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Abstract 

In this work, we report the soft-templated preparation of mesoporous nickel oxide using an asymmetric 

poly(styrene-block-acrylic acid-block-ethylene glycol) (PS-b-PAA-b-PEG) triblock copolymer. This block 

copolymer forms a micelle consisting of a PS core, a PAA shell and a PEG corona in aqueous solutions, 

which can serve as a soft template. Specifically, the PS block forms the core of the micelles on the basis of 

its lower solubility in water. The anionic PAA block interacts with the cationic Ni2+ ions present in the 

solution to generate the shell. The PEG block forms the corona of the micelles and stabilizes the micelles by 

preventing secondary aggregation through steric repulsion between the PEG chains. In terms of textural 

characteristics, the as-synthesized mesoporous NiO exhibits a large average pore size of 35 nm with large 

specific surface area and pore volume of 97.0 m2 g-1 and 0.411 cm3 g-1, respectively. It is expected that the 

proposed soft-templated strategy can be expanded to other metal oxides/sulfides in the future for potential 

applications in gas sensors, catalysis, energy storage and conversion, optoelectronics, and biomedical 

applications. 
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1. Introduction 

Over the past decades, porous materials have gained significant interests for various applications, such as 

energy storage and conversion, sensors, catalysis, biomedical and optoelectronics due to their high surface 

area, large pore volume and porosity, tunable pore size, etc.[1,2] Among various types of porous materials, 

mesoporous materials (materials with pore sizes between 2-50 nm) have attracted the most attention owing 

to their uniform pore size, rich surface chemistry, controllable wall composition, and modifiable surface 

properties.[3,4] In particular, mesoporous transition metal oxides are highly attractive for a wide range of 

applications, including chemical, environmental/energy, optics, electronics, medical, and biotechnological 

applications.[5-7] 

In general, mesoporous transition metal oxides are synthesized by using two approaches: hard and 

soft-templating methods.[8] In hard-templating method, suitable metal precursors are firstly introduced into 

the pores of mesoporous templates and subsequent heating results in the desired crystalline metal oxides and 

selective removal of the template generates the mesoporous metal oxide replica.[9] The pore size, wall 

thickness, and topological structure of the resulting mesoporous metal oxide replica could be controlled to 

some extent by correspondingly changing those of their templates. To date, many different mesoporous 

metal oxides (including transition metal oxides) have been reported using the hard-templating (nanocasting) 

method, including TiO2,
[10] MnO2,

[11,12] Fe3O4,
[13] Fe2O3,

[13] Co3O4,
[11,14] Al2O3,

[15] and WO3-x.
[16] However, 

there are some disadvantages associated with the hard-templating method, such as long and complex 

procedures, difficulties to fill in the mesoporous silica template due to complex interactions between the 

silica and filtrated metal ion precursor, and the use strong acid (e.g., hydrofluoric acid (HF)) to remove the 

hard template.[9] 

On the other hand, soft-templating methods typically employ surfactants or block copolymers. The 

synthesis of mesoporous metal oxides by soft-templating method offers many advantages, including lower 

cost of the template, simpler procedures which can be carried out under mild conditions, and tunable pore 

size and chemical composition.[8] However, these methods also have some drawbacks as their syntheses are 

often based on complicated so-gel processes, as well as the hydrolysis and polymerization of transitional 

metal species which are difficult to control. Furthermore, the resulting mesoporous oxide products tend to 
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exhibit amorphous or semi-crystalline walls and poor thermal stability. Triblock copolymers have previously 

been employed as soft-templates to synthesize mesoporous transition metal oxides with small pore sizes.[17] 

For instance, Yang et al. have reported the synthesis of mesoporous TiO2 with an average pore size of 

smaller than 10 nm by using the PEO-b-PPO-b-PEO type block copolymer.[18] However, mesoporous 

materials with such small pores may have limited applications compared to those with larger pores as they 

may not be able to accommodate large guest species or molecules.  

Recently, many efforts have been carried out to enlarge the pore size of mesoporous materials.[17] 

The utilization of block copolymers which possess long hydrophobic block could overcome this challenge 

because the pore size strongly relies on hydrophobic block length of the micelle template. Previously, our 

group reported the use of high molecular weight diblock copolymers, such as 

polystyrene-block-poly(ethylene oxide) (PS-b-PEO) as soft-templates for the preparation of mesoporous 

materials with large pore size.[19,20] Furthermore, we have also synthesized mesoporous nickel ferrite and 

ferrite with large pore sizes through the use of poly(styrene-block-acrylic acid-block-ethylene glycol) 

(PS-b-PAA-b-PEG) triblock copolymer containing acrylic acid (negatively charged in alkaline 

solutions).[21,22]  

Among various metal oxides, nickel oxide (NiO), a wide bandgap (3.6-4.0 eV) p-type 

semiconductor has gained significant attention due to its exciting intrinsic properties, such as 

electrochromic, antiferromagnetic, and high capacitive properties.[23-25] In addition, NiO can be utilized in a 

wide range of applications, including electrochromic display devices, smart windows, active optical fibers, 

gas sensors, solar thermal absorbers, catalysis, fuel cell electrodes, supercapacitors, and energy storage.[23-25] 

To date, many previous reports on mesoporous NiO relied on the use of hard templates, such as SBA-15[26] 

and KIT-6.[27,28] Despite some progress, reports on the fabrication of mesoporous NiO using soft-templates 

are still scarce. 

In this study, we report the synthesis of mesoporous NiO with a large average pore size of 35 nm 

by utilizing PS-b-PAA-b-PEG triblock copolymer as a soft-template (Figure 1). In aqueous solution, the 

PS-b-PAA-b-PEG block polymer forms tri-functional micelles, in which the PS, PAA and PEG blocks act as 
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core, shell, and corona, respectively. The effects of nickel precursor amount and calcination temperature 

were investigated to determine the optimum condition for achieving well-defined mesoporous NiO. 

 

2. Experimental Section 

2.1. Chemicals. 

Poly(ethylene glycol) methylether (4-cyano-4-pentanoate dodecyl trithiocarbonate) (PEG46-CTA, Mn = 

2,400 g mol-1) from Aldrich and 2,2’-azobis (2,4-dimethylvaleronitrile) (V-65, ≥ 95.0%) from Wako Pure 

Chemical were used as received without further purification. Acryl acid (AA, ≥ 98.0%) and styrene (St, ≥ 

99.0%) from Wako Pure Chemical were dried with 4 Å molecular sieves and purified by distillation under 

reduced pressure. 2,2’-Azobis (2-methylpropionitrile) (AIBN, ≥ 98.0%) from Wako Pure Chemical was 

purified by recrystallization from methanol. 1,4-Dioxane and methanol were dried with 4 Å molecular 

sieves and purified by distillation. Water was purified using a Millipore Milli-Q system. Nickel (II) nitrate 

hexahydrate (Ni(NO3)2·6H2O, 98%) and absolute ethanol (C2H6O, 99.99%) were purchased from Sigma 

Aldrich and they were used without further purification. 

2.2. Preparation of PS402-b-PAA71-b-PEG46 triblock copolymer. 

The preparation method of PS402-b-PAA71-b-PEG46 is shown in Figure 1. AA (4.95 g, 68.7 mmol), 

PEG46-CTA (1.10 g, 0.458 mmol), and AIBN (30.1 mg, 0.183 mmol) were dissolved in 1, 4-dioxane (70.0 

mL). The solution was degassed by purging with Ar gas for 30 min. Polymerization was performed at 60 °C 

for 15 h. After the reaction, the conversion of AA estimated from 1H NMR was 40.4%. The reaction mixture 

was dialyzed against pure water for three days. PAA71-b-PEG46 was recovered by freeze-drying (2.44 g, 

40.4 %). The number-average molecular weight (Mn(NMR)), degree of polymerization (DP) of PAA 

estimated from 1H NMR, and molecular weight distribution (Mw/Mn) estimated from gel-permeation 

chromatography (GPC) were 7.52 × 103 g mol-1, 71, and 1.41, respectively (Table S1). 

PAA71-b-PEG46 (1.50 g, 0.200 mmol, Mn(NMR) = 7.52 × 103 g mol-1, Mw/Mn = 1.41), St (10.4 g, 

99.8 mmol), and V-65 (24.9 mg, 0.100 mmol) were dissolved in methanol (50.0 mL). The solution was 

degassed by purging with Ar gas for 30 min. Polymerization was performed at 50 °C for 24 h. After the 

reaction, the conversion of St estimated from 1H NMR was 55.2%. The reaction mixture was dialyzed 
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against methanol for three days, then pure water for two days. After the dialysis, the aqueous solution of 

PS402-b-PAA71-b-PEG46 was recovered (362 mL). The polymer powder was recovered from a part of the 

aqueous polymer solution (20 mL) by freeze-drying with a yield of 0.355 g. The concentration of the 

aqueous polymer solution was 17.8 g/L. Mn(NMR) of PS402-b-PAA71-b-PEG46 and DP(NMR) of PS 

estimated from 1H NMR, and Mw/Mn estimated from GPC were 4.94 × 104 g mol-1, 402, and 1.37, 

respectively (Table S1).  

2.3. Synthesis of mesoporous nickel oxide 

In a typical procedure, 20 mg of nickel (II) nitrate hexahydrate was firstly dissolved in 80 µL of ethanol. 

After perfect dissolution, this solution was added into 2 mL of polymeric micelles solution (5 g L-1) under 

magnetic stirring. After stirring for 1 h, the mixture was dried at 60 °C in an electrical oven. The collected 

light green powder was then calcined at different temperatures (250-450 °C) with a heating rate of 2 ºC 

min-1. 

2.4. Characterization  

1H NMR was obtained using a Bruker DRX-500 spectrometer. GPC measurement for PAA71-b-PEG46 was 

performed using a Tosoh RI-8020 refractive index detector equipped Shodex 7.0 µm beads size GF-7M HQ 

column (exclusion limit ~ 107) working at 40 °C under a flow rate of 0.6 mL/min. A phosphate buffer (50 

mM, pH 9) containing 10 vol% acetonitrile was used as an eluent. The values of Mn and Mw/Mn for the 

polymers were calibrated using standard sodium poly(styrenesulfonate) samples. GPC measurement for 

PS402-b-PAA71-b-PEG46 was performed using a Shodex DS-4 pump and an RI-101 refractive index detector 

using Shodex one KF-805L and three KF803L columns connected in series. THF was used as the eluent at a 

flow rate of 1.0 mL/min at 40 °C. Mn and Mw/Mn were calibrated using PS standard samples. Sample 

solutions were filtered with a 0.2 µm pore size membrane filter. Dynamic light scattering (DLS) 

measurements were performed using a Malvern Zetasizer Nano ZS with a He-Ne laser (4 mW at 633 nm) at 

25 °C. The hydrodynamic radius (Rh) was calculated using the Stokes-Einstein equation, Rh = kBT/(6πηD), 

where kB is Boltzmann constant, T is absolute temperature, and η is solvent viscosity. The DLS data was 

analyzed using Malvern Zetasizer software version 7.11. Zeta-potential (ζ) was measured using a Malvern 

Zetasizer Nano-ZS at 25 °C. ζ was calculated from the electrophoretic mobility (µ) using the Smoluchowski 
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relationship, ζ = ηµ/ε (κa >> 1), where ε is the dielectric constant of the solvent, κ is the Debye-Hückel 

parameter, and a is particle radius, respectively. TEM observation was performed with a JEOL JEM-2100 

operated at an accelerating voltage of 200 kV. The TEM sample was prepared by placing one drop of the 

aqueous solution on a copper grid coated with a thin film of Formvar. Excess water was blotted using filter 

paper. The sample was stained by sodium phosphotungstate and dried under vacuum for one day. The 

morphological observation of the mesoporous NiO was performed using both scanning (SEM; JEOL 

JSM-7500FA) and transmission electron microscopes (TEM; JEOL JEM-2010). The phase composition and 

crystal structures of the samples were analyzed by X-ray diffraction (GBC MMA XRD) with Cu-Kα (1.54 

Å) in the 2θ range of 10 to 80°. Nitrogen (N2) adsorption-desorption measurements were performed using a 

BET Nova 1000 at 77 K. The specific surface areas were calculated using the multipoint 

Brunauer-Emmett-Teller (BET) method at a relative pressure (P/P0) range of 0.05 to 0.30, while the total 

pore volumes were calculated by the Barrett-Joyner-Halenda (BJH) method. Prior to the BET 

measurements, the samples were degassed under vacuum at 100 °C for overnight. Finally, 

thermogravimetric analysis (TGA) was carried out using a Mettler Toledo TGA/DTA851 thermal analyzer 

apparatus with a heating rate of 10 °C min-1 in air atmosphere. 

 

3. Result and Discussion 

The DP (NMR) for PAA was determined from the integral intensity ratio of the peaks at 3.5 (a) and 1.1-1.9 

ppm (e+f) (Figure S1a). The DP (NMR) for PS was determined from the integral intensity ratio of the peaks 

at 1.2-2.5 (d+e+h+i) and 6.3-7.2 ppm (j+k) (Figure S1b). The Mn(GPC) values for PEG46-b-PAA71 and 

PS402-b-PAA71-b-PEG46 were 1.03 × 104 and 1.43 × 105 g mol-1, respectively (Figure S2). Mw/Mn estimated 

from GPC were relatively narrow below 1.5 (Table S1). Theoretical degree of polymerization (DP(theory)) 

and theoretical number-average molecular weight (Mn(theory)) were calculated from the following 

equations: 

��(�ℎ���	) =
[
]�

[���]�
	× 	

�

���
                     (1) 

��(�ℎ���	) = 	��(�ℎ���	) 	× 	��	 +	�����                (2) 
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where [M]0 is the initial monomer concentration, [CTA]0 is the initial chain transfer agent (CTA) 

concentration, p is monomer conversion estimated from 1H NMR measurements, MW is the molecular 

weight of monomer, and MWCTA is the molecular weight of CTA. The values of DP(theory) and Mn(theory) 

are listed in Table S1. DLS measurements for PS402-b-PAA71-b-PEG46 at polymer concentration (Cp) = 0.2 

g/L were performed in pure water at pH 5.1 (Figure S3). The unimodal distribution with Rh = 58.0 nm can 

be observed. PAA was ionized in pure water. The zeta-potential of PS402-b-PAA71-b-PEG46 in water at pH 

5.1 was -42.8 mV, because the pH value of the aqueous solution was 5.1 which is near to pKa (= 4.35) of 

AA monomer. TEM observation for PS402-b-PAA71-b-PEG46 in pure water was performed (Figure 2a). An 

average diameter of 31 nm was estimated from TEM (Figure 2b), which was different from Rh (= 58.0 nm) 

estimated from DLS measurement since the TEM sample was in dried state.  

The formation mechanism of the mesoporous nickel oxide using the PS-b-PAA-b-PEG block 

copolymer as a soft-template is illustrated in Figure 3. In the reaction system, the PS block forms the core of 

the micelles due to its rigid and glassy structure in water and acts as a pore-forming agent.[21,22] According to 

zeta-potential, PAA was negatively-charged in the water. After addition of nickel (II) nitrate solution, the 

pH value was changed to around 4.5. In this pH region, PAA is still negatively-charged, where the 

negatively-charged PAA block interacted with the positively-charged cationic metal ions and forming the 

shell.[21,22] In this study, unlike our previous study[21,22], NaOH solution was not used as additive for 

controlling the pH in the solution. The PEG block forms the corona, which provides stability for the micelles 

in the solution to prevent secondary aggregation and promote the orderly organization of the particles during 

assembly of the micelles. The drying of the solution at 60 °C promotes the formation of mesostructured 

material. Finally, the calcination at high temperatures can lead to cross-linking of the NiO frameworks and 

simultaneous removal of the polymeric template. 

In order to determine the optimized conditions for the synthesis of mesoporous NiO, the effect of 

different concentration of nickel salt was investigated and the corresponding SEM images are given in 

Figure 4. The use of a low amount of nickel precursor (10 mg, 0.0344 mmol) is found to yield mesoporous 

structures with a large average pore size of around 36 nm, but with very thin walls (thickness of around 6 

nm) and some presence of defects on the wall (Figures 4a and b). The increase in the amount of the nickel 
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precursor to 20 mg (0.0688 mmol) gives rise to well-defined mesoporous structures with average pore size 

and wall thickness of 35 nm and 14 nm, respectively (Figures 4c and d). However, excess addition of the 

nickel salt (30 mg, 0.1032 mmol) results in aggregation of the small crystals, thereby leading to the collapse 

of the mesopores and the corresponding decrease in surface area (Figures 4e and f). Based on these results, 

an optimum nickel precursor amount of 20 mg (0.0688 mmol) was used for further experiments.  

The effect of the calcination temperature on the morphology of the resulting mesoporous NiO was 

checked by SEM (Figure 5). When the sample was calcined at 250 °C, the mesoporous structure is not 

observed at all (Figure 5a). This is because the temperature was not high enough to remove the carbon 

components in the PS-b-PAA-b-PEG block copolymer. In contrast, the increase in calcination temperature 

to 350 °C leads to the formation of well-defined mesoporous NiO with an average pore size of around 35 nm 

(Figure 5b). However, raising the calcination temperature further to 450 °C causes the collapse of the 

mesoporous structures as the higher temperature induced by further crystallization of NiO (Figure 5c).  

The TEM image of the mesoporous NiO obtained at an optimum calcination temperature of 350 

°C reveals its well-defined mesoporous structure with average pore and grain sizes of 35 nm and 6 nm, 

respectively (Figure 6a). The pore size of mesoporous NiO was slightly larger than the micelle size of block 

copolymer (Figure 2) because the PEG-PAA shell can also contribute to the formation of pores during 

reaction. The high-resolution TEM (HRTEM) image of the mesoporous NiO obtained at 350 °C displays 

well-defined lattice fringes with d-spacing of 0.24 nm and 0.20 nm, corresponding to the d-spacing of 

NiO(111) and NiO(200), respectively, as shown in Figure 6b. The corresponding selected area electron 

diffraction (SAED) pattern (Inset of Figure 6b) reveals the polycrystalline nature of this mesoporous NiO. 

TGA was conducted to analyze the weight changes of pure PS-b-PAA-b-PEG triblock copolymer 

and the PS-b-PAA-b-PEG micelles (containing Ni2+) with increasing temperatures. As shown in Figure 7a, 

the block copolymer undergoes a sharp weight loss beginning at around 200 °C and completely burns out at 

around 450 °C. On the other hand, for PS-b-PAA-b-PEG micelles (containing Ni2+), an initial decrease of 

the TG curve is observed at ∼200 °C (∼17%), which can be associated with the removal of adsorbed water 

molecules, whereas the weight loss observed from 200 °C to 370 °C could be attributed to the 

decomposition of the PS-b-PAA-b-PEG template, as shown in Figure 7b. No further weight loss was 
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observed after 370 °C, indicating the complete removal of the polymeric template. Therefore, it can be 

concluded that the calcination process at 350 °C is enough to completely remove the organic template if the 

applied heating rate is very slow (In our experiment, the heating rate was 2 ºC min-1). These results are in 

good agreement with the SEM observations. 

The XRD patterns of the mesoporous NiO obtained at different calcination temperatures are 

shown in Figure 7c. The observed diffraction peaks can be indexed to the (111) and (200) planes of 

face-centered cubic NiO phase (JCPDS No. 01-078-0429). Furthermore, it is evident that the diffraction 

peaks of the mesoporous NiO become narrower and sharper with increasing the calcination temperature. The 

average crystallite size was calculated from the most intense diffraction peak by using Scherrer's formula.  

� = 0.94 /("	#�$%)                     (3) 

where D is the average crystallite size, β is the broadening of FWHM of the main intense peak (111) in 

radian, θ is the Bragg angle, and λ is the radiation wavelength. Using the above equation, the average 

crystallite sizes of the mesoporous NiO obtained at calcination temperatures of 250 °C, 350 °C, and 450 °C 

are calculated to be 19.5 nm, 27.4 nm, and 36.5 nm, respectively. This trend clearly indicates the increase in 

average crystallite size with increasing calcination temperature.  

The XRD pattern of the mesoporous NiO obtained at 250 °C shows the existence of crystalline 

NiO; however this temperature is not sufficient to remove the block copolymer template completely, as 

supported by the TGA data. The increase in calcination temperature of up to 450 °C leads to further 

improvement in the crystallinity of the mesoporous NiO product, as indicated by the increase in intensity of 

the NiO(111) peak observed in Figure 7b and c. The nitrogen adsorption-desorption isotherm of the 

mesoporous NiO obtained at an optimum calcination temperature of 350 °C is shown in Figure 7d. 

According to the BET analysis, the specific surface area and pore volume of the mesoporous NiO obtained 

at 350 °C are 97 m2 g-1 and 0.411 cm3 g-1, respectively.  

 

4. Conclusions 

In this report, well-defined mesoporous NiO with large average pore size of 35 nm has been successfully 

synthesized using PS-b-PAA-b-PEG block copolymer as a soft-template followed by their removal at an 
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optimum calcination temperature of 350 °C. In the proposed method, the PS block forms the core of the 

micelles and functions as a pore-forming agent, whereas the PAA block interacts with cationic Ni ions to 

form the shell of the micelles due to its strong electrostatic charge, and the PEG block forms the corona of 

the micelles and provides stability by preventing secondary aggregation before/during micelle assembly. An 

optimum amount of the nickel precursor is necessary to ensure the formation of well-defined mesoporous 

NiO. The optimum mesoporous NiO sample exhibits large surface area and pore volume of 97.0 m2 g-1 and 

0.411 cm3 g-1. The excellent textural properties of the synthesized mesoporous NiO may enable it to be 

utilized as high-performance material in catalysis, gas sensors, energy storage and conversion, and 

biomedical applications. The large surface area and pore volumes of the mesoporous NiO are expected to be 

beneficial in enhancing its functional performance for a variety of applications, including energy storage and 

conversion,[29-32] catalysis,[33-34] gas sensors,[35] and biomedical applications[36]. Furthermore, the proposed 

soft-templating method can be expanded into other metal oxides or sulfides in the future for obtaining 

mesoporous oxides/sulfides with enhanced textural characteristics and functional performance. 
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Figures and Figure Captions 

 

 

Figure 1 Synthesis route of PS402-b-PAA71-b-PEG46. 

 

 

Figure 2 (a) TEM image of PS402-b-PAA71-b-PEG46 in pure water at Cp = 0.2 g L-1. (b) Diameter 

distribution histogram of the polymeric micelles. 

 

Figure 3 Schematic illustration showing the mechanism of the formation of mesoporous NiO using the 

PS-b-PAA-b-PEG triblock copolymer template. 

 

Figure 4 (a, c, e) SEM images and (b, d, f) the corresponding pore diameter distributions of mesoporous 

NiO obtained using different amounts of nickel salt: (a) 10 mg (0.0344 mmol), (b) 20 mg (0.0688 mmol), 

and (c) 30 mg (0.1032 mmol). 

 

Figure 5 SEM images of the mesoporous NiO obtained at (a) 250 °C, (b) 350 °C, and (c) 450 °C. 

 

Figure 6 (a) TEM and (b) high-resolution TEM (HRTEM) images of mesoporous NiO obtained at an 

optimized calcination temperature of 350 °C. (inset of (b): selected area electron diffraction (SAED)). 

 

Figure 7 TG curves of (a) PS-b-PAA-b-PEG triblock copolymer and (b) PS-b-PAA-b-PEG micelles (with 

Ni2+). (c) Wide-angle XRD patterns for mesoporous NiO obtained at different calcination temperatures and 

(d) N2 adsorption-desorption isotherms of mesoporous NiO obtained at the optimized calcination 

temperature of 350 °C. 
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Highlights 

• Asymmetric poly(styrene-block-acrylic acid-block-ethylene glycol) (PS-b-PAA-b-PEG) 
triblock copolymer has been synthesized and used as soft-template.  

• The soft template was achieved by micelle formation from PS core, a PAA shell and a PEG 
corona in aqueous solutions. 

• The synthesized mesoporous NiO exhibits a large average pore size of 35 nm with large   
   specific surface area and pore volume of 97.0 m2 g-1 and 0.411 cm3 g-1, respectively. 


