglasses are behind the radio on the table in the bedroom.” Although human 

interpretation of such instructions normally proceeds naturally and fluently, the 

comprehension of spatial descriptions is particularly problematic for robots. While it is 

possible to train a speaker to restrict robot directives to a set of constrained commands (i.e., 

make the user adapt to the robot), the intent in this project instead is to explore how the 

robot can adapt to the human user, with all of the ambiguities and complexities inherent in 

natural language. In this section, these complexities will be addressed by collecting a 

corpus of spatial descriptions elicited within a 3D virtual setting in the context of a fetch 

task.  

2.2 The spatial description corpus 

The corpus of spatial descriptions was collected within an eldercare scenario in which 

a participant navigates through a virtual 3D house environment (Figure 2.1) to find a target, 

and then provides spatial descriptions that specify the target’s location to an avatar in the 

context of a fetch task.  
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(a)                                                           (b) 

Figure 2.1 Figure (a) shows a survey perspective of the house environment that contains a 

living room on the left, a hallway in the middle, and a bedroom on the right. A trial within the 

virtual environment started at the location in the hallway indicated by “start” with the perspective 

indicated by the arrow, facing the robot or human avatar addressee. Figure (b) shows part of the 

living room and bedroom at the eye-level height adopted in the experiment.  

Three critical aspects of the scenario were the focus of this research. First, research has 

shown an increased reliance on landmarks during wayfinding by older adults [18]. Thus, 

the robot strategies had to recognize the furniture objects and also note their orientations, 

which were then used during ambiguity resolution. Second, within the virtual environment, 

participants offered spatial descriptions to either a human avatar named Brian or a robot 

avatar modeled after a real-life robot. Third, the instructions were manipulated by using 

these two prompts: 

Where prompt: Tell (Brian/the robot) where the <target> is (e.g., “The cell phone is on 

the table by the bed in the bedroom”) 

How prompt: Tell (Brian/the robot) how to find the <target> (e.g., “Go forward, turn 

right, look to the left...”) 

2.2.1 Methods 

Subjects: Sixty-four older adults participated in the experiment. For each trial, participants 

were shown a picture of the to-be-found target on a gray background. The experiment 

monitor named the target to ensure full identification. Participants started in the hall and 
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told the monitor how to navigate to find the target. They were allowed to search as long as 

necessary to discover the target; the procedure was not timed. No trials were excluded due 

to an inability to locate the target. Participants were then returned to the starting location, 

received their assigned “where” or “how” prompt, and then described the location of the 

target to the monitor; these descriptions were recorded. Finally, after completing all trials, 

participants drew a map of the house that was coded to verify that participants had an 

accurate representation of the environment in terms of the layout of the rooms. 

2.2.2 Summary of Behavior Results 

Generally, descriptions contained a combination of spatial terms and house and 

furniture landmarks but very few object landmarks. Moreover, there were key differences 

as a function of addressee and instruction. When talking to the robot, participants preferred 

to use fewer words and to adopt a speaker’s perspective, whereas when talking to Brian, 

participants used more words and preferred an addressee perspective. Future work could 

examine the extent to which these differences as a function of addressee are based on 

differences in appearance between Brian and the robot or differences in the inferences that 

speakers make about the capabilities of the addressee. When describing how to find the 

target, participants consistently used dynamic descriptions that contained more spatial 

terms and fewer house units and hedges, regardless of addressee. However, when 

describing where the target was, participants used fewer spatial terms and more house units. 

They were also more likely to use dynamic descriptions for Brian but static descriptions 

for the robot and to avoid the use of hedges. 
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2.3 Templates Derived from Spatial Language Corpus 

The work above resulted in a corpus named CSISL (Carlson-Skubic indoor spatial 

language) corpus containing 1024 spatial language descriptions. This resulting spatial 

language was analyzed, and templates were created to capture language structure that was 

common to the spatial language descriptions logged for each test manipulation. In all, 

across all categories, there were 149 unique templates. There was some repetition across 

categories because of a lack of a meaningful differences between word counts. Because of 

this repetition, the templates were examined subsequently simply as a function of 

how/where and as a function of landmark type (none, goal, path). The other differences 

that emerged from the older vs. younger and robot vs. human addressee manipulations in 

the original study and were not expected to be reflected in the path metrics used for 

comparing robot and human performance, due to the very subtle differences. 

2.4 Result Discussion 

The research resulted in a corpus of spatial descriptions offered by older adults for 

finding a target within a virtual house environment in the context of a fetch task. The work 

uncovered systematic differences in the word choice, selection of particular landmarks 

such as furniture items, perspectives adopted, and structure, as a function of the addressee 

and instruction. More generally, the key features of this approach were informed by the 

corpus including sensitivity to the addressee and the differential assumptions speakers 

made about its capabilities; differential willingness to accommodate to the addressee; the 

task context within which the descriptions were offered (specifying how to find an object 

vs. specifying where the object is); the likely perspective and the likely structure of the 



 

 

16 

 

description as a function of addressee and instruction; and the reliance on certain objects 

in the house (house units and furniture units but not object units) as landmarks. 

The goal of this research is to establish a common ground with the elderly user by 

making the robot adapt to the user’s needs as much as possible. However, the results of our 

study show that seniors may want a more streamlined communication with a task-oriented 

robot and do not necessarily want to speak to robots in the same way they speak to other 

people. In conclusion, the work presented here is part of a larger project that has the goal 

of developing an intelligent system that uses natural spatial descriptions to direct a robot 

to a target object’s location in a fetch task. To accomplish this task, important capabilities 

were required for cognitive, linguistic, and perceptual processing by the robot. 
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Chapter 3. The Robotic Research Platform for a Spatial Language 

Driven Robot: Physical and Simulated Autonomous Mobile Robot 

System, Perception and Environment Modeling. 

3.1 Introduction 

In our design, the home robot should have the capability to follow a natural spatial 

language command to move to a target place. Correspondingly, the world model for the 

home robot should be able to represent the grounding information given in spatial language. 

In other literature related to this work [14, 2014 #81], a reference-direction-target (RDT) 

grounding model was proposed. This model works well as the representation of spatial 

information contained in commands. In the investigation on human use of spatial language, 

it has been found that when addressing the position of a target object, the human addresser 

prefers to use a reference in the description. This requires the robot to not only have the 

capability of recognizing and labeling the semantic name on objects in the working 

environment but to extract the spatial relationship between the objects in the working 

environment so that it can accurately match the world model to spatial descriptions. For 

the robot, spatial relation extraction relies on a deep understanding of the object’s spatial 

information in the working environment, which calls for a robot perception process 

providing more details about the target. 

The problem of robot perception was initially investigated during the author’s M.S. 

study; the PhD work has extended the work to be more rigorous and robust. The robot 

perception system in the author’s M.S. thesis had an adequate performance on the furniture 

of the training data. However, it had weaknesses in accuracy and speed. The old system 

had a big blind range for furniture detection which means for some viewing angles and 
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distances, the results were very bad and unreliable. Also, the old system was not able to 

provide real-time recognition for the robot. The robot perception developed in this PhD 

study is based on the normal features from the depth information collected by the Kinect, 

and it provides a more accurate and faster furniture detection function to the robot which 

enabled real-time perception.  

3.2 Related Work 

The furniture recognition system in the PhD study is inspired by several works on 

object recognition using the Kinect. The approaches of object recognition using the Kinect 

can be divided into two groups. One is using depth images and another uses point cloud 

data, which is converted from the depth image by the Kinect camera. An early stage 

research conducted by Bo et. al. [19] was motivated by local descriptors on images, in 

particular, kernel descriptors that developed a set of kernel features on depth images that 

included model size, 3D shape, and depth edges in a single framework. Their kernel 

features significantly outperformed traditional 3D features (e.g., spin images). Blum et. al. 

[20] considered this problem with a bag of features. Their method detects interest points 

and combines color and depth information into one, concise representation. For the domain 

of using a point cloud for object recognition, Willow Garage has published a point cloud 

library (PCL) [21] which presents an advanced and extensive approach to the subject of 

3D perceptions. PCL provides support for all the common 3D building blocks that 

applications need. The library contains state-of-the art algorithms for: filtering, feature 

estimation, surface reconstruction, registration, model fitting and segmentation. Rusu.  

developed a method using point cloud data to rebuild an indoor environment and generate 

an object map. PCL provides a powerful tool to compute Normal features [22] and other 
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point cloud features like point feature histograms (PFH) [23], which made them popular in 

object detection using the point cloud. 

3.3 Kinect-based Autonomous Robot 

The robot system is the same one that I used for my M.S. study. It was designed to 

assist elderly people with household tasks and has a typical framework of an autonomous 

mobile robot. It is built using a P3DX differential drive mobile robot as the central focus, 

with sonar array along the side part. Its main sensor is a Kinect camera mounted on top, 

which is about 1 m from the ground. The Kinect can capture both RGB and depth images 

simultaneously which can be used to build the environment model during its working time. 

To command the robot, we first used an android phone with speech recognition to get the 

spatial description and send it to the robot through WLAN. The robot then grounds the 

command to obtain understandable navigation instructions. Finally, the robot was 

navigated to the move-to target. The system has been tested and has proven to be a good 

platform in experiments [13]. The design of the robot system is shown in Figure 3.1. 

 

Figure 3.1 (LEFT) Robot design; (RIGHT) A diagram of the system workflow. 
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3.4 3D Robotic Simulator for the Research of Spatial Language Driven Robot 

A side work in this research was to develop a 3D simulator to efficiently evaluate the 

performance of the spatial language driven robot system designed as the focal point of this 

dissertation work. The primary contribution of a robot simulator to a physical platform is 

that it is much more convenient to set up the test scene and record the ground truth. 

However, most robot simulation systems are unable to absolutely match the real-world 

scene the robot will work in and it always requires extra work to migrate a target system 

from the virtual platform to a physical platform. The Gazebo3D robotic simulation 

platform [24] was chosen as our simulation engine. This simulator has been proven robust 

and reliable for real-time robotic simulation. The simulator offers wide options on sensors 

and actuators which makes it easy for users to build up their own robot system. Our robot 

simulation system includes a robot having all the functions (sensing and acting) of the same 

physical platform which is introduced in section 3.3 and the several virtual robot working 

environments used in the experiments of Chapter 5 and Chapter 6. There are four virtual 

worlds programmed in our robotic simulators. They are the apartment world, the hk-studio 

world, the one-bedroom-house world and two-bedrooms-house world. The apartment 

world is identical to the environment we used in the human spatial language experiment in 

Chapter 2 and the robot experiment in the IROS2014 paper [13], including the building 

structure, furniture appearance and daily objects in the data collection scenes. The other 

three worlds use the same models of furniture and daily objectives but are different in the 

building structure, the placement of furniture items and the positions of daily objects. 

Figure 3.2 shows the bird’s-eye view of the four virtual worlds. The list of furniture items 

and daily objects are listed in Table 3-1 and their images are shown in Figure 3.3. 
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Table 3-1 The types of rooms, furniture and objects in the four virtual worlds. 

Room Structures Furniture Items Objects 

apartment round table fork 

hk-studio coffee table glasses case 

one-bedroom-house hexagon table laptop 

two-bedrooms-house wood chair statue 

 blue chair monitor 

 dinner table mug 

 desk  

 couch  

 bed  

 

The ROS-based spatial language grounding system and the natural language generation 

system will also work from the simulator in the same way as on our physical robot platform. 

The simulator creates embedded applications for a mobile robot without depending 

physically on the actual machine, thus saving cost and time for other researchers who are 

working on or planning to work on the same topic. 

Using the words in the template introduced in Chapter 2, we edited another corpus of 

object fetching tasks in our four virtual worlds. The corpus includes 77 spatial language 

commands for 24 fetch tasks (six per world). We tested our spatial descriptions system, 

which follow as well as the language generation on these commands and tasks. The goal 

was to provide other researchers working on their own spatial language robot a simulator 

and corpus as a benchmark challenge.  



 

 

22 

 

 

Figure 3.2 The bird’s-eye views of the four worlds in the Gazebo3D simulator  

(top-left: apartment; top-right: hk-studio; bottom-left: 

one-bedroom-house; bottom-right: two-bedrooms-house)  
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Figure 3.3 The design of the robot, the furniture items, and the 

daily objects which appear in the four virtual worlds. The upper figure is the joint photo of all 

the furniture items, the robot and the objects and the bottom figure is a snapshot of all the six 

target objects. 

3.5 Environment Model 

Our robot is designed to work in an in-home environment, which includes both private 

homes and public residences (assisted living apartments, nursing homes, etc.). The robot 

was designed to conduct assistive tasks such as fetching daily objects. Each fetching task 

is under the navigation of spatial language given by human users. Those tasks and 

environments create the following challenges to the robot: (1) The scale of the robot 

working space is not large, but the space is cluttered with walls, furniture items and daily 

objects of various sizes and shapes. Those objects are all related to the natural language, 

which means they should be all registered in the environment. (2) The human spatial 

commands contain the information of spatial relations between objects, which should be 

understood by the robot for navigation. Thus, the robot must obtain not only the name label 

but also the spatial information of each object. (3) The furniture items, which are 
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considered good landmarks for localization are always moved by users without notice to 

the robot. In other words, the robot may work in a partially unknown environment. Our 

solution to these difficulties is to build a more elaborate environment model to include all 

the information needed. 

In the environment model for the robot, the objects are described by an entity model 

which is discussed in Section 5.4.1. In our model, we use “entity” to represent semantic 

objects handled in human spatial language. An entity has: (1) an ID, (2) a name, (3) a 2D 

point set, and (4) an orientation. The ID is the unique identification of an object in a robot 

task. The ID number of an entity is given by the sequence of detection. The name is a word 

representing the objects obtained from the spatial language corpus. The 2D point set 

describe the positions of the cells in a 2D grid map which represent the object’s projection 

on the floor. To reduce the computation and noise we downsampled the raw point cloud to 

a voxel grid point cloud. The orientation of an entity is defined as the direction value of its 

functional front side in its ego-centric reference. For example, a chair has its functional 

front as the direction that a person faced when last sitting on it. Here, we do not define the 

orientation by linguistic variable but set it at a more precise numerical angle value in world 

coordinates. It should be noted that some kinds of furniture items such as night stand or 

round table are rarely used by human as reference since it is difficult to define a functional 

front side. These curved items not considered in our orientation estimation algorithm.  
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3.6 Furniture Recognition 

 

Figure 3.4 The orientation of furniture item (shown by blue arrow). 

The furniture recognition system designed in this study has the same goal as in my 

previous M.S. study. It needs to detect and recognize furniture pieces in an indoor 

environment, and also needs the capability of detecting each item’s position and orientation. 

As part of the entity world discussed in Section 3.5, a furniture item is represented by a 2D 

point set of the cells on the grid map, and its orientation is defined as the front side of that 

furniture item and the direction it faces toward (See Figure 3.4) in world coordinates. In 

summary, the furniture perception task for the robot includes two aspects: (1) furniture 

classification and (2) furniture pose detection. Compared with the work in my M.S. thesis 

[12], this method has not made further development on instance-level classification, but it 

has focused on category-level classification because the furniture recognition performance 

is mainly decided by category-level classification; thus, to recognize a furniture item on 

the instance level is not necessary for a robot to follow a spatial language command.  
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Figure 3.5 The procedure of furniture perception 

For a home robot, the prerequisites of the furniture recognition algorithm include: (1) 

high recognition accuracy and (2) real-time processing. The recognition algorithm in this 

work is novel and specific for a home environment, and it takes full advantage of the 

Microsoft Kinect camera, which is used as the main sensor of the robot. The furniture 

classification is a multi-stage process. Given an input depth image, the first step is to 

transfer the data from an image to a point cloud and then to preprocess the point cloud data 

by segmenting the scene and extracting point clusters as potential furniture samples from 

that scene. Then, furniture classifiers are run on those samples to get their categories. 

Finally, the pose of each recognized furniture item is estimated and the environment model 

is built or updated. The workflow of the furniture perception is shown in Figure 3.5. 

3.6.1 Extract Furniture Sample 

3D point cloud segmentation and furniture sample extraction is preprocessed on the 

scene by using the Kinect to get furniture samples for recognition. In this stage, we first 

generate a point cloud with N points which is P={p1,...pN} from the depth image by the 

method described in [25]. After that, the coordinate of each point in the point cloud is 

resampled from the Kinect camera coordinate frame to the robot coordinate frame.  

Floor Detection 
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Since the camera has a tilt angle to the ground, the floor plane in the camera frame is 

not a horizontal plane, which requires the robot coordinate origin to be placed on the ground 

and the x-y plane to be horizontal. The transformation needs the floor plane in the camera 

frame, which calls for using the random sample consensus (RANSAC [26]) algorithm on 

the point cloud P. To speed up the convergence of the RANSAC plane extraction, only the 

points that are highly probable and close to the pre-estimated floor are used for processing. 

A subset point P’={pf: d(p, fθ,h)<0.1, ||p||<3}, where d(p,f) represents the distance of point 

p to the floor plane f, and fθ,h is the floor plane parameter roughly estimated by the Kinect 

tilt angle θ and Kinect camera height h. The formula of the floor plane fθ,h is zcosθ–xsinθ=h. 

This restriction can filter the clutter on the floor and only allows the points closest to the 

robot and the floor to be used to compute the floor plane parameter. 

 

Figure 3.6 Map of 3-D point cloud (left) as it corresponds to a 2-D grid map (right). 

The white regions of the map have points projected onto the floor 

and the black regions are labeled as background. 

 

Figure 3.7 An example of an extracted furniture sample. 

Extract Furniture Sample 
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After getting the robot coordinate point cloud, we removed all the points where z-axis 

values are smaller than 0.1 m so that the points above the floor could be retained. Then the 

points which were more than 4 m were removed because the measurement precision of 

Kinect declines with increasing distance and this scale is large enough for perception in a 

home environment. To segment the point cloud to furniture samples, we first plotted a 2D 

grid map by projecting all the points to an X-Y coordinate. The range of the coordinates 

were: −3.0≤x≤3.0m; 0m≤y≤4.0 m. The 2D grid map has a resolution of 0.1m×0.1m. 

If a point in the point cloud falls into the range of a grid cell, the cell will be set as occupied. 

Unoccupied cells are labeled as background (See Figure 3.6). In the following step the 

connected components in the grid map image were detected by using the method in [27], 

and were labeled with indices above zero (1, 2, 3…). The background cells which did not 

contain any points were labeled 0. The next step was to gather the points that belong to the 

same component to be a point cloud of sampling. Figure 3.7 shows the result of sampling. 

Finally, we ignored the samples if the height of the highest point was larger than two meters 

or the component had fewer than 10 cells because it was part of a piece of wall or a piece 

of clutter on the ground. We used a voxel grid approach to downsample the point cloud to 

create a 3D voxel grid over the sample point cloud. Then, in each voxel, all the points 

presented were approximated (i.e., downsampled) with their centroid. This reduces the 

points in a sample to increase the speed in classification and improve accuracy. The voxel 

sample of Figure 3.7 is shown in Figure 3.8. 
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Figure 3.8 The voxel sample of Figure 3.7. 

3.6.2 Normal Feature Histogram 

In object recognition, a feature is an individual measurable heuristic property of a 

sample being observed. Choosing discriminating and independent features is the key to any 

successful algorithm in classification. For the furniture classifier, the features of a furniture 

sample are built from the normal vectors of the points in the voxel point cloud.  The 

estimation of the normal value of a point uses its neighboring points. It is a local feature 

representation that captures the geometry of the underlying sampled surface around the 

query point.  

The normal vectors for each point are coded in the robot coordinate system, and the 

distance threshold to decide neighbor points is 0.025 m. Using the Point Cloud Library 

(PCL) [28], the normal vector of each point can be easily generated in a point cloud sample 

in real time. With the PCL normal estimator, the normal of a point is a 3-D vector which 

is generated by the methods presented in [23]. Figure 3.9 shows the normal vectors of a 

chair sample. 



 

 

30 

 

 

Figure 3.9 The normal vectors of a chair point cloud sample. 

A normal feature histogram that describes the entire furniture item as an integration of 

the normal values of all the voxel units is a 2D histogram map Mh, which is a map of normal 

vectors by radius (r) and height (z). The radius is defined as the distance from a point to 

the centroid of the furniture sample in the x-y plane. The height is the z value of the point 

in the robot coordinate. Considering the largest possible size of furniture, the range of 

radius distances is set at [0, 2 m] and for the range of height, the range is set at [0, 1 m]. 

The map grid is defined by “binning” on the ranges of these two variables, which is to 

divide the entire range of values into small intervals. The intervals of radius and height are 

both set at 0.05 m in the two 2D grid maps. The normal information is then coded to 

generate Mh. Because the robot can view a furniture sample from different directions and 

distances, it is necessary to make the furniture scale features to be invariant in rotation and 

scale. Thus, a normalized horizontal degree vp is delivered to each point p from its normal 

vector np = {nxp, nyp ,nzp} in the feature Mn, where  

𝒗𝒑 =

𝐭𝐚𝐧−𝟏(
𝒏𝒛𝒑

√𝒏𝒙𝒑
𝟐+𝒏𝒚𝒑

𝟐
)

𝝅 𝟐⁄
   3-1 
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The range of a vp value is in [0, 1]. The value of units in Mh which is defined by a pair 

of radius and height is defined by the means of vp values of the points adapted to that unit. 

For those units which have no points, their value is set to be −1. Finally, we have the 

features of a furniture sample. The orientation for the example of the chair shown in Figure 

3.7 is 312 degree.  

3.6.3 Support Vector Machine Classifier 

One of the challenges for perception of the robot system is that a furniture item may 

look different when viewed by the robot from a different perspective. Therefore, it is better 

not to train a single classifier for each kind of furniture. Thus, for furniture classification, 

a furniture class is defined by a furniture category combined with a direction. Table 3-1 

shows all the class names. For example, the couch is divided into three patterns which are 

couch-front, couch-side and couch-back. Those subclasses are captured by using K-means 

clustering on the training samples.  

Table 3-2 Furniture categories and subclasses 

Category Chair Small Table Dinner Table Couch Bed 

subclass 
chair+front 

chair+back 
small table dinner table 

couch+front 

couch+back 

couch+side 

bed+side 

bed+front 

 

Using the feature model mentioned above, both linear kernel-SVM and Gaussian 

kernel-SVM is used for the classification. For our robot, the outputs of classification are 

the pattern names in the form of “furniture+direction.” The two classifiers scored a higher 

than 90% accuracy on our furniture database. The Gaussian kernel-SVM was finally 

chosen in the system because it has high accuracy and is fast enough for real-time 

recognition. The comparison between our current furniture detector and other furniture 

detection approaches will discussed later. 
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3.6.4 Deep Neural Network Classifier 

The deep neural network (DNN) has become the leading model for all kinds of research 

fields on machine learning. It is also replacing the other traditional machine learning 

models, such as Naïve Bayes, SVM and KNN, for the task of object recognition [29]. DNN 

grabbed the attention of researchers after [30]  revealed that it could beat all other methods 

on the benchmark test. Thousands of papers have been published since then with hundreds 

of tools and new software kits developed. This milestone research ushered in the age of 

using a general and universal framework to solve all kinds of machine learning tasks such 

as classification, regression and optimization. 

The problem of furniture recognition can be solved as a classification problem. The 

DNN-based furniture recognition system will extract the point-cloud based feature samples 

from the scene by following the same process introduced in Section 3.6.1 and Section 2. 

Then it will recognize the furniture from a pre-defined set of types.  Many different types 

of DNNs have been implemented for object recognition purposes. The networks can be 

grouped into three main categories, which are autoencoders (AE) (Vincent 2010, p. 122), 

the restricted Boltzmann machine (RBM) (Hinton 2010, p. 123), and the convolutional 

neural network (CNN) [31]. The first two approaches are very general models used to 

construct a multi-layer neural network and are very popular for many machine learning 

problems. The third one, the CNN, is more popular in processing 2D image data, but is 

now becoming the model of choice for mainstream image processing tasks such as 

human/object detection [32] and character recognition [33]. CNN has performed well on 

image data, i.e., it does not outperform other data types like our 3-D point samples or the 

histogram extracted from them. Sometimes CNN, cannot do as well other DNNs [34]. 
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Finally, we built a seven-layer autoencoder based DNN for our furniture recognition 

system with a trade-off on speed and performance. 

The autoencoder DNN furniture recognition system contains five layers which include 

the input layer of the 200-length feature and the softmax output layer. The other three-layer 

structure contains the encoder layers where the node numbers are 512, 128, and 32 from 

the input side to the output side. The activation function for each layer is the purelin 

function (y = x). The network used to train the autoencoders is shown in Figure 3.10, and 

the structure of the object-recognition network is shown in Figure 3.11. The training of the 

autoencoder neural network included two steps. The first step used the network shown in 

Figure 3.10 to train the initial weight values between layers. The weights were updated by 

minimizing the objective function in equation below. 

𝑱(𝜽) = ‖�̃�(𝒙, 𝜽) − 𝒙‖𝑳𝟏   3-2 

where θ is the weights and bias of the multilayer network shown in Figure 3.10. The value 

x is the input vector on the left side and �̃� is the output vector on the right side of the 

network. We want to minimize 𝐽(𝜃), which is the difference between the two vectors. 

In this step, the weights of each layer in the encoder were adjusted so that the end layer 

of the network (the one with 32 nodes) can represent the input data. This reduced the 

dimension and improved the performance of the neural network. The second step was to 

train the network shown in Figure 3.11, which added the softmax output to the encoder. 

The first step is an unsupervised learning process, while the second step is a supervised 

learning process. We used cross-entropy as the loss function in the second step training. 
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Figure 3.10 The encoder-decoder network used for training the encoder. 

 

Figure 3.11 The final DNN for object recognition. 

3.6.5 Furniture Pose Estimation 

Empirically, to simplify the definition of an object position, the object is typically 

computed as the geometry centroid of its projection on the ground. However, because the 

size of the furniture is relatively large, the pose relationship between parts of the furniture 

items may not be the same, which means their relative position cannot be defined by a 

single direction. Hence, a furniture sample cannot be considered as a mass point. In this 

system, the position of a sample is represented by its corresponding connected region on 
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the grid map. The distance between two objects (including the robot) is then defined as the 

distance between their nearest points. 

Human subject experiments have shown that users sometimes reference the intrinsic 

frame of some furniture items (e.g., in front of the couch) [8, 10, 11]. Even without an 

intrinsic frame, references such as front and back may depend on the orientation of the 

furniture item (e.g., rectangular tables) [10]. Thus, it is important for a robot to precisely 

detect the orientation of a furniture item. Figure 3.12 shows some instances of orientations 

for some furniture items.  

 

Figure 3.12 The orientations of different kinds of furniture in robot coordinate. 

In my M.S. thesis [12], the furniture orientation was considered related to the normal 

of some functional planes on furniture items. This method was extended by developing a 

linear model to estimate furniture orientation based on normal directions of the sample 

point cloud. The goal of this system was to make its output get closer to the furniture 

orientation. For the basic model of a linear system: 

𝒚 = 𝒘 ° (𝒙 + 𝟏)   3-3 

where x is the feature vector and w is the weights. The dimension of w is one more than x 

by adding a bias input element. The feature vector x is generated from normal vectors of 

the point cloud sample—similar to the computation of Mn, but here it is changed to the 
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horizontal component qp of the normal vector np={nxp,nyp,nzp} for any point p in the point 

cloud. qp is also the orientation of point p in the robot coordinate frame:  

𝒒𝒑 = 𝒂𝒕𝒂𝒏𝟐(𝒏𝒚𝒑, 𝒏𝒙𝒑)   3-4 

The feature is drawn by the mean of qp for all the points on radius and height ranges. For 

each radius and height range, another feature with the value qp+π was added. The training 

process is the adjustment of the weight vector w on the q of different radii and heights. The 

policy goal was to decrease the region that is not related to furniture orientation. The 

training procedure is shown in Table 3-3. 

Table 3-3 The procedure of training an orientation estimator. 

Assuming x is L=R*H vector, length(w)=L+1=R*H+1. S is the number of training samples 

Init: w (0 ) = {1/L,…,1/L} 

for t=1 to S 

wl(t)=wl(t-1)*normalize(xl(t)-o(t)) 

w=w/max(w) 

end 

The normalized function sets the angle difference in the range of [0,π]. The updating 

process increases the weight of the grids of which value follows the orientation direction 

and decreases the other unrelated values. The orientation estimator had a good performance 

on the furniture items which have an obvious direction. This information enables the 

determination of the spatial relations between furniture samples. 

3.7 Experiment and Results 

This section discusses the experiments designed for testing the algorithms introduced 

in this chapter. Two experiments were run to verify the method performance. The first one 

was a static experiment of furniture recognition performance in category and instance. The 

second one was the detection of furniture pose including position and orientation. 



 

 

37 

 

3.7.1 Furniture Classification 

To reduce the effect of any other factors that may disturb experimental results, a static 

experiment was run for furniture recognition. The robot was used to take 2-D photos on 

furniture items from different distances and directions in our experiment environment. The 

database for the recognition experiment included five categories of furniture items which 

were all different in size and shape. These furniture items were used to build up the indoor 

environment for the human-robot interaction experiments. The furniture recognition 

system had been tested by both our apartment furniture database and the RGB-D scenes 

database [35]. 

3.7.1.1 Database 

As discussed in this chapter, the furniture category model was built based on a point 

feature cube. Five categories were defined for the environment model--small table, large 

table, chair, couch and bed. Two databases were used for testing which were the apartment 

furniture database (built with locally collected samples) and the RGB-D scenes database.  

The apartment furniture database used for the recognition experiments included 228 

RGB-Depth images taken with the Kinect for eight furniture items. It was also used in my 

preparatory M.S. work. The number of samples for each instance are shown in Table 3-4. 

Table 3-4 The apartment furniture database 

Instance Name Category Total Number 
Training Samples 

Number 

Testing Samples 

Number 

Round Table Small Table 32 8 32 

Blue Chair Chair 24 8 24 

Hexagon Table Small Table 36 8 36 

Wood Chair Chair 24 8 24 

Coffee Table Small Table 32 8 32 

Dinner Table Large Table 32 8 32 

Couch Couch 24 8 24 

Bed Bed 24 8 24 
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The RGB-D scenes database is from [35], and includes four categories of furniture 

samples and 25 instance types, which are shown in Table 3-5. The total number of instances 

is 226.  

Table 3-5 The RGB-D scenes database 

Category Instance Number Sample Number 

Small Table 6 54 

Chair 6 54 

Couch 6 54 

Large Table 7 64 

 

3.7.1.2 Results 

Two experiments were run to evaluate our furniture recognition method. The first 

experiment was run by the apartment furniture database. Eight samples were used for 

training, and all the samples (including training samples) in that database were used for 

testing. The results of category recognition are shown in Table 3-6. The second experiment 

used the whole apartment furniture database as training samples and tested the trained 

classifiers on the RGB-D scenes database. The results are shown in Table 3-7. 

 

Table 3-6 Furniture classification results on the apartment furniture database. 

Category Sample # Acc. (LSVM) Acc. (GSVM) Deep Network 

Small table 100 99% 98% 93.5% 

Chair 48 77% 95.8% 93.8% 

Large table 32 87.5% 93.5% 93.5% 

Couch 24 50% 80% 100% 

Bed 24 62.5% 87.5% 90% 

All 228 83% 93% 93% 

 

Table 3-7 Furniture classification results on the RGB-D scenes database.(No bed class in 

RGB-D dataset) 

Category Sample # Acc. (LSVM) Acc. (GSVM) Deep Network 

Small table 54 100% 100% 100% 

Chair 54 74% 100% 100% 
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Large table 63 71% 95.2% 100% 

Couch 54 0% 90.9% 100% 

All 225 61.6% 96.4% 100% 

 

3.7.2 Furniture Orientation Estimation 

3.7.2.1 Database 

Two databases were used to evaluate the furniture orientation evaluation. One was a 

specially designed database which is the subset of the apartment furniture database that had 

192 RGB-depth images; it was used for the orientation detection experiment. This subset 

apartment furniture database included eight furniture instances and 24 samples for each of 

them. These samples can be grouped into five categories. The 24 images included eight 

directions (0o–315o) and three distances (1 m–3.5 m). Furniture orientation test results were 

shown by measuring the difference of the value to the ground truth. The orientation of the 

samples in RGB-D scene database were also estimated. 

3.7.2.2 Results 

The results are shown from Table 3-8 as the absolute difference between the ground truth 

orientation and the estimated orientation. 

Table 3-8 Results of furniture orientation experiment (in degrees). 

Category Subclass 
Error mean/std 

(Apt. Database) 

Error mean/std 

(RGB-D Scene Database) 

Small table - - - 

Chair 
+front 4.5/2.3 2.5/1.7 

+back 7.9/5.6 2.9/2.1 

Large table - 4.7/2.5 - 

Couch 

+front 7.7/4.5 - 

+side 19.2/14.6 - 

+back 9.5/4.1 - 

Bed 
+front 4.5/3.1 - 

+side 6.5/4.9 - 
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3.7.3 Environment Modeling for In-room Scene 

3.7.3.1 Dataset 

Testing the furniture detectors and furniture pose estimators on the datasets is not 

enough to evaluate their performance on a real robot task. Thus, an additional experiment 

of modeling an in-room scene was designed to validate the robot perception system in the 

spatial language driven task. To make it convenient to compare the perception result with 

the ground truth, the system was tested in the 3D simulator introduced in Section 3.4. 

Sixteen scenes (four from each world) were extracted and the robot explored each to detect 

the furniture items in the scene. In this test, a scene is a furniture cluster with two or three 

pieces of furniture. The robot tried to detect the type, position and orientation of each 

furniture item in the scene and the results were compared against the ground truth.  

3.7.3.2 Results 

Table 3-9 describes the furniture detection results, including the error metrics on 

position, the orientation to the ground truth where the furniture items were placed in the 

scenes, and the observation on whether the spatial relationships detected matched the 

ground truth. Fourteen out of the sixteen scenes were detected with the correct spatial 

relationships. 
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Table 3-9 Results of environment modeling as shown by PE (position error), OE (orientation error), 

and SR (spatial relation) between the detected furniture items matching the ground truth. The third 

column lists the ground truth of the positions (x,y coordinate by meter) and the orientations (by rad) 

of the furniture items in the scenes. The fourth column lists the detected positions and orientations. 

The fifth column is the error between the ground truth and the detection. The last column lists the 

result that if the detected spatial relations could match to the ground truth. 

# Room 
Scene (Ground Truth) 

x(m), y(m), orientation(rad) 

Scene (Detected) 

x(m), y(m), orientation(rad) 

Errors 

distance(m) 

/angle(rad) 

If SR Match 

1 

Apartment 

couch: 4.5, 3.0, 1.57 

table: 4.0, 2.0, -1 

table: 4.5, 4.0, -1 

couch: 3.95, 2.71, 1.45 

table: 3.83, 2.01, -1 

table: 4.31, 3.92, -1 

0.62/0.12 

0.17/- 

0.2/- 

Y 

2 
table: 4.5, 7.0, -1 

chair: 5.75, 7.0, 3.14 

table: 4.89, 6.77, -1 

chair: 5.59, 6.87, 2.60 

0.45/- 

0.20/0.54 

Y 

3 

table: -1.25, -5.0, -1 

chair: -1.25, -6.0, 0 

chair: -1.25, -4.0, 0 

table: -1.06, -5.00, -1 

chair: -1.07, -5.98, 0.10 

chair: -1.08, -4.04, 0.24 

0.19/- 

0.18/0.10 

0.17/0.24 

Y 

4 
bed: 5.00, -3.00, 4.71 

table: 4.0, -2.0, -1 

bed: 5.00, -3.00, 4.71 

table: 3.82, -2.05, -1 

0/- 

0.18/- 

Y 

5 

HK Studio 

chair: -4.0, -1.7, 4.71 

table: -4.0, -3.0, -1 

chair: -3.87, -1.84, 4.23 

table: -3.85, -2.78, -1 

0.19/0.48 

0.26/- 

Y 

6 
couch: 0, -3.50, 0 

table: 1.0 -3.5, -1 

couch: 0.15, -3.50, 0.22 
table: 1.12, -3.37, -1 

0.15/0.22 

0.17/- 

Y 

7 
chair: 4.0, -3.3, 0 

table: 4.0, -4.3, -1 

chair: 3.84, -3.16, 5.35 

table: 3.85, -4.13, -1 

0.21/0.93 

0.22/- 

N 

8 
chair: 4.5, 3.0, 3.14 

table: 4.5, 4.0, -1 

chair: 4.37, 3.10, 3.10 

table: 4.31, 4.04, -1 

0.16/0.04 

0.19/- 

Y 

9 

One Bedroom 

House 

table: 3.5, 3.0, -1 

couch: 4.5, 2.5, 3.14 

chair: 4.0, 4.0, 1.57 

table: 3.39, 2.84, -1 

couch: 4.32, 2.01, 3.02 

chair: 3.89, 3.84, 1.73 

0.19/- 

0.52/0.12 

0.19/0.16 

Y 

10 
chair: 0.5, 0.5, 4.71 

table: -0.6, 0.9, -1 

chair: 0.66, 0.59, 4.81 

table: -0.41, 0.98, -1 

0.18/0.10 

0.20/- 

Y 

11 
chair: 1.5, 8.0, 1.57 

table: 0.5, 8.0, -1 

chair: 1.49, 7.82, 1.57 

table: 0.49, 7.8, -1 

0.18/0.0 

0.20/- 

Y 
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12 
chair: 4.5, 6.25, 0 

table: 4.5, 5.5, -1 

chair: 4.31, 6.22, 0.50 

table: 4.32, 5.48, -1 

0.19/0.50 

0.18/- 

N 

13 

Two Bedrooms 

House 

couch: 0, 0.5, 1.57 

table: -1.4, 0.5, -1 

table: -1.25, 2.0, -1 

couch: -0.14, 0.66, 1.48 

table: -1.38, 0.68, -1 

table: -1.16, 2.13, -1 

0.21/0.08 

0.18/- 

0.15/- 

Y 

14 
table: 1.0, 6.0, -1 

chair: 1.0, 7.25, 3.14 

table: 0.82, 5.94, -1 

chair: 0.82, 7.18, 2.72 

0.18/- 

0.19/0.42 

Y 

15 
chair: 3.5, 7.5, 3.14 

table: 2.5, 7.5, -1 

chair: 3.49, 7.28, 3.02 

table: 2.76, 7.32, -1 

0.22/0.12 

0.31/- 

Y 

16 
couch: 1.25, 2.0, 3.14 

table: 0.5, 2.5, -1 

couch: 1.16, 2.12, 2.93 

table: 0.42, 2.68, -1 

0.15/0.21 

0.19/- 

Y 

 

3.8 Summary 

The first experiment showed the results of recognition using the Kinect camera. The 

following three conclusions were made: 

1) The furniture detector built by the normal feature + SVM classifier provided a 

reliable approach to detect the static furniture objects in the indoor environment. 

The Gaussian kernel SVM performed better than the linear kernel version even 

though it took longer to compute the result. 

2) The result of the furniture detector using the deep neural network was not better 

than the conventional SVM-based detector for small furniture items. However, it 

gave a more robust performance on the larger furniture items. The reason is that the 

DNN-based detector can automatically capture more information on features from 

the furniture data than the hand-edited features. 

3) Another conclusion, which is not illustrated in the results table, is that for the chair-

shaped furniture items, it was easier to make accurate decisions when they were 

facing the Kinect camera, which means the favored orientation interval was 

between 180o and 360o. Although this represents some improvement on detection 

recognition compared to my preparatory M.S. work, accurate navigation is still a 
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challenge when the furniture sample (especially a chair shape) has its back to the 

camera. 

The results obtained in the second experiment show the factors that affect performance 

of orientation detection. The following two conclusions were obtained: 

1) The PCL and normal features contribute to improving the orientation estimation 

accuracy for all kinds of furniture items. 

2) It is still a challenge to estimate the orientation of large-size furniture items, i.e., 

dinner table or bed. It is better for a robot to learn about these furniture samples 

before navigation as long-term entities.  

The third experiment demonstrates the robot’s notable accuracy in modeling the 

environment, as the distance and direction errors were very small in most cases. Since we 

infer the spatial information by the entire 3D point cloud model rather than the centroid 

point of the furniture samples, this amount of error did not affect the result of the spatial 

relationship inference. 
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Chapter 4. Natural Spatial Language Grounding 

4.1 Introduction 

A home robot is now expected to go beyond a conversation agent to assist human users 

on some physical household tasks such as fetching and passing some objects. These tasks 

need built-in reliable communication and understanding between machine and human on 

spatial language so that the human can navigate the robot to the right places, using natural 

intuitive language. We call the procedure of interpreting natural spatial language for robot 

action as natural spatial language grounding. This chapter is about a system which includes 

the architecture and algorithm on natural spatial language grounding. The system obtains 

the natural spatial language commands or descriptions as input, and it segments the 

sentences to meaningful clauses. Here each clause was interpreted to an action or a spatial 

relation to describe the next path point which is called “grounding.” Then the groundings 

are places in order. The robot was driven by the behavior models of the groundings until it 

reaches the destination. Human language and human manipulations were collected to build 

the models of language grounding and robot behavior.  

This chapter include another two sections as background as overview. The second 

section is a review of my colleague T. Alexenko’s work on the part-of-speech tagging. The 

third section is a conference paper published in IROS 2014, which describes the whole 

system of spatial language grounding. The fourth section talks about using a long short-

term memory (LSTM) network to build the mapping from a natural language clause to a 

grounding.  
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4.2 Part-of-Speech (POS) Processing on Human Spatial Language 

4.2.1 Introduction 

 

Figure 4.1 The overhead map of the environment 

This work was mainly finished by my colleague Tatiana Alexenko from 2012 to 2013. 

It builds on top of the human robot interaction (HRI) architectures proposed by Skubic and 

Carlson. The purpose of this section is to discuss the basis for the semantic grammar and 

the necessary natural language processing (NLP) methods in more detail. Preliminary 

results for automatic chunking and part-of-speech tagging are presented. The results of 

chunking became the input of the spatial language grounding system. 

4.2.2 Semantic Spatial Language Grammar 

The spatial language grammar was developed based on the Carlson-Skubic indoor 

spatial language (CSISL) corpus containing 1024 spatial language descriptions collected 

from a human subject experiment first mentioned in Chapter 2.3. In addition to the primary 

corpus of 1024 actual utterances (CSISL), Carlson et. al. and Skubic [10] also created a 

template corpus consisting of 149 descriptions based on templates derived from the 

analysis of the primary corpus. The templates were created manually from words most 

frequently used by the experimental subgroups. Skubic et. al. (2012) [36] observed that 
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participants in these experiments very often used furniture in the descriptions they gave. 

Aside from some changes and additions on nouns, i.e. FUR for furniture and RM for room, 

the Penn Treebank [37] PoS tag set was used. The use of these semantic tags was meant to 

simplify aspects of chunking and further steps such as perception.  

4.2.2.1 Semantic Grammar and Nested Chunks 

Table 4-1 List of semantic chunk labels and their abbreviations. 

Outside Room Target Phrase ORMTP 
Outside Room Reference Phrase ORMRP 
Object Target Phrase ORMRP 
Object Reference Phrase OBRP 
Furniture Target Phrase FURTP 
Furniture Reference Phrase FURRP 
Inside Room Reference Phrase IRMRP 
Perspective Indication PERS 
Confusion Indication CONF 

 

 

Figure 4.2 The proposed semantic spatial language grammar applied to a real description 

(CSISL corpus) from human subject experiment conducted by Carlson and Skubic (2011). 
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Table 4-1 lists the semantic chunk types and their abbreviations and Figure 4.2 shows 

the proposed grammar applied to a real description. The semantic grammar proposed here 

is specific to the “fetch” task described in [11, 36], and in the CSISL corpus. The grammar 

has rules for deciding which labels can be parents to other labels. Target phrases are always 

parents of reference phrases. For example, generally OBTPs will be parents to other 

phrases (in some cases the rest of the description, including ORMTP) because this is the 

“goal” of the description. If the description started with “the cellphone is in the room on 

the right,” as many static “where” descriptions did, OBTP would be the parent of every 

other node. 

 

 

 

 

 

 

 

 

 

Figure 4.3 Architecture of the back-off semantic PoS tagger and the source of 

training data. The Brill tagger uses all the other taggers as a Base Line System 

 (BLS) and, therefore, does not have its own training data. 

 

The 1024 real descriptions in the CSISL corpus as well as the corpus of 149 template 

descriptions were annotated with PoS tags (including the special semantic tags). A hybrid 

approach of manual and automated annotation was used. NTLK [38] and standard Python 
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libraries were used for this task. Any punctuation, if present, was stripped because there is 

no punctuation when speaking, although it could be added back in with automatic comma 

and period placement methods. 

Corpus Annotation 

4.2.2.2 Part-of-Speech Tag Annotation 

A specialized back-off tagger was created as shown in Figure 4.3. A Brill Tagger [39] 

was trained using the back-off taggers (1-6 in Figure 4.3) as a base line system. The 

resulting PoS tagger was then applied to the rest of the spatial language corpus to provide 

PoS tag annotation. 

4.2.2.3 Semantic Grammar Annotation 

 

Figure 4.4 A portion of the annotated corpus (left) was stored in XML format,  

and a nested chunk encoding (right) was applied to this example. 

For the semantic grammar annotation, a manual approach was required; however, some 

automatic techniques were used. To simplify this task and provide a widely-supported 
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format, the PoS-tagged lists (descriptions) were then parsed with a coarse regular 

expression parser [40]. Figure 4.4 (left) shows what the end result looked like in an XML 

format after annotation. The annotators were presented with similar input with the 

exception of incorrect and missing chunk labels (from RegEx Parser) which they needed 

to fix. The XML tags around PoS labels were provided to the annotators to speed up the 

process. 

4.2.3 Nested Chunk Encoding 

The semantic grammar proposed in this section is nested unlike the traditional “chunks;” 

the nesting needs to be preserved since it captures useful spatial relationships. This made 

the commonly used inside-outside-begin (IOB) encoding [40]  unusable. The development 

of nested chunk encoding can serialize the nested chunk labels into a single label and 

preserve the structure. The method is very simple and the serial chunk labels are shown in 

Figure 4.4 (right).  

4.2.4 Results Discussion 

The PoS tagging results were in the upper ninety percentile, which is comparable with 

the state of the art and sufficient for the task. The text chunking results on the template 

corpus were very high, nearly 100% in some trials and no less than 93%, which is very 

high considering the nesting, which greatly increases the number of possible labels, and 

the small corpus size (149 template descriptions). The reason for the relatively low 

accuracy of the chunking on the real descriptions (CSISL) is a combination of factors. First 

there are lingering errors and a possible (not measured, but noticeable) lack of cross-

annotator agreement. The accuracy results of the subset annotated by Alexenko were about 

7% higher. Since the annotation was done over the course of two months, the annotators 
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became better at the task over time. The Brill-tagger may also not be the best method for 

the task, although it was chosen for its speed and availability. More complex models 

combined with voting schemes are likely to outperform Brill at this task just as they do at 

other NLP-related classification tasks [41]. Another problem was that the Brill tagger only 

operates on doubles, which means that only (PoS tag, chunk tag) or (word, chunk tag) could 

be used for training, not the entire triple, leading to a loss of potentially useful features. A 

more detailed analysis of the source of errors (likely rare labels such as “PERS” and 

“CONF”) needs to be conducted. 
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4.3 IROS2014 Paper: Using Spatial Language to Drive a Robot for an Indoor 

Environment Fetch Task 

Note: This section represents a word-for-word reprint of an article that appeared in 

the proceeding of IROS 2014. 

Abstract—This paper proposes a system that allows the use of natural spatial language to 

control a robot performing a fetch task in an indoor environment. The system processes 

spatial referencing language and extracts a tree structure of language chunks. The spatial 

language system is then grounded to a robot navigation instruction in the form of a 

sequence of actions based on spatial references to furniture and room structure; the best 

navigation instruction is selected by scoring. In addition, the Reference-Direction-Target 

(RDT) model is proposed to represent indoor robot actions. To control the robot for the 

fetch task, a behavior model is designed based on the RDT model. An assistive robot has 

been designed and programmed based on this system. The proposed spatial language 

grounding model and robot behavior model are tested experimentally in three sets of 

experiments. Results show that the system enables a robot to follow spatial language 

commands in a physical indoor environment even if the referenced furniture items are re-

positioned. 

I. INTRODUCTION 

The aging population is becoming a challenge that will continue to stress the care of 

seniors in the future. The old-age dependency ratio in the United States was 0.20 in 2012 

and will increase to 0.35 at 2050 [1][2]. In other countries, the situation is more severe. For 

example, the old-age dependency ratio in Japan was 0.39 in 2012 and is forecast to be 0.74 

in 2050, which means four Japanese workers per three retired older people (not considering 
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children) [1][2]. A shortage of labor leads to shortages of healthcare staff. This creates a 

need for assistive devices such as robots [3]. Surveys have shown that older adults would 

consider assistive robots for household tasks such as fetching and searching for missed 

objects [4]. Furthermore, older adults also prefer natural language rather than other 

communication methods for robot interaction. In this paper, we propose natural spatial 

language interface methods for communicating with a robot performing the fetch task. Here, 

we focus on the language translation and navigation of the fetch task. The grasping 

component is not included [13]. 

Robot spatial language understanding has been explored previously. Matuszek [5] 

proposes an idea to convert natural language commands to logic descriptions. Tellex et al. 

developed a probabilistic graphical model, named generalized grounding graphics, to 

derive the best grounding solution from natural language commands. It is realized on a 

forklift robot as a sequence of robot actions [6][7]. Kollar et al. developed an imitation 

learning policy to convert natural spatial language commands to sequential actions in an 

unknown environment. The method is tested on a simulation platform [8]. Fasola et al 

developed a model to generate a global path from using dynamic spatial relation references 

in a semantic map [9]. They assume the robot has a global knowledge of the working 

environment. Our work differs from the previous work in that different language structures 

are supported and we do not assume complete knowledge of the scene. Also, in this paper, 

we report test results with a real (non-simulated) robot in a physical environment. 

Details of our proposed system are included. The next section discusses spatial 

language grounding, i.e., how to ground natural language chunks to a robot navigation 

instruction. The Reference-Direction-Target (RDT) model is proposed; a scoring 
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procedure is used to find the best robot navigation instruction from the chunked natural 

language description. In addition, we introduce robot behavior models that support both 

dynamic and static spatial descriptions. Dynamic spatial descriptions use sequential actions 

such as “go forward” and “turn left” to navigate a robot to a target location. Static spatial 

descriptions use objects as references to describe a target location, i.e., “behind the couch” 

or “on the table next to the bed”. The third section shows the design of an assistive robot 

and its perceptual capabilities. The fourth section presents the experiment and results in a 

one-bedroom and one-living room apartment environment. The experiment was run in the 

physical world, which means the performance is affected by both the spatial language 

grounding model, as well as the robot’s perception and navigation capabilities. Finally, we 

conclude with discussion and future work. 

II. SPATIAL LANGUAGE GROUNDING 

When using natural language for a spatial oriented task, people prefer to use relative 

spatial references rather than precise quantitative terms. For instance, to describe the 

position of a cellphone, people may say “the cellphone is in the living room on the right on 

the table behind the couch” rather than “the cellphone is 3.21 meter from the living room 

door at a 45 degree direction”. However, it is not as easy for the robot to understand such 

human-like descriptions. We refer to the procedure to translate a natural language 

description into a robot-understandable navigation instruction as grounding. In this paper, 

the natural language robot fetch command is first grounded (i.e., translated) to a robot 

navigation instruction and then executed by a pre-defined robot behavior model. To ground 

natural language to robot navigation instructions, we first use the method discussed in [11] 

to extract a tree structure in the form of language chunks. Then we use a scoring procedure 
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to find the best robot command match for each chunk and connect them together to form a 

robot action sequence.  

 

Fig. 1 Reference types and their corresponding directions, defined from human subject 

experiment [13]. 

A. Fetch Task Model 

In our fetch task, the robot is assumed to have prior knowledge of the room structure 

as this is fixed. However, we assume that the placement of furniture and daily objects inside 

the room is not known to the robot. In the fetch task, a human speaker stands in a hallway 

outside the target rooms and gives the robot a spatial description of the target object. The 

robot addressee then starts from the hallway, moves to the designated room, and then 

moves to the target object. The target objects are assumed to be on the surface of furniture 

items so there is no need to search inside furniture. The robot uses its local perception for 

navigation and object recognition in this task. The fetch task process is divided into three 
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sub-tasks which represent three types of groundings which is a bridge between the natural 

spatial language description and the robot action:  

(1) Target Room: Determine the target room and enter the correct room, 

(2) Inside-room Navigation instruction: Move close to the target object by following 

the spatial description. 

(3) Target Object: Find the target object designated by the speaker.  

B. Reference-Direction-Target (RDT) Model 

The most difficult part of the task is to navigate the robot within the target room because 

the robot has no a priori information of furniture placement within the room, which may 

be changed by people who live there. The robot will use its own perception for navigation 

and object recognition. Guided by the human spatial language description, a robot can find 

a target object more efficiently than aimless searching. The Reference-Direction-Target 

(RDT) model is proposed which converts the inside-room spatial description into a series 

of actions with navigation instructions (grounding type 2, above).  

In the RDT model, Reference refers to objects in the room, furniture or even room 

structure, e.g. wall and door. It can also be a label that informs the robot about the behavior 

type it should perform. Dynamic commands are defined as a special kind of reference type 

which has no real reference object but rather uses a sequence of moves, e.g., turn left, go 

forward. Such reference types are different from static command behaviors that need 

perception to find an object used for reference in navigation. Several types of references 

are used in the fetch task, as described below. These references are collected based on 

human subject experiment [13]. 
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MOVE – This reference represents dynamic spatial language commands in which there 

is not a real reference object. For example, “turn right” or “go forward”. There may be a 

target object for this reference type. 

ROOM – This reference uses fixed room information in navigation, e.g., “move 

halfway in” or “to the left part of the room”. The Direction component shows the possible 

part or direction of a room as destination. Because the room structure is not changed, by 

using a compass, odometry and prior knowledge of the room structure, the robot can move 

to the target area. In the experiment, the robot has a semantic room map with walls, and 

doors for the navigation. 

WALL – A wall is used as the reference to define target position, e.g., “to the back 

wall”. The robot will start searching once a target is in the RDT node. 

ROBOT – When using the robot itself as the reference, it does not directly appear in 

the description, but rather ego-centric references are used, e.g., “behind you”.   

FURNITURE – A furniture item is used as a reference object. Based on previous work 

[10][11][12][13], the direction of the furniture reference follows human interpretation. For 

example, “in front of the chair” is defined using the intrinsic frame of the chair while the 

direction of the table and couch is defined by the viewing angle.  

Direction represents the position relationship between objects. It tells the robot where 

it should move to search for the target. The direction of each reference type is defined based 

on human speakers’ intentions. It may not be based on object ego-centric coordinates. For 

MOVE and ROBOT, the direction uses robot ego-centric coordinates. For FURNITURE, 

the direction sometimes uses viewer angle. For different types of navigation instructions, 

the reference frame for direction may be defined very differently. The directions used in 
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the robot fetch commands include: front, left, right, back, central, side, and between. The 

Histogram of Forces (HoF) is used to represent the direction reference [19][20]. Fig. 1 

shows the different reference types and their corresponding directions. 

Fig. 2 Spatial Language chunking tree example 

Target indicates the target furniture or target object in the navigation instruction. 

Sometimes there is not a target furniture word in the spatial language chunk. Often, the 

target furniture can be derived from content or human intention, usually, a table. There is 

a natural assumption that people usually put small objects on table-like furniture. An RDT 

node is built based on a target. It has one target and one or more reference–direction pairs 

because a speaker may use more than one reference to describe a target position. The 

FURTP chunk in Fig. 2 shows a multiple reference-pair example. If more than one 

reference-direction pair is given, the robot will skip remaining pairs once the target is found. 

C. Grounding from Chunking Tree to RDT model 

The RDT model can support either dynamic or static spatial descriptions with the same 

framework. The input is a chunking tree extracted by part-of-speech tagging [11]; see Fig. 
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2. The tree is parsed by a forward direction traversing process through the tree. The result 

is an action queue.  

To convert the chunking tree to a grounded navigation instruction (a sequence of robot 

actions), a scoring method is designed to find the maximum likelihood match for each 

chunk. It scores a chunk by two steps. First, it recognizes the grounding type. The 

grounding types include the target room, the inside-room navigation instruction, and the 

target object which represent the fetch sub-tasks. Then for the inside-room navigation case, 

the second step finds the reference, direction and target information (RDT node) of the 

chunk. Fig. 2 shows the procedure of a grounding example “The cellphone is in the living 

room on the right on the table to the right side behind the couch”. 

The scoring model is trained using spatial descriptions from a template corpus which 

summarizes the structure of 1024 collected spatial language descriptions for a robot fetch 

task [14]. There are 101 unique chunks which cover all the words for six target object fetch 

description sets. First, we manually label the grounding information of each element in the 

training chunks. Chunk elements include chunk tag, chunk text, parent chunk tag and 

children chunk tags.  

Extracting the grounding type can be viewed as a classification problem. The final 

result is the grounding type with the highest score. For a sample of chunk s, the scoring 

equation for grounding type classification is: 

T=Maximumtp(P(tp|tags)S(txs,TXtp)) 

T is the result of the grounding type classification. P(tp|tag)S(txs,TXTp) is the score of the tp 

grounding type. tags is the chunk name of the sample chunk s, and the definition of each 

kind of chunk name can be found in [26]; txs is the text of the sample chunk s; TXtp is a 
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corpus of template chunk text with chunk nametags and belongs to grounding type tp. 

S(txs,TXTp) is the degree of membership for txs to TXTp by weighted-Levenshtein-distance 

(WLD).  

S(txs,TXtp))=1–Minimum(WLD(txs,txtp)) 

The result of the first step is shown in Fig. 2.  

The following scoring equation is used in step 2. 

G=Maximumgd (P(gd|tags)S( txs ,TXtp)P(gd|prt_Tags)P(gd|phn_Tags)) 

G is grounding result. This equation can be used on all of the groundings in the RDT 

node, including reference, direction and target furniture/object. gd is all the possible 

groundings in a grounding type T which is derived from step 1. P(gd|Tags)S(txs,TXtp) 

P(gd|prt_tags)P(gd|chn_tags)is the score value of the grounding type. prt_tags is the parent 

tag of the sample chunk and chn_tags is the child tag of the sample chunk. Fig.2 shows the 

second step result for the example command. 

A RDT node may be built using more than one chunk. In the example in Fig. 2, the 

FURTP chunk and its two nested child chunks build a single RDT node. The FURTP chunk 

is grounded to “target: table”. The IRMRP is grounded to “reference: robot + direction: 

right”. The FURRP is grounded to “reference: couch + direction: back”. The groundings 

of IRMRP chunk and FURRP chunk both describe the position of the target table in FURTP.  

D. Robot Behavior Model 

The robot behavior model is built using the result of the spatial language grounding. 

The basic behavior of the robot is to compute the best point that fulfills the navigation 

instruction requirement and then let the robot move to it. The higher tier is a global 

sequence of three subtasks. The lower tier is for the navigation within the room by RDT 
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nodes. Dynamic descriptions and static ones are distinguished by using different state 

machine strategies. Because dynamic descriptions use no furniture as references or targets, 

they do not need furniture searching and detection behaviors. By using odometry with prior 

knowledge about the house structure and basic obstacle avoidance by range sensing (e.g., 

sonar), it is possible for the robot to move to the target location. However, the static 

command strategy requires the robot to search and recognize the reference and target items 

and because of the limitation on perception, the robot sometimes should move to an 

intermediate position to get a better view to improve its perception confidence. The system 

will try reference-direction pairs sequentially until the target is detected when there is more 

than one reference for a target. This is an improvement than previous work because it 

reduced the ambiguous in target searching and it then brought higher success rate in 

experiment results. 

III. ROBOT DESIGN 

A. Robot Design 

A mobile robot with the intelligence to navigate in an indoor environment and interact 

with a human has been designed and built to validate the performance of the method 

discussed in this paper. The robot has a differential drive chassis with an RGB-Depth 

camera.  

A Pioneer 3-DX (P3DX) robot was used as the robot chassis and driving component 

[22]. The robot has a 16 unit sonar array, eight in front and eight in the back. The tower 

frame is made of light aluminum and holds a Kinect camera and a laptop computer. The 

Kinect is popular because it can provide high quality synchronized color and depth data 

[23]. Usually its effective detection range is from 0.5 meter to 8 meters which is adequate 
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for indoor work. The controller of the robot is a laptop which runs the perception, robot 

behavior and human-robot interaction programs. The robot uses the Robot Operating 

System (ROS) [24][25], as a software platform. ROS provides libraries and tools to help 

software developers create robot applications. For robot navigation, we manually 

constructed map of room structure for robot and allowed it to use odometry for localization. 

However, the robot has no information about furniture items inside the room and it has to 

use visual perception to explore the furniture map. 

B. Visual Perception  

The spatial language corpus collected for the fetch task uses furniture items as reference 

objects [11][14]. Thus, the robot perception for the fetch task consists of two parts which 

are furniture recognition and furniture pose detection. Our previous work discusses details 

on the furniture recognition and furniture orientation methods [11]. 

1) Furniture Recognition 

Furniture recognition provides category classification of a furniture sample, whereas 

furniture pose detection identifies the position and the orientation of a furniture piece. We 

used features of shape, size, height and color for the furniture recognition challenge, using 

both RGB and depth images. The furniture recognition results are good but not perfect, 

which lends a realistic perspective to the experiments.  

2) Furniture Pose Detection 

Furniture pose detection includes both position and orientation. We use a grid map to 

represent the furniture positions and the robot because it retains the size and shape 

information which is used for the HoF-based spatial relations computation. The orientation 

is defined according to the different furniture categories. The orientation of table- shaped 
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furniture is defined by the orientation of the short visible edge [11]. The orientation of 

chair-shaped furniture is defined by the orientation of the chair back [11]. 

IV. EXPERIMENT AND EVALUATION 

1. Spatial Language Grounding Experiment 

Fig.3 Experimental environment with furniture and object placement 

Three experiments are used to evaluate the proposed system. The first experiment 

evaluates the translation (grounding) of the spatial language chunking tree to robot 

navigation instructions. We used the template corpus with 149 spatial descriptions, which 

summarizes the structure of 1024 collected spatial language fetch descriptions [14].Even 

our ultimately goal is to let the robot can interact with human by natural talking, all the 

commands are input in text form in this experiment so that the evaluation can be 

independent from speech recognition. The descriptions were categorized by major 

syntactic differences across instruction type (how/where) and a function of landmark type 

(none, goal, path). The how commands were mainly dynamic (sequential actions), whereas 

the where commands contained more static descriptions [14]. For different landmark 

conditions, none means no furniture reference was used. A goal landmark included a spatial 
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reference description of a table where the target was located. A path landmark means there 

was furniture used as reference in the description along the path to the target [14]. The 

object names and positions are shown in Fig. 3. The ground truth for this experiment was 

manually edited. We used 36 commands for training (six for each of 6 target objects) which 

were representative of both dynamic and static descriptions. All 149 descriptions were used 

for testing. The result is shown in TABLE I. 

TABLE I Spatial language grounding experiment results (in %) 

Types and Landmarks 
How vs. Where Goal vs. Path vs. None 

Total 
How Where Goal Path None 

Successful Rate 89.4 81.0 89.5 72.54 100.0 87.9 

 

2.1.Robot Behavior Test 

The robot behavior model was evaluated in a two-room environment which has the same 

structure used for collecting the spatial descriptions. The room map and furniture and 

object placement are shown in Fig. 3. After the spatial language grounding procedure, there 

are 33 unique robot instruction combinations generated. To evaluate the robot behavior 

separately from the spatial language translation, this experiment used manually generated 

navigation instructions. In a fetch task, the robot is required to start from the hallway, enter 

the target room, then move along a path to the target furniture and take a picture of the 

target object. The robot state in each frame for each trial is recorded. An RGB image is 

taken with the robot’s Kinect at the end of each trial. The criterion of success is that the 

target object is recognizable on the camera picture at the end of the trial. We ran both 

simulation and real robot experiments with improved robot behavior model. The results are 

displayed by landmark type in TABLE II with a comparison to the previous simulation 

experiment [14]. 
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TABLE II Robot behavior experiment results (in %) 

Experiment Type Goal Path None Total 

Simulation (Previous) 89.5 40.0 98.0 84.6 

Simulation 89.5 86.0 98.0 90.1 

Real Robot 50.0 78.6 100.0 81.3 

 

3.2.Robot Behavior Model Robustness 

Fig. 4 Modified room placement for Experiment 3. 

The robot behavior model was further evaluated for robustness by changing the 

furniture placement in the scene. In real life, the furniture position may be changed a little 

bit without notice by people. Such a change usually does not affect spatial relations 

between furniture objects. Therefore, a robot should have the ability to keep an accurate 

spatial understanding with a slight furniture position change. A modified furniture 

placement of the rooms, as shown in Fig.4, was used to test the robot behavior model again 

using the same navigation instructions. The results of the two experiments are compared 

in TABLE III. 

TABLE III Robot behavior model robustness experiment (in %) 

Experiment Type Goal Path None Total 
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Original Placement 50.0 78.6 100.0 81.3 

Modified Placement 33.0 78.6 100.0 78.1 

 

Fig. 5 shows pictures of the scene and robot view for the fetch description: “Go into 

the room on the left. Move about halfway in and then turn right. Go forward to the table 

against the wall with the chairs and there is the mug.” Fig.6 shows the robot path of the 

fetch task. The path consists of a set of purple short lines. Each line represents a robot 

position in the path. The slope of each short line is the robot orientation.  

Fig. 5 The left image is a scene photo taken by an external camera. The right image show a view 

from robot Kinect camera. 

 

Fig. 6 The robot path for the fetch task, the X is the position of the target furniture. 
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V. CONCLUSION 

The work in this paper enables the robot to follow spatial language descriptions for a fetch 

task. The methods proposed here can be expanded to a standard spatial language 

understanding model. In the paper, we discuss a method to ground chunked spatial 

descriptions to robot navigation instructions. We defined a Reference-Direction-Target 

model which supports both dynamic and static spatial descriptions for indoor navigation 

instructions. With the RDT model and the HoF, which models spatial relations, the robot 

behavior can be built dynamically. A robot system was built to evaluate the system 

introduced in this paper. The spatial language grounding experiment shows good results 

for both dynamic and static descriptions, and includes improvement over the work in [14]. 

The robot behavior model experiment evaluated the basic method in a real world 

environment. However, the perception of the real world robot yielded a lower performance 

overall compared to the simulation experiment. In our result, the “Path” and “None” 

landmark type result is better than simulation due to an improved grounding algorithm in 

RDT node building. An analysis of the robot trace shows that the robot sometimes 

incorrectly detects furniture which results in the wrong reference and direction selection. 

This decreased the performance in the “Goal” landmark case. The robot behavior model 

robustness experiment demonstrated the robot is robust on small furniture position changes 

that retain basic spatial relationships between furniture items.  

We will continue to improve the spatial language grounding system and the 

corresponding robot behavior model. Future plans include an experiment on a larger corpus 

collected from older adults rather than the templates. The grounding system will be 

improved for the end-user. Moreover, we will also improve the perception by building 
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more precise furniture models to solve occlusion problems. We will continue simulated 

and real robot experiments to evaluate the robustness of the system in new room structures 

and with varying object placement. Our ultimate goal is to build reliable robot to assist 

elderly people in the home environment. 
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4.4 Long Short-term Memory-based Spatial Language Grounding Model 

4.4.1 Introduction of Recurrent Neural Network (RNN) 

 

Figure 4.5 Conventional recurrent neural network 

http://wiki.ros.org/
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Since deep learning is such a huge component of artificial intelligence research, it is 

reasonable to try it on the spatial language grounding system. Even though the recurrent 

neural network (RNN) does not have many layers in its structure, it is still considered a 

type of deep neural network for its complicated connection form and its unfolding to a 

multi-layer full network when it is being trained [42]. The structure of a conventional RNN 

is shown in Figure 4.5. This figure shows that the input of the network not only comes from 

new incoming data but also comes from a branch at the last output. This indicates that the 

output of an RNN is determined by both input and the last output, and the last output is 

calculated from the last input and the output before the previous output. Thus, we can 

conclude that the RNN will predict an output by both input and previous output which has 

been proved by several research works [43].  

However, the conventional RNN system has a problem of long-term dependencies. The 

problem is that even though the output can connect to the previous information of the 

present task, the learning of the connection from the previous information to the present 

output will become unstable and unreliable when the gap increases. Here the gap is the 

distance between the previous information and the present. For example, when using the 

RNN to predict the word in a sentence “the car is on the road”, the only information to 

predict the word road is the previous word car. Here the gap is small since we only predict 

the word road using the information in the same sentence. However, for the case “it is 

raining outside, and I will take an umbrella”, we can only predict the umbrella when we 

trace back to the word raining; thus, there is a much larger gap between the two words. 

The conventional RNN may work for the first case when the previous information is 

closely related but would have difficulty training a long-term connection in the second case.  
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Figure 4.6 An LSTM cell for the LSTM network 

Long short-term memory (LSTM) networks, introduced by Hochreiter[44] and Gers 

(2000, p. 131) [45] are a type of the recurrent network that can learn “long-term” 

dependencies. LSTM is explicitly designed to avoid the long-term dependency problem 

caused by the differences in structure. The complexity of the paths and gates from the 

inputs and outputs from the input and last output to the present output is much more 

noticeable in LSTM. The core idea behind LSTM is to control information through using 

the elements. Four main elements make up an LSTM node, also referred to as a memory 

cell, which includes three gates: 1) input gate, 2) output gate and 3) forget gate, followed 

by 4) a neuron with a self-recurrent connection. The structure of an LSTM cell is shown in 

Figure 4.6. The input gate allows or blocks the incoming data (new and recurrent) to alter 

the parameter of the cell. The output gate allows or prevents the state of the memory cell 

to influence the next neurons in sequence. Finally, the forget gate controls the self-recurrent 

connection, allowing the cell to remember or forget its previous state as needed. 

The equations to compute the elements in Figure 4.6 are: 

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 
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𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

𝒄𝒕 = 𝒇𝒕 ∘ 𝒄𝒕−𝟏 + 𝒊𝒕 ∘ 𝝈𝒄(𝑾𝒄𝒙𝒕 + 𝑼𝒄𝒉𝒕−𝟏 + 𝒃𝒄)  4-1 

Here xt is the new input vector, ht is the output of the hidden layer, and ct is the cell 

state vector. The variables W, U and b are weight matrices and bias vector. The activation 

function σg is a sigmoid function, and σc is a hyperbolic tangent function. 

4.4.2 LSTM-based Spatial Language Grounding Model 

Our LSTM-based spatial language grounding model will use the words vector of the 

leaves phrase in the chunking tree as input and output of the grounding information. The 

model is designed to replace the old grounding model discussed in Section 4.2.II.C, which 

determines the RDT node by matching the nearest phrase in the dictionary.  

 

Figure 4.7 The LSTM-base spatial language grounding model 

The structure of the LSTM grounding model is shown in Figure 4.7. The input is a 

tagged utterance chunk presented as a binary vector. The vector is concatenated by two 

one-hot feature vectors which are chunk type and chunk word. The chunk type is one of 

the types shown in Table 4-2 ([15]), and the word is one from the dictionary extracted from 
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the CSISL template [8]. The output is the grounding class decided by the softmax function. 

We grouped the groundings into five types which are target room, target object, reference, 

direction, and target. Five LSTM networks were trained for the five grounding types, and 

for each grounding type, we had Ntype+1 output at the softmax output layer, where N is the 

number of the grounding classes for the ground type. The last output represents outlier. To 

build a universal model for grounding, we set the same structure for the LSTM network of 

each grounding type and used different data and strategy to train the networks. The input 

vector along with the late output hidden layer vector become the final input of the LSTM 

node. Here, we set the nodes of the hidden layer to be 512. The hidden layer with 512 nodes 

was then connected to the final output layer by a weight matrix plus a bias vector. The 

linear activation function was used for this connection. The cross-entropy cost function and 

gradient descent strategy was used to update the weights in the network.  

Table 4-2 List of semantic chunk labels and their abbreviations. 

Outside Room Target Phrase ORMTP 

Outside Room Reference Phrase ORMRP 

Object Target Phrase OBTP 

Object Reference Phrase OBRP 

Furniture Target Phrase FURTP 

Furniture Reference Phrase FURRP 

Inside Room Reference Phrase IRMRP 

Perspective Indication PERS 

Confusion Indication CONF 

 

We used Tensorflow [46] to train the LSTM network. An “unfolded” version of the 

network, which contained a fixed number (num_steps = 10) of LSTM inputs and outputs 

was created to make the training tractable. The model was then trained by fill the inputs of 

the length num_steps at a time, and a backward pass was performed after each such input 
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block. The weights in the LSTM network were updated by the average of the update 

variants in each node with the softmax_cross_entropy_with_logits function in Tensorflow. 

4.4.3 Experiment and Result 

We extracted 818 chunks, each of which had a chunk type and a phrase from the CSISL 

template for training and testing. All the chunks were vectorized to a 73-length (7 chunk 

types + 66 words) binary feature vector. The batch size was set to four so that the network 

would densely update during training. The iteration number was set to 10000.Two-thirds 

of the 818 samples were randomly selected for training and the remaining one-third were 

used for testing. We bootstraped the training for 10 steps and show the average accuracy 

results in Table 4-3. 

The results of the LSTM-based grounding model include the accuracies of the 

prediction on each kind of grounding. The accuracy was computed by 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
×100%. The item All represents the accuracy of labeling a 

short spatial language clause on all the grounding types. The comparison between the 

previous approach and the LSTM network is shown in Table 4-4. 

Table 4-3 Results of the LSTM-base language grounding model for each type of grounding 

Grounding Type 
Accuracy (%) 

by LSTM network 

Target room 98.5 

Target Object 97.1 

Reference 97.1 

Direction 96.0 

Target 100 

The whole spatial command 89.7 

 

Table 4-4 The comparison on the accuracy of the whole command between the previous 

approach and the LSTM network. 

Accuracy (%) 

by Previous Approach 
Accuracy (%) 

by LSTM network 

87.9 89.7 
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4.4.4 Conclusions 

The LSTM-base spatial language grounding model provided an alternative option to 

the WLD-based dictionary-query system for language grounding. Their performances were 

very close. Since we did not develop the system in large-scale data, which is a foundation 

to efficiently implement DNN, it was not easy to arbitrarily determine which model was 

going to give the best performance. However, the LSTM model provided a more flexible 

and generative approach to build the spatial language grounding model when new corpus, 

spatial concepts or entities were imported into the system. Even the old spatial language 

model predicts the results based on the word frequency of the human spatial language 

corpus; thus, we could not avoid manually editing some of the rules to refine the model. 

LSTM provided a solution to make the model converge to a state with better performance 

without human correction. 

However, the LSTM network had the essence of a black-box model which made it 

unpredictable in some cases. The WLD-based model can always give a good prediction for 

the spatial language clauses stored in the dictionary, while the LSTM may predict the 

wrong result even for the learned cases. 
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Chapter 5. Building Robot Behavior Policy for Spatial Language 

Commands by using Programming by Demonstration (PbD) 

5.1 Introduction 

5.1.1 Motivation 

The work in this chapter is a further exploration on directing robots using spatial 

language. It was developed on the basis of previous work [13-15, 36] using a robot project 

designed for robot fetch tasks. In the previous work, a framework was introduced, which 

extracted a grounding model from a natural language command [13, 14]. The grounding 

model was defined by a reference-direction-target (RDT) model which came from actual 

human spatial language experiments conducted by Carlson and Skubic [11]. This 

represents an action sequence of the robot task. After getting the action sequence, the robot 

then executes actions which are determined by a robot behavior policy until it reaches the 

target object. In the robot system fetch task, the robot behavior policy model maps the RDT 

model to the robot moving action.  

 

Figure 5.1 Ambiguity in understading spatial language: When the human user 

directs the robot to “go to the front of the couch,” the move-to targets can be 

considered as place A or place B, which are both possible to a human addressee. 

Programming the policy model of a robot is a challenge. In a robot system, policy 

defines the rule of the robot action with a given input. In our robot system, the input 
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included a spatial command from the human user and sensory information. In the previous 

robot system, a policy was fixed for a certain kind of command. Policies were manually 

edited by the robot developer, which represents a significant amount of programming work. 

Moreover, during the human subject experiments, we found that human addressers can 

have different explanations for one spatial command. For example, in Figure 5.1 the user’s 

choice is position A, which is the target place of the clause “in front of the couch,” but 

another user will choose position B based on the same command and position. This causes 

an ambiguity problem in policy programming and robot developers have not been able to 

build a rule to determine the move-to target before interaction with the robot user. The 

robot programmer must prepare different policy models to adapt to various user needs. 

Overall, building robot behavior policies not only requires professional skills based on 

robotics science but also requires programming knowledge to enable the robot to perform 

the given task in a proper working environment with an understanding of the user and how 

he or she will interpret, respond and communicate with a social robot. The development of 

a robotic system by hand is challenging and time-consuming. As a result, machine learning 

was applied to policy programming. In this chapter, we illuminate a framework to build a 

robot behavior policy model by robot learning rather than by hand, which was the strategy 

used in our previous work. Our system uses a particular approach to robot learning which 

is programming by demonstration (PbD) [47]. Within the PbD, a policy is learned from 

demonstrations provided by a teacher. We defined examples as sequences of input-output 

pairs that are recorded during the demonstration of the desired robot behavior. The input 

includes information from two sources: (1) from sensory information which assesses the 

spatial relations between objects observed in the robot working environment and (2) from 
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the human user’s ability to use and interpret spatial commands. We represent the sensory 

information by an in-house developed original world state feature (WSF), which uses a 

spatial command as an RDT node. By applying machine learning to the examples, we are 

able generate a rule to find a desired move-to target for each kind of spatial command.  

5.1.2 Organization 

Details of the proposed framework are included. In Section 5.2, we introduce some 

related work on robotic language control (especially spatial language control) and robot 

learning. In Section 5.4, we describe our world state feature model, which is a quantified 

representation based on the spatial relations between objects detected in the environment 

by robots. Section 5.5 introduces the human demonstration interface, and work on how a 

policy for a spatial command was built by using PbD. Section 5.6 presents a robot learning 

experiment and results in an indoor environment. The experiment was run in both 

simulation and in the physical world. Its purpose was to examine the feasibility of using 

robot learning in a spatial language navigated robot. Finally, we conclude with a summary 

discussion and recommendations for future work.  

5.2 Related Work 

5.2.1 Natural language control robot 

The literature addressing natural language control robots is limited but growing. Lauria 

et al. [48] developed an instruction-based learning (IBL) model grounding the natural 

language to robot understandable symbols, which worked using a road map. Matuszek et 

al. [49] proposed an idea to transform natural language commands to actions and control 

structures and trained a parser based on example pairs of natural commands and 

corresponding control language expressions. Fasola et al. [50] built a model to generate a 
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global path in a semantic map by using pragmatic fields and tested it in a pick-and-place 

task. Tellex and Kollar et al. [51-53] used a probabilistic graphical model, referred to as 

generalized grounding graphics (G3), which used the structured nature of human language 

to learn actions from the command corpus and environment feature. To demonstrate 

moving action to a mobile robot, Skubic and Chronis [54-56] designed a method of using 

sketched route maps to navigate a robot, which first generated a linguistic description of 

the moving direction and then plotted a path on it.  

5.2.2 Robot learning 

The problem of learning a rule of mapping between world state and robot action, which 

is called “policy,” is becoming a very challenging work due to the increasing complexity 

of robot tasks and working environments. Thus, the problems of policy programming are 

formulated to the development of machine learning system and skills [57]. In addition, 

there is an increasing need for an easy programming learning method for unexperienced 

users when a robot is becoming ubiquitous. Programming by demonstration (PbD) is an 

approach to robot learning, which was developed as a solution for a problem. In a humanoid 

robot, PbD has been an important method to generate a more stable bipedal gait by learning 

from a good teacher, i.e., a human [58]. PbD is also gaining popularity in industry as 

humans and robots cooperate as training robots learn techniques from the demonstration of 

human workers [59]. For work on language controlled mobile robots, Kollar et al. [60] 

developed an imitation learning policy to teach the mobile robot to detect the move-to 

target by command and observe the relevant world state. Their work simplifies the 

environment map by converting it to a graphic model, and the policy is to select a node that 

best matches the command. Compared to the previous work, ours is a user-oriented system 
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which has a friendlier and more efficient demonstration interface for non-expert users. 

Moreover, the robot can work in a partially unknown environment and support online 

training. 

5.3 The Multi-Layer Model of Spatial Information 

 

Figure 5.2 The four-layer spatial information model. 

The spatial language grounding system builds a bridge between human spatial language 

and robot actions by converting the spatial information from text formatted natural 

language to numerical formatted robot control parameters. Due to the great complexity in 

spatial information, it is very difficult to model the spatial information from the natural 

language domain directly to robot action. Our system breaks the problem down into small 

steps. It shows the spatial information in four layers (Figure 5.2): 

(1) The first layer is the natural spatial language. 

(2) In the second layer, the words in the natural language description are grouped into 

chunks with meaningful tags by using part-of-speech algorithms [15, 39]. In this layer, the 
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words containing spatial information are detected and tagged, and the natural language is 

converted to a tree structure. 

(3) In the third layer, the tree structure is translated into a grounding model in the form 

of the reference-direction-target (RDT) format which was proposed by [13, 14]. The RDT 

model eliminates the uncertainty and ambiguity in human language and conveys a robot 

understandable message of a sequential action list or reference-based descriptions which 

allows the robot to move to find the target object. 

(4) The fourth layer is a numerical format representation called world state feature (the 

detail will be discussed in Section 5.4), which describes the spatial relations of both 

direction and distance between the objects in the environment. The data of this layer will 

be taken into the robot behavior model to infer a coordinate as the destination of the RDT 

node. After obtaining a move-to coordinate, the robot can be controlled by any path 

planning algorithm to move to the target. The system reduces the ambiguity of the spatial 

language and represents spatial information in a more understandable form to machine 

layer by layer. 

5.4 World State Feature (WSF) 

A robot behavior policy is a response to outside input by the robot. That is, it can be 

seen as mapping from the input information to the output action. For an indoor mobile 

robot, the input includes the user’s command and sensory information from the outside 

environment. To give a robot concise and accurate information for following spatial 

directives, we designed a world state feature (WSF) model. The model registers the objects 

in the robot’s working environment and the spatial relations between them. These spatial 

relations between objects are quantified as histograms in our model to the robot. They are 
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then connected to a certain RDT formed spatial command grounding model by training so 

that the robot can understand the spatial concept of a specific command. A WSF describes 

an instance of a spatial description situated in the environment using spatial relations. Each 

spatial relation is defined by a reference object, a described target object, spatial type (either 

distance or direction) and a numerical histogram. They work together as a unit and 

represent a spatial relation variable (SRV).  

5.4.1 Entity 

We use “entity” to describe objects in the robot’s working space. In the WSF model, 

an entity e={c,ρ,θ} includes the information of class name c, a 2-D point cluster ρ which 

draws the projection region of the object on the floor plan and orientation θ. We count four 

different kinds of entities, which appear in the WSF model’s working environment. Figure 

5.3 illustrates these entities, which are: 

 

Figure 5.3 Four different kinds of entities: Going clockwise, we can start with CR (current-

robot entity), then go down to the left-hand corner for OR (original-robot entity), travel straight 

across  to L (long-term entity), and end up with S (short-term entity) 

Long-Term Entity (LE): A long-term entity is a permanent structure in the 

environment such as a wall or door. Currently the long-term entities are all rooms or 

room structural elements. The front of an intrinsic coordinate is defined by the outside 
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direction of the exit. The long-term entities are recorded in a pre-prepared occupancy 

grid map.  

Short-Term Entity (SE): A short-term entity is a small and movable object like 

furniture, an electric appliance, a plant, and daily objects. They do not have a fixed and 

known location in the robot’s working environment and the robot will not store their 

positions before a task. They are detected and labeled in real-time during a fetch task. 

Current-Robot Entity (CR): A current-robot entity represents the robot state at the 

current time. It is used only to assess the possibility of becoming the move-to target of 

a pose vector. 

Original-Robot Entity (OR): An original-robot entity is the robot state at the starting 

time when following an RDT node.  

Entities are not only identified according to a spatial scale but also by time in the robot 

working environment. For example, the CR entity describes the robot at the current time 

of observance, while the OR entity represents the starting time for the robot when it first 

received the command. Both entities describe the same object. 

5.4.2 Spatial relation variable (SRV) 

Spatial relation variable (SRV) is a quantified representation of the spatial relation 

between entities in the robot working environment. An SRV includes the following 

components: (1) the name of the reference entity er, (2) the described entity ed, (3) the 

spatial relation type t and (4) the spatial relation feature vector f of that type. We use φ to 

denote an SVR, φ={er, ed, ft}. The three types of SRVs are direction SRV (DIRSRV), 

distance SRV (DISTSRV) and rotation SRV (ROTSRV). The feature vector of direction 

or distance is the histogram of a linguistic spatial variable while rotation is the angle at 
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which an entity rotates from the origin time to current time. We only compute the rotation 

for the robot in our system. It should be noted that direction type and distance type of an 

SRV have directionality, which means that for two entities, A and B, the A-to-B SRV are 

usually not equal to B-to-A. 

Histogram of Forces 

The histogram of forces approach is used to compute the relative position between two 

objects. The objects used for this method can be either crisp or fuzzy. To measure the 

weight of the spatial relation in an angle θ that covers A to B, and assuming Δθ(v) is a batch 

of vectors, of which have an interaction with A and B. The disjoint segment of the 

interaction that Δθ(v) has with A and Δθ(v) with B is the weight of angle θ.  

 

                          (a)                                      (b)                                        (c) 

Figure 5.4 (a) The two objects A and B, (b) histograms of forces for 

A wrt B,  and (c) histograms of forces for A wrt B. 

Assuming the two objects, A and B, with an angle θ, the theory of forces (Hof) shows 

the weight of how much “A is in direction θ of B”. A typical histogram of forces is shown 

in Figure 5.4. 

The histograms of constant (dark gray) and gravitational (light gray) forces for objects, 

A and B, are shown in Figure 5.4(b) and (c). By the histograms of forces the weight of each 

direction can be determined. 

Direction Spatial Relation Variable (DIRSRV) 
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A DIRSRV describes the direction from a reference to a target by a histogram vector 

of weights on linguistic direction variables. Let SVRdir={er, ed,, fdir} to denote an example.  

 

 

 

 

 

          

               (a)                                              (c)                                               (e) 

                                   

                (b)                                             (d)                                               (f) 

Figure 5.5 (a) The intrinsic frame of entity A, (b) entity A and entity B, (c) histogram of 

direction: B to A, (d) DIRSRV: B to A; (e) histogram of ditance: B to A, and (f) DISTSRV: B to A. 

To compute the vector f, we first use the theory of histogram of forces (HoF) as 

described in [61] to compute the feature vector of the direction type SRV. The HoF of ed 

to er is calculated by the method introduced by [62]. An HoF is a 181-length array, which 

represents the weights of equally divided directions from 0 to 360 degrees. Assuming two 

objects, A and B, (Figure 5.5(a)) has the spatial relation like Figure 5.5(b), let us define 
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h(A,B) as the HoF vector B to A. In our system, we consider A to be the ed and B as the er. 

To draw a distinction between the two situations where ed is inside and outside of er, we 

separately compute the HoF by dividing ed into two parts, with edi (inside part) and edo 

(outside part). Then we have h(er,edi) and h(er,edo) (Figure 5.5(b)) and can connect them as 

a 362-length vector. We do this because the HoF vectors for these two situations are in the 

same form even though they are different in the spatial relation and spatial concept. After 

we compute the two HoF vectors, we weight them by the area ratio. The new HoF vectors 

Fi ad Fo are expressed as: 

𝑭𝒊 =
𝒉(𝒆𝒓,𝒆𝒅𝒊)

𝑺𝒖𝒎(𝑭(𝒆𝒓,𝒆𝒅𝒊))

𝑵𝒅𝒊

𝑵𝒅𝒊+𝑵𝒅𝒐
 5-1 

𝑭𝒐 =
𝒉(𝒆𝒓,𝒆𝒅𝒐)

𝑺𝒖𝒎(𝑭(𝒆𝒓,𝒆𝒅𝒐))

𝑵𝒅𝒐

𝑵𝒅𝒊+𝑵𝒅𝒐
 5-2 

where Ndx represents the number of points in the x part of the entity ed. The sum is the 

summation of the HoF vector. Then, we can obtain ΣFi+ΣFo=1, which normalizes the HoF 

vectors. 

To increase the execution speed, we do not directly use HoF as a direction feature but 

define eight linguistic direction variables front, left, back, right, inner-front, inner-left, 

inner-back and inner-right (Figure 5.5(c)), and transform the HoF vectors according to 

their weight. The weights show how much the HoF can support those directions. For a 

specific direction q, assuming that the angle ρ has the highest weight to support that 

direction, we define the weight of q by the HoF vector F, which is expressed as: 

𝒘𝒒 = ∑
‖𝒙−𝝆‖

𝝅
𝟒⁄

𝝆+
𝝅

𝟒

𝒙=𝝆−
𝝅

𝟒

𝑭(𝒙) 5-3 

and the DIRSRV vector fdir is: 

𝒇𝒅𝒊𝒓 = [𝒘𝒐𝒖𝒕𝒆𝒓−𝒇𝒓𝒐𝒏𝒕, … , 𝒘𝒊𝒏𝒏𝒆𝒓−𝒓𝒊𝒈𝒉𝒕]  5-4 



 

 

87 

 

This transform reduces the computation but keeps the directional information so that it 

is possible to support decisions in real time. 

Distance Spatial Relation Variable (DISTSRV) 

A DISTSRV describes the distance from a reference to a target by a histogram vector 

of weights on different distance variables. To build a DISTSRV={er, ed, fdist}, we first 

generated a 100-length vector, which is the distance histogram of ed to er for the range from 

0 to 10 meters with an 0.1 meter interval (Figure 5.5(d)). Let Ldist denote the distance 

histogram. The equation to represent the unit at distance x in this vector is: 

𝑳𝒅𝒊𝒔𝒕(𝒙) =
𝑵𝒅,𝒙

𝑵𝒅
 5-5 

where Nd,x is the points number of ed, of which the minimum distance to er is x. 

By the same procedure, we run on DIRSRV, where the distance histogram vector is 

transformed to a vector of four linguistic distance variables: superposition, near, middle 

and far (Figure 5.5(e)), which represents four common distance relations between two 

objects. The weight value for each distance variable r is obtained by the equation: 

𝒘𝒓 = ∑ 𝑳𝒅𝒊𝒔𝒕(𝒙)𝒙∈𝑿𝒓
 5-6 

and the DISTSRV vector fdist is: 

𝒇𝒅𝒊𝒔𝒕 = [𝒘𝒔𝒖𝒑𝒆𝒓𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏, … , 𝒘𝒇𝒂𝒓]  5-7 

where Xr is the distance range of the linguistic variable r. 

For a certain distance, x, all the linguist variables are given positive weights so that the 

distance variable vector fdist can continuously change with the Ldist. 

Rotation SRV (ROTSRV) 
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Figure 5.6 Rotation angle coordinate. 

Rotation SRV is defined by the difference of orientation angle between two entities. 

This spatial property is not easy to describe by DIRSRV or DISTSRV. It ranges in the scale 

of [− π,π] (Figure 5.6). Since we only have the robot movable during a robot task, we will 

use ROTSRV to describe the rotation from OR to CR.  

 

                                       (a)                                                                      (b) 

Figure 5.7 The asymmetry  of DIRSRV: For the two cases shown in (a) and (b), 

DISTSRVrobot_to_chair are the same, but DIRSRVchair_to_robot are different. 

It should be noted that the mirrored spatial relations pairs, which have the same entities, 

are not one-to-one correspondence. For example, as shown in Figure 5.7, we assume the 

robot is a round shaped object when the robot entity er={c,ρ,θ} rotates with θ as it changes. 

The ρ remains the same. Then the SRV using er as the described entity will not change. In 

addition, if the reference entity has no intrinsic direction defined, there will be no DIRSRV 

defined by it. To reduce the computation, we ignore the SVRs composed by unrelated 

entities and only keep the CR, OR, reference entity (ref) and target entity (tar) as they 

appear in the RDT node in the SRVs. The possible SRV to be generated in a world state 

feature includes: 
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DIRSRV: Cartesian_product({CR,OR, ref, tar}, {CR,OR, ref, tar}). 

DISTSRV: Cartesian_product({CR,OR, ref, tar}, {CR,OR, ref, tar}). 

ROTSRV: CR to OR 

After we collect these SRVs in the environment, we build a WSF which is a bag of 

them. The WSF is then used as the input of a policy to decide an action. 

5.5 Train the Robot Behavior Policy Model 

For our robot system, we define the procedure of a fetch task as a sequence of RDT 

nodes. The workflow of the action for each node is shown in Figure 5.8, which includes 

four steps: (1) Collect sensory data; (2) build a world state feature (WSF) model; (3) make 

decision on the move-to target of the current RDT; (4) drive the robot to the target location. 

 

Figure 5.8 The flowchart of executing an RDT node. 

The robot behavior policy model is divided into two levels. The higher level is to detect 

the move-to target for the current RDT, and the lower level is path planning and robot 

moving control. The reason for building a hierarchical system is that it is difficult to build 

an immediate model of the mapping from the input spatial command and the world state to 

the output of robot speed control parameters. However, for different RDTs, we can use the 
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same scheme program for path planning and robot wheel control. And for the high-level 

part, we will use robot learning to generate the policy model for each kind of RDT. 

5.5.1 Programming by Demonstration 

The work to build the high-level part of the policy model for our robot is based on a 

general model of programming by demonstration (PbD). PbD uses demonstration 

examples to build policies, which can drive robots to take the same action as the example 

cases. Let W denote the world state, µ be the spatial command sent to the robot, and A be 

the action the robot should take. The policy model function f with command μ for the robot 

can be written as A=fµ (W). When we use PbD to fµ for the command µ, we show the 

command µ to the human demonstrator and record the corresponding action Ad and world 

state Wd. Then, we use machine learning algorithms to derive the fμ by Ad and Wd. The 

diagram of our robot learning model is shown in Figure 5.9. 

 

Figure 5.9 PbD procedure diagram. 

In our system, the high-level policy model works as a probability model, and the goal of 

the policy is to detect a pose where the robot has the highest probability as the user’s 

expected move-to target. For a command µ, we set p(W) as the probability density of the 

user’s expected world state feature W. The robot can build up the environment mode and 

change W by perception and moving. After the robot gets enough sensory information, the 
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policy model for the robot is to find the CR and let the W containing CR serve as the most 

possible move-to target. The target CR is: 

𝑪𝑹𝒕𝒂𝒓𝒈𝒆𝒕 = 𝒂𝒓𝒈𝒎𝒂𝒙𝑪𝑹 𝑷(𝑪𝑹 = 𝒕𝒂𝒓𝒈𝒆𝒕|𝑾𝑪𝑹) 5-8 

To find the W which can best follow µ, we first need to construct W by entities and their 

corresponding SRVs. We denote a set ε={e1,e2,…eN} as a set of N-related entities for 

command µ. Then, we compute SRVs from ε to form the set W. Let φk(ex,ey) be the k type 

SRV of entity x to entity y; then, 

 W={φDIRSRV(e1,e2),φDIRSRV(e2,e1)…,φDISTSRV(e1,e2),φDISTSRV(e2,e1),…φROTSRV(CR,OR)}. 

Using Bayes rule, we have the equation: 

𝒑(𝑪𝑹 = 𝒕𝒂𝒓𝒈𝒆𝒕|𝑾𝑪𝑹) =
𝑷(𝑾𝑪𝑹|𝑪𝑹=𝒕𝒂𝒓𝒈𝒆𝒕)𝒑(𝑪𝑹=𝒕𝒂𝒓𝒈𝒆𝒕)

𝒑(𝑾𝑪𝑹)
  5-9 

Write WCR as the form of a WSF having an M number of SRVs , and we have:  

𝒑(𝑪𝑹 = 𝒕𝒂𝒓𝒈𝒆𝒕|𝑾𝑪𝑹) = 𝑷(𝑪𝑹 = 𝒕𝒂𝒓𝒈𝒆𝒕|𝝋𝟏, 𝝋𝟐, … 𝝋𝑴)  5-10 

Because the SRVs are independent from each other, we have: 

𝑷(𝑪𝑹 = 𝒕𝒂𝒓𝒈𝒆𝒕|𝝋𝟏, 𝝋𝟐, … 𝝋𝑴) ∝ ∏ 𝑷(𝝋𝒎|𝑪𝑹 = 𝒕𝒂𝒓𝒈𝒆𝒕)𝑴
𝒎=𝟏  5-11 

That means we can decide the move-to target by computing P(𝜑 |CR=target) as the 

distribution of φ when the robot is in the move-to target mode. 

5.5.2 Human Teaching Interface 

 

Figure 5.10 Stage-based human demonstration interface. 



 

 

92 

 

To teach a robot the spatial navigation concepts of a human, we built an interface to 

collect human demonstration samples. The system was developed as a robot simulator 

based on ROS stage [63, 64]. The simulator runs a mobile robot in a two-room apartment 

environment shown in Figure 5.10. The apartment environment is furnished by common 

furniture items such as a bed, couch, chair, table and the target object. When giving a 

demonstration example, the human demonstrator is allowed to use a keyboard to control 

the movement of the robot and has the same vision scale of the environment with object 

recognition ability. The robot is placed at the middle of the hallway at the beginning of the 

demonstration. Then the human teacher controls the robot by the guidance of the sequence 

of RDT nodes. The system simultaneously records the environment model acquired by 

perception and the robot state during the demonstration. The demonstration procedure is 

shown in Figure 5.11. 

 

Figure 5.11 The flow chart of a demonstration 

5.5.3 Train the Robot Behavior Policy Model  

In our system, the output of the policy model controls the behavior of the robot, which 

is to decide how to achieve a target pose that most accurately fits the requirement of a 
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spatial command. Due to the variety of concepts concerning spatial commands, a policy 

model is exclusive for a spatial command. After the inference of the move-to target, the 

robot can then plan a path and be controlled to arrive there by implementing a universal 

path planning and moving control approach. The process of learning a policy is the training 

of a classifier with the WSF feature. Given the independence of the SRV in the WSF feature, 

we can build a classifier for each kind of SRV and fuse them together as a WSF classifier. 

For a WSF of a SRV, we define two labels, “yes” or “no” to guide the move-to target, so 

the classifiers are binary. Compared to a classical binary classification problem, there are 

two challenges in our WSF classification model. One is that it is difficult to label the 

training samples. There are multiple WSF features collected during a demonstration while 

only the first (the robot at the starting pose) and the last (the robot at the move-to target) 

WSF can have crisp labels (First: “no”; Last: “yes”). Another challenge is that the size of 

the training sample set of a spatial command is too small, and it is very easy for the 

classifier to become trapped into a local optimization or overfitting. To overcome these 

difficulties, we modified the parameter updating step in the training procedure. Assuming 

a demonstration example with t+1 frames, we only used the WSFs, W0 and Wt, which are 

the first and last frame for updating. Wt is a positive sample, and all the SRVs fulfill the 

move-to target, while W0 is a negative sample and not all the SRVs fulfill the requirement 

of the move-to target.  

The problem must look to the world state feature, which can maximize the value of the 

objective function. However, we cannot individually tell the distribution of probability for 

each SRV as a target state. Moreover, the robot may observe some “unrelated” SRVs, 

which means the distribution of the SRVs is not correlated to the distribution of the move-
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to target. Since there is only a limited number of demonstration examples for training, the 

model to train may be very difficult to converge if we use a tradition supervised learning 

framework with Gaussian kernel and gradient descent to adjust the model parameters. 

 

Figure 5.12 The probability inference model for the determination of a move-to target. 

 

Instead, to solve this problem we define a linear form approximate representation 

model of the distribution of SRV. The SRV value, which has a higher probability of being 

a target, will get a higher score for the model. We will also import a punishment function 

to pick out “unrelated” SRVs. For the diagram of the probability model as shown in Figure 

5.12, the distribution of a SRV vector Φ={ϕ1,...,ϕk} is p(Φ|target)=VΦ. The linear vector 

V={v1,…vk} is the parameter to learn. For training, we let the vector V starts to be all zero. 

The update of v is: 

𝒗𝒌(𝒕 + 𝟏) = 𝒎𝒂𝒙 (𝒗𝒌(𝒕), 𝝓𝒌(𝒕)) 5-12 

Then after all the training loops, we let 

𝒗𝒌 =
𝒗𝒌

𝐦𝐚𝐱 (𝑽)
5-13 

The probability of a k-length vector SRV as a target is: 

𝒚 = ∏ 𝒗𝒌
𝑲
𝒌=𝟏 𝝓𝒌 5-14 

and the probability of a world state feature W={Φ1,...,ΦM} with M SRVs is: 
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𝒛 = ∏ 𝑽𝒎𝚽𝒎
𝑴
𝒎=𝟏  5-15 

z is in the value of [0,1]. 

The result of v has the following properties: 

 Because the maximum of y is equal to 1.0, the scale of the output is [0, 1] which 

can be the probability of distribution for an SRV. 

 The more similar the SRV is to the target state, the closer the y is to 1.0. 

 By training the robot in different environment settings, e.g., from a different starting 

point, in a different room or with a different reference and target furniture, the value 

of z will be closed to 1.0 at all the settings, which means the distribution of 

P(target|Φ) is flattened. 

To improve the computation speed and reduce the risk of false negatives, we use a 

punishment function on “unrelated” SRVs and remove them. The character of an 

“unrelated” SRV is that the P(target|Φ) is very close to 1.0 for every possible Φ. It means 

the distribution of P(target|W) and P(target|W-Φ) are very close. Therefore, we can 

remove the component of Φ in our probability model. It not only simplifies the model but 

also reduces the risk of a false negative. From such a character of an “unrelated” SRV, we 

can score an “unrelated” rate u of an SRV by the equation of: 

𝒖 =
∑ 𝒗𝒌

𝑲
𝒌=𝟏

𝑲
  5-16 

where K is the length of an SRV vector. We will remove an SRV from the WSF if u > 0.8 

 

5.5.4 The Move-to Target Inference 

After getting the policy model, we will use it to search for the move-to target. In our 

system, the robot can affect the world state feature by moving to different poses and 
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changing the CR entity. When CR changes, the SRVs that involves the CR changes as well. 

Therefore, the problem changes to finding the target CR. To find the CR, we should try to 

compute each possible CR value which is almost impossible because it takes too much time. 

We implement the spirit of particle filter which is an iteration method to gradually reduce 

the searching scale and find the target CR that most closely matches a move-to target. The 

steps of searching are shown below: 

1) Initialize the searching start pose p0 at the current pose, searching scale S, which is  

equal to the working space D. Begin the initial searching interval. I0 = {1m, 45 

degrees},which means that during the searching process, CR will shift 1 m in either 

the x or y axis and 45 degrees in robot rotation. 

2) In iteration, i, select pose pi with maximum output of z(wCR). Let D=pi+{[-1,1]}, 

I=I/2.  

3) Terminate the iteration when zi < zi-1. 

The procedure to search for a move-to target is like the scene shown in Figure 5.13 

 

Figure 5.13 The probability map of the RDT node “bed-right-table” (on the table to the right 

of the bed). The color of an arrow turns from red to green and the length grows with the increase 

of probability. 

5.6 Evaluation 

The goal of our evaluation is to assess whether a robot can be taught to build policy 

models which follow the spatial commands by human demonstrations and how these 
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learned policy models perform in a robot task loop. We designed two experiments for 

evaluation. One was the robot training assessment which directly examines the trained 

robot behavior policy model in a robotics simulation platform. Another assessment is the 

end-to-end test, which lets the robot use the learned policy models in a fetch task. The test 

was run on a physical robot. We constructed a different environment from the training 

scene to test the robot. 

5.6.1 Robot Training Assessment 

 

                                  (a)                                                                  (b) 

Figure 5.14 (a): The map for training; (b) The map for testing. 

In this assessment, we tested the performance on policy model training. We selected 

13 RDT nodes from the CSISL corpus (discussed in Chapter 2, section 2.3), which has 

seven different references. The robot behavior policy model was trained by the human user, 

who used the interface discussed in Section 5.5.2 and the map shown in Figure 5.14(a). 

Each RDT was trained by five demonstrations, which were given different robot starting 

poses. To test the robot, we slightly changed the arrangement of the training environment 

to be like Figure 5.14(b). For a test on each RDT, we randomly selected the robot starting 

point and drew an expected target pose in each training scenario. Table 5-1 shows the 

performance of three tests for each policy model. In this table, d is the distance between 
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the ultimate position of the robot and d is also the expected target position. θ is the angle 

between the direction from the robot to the target object and the direction that the robot 

faces toward. The first two columns show the natural language command of the RDT 

model. The third and the forth columns show the values of the mean and standard deviation 

of d and θ for each kind of policy model. The metric T at the last column shows the number 

of times that the target furniture can be captured by the robot depth camera. The T value 

will be ‘-‘ when T is invalid for a non-target command. 

 

Figure 5.15 The three training trials to train the policy model of RDT “couch-left-table.” 
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Table 5-1 The result of RDT node policy learning. NSLD: Natural Spatial Language Description; 

RDT: reference-direction-target model; d: The distance distance between the ultimate position of 

the robot and expected target position, θ, is the angle between the direction from the robot to the 

target object and the direction that the robot faced toward, T, and the number of times that the target 

furniture can be captured by the robot depth camera 

# NSLD RDT 
d (m) 

(Mean/STD) 

θ (rad) 

(Mean/STD) 

T 

(Success/Total) 

1 
go/walk/move 

forward 
move-front-non 0.55/0.34 0.03/0.01 - 

2 turn left move-left-non 0.03/0.06 0.03/0.01 - 

3 turn right move-right-non 0.03/0.06 0.02/0.01 - 

4 
table on the/your 

left 
robot-left-table 0.36/0.24 0.13/0.22 3/3 

5 
the table is on/to 

the/your right 
robot-right-table 0.66/0.28 0.38/0.03 3/3 

6 
table on/to the left 

of the bed 
bed-left-table 0.20/0.05 0.08/0.09 3/3 

7 
table on/to the right 

of the bed 
bed-right-table 1.01/1.47 0.34/0.41 3/3 

8 
table in front of the 

couch 
couch-front-table 0.35/0.19 0.63/0.46 3/3 

9 
table to/on the left 

of the couch 
couch-left-table 0.08/0.03 0.02/0.01 3/3 

10 
table to/on the right 

of the couch 
couch-right-table 0.73/0.33 0.77/0.75 3/3 

11 table beside a chair chair-beside-table 0.53/0.08 0.14/0.18 3/3 

12 
go to the center of 

the room 
room-center-non 0.91/0.31 0.67/0.82 - 

13 
move to the front 

wall 
wall-front-non 0.67/0.29 0/0 - 

 

5.6.2 End-to-end Assessment on the Physical Platform in the Training Environment 

To make evaluation of our system, robot training assessment is not enough because we 

need to prove that the robot can work on a fetch task by relying on the learned policy model. 

Therefore, we ran an end-to-end assessment on our robot system. An end-to-end 

assessment requires testing the whole system, which includes all of its components to 

ensure that each is functioning as intended. The functional side requires that we run such 

an assessment to check against requirements, and it is more about the actual flow through 

a system in a more realistic end-user scenario. This assessment tested the entire workflow 

of our robot system, which gave an overall view of the system performance.  
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                                (a)                                                             (b) 

Figure 5.16 (a) The end-to-end map and (b) an altered end-to-end 

 to test the the robustness of our system. 

We ran all the end-to-end tests inside the test room. In each test, we placed a mug on a 

table and let it be the target of a fetch task. The robot first stood at the door of the room. 

Then, it was given a description of the location of a target object. The natural language 

description was then parsed to an RDT form of navigation instructions, and the robot used 

its learned policy model to follow the RDT nodes to find the target object. A spatial 

command may contain at least one RDT. We manually edited 12 spatial commands, which 

navigated the robot to move to six different move-to targets. For each move-to target, we 

edited two commands. One was the dynamic command which gives the robot movement 

description [9]. The other one was the static command, which uses a reference to describe 

the move-to target [9]. The editing of words and phrases in a command refers to our 

template corpus in [14]. The content of commands did not contain any ambiguous 

information which could confuse the robot. The experiment environment map is drawn in 

Figure 5.16(a). The tests were run in both the simulated and physical world. As in our 

previous work in (Huo 2014, p. 81}, we slightly changed the placement of furniture and 

reran the experiment again (Figure 5.16(b)). These changes can still be described by the 
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same spatial commands. This test was to validate that the robot behavior policy model is 

adjustable to an alternative environment. To measure the robot performance, we used d, 

which is the distance where the robot end points toward the mug, and v is the area of the 

mug, shown in the robot vision. Then we used r to represent whether we determined this 

task successful or not. The end-to-end results are shown in Table 5-2. 
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Table 5-2 Results of the end-to-end test. 

Target 

Object 

Placement 

NSLD RDT 
Furniture 

Placement 
d (m) V (0-1) S/N 

1 

Move to the center of the 

room, turn right. Then go 

forward. The mug is on the 

table in front of the couch. 

room-center-non 

move-right-non 

move-forward-non 

couch-front-table 

#1 1.07 0.96 Y 

#2 1.10 0.58 Y 

Go forward and then turn 

right; then move forward 

and then turn left. You will 

see the mug 

move-front-non 

move-right-non 

move-front-non 

move-left-non 

#1 2.60 0.92 N 

#2 2.09 0.91 Y 

2 

The mug is on the table on 

your right 
robot-table-right 

#1 1.03 0.72 Y 

#2 1.25 1.00 Y 

Turn right, and you will see 

the mug 
move-right-non 

#1 1.27 0.92 Y 

#2 1.25 1.00 Y 

3 

Turn left. You will see the 

mug on the table to the right 

of the bed. 

move-left-non 

bed-right-table 

#1 0.97 0.69 Y 

#2 1.35 1.00 Y 

Turn left and you will find 

the mug 
move-left-non 

#1 1.16 0.93 Y 

#2 1.14 1.00 Y 

4 

Move to the center of the 

room and turn right; then, go 

to the front wall. The mug is 

on the table to the left of a 

couch 

room-center-non 

move-right-non 

wall-front-non 

couch-left-table 

#1 1.57 0.81 Y 

#2 1.15 1.00 Y 

Go forward and then turn 

right and walk forward; you 

will see the mug 

move-front-non 

move-right-non 

move-front-non 

#1 1.48 0.72 Y 

#2 1.41 0.83 Y 

5 

Go forward the turn left. 

Move to the front wall then 

go left again and you will 

see the mug on the table to 

the left of the bed. 

move-front-non 

move-left-non 

wall-front-non 

move-left-non 

bed-left-table 

#1 0.40 0.92 Y 

#2 0.46 0.90 Y 

Go forward and then turn 

left. Move forward again 

then turn left. Then go 

forward and you will 

see the mug 

move-front-non 

move-left-non 

move-front-non 

move-left-non 

move-front-non 

#1 0.51 0.98 Y 

#2 0.81 0.94 Y 

6 

Go to room center. The mug 

is on the table beside a chair 

wall-front-non 

chair-beside-table 

#1 1.67 0.59 Y 

#2 1.74 0.58 Y 

Walk forward and then you 

will find the mug. 
move-front-non 

#1 1.68 0.78 Y 

#2 1.68 0.78 Y 

 

 

 

 

The average and stand deviation of d and V are shown in Table 5-3. 
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Table 5-3 The average and STD of d and V 

 Mean (m) Standard Deviation (m) 

Distance 1.09 0.70 

V 0.87 0.14 

 

5.6.3 End-to-end Assessment on the Extended Simulation Environment 

To further validate the performance of our system, we ran another experiment on the 

3D simulator introduced in Section 3.4. We manually edited another 79 spatial language 

commands and descriptions of the 24 target objects (six for each world) following the 

syntax and morphology of the CSISL corpus. The words and phrases used in the new 

spatial descriptions are all in the CSISL corpus setting. The overall success rate is 77.2% 

(61/79). The raw spatial language and results are shown in the Appendix Table A1, and the 

number of failed cases is shown in Table 5-4. There are four kinds of failures observed in 

the end-to-end experiment. The most failed cases in the experiment was the “not visible” 

failure. In these cases, the robot moved to a position which was too far from the target 

object or not towards the target object so that the object was not visible. This is because 

the system failed to infer a good move-to target for the scene. There were four failure cases 

caused by incorrect part-of-speech tagging. Since the Brill tagger previously had a bad 

performance with cases outside the training data and we used some words and phrases not 

included in the CSISL corpus in these cases, it is not surprising to have these failures. The 

perception failure cases are due to the wrong recognition on the furniture samples. The 

collision failure cases were caused by failure in map path planning. The ambiguity failure 

case was caused by the ambiguous language used in the spatial description.  

Table 5-4 The numbers of failed cases. 

Item Number 
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Success 61 

Failure: not visible 7 

Failure: part-of-speech (pos) 4 

Failure: Perception 4 

Failure: Collision 2 

Failure: Ambiguity 1 

All 79 

 

5.7 Conclusions and Future Work on Robot Policy Models 

This chapter presented an approach to build policy models for different spatial 

commands. We developed the world state feature (WSF) model and employed it to convert 

a human demonstration to an understandable representation of spatial concept for robots. 

The approach allows a non-expert user to teach robots how to follow natural language 

commands. Two primary benefits came from this study: 1) a robot developer is no longer 

needed to do the time-consuming and challenging work of manually building up the robot 

behavior policy, and 2) it is now easy for the user to add new spatial commands to the robot 

for a new working environment. 

In the first experiment, the system performed well overall. In some failures, the robot 

detected more than one reference object or target, which led to an ambiguous selection of 

entities in building spatial relations. If unrelated entities are learned, the path navigation 

may fail. We will extend our demonstration environment and run more demonstrations to 

improve the detection performance of reference and target objects.  

The second and the third experiments showed that robots can always capture the fetch 

target when finished executing the command following actions. This indicates that the 

efficiency of the policy model is good enough to replace the hard-code policy model for an 

end-to-end task. In a dynamic spatial language case, the robot failed in approaching the 

target object. The reason is that errors in the move-to target command were accumulated 
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during the navigation without any correction causing the robot to move in the wrong 

direction. This problem will be addressed by designing a retrieval mechanism in the next 

development. The system has shown the possibility of using PbD to teach robots the spatial 

concepts of human users. We will continue to work on improving the system to robustly 

handle spatial commands. Future research will use the approach developed here to train 

robots in a more complex environment. 

  



 

 

106 

 

Chapter 6. Natural Spatial Language Generation 

6.1 Introduction 

This chapter introduces a spatial language generation system which can generate the 

spatial description of the position of a target object using the state and perception 

information of the robot. The second section of this chapter is the RSS workshop paper 

[17], which is reprinted word for word and in full. It illustrates the details of the system 

and the preliminary results. Section 6.3 is the result of the follow-up experiment which has 

48 language generation tasks in the different working spaces. The last section is the 

conclusion.  

6.2 RSS2016 Workshop Paper: Natural Spatial Language Generation for 

Indoor Robot 

Abstract—This paper proposes a spatial language generation system to find short, 

accurate and human-like descriptions for robots to communicate with a human user about 

the location of an object. The research focuses on building static spatial descriptions which 

use reference objects and directions to describe spatial relations. The system generates a 

natural spatial description in three steps. In the first step, it collects the sensory information 

and robot state to extract an environment model. Then, it builds a grounding model that 

describes the location of the target object, based on landmarks in the scene. After that it 

will generate the natural language description by imitating a human’s talking style. A 

corpus of 149 spatial language commands for an indoor environment fetch task is used to 

train the system. An early-stage experiment was conducted and the results illustrate good 

potential for further development. 
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Keywords-spatial language; language generation; robotics 

I. INTRODUCTION 

The interest in how a robot can be of assistance in our daily life continues to grow. For 

the robots working on household tasks, there is an increasing need for the capability to 

interact with human users; the interaction using spatial language is getting more attention 

from researchers. For robots that can interact with humans using spatial language, there are 

two complimentary robot challenges in a home-like environment. One is understanding 

natural language directives. For example, a human user directs a robot to fetch a target 

object by giving a spatial command. Another is spatial language generation, which lets a 

robot answer to a human user with the location of a target object by using natural spatial 

language. This paper focuses on the second challenge by building a language generation 

system for indoor robots. 

 

Figure 1. The scenario of an object searching and language generation task performed by a robot 

in a home environment. The Human said: “Hi, robot. Could you help me to find my mug and tell 

me where it is?” The robot answered: “OK. No problem”. Then the robot left to search for the mug.  

Figure 1 shows an example of the spatial language generation task performed by a robot 

in an indoor environment. The human user is standing in the hallway between the living 

room and the bedroom, and he wants the robot to find the mug and tell him the location of 

it so that he can easily go right to it when he needs it. In this scenario, the human user 

expects the robot to give a description like “Walk into the living room, then turn right and 
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move forward, you will see the mug on the table,” or “The mug is on the table in front of 

the couch in the living room” which is a natural and friendly way of assisting and provides 

enough information to assure successful retrieval. Here, we focus on the generation of static 

spatial language which is the second example sentence above. The concept of static spatial 

language has been introduced in [1]. A spatial description of this type uses objects as 

references to describe a target location, i.e., “behind the couch” or “on the table next to the 

bed”. The language generation task for indoor robots uses the sensory information collected 

from the environment to generate the static spatial language description. The generated 

description includes the spatial information in a large area so that it may be long and may 

have a complex structure which will make it difficult to be generated by a language 

template. This makes it different from other work on robot language generation and makes 

it a more challenging task. However, this kind of spatial language is human-like and 

provides more intuitive navigation information for a human user, particularly an elderly 

user. 

There has been some significant work on the language generation. Reiter and Dale 

systemically described the approach to generate natural language with a probabilistic 

system [2]. Chen and Mooney presented a novel algorithm, Iterative Generation Strategy 

Learning (IGSL), for deciding which events to comment on in a soccer game [3]. The work 

in [4] introduced a novel model to generate spatial language. Angeli, et al proposed a multi-

layer system generating natural language by two steps: content selection and surface 

realization [5]. Our work is the generation of spatial language for robots in an indoor 

environment which is a different task. However, all of the work faces the same problem, 

which is generating human-like language using raw and unabstracted data. In the related 
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work by Angeli et al., the process of language generation is split into two steps: the first 

one is content selection which selects the information to present from the raw data; and the 

second one is surface realization which infers the natural language from the selected 

content. 

To enable the robot to provide easily understood spatial descriptions to a human user, 

we designed a multi-step system that follows the two steps mentioned above. The system 

first models the content of groundings from the sensory information collected in the 

environment, and then generates natural language from this intermediate result. 

II. METHODOLOGY 

A. The Multi-Layer Model of Spatial Description 

The language generation system is based on our previous work on modeling spatial 

language and understanding spatial language directives, which has been developed to be a 

multi-layer system [6]. This system represents a natural spatial language description using 

four layers (Figure 2). The first layer is the natural language command. In the second layer, 

the words in the natural language description are grouped into chunks with meaningful tags 

by using part-of-speech algorithms [7]. In this layer, the words containing spatial 

information are detected and tagged, and the natural language is converted to a tree 

structure. In the third layer, the tree structure is translated into a grounding model in the 

form of the reference-direction-target (RDT) format presented in our previous work [1][6]. 

The RDT model is a standard representation with the information of landmark and spatial 

relation. In the RDT model, reference refers to an object that is used as a landmark 

reference to describe the location of another object. Direction represents the position 

relationship between objects, e.g., in front or to the left. It tells the robot where to search 
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for the target. Target indicates the target furniture or target object being sought by the robot. 

It minimizes the uncertainty and ambiguity in human language and conveys a robot 

understandable message to let it seek the destination. Given a long spatial description with 

a complex structure, the chunks in the tree structure can be converted to RDT nodes, which 

describe a sequential action list or reference-based descriptions allowing the robot to move 

to find the target object. The fourth layer is a numerical representation of the spatial 

relations of both direction and distance between the objects in the environment. The data 

of this layer will be taken into the robot behavior model to infer the destination of RDT 

node.  

 

Figure 2. The multi-layer model of spatial language in our system. 

B. System Overview 

The goal of this work is to generate a natural language description of the position of a 

target object. For the example shown in Figure, the expected corresponding description is 
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“The mug is on the table in front of the couch in the living room”. The spatial description 

contains information about the environment. To deliver the position of the target object to 

a human user correctly, the robot should detect the environment and extract the spatial 

information that can best describe the position and then present them in natural language 

terms. In such a task, we let ε denote the information of the environment, and p denote the 

location and the orientation of the human user. Consider an objective function h(φ,p,ε) of 

the natural description φ. The robot will search for a spatial description φ’ with the largest 

function value: 

𝛗′ = 𝒂𝒓𝒈𝒎𝒂𝒙𝝋𝒉(𝝋, 𝒑, 𝜺) (1) 

The objective function determines the policies to select a spatial description which 

should: a) have accurate information for the human user to reach the target object, b) match 

the human spatial language syntax and human’s language style and c) use the fewest 

number of words. However, to directly train the cost function by samples of φ, p and ε is a 

problem of great complexity. Here, we propose a multi-step process that splits the 

workflow into three steps: 

(1) Model the Environment: the robot will build an environmental model which includes 

all the detected objects in its working environment until it finds the target object. All 

the objects in the environment are recorded. The information about an object is 

described by an Entity model that includes a category name, a coordinate vector, an 

orientation value and a unique ID of the object. 

(2) Content Selection: Content selection is to decide what to say in a spatial description 

[2]. In our system, the content is represented by the RDT format grounding model 

presented in our previous work of spatial language grounding. In spatial language 
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grounding, the RDT model is a result of inference from natural language. Here, the 

RDT model is built from the environment model and is a reverse procedure of the 

inference to robot destination. 

(3) Surface Realization: Surface Realization determines how to convert spatial 

information into natural language [2]. After getting the RDT grounding model, the 

system generates natural language using a model trained by a 149-sentence template 

corpus which has been extracted from the CSISL spatial language corpus introduced 

in [8]. The CSISL contains 1024 indoor spatial descriptions collected from human 

volunteers, and the 149-sentence template represents all of the different types of 

language structures that were captured by the 1024 participant descriptions. The 

surface realization model takes the RDT model as input to select words and phrases 

to construct a human-like natural language sentence. 

 

Figure 3. An example of using entity model to describe a chair. LEFT: the chair sample (The 

arrow illustrates its direction); MIDDLE: the 3-D point cloud of the chair; RIGHT: the 2-D point 

cluster ρ. The direction angle is 4π/7rad (or 315°). The entity model e={“chair”,ρ,7/4π}. 

C. Build Environment Model 

The first step to generate a static spatial language description is to build an 

environment model which is created by the robot perception system. Our system uses a 

depth camera as the robot sensor. With prior internal knowledge about the objects in the 

working environment, the robot can recognize the objects and capture their geometric 
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features such as size, shape and orientation. The information of each object is integrated 

into a standard description named an Entity model. The Entity model is used to represent 

semantic objects handled in human spatial language. An Entity has: (1): an ID; (2): a name; 

(3): a coordinate vector; and (4): an orientation. The ID is the unique identification of an 

object in a robot task. The ID number of an entity is given by the sequence of detection. 

The name is the category of the object. The coordinate vector is a 2D point cloud 

representing the object’s projection on the floor. To reduce the computation and noise we 

down-sample the raw point cloud to the positions of cells in a grid map. The orientation of 

an entity is defined as the direction value of its functional front side in the ego-centric 

reference, e.g., a chair has its functional front as the direction that a person faces when 

sitting on it. The example of a chair entity is shown in Figure 3. 

During a language generation task, the robot will keep building the environment model 

when seeking the target object in the working space until it finds the target. Thus it can 

build the environment model as a set of N entities ε={e1,...,eN} in the working environment. 

Figure 4(a) shows the scene for an object seeking task and Figure 4(b) the environment 

built from it. 
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Figure 4. The procedure of natural spatial language generation. (a) The scenario when the robot 

detects the target object – mug. (b) The environment model. (c) The result of content selection. (d) 

The chunks used to infer the RDT nodes and their relations. (e) The tree structure built from the 

chunks and their relations. (f) The natural language description generated, the result of surface 

realization. 

D. Content Selection 

Next, the robot generates an RDT grounding model with several RDT nodes from the 

environment model. The entities list ε generated from the last step is used to build a spatial 

relation list Γ(ε)={γ1,…,γM}. The list Γ includes M combinations between any two entities. 

For each combination, we use γm={Fdirection(ea,eb),Fdistance(ea,eb)} to represent two histogram 

vectors of direction and distance as the features of a spatial relationship. The spatial relation 
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list Γ(ε) is also called the world state (WS), which describes the spatial relations in the 

environment. The WS is then used to calculate the probability P(y|Γ) of each possible RDT 

node y which will be used later in the objective function. In the spatial language grounding 

system, P(y|Γ) is used to infer the destination that the robot should move to the RDT node 

y. Here the robot is considered as an entity erobot which is equivalent to other object entities 

in Γ. Since the positions of the other entities are fixed, the inference to the destination is to 

adjust the robot to a pose where the erobot for the Γ can maximize the probability P(y|Γ). In 

the language generation system, erobot is set by the pose where the robot finds the target and 

stops. The WS Γ is then built by erobot and other entities detected in the environment. 

To seek the best solution over all RDT nodes, an objective function is proposed. Let 

{y1,...,yK} denote K RDT nodes that can be extracted from the environment (K is smaller 

than the number of all the possible RDT types). The decision on whether to select an RDT 

node is represented by a binary weight value wk. The wk is 1 when the RDT node yk is 

selected to generate the spatial language description and is 0 if not selected. A number vk1k2 

is a value between 0 and 1 which is the conditional probability P(wk1|wk2) for the selection 

of the two RDT nodes yk1 and yk2. This value is learned from the RDT nodes extracted from 

the 149-sentence template corpus. Since the Γ is fixed in this step, we let Pyk=PΓ(yk) which 

is the probability of yk in the environment. Then we can compose the following objective 

function for the combination of all the K RDT nodes which is: 

𝑶(𝑾) =
∑ 𝒘𝒌𝑷𝒚𝒌

𝑲
𝒌=𝟏

∑ 𝒘𝒌
𝑲
𝒌=𝟏

+ ∑ 𝒗𝒌𝟏𝒌𝟐𝒘𝒚𝒌𝟏
𝒘𝒚𝒌𝟐

𝑷𝒚𝒌𝟏
𝑷𝒚𝒌𝟐{𝒌𝟏,𝒌𝟐}∈𝑲𝑲 − 𝜶

∑ 𝒘𝒌
𝑲
𝒌=𝟏

𝑲
 (2) 

The W=[w1,...,wK] is a vector which includes all the wk values. 

KK={(1,2),(1,3),(2,3),...,(K-1,K)} denotes a set of combinations of any two different 

numbers in vector [1,...,K]. The three parts in O(W) represent different restrictions on the 
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content to select. The first part encourages high probability groundings and the second part 

encourages the appearance of two related groundings that work together in the spatial 

description. The last part is used to get the shortest description. The constants α>0 is 

adjusted by the training content data and we have α=0.1 in our system. Here W is the only 

variable to be sought in the objective function. To get the best RDT model, we will infer a 

solution W’ to maximize the objective function O(W) which is: 

𝑾′ = 𝒂𝒓𝒈𝒎𝒂𝒙𝑾𝑶(𝑾)  (3) 

The pose of human addressee is another restriction on the content to select. For example, 

when the robot and the person are in the same room, there is no need to present the 

information of room in the content. This restriction will work as a filter to remove some 

content.  

Figure 4(c) shows the result of content selection from the environment model in Figure 

4(b). 

 

Figure 5. A chunking tree structure of a spatial description and the explanation of the chunk 

types. 
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Figure 6. The six examples of the six possible relations between two chunks. For an instance, 

NL, the corresponding example demonstrates that how A is to be the neighbor-left to B. 

E. Surface Realization 

After inferring the best RDT model, the last step is the transition from the RDT nodes 

to the natural language description presenting the location of the target object. Considering 

the diversity and uncertainty of human-like spatial language, it is difficult to use a fixed 

prototype framework on language generation. Inspired by our previous work in [9], we 

consider the output natural language description as a tree structure constructed by several 

clauses. An example of a tree-structured description is shown in Figure 5, which shows a 

language model grouping words into chunks (word phrases). Each chunk c={τ,η} consists 

of a clause of text τ and a chunk type η. The chunk types and explanations are also shown 

in Figure 5. Thus the surface realization is to construct a tree structure with all the chunks 

placed in the best places. The tree structure is inferred by a probabilistic model counting 

the text and the relations between chunks. The potential relations that chunk A can have to 

chunk B include six possibilities: neighbor-left(NL), neighbor-right(NR), parent-left(PL), 

parent-right(PR), child-left(CL), child-right(CR) (Shown in Figure 6). Assuming we have 

already inferred the best grounding model, which includes an RDT chain y={y1,…yJ} 

including J (J≤K, K is the number of possible RDT node before content selection) RDT 
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nodes. Let let υηAηB∈{NL,NR,PL,PR,CL,CR} denotes the relation between two chunks with 

the names ηA and ηB where υηAηB∈{NL,NR,PL,PR,CL,CR}. Υ={υη1η2,...,υηJ-1ηJ} is the set of 

all the relations. Then the language generation work is to determine the Υ which can 

maximize the probability P(𝛶) to generate a tree structure, which can be written as: 

𝑷(𝚼) = 𝑷({(𝝉𝟏, 𝜼𝟏), 𝒚𝟏}, … {(𝝉𝑱, 𝜼𝑱), 𝒚𝑱}, 𝚼) ∝

∏ 𝑷(𝝉𝒋, 𝜼𝒋|𝒚𝒋)
𝑱
𝒋=𝟏 ∏ ∏ 𝑷 (𝝊𝜼𝒋𝟏𝜼𝒋𝟐

, |𝜼𝒋𝟏𝜼𝒋𝟐, 𝒋𝟏 ≠ 𝒋𝟐)
𝑱
𝒋𝟐=𝟏

𝑱
𝒋𝟏=𝟏  (1) 

The conditional distribution can be trained by the 149 template descriptions that were 

derived directly from CSISL corpus collected from older adults. Figure 4(d) shows the 

chunks of the RDT nodes extracted in content selection and best matched relations of the 

chunks. Assume we extract P relations Υ={υ1,…,υP} between the chunks in this step.  

Algorithm 1 

init: A={c1,…,cJ}, B={υ1,…,υP}, t=1, TREE.ROOT=cobj 

while t<T and isempty(A) is false: 

    for each υ in B: 

        cx,cy=get_two_involved_chunks( υ) 

        if ifintree(cx) xor ifintree(cy) is true: 

            move cnotintree to TREE by υ 

            remove cnotintree in A 

            remove υp in B 

        endif 

    endfor 

endwhile 

After obtaining the chunks and their relations, the system then uses them to construct 

the tree structure. We use the chunk of the target object as the root of the tree. Two pools 

are created. Pool A contains the chunks not assigned to the tree and pool B contains the 

relations. An iterative algorithm is run on pool B, which places the chunks in pool A to the 

tree by the relations it involves in pool B. Then it removes the chunks from pool A and 

removes the relation in pool B (Algorithm 1). The iteration ends when pool A is empty or 

the iteration limit is reached. Figure 4(e) shows the tree structure generated from the chunks 
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and relations presented in Figure 4(d). After building the tree, the system will generate the 

natural spatial language description using the in-order traversal of the tree [9]. 

The result (Figure 4(f)) is determined not only based on the words and tag of each 

grounding unit but also on their relations of nesting and ordering. This enables the system 

to mimic a human-like style in spatial language descriptions. 

III. EXPERIMENT 

         

(a)                                                                           (b) 

 

 

(c) 

Figure 7. (a) The 3D simulation scene built in Gazebo; The numbers label the furniture items 

where the target objects are placed on during the experiment. (b) The 2D floor plan of the scene 

for the experiment. (c) The object seeking procedure (from LEFT to RIGHT). 

To evaluate the system, an experiment will be performed first in a simulated indoor 

environment which includes a bedroom, a living room and a hallway between them (Figure 

7(a)). Both rooms have relevant furniture pieces. This setting has been used in our previous 

work on spatial language grounding and matches our physical lab space [6]. The simulation 

environment is built using Gazebo3D platform [11]. The perception data and the control 
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function of the robot were programmed the same as the version working in the physical 

environment so that system can also be migrated to the real world environment. 

TABLE I The results of the early-stage experiment which includes six language generation 

tasks. 

# Object Target RDT nodes Natural Language Description 

1 Laptop 

living room-inside-non 

table-beside-chair 

table-on-laptop 

The laptop is on the table in the living 

room beside chairs. 

2 Mug 

living room-inside-non 

couch-front-table 

table-on-mug 

There is the mug in the living room on 

the table in front of the couch. 

3 Glasses Case 

living room-inside-non 

couch-behind-table 

table-on-glasses case 

The glasses case is in the living room 

on the table to the back of the couch. 

4 Wallet 

bedroom-inside-non 

bed-left-table 

table-on-wallet 

The wallet is in the bedroom on the 

table to the left of the bed. 

5 Cellphone 

bedroom-inside-non 

bed-right-table 

table-on-cellphone 

The cellphone is on the table in the 

bedroom to the right of the bed. 

6 Bowl 

bedroom-inside-non 

chair-beside-table 

room-right-non 

table-on-bowl 

The bowl is on the table in the 

bedroom beside chairs to the far right 

wall. 

In a language generation test, the robot is initially positioned in the middle of the 

hallway and then starts to search for a target object after it receives the object name from 

the human user. It will keep on roaming in the working environment and builds the 

environment model until it finds the target. The target object can be placed in one of six 

different locations (Figure 7(b)). For each location, a static natural spatial language 

description will be generated. Here we list the results of an early-stage experiment in 

TABLE I which includes six descriptions generated by the robot. Although there are 

several metrics to score the performance of language generation, e.g., F-1 [12] and BLEU 

[12], which compare the similarity between the results and the ground truth, the best 
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approach to assess a language generation result is to have it scored by a human. To give a 

more reliable assessment to our system, we will employ volunteer test subjects to score the 

spatial descriptions that are generated by the robot. 

IV. CONCLUSION 

The development of this blueprint was an effort to achieve a natural spatial language 

generation system. Our preliminary work addresses some of the challenges. The results of 

the early experiments confirm a decision to not use language templates but rather to use a 

human spatial language corpus to program a language generator.  

This system is trained by the 149-sentence template corpus and tested by six cases in 

the same scene where the corpus was collected. There are two limitations of the current 

experiment. First, the number of test cases is too small. Additionally, since the test scene 

is the same as the scene used to train the language model, it is not enough to validate the 

system’s suitability to other environments. In the future, the number of the scenes for 

testing will be increased and the furniture placement will be alternated. Even the results 

present accurate and human understandable descriptions, the language has a lack of variety. 

We will also compare our approach with other machine learning methods like inverse 

reinforcement learning and recurrent neural network. To improve this aspect, we will also 

test additional features and train the system by other corpuses. 
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6.3 New Experiments and Results 

The workshop paper in the last section only demonstrated six cases of the spatial 

language generation system, which was not enough for validation. To further evaluate the 

indoor spatial language generation system, we added more scenes and tasks.  
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Figure 6.1 Alternate positions and orientations of the furniture items in the simulated worlds 

The new experiment included 48 language generation tasks. We ran tests on the robotic 

simulator introduced in Section 3.4 which expanded the simulation environment described 

in Section 6.2 of the reprinted publication ([16, 17]). The spatial descriptions of the 24 

target objects placed in different locations in the four simulation worlds were generated. 

We also slightly changed the positions of the furniture items which placed the target objects 

and the neighbor furniture pieces, but kept the same topology links and the spatial 

relationship to build another 24 alternative scenes to add another 24 language generation 

tasks into the experiments. Figure 6.1 shows some the new furniture item positions. The 

48 spatial descriptions given by our language generator are shown in Table 6.1. 
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Table 6-1a The language generation results.  

The spatial descriptions generated from the original scene. 

# World Target Object Spatial Description 
If the SR 

Match 

1 

Apartment 

Fork 
The fork is in the living room on the table to the back of 

the couch. 

Y 

2 Glasses Case 
There is the glasses case in the living room on the table 

in front of the couch. 

Y 

3 Laptop 
The laptop is on the table in the living room beside 

chairs. 

Y 

4 Statue 
The statue is on the table in the bedroom to the right of 

the bed. 

Y 

5 Monitor 
The monitor is on the table in the bedroom to the left of 

the bed. 

Y 

6 Mug 
The mug is on the table in the bedroom beside chairs to 

the far right wall. 

Y 

7 

Hk-studio 

Fork 
The fork is in the studio room on the table beside chairs 

to the far right wall. 

Y 

8 Glasses Case 
There is the glasses case in the office to the far right 

wall. 

Y 

9 Laptop 
The laptop is on the table beside chairs in the meeting 

room. 

Y 

10 Statue 
The statue is in the studio room on the table beside 

chairs to the far right wall. 

Y 

11 Monitor The monitor is in the studio against the left wall. Y 

12 Mug 
Move halfway in the mug is in the office on the table in 

front of the couch. 

Y 

13 

One-

bedroom-

house 

Fork 
The fork is in the meeting room on the table beside 

chair. 

Y 

14 Glasses Case 
There is the glasses case on the table in the living room 

beside chairs in front of the couch. 

Y 

15 Laptop The laptop is on the table beside chairs in the office. Y 

16 Statue 
The statue is on the table in the bedroom to right of the 

bed. 

Y 

17 Monitor 
The monitor is in the bedroom to the far right wall 

against the left wall against the left wall on the table. 

N 

18 Mug 
The mug is on the table in the living room to the left of 

the couch. 

Y 

19 

Two-

bedrooms-

house 

Fork 
The fork is to the far right wall on the table beside 

chairs in the office. 

N 

20 Glasses Case 
There is the glasses case on the table in the living room 

beside chairs 

Y 

21 Laptop Move halfway in the laptop is in the meeting room. N 

22 Statue 
The statue is on the table in the bedroom to the right of 

the bed. 

Y 

23 Monitor 
Move halfway in the monitor is on the table beside 

chairs in the office. 

Y 

24 Mug 
The mug is at the back in the living room to the far right 

wall. 

Y 
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Table 6.1b The spatial descriptions generated by the modified scene 
# World Target 

Object 

Spatial Description If the SR 

Match 

1 Apartment Fork The fork is in the living room on the table to the back of 

the couch. 

Y 

2 Glasses Case There is the glasses case in the living room on the table 

in front of the couch. 

Y 

3 Laptop The laptop is on the table in the living room beside 

chairs. 

Y 

4 Statue The statue is on the table in the bedroom to the right of 

the bed. 

Y 

5 Monitor The monitor is on the table in the bedroom to the left of 

the bed. 

Y 

6 Mug The mug is on the table in the bedroom beside chairs to 

the far right wall. 

Y 

7 Hk-studio Fork The fork is in the studio room on the table beside chairs 

to the far right wall. 

Y 

8 Glasses Case There is the glasses case in the office to the far right 

wall. 

Y 

9 Laptop The laptop is on the table beside chairs in the meeting 

room. 

Y 

10 Statue The statue is in the studio room on the table beside 

chairs to the far right wall. 

Y 

11 Monitor The monitor is in the studio against the left wall. Y 

12 Mug Move halfway in the mug is in the office on the table in 

front of the couch. 

Y 

13 One-

bedroom-

house 

Fork The fork is in the meeting room on the table beside chair. Y 

14 Glasses Case There is the glasses case on the table in the living room 

beside chairs in front of the couch. 

Y 

15 Laptop The laptop is on the table beside chairs in the office. Y 

16 Statue The statue is on the table in the bedroom to right of the 

bed. 

Y 

17 Monitor The monitor is in the bedroom to the far right wall 

against the left wall against the left wall on the table. 

N 

18 Mug The mug is on the table in the living room to the left of 

the couch. 

Y 

19 Two-

bedrooms-

house 

Fork The fork is to the far right wall on the table in the office. Y 

20 Glasses Case There is the glasses case on the table in the living room 

beside chairs 

Y 

21 Laptop Move halfway in the laptop is in the meeting room. N 

22 Statue The statue is on the table in the bedroom to the right of 

the bed. 

Y 

23 Monitor Move halfway in the monitor is on the table beside chairs 

in the office. 

Y 

24 Mug The mug is on the table in the living room to the far right 

wall. 

Y 
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6.4 Conclusions 

Our natural spatial language generation system can compose the answer of a query on 

the position of a daily object using the information of the observed scene in an indoor 

environment. The system accomplishes the spatial language generation task from scene to 

text using a cascaded structure. Compare with other language generation works [50] [51] 

[60], our system is more specific on the indoor spatial description task but can compose 

long and complicated sentences. The system first symbolizes and quantifies the scene to 

an environment model. Then it scores and predicts the possible groundings. A language 

model then examines the groundings to eliminate any redundant or conflicted information. 

Finally, a parsing tree was built and the objective language was generated by in-order 

traverse through the tree. We compared our results with the descriptions of the same scenes 

generated by humans which are considered as ground truth. The machine generated 

language was scored by the number of spatial relationships found in the human edited 

language. An arbitrary spatial description is then successfully generated if it captures all 

the spatial relationships in the human language. All 48 comparisons are shown in Table 

6-1. The overall successful rate is 89.6% (43/48). 

The results demonstrate that our system has the capacity to generate precise and human-

like spatial language in a complex environment. This enable the robots’ ability to navigate 

in a human spatial language domain. Compared with dynamical spatial commands, the 

static spatial descriptions are more understandable for a human since they better match the 

human user’s habits in spatial language. The use of references and spatial relationships are 

also helpful in reducing the ambiguity sometimes found in the spatial language. 
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We observed some failures and inappropriate cases in our results. The spatial 

description phrase move halfway in appears too often in the language which created 

redundancy and ambiguity in the language. The reason is that this spatial relationship can 

always be matched when the location of the target object is not against the wall or corner, 

which means it will survive in the content selection step with a high score. In addition, the 

language model refining step did not detect and remove this reductant information. Adding 

another refining stage from a generalized human language model may be needed to solve 

the problem.  
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Chapter 7. Conclusion and Perspective 

7.1 Contribution of the dissertation 

The dissertation presents a framework to allow robots to interact with human in the 

indoor environment. The framework can process the natural spatial language data and the 

perception data to determine the action of the robot. It can also generate the natural spatial 

language to the human users. A point-cloud based furniture robot perception system was 

developed to map the robot working environment. To evaluate the performance of the 

system in various environment, we built a 3D robot simulator which contain four different 

worlds. 

This research presented herein contributes to the advancement of robotic technology. 

The advancements are based on the development of an autonomous robotic system and a 

spatial language interaction system. Future plans involve researching and developing a 

robot that understands and uses human-like spatial language. 

The autonomous robot system developed a trajectory planning and tracking algorithm 

for differential drive robots, which are programmed to enable P3DX robots to move in an 

indoor environment. The robot perception experiment utilized a Microsoft Kinect camera 

as its main sensor to build a model for small working environments with an emphasis on 

apartment complexes devoted to providing assisted care for the elderly. Leveraging the 

work of my M.S. thesis, a new furniture object recognition system based on point cloud 

data was developed, evaluated and utilized in a new robot system. The new perception 

abandons instance level recognition and gets a better performance on category level 

recognition of furniture. It also decreased errors in furniture orientation estimation. The 
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perception system helps the robot to build its working environment model, which contains 

the category, position and orientation of the objects (emphasized on the furniture items) in 

the robot working space. 

The development of a spatial language interaction system started with collecting a 

human spatial language corpus. This part was conducted by Dr. Carlson’s group at Notre 

Dame. They collected thousands of utterances on spatial description from both elder adults 

and younger adults. This corpus was then reorganized into a template, which is a prototype 

of expression on spatial description. Alexenko developed a part-of speech (PoS) tag system 

for the template by using the natural language tool kit (NLTK). The system can tag the 

words in a spatial description and then chunk these words to form clauses with the tags of 

spatial information and generate a tree structure. The PoS system was improved and 

extended to a larger size template so that it can adjust to a more complicated spatial 

language input. A novel spatial language grounding model, which can interpret the spatial 

description to robot actions was designed and evaluated on both a simulated and physical 

platform.  

To solve the disadvantages of hard-coded robot behavior models, we developed an 

algorithm to program the robot behavior model by demonstration. The demonstration was 

the recording of actions given by non-expert users to the robot for following spatial 

language commands. The algorithm parameterized demonstration records to world state 

features and used them to build moving target estimators for each kind of RDT-form 

grounding. This algorithm enabled the robot to learn its behavior model by data rather than 

manually editing. It not only helped to reduce the labor of programing but also clarified the 

understanding of spatial concepts. 
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The completed capability of using spatial language not only includes understanding 

spatial language but also provides the means to use it. This phase of the research is to 

convert the robot from receiver to sender of spatial commands or information. A spatial 

language generation system was designed to enable a robot to give spatial descriptions to 

humans. The system learns how to build a spatial description from a spatial language 

corpus. The scenario of the task requires the robot to leave its human user after being asked 

to search for a target object. It then builds the environment model during the searching. 

After it finds the target object, it will generate the most adequate spatial description to 

inform the human user of the position of the target object.  

Compared with other systems proposed by [50-52, 60], this research proposes a general 

framework for both static and dynamic spatial language and a completed solution of 

human-robot spatial language interaction. The system also provides the method and the 

interface to model human demonstrations on spatial concepts so that the robot can quickly 

learn new spatial language through very few demonstration examples. During the 

evaluation of the system, we did not ignore the challenges and counted all the uncertainties 

in the perception, language and robot state. The results of the end-to-end experiments 

validates the feasibility of our system and provided a perspective for further development. 
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APPENDIX 

Table A1 Raw result of the robot training assessment. 

 NSLD RDT 
Target Pose 

(x, y, rotation) 

Final Pose 

(x, y, rotation) 

If Capture 

Target 

1 go/walk/move forward Move-front-non 

4.3, 2.7, 1.5 5, 2.5, 0 

N/A 2.7, 4.3, 91 3, 5, 90 

0.4, -4.8, 223 0.24, -4.8, 225 

2 Turn left Move-left-non 

2, 2.5, 90 2, 2.5, 88 

N/A 3, 2, 180 3, 2, 178 

2, -3, 315 2, -3.1, 316 

3 Turn right Move-right-non 

2, 2.5, 270 2, 2.5, 271 

N/A 3, 2, 0 3, 2, 1 

2, -3, 135 2, -3.1, 133 

4 On the Table on the/your left Robot-left-table 

2, 2, 180 2.1, 2.1, 180 Y 

0.5, -5, 180 0.6, -5.3, 180 Y 

1, 5.5, 90 0.4, 5.6, 68 Y 

5 
On the table on the/your 

right 

Robot-right-

table 

5.5, 5, 0 5.3, 5.3, 339 Y 

-1, -7, 135 -0.3, -7.1, 159 Y 

2, 7, 180 2.2, 6.1, 159 Y 

6 
On the table to the left of the 

bed 
Bed-left-table 

-1, 3, 270 -1.1, 2.8, 272 Y 

-1.5, 2.1, 50 -1.6, 2.1, 350 N 

-1, 3, 270 -1.1, 2.8, 271 Y 

7 
On the table to the right of 

the bed 
Bed-right-table 

1.5, 2.5, 225 -1.1, 2.8, 271 Y 

1, 3, 270 1, 2.9, 268 Y 

1.5, 2, 180 1.6, 2.2, 191 Y 

8 
On the Table in front of the 

couch 

Couch-front-

table 

0, -4.5, 225 0, -5, 158 N 

0.5, -5, 180 0.1, -5.1, 159 Y 

0, -5.5, 135 0.1, -5.4, 156 Y 

9 
On the table to the left of the 

couch 
Couch-left-table 

-0.8, -3.5, 180 -0.8, -3.4, 188 Y 

-1, -3, 225 -0.9, -3.0, 224 Y 

-1.5, -3, 270 -1.5, -2.9, 271 Y 

10 
On the table to the right of 

the couch 

Couch-right-

table 

-1, -6, 225 -0.6, -5.9, 223 Y 

-0.5, -6.5, 180 -0.5, -5.8, 223 Y 

-1, -7, 135 -0.6, -6, 223 Y 

11 On the table Beside a chair 
Chair-beside-

table 

0.5, -7.2, 0 0.3, -6.8, 358 Y 

-0.5, -3, 90 0.1, -3.1, 110 Y 

5.5, 5, 0 5, 4.8, 358 Y 

12 

“go to the center of the 

room”/“move about halfway 

in” 

Room-center-

non 

2.5, 4.5, 90 3.4, 4.2, 68 

N/A 2.5, 4.5, 90 1.3, 4.7, 358 

0.5, -4.5, 270 1, 4.2, 268 

13 Move to the front wall Wall-front-non 

-1, 5, 180 0, 5, 180 

N/A 5.5, 5, 0 5, 5, 0 

0.5, -6.5, 270 0.5, -6, 270 
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Table A2. Raw results of the simulated end-to-end assessment. 

The 79 new edited spatial commands or descriptions (labeled by “world-name_target-object”) 

1–2 
apartment_fork: 

the fork is in the living room on the right on the table directly to the right 

go to the living room and the fork will be on the table behind the couch 

3–6 

apartment_mug: 

go to the bedroom then move about halfway in and then turn right go forward and 

there is the mug 

go to the bedroom then move about halfway in and then turn right go forward to the 

table with the chairs and there is the mug 

the mug is in the bedroom on the table to the far right. 

the mug is in the bedroom to the left on the table by the chairs at the far right end. 

7–9 

apartment_statue: 

the statue is in the bedroom on the table to the right of the bed. 

go to the bedroom then turn left you will see the statue on the table. 

go to the bedroom and the statue will be on the nightstand ahead to your left. 

 

10–13 

apartment_monitor 

go to the bedroom on the left you will find the monitor on top of the nightstand to 

the left of the bed. 

the monitor is in the bedroom to the left on the left wall. 

the monitor is in the bedroom on the table to the left of the bed. 

go straight and turn left and go straight about halfway in and turn left then go 

forward until you hit the wall and then left again and you will find the monitor. 

14–16 

apartment_laptop: 

go forward and turn right and walk straight until you are at the table at the back and 

you will find the laptop 

go to the living room and go straight until you are at the wall and you will find the 

laptop on the table with the chairs 

the laptop is in the living room on the back table with the chairs 

17–18 

apartment_glassescase: 

the glasses case was in the living room on the table in front of the couch. 

go to the living room and go forward and turn right and you will find the glasses 

case on the table in front of the couch. 

19–22 

hkstudio_fork: 

go to the studio and the fork is on the table ahead to the left 

the fork is in the studio on the table ahead to your left 

the fork is in the studio room on the table on the left side wall 

the fork is in the studio on the table by the chair 

23–25 

hkstudio_mug: 

go to the office and the mug is on the table behind the couch 

go to the office and the mug is on the table in front of the couch 

go to the office and go about halfway in and the mug will be on the table 

26–27 
hkstudio_statue: 

go to the studio and the statue is on the table at the end of the room 

go to the studio and the statue is on the table by the chair at the end of the room 
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28–32 

hkstudio_monitor: 

the monitor is in the studio on the table on the right. 

go to the studio then go forward then turn right and go forward and you will find the 

monitor on the table. 

go to the studio then go forward then turn right and go forward and you will find the 

monitor on the table with the chair. 

the monitor is in the studio on the table to the far right in the studio. 

go to the studio and the monitor is on the table with the chair to the right of the room 

33–40 

hkstudio_laptop: 

the laptop is on the table to the left. 

the laptop is on the table with the chairs. 

the laptop is on the table to the left by the chairs. 

turn left then you will find the laptop on the table. 

turn left then you will find the laptop on the table by the chairs. 

the laptop is on the table in the meeting room. 

the laptop is on the table on the left in the meeting room. 

the laptop is in the meeting room on the table on the left. 

41–43 

hkstudioglasses case: 

go forward and turn right and then go forward and go straight until you are at the 

back and you will find the glasses case. 

the glasses case is in the office on the table with the chair. 

go to the office and the glasses case is on the table by the chair. 

44–47 

onebedroom_fork: 

the fork is on the table in the meeting room 

the fork is in the meeting room on the table by the chair 

go to the meeting room the fork will be on the table by the chair 

go to the meeting room then the fork will be on the table 

48–51 

onebedroom_mug: 

turn right and then you will find the mug on the table 

the mug is on the table to the left of the couch 

the mug is on the table on the right 

turn right then go forward you will find the mug on the table 

52–55 

onebedroom_statue: 

the statue is in the bedroom on the nightstand to the right of the bed 

the statue is on the table to the right of the bed in the bedroom 

go to the bedroom then go forward you will find the statue on the table 

go to the bedroom then go about halfway in you will find the statue on the table to 

the right of the bed 

56–59 

onebedroom_monitor: 

the monitor is in the bedroom on the table with the chair 

go to the bedroom the turn right you will find the monitor on the right 

the monitor is in the bedroom on the table to the left of the chair 

go the bedroom then you will find the monitor on the table on the right 

60–61 
onebedroom_laptop: 

go to the office then you will find the laptop on the table by the chair 

the laptop is on the table in the office room 
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62–65 

onebedroom_glassescase: 

the glasses case is on the table in front of the couch 

the glasses case is in the living room on the table in front of the couch 

go forward then turn right you will find the glasses case on the table 

go forward then turn right you will find the glasses case on the table in front of the 

couch 

66–68 

twobedrooms_fork: 

go to the office and then turn right and the fork is on the table 

go to the office and the fork will be on the right 

the fork is in the office room on the table to the right end of the room 

69–70 
twobedrooms_mug: 

the mug is in the living room on the table to the right of the room 

the mug is on the table in the living room 

71–73 

twobedrooms_statue: 

the statue is on the table in the bedroom 

go to the bedroom then you will find the statue on the table on the left. 

go to the bedroom and the statue is on the table to the right of the bed. 

74–75 
twobedrooms_monitor: 

the monitor is in the office room on the table by the chair 

go to the office and then you will find the monitor on the table 

76–78 

twobedrooms_laptop: 

go forward and then turn left and you will find the laptop on the table 

go forward and the laptop is on the table ahead to your left 

the laptop is on the table by the chairs 

go forward and the laptop is on the table by the chairs ahead to your left 

79 
twobedrooms_glassescase: 

the glasses case is in the living room on the table in front of the couch 
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Table A3. Raw results of the 79 rounds robot fetch tasks in the four simulated 

environments. 
# Name Target Position 

(m, m) 

Final Pose 

(m, m, degree) 

If the target 

object captured 

1 apartment_fork_0 4, 2 2.93, 1.89, 358 Y 

2 apartment_fork_1  3.43, 1.59, 43 Y 

3 apartment_laptop_0 4.5, 7  (pos) 

4 apartment_laptop_1  3.97, 5.58, 76 Y 

5 apartment_laptop_2   (pos) 

6 apartment_monitor_0 6, -2 6.18, -3.52, 91 Y 

7 apartment_monitor_1   (not visible) 

8 apartment_monitor_2  6.09, -3.50, 90 Y 

9 apartment_monitor_3   (not visible) 

10 apartment_mug_0 -1, -5 -0.44, -4.60, 178 Y 

11 apartment_mug_1  0.32, -4.9, 201 Y 

12 apartment_mug_2   (pos) 

13 apartment_mug_3   (not visible) 

14 apartment_statue_0 4, -2 3.85, -3.12, 88 Y 

15 apartment_statue_1  2.28, -1.95, 358 Y 

16 apartment_statue_2  2.69, -2.07, 358 Y 

17 apartment_glassescase_0 4.3, 4.1 3.25, 4.01, 1 Y 

18 apartment_glassescase_1  3.47, 3.61, 44 Y 

19 hkstudio_fork_0 -4, 0.5 -2.40, 0.54, 178 Y 

20 hkstudio_fork_1  -2.44, 0.39, 178 Y 

21 hkstudio_fork_2  -3.27, 1.56, 245 Y 

22 hkstudio_fork_3  -2.17, 0.71, 155 Y 

23 hkstudio_glassescase_0 4, -4.5 3.14 -1.60, 271 Y 

24 hkstudio_glassescase_1   -(not visible) 

25 hkstudio_glassescase_2   -(perception) 

26 hkstudio_laptop_0 -4, -3 -2.33, -2.90, 181 Y 

27 hkstudio_laptop_1  -2.27, -2.59, 195 Y 

28 hkstudio_laptop_2  -2.42, -2.93, 178 Y 

29 hkstudio_laptop_3  -1.92, -2.92, 178 Y 

30 hkstudio_laptop_4  -1.84, -2.92, 178 Y 

31 hkstudio_laptop_5  -2.50, -3.99, 181 Y 

32 hkstudio_laptop_6  -2.32, -2.92, 180 Y 

33 hkstudio_laptop_7  -2.27, -2.90, 181 Y 

34 hkstudio_monitor_0 4.5, 4  (not visible) 

35 hkstudio_monitor_1  -0.08, 2.80, 0 Y 

36 hkstudio_monitor_2  0.01, 2.90, 0 Y 

37 hkstudio_monitor_3   (not visible) 

38 hkstudio_monitor_4   (perception) 

39 hkstudio_mug_0 0.9, -3.8  (pos) 

40 hkstudio_mug_1  1.85 -2.75, 204 Y 

41 hkstudio_mug_2   (collision) 

42 hkstudio_statue_0   (not visible) 

43 hkstudio_statue_1  -2.06, 2.96, 133 Y 

44 onebedroom_fork_0 0.5, 8 1.39, 5.71, 88 Y 

45 onebedroom_fork_1  1.48, 6.67, 110 Y 

46 onebedroom_fork_2  1.43, 6.53, 110 Y 

47 onebedroom_fork_3  1.45, 5.83, 88 Y 

48 onebedroom_glassescase_0 3.5, 3 2.74 1.95, 46 Y 

49 onebedroom_glassescase_1  2.85, 3.37, 316 Y 

50 onebedroom_glassescase_2  1.77, 3.01, 1 Y 
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51 onebedroom_glassescase_3  3.18, 2.20, 316 (perception) 

52 onebedroom_laptop_0  0.31, 1.82, 223 Y 

53 onebedroom_laptop_1  0.72, 1.51, 178 Y 

54 onebedroom_monitor_0 4.4, 5.5 3.41, 5.47, 0 Y 

55 onebedroom_monitor_1  2.90, 5.30 1 Y 

56 onebedroom_monitor_2  2.85, 5.31 1 Y 

57 onebedroom_monitor_3  2.98, 5.42, 1 Y 

58 onebedroom_mug_0 4.4, 0.8 2.90, 0.53, 1 Y 

59 onebedroom_mug_1  3.16, 0.61, 358 Y 

60 onebedroom_mug_2  3.05, 0.73, 1 Y 

61 Onebedroom_mug_3  2.07, 0.52, 358 Y 

62 onebedroom_statue_0 2.7, 6.7 3.65, 6.50, 178 Y 

63 onebedroom_statue_1  3.63, 6.52, 178 Y 

64 onebedroom_statue_2  2.99, 5.22, 88 Y 

65 onebedroom_statue_3  2.96, 5.20, 89 Y 

66 twobedrooms_fork_0 4.1, 6 2.29, 5.78, 2 Y 

67 twobedrooms_fork_1  3.05, 6.02, 2 Y 

68 twobedrooms_fork_2  3.00, 5.90, 1. Y 

69 twobedrooms_laptop_0 1, 6 1.40, 5.19, 358 Y 

70 twobedrooms_laptop_1  0.39, 5.86, 1 Y 

71 twobedrooms_laptop_2   (collision) 

72 twobedrooms_laptop_3  -0.63, 5.97, 1.68 Y 

73 twobedrooms_monitor_0 2.5, 7  (perception) 

74 twobedrooms_monitor_1  2.32, 5.82, 88 Y 

75 twobedrooms_mug_0 -1.1, 2  (ambiguity) 

76 twobedrooms_mug_1  -0.55, 3.02, 268 Y 

77 twobedrooms_statue_0 3.9, 1.6 2.53, 2.54, 314 Y 

78 twobedrooms_statue_1  2.99, 1.82, 1 Y 

79 twobedrooms_statue_2  3.03, 1.67, 20 Y 
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