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Highlights 

 Depolymerisation on microbial surfaces initiates fermentation of XG/AX by porcine faeces 

 Depolymerised XG/AX released back into medium suggesting cross-feeding 

 Acetate and propionate produced at the same time as XG/AX  degradation  

 Butyrate and gas production occur later than XG/AX degradation 

 

Abstract: 

Arabinoxylan (AX) and xyloglucan (XG) are important components of primary cell walls of cereal 

grains and vegetables/fruits, respectively. Despite the established health benefits of these non-starch 

polysaccharides, the mechanisms of their utilisation by the gut microbiota are poorly understood. In this study, 

the mechanisms of solubilised wheat AX and tamarind XG degradation were investigated under in vitro 

fermentation conditions using a porcine faecal inoculum. Through structural analysis of the polymers, we 

ACCEPTED M
ANUSCRIP

T

mailto:g.feng@uq.edu.au
mailto:b.flanagan@uq.edu.au
mailto:b.williams@uq.edu.au
mailto:d.mikkelsen@uq.edu.au
mailto:w.yu1@uq.edu.au
mailto:m.gidley@uq.edu.au


demonstrate that depolymerisation by microbial surface accessible endo-degrading enzymes occurs prior to 

active fermentation of AX or XG. Breakdown products are released into the medium and potentially utilised 

cooperatively by other microbes. Acetate and propionate are the main fermentation products and are produced 

concurrently with polysaccharide depletion. Butyrate, however, is produced more slowly consistent with it 

being a secondary metabolite. 

 

Key words: Xyloglucan; Arabinoxylan; In vitro fermentation; Short chain fatty acid; Gut microbiota 

 

1 Introduction 

Plant cell walls are rich in polysaccharides and are the main structural components of plant-based foods 

such as grains, fruits and vegetables. They are not digested or absorbed in the human small intestine, and 

therefore pass to the large intestine where they are available for fermentation by the resident microbiota 

(Gidley, 2013; Harris & Smith, 2006; Mikkelsen, Gidley, & Williams, 2011). The fermentation of these 

polymers is not only critical in maintaining colonic health (Neyrinck et al., 2011), but also has profound effects 

on host metabolism, and the immune system (Mendis, Leclerc, & Simsek, 2016). 

Xyloglucan (XG) is found in the cell walls of almost all land plants. It is abundant in the primary walls 

of vegetables and fruits (Larsbrink, Rogers, et al., 2014), as well as in the seeds of some species, e.g. tamarind, 

as a storage polymer providing energy for germination (Schultink, Liu, Zhu, & Pauly, 2014). The structure of 

XG consists of a β-1,4-glucopyranose  (Glcp) backbone partially substituted with α-D-xylopyranose (α-D-

Xylp) at C(O)6. The α-D-Xylp residues can be further substituted with other monosaccharides, including 

galactose (such as in tamarind seed), fucose (such as in eudicotyledons) and/or arabinose (such as in 

Solanaceae) (Hsieh & Harris, 2009). The structure of tamarind XG (Figure 1) consists of four motifs, a 

heptasaccharide (XXXG, Glc4Xyl3), two octasaccharides (XXLG and XLXG, Glc4Xyl3Gal) and a 

nonasaccharide (XLLG, Glc4Xyl3Gal2), with the ratio of hepta-/octa-/nona-saccharide being 13:39:48 

(Yamatoya, Shirakawa, Kuwano, Suzuki, & Mitamura, 1996).  

Arabinoxylan (AX) is especially abundant in the primary cell walls of many cereal grains. The 

backbone of wheat or rye AX consists of β-(1,4)-linked D-xylopyranosyl units which are doubly substituted 

with arabinofuranosyl moieties at C(O)2 and C(O)3 (A2+3X), or singly substituted at C(O)3 (A3X) (Figure 1).  
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Figure 1 Structural features present in tamarind xyloglucan and wheat arabinoxylan. Note that the sequence 

of these features is not defined. 

The large intestinal microbiota produce various enzymes which degrade XG/AX into their 

monosaccharide components, which are then metabolised into smaller molecules, such as short chain fatty 

acids (SCFA) (Larsbrink, Rogers, et al., 2014; Rogowski et al., 2015). The complete degradation of XG into 

monosaccharides (glucose, xylose and galactose in the case of tamarind XG) requires the concerted action of 

endo-β-1,4-xyloglucanase, exo-β-glucosidase, exo-α-xylosidase and exo-β-galactosidase. Similarly, to 

degrade AX into xylose and arabinose, endo-β-xylanase, exo-α-arabinofuranosidases and exo-β-xylosidase 

are needed. Genomic and metagenomic analyses identify both extracellular and intracellular XG/AX-

degrading enzymes, and putative degradation pathways within single microbes have been proposed (Larsbrink, 

Rogers, et al., 2014; Ravachol et al., 2016; Rogowski et al., 2015). However, systems using single microbes 

are limited, as the gut microbiota contains hundreds of microbial species in a highly dynamic and competitive 

gut environment.  Therefore, it is useful to include the entire microbial community to understand how specific 

polysaccharides are degraded. 

In our previous study, general features of AX utilisation by a porcine faecal inoculum were deduced 

using AX in a powdered state (Feng et al., 2018). However, when powdered XG was used, gel lumps were 

apparent in the medium, which inhibited utilisation by the microbes to a variable extent. Therefore, in order 

to examine the mechanisms of XG utilisation, XG was pre-dissolved. Pre-dissolved AX was also included in 

this study to compare with powdered AX. A porcine faecal inoculum was used as a model for colonic 

microbiota (Miller & Ullrey, 1987; Roura et al., 2016), and a semi-defined medium was used in which the 

XG/AX polymers were the only carbon sources available for energy. AX and XG are large polymers and are 

not expected to be able to pass through the microbial cell walls (Demchick & Koch, 1995). Therefore, the 

hypothesis was that both XG and AX in solution would be depolymerised and debranched by microbial 

surface-accessible enzymes with release of degradation products back into the medium during active 

fermentation.   
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2 Materials and methods 

2.1 Materials 

XG (product code: P-XYGLN) and AX (product code: P-WAXYM) were purchased from Megazyme 

(Bray, Ireland). Dimethyl sulfoxide-d6 (DMSO-d6, 99.9 atom % D, 151874), deuterium oxide (D2O, 99.9 

atom % D, 151882) and 3-(trimethylsily) propionic-2,2,3,3-d4 acid sodium salt (TSP, 98 atom % D, 269913) 

were purchased from Sigma-Aldrich (Castle Hill, Australia).  

2.2 In vitro fermentation of XG and AX 

2.2.1 Preparation of the substrate solutions 

For each polymer, XG or AX, 21 g was dissolved overnight at 25 ºC in boiled Milli-Q water (2.1 L) 

with constant stirring and bubbling with a stream of oxygen-free carbon dioxide, and then dispensed into 

serum bottles (38 mL). The bottles were sealed with butyl rubber stoppers, aluminium caps crimped, and 

autoclaved (15 min, 121 °C).  

2.2.2 Preparation of the medium 

The medium was modified from Lowe et al. (Lowe, Theodorou, Trinci, & Hespell, 1985) and Williams 

et al. (Williams, Bosch, Boer, Verstegen, & Tamminga, 2005). In brief, the concentration of the ‘basal solution’ 

was double that of the basal solution described by Williams et al. (Williams et al., 2005), and each serum 

bottle contained 38 mL of the concentrated basal solution.  The basal solution contained 1.189 g/L trypticase 

as a source of peptides and amino acids, as well as 0.642 g/L NH4Cl as an addition source of nitrogen in the 

form of ammonium. The vitamin/phosphate solution, bicarbonate solution, and reducing agent were prepared 

according to methods described by Williams et al. (Williams et al., 2005).  

2.2.3 Preparation of the inoculum 

The inoculum was prepared based on the method described by Williams et al. (Williams et al., 2005). 

Faeces were collected from five pigs fed on a standard semi-defined diet for ten days prior to collection. The 

diet, based on readily digestible maize starch and fishmeal (Feng et al., 2018), was formulated to be as free as 

possible of XG or AX to avoid adaptation of the microbiota. The faeces were diluted five times (w/v) with 

pre-warmed (39 °C), sterile, saline solution (9 g/L NaCl). The inoculum was obtained after homogenisation 

of the faeces with a hand mixer for 60s, and filtration through four layers of muslin cloth.  

2.2.4 Fermentation 

The ‘substrate solution’ and the ‘basal solution’ were combined under a constant flow of CO2. Then, 

1 mL of the ‘vitamin/phosphate solution’, 4 mL of the ‘bicarbonate solution’ and 1 mL of the ‘reducing agent’ 

were added (Williams et al., 2005). Following inoculation, fermentation proceeded for up to 72 h at 39 °C. 

Two blanks were included. One blank contained the substrate and the medium but the inoculum was 

substituted by 5 ml saline solution (AX_Med or XG_Med), for which there were two replicates each at 0 h 

and at 72 h. The other blank contained the medium and the inoculum but no substrates (Inoc_Med, 38 mL of 
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autoclaved Millipore water was used), for which two bottles were taken for each time removal point (0 h, 2 h, 

4 h, 6 h, 8 h, 10 h, 12 h, 18 h, 24 h, 48 h, and 72 h). 

At each time removal point, the microbial activity was retarded by plunging the bottles into ice water 

for 20 min, and samples were taken for various analyses according to the methods described by Feng et al 

(Feng et al., 2018).  

2.2.5 Cumulative gas production 

Cumulative gas production was calculated according to the method described by Williams et al. 

(Williams et al., 2005). In brief, at regular time intervals, the fermentation bottles were connected to a pressure 

transducer and the pressure inside the bottles was recorded. Gas was removed manually using a syringe until 

the pressure returned to baseline, and the volume of gas was recorded. The gas volume was latter corrected 

according to the regression of recorded pressure and volume. The corrected volume at each time per bottle 

was cumulated to calculate the cumulative gas production. 

2.3 Short chain fatty acids (SCFA) and ammonia (NH3) analyses 

At the end of fermentation, samples of the top phase liquid were collected for SCFA and ammonia 

analyses, for which samples were stabilised with 20% metaphosphoric acid and 0.2 M HCl, respectively. 

SCFA were analysed using modified methods from Williams et al. (Williams, Mikkelsen, Le Paih, & 

Gidley, 2011). A gas chromatograph (Shimadzu GC-2010, Kyoto, Japan) connected with an AOC-20i auto 

injector (Kyoto, Japan), a flame ionization detector (FID) and a ZB-FFAP column (30 m × 0.53 mm, J & W 

Scientific, USA) was used. The temperatures for the injector, detector and column were 180 °C, 210 °C and 

85 °C respectively. Initially, the temperature was 85 °C for 4 min, then increased to 200 °C at a rate of 

15 °C/min. The branched-chain percentage (BCP) was the mole percentage of branched-chain SCFA (iso-

butyrate, iso-valerate) and valerate to the total SCFA. 

Ammonia was determined according to the method first described by Baethgen and Alley (Baethgen 

& Alley, 1989), as modified by Williams et al. (Williams et al., 2005). In brief, after stabilisation with equal 

volume of 0.1 M HCl, ammonia was determined using sodium hypochlorite and sodium nitroprusside at 623 

nm.  

2.4 Enzymatic hydrolysis of XG and AX with the inoculum supernatant 

The prepared inoculum (described in 2.2.3) was centrifuged for 20 min at 14,000 g and 4 °C. The 

supernatant was filtered through 0.22 μm filters to ensure complete removal of the microbes.  Then 2.5 mL of 

this filtrate was added into serum bottles containing half the volume of the complete medium and the substrates 

(see 2.2). The mixture was incubated at 39 °C for up to 72 h. Two bottles that contained the inoculum 

supernatant and the medium but no substrates (Inoc_Med) were taken at each time removal point (0 h, 12 h, 

18 h and 72 h).  
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At set incubation times, serum bottles were removed from incubation and plunged into ice water for 

20 min. Then 5 mL of this solution was taken for monosaccharide assays. The remainder was stored at -20 °C 

for freeze-drying followed by proton Nuclear Magnetic Resonance (1H NMR) and Size Exclusion 

Chromatography (SEC) analysis (see 2.7). 

2.5 1H NMR and SEC analysis 

Before 1H NMR and SEC analyses, the samples were freeze-dried. 1H NMR measurements were 

performed with a Bruker 500 MHz spectrometer. DMSO-d6 was used as the solvent for AX analysis, and D2O 

was used for XG analysis. Trimethylsilyl propanoic acid sodium salt (TSP) (1.2 mg/mL) in D2O was added 

as an internal reference (Lopez-Sanchez, Wang, Zhang, Flanagan, & Gidley, 2016). 1H NMR measurements 

were run at 353 K to shift the hydrogen-deuterium oxide (HOD) peak upfield away from the anomeric 

carbohydrate peaks. The 1H NMR signals were assigned based on literature values (Gidley et al., 1991; 

Hoffmann, Leeflang, de Barse, Kamerling, & Vliegenthart, 1991). The chemical shifts of XG were 5.14 ppm, 

4.95 ppm and 4.50-4.63 ppm for galactosylated xylose units, un-substituted xylose units, and β-glycoside units 

(galactose and glucose) respectively (supplementary Figure S1). The chemical shifts of AX were 5.38 ppm, 

5.20 ppm, 5.05 ppm and 4.24-4.64 ppm for arabinose mono-linked at C(O)3, mono-linked at C(O)2 or di-

linked at C(O)3, di-linked at C(O)2, and xylose units respectively. 

For SEC analysis, samples were prepared according to the method described by Feng et al (Feng et al., 

2018). The samples were analysed according to the methods described by Wang et al. (Wang et al., 2015). 

SEC separates by molecular size, specifically the hydrodynamic radius Rh.  The analysis here used linear 

pullulan standards, and thus the reported molecular Rh is actually not absolute, but that relative to that of 

pullulan. This has no effect on the inferences from the SEC data. 

2.6 Experimental group size and statistical analysis of data 

At least two technical replicates were performed for all quantitative assays. The fermentation and the 

enzymatic hydrolysis of XG and AX were performed using three biological replicates. The error bars in figures 

represent standard deviations of the mean from biological replicates. SEC data are the means of biological 

replicates. One-way analysis of variance (ANOVA) was used for significant difference analyses. 

The data of cumulative gas production were fitted to the following monophasic model (Groot, Cone, 

Williams, Debersaques, & Lantinga, 1996) using SAS PROC NLIN (SAS 9.4 for Windows, SAS Institute Inc, 

Cary, NC, USA, 9.4 Edition 2013): 

G = A / (1 + (C / t) B)         (Eq. 1) 

Where G is the cumulative gas produced at time t (h) and is calculated as mL of gas produced / g DM 

substrate, A is the asymptotic total gas production, B is the switching characteristic of the curve, and C is the 

time when half of the asymptotic value has been reached (h).  
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The maximum rate of the gas production (RMAX) and the time at which it occurs (TRMAX) were 

calculated according to the equations below (Bauer, Williams, Voigt, Mosenthin, & Verstegen, 2001):  

TRMAX = C × [(B-1) / (B+1)] (1/B)                   (Eq. 2) 

RMAX = A × B × C B × TRMAX (-B-1) / [1 + (C B) × TRMAX 
(-B)] 2     (Eq. 3) 

3 Results and discussion 

3.1 End-products relate directly or indirectly to substrate degradation  

Figure 2 shows the time course of total SCFA, cumulative gas production, and substrate disappearance. 

Whilst production of total SCFA occurred at the same time that XG or AX levels decreased, gas production 

increased when almost all the substrates had disappeared. Most of the XG was degraded between 12 h and 18 

h and was complete by 24 h, while the maximum rate of gas production occurred at 23 h (TRMAX: 23 h) (Figure 

2a). The AX disappearance started from ~6 h and finished at 18 h, with the fastest rate of gas production 

occurring at 19 h (TRMAX: 19 h) (Figure 2b). These data are consistent with total SCFA production being 

related directly to substrate consumption, but indicate that gas was produced at a slower rate, with gas 

production rate peaking after the substrates were no longer detectable. The faster gas production from AX 

than XG (P=0.0102) is consistent with the faster disappearance of AX compared with XG. The faster 

degradation and end product production from AX might be because the structure of AX is less complex than 

XG, as the latter contains three rather than two sugar types and is more heavily substituted (Figure 1).  In 

comparison with our previous study using powdered AX (Feng et al., 2018), the pre-dissolved AX in this 

study was degraded slower. This might be because the fermentation was carried out under static conditions, 

substrates in a powdered state might increase local concentration, which facilitates the colonisation of 

microbes (Macfarlane & Macfarlane, 2006). In addition, in the previous study, although AX was not pre-

dissolved, it was mixed (by shaking) and hydrated with the medium overnight. Therefore the accessibility of 

the substrates to the degrading enzymes might be sufficient for rapid degradation.  

 

Figure 2: Remaining substrates (measured by 1H NMR) and end product production during the fermentation 

of xyloglucan (XG: a) and arabinoxylan (AX: b) with a porcine faecal inoculum. The remaining XG/AX in 

the culture medium is expressed as the mass percentages compared with the control sample containing the 

substrate and the medium, but no inoculum. 
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The end-products of the fermentation of XG and AX show similar profiles, except for slightly more 

acetate and propionate from AX (Figure 3a, b). The amounts of acetate and propionate increased dramatically 

between 12 h and 18 h, consistent with the rapid depletion of polysaccharides during this period. After the 

substrates were no longer detectable, acetate increased slowly until 48 h, while propionate increased up to 24 

h (Figure 3). This shows that the production of these two SCFAs, fuelled by the degradation of the polymers, 

was faster than the gas production. The production of butyrate increased during the entire fermentation process 

at an apparently linear rate (R2 = 0.95 for XG and R2 = 0.99 for AX), consistent with butyrate being a secondary 

metabolite (Duncan et al., 2004) of the fermentation of XG/AX. Gas production (Figure 2) also persisted to 

longer times than acetate or propionate production, again consistent with a contribution from secondary 

metabolism. 

Acetate, propionate and n-butyrate are metabolites resulting from carbohydrates being used as an 

energy source, and are considered beneficial for health (Williams, Verstegen, & Tamminga, 2001). 

Metabolites resulting from protein fermentation including other SCFA (i.e. iso-butyrate, iso-valerate and 

valerate) and ammonia can be used as indicators of protein fermentation, which is considered unfavourable in 

terms of long-term health outcomes (Williams et al., 2001). The mole percentage of the branched-chain fatty 

acids to the total fatty acids (BCP) increased in the first six hours (Figure 3d), which was the lag phase prior 

to rapid degradation of the polymers. This suggests that with a lack of fermentation of carbohydrates, the 

microbes obtained their energy from proteolytic fermentation (Williams et al., 2001). Consistent with this, 

ammonia (NH3) also increased during this period (Figure 3e). However, during the active fermentation of the 

polymers (6 – 24 h), BCP and NH3 decreased, associated with the rapid production of acetate and propionate 

(Figure 3 a, b). After the polymers had disappeared (24 h), BCP and NH3 increased again. These results 

support the conclusion that carbohydrates are a preferred energy source, while in the absence of carbohydrate 

fermentation, amino acids and peptides are more likely to be used as an energy source for microbial growth, 

resulting in potentially toxic metabolites such as ammonia being produced (Williams et al., 2001). 
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Figure 3 Production of individual short chain fatty acids (a: acetate; b: propionate; c: n-butyrate), ammonia 

(d) and the mole percentage of branched-chain fatty acids to total fatty acids (e, BCP, includes iso-propionate, 

iso-butyrate, iso-valerate and valerate) from fermentation of xyloglucan (XG) and arabinoxylan (AX) with a 

porcine faecal inoculum. 

3.2 Depolymerisation initiates XG/AX degradation 

Figure 4 shows that at the start of fermentation, the median molecular size of XG (a) was about twice 

that of AX (b), and decreased from ~18 nm to ~7 nm at 12 h, though the amount of residual XG did not 

decrease significantly (Figure 2a, P > 0.05 between 0 h and 12 h). This smaller molecular size XG was 

degraded rapidly, and at 18 h, only a small amount of XG (15%) with a molecular size around 2 nm was 

detected in one of three biological replicates (Figure 4a: 18_A*). In the first 6 h, the molecular size of AX 

decreased from ~9 nm to ~3 nm (Figure 4b), though there was no significant loss of AX by NMR (Figure 

2b, P > 0.05 between 0 h and 6 h). At 12 h, the molecular size of AX was further degraded to 2 nm and 39% 

of AX was degraded during this period (Figure 2b). The rest of the residual AX (61%) was completely 

degraded at 18 h and no molecules with a molecular size bigger than 1 nm were observed by SEC.  
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Figure 4 Molecular size distributions (as functions of the relative hydrodynamic radius Rh) of residual 

xyloglucan (a: XG) and arabinoxylan (b: AX) during the fermentation. Distributions were normalised to the 

height of the maximum between 1 and 100 nm. XG_Med and AX_Med were the control samples containing 

XG/AX and the medium but without the inoculum. *XG was only found in one of three biological replicates.   

Though the molecular size decreased in the first twelve hours, 1H NMR results showed no structural 

changes to the residual XG (Table 1). Furthermore, no measurable monosaccharides were detected in the 

medium during the fermentation of XG (Supplementary Table S1), which indicates that depolymerisation 

of XG was sufficient to initiate the fermentation (Larsbrink, Rogers, et al., 2014; Ravachol et al., 2016). For 

the one replicate with detectable XG at 18 h (Table 1), the ratios of xylose to galactose, glucose to galactose 

and glucose to xylose increased. This suggests that after XG was depolymerised by endo-β-xyloglucanase 

activity, galactose was the first to be removed by β-galactosidase activity, followed with xylose by α-

xylosidase activity. Glucose was the last to be removed by β-glucosidase activity (Harris & Smith, 2006; 

Larsbrink, Rogers, et al., 2014), as has also proposed for xyloglucan mobilisation in plant (nasturtium) seeds 

(Crombie, Chengappa, Hellyer, & Reid, 1998).  
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For AX fermentation, the ratio of mono-linked arabinose at C(O)3 to xylose (A3/X) decreased from 6 

h to 12 h (Table 1), indicating extracellular (either secreted or cell-surface located) α-arabinofuranosidase 

activity targeting arabinoses mono-linked at C(O)3 of the xylan backbone. Arabinoses mono-linked at C(O)2 

were not observed for the starting material, but 1% was observed after 4 h, indicating α-arabinofuranosidase 

action on C(O)3-linked arabinoses of the di-substituents. Arabinofuranosidases encoded by gut symbionts that 

target the mono-linked arabinoses at C(O)3 and the C(O)3-linked arabinoses of the double substituents have 

been widely reported (Rogowski et al., 2015; Van Laere et al., 1999). Unlike changes to the proportion of 

single substitution, the proportion of di-substitution increased during the fermentation, which suggests that 

microbes preferably utilised mono-linked arabinoses rather than di-linked ones (Pollet et al., 2012). In addition, 

the A/X ratio also increased during the fermentation, which is different to our previous study, which 

demonstrated a decreased A/X ratio using AX in a powdered state (Feng et al., 2018). This may be because in 

the previous study AX was degraded faster (within 8 h) than in this study (within 18 h); the preference of 

endo-xylanases for less-substituted AX is more likely to be noticeable in a slowly fermenting environment. 

Previous studies examining slowly fermentable AX or AXOS also resulted in an increased A/X ratio (Pastell, 

Westermann, Meyer, Tuomainen, & Tenkanen, 2009; Pollet et al., 2012). 

Change of substitution pattern occurred ca four hours later than the change observed for molecular size 

by SEC, at which time the latter had decreased from ~9 nm to ~5 nm (Figure 4b). This suggests that 

depolymerisation might also initiate the degradation of AX. However, during the most active fermentation of 

AX, from 6 h to 18 h, xylan backbone depolymerisation and arabinose release may occur simultaneously, as 

both the substitution pattern and the molecular size were changed. One consequence of the partial removal of 

arabinose substituents is that this provides more sites for xylanase to act (Pollet, Delcour, & Courtin, 2010), 

so arabinose removal and depolymerisation may have acted in concert to reduce the molecular size of AX 

during the early stages of fermentation.   

In comparison with XG, structural changes of AX occurred faster. This might be caused by one or both 

of two reasons: 1) structural differences between AX and XG; 2) difference in properties between AX and XG 

degrading enzymes. The molecular size of XG is larger (18 nm vs. 9 nm for AX) and the backbone is more 

heavily substituted (Figure 1) than AX. Hence XG might be more recalcitrant to degradation. In contrast to 

the possible co-operative action on AX between α-arabinofuranosidases and β-xylanase, exo-XG-degrading 

enzymes are less (or undetectably) active toward polymeric XG (Larsbrink, Rogers, et al., 2014; Larsbrink, 

Thompson, et al., 2014; Ravachol et al., 2016). In addition, more enzymes are needed to de-branch XG than 

AX. Therefore, more time might be needed to fully degrade XG. 

 

Table 1 Structural analysis (1H-NMR) of residual xyloglucan (XG) and arabinoxylans (AX) during 

fermentation. 

  
XG AX 

Gal- Xyl/Gal Glc/Gal Glc/Xyl A3/Xyl A2/Xyl A2+3/Xyl A/X  
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Sub_Med* 1 2.30a 2.86a 1.24a 0.16a 0.00b 0.15d 0.46d 

0h 1 2.32a 2.93a 1.26a 0.16a 0.00b 0.15d 0.46d 

2h 1 2.29a 2.86a 1.25a 0.16a 0.00b 0.15cd 0.47cd 

4h 1 2.28a 2.85a 1.25a 0.16a 0.01a 0.16cd 0.48abc 

6h 1 2.26a 2.84a 1.26a 0.15ab 0.01a 0.16bc 0.48bcd 

8h 1 2.26a 2.84a 1.26a 0.14bc 0.01a 0.17b 0.48abc 

10h 1 2.28a 2.92a 1.28a 0.12cd 0.01a 0.18a 0.49a 

12h 1 2.28a 2.89a 1.27a 0.12d 0.01a 0.18a 0.49ab 

18h** 1 2.52 3.33 1.32 ‒ ‒ ‒ ‒ 

*Sub_Med is the control sample containing the substrate (XG or AX) and the medium but without the 

inoculum. Gal-: galactose; Xyl/Gal is the ratio of xylose to galactose; Glc/Gal is the ratio of glucose to 

galactose; Glc/Xyl is the ratio of glucose to xylose; A3/Xyl is the ratio of xylose mono-substituted with 

arabinose at C(O)3 to total xylose; A2/Xyl is the ratio of xylose mono-substituted with arabinose at C(O)2 to 

total xylose units; A2+3/Xyl is the ratio of di-substituted xylose units to total xylose units; A/X is the ratio of 

total arabinose to xylose. **For the fermentation of XG, detectable XG was only found in one of three 

biological replicates. Differing superscripts (a, b, c, d) in the same column show significant differences 

(P < 0.05). 

3.3 Microbial surface degradation of XG/AX releases breakdown products 

Two possible mechanisms could account for the changed structures of residual XG/AX in supernatants 

as analysed with 1H NMR and SEC (Figure 2, 4): i) enzymes in the supernatant from the inoculum, or ii) 

degradation by bacterial surface-located enzymes and subsequent release of enzymatically modified XG/AX 

into the culture medium. In order to test the former possibility, XG/AX solutions were treated with the 

inoculum supernatant (containing no microbes) in the same medium and at the same concentration as in the 

in vitro fermentation. SEC results (Figure 5) showed that the molecular size decreased, but at a much slower 

rate than during the fermentation, an effect which was more prominent for AX than XG. This indicated that 

the activities of soluble depolymerising enzymes in the inoculum supernatant were not enough to account for 

the structure of residual XG/AX observed during active fermentation. Therefore, at least some XG/AX must 

have been degraded by bacterial surface-located endo-enzymes and the breakdown products released back 

into the culture medium.  
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Figure 5 Comparison of molecular size distributions (as functions of the relative hydrodynamic radius Rh) of 

xyloglucan (XG) and arabinoxylan (AX) hydrolysed by the inoculum supernatant (solid line) and fermented 

with the whole inoculum (dashed line). Distributions were normalized to the height of the maximum between 

1 nm and 100 nm.  *For residual AX, the samples were normalised to the height of the maximum from 0.1 

nm to 1 nm because no AX larger than 1 nm was detected.  

The structures of XG/AX hydrolysed with the inoculum supernatant were further studied using 1H 

NMR. Small amounts of galactose and xylose (Supplementary Figure S2) were detected during the XG 

incubation, indicating that β-galactosidase and α-xylosidase in the inoculum were active on XG. However, the 

total monosaccharides released after 72 h accounted for only 1% of the total XG in the solution, and 1H NMR 

results did not show any change in polymeric sugar ratios (Table 2). Therefore, the observed change of sugar 

ratios in residual XG at 18 h (Table 1) during the fermentation could not have been caused by the soluble 

enzymes in the inoculum, but be due to bacterial surface-located exo-degrading enzymes, with the modified 

XG breakdown products released back into the culture medium. 

Compared with XG, the hydrolysis of AX with the inoculum supernatant released more free sugars 

(Supplementary Figure S2), indicating β-xylosidase and α-arabinofuranosidase activity. At 72 h, 21% of AX 

was hydrolysed accompanied by decreased total A/X, A3/X and A2+3/X ratios (Table 2). The A2+3/X ratio 

decreased by 0.053 (0.14 × 100% - 0.11 × 79% = 0.053) at 72 h and the A2/X ratio increased by 0.047 (0.06 

× 79% = 0.047). This indicated that α-arabinofuranosidases present in the faecal inoculum hydrolysed the 

arabinose di-substituents mainly by targeting the C(O)3-linked arabinoses. It has been reported previously that 

during the fermentation of  A2+3XX (α-L-arabinofuranose(Araf)-(1→2)-[α-L-Araf-(1→3)]-β-D-

xylopranose(Xylp)-(1→4)-β-D-Xylp-(1→4)-D-Xyl) with a human faecal inoculum, only A2XX (α-L-Araf-
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(1→2)-Xylp-(1→4)-β-D-Xylp-(1→4)-D-Xyl) was observed (Pastell et al., 2009). Therefore, the remaining 

A3/X mono-linked arabinoses at C(O)3 were mainly from the substrate, not the product of C(O)2-linked 

arabinose being cleaved from C(O)2, C(O)3 arabinose di-substituents. At 72 h, the A3/X ratio was decreased 

by 0.083 (0.17 × 100% - 0.11 × 79% = 0.083), which was higher than the decreased ratio of A2+3/X (0.053). 

This implied that the soluble arabinofuranosidases in the inoculum supernatant showed higher activity towards 

mono-linked arabinoses at C(O)3 than di-linked arabinoses linked at C(O)3. Therefore, the specificities of 

arabinofuranosidase in the inoculum supernatant were similar to those produced by microbes during the 

fermentation.  

At 12 h, the A3/X ratio of AX hydrolysed with the inoculum supernatant (Table 2) was decreased less 

than the AX fermented with the whole inoculum (Table 1). This difference indicated actions of microbial 

surface-located exo-degrading enzymes, with some of the modified AX released into the medium.  

Altogether, the hydrolysis of XG/AX showed that although the pigs were fed on XG/AX-free diets for 

10 days before faecal collection, activities of endo-β-xyloglucanase, exo-β-galactosidase, exo-α-xylosidase, 

endo-β-xylanase, exo-α-arabinofuranosidases and exo-β-xylosidase were present in the inoculum supernatant. 

However, these activities were not enough to cause the changes observed during fermentation, indicating the 

actions of microbial surface enzymes and the release of the surface modified products. 

Table 2 Structural analysis (1H-NMR) of residual xyloglucan (XG) and arabinoxylan (AX) during hydrolysis 

with the inoculum supernatant. 

Time 

(h) 

XG AX 

Gal- Xyl/Gal Glc/Gal Glc/Xyl Remaining A3/Xyl A2/Xyl A2+3/Xyl A/X Remaining 

0 1 2.29
a
 2.90

a
 1.27

a
 100%

a
 0.17

a
 0.00

c
 0.14

a
 0.45

a
 100%

a
 

12 1 2.28
a
 2.92

a
 1.28

a
 102%

a
 0.15

b
 0.02

b
 0.14

a
 0.45

a
 96%

a
 

18 1 2.27
a
 2.89

a
 1.28

a
 102%

a
 0.15

b
 0.03

b
 0.13

a
 0.45

a
 95%

a
 

72 1 2.27
a
 2.90

a
 1.28

a
 100%

a
 0.11

c
 0.06

a
 0.11

b
 0.40

b
 79%

b
 

Gal-: galactose; Xyl/Gal is the ratio of xylose to galactose; Glc/Gal is the ratio of glucose to galactose; Glc/Xyl 

is the ratio of glucose to xylose; A3/Xyl is the ratio of xylose mono-substituted with arabinose at C(O)3 to 

total xylose; A2/Xyl is the ratio of xylose mono-substituted with arabinose at C(O)2 to total xylose; A2+3/Xyl 

is the ratio of di-substituted xylose units to total xylose units; A/X is the ratio of total arabinose to total xylose. 

The remaining XG/AX is expressed as the mass percentage of substrates remaining during the hydrolysis to 

the samples at 0 h. Differing superscripts (a, b, c) in the same column show significant differences (P < 0.05). 

4 Conclusions 

During their fermentative utilisation, microbial surface-located enzymes hydrolyse soluble XG and 

AX, with some breakdown products released back into the culture medium. Structural analyses of residual 

XG/AX suggested that depolymerisation is a prerequisite for the active fermentation of these polymers, with 

one consequence being the potential for them to be degraded cooperatively by sharing of the breakdown 

products. Cross-feeding between different microbes might expand the nutrient availability and result in better 

microbial growth compared with single microbes (Turroni et al., 2016). In addition, cross-feeding might help 

to promote a more diverse and healthy microbiota by encouraging the growth of many bacterial species 

(Turnbaugh et al., 2009). End-product analyses showed high levels of acetate and propionate, and low 
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percentage of branched-chain fatty acids and ammonia production, indicating the potential benefits of XG/AX 

fermentation to colonic health. These findings contribute to understanding the principles underpinning the 

health benefits of dietary fibres. Future studies will investigate the location of XG and AX – degrading 

enzymes, and the composition and function of the microbial community related with the fermentation of these 

polymers.  
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