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Abstract— Introduction of new operation enhancement technologies plus increasing application of power 

electronics coupled with the continuous increase in load demand has increased the risk of power networks 

to voltage instability and susceptibility to voltage collapse. This frequent occurrence of voltage collapse in 

modern power system has been a growing concern to power system utilities. This paper proposes alternative 

techniques for the identification of critical nodes that are liable to voltage instability in a power system. The 

first method is based on the critical mode corresponding to the smallest eigenvalues, while the second 

technique is based on the centrality measure to identify the influential node of the networks. The eigenvector 

centrality measure is formulated from the response matrices of both the load and generator nodes of the 

networks. The effectiveness of the suggested approaches is tested using the IEEE 30 bus and the Southern 

Indian 10 bus power networks. The results are compared to the techniques based on the traditional power 

flow. The whole procedure of the results involved in the identification of critical nodes through the proposed 

methods is totally non-iterative and thereby save time and require less computational burden.  
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1.   Introduction 

 

The increasing rate of voltage collapse in a power system  due to voltage instability has attracted the 

attention of numerous power system researchers in the open literatures [1] [2].  Factors such as loss of a 

heavily loaded transmission line, inadequate reactive power supply, among others could result in a voltage 

collapse or in more serious instances, may lead to cascading outages and blackouts [3]. Voltage collapse is 

described by a gradual decrease in the voltage magnitude of the system buses, and continues until these 

system voltages decline rapidly [4]. To prevent the incessant occurrence of this catastrophe, identification of 

critical nodes that are liable to voltage collapse is of importance in power system. A substantial research was 

carried out in the open literatures with the view to identifying weak nodes that have highest proximity to 
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voltage collapse in a power system [5]-[7]. In the past, analysis of voltage collapse has only been considered  

as the problem of operating point of a power system. Based on this, a considerable number of algorithmic 

techniques have been suggested in the literature [8]-[16]. The use of optimization based techniques for the 

assessment of voltage stability has also been reported by a considerable number of authors [17]. However, 

some of these power flow based techniques are time consuming and laborious, especially for large and 

complex power networks. Besides, in reality, the use of conventional power flow techniques does not tell 

the whole story surrounding voltage instability assessment in a power system. Therefore, there is a need for 

a more useful technique that could be employed for voltage stability analysis in a power system. 

The inherent structural network theory proposed by [18] has been applied to solve some power system 

problems [19]-[21]. The idea proposed by [19], however, did not take into consideration, the effect of the 

special distinctions that exists between load and generator nodes in an interconnected power system network. 

In order to solve this problem, the method proposed by [19]-[21] was further explored by [22] to evaluate 

suitable locations for generation expansion in restructured power systems. Although, the approach adopted 

by [22] seems promising and gives insight as per the determination of a new location for generator, however, 

it is still time consuming. This is because each node must first be changed to a load node before an optimal 

location of a new generator could be found.  

A considerable effort was made by [23] to further investigate and apply the idea based on the use of basic 

circuit theory law. The idea developed by [23] was used to solve some power system problems such as 

classification of power system networks, optimal location of network devices and so on [24]. Although, quite 

appreciable work was done by the authors of [24], notwithstanding, information contained in the work is not 

sufficient to proffer a lasting solution to the prevalent occurrence of voltage instability in a power system. 

For instance, although, authors of [24] carried out a study to identify an optimal location for reactive power 

compensator using inherent network structure based approach; however, critical node was identified based 

on the node with smallest singular value (eigenvalue), whereas the contributions of the minimum singular 

value (eigenvalue) to the entire power system network were not considered.  This is a serious drawback. 
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Another area of research has recently showed that incident of voltage collapse in a modern power system 

may be analyzed through the use of complex network theory [25]-[27]. Central nodes will have more 

influence than non-central nodes as they can reach the whole network more quickly. The relative importance 

of a vertex within a graph have been demonstrated through the use of centrality measures [28]-[30]. These 

measures include betweenness centrality, closeness centrality, eigenvector centrality and degree centrality.  

Thus, this paper contributes significantly to two dynamic streams of research. Firstly, alternative method 

to the existing eigenvector centrality measure which is often used in complex networks to identify most 

central nodes is suggested. The proposed measure is established from the network topological structural 

point of view, by considering the electrical interconnection between various elements of the network. These 

nodes are so named and are important in power system because if suddenly disconnected (in case of 

contingency) from the power network, may weaken the robustness of the power system  considerably and 

this may cause major possible damage to network performance or in most times result in voltage collapse 

[31]. Thus, the need for prior identification of these critical nodes in a power network.  

Secondly, to identify a structurally weak node in power networks that can lead to voltage instability, a 

non-iterative technique called Network Response Structural Characteristic Participation Factor Index 

(NRSPF) based on the topological nature of the network is further investigated. This approach is captured 

by Kirchhoff Matrix (admittance matrix) of a power system [32]. This method is  also independent of the 

network loading conditions and thus can aid the system operator in proper planning and operation of the 

power network in case of occurrence of any contingencies.  Worth-noting, is the fact that the critical nodes 

in the context of this paper are classified as the weak (low voltage profile) and influential (most central) 

nodes. 

 Comparison of all the approaches presented is done with the existing power flow based technique of L-

index, and voltage collapse proximity index (VCPI) techniques as proposed by [33] and [16], respectively. 



4 
 

The effectiveness of all the methodology presented is tested using the IEEE 30 bus and the Southern Indian 

10-bus power networks, whose schematic diagrams are shown in Figures 1a and b, respectively.  

The rest of the paper is organized as follows: Section 2 gives the formulation of the NRSPF being 

investigated while section 3 presents the mathematical illustration for the proposed eigenvector centrality 

measure. The mathematical formulations for the existing eigenvector centrality measure are also presented 

in this section. The results obtained during simulation and discussions are shown in sections 4 and 5. Section 

6 gives a concise conclusion of the work.  

2. Mathematical Formulations of NRSPF 

The concept behind the technique of NRSPF is expressed in accordance with the inverse problem of 

electrical network suggested in [34]. Given an electrical network,  WG, , where  EVG ,  is a graph, 

V  is the set of vertices depicting nodes and E is the set of edges formed by pairs of vertices. W is the 

complex value function defined on all  edges for each e ∈  E . If  U  is the voltage magnitude of each vertex,

K  the network  admittance or a Kirchhoff’s matrix and   is the current injected into the networks, then, the 

relationship that exist between them can be determined by the Kirchhoff’s and Ohm’s law equation as  

                                                      ][][ UKnetwork                                                           (1) 

Suppose   is a connected electrical network with boundary, the response matrix 
K  can be determined 

as the Schur complement in K  of the square matrix corresponding to the interior nodes of . In this paper, 

the network elements, that is, generator and load nodes are arranged sequentially in the form of boundary  

and interior nodes, respectively as shown in Figures 1a and b. The main aim of this paper is to explore the 

structural topological characteristics that are inherent in the electrical network . These properties, as earlier 

stated are captured by the Kirchhoff matrix of a power network. Thus, eq.(1) may be further expressed in 

terms of the network elements as  
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where  

     The subscripts G  and L  represent symbols for generator and load nodes, respectively. ][ GGK  is the 

square admittance matrix that shows the connectivity between generator buses (boundary nodes), ][ GLK is 

a LG admittance matrix that represents electrical interconnection between generator and load buses,  

][ LGK  is a GL admittance matrix that represents the electrical interconnection between load and 

generator buses and ][ LLK  is the square admittance matrix that shows electrical interconnectivity that exist 

between the load buses. ][ G , ][ L  are the complex bus current injection vectors, ][ GU , ][ LU  are the 

complex bus voltage vectors.  

Algebraic manipulations of eq. (2) give eq. (3) 
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where      GLGGGL KKM
1

 is a matrix that gives the relation between the load bus and the 

generator bus voltages. It represents the impact of generators over the load buses.                            

      1
 GGLGLG KKM is the negative transpose of the matrix ][ GLM .  

][][][][][ 1 GLGGLGLLLL KKKKD   is the electrical interconnection between load – load buses in a power 

network. 1][ GGK = ][ GGZ  and it shows the impedances between generator buses. 

     2.1    Network Response Matrix 

The network response matrix LL can be obtained as the Schur Complement of the sub matrix  GGK  in 

the Kirchhoff matrix of eq. (2).  The Kirchhoff matrix K  can be expressed as  
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 From eq. (4), the Schur complement of GGK in K   can be written as: 
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where 

                                               GLGGLGLL
GG

LLLL KKKK
K

KD
1

                                                             (6) 

 

 The response matrix of the network is shown in eq.(6) and we termed it  in this paper as the Inter-Load 

Buses Interconnection Response Matrix (ILBIRM). It gives information on how the loads at the interior 

nodes of the electrical networks  WG,  are interconnected. In this work, the absolute value of matrix 

of eq. (6) is determined to ensure a real and symmetrical matrix.  

The eigenvalue decomposition of LL gives,  
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The columns of x  being the eigenvectors of the response matrix defined in eq. (6), which is associated 

with the eigenvalues  1  .  X  is the orthonormal  matrix with the associated eigenvectors ix .  The 

diagonal matrix   is associated with a diagonal eigenvalues i . Since x  is non-singular,   and   is 

therefore a diagonal matrix.  

Therefore, 

                                                      1, ixx ii

LL                               (9) 

We may resolve the response matrix defined in eq. (6) as a sum of orthogonal matrix and also determine 

the NRSPF. To do this, eq. (8) is further expanded to obtain eq. (10) 
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where 
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                                            
 111 xxPF   and    

  xxPF  

                                           


...1, ixxPF iii
                                               (12) 

Thus, 

                                               


 ijijijij xxPFNRSPF                          (13) 

From eq. (13), it could be seen that, the network node participation, measuring the contributions of the thi

node to the thj  node is found by multiplying both the right and left eigenvectors together. It follows that; 

the node that has the highest value of NRSPF corresponds to the critical mode identified using eq. (7). This 

node is considered as the structurally weak node of the network and has the maximum proximity to voltage 

instability. This method is similar to but different from the modal analysis technique proposed by [15]. Both 

techniques involve the determination of critical mode of the system by the application of eigenvalue 

decomposition technique. The difference, however, is in the fact that, the technique of NRSPF depends 

mainly on the structural properties that exist between various buses in power network, which is captured by 

the admittance matrix. Whereas, modal analysis depends on the Jacobian matrix of the system real and 

reactive power which is also based on power flow solutions.   

To find the voltage magnitude of each interior node, eq. (3) may be expanded to give 

                                                GLGLLLL MDU   1][                           (14) 

Upon substitution, we have 
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Large values of  i  as can be seen from the eq. (15) indicate small changes in the interior node voltage. The 

eigenvalues however, may become smaller and the interior node voltage becomes weaker if the network is 

stressed. If the magnitude of the eigenvalues decreases continuously until it reaches zero, the corresponding 

interior voltage will collapse. We can as well find the response matrix GG  termed Inter-Generator Buses 

Interconnection Matrix Index (IGBIMI), by following similar procedures as in the above equations.  
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Algebraic manipulation of eq. (2) also gives:  
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From which we can determine the current G  injected into the boundary nodes of the network as: 

                                                          GGGLLGG UDH                   (17) 

GGD  being the  response matrix represented as GG can be determined by finding the Schur complement of  

LLK  in the Kirchhoff matrix.  Electrical interconnection that exists between the boundary nodes of the 

electrical network  WG,  is captured in GG . In this case, the influence of the interior nodes is 

eliminated.  Thus, 

                                                     LGLLGLGGGGGG KKKKD
1

                           (18) 

We may further apply eigenvalue decomposition techniques to the matrix of eq. (18) in a similar way to to 

eq (7) as follows: 
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where   represents an orthogonal matrix corresponding to iz  eigenvectors. i  is the diagonal matrix which 

represents the eigenvalues of the elements present in the networks.  

3. Conventional Centrality Measure   

Centrality measures are mostly used to rank the relative importance of edges and vertices in a graph. The 

most common centrality measures are the degree centrality, closeness centrality, eigenvector centrality and 

betweenness centrality. Detailed description of each of these measures is presented in [28]. The main focus 

of this paper is, however, on the alternative algorithm to finding influential nodes using eigenvector centrality 

measure.  
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 3.1 Eigenvector Centrality Measure 

The eigenvector centrality is of great importance in the determination of the relative influences of a node 

within a graph. Given a graph G: = (V, E), one eigenvalue,  , with its adjacency matrix A , the corresponding 

eigenvector  m  satisfy  

                                                 Amm                              (20) 

The adjacency matrix A  may be extracted from the Laplacian as: 

                            )(KDKAm                              (21) 

where K  is the admittance of the network and  KD  represents the diagonal of matrix K . 

Thus, the eigenvector centrality of the node  as the th entry of the eigenvector  m  which corresponds to 

the maximum eigenvalue as: 
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3.2     Proposed Eigenvector Centrality 

The standard way of measuring network centrality has been through the use of eigenvector. The 

information contained in the eigenvalue decomposition of the response matrices LL  and GG  expressed in 

eqs. (7) and (19), respectively, is of great importance in the determination of the most influential node of the 

power network. These equations can be re-written as: 

                                        xxLL                                        (23) 

                                                                    

                                                                    zzGG                                         (24) 

In this case,  LL  and  GG  are obtained from eqs. (7) and (19), respectively. 

The conventional eigenvector centrality depends on the adjacency matrix of the network as expressed in eq. 

(22). This implies that, Laplacian matrix has to be determined first, before the adjacency matrix of the 

network is found.  The proposed eigenvector centrality however, is a function of the electrical 

interconnection that exists between the various elements of the network.  
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Suppose im  is the score (eigenvector) of the 
thi  node of the connected and weighted network  EVG ,  

corresponding to the maximum eigenvalue max , LL  and GG are the network structural indices captured by 

the admittance of the edges of the network. These indices also show the electrical interconnection that exists 

between the interior and boundary nodes of the network, respectively. Thus, the proposed eigenvector 

centrality of a node i  taking into consideration the interior and boundary nodes is given as: 
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This requires application of eigen – analysis on both LL  and GG . The magnitude of the entries of the 

eigenvector as the centrality measures need also to be determined. The definition of the proposed eigenvector 

centrality also selects the eigenvector corresponding to the maximum eigenvalue to maintain all the centrality 

scores to be positive. The interior and boundary node i  that gives maximum value of 
LL

mEC


 and 
GG

mEC


, 

respectively is considered as the critical node (influential node) of the system.  

4. Simulation results and discussion 

The effectiveness of the performance of all the approaches presented is tested using the IEEE 30 bus and 

the Southern Indian 10-bus power networks as shown in Figure 1 (a) and (b), respectively. In the course of 

simulations, the network nodes are arranged sequentially in the form of interior (load) and boundary 

(generator) nodes. The IEEE 30 bus is made up of six generators, forty- one transmission lines with four (4) 

tap ratios and eighteen load nodes. Of all the interior nodes, nodes 24, 26, 29 and 30 have been reported in 

the literature to be most critical and vulnerable to voltage collapse [35] [36]. These nodes also have minimum 

allowable loads compared with other interior nodes of the IEEE 30 bus network. Thus, these nodes are 

randomly selected for further investigation in this paper. Similarly, for the three generators and seven load 

nodes Southern Indian 10-bus test system, nodes 4,6,7,8 and 10 of the seven interior nodes are randomly 
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chosen. All simulations were performed using MATLAB R2014a software. Windows 7, HP, 64 bit operating 

system, with 500GB hard disc and 4GB random access memory laptop are used. 

   4.1 Identification of Weak Node through the use of NRSPF, L-Index and VCPI 

Identification of weak nodes of the IEEE 30 bus and 10-bus test systems using the suggested approach of 

NRSPF begins by first finding the critical modes (node with the smallest eigenvalue) of the power networks. 

This is done by applying eigenvalue decomposition techniques on the Inter-Load Buses Interaction Response 

Matrix (ILBIRM) of the networks as defined in eq. (6). Next, the right and left eigenvectors of the networks 

are computed.  These eigenvectors are then used to compute the NRSPF for each of the nodes based on the 

critical mode identified. Results of the simulations obtained for both IEEE 30 bus and the Southern Indian 

10 bus power networks are presented in the form of test cases I and II respectively. Results of identification 

of critical mode and the corresponding eigenvalues for both the IEEE 30 bus and 10 bus power networks are 

presented in Figures 2, Table 1 and Figure 3, Table 5, respectively. Presented in Tables 2, 3 and Tables 6, 7, 

respectively are the results of the traditional techniques of L-Index and VCPI for the IEEE 30 bus and 10 

bus test systems.  Results of simulation which show the comparison of the proposed approach of NRSPF 

with the traditional technique for the IEEE 30 bus and the 10-bus test systems are also presented in Tables 4 

and 8, respectively. 

 

                4.2 Identification of Influential Nodes through the proposed Degree and Eigenvector Centrality  

       measures 

Identification of influential node in a power system is so much important. This is because sudden 

disconnection (in case of contingency) of this node may lead to voltage collapse, system damages, cascading 

failures to mention a few. The simulation results of the traditional eigenvector centrality measure and the 

corresponding proposed centrality measure for the IEEE 30 bus and Southern Indian 10-bus power networks 

are as presented in Tables 9 and 10, respectively.  
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5. Discussion 

 

Discussion of results obtained for all the techniques are presented in this section.   

   5.1 The NRSPF approach 

         It can be seen from the results presented in Figure 2 of Test case I, that mode 19 of the IEEE 30 bus 

test system has the smallest NRSPF eigenvalues and thus, it is identified as the critical mode of the system. 

To ensure a real and symmetrical matrix, absolute value of eqn. (6) are used. Both the right and left 

eigenvectors are then computed to determine the values of NRSPF for each interior node (load bus) of the 

IEEE 30 bus system. The node with the highest value of NRSPF  is identified as node 26. This node is thus 

considered as a structurally weak node of the IEEE 30 bus system that can be liable to voltage instability. It 

takes the total computational time of 0.748765 second to identify this weak node. In the same vein, as shown 

in Figure 3, mode 3 of the Southern 10 bus India network has the least eigenvalues  and thus, it is considered 

as the critical mode of the network. Table 5 indicates node 10 as the weakest of all the nodes due to its 

maximum value of NRSPF. It takes the total computational time of 0.409865 seconds to identify this node. 

Noteworthy is the fact that, the proposed approach of NRSPF is non-iterative and therefore does not 

depend on specifying  particular loading conditions before the weak bus liable to voltage collapse is known. 

However, to demonstrate the effectiveness of the suggested approach, traditional power flow based 

techniques of voltage stability index (L-index) and the voltage collapse proximity index (VCPI) are used. 

5.2 The traditional power flow based L-Index and VCPI techniques 

The results of the values of L-index for each load node are computed for in a single iteration to determine 

the weak node of the systems.  For the L- Index approach, load node 26 of the IEEE 30 bus test system has 

the lowest voltage magnitude and also, it is the bus that has maximum value of L-index  as shown in Table 

2. With the L-index technique, it takes the total computational time of 0.984587 second to identify the node 

susceptible to voltage instability. For the VCPI method, effect of load variations on each load node of the 

system has to be considered to identify the critical node of the system. This has to be done repeatedly taking 
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one load node at a time until the power flow solution fails to converge. The simulation result of the VCPI 

values for each load node of the IEEE 30 bus system is presented in Table 3. The bus with the least allowable 

load and maximum value of VCPI  is identified as bus 26. This bus is indeed the weakest of the IEEE 30 bus 

test system as it is identified by all the approaches considered. It takes the total computational time of 

51.486806 seconds to identify node 26 as most critical using the VCPI technique. 

For the 10 bus system, whose bus data and line data are shown in Tables 11 and 12 respectively, with L-

index technique, bus 10 has the highest value of L-index and thus considered as the weak node of the system 

as shown in Table 6. This bus was identified in just 0.523409 second. Similarly, for the VCPI approach, load bus 

10 was also identified as the weak node of the system as shown in Table 7. To identify this, it takes the total 

computational time of 98.509321 seconds.  

5.3    A brief Comparison of all the approaches 

The results of comparison of all the approaches presented in Tables 4 and 8, respectively, are in agreement, 

as nodes 26 and 10 of the IEEE 30 bus and 10 bus test systems respectively are identified as weak nodes. 

For the structurally based approach, it takes just 0.748765 second and 0.409865 second to identify nodes 26 and 

10 as the weak nodes of the IEEE 30 bus and 10 bus test systems, respectively. Whereas, for the traditional approach 

of  L-Index, it takes the total computational time of 0.984587 second and 0.523409 second to identify the weak node 

of the IEEE 30 bus and 10 bus test systems, respectively. Longer period of time was taken to identify weak nodes with 

VCPI method.  

            5.4 Proposed eigenvector centrality measure  

Results of the influential node obtained using the traditional eigenvector centrality and the proposed 

eigenvector centrality for the IEEE 30 bus and the 10 bus test systems are presented in Tables 9 and 10. In 

this case, for the existing technique, adjacency matrix is first formed using eq. (21). We then applied 

eigenvalue decomposition technique on the adjacency matrix. The eigenvector of each node corresponding 

to the largest eigenvalue is found using eq. (22). It must be noted that, in this section of the work, only the 

PQ buses are considered for voltage stability analysis. This is because, there is no voltage-regulated bus in 
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the system due to the fact that, when getting close to voltage collapse a PV bus is injecting its maximum 

reactive power into the system to maintain the voltage magnitude, so its voltage is no longer under control. 

For the traditional approach, node 13 of the IEEE 30 bus system has the highest values  of the eigenvector 

centrality as can be seen in column 2 of Table 9. 

In the case of the proposed eigenvector centrality, we do not need to find the Laplacian first. Rather, we 

applied eigenvalue decomposition technique to the response matrices formulated in eqs. (7) and (19). We 

then found the eigenvector of each node that correspond to the maximum eigenvalue using equations eqns. 

(25) and (26), respectively. The result of the suggested eigenvector centrality obtained from the IEEE 30 bus 

system, considering only PQ nodes is in agreement with that obtained with the traditional method as node  

13 was identified as the most central PQ node of the IEEE 30 bus system. This is shown in column 5 of 

Table 9. The interpretation of this is that, if for instance the PQ node 13 is suddenly disconnected from the 

power network, this may result in system voltage instability due to high relative influence of this node 

compared with other nodes. As such, in case of contingency whereby node 13 is suddenly disconnected from 

the network, the coupling strength of the network will adversely be affected and thus, affect the network 

topology. Results obtained from the practical Southern Indian 10-bus power network shown in Table 10 is 

also in conformity with that which was obtained using the conventional method. For instance. PQ bus 7 is 

found to have the highest value of both the conventional eigenvector centrality and the proposed eigenvector 

centrality measures. Thus, confirming the significance of the proposed approach.  

6.    Conclusion 

 

  This paper demonstrates the effectiveness of using network structurally based approaches as alternative 

algorithms for the identification of critical nodes that may lead to voltage instability in a power system. A 

detailed mathematical derivation of the technique based on the structural interconnections of the network 

elements (NRSPF) for the identification of weak nodes in power networks is presented. The suggested 

method of NRSPF is compared with the existing power flow based voltage stability Index and the VCPI 

techniques. The proposed eigenvector centrality measure is also formulated based on the response matrices 



15 
 

of both load and generator nodes of the power networks. Their usefulness in identifying most influential 

node of the network is also investigated and compared to the traditional approach.  Results of simulations 

obtained show that weak node which is susceptible to voltage instability in a power system network is better 

identified through a non-iterative based technique of NRSPF, than going through the traditional approach of 

VCPI and L-Index. Also, the proposed eigenvector centrality measure can serve as alternative tool to identify 

the most influential node of the network and can be of tremendous help to power system community. 
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Fig 1: (a) One Line diagram of the IEEE 30-bus power system 
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                               Fig. 1(b): Schematic diagram of the Southern Indian 10-bus power networks 
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Test Case I: Results of the IEEE 30 bus power Networks 

 

 
 

                                           Figure 2:  NRSPF eigenvalues for the IEEE 30 bus power system 

 

Table 1: Results of NRSPF for the IEEE 30 bus test system   

 

 

 

 

 

 

 

 

Table 2: Traditional power flow based L-Index approach for the 

                 IEEE 30 bus system 
               

 

                                

 

 

                                                 Table 3:  VCPI of the IEEE 30 bus system 
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Rank Load 

Bus 
Voltage  

Mag.(p.u) 

             NRSPF Computational 

Time (secs) 

1st  26    1.0075   0.6588  

2nd  29    1.0189   0.0396 0.748765 

3rd  24    1.0227   0.0301  

4th  30    1.0076   0.0105  

Ranking 

Order 

 Load 

Bus 

No 

Traditional 

Approach 

L-Index 

Voltage  

Mag.(p.u) 

Computational  

Time (Secs) 

1st  26 0.0794    1.0075  

2nd  30 0.0764    1.0076 0.984587 

3rd  29 0.0675    1.0189  

4th  24 0.0622    1.0227  

Ranking 

Order 

Load  

Bus 

No 

Qmax 

(MVar) 

Traditional 

Approach 

 VCPI 

Voltage 

Mag. 

(p.u) 

Computational 

Time (Secs.) 

  1st   26   32    0.4441   0.5821  7.987209 

  2nd   30   34    0.3992   0.5945  8.709306 

  3rd   29   40   0.3213   0.6109  9.780415 

  4th   24   112    0.2389   0.6506  25.009876 
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                 Table 4: Results of the comparison between the approaches for the IEEE 30 bus test system 

 

           
 

 

 

 

 

 

 

               Test Case II: Results of the Southern Indian 10-bus Power networks 

 

 
                                           Figure 3:  NRSPF eigenvalues for the 10 bus power system 

                                                                            

                               Table 5: Results of the NRSPF for the 10 bus power system 
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                              Traditional Approach   Proposed Approach 

Rank     Bus 

     No 

L-Index        VCPI 

 

Bus 

No 

Rank NRSPF .  

  1st   26 0.0794    0.4441 26 1st  0.6588  

  2nd   30 0.0764    0.3992 29 2nd  0.0396  

  3rd   29 0.0675   0.3213 24 3rd  0.0301  

  4th   24 0.0622    0.2389 30 4th  0.0105  

Ranking 

Order 

Load 

Bus 

No 

NRSPF Voltage 

Mag.(p.u) 

Computational 

Time (Secs) 

1st 10 0.1944 0.9039  

2nd 6 0.1668 0.9040 0.409865 

3rd  8 0.1551 0.9642  

4th  7 0.1500 0.9076  

5th 5 0.1208 0.9436  

6th 4 0.0271 0.9066  

7th 9 0.0181 0.9859  
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                            Table 6: Traditional power flow based L-Index approach for the 10 bus system 

                      

 

 

 

 

                           

 

 

                                 

 

                                     

                                     Table 7: Results of the VCPI for the 10 bus power system 

 

 

 

 

 

 

 

 

 

 

 

                     Table 8:  Results of the comparison between the approaches for the 10 bus test system 

  

 

 

                         

 
 

 

 

 

 

                         

 

 

 

 

 

 

 

 

 

 

                                      

Ranking 

Order 

Load 

Bus 

No 

Traditional 

Approach 

L-Index 

Voltage 

Mag.(p.u) 

Computational 

Time (Secs) 

1st 10 0.1463 0.9039  

2nd 6 0.1373 0.9040 0.523409 

3rd 7 0.1325 0.9076  

4th 4 0.1043 0.9066  

5th 5 0.1039 0.9436  

6th 8 0.0896 0.9642  

7th 9 0.0626 0.9859  

Ranking 

Order 

 Load 

Bus 

No 

Qmax 

(Mvar) 

Traditional 

Approach 

   VCPI 

Voltage  

Mag.(p.u) 

Computational  

Time (Secs) 

1st 10 370 0.9728 0.5502  

2nd 4 450 0.9522 0.5667 98.509321 

3rd 6 550 0.8981 0.5624  

4th 7 600 0.7762 0.5871  

5th 8 700 0.6075 0.5907  

6th 5 800 0.4596 0.5970  

7th 9 900 0.2106 0.7807  

Rank Bus 

No 

L-Index Bus 

No 

VCPI Bus 

No 

NRSPF 

1st 10 0.1463 10 0.9728 10 0.1944 

2nd 6 0.1373 4 0.9522 6 0.1668 

3rd 7 0.1325 6 0.8981 8 0.1551 

4th 4 0.1043 7 0.7762 7 0.1500 

5th 5 0.1039 8 0.6075 5 0.1208 

6th 8 0.0896 5 0.4596 4 0.0271 

7th 9 0.0626 9 0.2106 9 0.0181 



22 
 

                                                Table 9:  Results of the traditional eigenvector centrality and the proposed eigenvector  

                                                                 centrality measures (IEEE 30-bus system) 

 

 

 

 

 

                                       
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     

 

 

 

                                      Table 10: Node type, Voltage Mag., and the proposed eigenvector centrality 

Bus 

 No 

Bus  

Type 

 Basecase 

Voltage  

Mag.(p.u) 

Traditional           

Eigenvector 

Centrality 

Proposed   

Approach 

Eigenvector 

Centrality 
LL

mEC
                           

7   PQ     1.0141     0.1682         0.1177      

8   PQ     1.0442     0.3011         0.2564      

9   PQ     1.0615     0.0783         0.0474      

10   PQ     1.0562     0.0498         0.0438      

11   PQ     1.0407     0.5127         0.6178      

12   PQ     1.0689     0.0516         0.0344      

13   PQ     1.0298     0.6109         0.7028      

14   PQ     1.0546     0.0046         0.0015      

15   PQ     1.0504     0.0104         0.0047      

16   PQ     1.0564     0.0067         0.0022      

17   PQ     1.0510     0.0131         0.0062      

18   PQ     1.0404     0.0012         0.0003      

19   PQ     1.0376     0.0018         0.0005      

20   PQ     1.0415     0.0054         0.0025      

21   PQ     1.0420     0.0365         0.0348      

22   PQ     1.0485     0.0069         0.0032      

23   PQ     1.0419     0.0324         0.0273      

24   PQ     1.0379     0.0031         0.0013      

25   PQ     1.0377     0.0015         0.0003      

26   PQ     1.0150     0.0001         0.0000      

27   PQ     1.0459     0.0153         0.0060      

28   PQ     1.0324     0.2579         0.1933      

29   PQ     1.0266     0.0008         0.0001      

30   PQ     1.0154     0.0005         0.0001      

Bus 

 No 

Bus  

Type 

 Basecase 

Voltage  

Mag.(p.u) 

Traditional           

Eigenvector 

Centrality 

Proposed   

Approach 

Eigenvector Centrality 
LL

mEC
           

4 PQ 0.9066 0.0472 0.0248  

5 PQ 0.9436 0.0606 0.0327  

6 PQ 0.9040 0.6982 0.6673  

7 PQ 0.9076 0.7056 0.7423  

8 PQ 0.9642 0.0069 0.0028  

9 PQ 0.9859 0.0815 0.0416  
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 Table 11: Bus data of the Southern 10 bus test system (Southern Indian 10 bus power system) 

  

  Table 12: Line data of the Southern 10 bus test system 

 

 

 

 

 

 

10 PQ 0.9387 0.0407 0.0192  

Bus 

No 

Bus 

code 

Voltage 

Mag.  

Angle 

Degrees 

Load  

 

  MW           MVAR 

Generator 

 

 MW      MVAR               Qmin      Qmax 

1 2 1.05 0 780 350 818 0 -50 400 

2 2 1.05 0 0 0 132 0 -50 400 

3 1 1.06 0 0 0 0 0 -90 400 

4 3 1 0 100 150 0 0 0 0 

5 3 1 0 250 125 0 0 0 0 

6 3 1 0 180 100 0 0 0 0 

7 3 1 0 250 100 0 0 0 0 

8 3 1 0 320 150 0 0 0 0 

9 3 1 0 340 120 0 0 0 0 

10 3 1 0 50 25 0 0 0 0 

From 

bus                       

To 

bus 

R (p.u) X (p.u) 1/2B Tap 

ratio 

1 2 0.00477 0.05103 0.72673 1 

3 8 0.00297 0.03706 0.47543 1 

3 9 0.00145 0.01802 0.93968 1 

7 5 0.0043 0.0477 0.637 1 

2 10 0.00676 0.03029 0.75003 1 

10 6 0.00546 0.02294 0.88836 1 

6 7 0.004 0.044 0.15 1 

1 4 0.00569 0.06008 0.79414 1 

7 4 0.00589 0.05995 0.7841 1 

7 9 0.00289 0.03603 0.46222 1 

1 5 0.00272 0.02872 1.51829 1 

5 8 0.00388 0.04834 0.6547 1 


