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 43 

Abstract 44 

Understanding the microstructural stability of soft solids is key to optimizing 45 

formulations and processing parameters to improve the materials’ properties. In this 46 

study, in situ synchrotron X-ray tomography is used to determine the temperature 47 

dependence of ice-cream’s microstructural evolution, together with the underlying 48 

physical mechanisms that control microstructural stability. A new tomographic data 49 

processing method was developed, enabling the features to be segmented and 50 

quantified. The time-resolved results revealed that the melting-recrystallization 51 

mechanism is responsible for the evolution of ice crystal size and morphology during 52 

thermal cycling between -15 and -5 oC, while coalescence of air cells is the dominant 53 

coarsening mechanism controlling air bubble size and interconnectivity. This work 54 

also revealed other interesting phenomena, including the role of the unfrozen matrix 55 

in maintaining the ice cream’s microstructural stability and the complex interactions 56 

between ice crystals and air structures, e.g. the melting and recrystallization of ice 57 

crystals significantly affect the air cell’s morphology and the behavior of the unfrozen 58 

matrix. The results provide crucial information enhancing the understanding of 59 

microstructural evolution in multi-phase multi-state complex foodstuffs and other soft 60 

solids. 61 

 62 

Keywords: Ice cream; Microstructure; Tomography; Ice crystals; Coarsening; Soft 63 

solid. 64 

65 
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1. Introduction 66 

Soft solids are important composites that are characterized by complex 67 

multi-phase structures and possess inherently complex non-Newtonian rheological 68 

properties under external stress [1-3]. Soft solids exist either in nature, e.g. muds, or 69 

in many artificially manufactured products such as emulsions, biopolymers, fresh 70 

concrete and domestic baking materials. Many soft solids, such as soft foams (e.g. ice 71 

cream) and aerated desserts, contain porous phases within a viscous matrix [4-6].  72 

Structural stability is desired for many soft foams and microstructural instability 73 

greatly influences the materials’ properties and their applications. Take ice cream for 74 

example. The microstructure of ice cream, including the size distribution and 75 

connectivity of each phase, plays a critical role in determining product quality (e.g. 76 

mouthfeel, taste, appearance, etc.) and the product’s shelf-life [6-10]. For example, 77 

the microstructural change at different storage temperatures has been shown to alter 78 

ice cream’s viscoelastic properties and hence the oral sensory perception of it [10]. 79 

However, irreversible microstructural changes often occur in ice creams (over a range 80 

of different timescales), as well as in other similar foam structures that contain air, 81 

above a certain temperature (~ -30 °C for ice cream [4]) which may occur during 82 

shipping, storage at the grocery store and in domestic freezers (ca. -18 oC), and on the 83 

consumer’s table.  84 

For ice cream, the structural instability is affected by many factors, including 85 

compositions [11, 12] and thermal variations [5, 13]. One of the well-recognized 86 

phenomena due to thermal instability is coarsening of microstructure [4, 5, 13-15]. 87 

This was initially examined in light microscopy [14, 16-19] and cryo-scanning 88 
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electron microscopy [20, 21], and transmission electron microscopy [22], all of which 89 

provide only 2D information of the surface or of cuts through the ice cream sample. 90 

These phenomena were recently studied in 3D with X-ray tomography on ex situ 91 

coarsened samples [4, 5]. Using a synchrotron X-ray tomography technique, prior 92 

work by the same authors [5] revealed that after thermal cycling (or thermal ‘abuse’) 93 

between -15 and -5 oC for a number of cycles/days, both ice crystals and air cells 94 

grew in size creating ice dominated structures within a deteriorated ice cream 95 

microstructure. More specifically, the size of ice crystals was observed to 96 

continuously increase up to 14 cycles; however, the growth rate significantly 97 

decreased after 7 thermal cycles. The air cells also increased in size, and they 98 

continued to grow into interconnected irregular shapes with long continuous channels 99 

after 14 thermal cycles. However, for up to 7 thermal cycles the air cells seemed to 100 

remain more or less spherical.  101 

From that ex situ study, it was observed that the ice crystals within the unfrozen 102 

matrix tended to align along the boundary between air cells and the matrix, 103 

minimizing surface energy. Those 3D experiments provided valuable insight into the 104 

structural changes of ice cream upon thermal cycling. However, the study was 105 

performed on ex situ thermally cycled samples and thus, the interactions between the 106 

microstructural features could not be elucidated. The detailed mechanisms that control 107 

the microstructural evolution, which are only available via in situ studies, still remain 108 

to be explored. Questions regarding the growth mechanisms and relative movement of 109 

the phases and their exact interactions during thermal cycling, need to be answered to 110 
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be able to improve the stability of the ice cream’s structure [5, 14, 23]. For example, 111 

what are the dynamics of the changes for each phase and how do they impose on each 112 

other due to thermal variations, in order to maintain the integrity of ice cream’s 113 

structure? What are the dominant coarsening mechanisms that control the ice cream’s 114 

microstructural evolution? 115 

This work non-destructively studies the thermal stability of the ice cream 116 

microstructure via 4D (3D plus time) synchrotron X-ray tomography to reveal the 117 

dynamics of the microstructural changes. This technique has become increasingly 118 

used in the study of opaque materials systems to study both coarsening [24] and 119 

rheology during deformation [25, 26]. X-ray tomographs were continuously acquired 120 

on a sample during a heating and cooling cycle at a well-controlled slow ramp rate of 121 

0.05 oC/min. To analyze the acquired data, an iterative tomographic data 122 

reconstruction and image processing method was developed. Through quantitative 123 

analysis, the physical mechanisms which dominate the degradation of ice cream’s 124 

microstructure due to temperature variation, are examined and discussed in detail. 125 

 126 

2. Materials and methods 127 

2.1 Sample and experimental methods 128 

Fresh ice cream containing 5% fat was manufactured by Unilever R&D (U. K). A 129 

500 ml block of fresh ice cream was initially thermally cycled between -15 and -5 oC 130 

for seven times (1 week) before it was used for the in situ synchrotron experiment. 131 

The seven cycles created a larger scale of microstructure, enabling easy identification 132 

of phases for quantification, and also represent a transition point between the 133 
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observations made in the first seven cycles where change was relatively rapid and the 134 

next seven cycles where the size of ice crystals became more stable as reported in the 135 

authors’ prior ex situ studies [5]. Small ice cream samples, each contained in a 3 mm 136 

inner diameter kapton tube (67 µm thick, American Durafilm Co. Inc, Holliston, U.S), 137 

were cut from the 500 ml block. Details of the sample preparation method are 138 

described in [5]. 139 

The in situ synchrotron experiment was conducted on the Diamond Manchester 140 

Beamline (I13-2) of the Diamond Light Source (DLS, U.K) using a pink beam. The 141 

set-up for running the beamline experiment, together with the cold stage used to 142 

provide the sample temperature, is described in [5, 27]. During the in situ thermal 143 

cycling experiment, the sample was loaded in the cold stage at -15 oC and stabilized 144 

for 10 min. Then, the sample was heated to -5 oC at a ramp rate of 0.05 K/min and 145 

held there for 10 min. After that, the sample was cooled back to -15 oC at the same 146 

ramp rate as the heating stage. A schematic of the thermal cycle history is shown in 147 

the inset of Fig. 1. The tomographic scans were acquired using a 2560 × 2160 pixel 148 

PCO Edge 5.5 CMOS camera that was optically coupled to a single crystal CdWO4 149 

scintillator during the thermal cycle. For each tomographic scan, 900 projections were 150 

recorded with an exposure time of 100 ms (90 s for each scan) and a pixel size of 0.8 151 

µm. However, at the end of each tomographic scan, the sample stage was rotated back 152 

to the initial position for system re-initiation to start the next tomographic scan, 153 

adding an additional delay of ~ 51s, for a cycle time of ~ 141 s. In total, 178 154 

tomographic scans were acquired during a thermal cycle.  155 
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2.2 Image reconstruction and three-phase segmentation approach 156 

Initially, the acquired projection data were reconstructed using the conventional 157 

Filtered Back Projection (FBP) algorithm [28], producing extremely noisy 158 

reconstructions with low contrast and ring artifacts (see Fig. 2(a)). The poor quality of 159 

FBP images was due to angular under-sampling (only 900 projections for a 2k × 2k × 160 

2k volume), short exposure time and low attenuation contrast between ice and water. 161 

In order to improve the image quality suitable for segmentation, a Model-Based 162 

Iterative Reconstruction (MBIR) approach was applied. 163 

The MBIR algorithm is based on the Group-Huber data fidelity function to 164 

minimize ring artifacts and 3D total variation (TV) regularization penalty [29-31]. . 165 

The TV-related regularization sub-problem has been solved using the Split-Bregman 166 

method in order to enhance the weak contrast between ice crystals and unfrozen 167 

matrix (see Fig. 2(b)).  168 

Although MBIR reconstruction substantially improves the contrast and also 169 

removes noise, the reconstructed images suffer from the visible intensity 170 

inhomogeneities within various ice-crystals (indicated by arrows in Fig. 2(b)). These 171 

artifacts can be a result of the combined effects of strong noise and beam hardening. 172 

The latter is possible due to abrupt changes in attenuation coefficients between 173 

unfrozen matrix (highly attenuated) and ice crystals (poorly attenuated), therefore 174 

introducing non-linearity in a beam. Intensity inhomogeneity within a single crystal 175 

restricts successful segmentation by histogram thresholding. One can use more 176 

sophisticated segmentation methods (e.g. 3D snake contours can successfully segment 177 

features with intensity inhomogeneity using supervised seeding). However, due to the 178 
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large data size, a computationally efficient approach is required.  179 

Here an additional post-processing step was applied to equalize intensity within 180 

phases by means of gradient-constrained nonlinear isotropic diffusion [5, 32]. The 181 

mask to terminate the diffusion process across selected boundaries was acquired from 182 

the image in Fig. 2(b) by thresholding the magnitude of the gradient. Since the 183 

gradient magnitude between phases is large and the variations of intensity within 184 

regions are gradual, one can run the constrained diffusion until the regions become 185 

fully homogeneous. Therefore, 1000 diffusion iterations were run on a GPU to 186 

equalize intensities within enclosed regions of the image in Fig. 2(b). The result (Fig. 187 

2(c)) is sufficient to implement a simple histogram thresholding operation and 188 

generate images with homogeneous contrast within three phases (Fig. 2(d)). 189 

Finally, the processed volume was cropped into a smaller volume for 3D analysis. 190 

3D rendering of the features, as well as quantification of size/volume, was performed 191 

using Avizo® (FEI, Thermo Fisher Scientific, U. S). The thickness of unfrozen matrix 192 

was measured using BoneJ in ImageJ [33]. 193 

 194 

3. Results and Discussion 195 

3.1 General microstructural evolution during thermal cycling 196 

Fig. 3 and supplementary Fig. S1 show the 2D tomographic slices of ice cream’s 197 

microstructural evolution during thermal cycling between -15 and -5 oC. A few salient 198 

observations can be made based on these images. First, ice crystals were continuously 199 

melting, decreasing in size, during the heating stage (Fig. 3(a-c)) and their 200 
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morphologies became more spherical at “high” temperature (e.g. -5 oC, Fig. 3(c)). It 201 

appears that the most significant morphologic change took place in the temperature 202 

range -7.5 to -5 oC. During cooling, the relatively round ice crystals grow into a more 203 

irregular morphology again (Fig. 3(d-f)), as expected for ice which has a high 204 

anisotropy in interfacial energy. Second, some of the air cells tended to coalesce. One 205 

example is indicated by the arrows in Fig. 3(a) and (b), where two neighboring large 206 

air cells gradually merged into one.  207 

Third, it is observed that during the heating stage the microstructural features 208 

moved to the upper right corner of the region in Fig. 3, and observed more clearly in 209 

supplementary Fig. S1, because of the volume shrinkage when ice crystals were 210 

melted into the unfrozen matrix. An air cell in Fig. 3(b) (indicated by a red arrow) 211 

shows the example of this movement. Note that the microstructure seemed to be 212 

compressed slightly due to the decreasing volume. It is mentioned that the expansion 213 

of volume seemed to be less significant during cooling as compared to the reduction 214 

in volume upon heating. The degree of expansion and relative movement during 215 

cooling also suggests the unfrozen matrix is quite flexible in response to external 216 

thermal change at high temperatures. 217 

Microstructures in the longitudinal section were extracted for further examination 218 

and the results are shown in supplementary Fig. S1. The microstructural features (e.g. 219 

ice crystals and air cells) move less in the sample axis direction as compared to that in 220 

the cross section (Fig. 3). In other words, flotation of air cells along the sample axis 221 

does not occur, or at least was not observed in this study. This observation suggests 222 
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that macro-fluid flow was largely inhibited due to the increased viscosity of the 223 

unfrozen matrix due to the stabilizers present in the ice cream samples, which would 224 

inhibit the mobility of air cells [14]. In addition, it is also difficult to identify if 225 

drainage, which can play an important role in the instability of the air structure at high 226 

temperature [14], occurred in this work. However, it is also mentioned that 227 

microscopic fluid flow in the channels within the unfrozen matrix probably still 228 

occurs which cannot be resolved by the technique used in this work. 229 

 230 

3.2 3D Ice crystal evolution 231 

The volume fraction of ice crystals was examined first (Fig. 1), together with the 232 

calculated data based on the thermal properties (i.e. extrapolated melting points at 233 

various concentrations) of the ice cream formulation. Generally, the results measured 234 

by tomography compare well with the theoretical predictions. Minor errors might be 235 

caused by shrinkage and expansion, which would change some of the features 236 

measured. 237 

Fig. 4 shows the 3D evolution of ice crystals during a thermal cycle. Ice crystals 238 

are individually color-rendered according to the equivalent diameter of each ice 239 

crystal. In the figure, the blue color corresponds to small size. As expected, ice 240 

crystals gradually decreased in size when the sample was heated, reaching the 241 

minimum size at -5 oC. This is consistent with the observation that more small blue 242 

ice crystals were present at -5 oC, as shown in Fig. 4(c). The ice crystals then 243 

continuously grew in size when the sample was cooled again to -15 oC (Fig. 4(d-e)).  244 
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Detailed examination of the position change for the 3D ice crystals after heating 245 

shows that the ice crystals moved upwards slightly, by less than 20 µm. This 246 

movement of the ice crystals might be caused by compression due to volume 247 

shrinkage, which drives the ice crystals to move upwards towards the center of the 248 

sample when the unfrozen matrix is less viscous at warmer temperatures [34]. 249 

The ice crystals in Fig. 4 were quantified in terms of equivalent diameter and size 250 

distribution (Fig. 5). The average equivalent diameter of ice crystals decreases upon 251 

heating from 101 µm at -15 oC to 87 µm at -5 oC, and then increases again to ~103 µm 252 

at -15 oC after cooling (Fig. 5(a)). Interestingly, the average equivalent diameter of the 253 

ice crystals is increased by ~ 2 µm at -15 oC after a thermal cycle (Fig. 5(a)), 254 

suggesting a mild coarsening of ice crystals after thermal cycling. This coarsening of 255 

ice crystals at a storage temperature (e.g. -5 ~ -18 oC) with imposed oscillation 256 

temperatures (e.g. ±2.5 oC) have been previously observed [10, 23, 35, 36]. It is 257 

pointed out that the performed thermal cycling in this study leads to much higher 258 

coarsening rates than isothermal storage at a certain temperature due to the 259 

temperature oscillations which, through observed melting-recrystallization process, 260 

increases the rate of the coarsening process [23]. 261 

The size distribution of the ice crystals at different temperatures was analyzed 262 

and the results are plotted in Fig. 5(b-d). In general, the size distribution curves reflect 263 

the temperature change, where the curves shift to the left upon heating (Fig. 5(c)), 264 

while they shift to the right during the cooling stage (Fig. 5(d)). It is also shown in Fig. 265 

5(b) that the distribution of the two curves at -15 oC, before and after the thermal 266 
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cycle, is similar indicating only a minor change in the overall size after the thermal 267 

cycle was completed. This observation confirms that the ice crystals follow mainly a 268 

“melting-recrystallization” mechanism and that other proposed mechanisms [37] play 269 

a small or negligible role. 270 

Fig. 6 shows the morphological evolution of five individually separated ice 271 

crystals extracted for detailed examination. The morphology of the ice crystals 272 

changed during thermal cycling being more irregular at low temperature, e.g. -15 oC 273 

(Fig. 6(a) and (f)), while they became more spherical at “high” temperature, e.g. -5 oC 274 

(Fig. 6(c) and (d)).  275 

The five ice crystals shown in Fig. 6 are quantified in terms of volume, volume 276 

change, specific surface area and sphericity, and the results are presented in Fig. 7. It 277 

is seen that the volume of each ice crystal keeps decreasing during heating and then 278 

increasing during cooling. The volume change (as compared to -15 oC before thermal 279 

cycling) shows that the volume of four of the ice crystals increased by 5.5-11%, 280 

indicating an increase in size of ice crystals, which is consistent with the observation 281 

of the overall increased equivalent diameter of ice crystals due to coarsening (Fig. 282 

5(a)). However, the volume of ice crystal 3 decreased slightly, by ~4%. This ice 283 

crystal is one of the smallest of the 5, and most likely the other four ice crystals grew 284 

at the expense of ice crystal 3 via an Ostwald Ripening mechanism [37]. 285 

 In this study, complete melting of ice crystals was not observed when the sample 286 

was heated to -5 oC since the smallest crystals will have dissolved in the seven 287 

thermal cycles prior to the in situ experiment. After seven cycles the ice crystals have 288 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

 

grown to a large enough size such that they don’t completely melt during heating to -5 289 

oC. This critical size can be extracted from Fig. 5(b). Note that the smallest crystals 290 

measured are about 60 µm diameter at -15 oC, and reduce in size by ~25 µm when 291 

heated to -5 oC. This observation suggests that ice crystals with an equivalent 292 

diameter less than 25 µm have a high probability of being completely melted during 293 

the applied thermal cycling. This is further supported by the observation that there is 294 

no significant number of crystals less than 30 µm diameter at -5 oC. This finding 295 

confirms the measurements made in a previous study by the same authors (i.e. Fig. 296 

9(d) in ref. [5]) showing a significant reduction in the number of ice crystals during the 297 

first 7 cycles.  298 

As mentioned, the morphology of ice crystals also changes during thermal 299 

cycling (Figs. 3 and 6). This change is quantified using measures of specific surface 300 

area and sphericity in Fig. 7 (c) and (d). For example, both the values of specific 301 

surface area and sphericity increased continuously as the ice crystals melt, decreasing 302 

as the ice crystals recrystallized. These changes support the observation that ice 303 

crystals become more spherical during melting (to minimize interfacial energy) and 304 

then became more facetted (irregular) during the recrystallization stage as they strive 305 

to reach the Wulff shape driven by anisotropy in interfacial energy [38, 39]. However, 306 

the ice crystals show only minor morphological changes after a thermal cycle, as 307 

indicated by the average sphericity of more than 300 ice crystals where the value 308 

increased from ~0.80 at -15 oC to 0.84 at -5 oC during the heating stage, and then 309 

decreased to ~0.80 when cooled back to -15 oC. A similar trend was observed for the 310 
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specific surface area. The minor changes to the size and morphology of ice crystals 311 

after one thermal cycle support the previous findings that only small differences in 312 

size and morphology of ice crystals were observed between the sample thermally 313 

cycled for 7 days and the sample cycled for 14 days [5]. 314 

3.3 Unfrozen matrix evolution 315 

Fig. 8 and supplementary Fig. S2 (larger volume) show the 3D morphological 316 

evolution of the unfrozen matrix during a thermal cycle. The unfrozen matrix forms a 317 

very complex 3D network-like shape with ice crystals and air bubbles dispersed 318 

within the matrix. The 3D images in Fig. 8(a-f) show that the unfrozen matrix 319 

appeared thicker between air cells upon heating, while they became thinner as the 320 

sample cooled down presumably due to the melting of the ice crystals during heating 321 

and recrystallization during cooling. This is reflected by the quantified thickness of 322 

the unfrozen matrix analyzed in a 721×721×504 µm3 volume (supplementary Fig. S2), 323 

as plotted in Fig. 8(g) where the thickness monotonically increased from ~12.6 µm at 324 

-15 oC to 27.0 µm at -5 oC, and then decreased to ~19.6 µm at -15 oC at the end of the 325 

thermal cycle.  326 

Figure 8 shows that the thickness of the unfrozen matrix is greater during the 327 

cooling stage than during the heating stage, such that the thickness increases by ~ 6 328 

µm after the thermal cycle was completed. After detailed examination, it is 329 

hypothesised that the formation of a local region of the matrix (e.g. upper right corner 330 

in Fig. 3) that is concentrated with more water molecules, is responsible for this 331 

change. The shrinkage of the sample, and the associated macro-flow induced by the 332 
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compression effect, might have accelerated the formation of a larger region of low 333 

viscosity matrix. During the cooling stage, no additional new ice crystals were 334 

nucleated under the cooling rate studied. Thus, the measured thickness of the unfrozen 335 

matrix in this region is higher compared to that before thermal cycling.  336 

In addition, the ‘strength’ (or viscosity) of the unfrozen matrix would decrease at 337 

the higher temperatures during heating due to a reduction in viscosity allowing more 338 

movement of the matrix to accommodate the overall shrinkage of the sample (see 339 

above). Thus, a shift of the structure was observed during the heating stage, 340 

suggesting a significant negative impact of the ice melting process on structural 341 

stability.  342 

 343 

3.4 3D air cell evolution 344 

A few 3D air cells were extracted to examine the coarsening mechanism. Fig. 9 345 

shows one example where two separate air cells gradually merge into one. It is 346 

observed that the air cells at -15 oC are not necessarily round, instead, they have many 347 

concave regions (indicated by an arrow in Fig. 9(a)), or even an elongated shape for 348 

some cases as seen in Fig. 3. Upon heating, the two air cells merged by creating a 349 

bridge between them (Fig. 9(b)), and then the bridge (or neck) continued to thicken 350 

with increasing temperature during the heating stage. Meanwhile, some of the 351 

concave regions on the air cell surface gradually disappear forming a smooth or 352 

spherical surface. The gradual rounding was driven by the reduction in surface energy 353 

of the air/unfrozen matrix interface [40].  354 
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Decreased viscosity of the unfrozen matrix at “warmer” temperatures upon 355 

heating increases the diffusion rate of gas between air cells and promotes coalescence 356 

of air cells. It is mentioned that adding stabilizers and emulsifier to ice cream helps 357 

reduce air cell coarsening, due to the increased extent of fat destabilization and the 358 

increased viscosity of the matrix phase, respectively [14]. It is also noticed that the 359 

surrounding ice crystals significantly affect the shape of the area around the neck 360 

between merging cells. One example is shown in Fig. 9(d-2). It is likely that those ice 361 

crystals in the vicinity of the neck limit further coalescence of the two air cells due to 362 

the constraint imposed by the ice crystal imbedded unfrozen matrix (also see 363 

supplementary Fig. S3). 364 

Upon cooling, some of the phenomena observed during the heating stage act in 365 

reverse. That is, the surface of air cells became rough or even distorted again at 366 

“cooler” temperatures, e.g. -12 oC in Fig. 9(g). This is most obvious at the lowest 367 

temperature of -15 oC (Fig. 9(h) and (h-2)). The changes are likely to be caused by 368 

two main factors. One is that the growing ice crystals continue to push towards the air 369 

cells through the unfrozen matrix. This is realized more easily when the unfrozen 370 

matrix becomes thinner and thinner as more water molecules are attached to the 371 

recrystallizing ice crystals. In total, twenty ice crystals were observed to grow around 372 

the air cells shown in Fig. 9 (see supplementary Fig. S3). The second factor is that the 373 

pressure within the air cell decreases with the decreasing temperature according to the 374 

ideal gas law (PV=nRT), releasing some of the force on the surface that resists 375 

morphological change. It is mentioned that the final morphological change is a result 376 
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of competition between the force imposed on the air cell surface by the growing ice 377 

crystals and the surface tension of the air cell/matrix interface. It seems that for the 378 

case in Fig. 9 the force imposed by the growing ice crystals through the matrix was 379 

greater than the surface tension at temperatures lower than ~ -12 oC, under which the 380 

surface started to deform significantly. In addition, the coalescence process seemed to 381 

be inhibited by the increased viscosity at low temperatures during the cooling stage, 382 

indicating a significantly reduced rate of morphological change of the air cells than 383 

during the heating stage.  384 

 Pelan et al. [41] and Rohenkohl and Kohlus [42] both suggested that the 385 

coalescence of air cells to create large coarsened air pockets was the major 386 

destabilizing mechanism in the ice cream they studied. A previous study revealed that 387 

the storage of ice cream without emulsifier or stabilizer at -15 oC for 16 days lead to 388 

interconnected channels [14]. The recent observations by Guo et al. [5] also showed 389 

that thermal cycling of ice cream between -15 and -5 oC for 14 days resulted in a very 390 

complex interconnected air structure [5]. Although Ostwald ripening was observed in 391 

the aerated emulsions [43], the in situ observations in this study strongly suggest that 392 

for ice cream that was cycled for seven times coalescence is the dominant mechanism 393 

responsible for the creation of complex interconnected air structures. It should be 394 

noted that gas formation can occur due to radiation damage, resulting in molecular 395 

bond cleavage (H-H and O-O) or water photolysis, as reported in water under high 396 

pressures [44]. If this is occurring, it could explain the increase in bubble volume 397 

fraction and the coarsening of bubbles. However, the increase in bubble volume will 398 
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not have a significant impact on the coarsening of the ice crystals. Gas formation due 399 

to irradiation is an open question, as is how this might affect bubble coarsening. 400 

 Apart from the coarsening of air cells, another interesting phenomenon was 401 

observed, i.e. the reduced volume of some of the air cells after thermal cycling. Fig. 402 

10 shows the evolution of three individually extracted air cells during thermal cycling, 403 

and their corresponding quantified volume changes are plotted in Fig. 11. The overall 404 

volume fraction of air cells was also analyzed and the result was observed to decrease 405 

monotonically during the heating stage, and continued to decrease until 0.256 at ~ -7 406 

oC during cooling before it started to rise upon further freezing (Fig. 11(a)). The 407 

volume fraction after the thermal cycle (~ 0.285) was lower compared to that before 408 

thermal cycling began (~0.330). This corresponds to a reduction of volume fraction 409 

by ~ 13.8%. The trend of the volume change of the three individual air cells is 410 

consistent with that for the overall volume change. It is also noticed that the change of 411 

volume is even more than 50% for Air 2 and Air 3, and that those two air cells did not 412 

grow in size during the cooling stage. Detailed mechanisms here are still unknown. It 413 

is unlikely that the hydrostatic pressure causes such a large change, as the sample 414 

height is quite small. The shift of the sample during the thermal cycle might 415 

contribute to some measurement errors; however, the volume (thus size) change of the 416 

air cells is proposed to be the main contribution, which is supported by the volume 417 

change of all three air cell cases (Fig. 11(c-d)). The diffusion of gas into the matrix 418 

and the surrounding air cells, as well as out of the whole sample, at the warm 419 
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temperatures might have contributed to this change. The detailed mechanisms will be 420 

investigated in a future study.  421 

 422 

3.5 Summary of microstructural evolution mechanisms 423 

Here, the mechanisms that control the microstructural evolution of ice cream as 424 

observed in this in situ study are summarised (Table 1). Generally, the microstructural 425 

evolution of ice cream during thermal cycling is controlled by the interaction of three 426 

phases.  427 

Regarding ice crystals, nucleation of new ice crystals does not occur under the 428 

cooling condition studied in this work. The melting-recrystallization mechanism 429 

hypothesized as an important mechanism in the previous study by Guo et al. [5] was 430 

quantified by analyzing the 4-D tomographs during the thermal cycle. The melting 431 

and recrystallization of ice crystals also affects the air cell’s morphology, as well as 432 

its coarsening process, through the unfrozen matrix layer between the ice crystals and 433 

the air structures. For the air phase, coalescence of air cells is clearly observed to be 434 

responsible for the coarsening mechanism. For the sample that was initially thermally 435 

cycled for seven times, Ostwald ripening takes a less important role in the coarsening 436 

of both ice crystals and air cells during thermal cycling. The continuous reduction of 437 

air cell volume needs further investigation. The third phase, the unfrozen matrix, is a 438 

crucial component controlling the microstructural stability of ice cream. It acts as the 439 

reservoir for the water from dissolving ice during heating and releases water for 440 

recrystallization of the ice crystals during the cooling cycle. The network of unfrozen 441 

matrix, reinforced by the distributed ice crystals (and dissolved hydrocolloids), holds 442 
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the whole structure together and greatly influences the structural stability of ice cream 443 

when subjected to external temperature variations.  444 

 445 

4. Conclusions 446 

Using 4D synchrotron X-ray tomography, the effect of thermal variation on the 447 

microstructural stability of ice cream was investigated during a heating and cooling 448 

cycle between -15 oC and -5 oC, at a ramp rate of 0.05 oC/min. A new data 449 

reconstruction and image processing method was developed, enabling the large 4D 450 

data sets to be segmented and quantified. The experimental set-up, as well as the 451 

image processing routine developed, can be applied to a wide range of soft materials.  452 

The dynamic evolution of individual microstructural features, i.e. an ice crystal, 453 

air cell, and unfrozen matrix, was quantitatively analyzed. The findings integrate the 454 

ex situ observations made in Guo et al. [5] enhancing the understanding of the 455 

mechanisms controlling ice cream’s microstructural evolution. The experimental 456 

results in this study reveal important physical mechanisms that influence 457 

microstructural instability: that is, the coarsening of air cells takes place mainly 458 

through the coalescence of neighboring air cells, while ice crystal growth results from 459 

the melting-recrystallization mechanism during thermal cycling, both of which lead to 460 

degradation of ice cream’s microstructure. The unfrozen matrix plays an important 461 

role in maintaining the integrity of the structure of ice cream while being flexible 462 

enough at the higher temperatures to reduce the stresses imposed during heating and 463 

then cooling by the melting and recrystallization of the ice crystals.  464 
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 598 

Figure captions 599 

Fig. 1 Change in ice volume fraction as a function of temperature. The inset shows the 600 

thermal cycling history of the ice cream sample for the in situ synchrotron 601 

experiment. The measured phase diagram (i.e. extrapolated melting points at various 602 

concentrations) of the ice cream formulation is presented in [5]. 603 

 604 

Fig. 2 Reconstructed images using (a) conventional FBP reconstruction method and (b) 605 

MBIR reconstruction method; (c) post-processed image of reconstructed MBIR image 606 

of (b), note more homogeneous (equalized) intensities compared to (b) within 607 

ice-crystals; (d) 3-phases segmentation using (c). A, I and M in (b) stand for air cell, 608 

ice crystal and unfrozen matrix, respectively. Scale bar =150 µm. 609 

 610 

Fig. 3 Reconstructed tomographic slices (prior to the equalization step) showing the 611 

overall microstructural evolution of ice cream during a thermal cycle: (a) -15 oC, (b) 612 

-7.6 oC, and (c) -5 oC during heating, (d) after holding at -5 oC for 10 min, (e) -7.5 oC, 613 

and (f) -15 oC during refreezing. A, I and M in (f) stand for air cell, ice crystal and 614 

unfrozen matrix, respectively. Scale bar equals 150 µm. 615 

 616 

Fig. 4 3D ice crystal evolution in a 1416×1416×504 µm3 volume during a thermal 617 

cycle: (a) -15 oC, (b) -7.6 oC, (c)-5 oC, (d) -7.5 oC, and (e) -15 oC. Ice crystals are 618 

size-colored using the equivalent diameter. Scale bar equals 500 µm.  619 

 620 

Fig. 5 Quantified ice crystal size during a thermal cycle: (a) change of average 621 

equivalent diameter of ice crystals during a thermal cycle; (b-d) size distribution of 622 

ice crystals during (b) a complete thermal cycle, (c) heating stage and (d) cooling 623 

stage. The arrow in (b) indicates the size shift of the curves. Note, more than 300 ice 624 

crystals were analyzed.   625 

 626 
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Fig. 6 3D morphological evolution of five ice crystals during a thermal cycle: (a) -15 627 

oC, (b) -7.6 oC, (c) -5 oC, (d) after holding at -5 oC for 10 min, (e) -7.5 oC, and (f) -15 628 

oC. The time is indicated in each figure during the thermal cycle. Scale bar 150 µm for 629 

all images. Numbers in (c) match the ice crystals analyzed in Fig. 7.  630 

 631 

Fig. 7 Quantified results of five ice crystals during a thermal cycle: (a) volume, (b) 632 

volume change, (c) specific surface area, and (d) sphericity. Note the colours of the 633 

plots in each figure are identical to the colour-rendered ice crystals in (b). 634 

 635 

Fig. 8 3D morphological evolution of unfrozen matrix within a 259×243×243 µm3 636 

volume during a thermal cycle: (a) -15 oC, (b) -7.6 oC, (c) -5 oC, (d) after holding at -5 637 

oC for 10 min, (e) -7.5 oC, and (f) -15 oC; (g) Average thickness of the unfrozen matrix 638 

as a function of temperature. Note, the thickness is measured within a 721×721×504 639 

µm3 volume, identical to the domain as shown in supplementary Fig. S2. Figures (a-f) 640 

share the same scale bar. Scale bar equals 100 µm. 641 

 642 

Fig. 9 Coalescence of two air cells during the heating stage (a-d) and cooling stage 643 

(e-h) of a thermal cycle. (d-2) and (h-2) show the morphological relationship between 644 

the surrounding ice crystals and the air cell at -5 oC and -15 oC, respectively. Scale bar 645 

100 µm for all images. 646 

 647 

Fig. 10 Morphological evolution of three individual air cell cases during a thermal 648 

cycle. Scale bar 100 µm for all images.  649 

 650 

Fig. 11 Volume change of air cells as a function of temperature during a thermal cycle: 651 

(a) overall volume change of air cells in a 1416×1416×504 µm3 volume, (b) volume 652 

change of three individual air cells. 653 

 654 

 655 
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Table 1 

 2 

Table 1 A summary of the microstructural changes that occur during a thermal 3 

cycling from -5 to -15 oC highlighting the differences between what occurs during the 4 

first seven cycles and the following seven cycles. The arrows indicate that part of the 5 

cycle over which most change occurs. 6 

 Heat to -5 oC Hold at -5 oC Cool to -15 oC Hold at -15 oC 
Air cells 

Coalescence of 
neighbouring air 
cells. 

 

1 to 7 cycles Size increases although some small air 
cells remain leading to a bimodal 
distribution and remain equiaxed. 

The air cells 
shrink. 

Cells remain 
relatively 
spherical. 

8 to 14 cycles Coalescence of neighbouring air cells. The air cells 
become irregular 
due to constraint 
by matrix and ice 

crystals. 

Air cells become 
interconnected 

and form channels 
within the matrix 

network. 
Air cells continue to grow into a large interconnected network of irregular shapes as the number of 
thermal cycles increase. The morphology is constrained by the network of unfrozen matrix and ice 
crystals. 

Ice crystals 
 Melt by ~40%  Grow by ~66%  

 

 
Dissolution 

 
Recrystallization 

 

1 to 7 cycles Size of ice 
crystals 

decrease and 
those < 25 µm 

melt 
completely. The 

morphology 
becomes 
rounded. 

The size and 
morphology of 
crystals change 

little. 

Size of ice crystals 
increase and no 

nucleation of new 
crystals occurs. 

The morphology 
becomes irregular 

during 
recrystallization. 

Over the cycle, 
the size increases 
significantly and 

the number 
decrease 

significantly. 

8 to 14 cycles Size decreases 
by ~ 25 µm 

dissolvingand 
the number 

changes little. 

The size of crystals 
change little. 

Size of ice crystals 
increase by about 

25 µm. The 
number remains 

unchanged. 

Over the cycle, 
the size increases 
by a small amount 
and the number do 

not increase. 
After 7 thermal cycles, the number changes little and the size of ice crystals increase slowly. The ice 
crystals form networks within the unfrozen matrix network. 

Unfrozen matrix 
Water content Increases High Decreases Low 

Viscosity Viscosity 
decreases 

Low Viscosity increases High 

Mechanical 
response 

Matrix becomes and remains flexible, 
reducing residual stresses 

Matrix becomes 
less flexible 

Matrix is 
effectively rigid 

Total volume Ice cream 
expands 

May shrink 
somewhat 

Ice cream shrinks Relatively 
constant 

Alignment of ice crystals with the unfrozen matrix network occurs to minimise surface energy and 
reduce local stress with each additional thermal cycle. At the warmer temperatures the matrix becomes 
flexible also reducing stresses developed by the constraint of ice crystal and air cells. 

 7 
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Highlights 

� In situ synchrotron tomography reveals the dynamics of ice cream emulsion’s 

thermal stability 

� A new tomographic data processing method was developed, enabling the features 

to be quantified 

� The melting-recrystallization mechanism is responsible for ice crystal evolution  

� Coalescence of air cells is the dominant coarsening mechanism controlling air 

bubble’s evolution 

� The unfrozen matrix is important in maintaining the ice cream’s microstructural 

stability 

 


