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Abstract: 

Purple acid phosphatases (PAPs) are metalloenzymes that catalyse the hydrolysis of 
phosphate esters under acidic conditions. Their active site contains a Fe(III)Fe(II) metal centre 
in mammals and a Fe(III)Zn(II) or Fe(III)Mn(II) metal centre in plants. In humans, elevated 
PAP levels in serum strongly correlate with the progression of osteoporosis and metabolic 
bone malignancies, which make PAP a target suitable for the development of 
chemotherapeutics to combat bone ailments. Due to difficulties in obtaining the human 
enzyme, the corresponding enzymes from red kidney bean and pig have been used previously 
to develop specific PAP inhibitors. Here, existing lead compounds were further elaborated to 
create a series of inhibitors with Ki values as low as ~30 µM. The inhibition constants of these 
compounds were of comparable magnitude for pig and red kidney bean PAPs, indicating that 
relevant binding interactions are conserved. The crystal structure of red kidney bean PAP in 
complex with the most potent inhibitor in this series, compound 4f, was solved to 2.40 Å 
resolution.  This inhibitor coordinates directly to the binuclear metal centre in the active site 
as expected based on its competitive mode of inhibition. Docking simulations predict that this 
compound binds to human PAP in a similar mode. This study presents the first example of a 
PAP structure in complex with an inhibitor that is of relevance to the development of anti-
osteoporotic chemotherapeutics. 

 

1. Introduction 

Purple acid phosphatases (PAPs, also referred to as tartrate-resistant acid phosphatases) are 

metalloenzymes found in animals, plants and fungi [1-5]. They utilise a binuclear metal centre 

to catalyse the hydrolysis of phosphate esters and anhydrides under acidic conditions, with an 

optimal pH ~5 [6-12]. The overall reaction is given in Equation 1. 
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PAPs are non-specific enzymes that can dephosphorylate diverse substrates, including ATP, 

ADP and para-nitrophenyl phosphate (pNPP) [1-4, 13], as well as phosphoproteins such as 

osteopontin and bone sialoprotein [14-15]. Several roles for mammalian PAPs have been 

suggested. Pig PAP found in the allantoic fluid of pregnant sows is believed to transport iron 

from the mother to the foetus during gestation [16], and therefore the enzyme is also referred 

to as uteroferrin [6, 17-19]. In humans, PAP function appears to be tissue-specific; the 

enzyme is involved in the inflammatory response of antigen-presenting cells [20], as well as 

in bone resorptive processes in osteoclasts [15, 21]. The diverse roles of mammalian PAP are 

associated with the enzyme’s bifunctional character; apart from its hydrolytic activity it can 

also act as a Fenton catalyst due to the presence of its redox active Fe(III)Fe(II/III) centre 

[22]. It has been hypothesised that the reactive oxygen species (ROS)-generating activity of 

PAP could play a role in collagen degradation [23]. Although the substrate(s) of PAP in bone 

tissue is unknown, studies with transgenic mice clearly established the enzyme’s function in 

bone turnover. Mice overexpressing the PAP gene are found to be osteoporotic [14] and show 

an increase in bone turnover [24]. In contrast, mice deficient in PAP display a phenotype 

characteristic of osteopetrosis [24], with increased bone mineral density, abnormal 

ossification [14] and defects in the resorption and mineralisation of growing bone [25]. Thus, 

PAP has emerged as a target for inhibitors that may lead to the development of novel 

treatments for osteoporosis, bone malignancies and metabolic bone diseases.  

In the absence of effective recombinant expression systems for human PAP the enzymes 

extracted from pig uterine fluid (i.e. uteroferrin) and red kidney bean PAP (rkbPAP) have 

been used as models to test the efficacy of inhibitors. Despite the modest sequence similarity 

between rkbPAP and mammalian PAPs [26-27] its inclusion into an inhibitor design program 

is warranted on the basis of similar (i) substrate specificities, (ii) interactions with known 
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inhibitors and (iii) mechanism [19, 28-29]. A number of thiol and phosphonate compounds 

with IC50 values 80–3000 µM have been developed [30]; similar IC50 values were reported for 

a series of phosphotyrosine-containing tripeptides [28]. Our group reported a series of α-

alkoxynaphthylmethylphosphonic acids [31], acyl derivatives of α-aminonaphthylmethyl 

phosphonic acid [32] and acyl derivatives of 6-aminopenicillanic acid [33] as inhibitors of 

PAP with Ki and IC50 values in the low micromolar range. We also employed a fragment-

based screening approach to identify three potential inhibitor leads; crystal structures 

provided insight about the mode of their binding in the active site of rkbPAP [27]. Here, we 

used these fragments as starting points for the design of a new series of inhibitors with 

improved binding interactions. 

 

2. Results and Discussion 

Inhibitor synthesis: In a previous study, four fragments from a MaybridgeTM library were 

identified as promising inhibitor leads for PAPs [27]. The molecular structures of these 

compounds (i.e. 1, 2, 3 and 4a) are shown in Figure 1. The crystal structures of rkbPAP in 

complex with compounds 2 and 4a (competitive inhibitors with Ki values of 43 µM and 340 

µM for rkbPAP and 59 µM and 42 µM pig PAP, respectively [27]) demonstrate that the active 

site of the enzyme offers numerous structural features to allow further elaboration of inhibitor 

molecules with high affinity and specificity (Figure 1). 
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Figure 1: (a) Four fragments identified from a MaybridgeTM compound library as PAP inhibitors. (b) Crystal 

structure of rkbPAP (yellow surface) in complex with compound 4a (as sticks with cyan carbons), and (c) in 

complex with 2.Water molecules are shown as red spheres [27]. 

Using compounds 2 and 4a as starting points, we generated two series of derivatives (i.e. 7a-b 

and 4b-h, respectively). To synthesise the two monocyclic alkoxy benzyl ether derivatives 

(7a-b)  of compound 2 (i.e. the benzofuran) the 2-alkoxy benzaldehydes (6a-b) were first 

prepared by alkylation of salicylaldehyde (5) using alkyl halides and potassium carbonate in 

DMF solution, followed by sodium borohydride reduction to the corresponding benzyl 

alcohols [34] (Scheme 1). 
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Scheme 1. Reagents and Conditions: (a) RX, K2CO3, DMF, r.t., 36 h. 6a (86%), 6b (84%); (b) NaBH4, 

2 M, NaOH, MeOH, r.t., 4 h. 7a (74%); 7b (85%). 

 

The preparation of compounds 4a-f first required the synthesis of the intermediates 11a-f, as 

outlined in Scheme 2. Following the method described by Gududuru et al. [35], the 

hydrochloride salt of the methyl ester of L-cysteine (9), which was first prepared by refluxing 

L-cysteine (8) with SOCl2 in methanol, was reacted with a series of aromatic aldehydes 10a-f 

to give the corresponding thiazolidine methyl ester intermediates 11a-f.  
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Scheme 2. Reagents and Conditions: (a) SOCl2, MeOH, ∆, 3 h, 100%; (b) 9, NaHCO3, EtOH, H2O, 

r.t., 14 h. 11a (65%); 11b (74%); 11c (81%); 11d (57%); 11e (79%); 11f (37%); (c) N-
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bromosuccinimide, benzoyl peroxide, CCl4, ∆, 14 h. 12a (23%), 12b (26%), 12c (17%), 12d (19%), 

12e (32%), 12f (16%); (d) 2 M NaOH, MeOH, 0 ºC, 2 h. 4a (98%), 4b (80%), 4c (84%), 4d (100%), 

4e (100%), 4f (100%). 

 

The thiazole carboxylic acid derivatives 4a-f were prepared in two steps from their 

corresponding thiazolidine intermediates 11a-f, by oxidation of 11a-f using N-

bromosuccinimide (NBS) and benzoyl peroxide, followed by basic hydrolysis of the methyl 

esters 12a-f, using the method described by Gududuru et al. [35] (Scheme 2). 

The syntheses of the thiazole dicarboxylic acids 4g-h are outlined in Scheme 3. Following the 

method described by Ashram [36], the two aromatic aldehydes 13 and 15 were prepared by 

refluxing the 2-hydroxy aromatic aldehydes 5 and 14, respectively, with ethyl 2-bromoacetate 

in the presence of potassium carbonate in acetone. The two aromatic aldehydes, 13 and 15, 

then reacted with compound 9 to give the corresponding thiazolidine derivatives 11g-h in 

12% and 77% yields, respectively. Oxidation of 11g-h to the thiazoles 12g-h, followed by 

saponification, gave the carboxylic acids 4g-h [35] (Scheme 3). 
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Scheme 3. Reagents and Conditions: (a) BrCH2CO2Et, K2CO3, Me2CO, ∆, 4 h. 13 (86%), 15 (48%); 

(b) 9, NaHCO3, EtOH, H2O, r.t., 14 h. 11g (12%), 11h (77%); (c) N-bromosuccinimide, benzoyl 

peroxide, CCl4, ∆, 14 h. 12g (17%), 12h (8%); (d) 2 M NaOH, MeOH, r.t., 4 h. 4g (73%), 4h (80%).  

 

Additionally, a series of thiazolidine-4-carboxylic acid derivatives 16a-c and 16f-j were 

synthesised for testing against both rkb and pig PAP enzymes to investigate the importance of 

the unsaturation of the thiazole ring for the activity of the compounds. Treating L-cysteine (8) 

with a number of aromatic aldehydes 10a-c and 10f-j in ethanol solution gave the 

corresponding thiazolidine-4-carboxylic acid derivatives 16a-c and 16f-j, as mixtures of cis 

and trans isomers, in good yields [35] (Scheme 4). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 
 

Ar

CHO

Ar

NHS

OH

O

10a-c and 10f-j 16a-c and 16f-j

a

a, Ar = p-tolyl
b, Ar = Ph
c, Ar = 4-methoxyphenyl
f, Ar = naphth-1-yl
g, Ar = 2-hydroxynaphth-1-yl
h, Ar = 4-hydroxyphenyl
i, Ar = 2-hydroxyphenyl
j, Ar = 2-furyl

 

Scheme 4. Reagents and Conditions: (a) L-Cysteine (8), EtOH, r.t., 5 h. 16a (63%), 16b (66%), 16c 

(52%), 16f (68%), 16g (70%), 16h (64%), 16i (93%), 16j (66%). 

 

Inhibition assays: The inhibitory effects of compounds 7a-b and 4a-h were tested using a 

standard kinetic assay with the chromophoric substrate para-nitrophenyl phosphate (pNPP); 

both rkbPAP and fully reduced pig PAP were used. In the first round of assessment, 

percentage inhibition was measured at a fixed concentration (i.e. 100 µM) of inhibitor. This 

initial screen indicated that compound 4f was the most promising lead; both pig PAP and 

rkbPAP activities were reduced to approximately half the value measured in its absence. 

Since accurate measurement of the binding affinity of a possible inhibitor also depends on its 

mode of binding and its competition with a substrate of the reaction, several of the above 

compounds were tested in inhibition assays where the concentrations of both the substrate and 

inhibitors were varied. Relevant parameters are summarised in Table 1. Kic and Kiuc represent 

the inhibitor dissociation constants for the enzyme-inhibitor and enzyme-substrate-inhibitor 

complex, respectively (i.e. competitive vs uncompetitive inhibition constants). Compounds 

7a-b and 4g-h exhibited little or no inhibitory activity against either pig or rkbPAP 
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Table 1: Kinetic data for inhibitors 4a-f against fully reduced pig PAP and rkbPAP at pH 4.9.  

Compound Enzyme Kic (µM) Kiuc (µM) 

4a Pig PAP 42 ± 14 - 

4a rkbPAP 340 ± 130 - 

4b Pig PAP 190 ± 62 - 

4b rkbPAP - - 

4c Pig PAP 120 ± 35 - 

4c rkbPAP 400 ± 210 770 ± 700 

4d Pig PAP 49 ± 13 - 

4d rkbPAP 530 ± 480 - 

4e Pig PAP 630 ± 570 350 ± 180 

4e rkbPAP 920 ± 630 - 

4f Pig PAP 33 ± 15 110 ± 69 

4f rkbPAP 185 ± 75 - 

 

For each of the compounds 4a – 4f their inhibitory effects on pig PAP and rkbPAP are within 

the same order of magnitude, but in each case the binding is stronger for the pig enzyme, and 

in most cases the mode of inhibition is competitive.  The exceptions are compounds 4e and 4f 

that also have a contribution from an uncompetitive binding mode (characterised by Kiuc) in 

pig PAP.  However, overall only compound 4f has a binding affinity (based on the magnitude 

of respective Ki values) that is modestly better than that of the parental compound 4a (Table 

1). 

The thiazolidine-4-carboxylic acid derivatives 16a-c and 16f-j were tested against a fully 

reduced pig PAP enzyme at 100 µM concentrations using 5 mM pNPP as a substrate. This 
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series of compounds did not show any inhibition effect, except for compound 16k, that 

displays modest (~40%) inhibition.  Consequently, this series of compounds was not further 

investigated. 

 

Crystallographic investigations of inhibitor binding 

Crystallographic investigations into the binding mode of compound 4f in complex with rkbPAP 

were undertaken wherein a rkbPAP crystal was grown and then soaked with a solution containing 

4f. The crystal diffracted to 2.4 Å resolution (Table 2) and has the same space group as described 

previously [27], and with the asymmetric unit consisting of two dimers of rkbPAP; the monomers 

are denoted A through D. After fitting of the polypeptide, amino acid side chains, metal ions and 

solvent molecules, 4f was modelled into the difference electron densities of Polder omit maps. 

Polder maps were chosen for this study since they are optimal for visualisation of weak binding 

inhibitors obscured by bulk solvent scaling [37]. Compound 4f was modelled in subunit A (> 

4.75 σ) and subunit B (> 5.24 σ) (Figure 2A,B). In subunits C and D, the difference electron 

densities indicate the presence of a sulfate anion bound to the metal centre.  
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Figure 2: (A) Polder (Fo-Fc) omit electron density map (> 5.24 σ) and cartoon/stick representation showing the fit 

of the inhibitor 4f (magenta carbons) to the difference electron density in subunit B of rkbPAP (light blue carbons), 

the metals are shown as green spheres (B) Surface and stick representation of the active site of rkbPAP (turquoise 

surface) in complex with 4f (CPK colouring sticks and blue surface), metals are shown as black spheres. For clarity 

of presentation, this view is rotated by 180º relative to 2(A). (C) Surface and stick representation showing the result 

of MVD predicting the binding mode of 4f (green sticks) to rkbPAP superimposed onto the crystal structure of 

rkbPAP (turquoise surface) in complex with 4f (yellow sticks); the metals are shown as black spheres (D) Surface 

and stick representation showing the result of MVD predicting the binding mode of 4f (CPK colouring sticks, blue 

surface) to human PAP (purple surface); the metals are shown as black spheres. 

 

The inhibitor binds through its carboxylate group in a µ-1,3 bidentate mode to the metal ions in 

the active site, more closely to Fe(III) (1.7 Å) than to Zn(II) (2.2 Å) (Figure 2A). The sulfur atom 

in the thiazole ring of the inhibitor forms a hydrogen bond with the hydroxyl group of the 

adjacent Y365 side chain (3.2 Å). The nitrogen atom in the thiazole ring forms a hydrogen bond 

(3.0 Å) with a nitrogen atom in the imidazole group of H296, and the thiazole ring forms π-cation 
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interactions with H295 and H296 (3.0-4.0 Å). The naphthalene ring, while not as well resolved as 

the thiazole ring (likely to be due to some structural flexibility), forms π-cation interactions with 

the guanidino group of R258 from the adjacent subunit in the rkbPAP dimer (3.3-4.0 Å) and with 

the imidazole group of H295 (2.90-3.70 Å).  In comparison to the binding interactions of 

compound 4a (Figure 3) both the carboxylate and thiazole moieties are positioned similarly in the 

two molecules, suggesting that the naphthalene ring in 4f enhances inhibitor binding despite not 

being locked in place by non-covalent associations. This indicates further improvements are 

possible to improve potency. 

 
Figure 3:  Stereo superimposition of the crystal structure of rkbPAP with 4a bound to the active site of subunit B 

(PDB ID: 4DHL, yellow carbons) and rkbPAP with 4f bound to the active site of subunit B (cyan carbons) to the 

active site. Substitution of the p-tolyl group with a p-naphthyl group picks up an additional interaction with H295. 

 

Table 2: Data collection and refinement statistics for the rkbPAP-4f complex 

   
Data collection    
Temperature 100  
Resolution range (Å) 43.26 - 2.40 (2.49 - 2.40)a  
Total number of reflections 467895 (30571)  
Total number unique 107272 (10656)  
Completeness (%) 99.4 (97.5)  
^Rmerge 0.083 (0.280)  
Mean I/σI 
CC(1/2) 

10.9 (3.4) 
0.98 (0.93) 
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Mosaicity (°) 0.27  
Unit cell lengths (Å) a  = b = 126.21 c  = 297.12  
Space group P 31 2 1   
 
Refinement  

  

Total number of atoms 15,764  
Number of water molecules 1,225  
Wilson B-factor (Å2) 33.66  
*Rwork  0.172  
#Rfree  
RMS bonds  (Å) 

0.223 
0.009 

 

RMS angles (°) 
 

0.957 
 

 

Ramachandran statistics (%)   
Favoured  95.02  
Allowed  4.04  
Outlier 0.94 

 
 

*Rwork = Σ|Fo|-|Fc|/Σ|Fo| and is calculated using 95% of the total reflections, and 
#Rfree uses the remaining 5% of the reflections. ^Rmerge = ΣhklΣi|Ii(hkl)-
I(hkl)|/ΣhklΣi Ii(hkl). aValues in parentheses are for the highest resolution shell. 

 

The occupancy and B-factors of the inhibitor and the neighbouring residues have been refined. 

The occupancy is close to 0.9 (0.84 on average) for the inhibitor and the B-factors for the 

inhibitor are, on average, approximately double that of the neighbouring residues (data not 

shown). This suggests that the inhibitor is stabilised in the active site but not necessarily bound 

with high affinity. The Ki value of 185 ± 75 for this compound with rkb PAP supports this. 

 

Docking studies 

Active site comparison of human, pig and red kidney bean PAPs 

To further validate the use of red kidney bean PAP and pig PAP as model systems for human 

PAP, we carried out a three dimensional structure-based alignment. It shows that the position of 

the metal ions and the three-dimensional arrangement of the metal-coordinating residues are 

completely conserved across the three species and that the amino acids that form the surface of 
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the active site share 100% sequence identity between the human and pig enzymes (Figure 4). 

This makes pig PAP an ideal model for human PAP inhibitor design. 

 
Figure 4: (A) Superimposition of the structure of pig PAP with two conformations of phosphate bound (PDB ID: 

5UQ6, cyan) and recombinant human PAP with bound phosphate (PDB ID: 1WAR, yellow). All active site residues 

are fully conserved. (B) Structure-based alignment of the active sites of pig PAP (PDB ID: 5UQ6, cyan) and rkbPAP 

(PDB ID: 4KBP, magenta) with phosphate omitted, highlighting that most residues surrounding the active site are 

conserved or semi-conserved between the two enzymes. M is either Fe(II/III) in pig and human PAPs or Zn(II) in 

rkbPAP. Pi represents inorganic phosphate. 

 
Docking studies were undertaken to predict the binding mode of 4f to human PAP (Figure 2C-D). 

Firstly, the accuracy of the docking algorithm was gauged by verifying its ability to predict the 

correct binding mode of 4f to rkbPAP. As seen previously [27], the MolDock Simplex Evolution 

(SE) algorithm can predict the correct binding mode of an inhibitor to rkbPAP with reasonable 

accuracy (Figure 2C). The same algorithm was used to dock 4f to human PAP (Figure 2D). In the 

optimal conformation the carboxylate group of the inhibitor coordinates bidentately to the two 

metals in the active site as observed in the crystal structure of the rkbPAP-4f complex (Figure 

2A). The thiazole ring of the inhibitor forms hydrophobic interactions with the side-chain of 

conserved N89 (N201 in rkbPAP). The thiazole sulfur is oriented towards a groove in the 

interface between the conserved metal ligating residues N89 and H221 (N201 and H325 in 

rkbPAP) and the mammalian repression loop (N142, S143 and D144, spatially equivalent Y365 

A                                                                         B
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in rkbPAP), whereby it is stabilised by van der Waals interactions with the side-chains of these 

residues and by a hydrogen bond with the side chain amino group of Q149. The remainder of the 

thiazole ring is stabilised by π-cation interactions with H90 and H193 (H202 and H296 in 

rkbPAP, respectively). The naphthalene ring fits into a hydrophobic wedge formed by the 

sidechains of F54 and F242. Pose binding energies obtained from Molegro Virtual Docker 

(MVD) algorithm are -89.51 kcal/mol and -56.61 kcal/mol for the interactions of 4f with human 

PAP and rkbPAP, respectively, which suggests that this inhibitor binds tighter to the human 

enzyme, in good agreement with the enhanced affinity of 4f for pig PAP when compared to 

rkbPAP (Table 1). The major contribution to the enhanced affinity of 4f to the human enzyme is 

due to a stronger interaction of the naphthalene ring with the hydrophobic side chains of F54 and 

F242 when compared to R258 in rkbPAP; however, the thiazole portion of the inhibitor also 

contributes to the difference due to its interaction with the repression loop that is characteristic 

for mammalian PAPs.  
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3. Conclusion 

The role of PAPs in bone resorption has been well established since studies of transgenic 

mice demonstrated that abnormal expression levels of this enzyme are associated with bone 

disorders; overexpression of PAP leads to an osteoporotic phenotype, while a knockout 

displays features characteristic of osteopetrosis [15]. While these observations make PAP a 

target for the development of chemotherapeutics to combat osteoporosis, little effort has been 

directed towards the design of specific and potent inhibitors of this enzyme. Though a recent 

paper used a small molecule screening library to identify a family of carboxamides as low 

micromolar inhibitors of human PAP [5],  the majority of inhibitors discovered to date are 

simple anions (e.g. phosphate, vanadate or sulfate [1-4, 8-9, 19, 29] that target the bimetallic 

metal centre. Since the bimetallic metal centre and its seven amino acid ligands are well 

conserved amongst a range of metallohydrolases (as an example, enzymes such as the 

diesterases GpdQ and Rv0805 have an active site that is nearly identical to that of PAPs [38-

39] it is not surprising that inhibitors targeting mainly the metal centre are non-specific. More 

complex molecules that may exploit structural features in the outer sphere of the PAP active 

site were developed but their precise binding modes had not been explored, largely due to the 

lack of crystallographic data.  In this respect, the crystal structures of several small fragments 

in complex with rkbPAP provided, for the first time, detailed insight into how potential 

inhibitor leads may interact with a PAP [27].  Here, two of these fragments (2 and 4a in 

Figure 1a) were used as starting points for further elaboration.  Of significance is that our 

structure activity relationship (SAR) results indicate that most of the thiazolidine derivatives 

of 16 are ineffective inhibitors of PAPs.  The exception is compound 16k, bearing a 

naphthalene ring. Upon oxidising its thiazolidine ring to the corresponding thiazole while 

retaining the naphthalene ring leads to compound 4f. This compound displays improved 
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binding affinity, and its structure in complex with rkbPAP guides further modifications to 

enhance the binding specificity and potency (Figure 2).   

To date it has not been possible to obtain crystal structures of catalytically active forms of a 

mammalian PAP. Available structures contain an inactive di-Fe(III) centre, mostly in 

complex with phosphate [40-41].  In contrast, plant PAPs crystallise readily in their 

catalytically active form, largely due to the fact that they contain redox-inactive Fe(III)Zn(II) 

or Fe(III)Mn(II) centres [8-11, 13, 42-43].  Consequently, in particular rkbPAP has been 

employed as a model to investigate the effect of inhibitors on PAPs.  The observation of 

reasonably conserved (i) catalytic properties, including substrate specificities, mechanism and 

inhibition by non-specific inhibitors, and (ii) amino acid side chains in the vicinity of the 

active site validate the selection of rkbPAP as a model for mammalian PAPs [1-4].  Indeed, 

all compounds tested here have comparable inhibitory effects for pig PAP and rkbPAP, albeit 

their binding to the mammalian enzyme is always more potent (Table 1).  In order to gain 

insight into how 4f binds to the human enzyme in silico docking was employed.  The 

methodology was initially tested using rkbPAP to demonstrate that the predicted (in silico) 

mode of binding of 4f is virtually identical to that observed experimentally (in the crystal 

structure; Figure 2).  Indeed, the inhibitor is predicted to bind better to the mammalian 

enzyme, in part due to additional interactions between this compound and the repression loop 

that is characteristic for mammalian PAPs [40].  This predicted improvement in binding is 

reflected in the lower Ki of pig PAP for 4f when compared to rkbPAP (Table 1). 

In summary, this study provides the first crystallographic insight into a rationally designed 

inhibitor for PAP.  The structure provides guidance for the further elaboration of PAP 

inhibitors that may find applications in the treatment of conditions associated with elevated 

levels of this enzyme, including not only osteoporosis but potentially also AIDS 
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encephalopathy [44], Gaucher’s disease [45], hairy cell leukemia [46], Alzheimer’s disease 

[47] and bone metastases [48-49].  

 

4. Experimental  

4.1. Enzyme preparation and Purification 

Purple acid phosphatase from red kidney bean (rkbPAP) was purified following a previously 

published protocol [50]. Briefly, red kidney beans (Phaseolus vulgaris) were ground in a 

Waring blender and suspended in 0.5 M sodium chloride. The suspension was filtered through 

a muslin cloth, followed by ethanol fractionation and ammonium sulfate precipitation and 

further purified by ion-exchange chromatography using a CM-cellulose column followed by 

gel filtration on a Sephadex S-300 column. The resulting preparation was concentrated to 23.8 

mg⁄mL using a Millipore Amicon centrifugal concentrator and stored at 4 ºC in 0.5 M sodium 

chloride. Pig PAP was extracted from the uterine fluid of a pregnant sow and purified by ion-

exchange chromatography using CM-cellulose followed by gel filtration on a Sephadex G-75 

[51]. Purified pig PAP was concentrated to 8.1 mg⁄mL and stored at 20 oC in 100 mM acetate 

buffer at pH 4.9. Protein concentrations were determined by measuring the absorbance at 280 

nm using extinction coefficients of 1.41 for a 1 mg⁄mL solution (28.6 µM) of pig PAP and 2.1 

for a 1 mg⁄mL solution (9.1 µM) of rkbPAP. SDS-PAGE analysis showed that the enzymes 

were >95% pure. 

4.2. Crystallisation, soaking and cryoprotection 

Crystallisation of rkbPAP was achieved using previously determined conditions [42]. Once 

crystals had reached a size of ~0.1 mm in all three dimensions, an equivalent volume of 

cryoprotectant containing the inhibitor was added to the hanging drop. This solution consisted 

of 0.1 M sodium citrate pH 5.0, 0.1 M lithium chloride, 25% polyethylene glycol 3350, 20% 

isopropyl alcohol, 10% glycerol and 4 mM of 4f. This was introduced 4 days before the data 
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collection. For cryoprotection, a crystal from the above preparation was soaked in 

cryoprotectant (containing the inhibitor) for 10 s before placing it in the cryostream (100 K). 

4.3. Data collection & analysis 

Data were collected using a FR-E X-ray generator (voltage: 45 kV, current: 45 mA) and 

recorded using a Raxis IV++ imaging plate at UQ. CuKα X-rays (wavelength: 1.54 Å) were 

used for these diffraction studies. The program Rigaku Crystal clear 2.0 [52] was used to 

integrate and scale reflections and Scala in CCP4 was used to scale and merge the data [53]. 

Initial protein model for refinements was that of the crystal structure of rkbPAP in complex 

with 4a (PDB access code: 4DHL) with the inhibitor removed from the active site. 

Refinements and building of Polder maps were performed using PHENIX [54] and model 

building was undertaken using Coot [55]. Figure 2A was produced using CCP4MG [56] and 

Figures 2B-D were produced using MVD [57]. Coordinates and structure factors for the 

complex have been deposited in the Protein Data Bank with access code 6G46.  

4.4. Computational docking studies 

Docking studies were undertaken with MVD [57] using the MolDock SE algorithm with 

flexible residues using Tabu clustering and softened potentials. The ligand search space was 

confined to a 9 Å sphere originating from the metal centre of PAP. For rkbPAP, the receptor 

coordinates used were those of the crystal structure of the enzyme in complex with the 

inhibitor obtained here. For human PAP, the coordinates used were those of recombinant 

human PAP in complex with phosphate (PDB code 1WAR) [40] with the phosphate anion 

omitted from the active site. Water molecules were removed from all coordinate files prior to 

docking. 

4.5. Enzyme kinetics 
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Inhibition assays with both pig PAP and rkbPAP were performed in 96 well 400 µL multi-

titre plates using a UV/Vis multiplate spectrophotometer [29]. Prior to its use in kinetic assays 

pPAP was fully reduced to the heterovalent Fe(III)Fe(II) state to ascertain maximum activity 

by incubating it with 0.77 mM β-mercaptoethanol for ten minutes at 37 oC. Kinetic 

measurements were carried out at pH 4.9 (0.1 M acetate buffer in 25% DMSO) at 25 oC using 

para-nitrophenyl phosphate (pNPP) as substrate at different concentrations (1, 3, 5, 7.5, 10 

and 12.5 mM). The rate of product (p-nitrophenol) formation was measured at λ = 405 nm (ε 

= 343 M-1cm-1) [13]. Enzyme concentration used was 12 nM, while the concentrations for 

tested compounds ranged from 50 µM to 300 µM. The data were analysed by non-linear 

regression using the general inhibition equation (equation 2) and the program WinCurveFit 

(Kevin Raner software). 

 

Equation 2 

In this equation, Kic and Kiuc represent the equilibrium dissociation constants for competitive 

and uncompetitive inhibitor binding, respectively, while Vmax, KM, [S] and [I] represent the 

maximum rate of product formation, the Michaelis constant, substrate concentration and 

inhibitor concentration, respectively. 

4.6. Experimental chemistry 

Light petroleum (LP, b.p. 40-60 °C) was distilled before use. Flash chromatography was 

carried out with Merck Kieselgel 60 as described by Still [58]. NMR experiments were 

recorded on 300, 400 and 500 MHz spectrometers (Bruker, Rheinstetten, Germany). 

Chemical shifts are reported in parts per million (ppm) on a δ scale, relative to the solvent 

peak (CDCl3 δH 7.24, δC 77.0; (CD3)2SO δH 2.49, δC 39.5; MeOD δH 3.30, δC 49.0). Coupling 
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constants (J) are reported in hertz and peak multiplicities described as singlet (s), doublet (d), 

triplet (t), quartet (q), septet (sept), multiplet (m), or broad (br). High resolution electrospray 

ionisation accurate mass measurements were recorded in positive and negative mode on a 

quadrupole – time of flight instrument (Bruker) with an ESI source. Accurate mass 

measurements were carried out with external calibration using sodium formate as reference 

calibrant and/or Agilent tune mix (mw > 500). Low and high resolution electron impact 

ionisation mass measurements were recorded using perfluorokerosene-H as reference 

calibrant. For TLC staining, Ce(SO4)2 and/or KMnO4 were used. Ce(SO4)2 dye ingredients: 

2.5 g phosphomolybdic acid; 1 g ceric sulfate; 100 mL water and 8 mL concentrated sulfuric 

acid. KMnO4 dye ingredients: 3 g potassium permanganate; 20 g potassium carbonate; 5 mL 

5% sodium hydroxide and 300 mL water.   

4.6.1. General method for preparation of 2-alkoxy benzaldehydes (6a-b) [59] 

 

Salicylaldehyde (5) (3.66 g, 3.2 mL, 30 mmol) was added to a suspension of potassium 

carbonate (8.29 g, 60 mmol) in DMF (50 mL). Alkyl halide was then added dropwise and the 

solution was stirred for 36 h under an atmosphere of argon. Water (150 mL) was added and 

the mixture was extracted with diethyl ether (3 x 50 mL). The combined organic layers were 

washed with 2M NaOH (3 x 50 mL), dried over Na2SO4, filtered and evaporated in vacuo to 

afford the 2-alkoxy benzaldehyde 6a-b. 

4.6.1.1. 2-Ethoxybenzaldehyde (6a) [59] 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

22 
 

 

The alkyl halide used was ethyl iodide (1 eq, 4.68 g, 2.4 mL, 30 mmol), which afforded 6a as 

a yellow oil (3.85 g, 86%). Rf : 0.51 (10% EtOAc in LP, UV and KMnO4 dip). 1H NMR (300 

MHz, CDCl3) δ 1.38 (3H, t, J 7.0 Hz), 4.06 (2H, q, J 7.0 Hz), 6.87 – 6.93 (2H, m), 7.43 – 7.47 

(1H, m), 7.71 (1H, dd, J 1.8 Hz, J 7.5 Hz), 10.41 (1H, s); 13C NMR (75 MHz, CDCl3) δ 14.4, 

64.0, 112.4, 120.3, 124.6, 128.0, 135.8, 161.2, 189.8. NMR spectra are in agreement with 

those reported by Leardini [59]. 

 

4.6.1.2. 2-Isopropoxybenzaldehyde (6b) [59] 

 

The alkyl halide used was isopropyl bromide (1.1 eq, 4.06 g, 3.1 mL, 33 mmol), which 

afforded 6b as a yellow oil (4.1 g, 84%). Rf : 0.59 (10% EtOAc in LP, UV and KMnO4 dip). 

1H NMR (400 MHz, CDCl3) δ 1.34 (6H, d, J 6.0 Hz), 4.62 (1H, sept, J 6.0 Hz), 6.90 – 6.95 

(2H, m), 7.43 – 7.48 (1H, m), 7.77 (1H, dd, J 1.9 Hz, J 7.6 Hz), 10.45 (1H, s); 13C NMR (100 

MHz, CDCl3) δ 21.8, 70.9, 113.9, 120.2, 125.6, 128.1, 135.6, 160.5, 190.0. NMR spectra are 

in agreement with those reported by Leardini [59]. 

4.6.2. General method for preparation of 2-alkoxy benzyl alcohols (7a-b)  
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These compounds 7a-b were prepared using the general method described by Zartler and 

Sharpiro [34]. A solution of sodium borohydride (0.37 eq, 28 mg, 0.74 mmol) in 2M NaOH 

(40 µL) diluted with water (360 µL) was added dropwise to a solution of the 2-alkoxy 

benzaldehyde (6a-b) (2 mmol) in methanol (2 mL) at 18 – 25 oC. The reaction mixture was 

stirred for 4 h at room temperature and then evaporated in vacuo. Methanol (2 x 10 mL) was 

added and evaporated in vacuo. HCl (5%, 10 mL) was added to the residue which was 

extracted with diethyl ether (2 x 20 mL). The combined organic layers were dried over 

Na2SO4, filtered and evaporated in vacuo to afford 7a-b. 

4.6.2.1. 2-Ethoxybenzyl alcohol (7a) 

 

The crude product was purified by silica flash column chromatography (10% EtOAc in LP) to 

afford 7a as a colourless oil (224 mg, 74%) Rf : 0.28 (10% EtOAc in LP, UV and KMnO4 

dip). 1H NMR (300 MHz, CDCl3) δ 1.41 (3H, t, J 7.0 Hz), 3.18 (1H, s, OH), 4.02 (2H, q, J 

7.0 Hz),  4.68 (2H, s), 6.83 (1H, d, J 8.2 Hz ), 6.92 (1H, dt, J 0.8 Hz, J 7.4 Hz), 7.21 – 7.32 

(2H, m); 13C NMR (75 MHz, CDCl3) δ 14.5, 61.0, 63.2, 110.7, 120.1, 128.0, 128.2, 129.1, 

156.2. NMR spectra are in agreement with those reported by Wang [60]. 

4.6.2.2. 2-Isopropoxybenzyl alcohol (7b) 
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Colorless oil (282 mg, 85%) Rf : 0.43 (10% EtOAc in LP, UV and KMnO4 dip). 1H NMR 

(500 MHz, CDCl3) δ 1.36 (6H, d, J 6.1 Hz), 2.92 (1H, br s, OH), 4.61 (1H, sept, J 6.2 Hz), 

4.67 (2H, s), 6.89 (1H, d, J 8.3 Hz), 6.92 (1H, dt, J 0.9 Hz, J 7.4 Hz), 7.23 – 7.29 (2H, m) in 

agreement with that reported by Fukatsu et al. [61]; 13C NMR (125 MHz, CDCl3) δ 22.0, 

62.0, 70.0, 112.4, 120.3, 128.5, 128.6, 130.0, 155.6.  

4.6.3. General method for preparation of  2-aryl-1,3-thiazolidine methyl esters (11a-f) 

 

These compounds 11a-f were prepared using the general method described by Gududuru et 

al. [35].  

Thionyl chloride (8.3 mL, 110 mmol) was added dropwise under an atmosphere of argon to a 

solution of L-cysteine (8) (9.00 g, 74 mmol) in 150 mL MeOH. The reaction mixture was 

refluxed for 3 h then evaporated in vacuo, then co-evaporated with toluene (2 x 5 mL) to 

afford the hydrochloride salt of the methyl ester of L-cysteine (9) as white solid. One-sixth of 

this material (9) (12.4 mmol) was dissolved in water/ ethanol (1:1) (15 mL). Sodium 

hydrogen carbonate (1.14 g, 13.6 mmol) was added and, after 10 min, the aromatic aldehyde 

(10a-f) (12.38 mmol) was added and the reaction mixture was stirred for 14 h. The ethanol 

was evaporated in vacuo and the aqueous residue was extracted with DCM (50 mL). The 
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organic layer was washed with water (25 mL), dried over Na2SO4, filtered and evaporated in 

vacuo to afford the crude products 11a-f. 

4.6.3.1. (2R/2S, 4R)-Methyl 2-(p-tolyl)thiazolidine-4-carboxylate (11a) 

 

The crude product was purified by silica flash column chromatography (10% EtOAc in LP) to 

afford a mixture of cis and trans isomers of 11a as a yellow oil (1.90 g, 65%) Rf : 0.31 (20% 

EtOAc in LP, UV and Ce(SO4)2 dip). 1H NMR (300 MHz, CDCl3) δ 2.32 (s) and 2.34 (s) 

integrate for 3H, 2.72 (1H, br s, NH), 3.06 – 3.21 (1H, m), 3.32 – 3.52 (1H, m), 3.77 (s) and 

3.76 (s) integrate for 3H, 3.96 (0.6H, dd, J 7.1 Hz, J 8.9 Hz), 4.21 (0.4H, dd, J 5.7 Hz, J 7.1 

Hz), 5.52 (0.6H, s), 5.77 (0.4H, s), 7.11 – 7.17 (2H, m), 7.35 – 7.42 (2H, m); 13C NMR (75 

MHz, CDCl3) δ 20.8, 20.9, 37.8, 38.9, 52.16, 52.22, 64.1, 65.2, 70.5, 72.2,  126.6, 127.0, 

128.8, 129.0, 134.9, 137.3, 137.8, 138.2, 171.3, 171.9 in agreement with that described by 

Paul and Korytnyk [62]. 

4.6.3.2. (2R/2S, 4R)-Methyl 2-phenylthiazolidine-4-carboxylate (11b) [35] 
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The crude product was purified by silica flash column chromatography (10% EtOAc in LP) to 

afford cis and trans mixture of 11b as a yellow oil (2.055 g, 74%) Rf : 0.31 (20% EtOAc in 

LP, UV and Ce(SO4)2 dip). 1H NMR (300 MHz, CDCl3) δ 2.65 (1H, br s, NH), 3.11 (1H, dd, 

J 9.0 Hz, J 10.2 Hz), 3.20 (0.5H, dd, J 6.0 Hz, J 10.8 Hz), 3.38 (0.5H, t, J 10.5 Hz), 3.41 – 

3.49 (1H, m), 3.79 (1.5H, s), 3.80 (3H, s), 3.99 (1H, dd, J 7.2 Hz, J 9.0 Hz), 4.21 (0.5H, dd, J 

6.0 Hz, J 6.9 Hz), 5.56 (1H, s), 5.82 (0.5H, s), 7.23 – 7.40 (5H, m), 7.47 – 7.52 (3H, m) in 

agreement with that described by Gududuru et al. [35]; 13C NMR (75 MHz, CDCl3) δ 38.0, 

39.1, 52.4, 52.5, 64.2, 65.4, 70.7, 72.5,  126.8, 127.3, 127.8, 128.3, 128.57, 128.60, 138.1, 

141.0, 171.5, 172.1. 

4.6.3.3. (2R/2S, 4R)-Methyl 2-(4-methoxyphenyl)thiazolidine-4-carboxylate (11c) 

 

The crude product was purified by silica flash column chromatography (10-60% EtOAc in 

LP) to afford cis and trans mixture of 11c as a yellow oil (2.525 g, 81%) Rf : 0.19 (20% 

EtOAc in LP, UV and Ce(SO4)2 dip). ESI – MS, m/z: 276 [M + Na]+. HRMS calculated for 

C12H15NNaO3S
+ 276.0665, found 296.0654. 1H NMR (500 MHz, CDCl3) δ 3.08 (dd, J 8.9 

Hz, J 10.3 Hz) and 3.20 (dd, J 5.5 Hz, J 10.7 Hz) integrate for 1H, 3.36 (dd, J 7.1 Hz, J 10.7 

Hz) and 3.43 (dd, J 7.1 Hz, J 10.3 Hz) integrate for 1H, 3.766 (s), 3.770 (s), 3.78 (s) and 3.79 

(s) integrate for 6H (2 x CH3), 3.95 (0.7H, dd, J 7.2 Hz, J 9.0), 4.21 (0.3H, dd, J 5.5 Hz, J 7.2 

Hz), 5.50 (s) and 5.74 (s) integrate for 1H, 6.83 – 6.88 (2H, m), 7.38 – 7.44 (2H, m); 13C 

NMR (125 MHz, CDCl3) δ 38.0, 39.2, 52.5, 52.6, 55.27, 55.29, 64.2, 65.4, 70.6, 72.3, 113.7, 
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114.0, 128.2, 128.7, 130.1, 132.9, 159.3, 159.8, 171.6, 172.3. NMR spectra are in agreement 

with those reported by Anwar and Moloney [63]. 

4.6.3.4. (2R/2S, 4R)-Methyl 2-(4-chlorophenyl)thiazolidine-4-carboxylate (11d) 

 

The crude product was purified by silica flash column chromatography (10-50% EtOAc in 

LP) to afford cis and trans mixture of 11d as a yellow oil (1.80 g, 57%) Rf : 0.31 (20% EtOAc 

in LP, UV and Ce(SO4)2 dip). ESI – MS, m/z: 280 [M + Na]+. HRMS calculated for 

C11H12ClNNaO2S
+ 280.0169, found 280.0171. 1H NMR (300 MHz, CDCl3) δ 2.68 (1H, br s, 

NH), 3.06 – 3.18 (1H, m), 3.35 (dd, J 7.1 Hz, J 10.6 Hz) and 3.44 (dd, J 7.1 Hz, J 10.3 Hz) 

integrate for 1H, 3.78 (s) and 3.79 (s) integrate for 3H, 3.96 (0.6H, dd, J 7.1 Hz, J 8.9), 4.13 

(0.4H, t, J 6.5 Hz), 5.54 (s) and 5.77 (s) integrate for 1H, 7.26 – 7.34 (2H, m), 7.40 – 7.47 

(2H, m); 13C NMR (75 MHz, CDCl3) δ 38.0, 39.1, 52.48, 52.52, 64.0, 65.4, 69.8, 71.7, 128.2, 

128.4, 128.7, 128.8, 133.4, 134.3, 136.7, 139.9, 171.4, 172.0. 

4.6.3.5. (2R/2S, 4R)-Methyl 2-(2-chlorophenyl)thiazolidine-4-carboxylate (11e) 
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The crude product was purified by silica flash column chromatography (10-50% EtOAc in 

LP) to afford cis and trans mixture of 11e as a yellow oil (2.50 g, 79%) Rf : 0.37 (20% EtOAc 

in LP, UV and Ce(SO4)2 dip ESI – MS, m/z: 280 [M + Na]+. HRMS calculated for 

C11H12ClNNaO2S
+ 280.0169, found 280.0174. 1H NMR (300 MHz, CDCl3) δ 2.88 (1H, t, J 

10.4 Hz, NH), 3.03 – 3.14  (1H, m), 3.33 (dd, J 6.5 Hz, J 10.6 Hz) and 3.46 (dd, J 6.9 Hz, J 

10.2 Hz) integrate for 1H, 3.80 (s) and 3.81 (s) integrate for 3H, 3.99 (dd, J 4.0 Hz, J 6.9) and 

4.25 (t, J 6.7 Hz) integrate for 1H, 5.94 (s) and 6.08 (s) integrate for 1H, 7.15 – 7.40 (4H, m), 

7.57 (dd, J 1.7 Hz, J 7.6 Hz) and 7.71 (dd, J 2.1 Hz, J 7.5 Hz) integrate for 1H; 13C NMR (75 

MHz, CDCl3) δ 37.4, 38.9, 52.5, 52.6, 65.4, 68.3, 126.5, 126.8, 127.3, 128.1, 128.5, 129.7, 

129.8, 132.9, 133.7, 135.8, 140.0, 171.5, 172.0.  

4.6.3.6. (2R/2S, 4R)-Methyl 2-(naphth-1-yl)thiazolidine-4-carboxylate (11f) 

 

The crude product was purified by recrystallisation from diethyl ether to afford cis and trans 

mixture of 11f as white needles (1.232 g, 37%) Rf : 0.33 (20% EtOAc in LP, UV and 

Ce(SO4)2 dip). ESI – MS, m/z: 296 [M + Na]+. HRMS calculated for C15H15NNaO2S
+ 

296.0716, found 296.0724. 1H NMR (300 MHz, CDCl3) δ 2.85 (1H, br s, NH), 3.12 (dd, J 9.3 

Hz, J 10.2 Hz) and 3.20 (dd, J 6.3 Hz, J 10.5 Hz) integrate for 1H, 3.39 (dd, J 6.6 Hz, J 10.5 

Hz) and 3.51 (dd, J 7.2 Hz, J 10.5 Hz) integrate for 1H, 3.80 (s) and 3.82 (s) integrate for 3H, 

4.13 (dd, J 7.2 Hz, J 9.3 Hz) and 4.36 (t, J 6.5 Hz) integrate for 1H, 6.30 (s) and 6.49 (s) 

integrate for 1H, 7.40 – 7.58 (3H, m), 7.75 – 7.97 (3H, m), 8.13 (d, J 8.4) and 8.20 (d, J 8.4) 

integrate for 1H; 13C NMR (75 MHz, CDCl3) δ 37.9, 38.7, 52.6, 64.7, 65.6, 67.9, 69.3, 122.5, 
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123.5, 123.6, 123.8, 125.2, 125.3, 125.8, 125.9, 126.3, 126.5, 128.5, 128.7, 128.8, 129.2, 

130.8, 131.4, 133.6, 133.7, 133.9, 136.6, 171.6, 172.3. 

4.6.4. General method for preparation of 2-aryl-1,3-thiazole methyl esters (12a-f) 

 

These compounds 12a-f were prepared using the general method described by Gududuru et 

al. [35]. NBS (2.1 eq, 835 mg, 4.69 mmol) and benzoyl peroxide (0.03 eq, 16.2 mg, 0.067 

mmol) were added to a solution of 11a-f (2.233 mmol) in CCl4 (25 mL). The reaction mixture 

was refluxed for 14 h. The hot mixture was filtered and evaporated in vacuo. The crude 

product was purified by silica flash column chromatography to afford the corresponding 

thiazole derivatives 12a-f.  

4.6.4.1. Methyl 2-p-tolylthiazole-4-carboxylate (12a) 

 

The crude product was purified by silica flash column chromatography (0-10% EtOAc in LP) 

to afford 12a as yellow solid (120 mg, 23%) Rf : 0.23 (10% EtOAc in LP, UV). ESI – MS, 

m/z: 256 [M + Na]+. HRMS calculated for C12H11NNaO2S
+ 256.0403, found 256.0404. 1H 

NMR (300 MHz, CDCl3) δ 2.35 (3H, s), 3.93 (3H, s), 7.19 (2H, d, J 8.0 Hz), 7.84 (2H, d, J 
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8.1 Hz), 8.10 (1H, s); 13C NMR (75 MHz, CDCl3) δ 21.4, 52.4, 126.8, 126.9, 129.6, 130.0, 

141.0, 147.4, 161.9, 169.1. NMR spectra are in agreement with those reported by Wang et al. 

[64]. 

4.6.4.2. Methyl 2-phenylthiazole-4-carboxylate (12b) 

  

The crude product was purified by silica flash column chromatography (0-10% EtOAc in LP) 

to afford 12b as a yellow solid (139 mg, 26%) Rf : 0.23 (10% EtOAc in LP, UV and KMnO4 

dip). 1H NMR (300 MHz, CDCl3) δ 3.93 (3H, s), 7.39 – 7.41 (3H, m), 7.93 – 7.97 (2H, m), 

8.12 (1H, s) in agreement with that described by Dawsey et al. [65]; 13C NMR (75 MHz, 

CDCl3) δ 52.3, 126.8, 127.2, 128.9, 130.6, 132.6, 147.6, 161.8, 168.9. 

4.6.4.3. Methyl 2-(4-methoxyphenyl)thiazole-4-carboxylate (12c) 

 

The crude product was purified by silica flash column chromatography (0-60% EtOAc in LP) 

to afford 12c as yellow solid (93 mg, 17%) Rf : 0.39 (20% EtOAc in LP, UV). ESI – MS, m/z: 

272 [M + Na]+. HRMS calculated for C12H11NNaO3S
+ 272.0352, found 272.0352. 1H NMR 
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(300 MHz, CDCl3) δ 3.82 (3H, s), 3.93 (3H, s), 6.92 (2H, d, J 8.9 Hz), 7.89 (2H, d, J 8.9 Hz), 

8.07 (1H, s); 13C NMR (75 MHz, CDCl3) δ 52.4, 55.4, 114.2, 126.5, 128.5, 131.7, 147.4, 

161.6, 162.0, 168.8. NMR spectra are in agreement with those reported by Dawsey et al. [65]. 

4.6.4.4. Methyl 2-(4-chlorophenyl)thiazole-4-carboxylate (12d) 

 

The crude product was purified by silica flash column chromatography (0-10% EtOAc in LP) 

to afford 12d as yellow solid (108 mg, 19%) Rf : 0.48 (20% EtOAc in LP, UV and KMnO4 

dip). ESI – MS, m/z: 276 [M + Na]+. HRMS calculated for C11H8ClNNaO2S
+ 275.9856, 

found 275.9860. 1H NMR (300 MHz, CDCl3) δ 3.93 (3H, s), 7.37 (2H, d, J 8.4 Hz), 7.88 (2H, 

d, J 8.5 Hz), 8.13 (1H, s); 13C NMR (75 MHz, CDCl3) δ 52.4, 127.4, 128.1, 129.2, 131.1, 

136.7, 147.7, 161.7, 167.5. 

4.6.4.5. Methyl 2-(2-chlorophenyl)thiazole-4-carboxylate (12e) 

 

The crude product was purified by silica flash column chromatography (0-10% EtOAc in LP) 

to afford 12e as yellow solid (181 mg, 32%) Rf : 0.48 (20% EtOAc in LP, UV and KMnO4 
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dip). ESI – MS, m/z: 276 [M + Na]+. HRMS calculated for C11H8ClNNaO2S
+ 275.9856, 

found 275.9859. 1H NMR (300 MHz, CDCl3) δ 3.90 (3H, s), 7.27 – 7.32 (2H, m), 7.39 – 7.42 

(1H, m), 8.18 – 8.22 (1H, m), 8.23 (1H, s); 13C NMR (75 MHz, CDCl3) δ 52.3, 127.0, 128.6, 

130.3, 130.8, 130.9, 131.2, 131.8, 146.1, 161.7, 164.0 

4.6.4.6. Methyl 2-(naphth-1-yl)thiazole-4-carboxylate (12f) 

 

The crude product was purified by silica flash column chromatography (0-10% EtOAc in LP) 

to afford 12f as viscous yellow oil (95 mg, 16%) Rf : 0.42 (20% EtOAc in LP, UV and 

KMnO4 dip). ESI – MS, m/z: 292 [M + Na]+. HRMS calculated for C15H11NNaO2S
+ 

292.0403, found 292.0410. 1H NMR (300 MHz, CDCl3) δ 3.98 (3H, s), 7.47 – 7.63 (3H, m), 

7.78 (1H, dd, J 1.2 Hz, J 7.2 Hz), 7.87 – 7.96 (2H, m), 8.30 (1H, s), 8.65 – 8.69 (1H, m); 13C 

NMR (75 MHz, CDCl3) δ 52.4, 124.9, 125.5, 126.5, 127.7, 128.2, 128.3, 128.8, 130.0, 130.5, 

131.0, 133.8, 147.5, 162.0, 168.1. NMR spectra are in agreement with those reported by Liu 

et al. [66]. 

4.6.5. General method for preparation of 2-aryl-1,3-thiazole-4-carboxylic acids (4a-f) 
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These compounds 4a-f were prepared using the general method described by Gududuru et al. 

[35]. Sodium hydroxide solution (1M, 2.5 mL) was added to a solution of (12a-f), 40-175 mg, 

in methanol (2.5 mL) at 0 oC. The solution was stirred for 2 h, and then the methanol was 

evaporated in vacuo. The solution was acidified with conc HCl and extracted with EtOAc (3 x 

50 mL). The combined organic layers were washed with water (50 mL) and brine (50 mL), 

then dried over Na2SO4, filtered and evaporated in vacuo to afford the corresponding 

carboxylic acid derivatives 4a-f. 

 

 

 

 

4.6.5.1. 2-(p-Tolyl)thiazole-4-carboxylic acid (4a) 

 

4a was obtained as a white solid (39 mg, 98%) Rf : 0.12 (30% EtOAc in LP and 2 drops 

AcOH, UV and KMnO4 dip). 1H NMR (400 MHz, MeOD) δ 2.36 (3H, s), 7.26 (2H, d, J 7.6 

Hz), 7.84 (2H, d, J 8.0 Hz), 8.27 (1H, s)  in agreement with that reported by Aliabadi et al. 

[67]; 13C NMR (100 MHz, MeOD) δ 21.4, 127.8, 128.5, 130.8, 131.4, 142.6, 149.2, 164.2, 

170.6.  

4.6.5.2. 2-Phenylthiazole-4-carboxylic acid (4b) 
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4b was obtained as a white solid (77 mg, 80%) Rf : 0.10 (30% EtOAc in LP and 2 drops 

AcOH, UV and KMnO4 dip). 1H NMR (300 MHz, MeOD) δ 7.44 – 7.46 (3H, m), 7.95 – 7.98 

(2H, m), 8.31 (1H, s) in agreement with that described by Zhao et al. [68]; 13C NMR (75 

MHz, MeOD) δ 127.8, 129.0, 130.2, 131.9, 134.0, 149.3, 164.1, 170.4. 

 

 

 

4.6.5.3. 2-(4-Methoxyphenyl)thiazole-4-carboxylic acid (4c) [69] 

 

4c was obtained as a yellow solid (58 mg, 84%). 1H NMR (400 MHz, DMSO-d6) δ 3.82 (3H, 

s), 7.06 (2H, d, J 8.9 Hz), 7.90 (2H, d, J 8.9 Hz), 8.40 (1H, s); 13C NMR (100 MHz, DMSO-

d6) δ 55.4, 114.6, 127.8, 128.0, 130.4, 147.8, 161.2, 162.0, 167.3. 

4.6.5.4. 2-(4-Chlorophenyl)thiazole-4-carboxylic acid (4d) 
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4d was obtained as a white solid (101 mg, 100%). 1H NMR (400 MHz, DMSO-d6) δ 7.58 

(2H, d, J 8.5 Hz), 7.98 (2H, d, J 8.5 Hz), 8.51 (1H, s); 13C NMR (100 MHz, DMSO-d6) δ 

128.1, 129.2, 129.4, 131.3, 135.3, 148.2, 161.9, 166.1. NMR spectra are in agreement with 

those reported by Ma et al. [70]. 

 

 

 

4.6.5.5. 2-(2-Chlorophenyl)thiazole-4-carboxylic acid (4e) 

 

4e was obtained as a white solid (165 mg, 100%). 1H NMR (400 MHz, DMSO-d6) δ 7.50 – 

7.57 (2H, m), 7.64 – 7.68 (1H, m), 8.16 – 8.20 (1H, m), 8.63 (1H, s) in agreement with that 

described by Carpenter et al. [71]; 13C NMR (100 MHz, DMSO-d6) δ 127.9, 130.1, 130.7, 

130.89, 130.90, 131.7, 147.0, 162.0, 162.7, 162.9. 

4.6.5.6. 2-(Naphth-1-yl)thiazole-4-carboxylic acid (4f) 
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4f was obtained as a white solid (88 mg, 100%). 1H NMR (400 MHz, DMSO-d6) δ 7.60 – 

7.68 (3H, m), 7.94 (1H, dd, J 1.2 Hz, J 7.2 Hz), 8.04 (1H, dd, J 1.7 Hz, J 7.7 Hz), 8.11 (1H, d, 

J 8.4 Hz), 8.63 (1H, s), 8.83 (1H, dd, J 0.9 Hz, J 8.1 Hz) in agreement with that described by 

Carpenter et al. [71]; 13C NMR (100 MHz, DMSO-d6) δ 125.3, 125.4, 126.7, 127.7, 128.5, 

128.9, 129.3, 129.45, 129.47, 131.0, 133.6, 148.1, 162.2, 166.9. 

4.6.6. Synthesis of ethyl 2-(2-formylphenoxy)acetate (13) [36] 

 

Salicylaldehyde (5) (2.50 g, 2.18 mL, 21 mmol) was added to a suspension of potassium 

carbonate (3.06 g, 22 mmol) in acetone (75 mL). The mixture was stirred for 5 min at room 

temperature under an argon atmosphere. Ethyl 2-bromoacetate (3.75 g, 2.49 mL, 23 mmol) 

was added to the reaction mixture and the mixture was refluxed for 4 h. After cooling, the 

reaction mixture was filtered and the residue was washed with acetone. The filtrate was 

evaporated in vacuo and the residue was dried under high vacuum to remove any traces of 

salicylaldehyde to give compound 13 (3.66 g, 86%) Rf : 0.21 (10% EtOAc in LP, UV and 

KMnO4 dip). 1H NMR (300 MHz, CDCl3) δ 1.25 (3H, t, J 7.2 Hz), 4.23 (2H, q, J 7.1 Hz), 

4.72 (2H, s), 6.83 (1H, d, J 8.4 Hz), 7.01 – 7.07 (1H, m), 7.46 – 7.52 (1H, m), 7.82 (1H, dd, J 

1.8 Hz, J 7.7 Hz), 10.53 (1H, s); 13C NMR (75 MHz, CDCl3) δ 14.0, 61.5, 65.6, 112.6, 121.8, 

125.4, 128.5, 135.7, 160.1, 168.1, 189.5. 
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4.6.7. Synthesis of ethyl 2-(1-formylnaphth-2-yloxy)acetate (15)  

 

2-Hydroxynaphthaldehyde (14) (5.17 g, 30 mmol) was added to a suspension of potassium 

carbonate (4.56 g, 33 mmol) in acetone (115 mL). The mixture was stirred for 5 min at room 

temperature under an argon atmosphere. Ethyl 2-bromoacetate (5.51 g, 3.66 mL, 33 mmol) 

was added to the reaction mixture and the mixture was refluxed for 4 h. After cooling, the 

reaction mixture was filtered and the residue was washed with acetone. The filtrate was 

evaporated in vacuo to give the crude product as a light brown solid. The crude product was 

recrystallised from ethanol to give compound 15 as beige solid (3.72 g, 48%) Rf : 0.19 (10% 

EtOAc in LP, UV and KMnO4 dip). ESI – MS, m/z: 281 [M + Na]+. HRMS calculated for 

C15H14NaO4
+ 281.0784, found 281.0789. 1H NMR (300 MHz, CDCl3) δ 1.27 (3H, t, J 7.1 Hz), 

4.26 (2H, q, J 7.1 Hz), 4.85 (2H, s), 7.10 (1H, d, J 9.1 Hz), 7.39 – 7.45 (1H, m), 7.58 – 7.64 

(1H, m), 7.75 (1H, dt, J 0.7 Hz, J 1.3 Hz, J 8.1 Hz), 8.01 (1H, d, J 9.1 Hz), 9.24 – 9.28 (1H, 

m) in agreement with that described by Yeap et al. [72]; 13C NMR (75 MHz, CDCl3) δ 14.1, 

61.7, 66.4, 113.2, 117.7, 125.14, 125.19, 128.2, 129.1, 129.9, 131.4, 137.3, 162.0, 168.2, 

192.1. 

4.6.8. Synthesis of  (2R/2S, 4R)-methyl 2-(2-(2-ethoxy-2-oxoethoxy)phenyl)thiazolidine-4-

carboxylate (11g) 
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L-Cysteine (9) was dissolved in ethanol:water (1:1) (15 mL). Sodium bicarbonate (1.14 g, 

13.61 mmol) was added, and after 10 min, the aromatic aldehyde 13 (2.58 g, 12.38 mmol) 

was added and stirred for 14 h. Ethanol was evaporated in vacuo and DCM (50 mL) was 

added and washed with water (25 mL), dried over Na2SO4, filtered and evaporated in vacuo to 

afford the crude product of 11g. The crude product was purified by silica flash column 

chromatography (10-60% EtOAc in LP) to afford cis and trans mixture of 11g as a brown 

solid (484 mg, 12%) Rf : 0.28 (30% EtOAc in LP, UV and KMnO4 dip). ESI – MS, m/z: 348 

[M + Na]+. HRMS calculated for C15H19NNaO5S
+ 348.0876, found 348.0881. 1H NMR (400 

MHz, CDCl3) δ 1.12 – 1.20  (3H, m), 2.99 – 3.07 (1H, m), 3.21 – 3.34 (1H, m), 3.67 – 3.68 

(3H, m), 3.85 (0.5H, t, J 15.6 Hz), 4.10 – 4.17 (2H, m), 4.23 – 4.26 (0.5H, m), 4.55 – 4.57 

(2H, m), 5.78 (0.5H, s), 5.94 (0.5H, s), 6.68 (1H, dd, J 8.3 Hz, J 18.2 Hz), 6.83 – 6.92 (1H, 

m), 7.08 – 7.18 (1H, m), 7.33 (0.5H, d, J 7.6 Hz), 7.39 (0.5H, d, J 7.6 Hz); 13C NMR (100 

MHz, CDCl3) δ 13.76, 13.78, 37.3, 38.4, 52.01, 52.04, 60.9, 64.8, 65.3, 65.4, 65.6, 66.5, 67.4, 

111.7, 112.0, 121.2, 121.5, 126.6, 126.7, 128.1, 128.4, 129.3, 129.8, 154.9, 155.3, 168.0, 

168.2, 171.1, 171.8. 

4.6.9. Synthesis of (2R/2S, 4R)-methyl 2-(2-(2-ethoxy-2-oxoethoxy)naphth-1-

yl)thiazolidine-4-carboxylate (11h) 
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L-Cysteine (9) was dissolved in ethanol : water (1:1) (15 mL). Sodium bicarbonate (1.32 g, 

15.69 mmol) was added, and after 10 min, the aromatic aldehyde 15 (3.68 g, 14.26 mmol) 

was added to form a white precipitate immediately. The reaction mixture was filtered using 

ethanol : water (1:1). The residue was taken up with DCM (100 mL) and washed with water 

(25 mL), dried over Na2SO4, filtered and evaporated in vacuo to afford the crude product of 

11h. The crude product was purified by suspending it in ether (100 mL), filter and the residue 

was washed thoroughly with ether to afford a mixture of cis and trans 11h as a white solid 

(4.12 g, 77%) Rf : 0.29 (30% EtOAc in LP, UV and KMnO4 dip). ESI – MS, m/z: 398 [M + 

Na]+. HRMS calculated for C19H21NNaO5S
+ 398.1033, found 398.1043. 1H NMR (500 MHz, 

CDCl3) δ 1.26 – 1.32 (3H, m), 3.27 (1H, t, J 10.0 Hz), 3.51 – 3.55 (1H, m), 3.59 (0.4H, dd, J 

2.0 Hz, J 10.5 Hz), 3.81 (s) and 3.82 (s) integrate for (3H), 4.01 – 4.04 (0.6H, m), 4.25 – 4.29 

(2H, m), 4.72 – 4.85 (2H, m), 6.53 (s) and 6.59 (s) integrate for (1H), 7.13 (1H, dd, J 9.0 Hz, 

J 16.5 Hz), 7.37 – 7.39 (1H, m), 7.49 – 7.53 (1H, m), 7.75 – 7.81 (2H, m), 8.10 (1H, dd, J 3.0 

Hz, J 8.5 Hz); 13C NMR (125 MHz, CDCl3) δ 14.15,  14.18, 38.5, 39.2, 52.41, 52.43, 61.5, 

61.6, 65.6, 66.0, 66.2, 66.6, 66.8, 66.9, 114.7, 114.9, 118.7, 119.1, 122.6, 122.9, 124.3, 124.4, 

127.3, 127.4, 128.5, 128.8, 129.8, 130.5, 130.7, 132.3, 132.5, 154.1, 154.3, 168.3, 168.6, 

171.3, 172.7. 

4.6.10. Synthesis of methyl 2-(2-(2-ethoxy-2-oxoethoxy)phenyl)thiazole-4-carboxylate 

(12g) 
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This compound 12g was prepared using the general method described by Gududuru et al. 

[35]. NBS (2.1 eq, 556 mg, 3.12 mmol) and benzoyl peroxide (0.03 eq, 11 mg, 0.045 mmol) 

were added to a solution of 11g (483 mg, 1.49 mmol) in CCl4 (15 mL). The reaction mixture 

was refluxed for 14 h. The hot mixture was filtered and evaporated in vacuo. The crude 

product was purified by silica flash column chromatography (10-60% EtOAc in LP) to afford 

the corresponding thiazole derivative 12g as a brown solid (80 mg, 17%) Rf : 0.37 (30% 

EtOAc in LP, UV and KMnO4 dip). ESI – MS, m/z: 344 [M + Na]+. HRMS calculated for 

C15H15NNaO5S
+ 344.0563, found 344.0565. 1H NMR (400 MHz, CDCl3) δ 1.24 (3H, t, J 7.1 

Hz), 3.92 (3H, s), 4.24 (2H, q, J 7.1 Hz), 4.78 (2H, s), 6.86 (1H, dd, J 0.9 Hz, J 8.5 Hz), 7.06 

– 7.10 (1H, m), 7.31 – 7.35 (1H, m), 8.20 (1H, s), 8.47 (1H, dd, J 1.7 Hz, J 7.9 Hz); 13C NMR 

(100 MHz, CDCl3) δ 14.0, 52.2, 61.5, 65.6, 111.8, 121.9, 122.0, 128.5, 129.4, 131.2, 145.6, 

154.6, 162.2, 162.8, 167.8. 

 

 

 

4.6.11. Synthesis of methyl 2-(2-(2-ethoxy-2-oxoethoxy)naphth-1-yl)thiazole-4-

carboxylate (12h) 
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This compound 12h was prepared using the general method described by Gududuru et al. 

[35]. NBS (2.1 eq, 2.78 g, 15.60 mmol) and benzoyl peroxide (0.03 eq, 55 mg, 0.23 mmol) 

were added to a solution of 11h (2.81 g, 7.50 mmol) in CCl4 (75 mL) and the reaction mixture 

was refluxed for 14 h. The hot mixture was filtered and evaporated in vacuo. The crude 

product was purified by silica flash column chromatography (10-60% EtOAc in LP) to afford 

the corresponding thiazole derivative 12h as a brown solid (211 mg, 8%) Rf : 0.34 (30% 

EtOAc in LP, UV and KMnO4 dip). ESI – MS, m/z: 394 [M + Na]+. HRMS calculated for 

C19H17NNaO5S
+ 394.0720, found 394.0727.1H NMR (300 MHz, CDCl3) δ 1.19 (3H, t, J 7.1 

Hz), 3.92 (3H, s), 4.16 (2H, q, J 7.1 Hz), 4.68 (2H, s), 7.14 (1H, d, J 9.1 Hz), 7.31 – 7.37 (1H, 

m), 7.40 – 7.47 (1H, m), 7.74 (1H, d, J 8.7 Hz), 7.86 (1H, d, J 9.0 Hz), 7.96 (1H, d, J 8.6 Hz), 

8.40 (1H, s); 13C NMR (75 MHz, CDCl3) δ 13.9, 52.2, 61.2, 66.3, 113.2, 116.5, 124.5, 124.7, 

127.8, 129.2, 129.4, 132.1, 132.9, 146.3, 153.7, 162.0, 162.9, 168.3. 

4.6.12. Synthesis of 2-(2-(carboxymethoxy)phenyl)thiazole-4-carboxylic acid (4g) 

 

This compound 4g was prepared using the general method described by Gududuru et al. [35]. 

Sodium hydroxide solution (1 M, 3 mL) was added to a solution of the thiazole methyl ester 
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derivative 12g (80 mg, 0.25 mmol) in methanol (6 mL). The solution was stirred for 4 h, and 

then methanol was evaporated in vacuo. The solution was acidified with conc HCl and 

extracted with EtOAc (3 x 50 mL). The combined organic layer was washed with brine (50 

mL), water (50 mL), dried over Na2SO4, and evaporated in vacuo to afford the corresponding 

carboxylic acid derivative 4g as a brown solid (51 mg, 73%). ESI – MS, m/z: 300 [M + Na - 

2H]-. HRMS calculated for C12H7NNaO5S
- 299.9948, found 299.9956. 1H NMR (500 MHz, 

DMSO) δ 4.99 (2H, s), 7.15 (2H, dd, J 8.9 Hz, J 17.6Hz), 7.45 (1H, dt, J 1.7 Hz, J 8.7 Hz, J 

9.7 Hz), 8.29 (1H, dd, J 1.7 Hz, J 7.9 Hz), 8.51 (1H, s); 13C NMR (125 MHz, DMSO) δ 65.1, 

113.0, 121.2, 121.5, 128.0, 129.5, 131.5, 146.2, 154.8, 161.7, 162.4, 169.6. 

4.6.13. Synthesis of 2-(2-(carboxymethoxy)naphth-1-yl)thiazole-4-carboxylic acid (4h) 

 

4h was prepared using the general method described by Gududuru et al. [35]. Sodium 

hydroxide solution (1 M, 6 mL) was added to a solution of the thiazole methyl ester derivative 

12h (143 mg, 0.39 mmol) in methanol (6 mL). The solution was stirred for 4 h, and then 

methanol evaporated in vacuo. The solution was acidified with conc HCl and extracted with 

EtOAc (3 x 50 mL). The combined organic layers were washed with brine (50 mL) and water 

(50 mL), the dried over Na2SO4, filtered and evaporated in vacuo to afford the corresponding 

carboxylic acid derivative 4h as a yellow solid (101 mg, 80%). ESI – MS, m/z: 350 [M + Na - 

2H]-. HRMS calculated for C16H9NNaO5S
- 350.0105, found 350.0102. 1H NMR (500 MHz, 

DMSO) δ 4.97 (2H, s), 7.42 – 7.45 (1H, m), 7.48 – 7.53 (2H, m), 7.94 (1H, d, J 7.6 Hz), 8.07 
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– 8.10 (2H, m), 8.68 (1H, s); 13C NMR (125 MHz, DMSO) δ 65.2, 113.9, 115.0, 124.3, 124.4, 

127.9, 128.2, 128.7, 130.4, 132.1, 146.8, 154.0, 162.0, 162.4, 170.0. 

4.6.14. General method for preparation of 2-aryl-1,3-thiazolidine-4-carboxylic acids 

(16a-c and 16f-j) 

 

16a-c and 16f-j were prepared using the general method described by Gududuru et al. [35]. A 

mixture of L-cysteine (8) (0.5 g, 4.12 mmol) and appropriate aryl aldehyde (10a-c and 10f-j) 

(4.12 mmol) in ethanol (15 mL) was stirred at room temperature for 5 h, and the solid 

separated was collected by filtration, washed with diethyl ether and dried to afford 16a-c and 

16f-j.  

4.6.14.1. (2R/2S, 4R)-2-(p-tolyl)thiazolidine-4-carboxylic acid (16a) [35]  

 

16a was obtained as a white solid (582 mg, 63%). 1H NMR (400 MHz, DMSO-d6) δ 2.27 (s) 

and 2.29 (s) integrate for 3H, 2.79 (0.3H, dd, J 6.5 Hz, J 14.0 Hz), 2.89 (0.4H, dd, J 4.2 Hz, J 

14.0 Hz), 3.05 (0.6H, dd, J 8.7 Hz, J 10.0 Hz), 3.12 (0.7H, dd, J 4.5 Hz, J 10.3 Hz), 3.27 

(0.7H, dd, J 7.2 Hz, J 10.2 Hz), 3.35 (0.7H, dd, J 7.2 Hz, J 10.1 Hz), 3.44 (0.4H, dd, J 4.2 Hz, 
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J 6.4 Hz), 3.85 (0.6H, dd, J 7.1 Hz, J 8.6 Hz), 4.21 (0.6H, dd, J 4.5 Hz, J 7.1 Hz), 5.45 (0.5H, 

s), 5.62 (0.6H, s), 7.12 (1H, d, J 7.8 Hz), 7.16 (1H, d, J 7.8 Hz), 7.30 (1H, d, J 8.1 Hz), 7.37 

(1H, d, J 8.1 Hz) in agreement with that described by [35]; 13C NMR (100 MHz, DMSO-d6) δ 

20.6, 20.7, 37.9, 38.5, 64.9, 65.5, 71.0, 71.7, 126.8, 127.1, 128.7, 129.0, 135.9, 136.7, 137.6, 

138.1, 172.3, 173.0. 

4.6.14.2. (2R/2S, 4R)-2-phenylthiazolidine-4-carboxylic acid (16b) [35]  

 

16b was obtained as a white solid (570 mg, 66%). 1H NMR (400 MHz, DMSO-d6) δ 3.05 – 

3.14 (1H, m), 3.27 – 3.39 (1H, m), 3.87 – 3.91 (0.4H, m), 4.21 (0.5H, m), 5.49 (0.4H, s), 5.67 

(0.5H, s), 7.26 – 7.51 (5H, m) in agreement with that described in the literature [35]; 13C 

NMR (100 MHz, DMSO-d6) δ 38.0, 38.5, 64.9, 65.5, 71.0, 71.8, 126.9, 127.2, 127.5, 128.18, 

128.24, 128.4, 138.9, 141.3, 172.3, 172.9. 

4.6.14.3. (2R/2S, 4R)-2-(4-methoxyphenyl)thiazolidine-4-carboxylic acid (16c) [35]  

 

16c was obtained as a white solid (516 mg, 52%). 1H NMR (400 MHz, DMSO-d6) δ 2.79 

(0.6H, dd, J 6.5 Hz, J 14.0 Hz), 2.89 (0.6H, dd, J 4.2 Hz, J 14.0 Hz), 3.04 (0.8H, dd, J 8.7 Hz, 
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J 10.0 Hz), 3.13 (0.8H, dd, J 4.2 Hz, J 10.3 Hz), 3.27 (1H, dd, J 7.2 Hz, J 10.2 Hz), 3.35 (1H, 

dd, J 7.2 Hz, J 10.1 Hz), 3.43 (1H, dd, J 4.1 Hz, J 6.4 Hz), 3.73 (s) and 3.74 (s) integrate for 

3H, 3.84 (0.8H, dd, J 7.2 Hz, J 8.7 Hz), 4.22 (0.7H, dd, J 4.2 Hz, J 7.1 Hz), 5.44 (0.5H, s), 

5.59 (0.5H, s), 6.87 (1H, d, J 8.7 Hz), 6.91 (1H, d, J 8.7 Hz), 7.35 (1H, d, J 8.7 Hz), 7.42 (1H, 

d, J 8.7 Hz) in agreement with that described in the literature [35]; 13C NMR (100 MHz, 

DMSO-d6) δ 37.9, 38.6, 55.09, 55.14, 64.8, 65.5, 71.0, 71.6, 113.6, 113.8, 128.3, 128.6, 

130.7, 132.8, 158.7, 159.2, 172.3, 173.1. 

4.6.14.4. (2R/2S, 4R)-2-(naphth-1-yl)thiazolidine-4-carboxylic acid (16f)  

 

16f was obtained as a white solid (728 mg, 68%). 1H NMR (400 MHz, DMSO-d6) δ 2.82 

(0.7H, dd, J 6.4 Hz, J 14.0 Hz), 2.91 (0.8H, dd, J 4.0 Hz, J 14.0 Hz), 3.06 – 3.12 (2H, m), 

3.32 (2H, dd, J 6.8 Hz, J 10.0 Hz), 3.44 - 3.48 (2H, m), 4.07 (1H, dd, J 7.2 Hz, J 8.8 Hz), 4.26 

(1H, t, J 6.4 Hz), 6.27 (0.5H, s), 6.44 (1H, s), 7.47 – 7.61 (5H, m), 7.74 (1H, d, J 7.2 Hz), 7.84 

– 7.98 (4H, m), 8.08 (1H, d, J 8.4 Hz), 8.19 (0.5H, d, J 8.3 Hz); 13C NMR (100 MHz, DMSO-

d6) δ 37.8, 38.1, 55.8, 65.1, 65.4, 68.0, 68.3, 122.3, 123.3, 123.5, 123.6, 125.3, 125.5, 125.7, 

125.9, 126.1, 126.3, 127.7, 128.4, 128.6, 130.4, 130.7, 133.2, 133.3, 134.6, 137.2, 172.4, 

173.0. NMR spectra are in agreement with those reported by Schneider et al.  [73]. 

 

4.6.14.5. (2R/2S, 4R)-2-(2-hydroxynaphth-1-yl)thiazolidine-4-carboxylic acid (16g)  
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OH

 

16g was obtained as a yellow solid (793 mg, 70%). 1H NMR (500 MHz, DMSO-d6) δ 2.76 

(1H, dd, J 6.6 Hz, J 13.9 Hz), 2.87 (1H, dd, J 4.2 Hz, J 14.1 Hz), 3.11 (1H, t, J 9.2 Hz), 3.22 

(1H, dd, J 4.3 Hz, J 10.7 Hz), 3.36 (2H, dd, J 4.2 Hz, J 6.7 Hz), 3.40 - 3.44 (2H, m), 3.98 

(0.5H, t, J 7.6 Hz), 4.43 (0.3H, t, J 5.3 Hz), 6.34 (0.5H, s), 6.47 (0.3H, s), 7.03 (1H, dd, J 8.8 

Hz, J 39.2 Hz), 7.28 (1H, t, J 7.3 Hz), 7.45 (1H, t, J 7.6 Hz), 7.69 – 7.79 (2H, m), 7.91 (0.5H, 

d, J 8.6 Hz); 13C NMR (125 MHz, DMSO-d6) δ 26.3, 40.7, 56.4, 74.3, 120.1, 122.1, 127.2, 

168.4.  

4.6.14.6. (2R/2S, 4R)-2-(4-hydroxyphenyl)thiazolidine-4-carboxylic acid (16h)  

 

16h was obtained as a white solid (592 mg, 64%). 1H NMR (400 MHz, DMSO-d6) δ 2.82 

(0.3H, dd, J 6.4 Hz, J 14.1 Hz), 2.90 (0.3H, dd, J 4.2 Hz, J 14.1 Hz), 3.03 (0.6H, dd, J 8.7 Hz, 

J 10.0 Hz), 3.13 (0.6H, dd, J 4.0 Hz, J 10.2 Hz), 3.26 (0.6H, dd, J 7.3 Hz, J 10.3 Hz), 3.34 

(0.6H, dd, J 7.2 Hz, J 10.1 Hz), 3.50 (0.3H, dd, J 4.2 Hz, J 6.3 Hz), 3.81 (0.8H, dd, J 7.3 Hz, 

J 8.6 Hz), 4.23 (0.5H, dd, J 4.0 Hz, J 7.2 Hz), 5.39 (0.5H, s), 5.53 (0.5H, s), 6.69 (1H, d, J 8.6 

Hz), 6.73 (1H, d, J 8.5 Hz), 7.23 (1H, d, J 8.6 Hz), 7.29 (1H, d, J 8.5 Hz) in agreement with 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

47 
 

that described by Song et al. [74]; 13C NMR (100 MHz, DMSO-d6) δ 37.8, 38.6, 64.8, 65.4, 

71.3, 71.9, 114.9, 115.2, 128.3, 128.5, 128.8, 130.8, 156.9, 157.4, 172.4, 173.2. 

4.6.14.7. (2R/2S, 4R)-2-(2-hydroxyphenyl)thiazolidine-4-carboxylic acid (16i)  

 

16i was obtained as a white solid (865 mg, 93%). 1H NMR (400 MHz, DMSO-d6) δ 2.96 

(1H, dd, J 9.1 Hz, J 9.9 Hz), 3.01 (1H, dd, J 5.3 Hz, J 10.2 Hz), 3.19 (1H, dd, J 6.8 Hz, J 10.1 

Hz), 3.33 (1H, dd, J 6.9 Hz, J 10.0 Hz), 3.82 (1H, dd, J 7.0 Hz, J 9.0 Hz), 4.20 (1H, dd, J 5.4 

Hz, J 6.6 Hz), 5.64 (1H, s), 5.83 (1H, s), 6.73 – 6.82 (4H, m), 7.03 – 7.07 (1H, m), 7.10 – 7.14 

(1H, m), 7.28 (1H, dd, J 1.6 Hz, J 7.5 Hz), 7.33 (1H, dd, J 1.6 Hz, J 7.6 Hz); 13C NMR (100 

MHz, DMSO-d6) δ 37.1, 38.2, 64.8, 65.2, 65.6, 67.7, 115.1, 115.7, 118.7, 119.0, 124.2, 

126.1, 127.6, 127.9, 128.1, 129.0, 154.6, 155.2, 172.5, 172.9. NMR spectra are in agreement 

with those reported by Jagtap et al. [75]. 

4.6.14.8. (2R/2S, 4R)-2-(furan-2-yl)thiazolidine-4-carboxylic acid (16j)  

 

16j was obtained as a very light brown solid (541 mg, 66%). 1H NMR (400 MHz, DMSO-d6) 

δ 2.96 – 3.00 (1.6H, m), 3.28 (1H, dd, J 6.8 Hz, J 10.1 Hz), 3.34 (0.6H, dd, J 7.0 Hz, J 10.0 
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Hz), 3.85 (0.7H, dd, J 7.0 Hz, J 8.9 Hz), 4.10 (1H, t, J 6.4 Hz), 5.59 (0.6H, s), 5.74 (1H, s), 

6.33 – 6.34 (1H, m), 6.37 (1H, dd, J 1.9 Hz, J 3.2 Hz), 6.43 (0.5H, dd, J 1.8 Hz, J 3.3 Hz), 

6.49 (0.5H, d, J 3.4 Hz), 7.57 (1H, dd, J 0.9 Hz, J 1.9 Hz), 7.64 (0.5H, dd, J 0.8 Hz, J 1.9 Hz); 

13C NMR (100 MHz, DMSO-d6) δ 37.8, 38.0, 63.9, 64.2, 64.7, 65.2, 106.3, 107.5, 110.3, 

110.6, 142.5, 142.9, 151.3, 154.4, 172.1, 172.5. NMR spectra are in agreement with those 

described by Braga et al. [76]. 
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• A lead inhibitor against Purple acid phosphatase has been further developed. 
• Compounds are active against both pig and red kidney bean Purple acid phosphatases. 
• A crystal structure of an inhibitor in complex with the red kidney bean enzyme (2.40 

Å) is reported. 


