
1057-7149 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2864918, IEEE
Transactions on Image Processing

1

Chaotic Sensing
Shekhar S. Chandra, Member, IEEE, Gary Ruben, Jin Jin, Mingyan Li, Andrew Kingston, Imants Svalbe and

Stuart Crozier

Abstract—We propose a sparse imaging methodology called
Chaotic Sensing (ChaoS) that enables the use of limited yet
deterministic linear measurements through fractal sampling. A
novel fractal in the discrete Fourier transform is introduced that
always results in the artefacts being turbulent in nature. These
chaotic artefacts have characteristics that are image independ-
ent, facilitating their removal through dampening (via image
denoising) and obtaining the maximum likelihood solution. In
contrast with existing methods, such as compressed sensing, the
fractal sampling is based on digital periodic lines that form the
basis of discrete projected views of the image without requiring
additional transform domains. This allows the creation of finite
iterative reconstruction schemes in recovering an image from
its fractal sampling that is also new to discrete tomography. As
a result, ChaoS supports linear measurement and optimisation
strategies, while remaining capable of recovering a theoretically
exact representation of the image. We apply the method to
simulated and experimental limited magnetic resonance (MR)
imaging data, where restrictions imposed by MR physics typically
favour linear measurements for reducing acquisition time.

Index Terms—Fractal Sampling, Chaos, Sparse Image Re-
construction, Discrete Fourier Slice Theorem, Ghosts, Fractals,
Missing Data, Compressed Sensing

I. INTRODUCTION

Recovering an image of an object from a set of measurements
is of great importance in the physical sciences, engineering
and medicine. For example in medicine, medical imaging
aids clinicians in diagnosing diseases [1]. This process of
image reconstruction, whether from projected views of the
object or a transform space such as the Fourier space, is
challenging because acquisition is always limited is some
sense. The limitations may occur because the imaging modality
has high time-cost, such as in magnetic resonance (MR)
imaging, or because the instrumentation has a limited range of
motion, such as in many biomedical imaging experiments at
synchrotron facilities. It could be because the imaging modality
exposes the specimen to ionising radiation and this exposure
needs to be minimised, such as in computed tomography
(CT). Or it could be because the imaging methods chosen
are themselves ill-posed, as with most algorithms utilised in
medical imaging [2, 3].

In cases such as these, limited imaging data creates ambiguity
about the object and manifests itself as reconstruction artefacts
known as Ghosts1 in the recovered image [3–7]. These
Ghosts have invisible structures in the direction of known
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1Sometimes referred to as phantoms [4] or ambiguity functions.
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Figure 1. A schematic of the finite fractal for the DFT introduced in this
work. The base pattern is self-similar at multiple scales to create a multi-band
response in discrete Fourier space. A high resolution image is available as
supplementary material, but details can be seen by zooming in on this figure.

measurements and generate visible artefacts corresponding to
unmeasured directions [6]. Thus, it is essential that image
reconstruction algorithms be able to mitigate these artefacts,
preferably with low computational complexity.

In this work, we propose a new approach to sparse imaging
called Chaotic Sensing (ChaoS) that utilises a new fractal for
sampling in the discrete Fourier transform (DFT) (see figure 1).
The novel contributions can be summarised as follows:

1) The proposed ChaoS method utilises a deterministic
sampling pattern (in the form of a newly proposed
fractal) that can be decomposed into discrete tomographic
projections while producing artefacts turbulent in nature
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and therefore appearing independent of the image being
recovered. The resulting linear reconstruction methodo-
logy handles significantly under-sampled imaging data
(shown up to a reduction factor 8), while still recovering
the image with promising performance over existing
methods.

2) A newly discovered fractal for the DFT is presented (see
figure 1) that is formed from discrete linear measurements.
This fractal disorders the Ghosts causing them to be tur-
bulent via the frequency domain. The measurements from
this fractal also map to discrete projections that forms a
periodic sinogram and facilitates efficient reconstruction.

3) Developing novel finite maximum likelihood expectation
maximisation (f MLEM) and finite simultaneous iterative
reconstruction technique (f SIRT) algorithms for complex-
valued periodic discrete projections, where the result is
obtained via linear optimisation. These finite iterative
algorithms also facilitate fast back-projection directly via
DFT space because a discrete periodic slice theorem is
used that requires no interpolation.

4) We apply the proposed ChaoS methodology to complex-
valued MR imaging experimental data of phantoms in
the form of simulated fractal sampling of the data and
compare the results to other sparse imaging methods.

A fractal is a self-similar pattern or structure that repeats
itself on multiple scales. They have an associated “roughness”
that classifies them with a fractional or Hausdorff dimension
and was first formally introduced by Mandelbrot [8] (see
also [9]). They are a subset of a large body of work called chaos
theory or complex dynamical systems developed independently
by Lorenz [10], Feigenbaum [11] and others, who found
that deterministic systems exhibit non-periodic, high entropic
behaviour with a sensitive dependence on initial conditions.

We employ the term “turbulent” in a technical sense to
represent the chaotic mixing of imaging information that is
self-similar at multiple scales, i.e. the image is convolved with
a fractal point spread function (PSF). This is analogous to the
dissipation of energy at large scales and low frequencies into
many smaller scales and higher frequencies within fluid flow
that can lead to chaotic motion [12] and conform to stable
solution spaces that have to be fractals [10, 12]. Our intuitive
usage of the term is best summarised by Richardson [13] in a
famous comment on atmospheric turbulence2.

The goal is to make self-similar, multi-scale yet deterministic
measurements that promote disordered artefacts in the recovered
image using fractals. Since the object is consistent within
the measurements, the disorder is removed through (linear)
reconstruction schemes. Advantages of the proposed scheme
include:

1) more practical realisations in the laboratory. For example
within MR imaging, by exploiting the underlying geo-
metry of the measurements via fractals, such as a set of
discrete periodic lines in our case,

2) sparse methods that support faster, linear image recon-
struction by way of projections of the object,

2"Big whirls have little whirls that feed on their velocity, and little whirls
have lesser whirls and so on to viscosity" - L.F. Richardson, 1922 [13].

3) no need for additional sparse transform domains,
4) governed by an exact uncertainty principle [6, 14], so that

the reconstructions are guaranteed to be void of Ghost
artefacts that are mentioned by Herman and Davidi [15]
when the prescribed imaging information is utilised,

5) fast iterative reconstruction with low computational com-
plexity through using a discrete periodic slice theorem.

After presenting the current literature in image reconstruction
with missing or limited data, the proposed methods are
presented in section II with the results of MR imaging focused
simulations and experiments thereafter and a discussion of
these findings in section IV.

A. Previous Work

Traditional methods for handling Ghost artefacts involve
using either a large number of measurements to compensate [5],
iterative schemes based on algebraic reconstruction [16, 17]
or expectation maximisation (EM) algorithms [18]. This is
especially true when signal-to-noise ratio (SNR) and photon
counts are low such as in positron emission tomography
(PET) [19]. Popular algorithms in these scenarios include
the EM algorithms [19] and their extensions for accelerated
convergence [20], better image quality [21] and arbitrary image
pixel depths [22]. Image reconstruction methods can even be
created that learn their characteristics to remove them given
enough training data [23]. Other methods for reducing Ghosts
include fusion of multi-modal data [24], minimising the `1-
norm in reconstructions [25, 26], solving certain system of
equations [27] or by fast direct deconvolution of Ghost artefacts
if no noise is present [28]. See Chandra et al. [28] for a
summary of the work in Ghosts during the last century.

The most significant progress towards reducing and even
eliminating Ghost artefacts was made independently by Can-
dès et al. [29] and Donoho [30], an area now known as
compressed sensing (CS). In their approach, the acquired data
is structured or acquired with random sampling so that the
Ghosts are incoherent in the reconstructed space and convex
optimization is used to effectively minimise or threshold out
their effects [31, 32]. Combined with transform sparsity, i.e. a
transform space where the number of bases needed to represent
the object is very small with respect to the total number of
bases in the space, the signal can be acquired and recovered
with fewer samples than the Nyquist sample rate [30]. This
measurement is then a compressed form of the signal without
significant loss of data. The signal is usually recovered using
methods such as iterative thresholding [33], basis pursuit [34]
or orthogonal matching pursuit [35]. This approach has been
successfully applied to MR imaging [36, 37] and other areas of
imaging [38, 39]. See Eldar and Kutyniok [32] for a detailed
review of CS.

However, CS has four important considerations:
1) random sampling is not always practical in some systems.

In MR imaging for example, three and two dimensional
(2D) random sampling of k-space is not practical because
of the MR hardware and sequence protocol limita-
tions. Since random sampling in the frequency-encoding
direction is impractical, the incoherence due to one
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dimensional (1D) random sampling is reduced, leading to
reduced undersampling ability and reconstruction fidelity.

2) transform sparsity is required, but ideally not in meas-
urement space. In MR imaging for example, anatomical
objects are usually not suitably sparse in k-space [40, 41],
requiring dense sampling near the central k-space region.
Therefore, the measurement data is transformed into
a transform space where the image is sparse and the
artefacts remain noise-like, such as the wavelet domain.

3) non-linear reconstruction algorithms such as convex
optimization or basis pursuit algorithms have high
computational complexity relative to the fast Fourier
transform (FFT) [42] and still are a subject of active
research [37, 43].

4) Herman and Davidi [15] showed that Ghost artefacts
may remain hidden with respect to the projected views,
although clearly visible within the image as a strong
artefact (see [15, figure 2]), when a small number of
projections are used. These artefacts could have important
implications in a medical setting.

The proposed ChaoS provides a methodology that does not
require a transform domain or even assume the image is highly
compressible under certain conditions. It can utilise limited
linear measurements in DFT space and still produce image
independent artefacts. These artefacts can be removed using
computationally efficient reconstruction algorithms, and results
in a theoretically exact image of the object under prescribed
conditions.

II. CHAOTIC SENSING

The fundamental principle behind the proposed ChaoS
methodology is to promote deterministic disorder in the
reconstructed image and chaotic mixing of imaging information
created from limited measurements. Since the image is assumed
consistent within the measurements, any resulting artefacts
from the reconstruction process will be turbulent. We utilise
the image independent nature of these artefacts to allow
the dampening and eventual removal of these artefacts. An
important application area of the proposed methodology is MR
imaging, which is time-expensive because it is currently a slow
imaging modality and scanners cost millions of dollars. To
reduce the MR acquisition times, sparse imaging methods that
preserve image quality are sought.

A. Discrete Fourier Ghosts

The excellent soft tissue contrast in MR imaging is obtained
by measuring the radio frequency (RF) electro-magnetic waves
produced by Hydrogen atoms through spatial density (spatially
varying, nuclear spin harmonic), response to external magnetic
fields and the relaxation properties. The RF measurements
results in a harmonic representation equivalent to that of the
DFT of the object that is also referred to as k-space in the
literature. The difficulty is determining the most time efficient
coverage or tiling method of 2D DFT space to facilitate a
suitable recovery of an image of the object.

However, when only a partial coverage of the DFT is
available, artefacts become superimposed on the recovered

image [4]. The shape and form of these Ghost artefacts are
dependent on the structure(s) of the missing coefficients in
DFT space, since errors in DFT space are convolved in image
space because of the convolution theorem [3]. Figure 2 shows
a comparison of the Ghosts produced by the proposed method
compared to two common strategies in MR imaging.

Figure 2. The Ghost artefacts as a consequence of various sampling methods
in DFT space. From top to bottom, the artefacts due to a radial sampling,
random sampling and the proposed fractal sampling before any algorithms
are applied. Each colour in the sampling plots on the left represent the same
sample line. These lines are radial lines, columns and discrete slices for (a), (b)
and (c) respectively. The proposed method naturally produces artefacts with
little discernible structure while using discrete periodic lines in DFT space.

The imaging methods based on CS rely on the measure-
ments being made in a particular sampling pattern to ensure
that the artefacts superimposed on the recovered image are
incoherent, i.e. the artefacts have a random or white noise-
like structure [30]. A random sampling pattern is usually
employed to ensure that the artefacts are also random in
nature (see figure 2(b)). The image is then recovered by
effectively compressing the reconstruction and denoising the
result iteratively. The compression is obtained by assuming the
image is known to be sparse or in another transform domain.
Wavelets have been shown to work well with MR imaging
data [36].

However, true random sampling in MR imaging is imprac-
tical (see [44, section 2.1.4]). To resolve the spatial origins
of the spins, spatial encoding signals are embedded into
the decay signals. To this end, frequency encoding (small
frequency offset δf ) is introduced into one of the dimensions by
superimposing a magnetic field gradient along this dimension
during the measurement. To resolve additional dimension(s),
phase encoding (δp) by means of spatially dependent phase
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offset is used. It is typically achieved by introducing frequency
offsets δf of determined duration T (δp = δf · T ) immediately
before the measurement. Typically, repeated measurements
with identical timing albeit varied phase offsets are performed
to resolve the 2nd or 3rd dimension. Since the decay must
complete and steady state be reached between measurements,
a measurement cycle incurs a fixed time cost. This means
that measurements made (phase-encoding direction) where
another decay is required are time expensive, while those
made within a decay period (frequency-encoding) are cheap.
Therefore, CS based methods rely on incoherence in usually
only one dimension, by acquiring full phase encoding directions
randomly and a transform domain for 2D incoherence being still
applicable [36]. This results in a lower fidelity reconstruction
when compared with 2D incoherence as with a full CS
solution [44]. As a result, despite being more than a decade
since its inception, there are only a few CS based MR methods
commercially available as MR imaging clinical sequences.

B. Turbulent Ghosts

The proposed ChaoS provides a methodology that does not
require a transform domain. It can utilise limited linear meas-
urements in DFT space and still produce object independent
artefacts. These properties are made possible because of fractal
sampling.

1) Fractals: Fractals are constructed from a set of simple
deterministic rules, yet exhibit complex behaviour at multiple
scales. For example, the Sierpinski carpet is formed by simply
dividing a rectangle into 9 equal parts and removing the centre.
The process is repeated with the remaining rectangles ad
infinitum to produce a pattern that has an area of zero. This
particular fractal sees repeated use in RF design [45] and more
recently in MR imaging hardware [46]. Other examples include
the Cantor set, the Terdragon set, the Mandelbrot set and the
Julia sets. An example of a Julia set [47] is given in figure 3.
In this work, we will create a new fractal for the DFT shown

Figure 3. An example of a fractal known as the Julia set [47] for a given
constant/offset c. Available in colour in the online version of this article.

in figure 1 and described in the next section.

2) Fractal Frequency Response: Examining the fractal in
figure 1, the base pattern of this fractal in discrete Fourier space
repeats itself at multiple scales with finer and finer resolutions
at higher Fourier frequencies. This produces a multi-band
response in image space, in the same way as fractal antennas
were designed [45]. These antennas are capable of receiving
and transmitting at multiple bands because they have the same
shape, i.e. it is self-similar, at the required (different) scales
for those frequency bands.

3) Turbulence: In image space (after an inverse DFT is
applied to the measurements) the image is effectively convolved
with a fractal PSF causing turbulence and ensuring mixing
of artefacts.This turbulence is the same phenomenon that is
responsible for allowing golf balls to travel greater distances
when struck. The dimples of the ball disrupts airflow, dissipating
the energy of the oncoming air. Otherwise, the laminar flow
into the ball would create high pressure and push against the
low pressure behind the ball to slow its progress. Likewise,
the chaotic mixing of an image or fluid with self-similarity at
multiple scales, i.e. it exhibits flow of energy from large scales
to smaller scales, then from smaller scales to even smaller
ones and so on. It can be viewed as the dissipation of energy
with a power spectrum that follows a Kolmogorov power-law
with length scale or equivalent to how eddies form in fluid
flow and how energy is dissipated at higher and higher wave
numbers. Therefore, the fractal ensures artefacts do not correlate
or cascade into meaningful structures, particularly those that
are image dependent. Figure 4 shows how the incoherent
and turbulent artefacts from figure 2(c) have similar visual
characteristics. We will measure the turbulence using a metric

Radial Artefacts Incoherent Artefacts Turbulent Artefacts

Figure 4. The velocity fluctuations of the artefact gradient vector fields from
the radial, random and fractal sampling schemes of the top left-hand corner
of the images in figure 2.

called turbulent intensity τ , which is the standard deviation of
the velocity fluctuation ~v = g− ḡ, where g = ∇I is the image
gradient and ḡ is the mean of g.

It is also well known that turbulent flows conform to “attract-
ors” in phase space, a space defined by the main parameters
of the equations of motion describing the system, and these
attractors have to be fractals in the case of turbulence [10, 12].
An attractor is a shape or structure in phase space that the
system evolves to when in steady state. One of the famous
attractors is known as the Lorenz attractor from a study of
atmospheric sciences, where the system follows an owl head
like structure never traversing the same path on that structure
but always attracted to that structure no matter the initial
conditions [10]. The fractal in the DFT creates turbulence to
ensure a mixing of artefacts that give it a disorderly appearance
in much the same way that Ruelle and Takens [12] found that
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turbulent motion is a mathematical consequence of fractal
structures when analysing the equations of motion of fluids.
In this work, we take the reciprocal view that a fractal in
frequency space, i.e. in the DFT, will create a chaotic mixing
of imaging information by the way of circular convolution of
the image with the fractal structure.

C. Finite Fractal

The chaotic mixing of image information is dependent on
the fractal structure in DFT space. In this work, we will create
a new fractal for the DFT shown in figure 1. Note that the
Python implementation of the proposed methods and associated
algorithms are provided as an open source project [48].

To construct this new finite fractal for the DFT, recall that
the majority of the power of DFT space of natural images lies
near the origin (i.e. the DC coefficient). Therefore, to ensure
that we can adequately represent and reconstruct natural images,
we require a set of closest lattice points (b, a) visible from the
origin to tile the central DFT region. These lattice points (b, a)
can be defined as the set of irreducible rational fractions a/b of
the Farey sequence, where a, b ∈ Z and gcd(a, b) = 1 (i.e. a
and b have no common factor other than unity) [49]. We can
interpret a Farey fraction as a vector [b, a] (i.e. a pixels across
and b pixels up) in DFT space.

To generate this set of tiling lattice points near the origin
(in one octant of the plane) of order N , we simply use the
mediant property of the Farey sequence [49] to generate all
the irreducible vectors and then sort these vectors by their
`2 = a2 + b2 norm, i.e. the Euclidean distance from the origin,
to select the closest ones. This set of vectors and their multiples
then tile a circular region around the origin. These vectors
correspond directly to the FN Farey sequence of fractions.
Beginning with [b1, a1] = [1, 0] and [b2, a2] = [1, 1], to obtain
the mediant lattice point [b3, a3], one recursively computes

a3
b3

=

(
a1 + a2
b1 + b2

)
, (1)

until [b3, a3] = [N , 1] and any other (soon to be mentioned)
criteria is met. Direct computation can be done using well-
known methods such as Pascal’s Triangle (with memory) or
by equations that solve for the subsequent term. Symmetry of
the Farey sequence in an octant of the plane is used to create
the vectors for all other octants using simple flip and mirror
operations. For example, when N = 3, the generated set (in
the half plane) is

[1, 0], [1, 1], [−1, 1], [2, 1],
[1, 2], [−2, 1], [−1, 2], [3, 1],
[1, 3], [−3, 1], [−1, 3], [3, 2],
[2, 3], [−3, 2], [−2, 3], [0, 1].

The extent of the tiling near the origin is controlled by
N , which tiles a small aperture near the origin (see inset of
figure 5). In fact, the tiling of the origin and its relation to
reconstruction properties are controlled by a criterion that will

Figure 5. The tiling effect of the `2 minimal Farey sequence (i.e. sorted
vectors from (1)) visualised in the image plane as a binary image using the
discrete lines (2) for N = 8 and M = 32. The inset shows the closest vectors
[b, a] visible from the (centred) origin used to generate the lines.

be defined in the next section. We can then associate the set
of discrete lines with slopes defined by these fractions as

Γt,θab
=

t = bv − au if a/b > 0

t = au− bv if a/b < 0
, (2)

where the line is at an angle θab = tan−1(a/b). The lines (2)
are radial if we set t = 0 and ensure that all points multiple to
the irreducible vectors of the Farey sequence are covered. An
example of the generated vectors for N = 8 within a larger
image M = 32 and an example of their resulting lines are
shown in figure 5.

Finally, to form the fractal shown in figure 1, we simply
compute the modulo N of the point coordinates for the lines,
i.e. (modN), to ensure any points outside the image wraps
back into image space. The (mod N) operator is a form of
clock arithmetic that leaves only the remainder. For example,
the time 1 pm is a result of 13 modulus 12. This operator is
responsible for creating circular boundary conditions so that
lines always remain within a fixed image space. Due to these
boundary conditions, only a total of N points per line are
required as they repeat after a period of N by design. An
example of the fractal created by algorithm 1 for N = 4127
and 284 discrete lines is provided as supplementary material.

Although the lines (2) are used to create the fractal of figure 1,
we can map the slopes of these lines to a more convenient
set of periodic lines to facilitate simpler reconstruction using
a discrete Fourier slice theorem [50]. In this work, we will
assume that for which N = p, where p is prime to simplify
the reconstruction process.

D. Finite Iterative Reconstruction

The primary objective of the proposed reconstruction meth-
ods is to de-construct the measurements of the finite fractal
into discrete periodic lines from which it is constructed to the
natural discrete slices of the DFT [50, 51]. The discrete Fourier
slice theorem (dFST) is a mechanism by which the 2D DFT
can be tiled completely and exactly without the need for any
interpolation using discrete periodic lines or slices

v ≡ mu+ t (modN), (3)
u ≡ psv + t (modN), (4)
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with the set of slopes

m = {m : 0 6 m < N, m ∈ N} , (5)
s = {s : s < N/p, s ∈ N} , (6)

of a N × N image and where u, v,m, s, t ∈ Z. It has the
simplest form above when N = p, where p is prime, so that
s = 0 and the number of slices required to tile the entire space
is N + 1. An example of the prime size N = p = 5 tiling
is shown in figure 6. It has been shown previously that the

Figure 6. The tiling of discrete lines defined by equations (3) and (4) for a
prime-sized DFT space of N = 5 with t = 0. Here the DC point is centred
and each white square (and red dot) represents a sample. The lines have slopes
according to the set m (modN) with the slope being m steps up and one
step across. The equivalent Farey vectors, i.e. shortest distance from the DC,
are shown as red arrows.

Farey sequence is intimately linked to the slopes m of the
DFT slices and that there is a many-to-one mapping between
them [52]. Chandra et al. [53] developed an exact analytic
mapping from a Farey vector to the slope m as

m ≡ ab−1 (modN), (7)

where b−1 is the multiplicative inverse of b so that 1 ≡ bb−1
(modN), which can be computed easily via the extended
Euclidean algorithm [49].

Much the same way as the conventional slice theorem of
the Fourier transform (FT) in integral form, the inverse DFT
of the slices are (periodic) projections of a discretised Radon
transform called the finite Radon transform or discrete Radon
transform (DRT) [50]. The slices of the DFT F (u, v) are then
transformed exactly into a discrete periodic projection space
R(m, t) that forms a periodic sinogram. The slices and the
projections of the DRT are effectively duals of each other
utilising the same lines (3) and (4) with only a 1D DFT of
sequences and a 90 degree rotation of the coordinate system
between them [50].

The periodic sinogram R(m, t) of the DRT is obtained by
extracting the slices of the DFT and computing the inverse 1D
DFT of each slice. Since the slices of the DFT, and therefore
R(m, t) space, does not require any interpolation, the back-
projection requires no interpolation either and so it can be
computed as a convolution without any interpolation error.
This is referred to as circulant back-projection (CBP), since

the result is a superposition of circulant matrices [54]. Adding
slices to the DFT is O(µN), where µ is the total number of
measured slices and there are at most N + 1 slices. Computing
the 1D FFT, which has the order of O(N logN), the total
computational complexity of back-projection of the periodic
sinogram is O(N2)+O(N2 logN), since µ is at most order N .
Taking the highest order, the total complexity of the algorithm is
O(N2 logN) for a N×N image, which is same as the 2D FFT.
Therefore, it is possible to create fast reconstruction schemes
to the periodic sinogram by constructing finite projection and
back-projection operators in DFT space.

We propose novel fast f MLEM and f SIRT algorithms
for periodic projections that can be intuitively seen as the
iterative back-projection correction on the periodic sinogram
via the EM and algebraic algorithms, the former of which is
guaranteed convergence to the local maximum of the likelihood
function and hence the global maximum when the function is
convex [18]. In most practical applications, the EM algorithm
is known to always converge to the global solution [55].

Following a similar notation to Lalush and Wernick [56],
but adapted to periodic projection and back-projection, let
the measured (partial) periodic sinogram from the fractal be
represented as gj , the DRT projection as the operator R and the
DRT back-projection as the operator R−1, then the f MLEM
estimate of the image f at iteration n+ 1 can be written as

fn+1 =
fn

µ
·R−1

(
gj

Rfn

)
. (8)

Likewise, the Landweber-type f SIRT estimate of the image
can be obtained in a similar way. Figure 7 shows a flowchart
representation of the reconstruction algorithm.

Estimated
Image

Error
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via Fractal 
Sampling

Compare
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Figure 7. The (linear) fractal image reconstruction algorithm used in this
work, where g = Rfn, fr = R−1 · gr and R is the DRT (i.e. periodic
projection) operator.

In these methods, the Ghosts due to under-sampling are
removed through a combination of obtaining the most likely
solution to the imaging data acquired and dampening of the
Ghosts through (edge preserving and/or textural) smoothing.
This is made possible because the Ghosts are turbulent and
image independent in nature, so that consistent parts of the
image is preserved and the method converges to a solution
close to the original image. In our implementation, we taper the
smoothing off at two stages (mid and end) as the final solution
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is obtained. Python implementations of the reconstruction
algorithms are provided open-source [48].

Note that the normalisation terms in (8) are simple scalars,
in contrast with conventional iterative methods, where it is
an image of back-projected ones at the same angles as the
sinogram. In a classical scenario, the back-projection operator
is continuous and windowed, so that the image is not uniformly
sampled. In the finite case, the circulant matrices cover the
entire space evenly because the lines (3) form the basis of
periodic projections for the set of all translates

t = {t : t < N, t ∈ N} . (9)

Hence the weightings become a scalar proportional to the
number of projections µ.

Another contribution of our work on the f MLEM and f SIRT
is that the projection and back-projection operators R and R−1

are fast, since they can be computed in DFT space without the
need for interpolation [50]. Projection R is simply computed
by taking the 2D DFT of the image, extracting the discrete
slices and computing their 1D inverse DFTs. Similarly, back-
projection R−1 is computed by placing the 1D DFTs of the
projections into an empty 2D DFT space and computing the
2D inverse DFT. Thus, the total computational complexity of
the proposed method is O(IN2 logN), where I is the total
number of iterations required for convergence. Utilizing the
convergence acceleration of the ordered subsets [20] to both
algorithms usually results in I 6 N .

Lastly, one needs to consider the uncertainty principle for
the number of slices required for accurate reconstruction. The
number required is dictated by the Katz criterion

K =
max

(∑N−1
j=0 |aj |,

∑N−1
j=0 |bj |

)
N

, (10)

where usually K > 1. The minimal information required for
an exact reconstruction is known to be when K = 1 [6, 14].
This intuitively means that the number of bins, or equivalently
the number of equations, is equal to the number of pixels that
need to be reconstructed. This can be used as an additional
termination criteria for generating the Farey sequence and the
fractal. Thus, the full algorithm to compute the measurements
using the finite fractal of the DFT follows the simple and
deterministic rules as given in algorithm 1. A fractal of a size

Algorithm 1 Fractal measurements for finite iterative recon-
struction
1: M ← kN for N ×N DFT space. . k controls sparseness/fidelity
2: p← nearest prime greater than M .
3: K ← 1 or greater . K controls redundancy/tiling
4: Generate Farey `2 sequence of order N and K . Use (1)
5: Map each [b, a] to their corresponding m-values. . Use (7)
6: Add finite line for each m-value to space . Use (3)
7: return sample or coordinate points belonging to fractal set

greater than that original image being measured with k > 1
allows for exact reconstruction (i.e. when aiming for fidelity
and not sparseness), so that the entire space is not tiled by
the slices of the DFT. In this work, we have found that the
prime p nearest to, but larger than 2N usually suffices for this
purpose. We demonstrate the proposed ChaoS methodology in
the following section.

III. RESULTS

To demonstrate the performance and properties of the
proposed ChaoS method, the turbulent nature of the Ghosts
were studied, the finite fractal was analysed and MR simulations
of the proposed ChaoS method conducted for reconstruction im-
ages from limited Fourier coverage. Lastly, an MR experiment
was conducted on a phantom scanned using a Bruker BioSpec
94/30 small animal 9.4T MR scanner (Ettlingen, Germany).

A. Turbulent Ghosts

Firstly, the disorderly or turbulent nature of the Ghosts
created using the finite fractal (i.e. sampling that still utilises
discrete radial lines and centre tiling) were compared to the
conventional radial type sampling and the random sampling
of CS that produce incoherent Ghosts. The total number of
samples was kept constant for all three types of sampling and
the Ghost artefacts observed without any attempt to remove
them. Figure 2 shows a comparison of the Ghosts produced
by the proposed method compared to these strategies for the
Shepp-Logan image.

The turbulent intensity τ of different Ghosts, such as
those of figure 2, were compared for a number of images.
Figure 4 shows how the incoherent and turbulent artefacts from
figure 2(c) have similar visual characteristics. The incoherent
and turbulent artefacts were found to have a similar τ , while
both always being a few orders of magnitude different to the
radial artefacts. This property of the turbulent Ghosts was also
observed for the Cameraman and Lena images.

B. Finite Fractal

The fractal created in this work for p = 257 was found to
have a fractal dimension of 1.79 using the box count algorithm.
The dimension being closer to two rather than to the dimension
of its constituents, i.e. the discrete lines, points to the fact that
the fractal transcends considerations of just discrete lines and
must be thought of as a collective entity. For example, the
spacing between the individual points of each periodic line may
be very large and their individual effects could be considered
with respect to the Ghosts, but their collective effect in tiling at
multiple scales with other lines to create the fractal supersedes
these effects to produce turbulence.

The fractal also had the remarkable property that it is
invariant under DFT and inverse DFT transforms, i.e. it is
the same in discrete Fourier and image spaces. The invariance
of the finite fractal to the DFT is probably due to the strong
symmetry of the geometry structure, which is not only in
rotational symmetry, but in modular/periodic symmetry as well,
as all periodic lines begin and end as the same point due to
the finite geometry of DFT space. Very few functions have
such strong symmetry to remain unchanged by such transforms,
usually resulting in at best a scaled invariance, such as the
Gaussian function. Further work is required to mathematically
prove this result and in determining the analytical properties
of the fractal and categorising their different types.
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C. Finite Iterative Reconstruction

We simulated an MR imaging example by taking measure-
ments via k-space trajectories and showed the performance of
the proposed method when compared to the conventional radial
reconstruction of figure 2 and a sparse CS MR reconstruction
method [36] with 30 dB SNR. Figure 8 shows the simulated
performance of these methods and the proposed ChaoS method
of MR imaging of the Shepp-Logan phantom image. Additional
figures for different reduction factors and the Cameraman image
are provided as supplementary material.

We have assumed a Gaussian noise model as errors in MR
complex signals usually conform to a Gaussian distribution in
both real and imaginary components with only the magnitude
images being of a Rician or Rayleigh distribution, depending
on SNR [57]. We evaluated the quality of each method through
metrics such as root mean squared error (RMSE), peak signal-
to-noise ratio (PSNR), structural similarity (SSIM) [58] and
visual information fidelity (VIF) [59] with the same level of
sampling. The latter two are known as perceptual metrics that
have been shown to outperform most other metrics (including
PSNR) on public subjective viewing image databases [60]. The
random sampling was selected as suggested by Majumdar [44,
figure 2.8(b)] to ensure full 2D incoherence and best fidelity.

Figure 2 shows the k-space sampling utilised for this
simulation and the Ghosts present on the initial (uncorrected)
reconstruction from the limited imaging data. The CS method
utilised the same number of sample points as the finite iterative
methods but with additional introduced tiling near the DC
coefficient of a radius of 16 coefficients. Table I shows the
various metrics used to evaluate the proposed ChaoS scheme
compared to the radial and CS methods for the Shepp-Logan
phantom.

Table I
PHANTOM RECONSTRUCTION PERFORMANCE.

Metric Radial Compressed Sens. [36] ChaoS

Simulated RMSE 16.85 2.18 1.15
PSNR 23.59 41.37 46.93
SSIM 0.39 0.94 0.99
VIF 0.56 0.91 0.91

MR RMSE 2.03 0.79 0.22
Experiment PSNR 41.98 50.14 61.18

SSIM 0.43 0.79 0.87
VIF 0.55 0.83 0.98

We found that non-local means smoothing [61] applied
periodically worked well for dampening the Ghost artefacts.
Figure 9 shows the (SSIM and PSNR) convergence character-
istics of the proposed method for the Shepp-Logan phantom
in the MR imaging simulation, while figure 10 shows the
convergence properties given different values of redundancy
K, and hence different projection sampling rates, for fixed
image size and number of iterations.

The simulation was implemented in-house using the Python
programming language via Numpy and Scipy libraries [62]
with additional algorithms (such as image denoising) utilised
from Scikit-Image [63]. The pyFFTW implementation of the
FFT algorithm was also found to be faster than the FFTPACK

implementation in Scipy probably because of the mature and
prime-sized FFT algorithms available in FFTW [64]. All
simulations were computed on an Intel i7-2600K 3.4 GHz
with 16GB of RAM on Windows 10. The algorithms used in
this work have been made open source [48].

Figure 10 also shows that the reconstruction convergence
degrades as the redundancy parameter K is reduced. This is to
be expected as there is more ambiguity and less SNR in the
measurements corresponding to the reduction in the imaging
data. The degradation could also be due to the dependence of
the convergence on not only the number of projections, which
is dictated by K, but also on the number of subsets s per K,
since the selection of s was fixed for this simulation.

D. MR Experiment

Finally, we conducted an MR experiment of a phantom in
the laboratory to demonstrate the proposed ChaoS scheme on
acquired MR imaging data. A single slice of a phantom was
scanned using a Bruker BioSpec 94/30 small animal 9.4T MR
scanner (Ettlingen, Germany) with an image size of p = 257
using the FLASH (Cartesian) sequence. The phantom was that
of a series of Lego blocks in a plastic tube filled with a liquid
solution made up of 2.62 g (0.0448 mol) NaCl and 2.14 g
(0.0047 mol) NiSO4 · 6H2O per 1000 g distilled water. The
Bruker mouse head volume coil (diameter of 40mm) with
quadrature drive was used to acquire images.

The Cartesian space was then sampled according to patterns
shown in figures 2 and 8. This corresponded to the sampling
of pixel locations of the fractal pattern for p = 257, s = 16,
250 iterations and K = 1.2 corresponding to a reduction
factor of 2 (i.e. 50% of the full Cartesian sampling). The
same reduction factor and sampling rate was used to sample
pixel locations of the Cartesian space for the radial and CS
methods as a comparison. Since full random sampling in MR
imaging is not feasible, the standard CS sampling approach was
conducted with randomness along phase encoding (columns) as
described by Lustig et al. [36]. The non-local means smoothing
algorithm was utilised for the regularisation of the ChaoS
method. The result of the complex-valued reconstruction is
shown in figure 11. The reconstruction took 174 seconds
using a serial implementation of the complex-valued f MLEM
algorithm using Numpy and pyFFTW. The RMSE, PSNR,
SSIM and VIF of the radial, CS and proposed ChaoS methods
are shown in table I when utilising half of the fully sampled
Cartesian reconstructed image. The reduction factor was also
varied and the reconstructions computed for each of the
methods. The resulting PSNRs of the results are shown in
figure 12 when compared to a full Cartesian reconstruction.

The initial MR experiment with a Lego phantom scanned
at 9.4T shown in figure 11 shows promise and behaves
as predicted by the MR simulation experiments. The only
complication found required using a complex-valued f MLEM
algorithm extended from the one proposed by Choi et al. [65]
that adjusts the EM algorithm to allow arbitrary ranges of
image values in the reconstruction to remove the non-negativity
constraint of the f MLEM. This is important in complex-valued
images as the real and imaginary parts can be both positively
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Figure 8. Reconstruction performance of the proposed, radial and CS methods for recovering the Shepp-Logan phantom from its simulated MR measurements.
The synthesized k-space with Gaussian noise had a SNR of 30dB and sampling patterns with a reduction factor of 2 (i.e. 50% of full DFT sampling) were
used. The sampling patterns and initial Ghosts are given in figure 2 and the images were gamma corrected for visualisation with γ = 0.5. The image sizes of
N = 256 and p = 257 were used for the CS and finite iterative methods respectively with the latter using a fractal with 128 discrete periodic lines.

Figure 9. The convergence performance of the proposed ChaoS f MLEM and
f SIRT methods for simulated MR measurements. The oscillations are caused
by the non-local means denoising applied at regular intervals (10 iterations
in this case) to perturb the current estimate out of local minima. Since the
image is consistent within the periodic projections, the system continues to
converge to the maximum likelihood solution while the denoising algorithm
steadily dampens the Ghosts out of existence.

and negatively valued. The upper and lower bounds used for
this ABf MLEM algorithm were in the order of magnitude of
the expected bit depth of the image. However, this algorithm
effectively requires an additional projection and back-projection
step per iteration rather than one, hence requiring an additional
two FFTs.

IV. DISCUSSION

The proposed ChaoS method was found to be robust in the
presence of noise and to arbitrary complex-valued measure-
ments as can be seen from figures 8 and 11. Both the simulated
and experimental results showed promising performance over

PSNR Convergence of the Finite MLEM Similarity Convergence of the Finite MLEM

Figure 10. The convergence performance of the proposed f MLEM method
for MR imaging simulation with varying redundancies or projection sampling
rates K. Since K affects the number of projections, and therefore the reduction
factor, the subset size s would also need tuning to improve convergence.

the radial and CS methods. Despite having the optimal sampling
pattern for fidelity through 2D incoherence [44] and a non-
linear optimiser (a non-linear conjugate gradient (CG) in this
case) in the simulation, the reconstruction from the CS method
had visible artefacts when compared to the proposed ChaoS
scheme.

In both the simulations and the MR imaging experiment
that involve significant under-sampling (50%-12.5% of full
sampling), the turbulent Ghosts are eventually removed with
the combination of search for the maximum likelihood solution
and dampening the Ghosts with image denoising. The image
independent nature of the Ghosts allows edge preserving and
texture reducing smoothing to dampen the Ghosts over time.
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Figure 11. The full FLASH (Cartesian), radial, CS and proposed ChaoS (bottom row, left to right) reconstructions of a Lego phantom acquired using a Bruker
BioSpec small animal 9.4T scanner with N = 256 and p = 257. The radial, CS and proposed ChaoS algorithms have the same sampling rate corresponding
to a reduction factor of 2 (i.e. half of the full DFT sampling) with the latter utilising the parameters s = 16, K = 1.2, 128 periodic lines and 250 iterations.
The radial reconstruction utilised the sampling given in figure 2. The images were gamma corrected for visualisation with γ = 0.5.

This forced the optimisation out of local minima and approach
the global solution. This can be seen in the oscillatory nature
of the convergence in figure 9.

In MR imaging, the random sampling pattern for the CS
method is usually one that only has 1D coherence, because
MR measurements are optimised for linear acquisition and
not 2D non-linear trajectories. As a result, the MR experiment
showed that the CS method had significant 1D artefacts due
to only having 1D coherence, meaning the Ghost artefacts in
this dimension could not be adequately removed. The fractal
sampling on the other hand, had no such limitation as it remains
unchanged from the patterns used in the simulation. This shows
that the proposed ChaoS method has greater potential in real-
world applications to MR imaging and other areas where linear
sampling is preferred.

The non-local means denoising algorithm [61] was found
to be the best performing regularisation in MR experiments
contrast to CS, where total variation algorithms are preferred.
This is probably due to the turbulent nature of the Ghosts,
since the turbulence manifests as texture features more than
pseudo-random noise, and the non-local means algorithm is
more suited to artefacts with texture. Therefore, other (non-
linear) regularisation algorithms, such as the bilateral filter [66],
may also prove successful.

Although both f MLEM and f SIRT are designed with
different noise models in mind, namely Poisson and Gaussian
respectively, the effects of noise is very small compared to
the effect of the Ghosts and therefore application of either
method is justified. The reconstruction errors are unstructured
as expected and there are no apparent issues with convergence
(see figure 9).

Transform sparsity could also be introduced into the proposed

method, although shown to be not necessary, to compute more
convex optimisation type solutions. Do and Vetterli [67] have
already shown how the slices of the DFT can naturally map
to a wavelet representation. Randomising imaging data via
the DRT has also been explored and may be useful in this
endeavour [68]. Figure 8 also shows that MR acquisitions
should be possible and could prove a more natural fit for sparse
MR image reconstruction than CS because the geometry of
k-space is equivalent to DFT space allowing the use of discrete
lines in acquisition. These lines could be implemented via a
series of radial lines.

There are a couple of limitations of the proposed method
however. Firstly, we have assumed that the measurements are
acquired with a fractal pattern. In reality, the patterns are
only approximately fractals (or pseudo-fractals), since image
sizes are usually small (i.e. N � 216) and errors are present in
sampling positions in real world applications, such as diagnostic
imaging. Thus, one obtains more ideal turbulence at higher
image resolutions and therefore the proposed method would
likely work better at very large image sizes. The imperfection
of the fractal at lower resolutions can be seen in figure 8
utilised for the MR simulation. The result is that the Ghosts
are not perfectly turbulent, retaining some minimal structure.
We have shown however, that p = 257 is sufficient for MR
measurements and the proposed method yielded favourable
results in these contexts (see figures 8 and 11). In the same way
pseudo-random numbers are still suitable for use as random
numbers, we believe that pseudo-fractals will have similar
utility.

A second limitation is that the finite iterative reconstruction
algorithms developed in this work requires the use of non-linear
smoothing algorithms, such as non-local means, which usually
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Figure 12. The reconstruction performance of the proposed ChaoS method
compared to CS for a Lego phantom acquired using a Bruker BioSpec small
animal 9.4T scanner. The reduction factors 2, 4, and 8 correspond to 50%,
25% and 12.5% of the fully sampled FLASH (Cartesian) sequence data.

have high computational complexity, although it is not required
for every iteration. Faster algorithms of these types of methods
tend to be approximations of the desired smoothing outcomes.
However, when K > 2 and p was the closest prime number
greater than kN for k > 1, it was found that the f MLEM
algorithm did not require any smoothing to remove the Ghosts
directly providing the desired result. In these cases, ChaoS is
not dependent on any assumptions of image appearance as it
relies on the EM algorithm and the DRT, where the latter can
recover an arbitrary finite image with compact support and the
maximum likelihood solution suffices directly because the Katz
criterion is satisfied allowing theoretically exact reconstruction.

There are a number of other interesting questions that arise
regarding the finite fractal presented in this work. The fractal is
very reminiscent of a diffraction pattern in crystallography. It
would be interesting to see if such a fractal could be physically
realised based on previous work on “Diffractals” [69] and
fractal gratings [70]. More generally, it remains to be seen if
the fractal can provide further insight into number theory, as
the distances of Farey sequence from the origin is equivalent
to the Riemann hypothesis, which relates to the distribution of
prime numbers [71].

More crucially, it remains to be seen whether other fractals
can be utilised for making limited measurements, particularly
in DFT space. For example, the Julia set shown in figure 3

naturally exists in the complex plane. Given recent work on
studying the actual pattern of DFT coefficients utilised in
medical image reconstruction [41] showed that there is a
certain distribution of coefficients mostly near the origin, fractal
patterns that sample near the origin, such as the Dragon or Julia
sets, could prove very useful in medical image reconstruction.

CONCLUSION

This work proposed the Chaotic Sensing (ChaoS) meth-
odology that utilises fractal sampling for the recovery of
images from significantly under-sampled imaging data. ChaoS
produces turbulent mixing of image information resulting in
chaotic Ghost artefacts, yet in a deterministic fashion that facilit-
ates finite iterative reconstruction through discrete tomographic
projections (see figure 7). The artefacts are removed through
a combination of obtaining the maximum likelihood solution
and dampening these artefacts via smoothing. The proposed
scheme was made possible via a newly discovered fractal in
the DFT (see figure 1), whose symmetry makes it invariant
in both image and DFT spaces. The work was evaluated and
compared to compressed sensing using simulations on test
images and MR phantom experiments (see figures 8 and 11). It
was found to be robust to noise, positive and negative complex-
valued measurements and artefacts, while offering promising
performance over compressed sensing with the same amount
of under-sampling. Further work is required in studying the
mathematical properties of the new fractal and in applying the
proposed methodology to other applications.
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