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Abstract

Refurbished or newly constructed utility-scale turbo-generator rotors requires stringent

acceptance testing before commissioning and subsequent operation thereof. Conven-

tional methods of testing are inadequate in detecting and locating thermally induced

problems. This paper presents a thermographic method for carrying out thermal insta-

bility testing of generator rotors. An experimental setup is used to map the thermal

distribution of the generator rotor. Implementation and testing of the method is carried

out in a laboratory setting using a down-scaled turbo-generator rotor.

Keywords: Turbo-generator rotor; thermographical analysis; thermal instability

testing.

1. Introduction

Modern large turbo-generator rotors are predisposed to thermal sensitivity owing

to their complex design, material composition and operating requirements. Manufac-

turing and refurbishment techniques introduce component variations which cause most

rotors to exhibit some level of thermal sensitivity [1, 2]. Thermally induced vibration5

in generator rotors is by far the most difficult problem to diagnose and correct. Symp-

toms may be a bowed shaft and a vibration signature linked to the excitation current,

but the possible underlying causes are numerous. It is especially difficult to physically

determine mechanically dynamic or electrical causes of the thermal imbalance without

excitation. A thorough inspection and methodical overhaul of the rotor in search of10
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anomalies will require the rotor to be separated from the stator. Since the exact condi-

tions that cause the thermal unbalance are not acting on the rotor, physically identifying

the anomaly is impracticable. This phenomenon is commonly referred to as thermal

instability/sensitivity. Conventional balancing techniques and acceptance tests are not

suited to detect and correct such problems [3].15

This paper presents a method for detecting thermal instabilities on newly built and

refurbished rotors using thermographic analysis. Through directly mapping the ther-

mal distribution of the surface of generator rotor, the method offers the possibility of

localising the root causes of existing instabilities. The initial concept and preliminary

results of the direct thermal mapping of a turbo-generator rotor was first presented in20

[4]. The presented research build on this with substantial improvements to technique,

and gives detailed description of the methodology together with results obtained from

implementation and testing in a laboratory setting.

2. Contemporary Thermal analysis of Generator Rotors

Electrically induced unbalance typically manifests from the thermal behaviour of25

the rotor. As the rotor is excited by an increasing current, the copper winding will

rise in temperature. The increasing temperature naturally causes the copper to expand

within the slots and overhang area, but not in proportion to the expansion of the steel

rotor forging, as the coefficient of expansion of copper is nearly twice that of steel. The

expanding copper will exert axial forces on the other components of the rotor – slot30

contents, body wedges, blocking and coil retaining ring assembly [5]. The heat gener-

ated within the winding will also be conducted through the steel body and dissipated

by the cooling medium. If this heat transfer process continues symmetrically along the

body of the rotor, a thermal unbalance will not be experienced. However, if the heat

transfer process or coil forces occur asymmetrically, an unbalance will be experienced,35

resulting in the bowing of the rotor body. The severity of the thermal bow will deter-

mine the amplitude of the vibration experienced at the bearings [6]. If the vibration

levels exceed the operating limits of the rotor, this can result in failure and the loss of

generating capacity.
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Thermal Instability Testing (TIT) is common practice for major utilities and is per-40

formed at specially designed balancing facilities or in situ to determine the thermal

behaviour of rotors [7]. TIT is generally performed after any major refurbishment

work which has been conducted on the rotor i.e. rewind, slot liner replacements, ma-

jor overhaul, retaining ring replacement etc. [8]. Two main testing methods are used

worldwide: 1) Direct current injection into the rotor winding -i.e. Current thermal45

instability testing (CTIT) and, 2) Windage or friction heating - i.e. Friction thermal

instability testing (FTIT). Different utilities prefer specific tests based on their own

propriety experiences. The variations in methodology and lack of published data sup-

porting either of the aforementioned tests create uncertainty as to which test is able to

best detect any latent thermal imbalances within the rotor assembly.50

The detection of rotor thermal sensitivity does not rely on any thermal character-

istics measured during testing but rather on vibration monitoring. A thermal bow as-

sociated with thermal sensitivity is detected via vibration data. Vibration data analysis

is currently the most widely used method for detecting problems with turbo-generator

rotors [9], however it does not directly assist with locating the problem area. Solutions55

to the problem generally involve a compromise balance for minor imbalances or a full

strip down for fault detection and repair for a major imbalance. Typical test proce-

dures do not adequately consider thermal characteristics of the rotor. Rotor winding

temperature may be determined using the following formula:

THot =
[( RHot

RCold

)
(234.5 + TCold)

]
− 234.5 (1)

where:60

TCold = reference temperature value,

RCold = winding resistance at the reference temperature,

RHot = winding resistance at the testing point, and

234.5 = thermal conductivity of copper.

In solving this equation, it is necessary to be aware of sources of uncertainty. Un-

certainty can be categorised as either epistemic or aleatory [10]. Aleatoric uncertainty

is characterised by the lack of predictability or intrinsic randomness of a phenomenon;
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epistemic uncertainty is characterised by a deficit of knowledge. This approach re-65

quires that resistance and physical temperature measurements be known at a specific

current and voltage level to obtain a reference value. Subsequent temperature rises can

be calculated by utilising the rotor resistance measurement. The resistance measure-

ment needs to be accurate and can be significantly affected by inaccuracies and errors

in voltage and current readings [11]. This form of temperature monitoring is relatively70

basic, as it does not account for hot spots within the winding but rather the average rotor

winding temperature. Furthermore, this method does not indicate the temperature of

the rotor’s other extremities such as the shaft, coil retaining rings, or rotor surface [12].

The uneven thermal profiles of all of these components can lead to thermal instability.

This drawback undermines the reliability of this model as a means to determine rotor75

thermal characteristics. It best serves to indicate average temperature while performing

TIT. Epistemic uncertainty is a feature of modelling methods such as presented in [13],

which arises due to the simplifying assumptions required for constructing a model of

a complex turbo-generator rotor. Accurately determining the thermal characteristics

of the entire generator rotor body would be invaluable in determining the differences80

between FTIT and CTIT through a more practical method that is not influenced by

epistemic uncertainty.

3. Use of Infrared (IR) Sensors

The shortcomings of contemporary methods for thermal analysis of turbo-generator

rotors must be overcome to improve acceptance testing processes. Rotor telemetry sys-85

tems have been devised to monitor rotor ground faults and temperature measurement

and have improved significantly over the past decade. Temperatures are monitored by

installing resistance temperature detectors (RTDs) within the rotor winding slots and

under the coil retaining rings. The connections are wired to an antenna mounted on the

rotor body. The antenna transmits the digitised temperature values to a data acquisition90

unit external to the generator [14]. This method is dependent on the number of RTDs

installed for accurate measurement of the thermal distribution of the rotor. Hot spot

detection may still be a challenge depending on the RTD layout. Furthermore, this
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method requires significant modifications to the rotor insulation system to facilitate the

installation of the RTDs and routing of the connections, which will involve substan-95

tial rotor disassembly. The invasive nature of the process would lead to further design

variations that could affect rotor operation and thermal performance. Therefore, this

method of temperature detection is ruled out for the experimental setup.

The widespread use of infrared thermography within the electrical industry has

been commonplace for a number of years [15, 16, 17, 18]. This non-contact, non-100

invasive method produces reliable and accurate results for fault finding and trouble

shooting. Temperature measurements are made possible by detecting the radiant flux

of an object; a temperature output is calculated through a calibration algorithm. Also

referred to as a radiation thermometer, many varieties are available on the market today,

from thermal imaging cameras to singular probes. Devices are able to measure a wide105

variety of temperature ranges and can operate at high speeds, making this approach an

ideal choice for the proposed approach [19].

4. Thermal Mapping

The presented method of data capture is in the form of a matrix of temperature val-

ues corresponding to the physical mapping of the surface of the generator rotor. This110

method transforms these temperature measurements and physical coordinates into a

2-D heat map. Simply put, the direct thermal mapping method present the 3-D temper-

ature data (of the rotor surface) as a 2-D heat map. A heat map consists of a number of

rectangular rows (angular position) and columns (axial length) that represent data val-

ues against a colour scale (temperature). This is a widely used method to display large115

matrices within many different fields such as natural sciences and biological science

[20, 21]. The experimental setup is able to capture surface temperature measurements

together with physical coordinates that is used to create a heat map for easy interpre-

tation and analysis of the thermal behaviour of the rotor under different thermal insta-

bility tests such as FTIT and CTIT. Furthermore, the rotor surface temperature map120

assists with root cause analysis and fault finding because it can be used to physically

locate irregularities on the rotor.
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4.1. Data Capturing

Data acquisition is facilitated via two streams. The data from the IR camera and

proximity probe interface is captured via a data-acquisition unit linked to a computer125

utilising proprietary software from the IR camera manufacturer known as Optris PI

Connect. The winding, ambient, and enclosure temperatures are captured via a separate

unit linked to a computer. All data is time stamped to facilitate data synchronisation.

An overview of the experimental layout and data acquisition is shown in fig. 1.

Figure 1: Experimental layout with associated instrumentation to capture the thermal profile of the rotor

4.2. Generating a Thermal Map of the Rotor130

The initial step in constructing the heat map is to define the IR camera resolution

pixel size that will correspond to the physical portion of the rotor to be measured.

The distance of the IR camera from the test object (rotor) determines the size of the

measurement pixel and therefore the map resolution. The further away the IR camera
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is from the test object, the larger the pixel size. The pixel size is also dependant on the135

optical lens fitted to the IR Camera.

A 20 kVA mini-rotor (shown in fig. 2) designed to mimic a 600 MW turbo-

generator rotor is used for validation and testing of the presented thermal mapping

method (constructional details given in table 1). A keyphasor probe is also utilised to

determine the angular position of the mini-rotor. This is achieved with the aid of a140

fixed collar with a machined notch and a proximity probe. An output is received when

the notch passes the proximity probe and indicates when one revolution has passed.

The output from proximity probe is measured in synchronism with rotor mapping in

order to determine when the entire surface of the rotor has been mapped - i.e. one

complete revolution. The following design specifications of the mini-rotor follows that145

of a utility-scale rotor:

• Two-pole, 3000 rpm, 50 Hz

• Distributed and concentric field windings

• Shaft-mounted slip rings with static outboard excitation

• Insulated pedestal bearings150

• Mono-block milled shaft with slots

• Damper bars

For the presented experimental setup, a wide angle lens (62o x 49o) is used to enable

full coverage of the mini-rotor body while maintaining the smallest pixel size possible

without compromising the capture of significant details. The mini-rotor body/core is155

500 mm in length with a diameter of 180 mm. The field of view of the camera is

adjusted to be able to monitor the entire rotor body. This is accomplished by using the

proprietary IR camera field of view calculation tool, illustrated in fig. 3. A distance

of 440 mm away from the rotor body is calculated to be the optimum field of view

by virtue of yielding the following dimensions: the width or horizontal field of view160

(HFOV) is 527.71 mm, the height or vertical field of view (VFOV) is 396.41 mm

and the diagonal or diagonal field of view (DFOV) is 659.52 mm. The instantaneous
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Table 1: Constructional details of down-scaled test rotor with large and typical turbo-generator rotor

Parameter Test rotor Turbo-generator rotor

Number of rotor Slots 32 32

Number of damper bars 48 48

Core diameter 178.5 mm 1165 mm

Axial length (shaft) 885 mm 10990 mm

Shaft diameter 67 mm 530 mm

field of view (IFOV) is the geometric dimension of each pixel and is calculated to be

1.38 mm. For optimum measurement results, a 3x3 pixel measurement block known as

the MFOV, or recommended smallest measured object size, is suggested by the source165

[22]. The MFOV is characterised by a group of pixels surrounding a central pixel.

The IR camera is rated at 80 Hz i.e. the ability to capture 80 samples per sec-

ond. The highest sampling accuracy to map the surface of the rotor is accomplished

by operating the rotor at 1 Hz i.e. 80 samples of the rotor body are taken during one

revolution. Sampling of the IR camera in actuality is measured to be 77 Hz for the170

experimental setup. From the determined sampling rate, the optimum measurement

pixel configuration is calculated as illustrated in fig. 4. The rotor circumference is

565.5 mm. Dividing this value by the sampling rate produces the required pixel con-

figuration size to map the rotor surface in the radial direction – 7.34 mm. The IFOV

is 1.38 mm, thus the number of pixels required in the radial direction is calculated175

by dividing 7.34 mm by 1.38 mm, yielding 5.31 pixels. Given that only whole pixels

are utilised for measurement, 0.31 pixels corresponding to 0.44 mm of the rotor body

will not be measured. This will result in approximately 94 % of the rotor body being
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Figure 2: Laboratory setup with mini-rotor used for testing and validation of the thermal mapping technique

mapped in the radial direction. The optimum number of pixels is the radial direction

is thus 5 pixels. In the axial direction, the optimal pixel number is chosen as 3, based180

on achieving a final pixel configuration closest to the optimum of 3x3. Thus, this final

pixel configuration is a measuring cluster of 3x5 pixels. This hybrid cluster conforms

to the 3x3 optimum measuring configuration as two central pixels are surrounded by

adjacent pixels. The number of clusters required to map the rotor surface is calculated

at approximately 120 (500 mm divided by 4.14 mm). The area not covered in the ax-185

ial direction is measured to be 0.78 mm which is considered as negligible as the rotor
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Figure 3: Field of view calculator used to determine camera pixel sample size for mini-rotor
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Figure 4: Heat map sampling pixel arrangement base on the field of view of the infrared camera

body covering has an overhang which is larger than the winding - i.e. the configuration

is able to map the winding in its entirety, as it is smaller than that rotor body length.

Figure 5 illustrates the array used to generate the heat map. The output of the array is

a matrix of temperature values that correspond to the rotor body. The data is processed190

and heat map generation is performed using Matlab. A high-resolution heat map is

generated containing a matrix of 120x77 temperature values.
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Figure 5: Pixel cluster measurement array used to capture the thermal profile of the mini-rotor surface

5. Experimental Validation and Testing of Mapping Method

5.1. Methodology

The presented mapping technique physically maps the surface of the mini-rotor.195

This method is able to take into consideration the non-uniformities of the mini-rotor

construction as opposed to only the idealised design. The salient requirement of the

experimental setup is to be able to detail the thermal distribution of the mini-rotor.

This is facilitated by the use of a heat map containing temperature values that represent

the physical thermal map of the rotor surface. The heat map facilitates the practical200

assessment of the thermal condition of the rotor and offers the possibility of evaluating

acceptance tests such as contemporary TIT methods. Furthermore, the heat map can

be interpreted to assist in fault finding. By defining a methodology to scan an array

of pixels on the rotor surface and utilising this data to form a matrix of temperature

values, it is possible to create a heat map.205

The experimental setup is unable to determine the heat distribution within the rotor.

This, however, is not the aim of the experimental setup and is not significant owing to

the nature of heat diffusion within the rotor body. Heat is diffused from the coils,

which are the heat source, to the surrounding components. The surface covering of

the rotor (fibre glass banding) is in close contact with coils, making heat diffusion210
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easily detectable. The direct monitoring of the winding temperature, however, will give

some indication as to the internal temperature of the rotor. To all intents and purposes,

surface monitoring will practically and adequately determine the thermal distribution

of the rotor. Furthermore, the 6 % non-coverage error margin in the radial direction is

found to be acceptable, as this does not represent a significant loss of area to prevent215

the accurate mapping of the rotor surface. The experimental setup is thus validated for

the purpose of thermal mapping of the mini-rotor body surface.

In order to validate and test the proposed method, mapping was carried out on

the rotor under two different forms of TIT - i.e. FTIT and CTIT, and an inter-turn

short-circuit fault on the winding. An enclosure was constructed out of 12 mm fibre220

board and insulated with a number of layers of Styrofoam to mimic the insulation

properties of a full-scale balancing facility. At the drive end of the rotor a face seal is

constructed around the bearing housing to enable the shaft to rotate without any loss of

air volume/heat within the enclosure. Rubber seals are also utilised at the base of the

enclosure. Figure 6 shows the experimental setup used including the IR camera used225

to perform the thermal mapping. Due to the maximum sampling rate of the camera,

the rotational speed of the prime mover is decreased to 60 rpm during the mapping

process. After completion of the mapping process the operational speed of 3000 rpm

is resumed. In addition to the surface mapping, the winding temperature, enclosure

temperature and ambient temperature were recorded.230

5.2. Results

FTIT is used to detect instabilities on a turbo-generator rotor under only the in-

fluence of air friction/windage while the rotor was operated at 3000 rpm. Therefore,

no current excitation is used during this test and heating of the rotor is purely due to

friction. For the presented work, this test was performed on the mini-rotor for a total of235

8 hours. The ambient temperature was measured at 20oC, and barometric pressure of

831.3 mb. The thermal map of the recorded surface temperature of the rotor during this

test is given in fig. 7. In this map, the x-axis represents the angular position of the rotor,

the y-axis represents the axial length of the rotor, and the colour scale corresponds to

the surface temperature of the rotor.240
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It should be highlighted that the specific temperatures in one mapped condition do

not necessarily correspond to the same temperatures in a map recorded under different

conditions. This intentional formulated in the design of the method as colour resolution

is limited and distribution of larger temperature scale of multiple maps will sacrifice

resolution a single map. Hence, comparison of different maps should take into con-245

sideration the relationship between the specific temperature scale and corresponding

colour for a particular test scenario.

The map given in fig. 7 shows uniform heating radially along the surface of the

rotor, and a temperature gradient of approximately 4.5oC along the rotor between the

drive and excitation ends of the rotor. The excitation end or non-drive end is at a higher250

temperature. In practice, this temperature is significant as relatively small differences

in temperature can lead to thermal instability. The root cause of this thermal gradi-

ent/uneven heating were suspected to be either bearing losses, rub at the non-drive end

or slip-ring brush-gear interaction. In order to determine the origin of the temperature

gradient, the brush-gear assembly was removed and the test repeated. The ambient255

temperature measured 21oC at a barometric pressure of 841.3 mb at the time of FTIT

re-testing. The recorded thermal map for the FTIT test without the brush-gear assembly

after 8 hours is given in fig. 8. Results indicate that the average surface temperature

of the FTIT test without the brush-gear assembly was approximately 23.5oC lower

thereby quantifying the thermal influence of the brush gear.260

CTIT is used to detect rotor thermal instability under different levels of current ex-

citation on the windings while operating at 3000 rpm. For the presented investigation,

the mini-rotor was excited incrementally at different levels based on the rating of the

mini-rotor - i.e. at 5 A, 10 A, 20 A and 35 A. The thermal map recorded after 210 mins

under 35 A current excitation is shown in fig. 9. The measured ambient temperature265

was 21oC, and barometric pressure 838.9 mb. The frictional effects of the brush-gear

assembly interaction are also observed during CTIT as a temperature gradient exists

between the drive and non-drive ends of the rotor. The rectangular symmetrical ar-

eas of higher temperatures are the pole faces and associated coils on the rotor. The

inter-pole areas are represented by the darker spaces on the map.270

An inter-turn short-circuit fault on the winding was used to test the fault detection
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Figure 6: Laboratory setup with thermal-insulation enclosure for mini-rotor and thermal imaging camera.

15



0 50 100 150 200 250 300 350

Rotor Angular Position (Degrees)

0

50

100

150

200

250

300

350

400

450

R
o
to

r 
A

x
ia

l 
L
e
n
g
th

 (
m

m
)

61 61.5 62 62.5 63 63.5 64 64.5 65 65.5(oC)

Figure 7: Experimental heat map of down-scaled synchronous generator rotor during friction-only thermal

instability test.
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Figure 8: Experimental heat map of down-scaled synchronous generator rotor without brush gear during

friction-only thermal instability test.
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Figure 9: Experimental heat map of down-scaled synchronous generator rotor with current excitation of 30 A

after 30 mins.
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capability of the present thermal mapping technique. Moreover, this test is used to eval-

uate the effectiveness of the technique in locating the physical position of the anomaly.

An inter-turn short was induced between turns six and seven on coil eight of one pole

of the rotor. Current excitation was applied at 15 A to the rotor while operating at275

3000 rpm. Figure 10 shows the thermal map of the rotor, under the fault condition,

after start-up with no current injected into the windings. Figures 11 and 12 show the

thermal maps of the rotor, under the same fault condition, after 30 s and 10 mins, re-

spectively, with 15 A current injected into the windings. These thermal maps show, in a

qualitative way, the consistency with which the presented mapping technique indicates280

the resulting patterns. For instance, in fig. 11, the thermal gradient is observed between

the affected area -i.e. approximate angular position of 100o on the non-drive end of the

rotor - and the surrounding area of the rotor. However, a similar thermal gradient can

still be noticed in the same position in fig. 12, after 10 mins, but at a higher average

rotor temperature thereby clearly indicating presence of the fault.285

6. Discussion

The principle aim of the presented research was to develop an experimental method-

ology for thermally mapping the surface of a generator rotor. The methodology is yet

to be commissioned for mapping the thermal behaviour of a full-scale rotor at a bal-

ancing facility. It is required that this technique be initially formulated, implemented290

under controlled laboratory conditions on a down-scaled rotor, and then validated be-

fore implementation on an actual turbo-generator rotor at a high-value plant. However,

particular consideration has been given to the specific implications of implementation

of the methodology on a full-scale rotor at the local balancing facility.

In the case of a full-scale rotor thermal mapping, initial testing require determina-295

tion of the precise emissivity of the rotor surface. This can be achieved through first

performing calibrated physical temperature measurements and thereafter comparing

the results to similar measurements performed using a calibrated laser guided pyrom-

eter. The IR measurement equipment can then be calibrated to match the value of the

determined emissivity. One of the significant challenges of performing thermal sensi-300
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Figure 10: Experimental heat map of down-scaled synchronous generator rotor with inter-turn short-circuit

fault and no current excitation.
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Figure 11: Experimental heat map of down-scaled synchronous generator rotor with inter-turn short-circuit

fault and current excitation of 15 A after 30 s.
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Figure 12: Experimental heat map of down-scaled synchronous generator rotor with inter-turn short-circuit

fault and current excitation of 15 A after 10 mins.

22



tivity tests at full-scale balancing facility is the controlling the effects of the magnetic

field generated by the rotor under current excitation. A water-cooled Faraday Cage

is typically utilised to contain and limit the effects of the generated fields which may

potentially obstruct the field of view of the IR camera used to perform the thermal

mapping. This can be overcome by utilizing multiple cameras to perform the mapping305

as opposed to the single camera used in the presented experimentally-validated test

case. Each camera would then observe different sections of the rotor, from outside the

cage, in synchronism which would enable a complete thermal map of the rotor surface

to constructed by merging the measurement matrices from each camera. Furthermore,

the use of multiple cameras, enclosed within cooling jackets to reduce thermal effects,310

will permit reduction of the cameras distance from the test surface thereby enabling

suitable measurement resolution and accurate thermal distribution mapping. It should

also be highlighted that a higher or equal resolution mapping on the larger rotor –

relative to the resolution achieved with the down-scaled prototype rotor – will not be

required as the thermal gradients across the larger rotor surface are not as steep.315

Automation of detection of thermal anomalies is also possible through the pre-

sented mapping method. The thermal map obtained provides set of temperature-physical

coordinates matrices that may be used comparatively against healthy or acceptable tests

cases. This will potentially further remove subjective/erroneous analysis by personnel

which is present in current instability testing processes. For a full-scale implementa-320

tion, the development of an automated approach will require extensive baseline thermal

mapping of a rotor under varying conditions to formulate an adequate database with

which to compare each new test instance.

7. Conclusion

Effective acceptance testing of large turbo-generators after maintenance, repair,325

rewind or manufacture is necessary to determine thermal stability and suitability for

service before commissioning. There are a number of tests that are carried out in prac-

tice but most of these are component specific tests that do not offer overall assessment

of the rotor. Vibration testing is commonly used for this purpose but it does not offer

23



detection of incipient problems nor does it assist with locating root causes.330

The method presented in this paper offers a solution to shortcomings of conven-

tional test techniques as it provides a means of directly mapping surface temperatures

to physical coordinates on the rotor. This methodology was validated and tested on

a down-scaled turbo-generator rotor in a laboratory setting. Three different test con-

ditions were used - i.e. FTIT and CTIT, and an inter-turn short-circuit fault on the335

winding. The thermal mapping method shows that the current injection resulted in a

heterogeneous distribution of temperatures along the rotor surface as opposed to the

homogeneous distribution by FTIT. These maps enabled effective root cause analysis

of an existing thermal gradient along the axial length of the rotor. The direct thermal

mapping method was also proven to be accurate and timeous in fault detection. The340

investigated inter-turn fault was located with a high accuracy. Accuracy and practi-

cability offered by the method offers an improved means of troubleshooting a failed

acceptance test, which has been found to be difficult when utilising current methods.
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