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Abstract

This thesis focuses on two different, but equally challenging, areas of
computational chemistry: transition metal organic molecule interactions
and parameterisation of organic conjugated polymers for molecular dy-
namics simulations. The metal-binding properties are important for un-
derstanding of biomolecular action of type 2 diabetes drug and develop-
ment of novel protocols for redox calculations of copper systems. In this
area the challenge is mainly related to the complex electronic structure
of the open-shell transition metals. The main challenges for the param-
eterisation of conjugated polymers are due to the size of the studied

systems, their conjugated nature and inclusion of environment.

Metal-binding properties as well as electronic structures of copper com-
plexes of type 2 diabetes drug metformin (Metf) and other similar, but
often inactive, compounds were examined using DFT method. It was
found that for neutral compounds it is not possible to explain the differ-
ences in their biological effects solely by examining the copper-binding
properties. Further, the proposed mechanism potentially explaining the
difference in the biomolecular mode of action involves a possible depro-
tonation of biguanide and Metf compounds under higher mitochondrial
pH which would lead to formation of more stable copper complexes and
potentially affecting the mitochondrial copper homeostasis. In addition,
redox properties of copper-biguanide complexes could interfere with the
sensitive redox chemistry or interact with important metalloproteins in

the mitochondria.

Understanding the copper-binding properties is also important for a sys-
tematic development and testing of computational protocols for calcula-
tions of reduction potentials of copper complexes. Copper macrocyclic
complexes previously used as model systems for redox-active metalloen-
zymes and for which experimentally determined redox potentials are
available were used as model systems. First adequacy of using single-
reference methods such as DFT was examined for these systems and then
various DFT functionals and basis sets were tested in order to develop

accurate redox potential protocol. It was shown that good relative cor-



relations were obtained for several functionals while the best absolute
agreement was obtained with either the M06/cc-pVTZ functional with
the SMD or either MO6L or TPSSTPSS functional with cc-pVTZ basis
set and the PCM solvation model.

Organic conjugated polymers have a great potential due to their applica-
tion in organic optoelectronics. Various wavefunction and DFT methods
are utilized in order to systematically develop parameterisation scheme
that can be used to derive selected force-field parameters such as tor-
sional potentials between monomer units that are critical for these sys-
tems and partial charges. Moreover, critical points of such a parameter-
isation are addressed in order to obtain accurate MD simulations that
could provide valuable insight into material morphology and conforma-
tion that affect their optical properties and conductivity. It was shown
that a two step approach of geometry optimisation with CAM-B3LYP /6-
31G* and single point (SP) energy scan with CAM-B3LYP /cc-pVTZ is
able to yield accurate dihedral potentials in agreement with the poten-
tials calculated using higher level methods such as MP2 and CBS limit
CCSD(T). Further, investigating partial charge distribution for increas-
ing backbone length of fluorene and thiophene it has been found that it
is possible to obtain a three residue model of converged charge distribu-
tions using the RESP scheme. The three partial charge residues can be
then used to build and simulate much longer polymers without the need
to re-parametrize charge distributions. In the case of side-chains, it was
found that it is not possible to obtain converged charge sets for side-
chain lengths of up to 10 carbons due to the strong asymmetry between
the side-chain ends. Initial validation of derived force-field parameters
performed by simulations of 32mers of fluorene with octyl side-chains
(PF8) and thiophene with hexyl side-chains (P3HT) in chloroform and
calculation of persistence lengths and end-to-end lengths showed close

correspondence to experimentally obtained values.
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Chapter 1

Introduction to Computational

Chemistry

Computational chemistry is a research field which uses a broad range of computa-
tional techniques, ranging from quantum mechanics to more empirical methods, in
order to solve chemically related problems. Nowadays, computational chemistry is
an invaluable tool not only able to complement experiments and provide detailed
insight into experimental results, but also make novel predictions and help to design
new materials and reactions. For example, it can be applied to predict NMR, EPR,
rotational, vibrational and electronic spectra. Further, calculating thermodynamic
quantities can provide information about activation energies of reactions, binding

affinities of complexes, reduction potentials and pK, values.

The choice of technique strongly depends on the many aspects of the system of inter-
est as well as question asked. Different levels of details about the studied system are
required when studying, for example, reaction mechanisms, spectroscopic transition
energies and intensities, solvent diffusion and protein folding. The first two would
require a detailed understanding of electronic structure, whereas atomistic or even
more approximate coarse-grain picture may be sufficient for the question of solvent
diffusion and protein folding. Moreover, some systems and calculations can pose
challenges due to complex electronic structure such as open-shell states, low-spin
metal complexes and excited states; and therefore more approximate methods may
not able to address these challenges. On the other hand, system size and the need

to account for environmental effects can be the limiting factor for other systems.

Ideally, solving the non-relativistic time-dependent Schrodinger equation it would
be possible to obtain the information about a molecular system with a very high

accuracy, however, anything more complex than the smallest few electron system



cannot be handled at this ab initio level. Therefore, in order to solve more complex
and chemically interesting systems some approximations need to be introduced.
For example, a full configuration interaction (CI) which is able to yield exact non-
relativistic description of the many electron system would be a suitable candidate.
Unfortunately, a full CI is computationally extremely expensive method for any but
the smallest gas phase molecules. For instance, if the full CI is applied to a water
molecule more than 3.8x10% configurations would need to be calculated. Thus, in
order to reduce the CI space and at the same time being able to accurately calculate,
for example, open-shell systems or excited state phenomena with multi-reference
character (different configurations have similar importance) methods such as Multi-
reference CI (MRCI), Restricted Active Space SCF (RASSCF), Complete Active
Space Self-Consistent (CASSCF) and Monte Carlo CI must be applied. Although,
these methods can potentially yield approximate CI wavefunctions and energies
that are as close as possible to the exact values, they can still be used only for
small systems. Moreover, the first three are not black-box methods and can be
especially challenging to use and when defining the important configurations (active
spaces). In the case when one dominant configuration is able to accurately describe
the system a single reference methods such as truncated CI (CISD), Mgller—Plesset
(MP2) or coupled-cluster (CCSD, CCSD(T)) may be applied to small to medium
sized systems (tens of atoms). Using local variants of some of these methods such
as local MP2, CCSD, CCSD(T) it may be possible to extend them to study larger
systems, however, at the same time these methods become less black-box and more
challenging to use. Density Functional Theory (DFT), which uses the electronic
density as a central variable, is very popular single-reference method applicable to
large systems (potentially hundreds of atoms). However, due to the fact that the
exact functionals are unknown and there is usually no systematic way of improving
obtained results by, for example, improving the size of basis set one needs to perform
a benchmark of various functionals in order to assess their accuracy and adequacy

for the studied system.

As mentioned previously size of the studied system is another important aspect to
consider when deciding which method to use. For example, highly accurate ab initio
methods can be applied to system of few atoms, but as the system size increases
more approximations need to be introduced or even replaced by empirical parame-
ters. Force-field methods is a family of methods using either experimentally or ab
initio derived parameters to describe atomic interaction and the classical mechan-
ics to describe the motion of atoms. These methods are applicable to simulations
of molecular systems potentially consisting of thousands of atoms. However, due
to the quantum phenomena being usually neglected in force-field methods these
cannot be used to study, for example, photochemistry and events such as bond

formation /breaking.



Environmental effects is yet another aspect one needs to consider when designing
computational experiment. For instance, environment surrounding a photoactive
chromophore, whether the photoactive molecule is in a solvent or embedded in a
protein, can significantly affect spectroscopic and photodynamical properties. The
electronic and molecular structure of a solute, can be influenced either directly
through electrostatic interaction (e.g. polarisation by environment) or indirectly by
imposed steric constraints on the solute geometry. It is possible to include some
environmental effects in the quantum mechanics calculations usually in a form of
implicit solvation where solvent is defined as a structureless dielectric continuum. In
the case of force-field calculations, such as molecular dynamics simulations, a solvent

is commonly included as explicit solvent or a combination of explicit /implicit solvent.

In order to realistically model, for example, complex biological systems with all the
necessary environmental effects and to avoid unreasonable computational costs a
so-called hybrid schemes are often employed. The hybrid techniques allow a more
robust way of considering the active site (e.g. chromophore) and the surrounding
environment (e.g. protein) by treating a system of interest at different levels of
theory. For example, a part where (photo)chemical reaction occurs is investigated
with more accurate QM method and the rest with computationally cheaper and
usually less accurate QM, molecular mechanical, semi-empirical methods or even
hybrid explicit/implicit solvent setup. Hybrid methods allow to apply advantages
from both worlds and treat much larger systems than it would be possible with
QM alone and study, for example, reactions and photochemical processes, which
would not be possible with force-field methods on their own. However, the main
disadvantage of these methods is they are not black-box and therefore require more

expertise and deeper insight into the studied system.

Another important aspect is whether one is interested in static equilibrium prop-
erties or dynamic properties of a system. Most of the methods mentioned above
allow description of important stationary points of a studied system on a potential
energy surface(s) and adiabatic (potentially also non-adiabatic) events connecting
them. However, in order to follow, for example, the excited state reaction path in
details, explore the configurational space and determine the time scales of various
phenomena it is necessary to reach for methods able to simulate the dynamic pro-
cesses. In photochemistry, two main classes of methods based on whether the nuclei
are treated as classical (often with the inclusion of quantum effects in semi-classical
approaches) or quantum particles are trajectory-based approaches and wavepacket
dynamics. The wavepacket propagation methods are computationally very demand-
ing due to the complete QM solution given in full dimensionality and thus appli-
cable only to small number of nuclear coordinates. From the force-field methods,

for example, molecular dynamics allows to explore the configurational space and



generate ensembles from which various properties can be calculated. However, clas-
sical molecular dynamics with predefined potentials is facing some drawbacks such
as need to account for all the different interatomic interactions of the studied sys-
tem as well as inability to account for quantum effects. Therefore, a family of ab
initio molecular dynamics methods is unifying molecular dynamics and ab initio
methods by computing the forces acting on the nuclei using, for example, DFT
method. These forces are calculated "on-the-fly" as the molecular dynamics tra-
jectory is generated. Although, these methods present some advantages over the
classical molecular dynamics, usually much smaller systems and shorter timescales

can be studied.

In this thesis two different areas on the scale of computational chemistry are ex-
plored. The first is related to understanding of transition metal organic molecule
interactions which are important in drug research and development of new proto-
cols for redox potential calculations of copper systems. In this part the focus is on
using accurate ab initio methods and the complexity mainly comes from open-shell
transition metal systems with potential multi-reference character. The second area
focuses on the development of schemes for molecular dynamics parameter deriva-
tion of conjugated materials in order to advance the field by allowing dynamics
simulation to start to understand how conformation affects morphology. This is
especially important as, for example, optical properties and conductivity are sen-
sitive to intra-molecular conjugation and excitation transfer dynamics is affected
by the inter-molecular alignment and separation. In this part the challenges and
complexity mainly comes from the size of the studied systems and inclusion of the

environment.

In the chapter 3 computational techniques of quantum chemistry are applied in order
to examine metal-binding properties of important type 2 diabetes drug metformin
and structurally similar compounds. The work in this chapter follows a previously
published experimental study which points toward the important link between the
copper-binding properties of these compounds and their biological effect. This chap-
ter answers some of the observed effects by examining the electronic structures of
the studied compounds and their copper-binding energies. Further, potential mech-
anisms involving metformin deprotonation and metformin-copper redox properties
are proposed that could explain the specific biological effects of metformin drug and

direct the future research.

Chapter 4 focuses on a systematic development and testing of computational proto-
col for calculation of reduction potentials of copper complexes. This chapter follows
the need for accurate redox potential calculations of copper-binding complexes and

indirectly stems from the discovery of previous chapter where redox properties are



implied as one of a potential mechanism explaining biological effects of the met-
formin. Copper macrocyclic complexes previously used as model systems for redox-
active metalloenzymes, such as blue copper proteins involved in the photosynthesis
in green plants, and for which experimentally determined redox potentials are avail-
able were used as model systems in this chapter. Further, some aspects of accurate
calculations of redox potentials of copper complexes are addressed and discussed.
This involves, for example, potential multi-reference character of metal-binding sys-
tems, spin contamination of open-shell molecules and appropriate choice of method,

basis set and solvation.

Chapter 5 is distinct from the previous chapters as its main focus is development
of scheme that can be used to obtain force-field parameters for simulations of large
organic conjugated polymers with potential application in opto-electronic materi-
als. These polymers are of great interest in rapidly expanding field of organic-based
opto-electronics. However, due to the size of studied system (hundreds of atoms)
techniques of classical molecular dynamics are more appropriate in order to un-
derstand and predict macroscopic properties based on the detailed knowledge of
structure-property relationship at atomic level. This chapter first systematically
tests and establish various ab initio computational methods required in order to
obtain accurate critical force-field parameters. In the next step, after force-field

parameters are obtained these are validated against available experimental data.



Chapter 2

Methods

In the following chapter basic computational theory used in the experimental part
is introduced. The first part describes ab initio wave function based methods. In
the second part Density Functional Theory is introduced. The chapter finishes with
the basic concepts of molecular dynamics theory and hybrid approaches combining

quantum mechanical and classical mechanical methods.

2.1 Ab tnitio Methods

Ab initio ("from the beginning" or "from first principles") methods apply the theory
of quantum mechanics in order to predict the properties of atomic and molecular
systems and to solve problems in chemistry. In quantum chemistry the wave func-
tion, ¥, is a central variable that contains all the measurable information about
a chemical system. It is used in the Schrodinger equation which plays the role of
the equation of motion (Newton’s laws in classical mechanics) and describes the

evolution of QM system in time.!

2.1.1 Schrodinger Equation

The time-dependent Schrodinger equation (TDSE) involves differentiation with re-

spect to both time and position:

H(r,t)

[_;‘—mA + V(r,t)] (r,t) = i% (2.1)



where H(r,t) is the Hamiltonian operator!, the Laplacian is: A = V2 = % +
g—; + g—;. In most cases, such as systems mainly composed of the first and the
second row elements, it is sufficient to take the non-relativistic Hamiltonian as the
velocities are small enough for the relativistic effects to be neglected.? The wave
function ¥(r,t) is a function of particle position, it is not an observable quantity,
but the square modulus of the wave function (the product of the wave function
with its complex conjugate), |W|*> = |[F*¥|, yields the probability of finding the
particle at that position r at a given time ¢. In addition, the normalized integral of
this probability density over all space must be unity (which simply means that the
particle must be somewhere in space). And in order to obtain a physically relevant
solution of the SE, the wave function must also be continuous, single-valued and
antisymmetric with respect to the interchange of electrons.?3

In the case of a time-independent potential energy operator we can separate the
wave function into a spatial and a phase factor part, ¥(r,t) = ¥(r)e "#*, and after
neglecting the phase factor we obtain the time-independent Schrodinger equation
(TISE, or in the rest of the text just SE):

H(r)¥(r) = E(r)¥(r) (2.2)

The H contains the sum of terms for nuclei and electron kinetic energies and poten-

tial energy terms: Coulomb repulsion and attraction of charged particles:
- h? h? ZaZp
7 (L LR SR L V2
(S o Tt ) i (e
+
St S )

1<)

(2.3)

where A and B run over all nuclei, 7 and j run over all electrons, A is Planck’s
constant divided by 27, m 4 is the mass of the nucleus A, m, is the mass of electron,
e is the charge on an electron, Z is an atomic number and |R4 — r;| = r;a is the
relative distance between the position of nucleus and electron. The above equation

can be expressed symbolically as:

H = (Tx + To) + (Vi + Vee + Vhve) (2.4)

fOperators (e.g. Hamiltonian operator, corresponding to the total energy of the system) are
associated with each measurable parameter and when they carry out a mathematical operation on
their eigenfunction (e.g. the wave function ¥) they produce the same eigenfunction multiplied by
a scalar value, eigenvalue (e.g. energy E) of the selected operator.



Although the time-independent SE (eq. (2.2)) simplifies the problem, we are still
able to solve it only for the smallest one electron systems (e.g. hydrogen atom).
Hence, approximations have to be introduced for the Hamiltonian H as well as for
the wave function ¥ in order to solve the SE for many-electron systems. Note that
the units used throughout this report are a so called atomic units. In this system
of units: the electric charge e, electron mass m, and reduced Planck constant A are
equal to 1. Then the units for distance and energy become bohrs (ag) and hartrees

(En), respectively.

2.1.2 The Adiabatic and Born-Oppenheimer Approximation

The total wave function depends on the positions of all particles and their spins,
however in the adiabatic approximation,it can be expressed as a product of a nuclear

and an electronic wave function

The Born-Oppenheimer approximation (BO) is one of the most important approxi-
mations that simplifies the molecular Hamiltonian by separating the electronic and
nuclear motions allowing definitions of concepts such as bond-lengths, bond-angles,
equilibrium structures and reaction barriers. This separation can be easily justi-
fied when we realize there is a large mass difference between electrons and nuclei
(a proton is ~1836 times heavier than an electron). As a consequence, electrons
in a molecule react instantaneously to displacements of nuclei and to a good ap-
proximation can be considered to be moving in the field of fixed nuclei. In this
approximation, the nuclear kinetic operator Ty = 0 is omitted from eq. (2.4) and
the potential energy operator for nuclei-nuclei repulsion Van can be considered for

the selected molecular geometry to be constant®:

~

He = (T2) + (Vax + Vee + Vi) (2.5)

where H, is the electronic Hamiltonian. And after solving SE for the electronic

Hamiltonian:

Fle%-(r; R) = Ei(R)¥i(r;R) (2.6)

we obtain the electronic wave function ¥;(r;R) which explicitly depends on the
electronic coordinates and parametrically on the nuclear coordinates as does the

electronic energies E;(R).

In the modern derivation of the BO approximation, the wave functions are adiabatic

electronic states’ (ground state (i = 0), first excited state (i = 1), second excited

"The adiabatic wave functions are orthonormal, [~ W7 (r,R)¥;(r,R)dr = §
Kronecker delta function (for i = j is 1 and 0 ortherwise)

ij, where 0;; is



state (i = 1),). Then the total (exact) wave function can be written as a sum of

products of the nuclear and the electronic wave functions:
=) (R, (r;R) (2.7)

where the expansion coefficients y,(R) are the nuclear wave functions. This in-
serted into the SE and expanded, followed by multiplication by the adiabatic elec-
tronic wave function ¥;(r;R) from the left (using the orthonormality of the ¥;)

and integration over the electron coordinates, we obtain the following set of coupled

equations?5:

> Hj;(R)x;(R) = ER)x:(R) (2.8)
Here Hy;(R) = [In + Vi(R)]d;; — Ay;(R) with the kinetic energy operator Ty =
> ﬁVR (expressed in atomic units), where 2M, is the mass of nucleus &, and

the non-adiabatic operator elements A;;(R) are defined as:

F(R) _ A .
Ai;i(R) = [ L Y,(r;R)|Vg, |¥;(r; R \V ! Vg ¥ (r; R
o) = 57 (G O IV 9,5 ) ) T (32 s W e R0

(2.9)
where F:(R) and Gy;(R) are the first- and the second-order non-adiabatic coupling
elements, respectively, expressed in the Dirac bracket notation ((|)). These coupling
elements connect individual electronic states via nuclear motion. In the adiabatic
approximation, where the nuclei move only on a single electronic potential surface,
FF(R) and Gj;(R) are very small and can be neglected. However, another crucial
requirement for these terms to vanish is that there must be a mass difference and
also electronic states must not be too close in energy to one another. Although,
coupling elements are ignored here, they play a very important role in the photo-
chemical reactions where the system involves more than one electronic surface and
this will be discussed later on in the section about conical intersections. In the BO
approximation, H;; is assumed to be diagonal and the resulting equation has the
form of SE:

[Ty + ViR (R) = Fros(R) (2.10)

Here the nuclei move on a potential energy surface (PES) V;(R) of a given electronic
state ¢ which is a solution to the electronic SE. Further, solving equation (2.10) for
the nuclear wave function yields the vibrational, rotational and translational states
of the nuclei.” The first-order correction to the Born-Oppenheimer electronic energy

due to the nuclear motion is the Born-Oppenheimer diagonal correction (BODC):

EDBOC = <W1(P,R)|TN|W1(T,R)> (211)



This correction is especially important for molecules with light atoms (e.g. hydrogen-

containing molecules) and its effect becomes smaller for heavier nuclei.®

Figure 2.1 shows an example a PES, a very important concept in chemistry, from
where we can obtain information about the minimum and transition state geometries

of the studied system.

Second Order Saddle Point

Transition
Structure B

Transition Structure A

Minimum for
Product A

Minimum
0 for Product B

-0.5

Second Order 0
Saddle Point
Valley-Ridge

Minimum for Reactant 05 Inflection Point

T4

Figure 2.1: Example of a PES (figure taken from?®).

Conical intersections (Coln) are a products of a so called nonadiabatic phenom-
ena, which are frequently found in photochemical and photobiological mechanisms.
During ground state reactions, thermal chemistry typically plays significant role,
where the excited state is usually several eV higher and the BO nonadiabatic cou-
pling terms, which depend not only on the mass but also on the energy difference
between electronic states, are neglected. However, in photochemistry one must deal
with situations where energy gaps between electronic states get smaller and smaller,
reaching the same magnitude of energy difference as vibrational states. This results
in stronger coupling between nuclear motion and electronic configuration changes
(vibronic coupling).? Ultimately, there are Coln points with infinitely large cou-
pling at AEpgs=0. At this points, the Born-Oppenheimer approximation that rep-
resents powerful simplification applicable for the nuclei movement on a single PES,
breaks down. In other words, when we recall the nonadiabatic coupling operators
A;;, where G;;(R) corresponds to the nonadiabatic correction to a single PES and
FE((R)) is the derivative coupling vector (of dimension equal to the number of

nuclear coordinates) that can expressed in the terms of energy difference as:

1 (@(r;R)| VR He[¥;(r; R))
M, V-V

Fh(R) = (2.12)

10



which for zero energy difference becomes infinity and provide the most efficient way

for radiationless transition between states.”

The topology of Coln is that of a double cone, with a so called branching space at the
apex. The branching space is spanned by the energy difference gradient g;;, and h;;

which represents the interstate coupling gradient and is parallel to the nonadiabatic

coupling *:
J0(E; — E;
OH
h;; = (C¢|8—5|Cj> (2.14)

where Cj;, C} are configuration interaction eigenvectors, H is the Hamiltonian and

¢ is a vector of Cartesian displacements.

Orthogonal to the branching space is a so called intersection seam, which lies for a
molecule with N™ internal degrees of freedom on the N —2 dimensional subspace

formed by an infinite number of connected Colns.

2.1.3 Hartree-Fock Method

The Hartree-Fock method (HF), also known as self-consistent field (or SCF method),
is a central ab initio method able to solve the electronic SE (eq. (2.6)) of a many-
electron system. The HF is often a starting point leading after some improvements

towards more accurate methods or after additional approximations to semi-empirical

methods.

The key aspect of the HF approximation is the assumption that the exact N-electron
wave function and associated energy of a system can be approximated by a single
expression of N spin-orbitals that is derived by applying the variational principle.
But before we establish HF theory in more details a few theoretical concepts need

to be presented.

First a spatial orbital ¢;(r) is defined as a wave function that describes the spa-
tial distribution of an electron and depends on the position vector r, such that
|;(r)|?dr is the probability of finding the selected electron within small volume dr
surrounding r. Further, in context of neglecting the non-relativistic effects and in
order to complete the description of an electron, we introduce electron spin. The
spin of an electron can be in one of the two states a (spin up) and g (spin down)

and these two functions obey the orthonormal conditions ({(«|a) = (8]8) = 0 and
(a|8) = (Bla) = 1).° Two spinorbitals x(x) = ¢;(r)a or x(x) = ¢;(r)3 can be

11



formed combining spatial orbital and either the spin function v or 3. In the case of
solving the electronic SE for a molecule, the term molecular orbitals is used for the

wave functions of electrons in a molecule.

After neglecting electron-electron repulsion a many-electron wave function, termed

as Hartree product, can be expressed as a product of spinorbitals for each electron:

U (xy, xq, o x) = xa(xa) X (%2) - Xa(xw) (2.15)

However, the Hartree product is inadequate since it is required for the electronic wave
function to be antisymmetric (change sign) with respect to interchange of any two
electron space and spin coordinates (since electrons are fermions with spin quantum
number of 1/2). Hence, an antisymmetric wave function is introduced in the form

of a so called Slater determinant®:

xi(x1)  xg(x1) o xw(xa)
Ul ) = \/% Xi(‘Xz) Xj(.Xz) Xk('X2) (2.16)
Xi(xn) xi(xn) o xk(xN)

where \/LNf, is a normalization factor and in each row all possible assignments of

electron ¢ to all molecular spinorbital combinations are presented.

Now, we will proceed with derivation of Hartree-Fock equations. First, the simplest
antisymmetric wave function, Wyess, able to describe the ground state of an N-
electron system is taken as a trial wave function (as the exact wave function is
unknown) in a form of a single Slater determinant. Given the trial wave function,

the expectation value E[V gyess] of the full electronic Hamiltonian ﬁe is expressed as:

E[\Ilguess] = <\Ijguess|He|\Dguess> (217)

where in this case the energy E[Wgyess] is a function of the trial wave funcion, which
is in turn a function of molecular spinorbitals. Further, in order to minimize the

energy the vartiational theorem for a normalized wave functions is applied:
Eapprox = <‘Pguess’ﬁe’qjguess> > Eexact (218)

Thus, we have a tool to judge the quality of an approximate wave function and
further improve our guess towards the limit of an exact wave function Ej by altering

the spinorbitals, but they must still remain orthonormal.

In the process of finding such spinorbitals x; that would lead to Ejy, an eigenvalue

12



Hartree-Fock equation (in typical form for closed-shell systems) is derived, which

determines the optimal spinorbitals®:

fl)x(x) = ex(x:) (2.19)

where f(7) is the one-electron Fock operator defined as:

Te —_—
. 1 2 l ZA HF ¢ -
F@) == Vi=> =V} (2.20)
2 Ay liA

Here, the electron-electron repulsion is substituted with the interaction of ith elec-
tron with the mean-field, V;'F{j} created by other electrons occupying orbitals
{j} (i.e. charge density associated with orbital x;). Hence, the complicated many-
electron problem is replaced by the one-electron problem. However, this implies
that mutual correlation of electron motion (electron correlation) is ignored. The

average potential VHF{ j} has the form V;HF{j} =" — K;, with the Coulomb

operator Jj defined as®:

o) = ([ bl de)xxxn ([ 2ax)uie) o)

and the Exchange operator K jt

Rt = ([ ) ) (22

T12

J#z

From the above equations we can see that V;'F{j} depends on the spinorbitals of
other electrons (i.e. Fock operator depends on its own eigenfunctions) and thus this

nonlinear problem must be solved iteratively using a so called Self-consistent field
method (SCF).

Finally, we can evaluate the energy of a Slater determinant composed of an optimised

set of molecular orbitals obtained from SCF as:

elec. elec.pairs
Z W+ D (i — Ky) (2.23)
1<j

with A being one-electron integrals, i.e. electron kinetic energy and electron-nucleus

repulsion.

In modern chemistry an unknown molecular orbital (MO) (guess wave function) ¥;

is constructed as a linear combination of known atomic orbitals (MO LCAO), i.e

13



an expansion of MOs in terms of the known basis functions ¢, >°:

Kpasis

U =Y Cudy (2.24)
pn=1

where C),; are the molecular orbital expansion coefficients and ¢,, are basis functions
chosen to be normalized. More on a mathematical form of basis functions will be

discussed in the section about basis sets.

In the atomic orbital approximation in order to solve the Hartree-Fock equations nu-
merically for molecular systems the operator eigenvalue equations eq. (2.19) are con-
verted to a matrix representation by first substituting the linear expansion eq. (2.24)

to obtain:
Kbasis Kbasis

f(rl) Z Cui¢u =¢&; Z Cm’(by (225)
p=1 p=1

Multiplying the above equations by a specific basis function on the left and inte-

grating yields matrix equations, a so-called Roothaan-Hall equations®!12:

Kbasis Kbasis
Y Cuildulf)lu) =2 Y Crilduldn) (2.26)
p=1 p=1

These can be compactly written as a single matrix equation:
FC =SCe (2.27)

where F is the Fock matriz, S is the overlap matriz of overlap elements between
basis functions and C is a K x K matrix of the expansion coefficients. Further, a
density matrix which is needed in the SCF calculation is obtained from the total

charge density:
N/2

= 22 |4i (1) (2.28)

by inserting the MO expansion (eq. (2.25)) into the above equation and then the

charge density matrix is defined as:
N/2
=2 % Clty(1) Y Cidulr)
7 v i

N/2

—Z 220 Coi | Du0)0} () (2:29)
Z wGu(0) 65 (r)
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Figure 2.2: Illustration of the SCF procedure.

where P, is a density matriz related to expansion coefficients C by P, = 2 va/ 2 CuiC;.
The density matrix is used in the SCF procedure together with the one- and two-

electron integrals to construct the Fock matrix:

nuc. 1
Fu =Tw+V,, Iy Z Pyo[(uv]oX) — §(u)\|al/)] (2.30)
HCOre AO—
(224 G\;V

In the equation (2.30) Hg' is the core-Hamiltonian matrix, which involves the
kinetic energy integrals 7}, and the nuclear attraction integrals V#n,}ld and G, is the
two-electron part of the Fock matrix involving the density matrix P and a set of

two-electron integrals.

The SCF procedure, illustrated in the Figure 2.2, is iterated until the new density
matrix is sufficiently similar (converges to within a selected treshold) to the previous

density matrix.

In the basis set approximation improving the quality of a basis set of atomic orbitals
leads to a lower and lower expectation value Ej, converging ultimately to the basis
set limit of the method, the so called HF limit. We have neglected the electron
correlation effect, but the HF limit is only a small step away from the exact (non-
relativistic) energy (in most cases it accounts for ~ 99% of total energy) and the

remainder of the energy is called the correlation energy Eeonr = Foxact — Fur.
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The correlation energy can be further divided into a static and dynamic electron
correlation. In order to understand the difference between these two correlations we
introduce an improvement to HF wave function (single slater determinant) by con-

structing a wave function as a linear combination of multiple slater determinants®:

U= ColpHF -+ Cﬂpl + CQ!I/Q + - (231)

where the coefficients ¢ represents weights of each determinant in the expansion as
well as ensures normalization. For most systems the HF wave function dominates
the linear expansion and the main contribution to correlation energy is due to the dy-
namic correlation, which is related to the instantaneous correlation of the movement
of electrons and tends to be made up from a sum of individually small contributions
from other determinants. However, static correlation takes place in situations where
different determinants have similar weights (i.e. configurations have similar ener-
gies) and thus a single configuration becomes inappropriate for an accurate system

description, e.g. stretched bonds and excited states.

There are various approaches trying to include the dynamic and static electron
correction into the HF calculation, referred to as electron correlation methods or
Post-HF methods. Some of these methods are, for example, Configuration Interac-
tion (CI), Coupled cluster, Mgller-Plesset perturbation theory (MPn, where n is the
order of correction), multi-configurational self-consistent field (MCSCF) and cou-
pled cluster theory (CC). Density functional theory (DFT), which will be covered
in more details in a separate chapter, is yet another approach capable of recovering

some of the correlation energy.

Solving the Hartree-Fock eigenvalue equation an unique set of spin orbitals, which
are called canonical spinorbitals, is obtained. These orbitals are diagonal matrix
representation of (1] f|1;) = £;0;; and also include the unoccupied spinorbitals as
additional eigenfunctions of f . The canonical spinorbitals are generally delocalized,
but since the Hartree-Fock state is invariant to unitary transformations among the
occupied spinorbitals ¥;,7 = 1,2, ..., N and canonical spin orbitals are just one pos-
sible choice of spinorbitals for the optimized N-particle state it is possible by unitary
transformation to generate an alternative more chemically intuitive picture of or-
bitals localized to individual bonds or atoms. The non — canonical representation
of the HF solution leads to a block-diagonal matrix form of the Fock operator with
two non-diagonal blocks that belong to the occupied and unoccupied spinorbitals,

respectively. '3

There are several variants of the HF method depending on whether any restrictions
are imposed on the spinorbitals used to build the trial wave function. For a closed-

shell systems near their equilibrium geometry, a Restricted Hartree-Fock (RHF)
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approach is usually used which allows to simplify the problem by restricting pairs of
«a and 3 spinorbitals to the same spatial orbital. In the case of open shell systems
there is a possibility to restrict only the spatial part of the doubly occupied orbitals
in a Restricted Open-shell Hartree-Fock (ROHF).% Other option for the open shell
systems is to use the Unrestricted Hartree-Fock (UHF) which uses two complete sets
of orbitals, one for the o and one for the § electrons. The advantage of UHF is that
it can perform very efficiently for an open-shell system and yields lower or equal
energy to a corresponding R(O)HF. On the other hand, the UHF wave function
is no longer an eigenfunction of the total spin operator, S?, which results in an
incorrect wave function that has some other spin states mixed in (a so called spin

contamination error).

Koopmans’ theorem provides a physical interpretation of the orbital energies ¢;, it
states that energies associated with orbitals y; are approximations to the ionization
energies of the system.® Given two systems one with N-electron Hartree-Fock sin-
gle determinant and other with (N — 1)-electron determinant, where electron was
removed from y,, will have in general different orbitals. But when we assume the
orbitals are identical ("frozen" orbitals), all the one electron terms cancel out ex-
cept for the unoccupied orbital x, (removed orbital) in the NV — 1 electron system.
Also, majority of the two-body terms cancel as well except for the ones involving

the removed orbital x,:

Nelec Nelec

1 1
Ey = Eyy=ha+ 5 > (Jia = Kia) + 5 ; (Juj — Kaj) (2.32)

i=1
The last two terms are identical and the ionization energy is given as:

Nelec
Ey—Enoi=ho+ Y (Ji— Kia) =2, (2.33)

i=1
From the above equation it can be seen that —e, is the HF approximation to the
ionization energy. Similarly, it can be shown that —e, of virtual spin orbital y, is
the HF approximation to electron affinity when, for example, an (N + 1)-electron
system is generated from an N-electron system. The error in this approximation is
due to the fact that orbital relaxation was neglected and this error becomes more
significant when more and more electrons are removed. Moreover, including the
correlation effects can correct further the Koopmans’ results for calculated ionization

potentials and electron affinities.
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2.1.4 Configuration Interaction

Configuration Interaction (CI), which is based on the variational principle, is in com-
parison to other correlation methods conceptually the simplest one.® Even though
without proper denoting, CI’s form has already been introduced in eq. (2.31). The
principle of the CI method is that it augments ground state HF wave function by
including additional configurations, i.e. it utilizes virtual (empty) orbitals where
electrons from occupied HF orbitals can be substituted (equivalent to exciting elec-
tron to a higher energy orbital). This has the effect that electrons can partially
spread across virtual orbitals and we can recover part of the correlation energy.
And thus the exact wave function can be constructed as a linear combination of all

the possible substitutions (configurations):

Singles Doubles Triples N —folds
U =™ Y S+ D PP+ Y du e+ Y N (2.34)
c? cP et N

G

where ¢ represents the weight of each determinant in the expansion, the first term
is the fully occupied HF ground state and the rest of terms represent, respectively,
orbitals that are Singly (sum of all the single substitutions), Doubly (D), Triply (T),
etc., excited relative to the HF configuration.® For the excited configurations ini-
tial MOs are taken from HF calculation and their coefficients held fixed. eq. (2.34)
represents a Full CI, the most complete non-relativistic treatment of the many elec-
tron system, within the limitations imposed by chosen basis set (i.e. Full CI yields
exact correlation energy for an infinite basis set). The full CI is well-defined, size-
consistent, size-extensive! and variational, however very computationally expensive
and feasible only for the smallest systems.” In practice, only truncated CI is used,
e.g. CIS that consists of the HF determinant with inclusion of single excitations,
CISD adds singles and doubles, etc. Unfortunately, a major disadvantage of trun-

cated CI methods is that they are not size-consistent nor size-extensive.

Brillouin theorem states that the Hamiltonian matrix elements between the HF
determinant and the singly excited determinants are zero ((®yp|H|®?) = 0), in
other words there is no mixing between the HF ground state and the singly excited
determinants. Although HF and singles are decoupled there is an indirect mixing
through higher excited states, for example, through double excited determinants.
One of the results of the Brillouin’s theorem is that single excitations in CI expansion
provide no improvement over the HF. Therefore, it is possible to eliminate the

contribution of singles completely by a suitable transformation involving mixing of

tSize-consistency: the energy calculated for a system of infinitely separated molecules should
be equal to the sum of the energies for individual molecules. Size-extensivity: the energy scales
linearly with the size of the system.
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occupied and unoccupied orbitals that produces a so called Brueckner orbitals. This

14,15

transformation in terms of 7} = 0 is applied in the Bruckner theory , which is a

variation of the coupled cluster theory.

Natural orbitals and reduced density matriz are important concepts potentially lead-
ing to more rapidly convergent CI expansion and are often used in evaluation of
which orbitals should be included in, for example, MCSCF wave function. The
reduced density function for a single electron in an N-electron system, defined as
the probability of finding an electron in dx; at x; independent of position of other

electrons, has the following form:

p(x1) = N/(I)*(Xl, ey XN) P (X1, ooy Xy )dXg - - dX )y (2.35)

where N is the normalization factor ensuring the integral of the density equals the
total number of electrons and ® is a normalized wave function. From there, the

first-order reduced density matriz vy(x;,x}) is defined as:

v(x1,x)) = N/q)*(Xll,Xg, oy XN )P (X1, X2, ooy Xy )dXa - - - dX N (2.36)

In the above equation the diagonal element is the density of electrons vy(x1,x;) =

p(x1). The equation (2.36) can be generalized to define the reduced density matrix

of order k, ;, 16:

Ve (X1, o Xp, Xp 5 X

Nelec
* / /
= ( ? D* (XY, o Xy X1+ XN ) | P(K1y oo Xy X1 XNy ) AKXt~ - - AX N,

(2.37)

The first-order density matrix defined in the basis of HF spin orbitals may be diago-
nalized to obtain eigenvectors a so called Natural orbitals and eigenvalues a so called
Occupation Numbers. For the single-determinant HF the occupation numbers (di-
agonal elements) are ones for occupied spin orbitals and zeros for unocuppied spin
orbitals (alternatively 2 or 0 in the case of RHF).® The occupation numbers may
have fractional values between 0 and 2 in the case of multi-determinant wave func-

tion (CI, MP, CC, MCSCF).

When the configurations in the CI expansion are constructed from natural orbitals
with the largest occupation numbers this leads to fewer configurations required (at
a given accuracy) and hence much faster convergence of the expansion. Another
application of the natural orbitals is, for example, in the MCSCF active space con-

struction when importance of included orbitals is evaluated.
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2.1.5 Many Body Perturbation Theories

Many body perturbation methods is yet another family of methods trying to bring in
the missing dynamic electron correlation and improve the hartree-fock solution. In
contrast to, for example, truncated CI energy calculated by most of the perturbation
methods scales correctly with the system size and therefore they are size-extensive. '
Further, effects of higher order excitations can be included more efficiently than in
the case of configuration interaction by combination of contributions of most im-
portant high order excitations with low order excitations. The main disadvantages
of many body perturbation methods are in many cases slow convergence and that

they are in general non-variational.

The main idea behind the perturbational approach is to apply a small perturbation
(V) to the well described non-perturbed system (Hy) in order to estimate solution

to a more complete perturbed system. This can be expressed as:
H=Hy+\V (2.38)

where )\ is a dimensionless parameter that determines the strength of perturbation.

The zero-order unperturbed Schrédinger equation has the following form:
Hy®, = EVo, (2.39)

The solution to the unperturbed SE form an orthonormal complete set (®,,|®,) =
Omn- Considering the time-independent perturbation and a non-degenerate refer-

ence wave function the perturbed SE can be written as:
HY, = E, U, (2.40)

At the limit of A — 0 U = ®, and F, = EY. Increasing the perturbation to
a finite value energy and wave function must also change continuously and can be

expanded in series of A:

U, =0+ xp = O + AT 4 1203 4.

2.41
E,=EY +AE, =EY + \E® + NE® + ... 24

Substituting eqs. (2.41) into SE eq. (2.40) with the perturbed hamiltonian expressed

as in equation (2.38) and collecting terms with the same power of \ gives the fol-
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lowing equations'?:

(Hy— EONw® =0 (zero order)

(Hy — EONYo) = (EW — v)g© (first order)

(Hy — EOY® = (B —vyul® 4 g@g© (second order)
m—2

(Hy — B = (B = V)wi=) + 3" gim =gl (mth-order)
1=0

(2.42)

The mth-order equation can also be rewritten as:
(EV — H)wim = ygim-b 1 N pin-Dg0) (2.43)

For example, in order to solve the first order equation for A\! to obtain expression for

E,Sl), (P, is applied to the equation and after integrating it results in the following

equation:
((Hy — ED)®,, |W)) = BV — (@,|V|@,) (2.44)
N :6 v \ ~ ,

and from there the first-order correction to the energy is obtained as:
EY =V, (2.45)

Similarly, it is possible to obtain each E{™ without the knowledge of U™ using the
previous \Ifémfl) and then solve the inhomogeneous differential equation for \I!%m). 13
A condition of intermediate normalization ((IDn|\II$1m)) = 0 (m > 0) is applied for
each order in order to achieve that correction terms are orthogonal to the reference

wave function.

In order to solve the inhomogeneous differential equation to calculate the mth-order
correction to the wave function W{™ this unknown function is expanded in terms of

known zero-order solutions ®y.

U =3 =D @) (@) (2.46)
k k

(m)

where a,,, (D] T™) are expansion coefficients to be determined. In order to

(m)

calculate a,,’ the mth-order equation is multiplied by (®;| and integrated to yield:

m—1
(DR B — Hp| U0y = (@ VWD) =" Er-l(@el)  (247)
N = J/ _/_/ — N, e’
TN 5@V w ) —af)
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which becomes

(EO — E)a{™ Zv,w (m=1) ZE Dall) (2.48)
=0

and since the overlap integrals between different solutions of the same SE are 0,
the 1=0 contributions are a,(g) (®g|P,) = Ogn. The above equation leads to series
of equations for the a,(m) coefficients, which are solved order by order. One thing
to notice is that the choice of intermediate normalization for each order results in

ol = dmo- The first-order equation is defined as (since a,(gf = Okn):

(E® — E™)eD — v, — EW® = v, (n # k)

and from there the first-order coefficient becomes:

1 Vin
A, = E(o) E(o) (n #k)

(2.50)

substitutting the above solution into the equation (2.46) yields the first-order cor-

rection to the wave function:

Vi

N P — (n # k)

n 0 0

Ty
(2.51)

which can be used to obtain the second-order energy correction as:
ED = (2, [V[T1) =" af) Vi (2.52)
k
an 2

Vi (n#F)

- ET(LO) B EliO)

These steps can be repeated in order to calculate higher order corrections to the
energy and wave function. The knowledge of the mth-order wave function o for
[ =1,2,...,m actually allows a calculation of the (2m + 1)th-order energy by ap-
plying a so called Wigner’s rule.!3

The general theory introduced above is also known as Rayleigh-Schrodinger per-
turbation theory. In order to use this theory for calculations of correlation energy

an unperturbed Hamiltonian has to be selected. Mgller-Plesset perturbation theory
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uses the partitioning of the Hamiltonian based on the HF reference function and the
Fock operator. The unperturbed hamiltonian has the form of Hy = nyjiec F; and
the perturbation operator is defined as the exact electron-electron repulsion oper-
ator minus twice the averaged electron—electron repulsion V= V;e — 2(V,.).% The

total energy with correction up to order m can be expressed in MPm notation as:

elec

M PO = E(M P0) Zs, (2.53)

MP1 = E(MP0) + E(MP1) = E(HF) (2.54)

In this partitioning the zeroth-order wave function is the HF determinant and the
zeroth-order energy is described as a sum of molecular orbital energies. The first-
order energy correction brings in a correction for counting the electron-electron
repulsion twice at the zeroth-order and is exactly the HF energy. Since MP1 does
not provide improvement beyond the HF level in determining the energy at least
the second-order correction must be used in order to obtain estimate of correlation
energy. In order to evaluate the second-order correction within a finite basis set
approximation all possible excited Slater determinants are constructed from the HF
reference. After application of Slater-Condon rules, which is a set of rules for matrix
elements evaluation between Slater determinants, to matrix elements involving two
different Slater determinants and also applying Brillouin theorem ((® 7| H|®%) = 0,
where ®¢ is a singly excited determinant) the second-order energy correction only

involves a sum over doubly excited determinants and can be obtained as follows:

occ wvir

MP2 ZZ ¢l¢j|¢a¢b <¢Z¢j|¢b¢a>) (255)

€ +tEj —€Es—¢€p

1<j a<b

As mentioned previously perturbation methods are in general non-variational and
therefore obtained energy may fluctuate around the exact value (i.e. may be even
lower than the exact energy). Moreover, calculations may suffer with convergence
problems when the HF reference is a poor zeroth-order approximation. On the
other hand, the main advantage of MP2 is that it is size-extensive method. More-
over, MP2, which is able to recover 80-90% of the correlation energy, is one of the

computationally cheapest methods for the correlation energy calculation.®
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2.1.6 Coupled Cluster

Coupled cluster (CC) theory is an elegant technique for estimating the electron
correlation energy of small to medium-sized molecules. The main idea behind CC
is using the exponential ansatz for the excitation operator 7', which leads to the full-
CI wave function within the basis set approximation and thus provides the exact

solution to the time-independent SE.
The excitation operator T is defined as:
T:T1+T2+T3+“'+TNelec (256)

where 7T; is an excitation operator generating ith excited Slater determinants from

a HF reference wave function®:

Ty B = Z it?@f (2.57)

occ wvir

Ty®o=» Y tros (2.58)

1<j a<b

where t are the expansion coefficients also often called amplitudes. For example,
in the above equations T} and T, generates all singly and doubly excited states,
respectively. In the case of CI theory CI wave function is generated from a HF

wave function by excitation operator as:
Vo =(14+T)00=1+T1+ T+ T+ )P (2.59)

In contrast the CC wave function U = el @ is generate by applying an exponential

operator:

_ Lo 3y k
=1+T+57°+ T Zk'T (2.60)
Substituting the excitation operator defined in eq. (2.56) into the above equation

and rearranging the excitation exponential operator can be written as:
T _ l 2 1 3
_1+T1+(T2+2T1)+(T3+T2T1+6T1)+-~~ (2.61)

The first term generates the reference HF, the second all singly excited states and
following terms higher order excited states. For example, the first paranthesis gen-
erates all doubly excited states, the second paranthesis all triply excited states and
so on. Further, terms in paranthesis can be divided into "true" or a so called con-
nected (Ty, T3,...) terms and "product" or a so called disconnected (T2, TyTy, TY,...)

terms.% The connected terms represent and instantenous interaction of n number of
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electrons (e.g. four electrons for Ty) and disconnected terms, such as T7, represent

two non-interacting pairs of interacting electrons. At each excitation level the CC

wave function, in contrast to the CI wave function, contains additional terms for

products of excitations. Solving the Schrédinger equation with the coupled cluster

wave function variationally the energy and the amplitudes are determined as:
(L+ T+ 372 TN\ H|(1+ T + 172 1TV )

Evar — : - 262
O AT I TN (LT + 3T TN D) (262)

However, using the variational approach leads to a series of non-vanishing terms up
to order Ngee, which is difficult to solve for all but the smallest systems.'” Instead,
in the standard formulation of CC a more manageable approach is applied where the
CC SE, HeT®, = EeT®,, is projected onto the reference wave function, multiplied
from the left by ®f and integrated to eventually obtain the equation for the CC

energy:

(Do| HeT|Dy) = Eoc(®gle” @) (2.63)
Ecc = (Bo|HeT | D) (2.64)

Inserting eq. (2.60) into the above equation and after using the fact that the Hamil-
tonian contains only one- and two-electron operators the following equation are

obtained®:

- 1
Ecc = (®|H(1+ Ty + Ty + 5Tf)|<1>0> (2.65)
A . A 1 A
Ecc = (QolH|Po) + (Po| H|T1Dg) + (Po| H|T2D0)) + §<‘I’0|H|T12<D0> (2.66)
Ecc=Eo+ Y > tH(@o|H|®) + > > (150 + tith — tt9) (Do | H|DSF)  (2.67)
i a 1<j a<b

=0

where the second term in the last equation is equal to zero due to the applica-
tion of Brillouin’s theorem when HF orbitals are used for constructing Slater de-
terminants. Further, the third term (®o|H |@7?) represents two-electron integrals as
(Di0j|Par) — (Pidj|Ppda). From the above it can be seen that in order to determine
the coupled cluster correlation energy the singles, doubles amplitudes and the two
electron integrals need to be calculated. One way to determine amplitudes is to

apply a similarity transformation of the Hamiltonian operator:
e THe'®y = Ece®, (2.68)

where CC SE was multiplied by deexcitation operator e~7 from the left. From there

the projected energy equation and amplitude equations are obtained by multiplying
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with the reference state and an excited state, respectively, as:

(Dole T HeT |®y) = Ecc (

(@¢ le"T HeT|®g) = 0 (2.70
(@]l He | @) = 0 (
(

In the first equation since e~ 7

is deexcitating the reference function, which is impos-
sible, (®gle™ = (®y|. The second equation describes e™? acting on singly excited

determinants ®¢ which results in:

N 1 1
(07, (1 -T)[H|1+ Ty + (T2 + D) 2)+ (s + Ty + G 7)) ®o) =0 (2.73)

where from the infinite expansion only certain terms survive using again the fact that
the Hamiltonian operator contains only one- and two-electron terms and due to Bril-
louin’s theorem terms involving singly excited states and the reference wave function
are zero. The eq. (2.73) represents a coupled set of equations for single, double and

T is working on ®¢/

triple amplitudes. Similarly, when the deexitation operator e~
the reference HF, singly and doubly excited states are generated and the resulting
equation contains additional terms for quadruple amplitudes and connected terms.
Following this procedure equations for higher order amplitudes and additional con-
necting amplitudes can be generated by projecting the deexcitation operator against
higher excited determinants. However, in practical calculations it is not possible to
include all cluster operators up to T, which would lead to the coupled cluster wave
function equivalent to the full CI wave function, and thus a truncation to the cluster
operator expansion has to be introduced. Truncating the T operator leads to the
coupled cluster energy being approximate due to some of the derived amplitudes
not being exact. The impact of truncation on the calculated energy depends on
the excitation level at which truncation is introduced and importance of this level
contribution to the overall energy. For example, truncating at double substitutions
from the Hartree-Fock determinant (7" = T3) leads to the lowest level of approxima-
tion often referred to as Coupled Cluster Doubles (CCD).% A popular CCSD include
both single and double substitutions (IT" = T} + T3). Higher order truncations such
as CCSDT are rarely used but for the smallest systems and rather, such as in the
case of a more popular CCSD(T), a full treatment of singles and doubles is included

together with an estimate to the connected triples contribution.

When comparison is made between CC and CI, in both methods we are trying to
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generate full CI from the reference HF wave function by applying (1+7") in the
case of CI and e in the case of CC. The advantage of using the exponential of T
becomes apparent when truncation of 7" is introduded in both CI and CC. As an
example, when excitation operator is truncated at double substitutions (73), the

Taylor expansion of the exponential function leads to CCD:

T2 T3
Ueep = € Upyp = (1+T2+2—2,+3—2,+---)\11HF (2.74)

In the above equation the 1 + 75 terms define the configuration interaction with
all double substitutions (CID) method and the remaining terms involve products of
excitation operators (quadruple, hextuple substitutions,...). The inclusion of these
products of excitation operators is the reason for size-consistency of CC method.*
Moreover, with increasing number of electrons method such as CCSD is thanks to

the disconnected terms able to recover higher percentage of the correlation energy

than CISD.

2.1.7 Multi-Configuration Self-Consistent Field

Another class of methods able to recover part of the HF missing electron correlation
energy, in this case static correlation, are multi-configuration self-consistent field
(MCSCF) methods. They are in principle CI methods that in addition to calculation
of expansion coefficient also optimize MOs used for construction of the determinants
in order to minimize the energy for a given CI wave function. They achieve this,
similarly as in HF method, by using the SCF procedure. In the original HF theory,
there are only two types of orbitals, occupied and unoccupied (virtual). In MCSCF
an orbital space is partitioned into different sub-spaces, in order to obtain the most
important configurations, where the electrons obey rules specified for that particular
sub-space. '

One of the most common approaches is the Complete Active Space Self-Consistent
Field (CASSCF) method. In the CASSCF, orbitals are divided into inactive (core
orbitals), active and virtual orbitals. Here, the inactive orbitals are always doubly
occupied, the active space orbitals typically include choosen valence orbitals together
with some of the lowest unoccupied MOs, and virtual orbitals represent the rest
of the unnoccupied orbitals. A full CI expansion is performed within the active
space orbitals which yields accurate representation of the potential energy surface
for virtually any type of electronic state: closed or open shell, ground or excited
state, neutral or ionic, etc.'® This also allows to recover a major part of the static

correlation, if the active orbitals are chosen well.'® However, the choice of active
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orbitals is not a trivial task and knowledge about the studied system and related
chemistry is needed. Furthermore, we are limited in the size of the active space as

inclusion of all the valence electrons is impossible for all but the smallest systems.

A mean to overcome the problem with the size of the active space is presented in
a so called Restricted Active Space Self-Consistent Field (RASSCF) method, which
divides orbitals into three sections RAS1, RAS2 and RAS3.¢ Here, RAS1 and RAS3
represent in the HF reference doubly occupied and unnocupied orbitals, respectively.
Further, both RAS1 and RAS2 have limitations on the allowed excitation levels
(occupation numbers), i.e. only n number of excitations are allowed from RAS1
and to RAS3 (e.g. CISD). RAS2 is similar to the CASSCF active space where
usually all the excitation are permitted (the Full CI). Sometimes an additional step
is included by freezing the shapes of the core orbitals to the initial HF orbitals. A

comparison of different orbital space partitioning is depicted in the Figure 2.3.

0 P — _ Frozen HF
VOs
- VOs | -
Virtual | _ |RAS3|
orbitals
VOs - - -
( ) Active
oy Space Al 0,1o0r2
RAS2 ?xmta- excitations
_H_ _H_ _H_ ions
Occupied 1 | 1 | ; |
°[?>'t§§; | O0s| 44 |RrAsT |-
? {I 1 | Frozen HF
OO0Os
HF

CASSCF RASSCF
Figure 2.3: Illustrating orbital partitions for HF, CASSCF and RASSCF methods.

MCSCF methods provide a very powerfull tool for investigation of multi-configurational
states and conical intersections typical in, for example, photochemical reactions.
Moreover, where needed it is possible to include some dynamic correlation to the
CASSCF calculation by complementing it with, for example, the second order per-
turbation theory (MP2) in a so called CASPT2 method.

2.1.8 Basis Sets

In order to approximate the unknown molecular orbitals these are expressed as
an expansion of known mathematical functions, denoted as basis functions. More

mathematical functions are used, lower are restrictions on an electron location in
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space thus simulating the true quantum nature of being anywhere in space, and it
results in better description of orbitals. In principle any type of basis functions may
be used, such as Gaussian, plane waves, etc., but when it comes to the choice of
basis functions they should agree with the physics of the problem and be able to
adequately describe the studied system. For example, for atomic and molecular sys-
tems functions such as Slater functions (exp(-(r)), denoted also as STO (Slater-type
orbitals), and Gaussian functions (exp(-(r?)), which is similarly denoted as GTO,
are suitable choice as both of these functions and go towards zero with the increasing
distance between the nucleus and the electron. On the other hand, the use of plane
waves may be more appropriate for the use with periodic systems. Further, when
choosing basis functions it should be easy to solve the required integrals with the

chosen functions and they should converge relatively quickly.
Slater-type functions expressed in cartesian coordinates have the following form:
o(r) = zly™2"e (2.75)

where 1 = \/m and L = [+ m + n is similar to the angular momentum
(L=0,1,2,3,.. as s,p,d, f,...). These type of functions are useful for calculations
on atoms as, for example, s-type Slater functions are similar to hydrogenic orbitals
and have proper analytical structure with good description at singularities (nuclear
cusp) and exponential decay. However, it is very difficult to compute matrix ele-
ments for molecular systems with the Slater type orbitals. Therefore, other type of
basis functions such as atom-centered Gaussian functions are commonly used. The
Gaussian functions, also referred to as primitive GTO, in the cartesian coordinates

can be expressed as:

2

P(r) = zlym e (2.76)

where L = [+ m +n is referred to as the angular momentum. These functions tend
to decay at infinity faster than Slater functions and s-type Gaussians are missing
nuclear cusp, but it is much easier to compute matrix elements using Gaussians.
An example of STO and GTO function is depicted in the Figure 2.4.

As mentioned previously, although STO functions have better description for elec-
tron density they are computationally more expensive and hence this problem is
circumvented by constructing the STO basis function as a linear combination of
computationally more convenient gaussian functions. In practice, a so called con-
tracted GTOs (CGTOs) are used, which are smaller sets of functions formed from

fixed linear combinations of primitive GTOs:

n

X(®) = cidi(r) (2.77)

=1
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Figure 2.4: An example of STO and GTO function.

where ¢; are contraction coefficients. The main reason behind using CGTOs is the
fact that the molecular orbital expansion coefficients in front of the core electron
basis functions change very little. Therefore, reducing the number of exponents to
be optimized by a variational calculation using the constant variational coefficients
in front of the inner electrons it is possible to dedicate more computational effort to

description of chemically more interesting outer valence electrons.

One example of STO basis set constructed from GTOs is a STO-3G that used three
GTOs to simulate one STO. The STO-3G basis set is also known as a minimal basis
set, which means it contains the smallest number of basis functions that are needed
for all the electrons of each neutral atom.” For example, this means two s-functions
(1s and 2s) and one set of p-functions (2p,, 2p, and 2p,) for the first row in the
periodic table. The problem with minimal basis set is the lack of flexibility when, for
example, bonds are formed and thus an improvements need to be introduced. Split
valence, also reffered to as n-tuple-¢ (double-zeta, triple-zeta, etc.), basis sets are the
first example of improving the minimal basis set that alows orbitals to change size
by inclusion of two or more basis functions for each valence orbital. A further way
of making basis set larger (better) and especially to account for orbital polarization
in molecular environments is to include higher angular momentum in a so called
polarized basis set, which allows orbitals to change shape. The last way of enhancing

basis set is to enlarge it with diffuse functions, a large versions (smaller exponent
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() of standard valence-size functions that enables orbitals to occupy a larger area
of space. The diffuse functions are especially important for systems with loosely

bound electrons such as anions, Rydberg states and excited states.

An example of an actual basis set commonly used is 6-31+G(d,p), which contains 6
GTOs for core orbitals, 3 GTOs for the first STO of the valence orbital and 1 GTO
for the second STO description. Moreover, it contains d orbital functions on heavy
atoms and p orbital functions on hydrogen atoms. This basis set is completed by
adding diffuse function to heavy atoms only. The above introduced STO-3G and
6-31+G(d,p) basis sets are from a family of Pople style basis sets developed by John

Pople and co-workers.

Correlation consistent (cc) basis sets developed by Dunning and co-workers represent
a family of basis sets which should be mostly used with correlated calculations such
as coupled cluster and Mgller-plesset methods. In contrast to, for example, Pople
basis sets which are optimized by variational procedure at the HF level the cc basis
sets are optimized using correlated (CISD) wave functions and thus are designed to
recover the correlation energy of the valence electrons. These basis sets are designed
to converge smoothly towards the complete basis set limit. The cc are commonly
denoted as (aug)-cc-pV X Z, which stands for correlation consistent polarized valence
X-zeta (X=D, T, Q, 5, etc.) basis set. Optionally a prefix "aug" in front of the

basis set means that it was augmented by inclusion of diffuse functions.

Another type of basis sets used within this work are all-electron split valence def2-
xVP (x = S, TZ, QZ) basis sets originally developed by Ahlrich and co-workers?°.
These are property-optimized (specifically dipole polarizabilities) split valence, po-
larized, n-zeta basis sets and, for example, Def2-TZVPD?! basis set is also aug-

mented with diffuse functions.

2.1.9 Local Methods

Treatment of electron correlation at high level of ab initio calculations is essen-
tial for an accurate description of molecular structures, energetics and properties.
Computational cost of conventional electron correlation methods, such as, CCSD
(CCSD(T)) increases very steeply with the number of electrons and become pro-
hibitively expensive for anything but small molecules. One of the reasons of this
unfavourable scaling is that usually canonical molecular orbitals, which are generally
delocalized over the whole system, are used as a basis for these calculations. On
the other hand, localizing the molecular orbitals allows us to reduce the number of

electron pairs to be correlated since there are small correlation effects coming from
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interaction of distant electrons. Furthermore, this reduces the steep increase in the

number of virtual orbitals needed.

In the case of local method, such as LCCSD, it is formulated in a basis of nonorthog-
onal local correlation functions.?? Excitations are made from localized molecular
orbitals into subspaces (domains) of the local basis in order to significantly reduce
the number of amplitudes to be optimized in LCCSD calculations. Moreover, this
allows to completely neglect (or treat in a simplified way, e.g. MP2) the correlation
of distant electrons. Local correlation methods have a potential to approach linear
scaling with molecular size and to suffer less from the basis set superposition er-
ror.?>?* The basis set superposition error is often encountered in the case of weakly
bound clusters where it leads to an artificial overestimation of the binding energy
and shortening of inter-molecular distances. The reason is, due to finite basis sets
being used, when monomers are approaching each other they can utilize extra basis
functions from each other and thus improve their description of electron distribution.
The error is coming from the fact that this electron distribution improvement is in-
consistent, happening especially at shorter inter-molecular distances, which leads to

inconsistent treatment of monomers at different inter-molecular distances.

2.1.10 Frequency Calculations

The following section, which mainly follows the Vibrational Analysis in Gaussian

article by Ochterski?®, gives a short introduction to the frequency calculations.

Frequency calculations are not only important in order to predict the IR/Raman
spectra, but also in order to characterize stationary points on the potential energy
surface, for example, identifying a minimum, transition state or a higher order saddle
point. Moreover, frequencies are needed for calculations of various thermochemical
values, such as enthalpies, entropies and zero-point vibration and thermal energy

corrections to the total energy.

Vibrational frequencies are calculated at the stationary point geometries by deter-
mining the second derivatives of the energy with respect to the cartesian nuclear
coordinates and then transforming to mass weighted coordinates. This starts with
calculation of the Hessian matrix, which contains the second partial derivatives of the
energy with respect to displacement of the atoms in cartesian coordinates under the
condition that the first derivatives with respect to displacement of the atoms are zero.
These force constants are then converted to mass weighted cartesian coordinates.
Next step is diagonalization of mass weighted force constant matrix which yields a

set of 3N eigenvalues (the fundamental frequencies) and eigenvectors (the normal
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modes). The eigenvectors are initially discarded and recalculated again after the ro-
tation and translation modes are separated out leaving 3N —6 or 3N — 5 vibrational
modes. This is done by finding the transformation matrix, which is used to trans-
form mass weighted cartesian coordinates to internal coordinates where rotation
and translation modes are separated out. After the transformation the N,; X Ny
submatrix, which represents the force constants internal coordinates, is diagonalized
and yields N,;;, eigenvalues A = 472v? and N,;;, eigenvectors. These eigenvalues are

then converted to frequencies in units of reciprocal centimeters.

2.1.11 Thermochemistry

In the following section basic concepts and equations for computing thermochemical
quantities, specifically as defined in Gaussian program but applicable in general,
are introduced in order to understand how these are obtained. This section mainly
follows the paper on computing thermochemistry in Gaussian by Ochterski?®, which
in return refers to equations from the textbook by McQuarrie and Simon?”.

All of these equations are derived under the special case of ideal gas approximation,
therefore particles have no potential energy of interaction of any kind. Further, it
is assumed that excitation energies even to the first electronically excited state are
much higher than kT at room termperature and thus there is usually no electronic
energy contribution to the internal energy from occupation of electronically excited

states.

In the following section equations describing how partition functions ¢(V,T) from
translational, electronic, rotational and vibrational motion components are used to
determine entropy contribution, internal thermal energy and heat capacity. The

following relation can be used to determine the entropy contribution:

V,T ol
S—N@+th<%ﬁl>+N@T<§?l] (2.78)

In Gaussian package, special form of the above equation is used where molar values
are given, so after division by n = N/Nj4, substitution of Nskp = R and moving
the first term into the logarithm (as e), it yields (with N = 1):

Jlng

s:R+mMMWﬂV”H(FF)
\%

(2.79)
B Olng
=R <1n(qtqeqrqv€) +T (O_T) V>
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Further, the partition function can be used to obtain the internal thermal energy
E:

Jlng
E = NkgT? | == 2.80
i (57), 250
And this equation can be used to obtain the heat capacity:
OF
C=|=— (2.81)
or N,V

In the following paragraph individual partition functions, as defined in Gaussian
package, are introduced. Their definition may be slightly different and simplified
in comparison to the usual definitions commonly found in textbooks. For example,

contribution from the translation partition function ¢ is defined as:

(2.82)

([ 2mmkgT 3/2 kgT
C=\"R P

which when substituted to eq. (2.79) (and partially derived with respect to T" to get
the third term) yields the translational entropy:

5.~ e+ (2)) s

In the above equation factor e comes from Stirling’s approximation. Similarly, trans-

lational contribution to the internal thermal energy can be derived as:

Olng 3
E.= NakyT? (== ) ==RT 2.84
o= Nak, (aT)V R (2:84)
and the constant volume heat capacity as:
oF, 3
= — = — 2
Cy o7 2R (2.85)

In the case of contribution from electronic partition function, it is assumed there is
no contribution from the first and higher excited states, as these lie much higher in
energy than kgT. This assumption together with treating the ground state energy
as a reference value of zero greatly simplifies the electronic partition function into
contribution only from ground state degeneracy of the system ¢. = wy. Since there
are no temperature dependent terms, this results in the electronic heat capacity and
the internal thermal energy due to the electronic partition function being both zero

and the electronic entropy of S, = R(Ing,).
In the general case of a nonlinear polyatomic molecule rotational partition function
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has the following form:

1/2 T3/2
qr = u (286)
Or (@r,m ®r,y@r,z)1/2

where ©,.,,,n = z,y, z are the rotational temperatures defined as ©, = h?/87*I, kg, n =
x,y, z for three values of the moment of inertia I,, for three rotation axes. The con-
tribution arising from rotational partition function for entropy is S, = R(Ing, +3/2),
to the internal thermal energy is E;, = 3/2RT and finally 3/2R for the heat capacity.
When compared with the average contribution to the entropy, the internal energy
and heat capacity in the case of a linear polyatomic molecule, which has only two
rotational degrees of freedom, it is 1/2RT less for the internal thermal energy, 1/R
for the entropy and heat capacity.

Contributions from vibrational motion are represented as a product of the contribu-
tions from each real vibrational mode K, ignoring imaginary (minus sign) frequen-
cies. There is a characteristic vibrational temperature, O, x = hvg /kp, for each of
the 3N —6 or 3N —5 modes for linear molecules. In the case when zero-point energy
contributions are computed separately and bottom of the internuclear potential en-
ergy well is taken as zero energy reference point, then vibrational partition function

is expressed as a product of individual partition functions for each vibrational mode

K:
o—Ov.K /2T

«=1l1—=777 i (2.87)
K

After using the above partition function to calculate entropy and few algebraic

operations the total vibrational entropy has the following form:
v K/T _
S, = RZ ( o —In(l—e @vﬁK/T)> (2.88)

Similarly, contribution to the internal energy from vibrational modes can be calcu-

E, _RZ@vK( j_1> (2.89)

And finally contribution to the heat capacity is calculated as:

2
6vKT VK/T
— RZ / ( e — 1) (2.90)

lated as follows:

The above defined terms for partition functions, entropies and energies are used in

35



calculation of, for example, the Gibbs free energy defined as:

AH
AG = rEelec + Ezpg + Eiot + ka_TStot (291)

where FE,.. is electronic energy calculated at a given level of theory relative to
separate nuclei and electrons. Eypg is zero-point energy correction , correcting for
vibrational motion of the system described by a harmonic oscillator at 0 K and
computed as a sum of contributions from all non-imaginary K vibrational modes
Ezpp = Y i 1/2hcvk. In the eq. (2.91) Eyy = Ei + E, + E, + E, represents
correction to the internal thermal energy at given temperature 7" and calculated as
a sum over contributions from individual partition functions. Similarly, Si. is given
as a sum of contributions from translational, rotational, vibrational and electronic

degrees of freedom.

The Gibbs free energies calculated using the eq. (2.91) can be used, for example,
in calculations of binding energies from free energies of reactants and products (see
Chapter 3) and in calculations of reduction potentials using the thermodynamic

cycle (see Chapter 4).

2.2 Density Functional Theory

Researchers have intensively tried to find a simplificating substitution for the very
complex many-body wave function, which depends on 4N coordinates (three spatial
and one spin coordinate for each of N electrons in the system). A suitable candidate
seems to be the electronic density, a central variable in the Density Functional
Theory (DFT), which is a simple function that depends solely on the three spatial
variables (or in the case of systems including spin polarisation, such as open-shell
systems, a spin-polarized formalism is used and the density is divided into spin up
(po) and spin down (pg) density). Moreover, in contrast to wave function methods,
the density is an observable quantity that can be obtained from experiments, e.g.

X-ray diffraction.

One of the advantages of DFT methods is their ability to directly include some of
the effects of electron correlation (less expensively than post-Hartree-Fock correlated
methods), in comparison to Hartree-Fock method that considers these effects only
in an average sense. The best DFT methods achieve significantly greater accuracy
than HF theory at only a modest increase in computational cost.” On the other
hand, the biggest disadvantage of DFT is that it is an exact method with the

approximated functionals (as the real functionals are not known) and cannot be
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further systematically improved, e.g. with increasing basis set. In the following
section the basic theory behind DFT will be introduced.

The ultimate goal of the DFT method is the calculation of the total energy of
the system and the ground-state electron density distribution without using the
wave function of the system.! Starting from the Born-Oppenheimer approximation
a relation between a central quantity in the DFT method, the electron density p,

and the electronic wave function can be established:

p(?") = Z /|\I/0(T‘,O'1,T2,O'2,...,T‘N,O'N)|2dT2dT3...dTN (292)

1
272

where ¥ is a ground state wave function and T is a spatial-spin coordinate. From
the above equation a function of the position of electron 1 in space p(r) is obtained
after integration of the square of |[¥y|? over spin-space coordinates and summation

over electron 1 spin coordinate.*

2.2.1 The Hohenberg-Kohn Theorems

The Hohenberg-Kohn Existence Theorem:

Hohenberg-Kohn in their existence theorem proved that for a ground state the elec-
tron density uniquely determines the Hamiltonian operator and thus all properties
of the system.! This can be shown by constructing a Hamiltionian operator as in

the following equation using only the density:

N M N
- h? Z p€? 1 2
2. “—|F;— Ral 2 o |7 — 7|

where the number of electrons (N) is defined by the integral of the density over
the whole space. Further, searching for the positions of potential spikes, number of
spikes and steepness of each spike on the py(r) landscape we obtain positions (ﬁ 4),
number (M) and charge (Z4) of the nuclei, respectively.
The Hohenberg-Kohn Variational Theorem:
This theorem states that for a given number of electrons N and an external potential
Vext () (substituting for the interaction of electrons with nuclei) there exists an
energy functional’ of electron density F™K which obeys the following variational
principle:

B[] = B[] = By (2.94)

fthe functional is a function that takes a function for its input argument
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where pg is the exact electronic density distribution for the ground state energy Ej.
Unfortunately, the major goal of the method to find out the mathematical form of

this functional has not yet been successful.

2.2.2 Orbital Free Approaches

Early orbital free approaches to define the energy functional considered the system
to be classical and the energy consist of separable kinetic and potential components.©
In a so-called Thomas-Fermi (TF) model, the density is derived from an uniform
electron gas and equations are based on fermion statistical mechanics. The electron-
electron repulsion (F..) is with reference to the Hartree approximation divided into
a Coulomb (J[p|) and exchange part (K|p|), and nuclear-nuclear repulsion is con-
stant within the BO approximation. Finally, the total electronic energy functional

Eo1r[p] has the following form:

Trr [P] Een[ )

~ J[p]
- o Nnuclei
Za(Ra)p
Burlp) = o [ 7" Z/ el // L (25)

where Cp = 3(312)%3, Trp refers to the Thomas-Fermi approximate kinetic energy,

E., is the exact expression for electron-nuclei attraction. Further, inclusion of the
exchange energy term Kp[p] = —Ck [ p*3(r)dr, with C = 3(2)1/3, derived by Dirac
into the above equation (2.95) forms a Thomas-Fermi-Dirac model. Limitations of
these models are, for instance, the approximate kinetic energy term, self-interaction
term in E,, as well as missing electron correlation effects. Although there have been
some improvements in these orbital free models and some of the ideas and equations
derived from uniform electron gas models are used in the so-called Local Density
Approximation that will be discussed further below, their accuracy is still too low

to be of general use.

2.2.3 Kohn-Sham Self-consistent Field Methodology

Kohn and Sham (KS) realised that the main flaw of orbital free models (i.e. the
Thomas-Fermi model) is connected with the way the kinetic energy is determined.?®
In their report from 1965 they introduced an approach to the unknown universal
functional, mentioned in the second Hohenberg-Kohn theorem, in a form of a fic-
tious non-interacting system of electrons. In this non-interacting system the total
Hamiltonian is expressed as a sum of one-electron operators ((—%A + Vz,xt)) where

electrons are subject to an external potential V., ingeniously tailored such that
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the overall density p is same as the ground-state density py of a real system. The
eigenfunction for the total Hamiltonian is a KS determinant X3 (similar form as
Slater determinant) constructed from KS spinorbitals ¢S and the electronic density
can be expressed as Pexact(r) = Y_; ni|¥5(r)|? with n; = 0, 1, 2 denoting orbital

occupancy in the KS determinant. The total energy functional is written as:

Eppr[p(r)] = Tulp(r)] + Vae[p(r)] + Vee p(r)] + Exc[p(r)] (2.96)

where the terms on the r.h.s. refer, respectively, to the kinetic energy of the non-
interacting electrons, standard Coulomb electron-nuclei interaction, the classical
Coulomb electron-electron repulsion and E,. includes quantum in nature exchange,
electron-electron correlation terms, correction for the classical self-interaction energy
and the difference in the kinetic energy between the non-interacting and the real
system. The problem with the kinetic energy was partially solved by splitting it into
a major fraction that can be computed exactly (equation (2.97)) and a small part
that is merged into a so called exchange-correlation energy FE,. together with all

non-classical corrections to the electron-electron repulsion energy.

Tulp(r)] = 3 (o = 5 V2ior ) (297

Kohn-Sham orbitals are expressed within a basis set of functions ¢; and individual
orbital coefficients are determined by solving a secular equation (analogous to HF

theory) which is done iteratively using SCF procedure:

nuclei
1 Zy, p(r")
K, = — -V - Br' + Vil o, 2.98
“ <¢“‘ Vo L g [t e ) s

Here, V. = 5?;“ is a potential corresponding to the exchange-correlation energy

Ey., and K, is similar to F),, from the HF method.*?® Most of the terms on r.h.s

of the equation (2.98) can be solved exactly except for the V,. and thus E. parts

for which approximations have to be introduced.

2.2.4 Approximations to the Exchange-correlation Functional

The electronic density distribution can be described locally within a small volume
approximated as homogenous. Following this assumption the exchange-correlation
energy can be estimated as a sum of contributions from infinitesimally small volumes

using the uniform electron gas model.! The Thomas-Fermi-Dirac model, introduced
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in section 2.2.2, is an example of total electronic energy in Local Density Approx-
imations (LDA). In the LDA, the term "local" means that the energy is given as
a functional which depends only on p(r) at points in space but not on p(r) at
more than one point in space or on spatial derivatives of p(r). Unfortunately, the
uniform electron gas approximation is insufficient especially in the region near the
nuclei where the electron densities vary rather strongly. This inhomogeneity of the
electron density can be taken into account using non-local corrections, Generalized

Gradient Approximations (GGA), involving gradient of p(r), Vp(r).

In most cases a gradient corrected functional is constructed by adding a gradient

correction to the LDA functional:
EYEh = Byt + / Bxc(p, Vp)d®r (2.99)

where the exchange-correlation function Bxc is carefully selected as a function of p

and its gradient in order to:

e reproduce experimental properties of atoms and molecules (training sets of

molecules)

e reproduce properties of exchange and correlation effects resulting from quan-
tum mechanical equations (limiting values for high and low electron densities,

properties of the exchange "hole")

Typically, complete exchange-correlation functionals are built as a combination of
correlation and exchange GGA functionals, for instance, a BLYP functional is a
combination of Becke’s (B) GGA exchange with the GGA correlation functional of
Lee, Yang, and Parr (LYP).*

Additional improvement to the GGA functionals is an inclusion of the second deriva-
tive of the density (the Laplacian operator, Ap) or the kinetic energy density, defined
as T(r) = Yooccpied 1|V¥%;(r)|?, in a so-called meta-GGA functionals. For example,
TPSS? and MO06-L3° (in the rest of the text written as MO6L) are examples of

meta-GGA functionals.

Another family of exchange-correlation approximations are hybrid functionals, which
define the exchange functional by mixing exact HF with DFT (LDA and/or GGA)
exchange term and this functional is then combined with a local and/or gradient-
corrected correlation functional. This is theoretically justified by the adiabatic con-
nection theorem, which connects the non-interacting (KS) and fully interacting (ex-

act) system.
B = (B BRT) 4 BT 2100
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An example of one of the most popular three-parameter hybrid functional B3LYP

has the following form for Fxc:
EB3YP — EIPA 4 o (EHF _ BLDA) | o FBSS L pYWNS 4 (ERYP — EYWNS) (2.101)

where the ¢ parameters were obtained fitting into experimental data. The parameter
co = 0.20 controls admixture of HF and LDA local exchange and exchange functional
is further supplemented with gradient-corrected Becke’s (B88) functional, scaled by
the parameter cx = 0.72. Finally, exchange-correlation functional is completed by
addition of the Vosko-Wilk-Nusair (VWN3) local correction functional, which can be

optionally corrected by the LYP correlation correction via the parameter cc = 0.81.7

A major drawback of DFT is that we are not able to systematically improve the
current methods to yield the exact results, not even when a complete basis set is used,
since the functional form of the exact exchange-correlation energy is not known.
Moreover, we cannot use DFT (in the Hohenberg-Kohn ground state theory) on its
own to probe processes in photochemistry and to predict excited state properties.
Although it was shown that the density contains information about excited state
properties, as we are able to construct a Hamiltonian operator (wave function) from

the density, there is no practical way to extract this information so far.

2.2.5 Dispersion correction DFT (D-DFT)

One of the areas where the current DFT functionals usually perform poorly is a
so called dispersion energy problem. This problem is related to inability of mod-
ern functionals to describe contribution that stem from dispersion forces and poses
challenge especially when studying weakly bound systems such as rare gas dimers,
hydrogen bonded complexes and complexes dominated by m-m-stacking. Dispersion
forces, sometimes also referred to as London forces, are long-range attractive forces
arising from the induced dipole-induced dipole interaction generated as a result of
instantaneous correlation of electronic motion. The induced dipole-induced dipole
interaction, which is usually dominating the interaction, decays with the inverse

sixth power (1/R®) of the intermolecular distance.

The main reason for the missing dispersion forces is that the exchange-correlation
potential Vxc(r) at a point r is determined by the density exactly at this point.?
This means that if there is no overlap of electron densities between the local and
another distant system, which means that these are not directly bonded to each
other, only the local exchange-correlation energy is considered. Therefore some kind

of improvement has to be introduced in order to account for this nonlocal long-range
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correlation effects.

There are several approaches trying to address the dispersion energy problem. For
example, time-dependent DFT based approaches?', vdW-Density Functional method 333
which uses the electron density to compute the dispersion energy and DFT-D meth-
ods3437 utilizing a damped, atom-pair wise potential which is added to a standard
Kohn-Sham DFT.

The GD3BJ dispersion correction, which is used in this work, belongs to the family of
DFT-D methods and uses the D3 version of Grimme’s dispersion with Becke-Johnson
(BJ) finite-damping to ensure more physically correct short-range behavior.?® The
DFT-D3 is atom pairwise additive scheme in which the dispersion energy is defined

as:

B = =53 U G (2.102)
2 4 R + [F(RA) 7 R+ [f(BRR)P '

where the sum runs over all atom pairs in the system and f(R3gz) = a1 Rg + a»

contains free fit parameters a; and ay introduced by BJ. Further, Ry is defined as

i = VOO

2.3 Molecular Dynamics

Molecular dynamics (MD) is an advanced computational method based on a rather
simple physical model that can provide insight into the structural dynamics and en-
ergetics of molecular systems at atomic level. It belongs to the family of a so-called
force-field methods (or sometimes referred to as Molecular Mechanics methods)
where the step of obtaining a potential energy surface by calculating the electronic
energy is greatly simplified by using the parametric functions of the electronic energy
with parameters fitted to usually ab initio calculations or experimental data. The
smallest building blocks are typically atoms or groups of atoms in the case of, for
example, Coarse-Grained Molecular Dynamics. Force-field based methods do not
take into account electrons and hence the bonding information must be part of the
parameters provided for the system. Potential energy surface is sampled using the
classical mechanics (Newton’s second law), which means that quantum phenomena
are neglected and events such as bond formation /breaking and quantum tunnelling

cannot be observed.

Molecular dynamics simulations are performed in order to provide conformational

sampling, to understand structure-energy relationship and to estimate equilibrium
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and non-equilibrium properties of molecular systems. One of the major advantages
of MD simulations over, for example, Monte-Carlo method is the possibility to study
time-dependent properties, using a so called time-correlation functions, due to the
time connection between simulation steps.“’ Macroscopic properties that can be
studied by MD are, for example, the radial distribution function of a solvent, vis-

cosity of a liquid, reaction kinetics and diffusion processes.

2.3.1 Force fields

Force fields used in MD are simple analytical atomistic functions relating structure
with potential energy. In MD a set of approximations is introduced to the molecular
system. For example, parameters for both bond-stretching and angle-bending are
present in the form of spring constants describing generally a harmonic potential.
These are further supplemented by torsion profiles for dihedral angles. Atoms are
approximated as Lennard-Jones spheres with constant point partial charges local-
ized at the atomic centres. The partial charges are normally derived based on fitting
to the molecular electrostatic potential calculated using an ab initio method. It is
the quality of these partial charges that determine the accuracy of MD calculations
especially for polar molecules where the electrostatic terms will dominate the poten-
tial function.® Moreover, the partial charges are geometry dependent and this has to
be taken into account during their derivation. The force fields commonly used are
pair-additive, neglect explicit polarization and charge-transfer effects though these
contributions are included indirectly by some parameters. The result is that some
important effects are not well described, for example, inclusion of divalent ions,

hydrogen bonding and solute polarization by solvent.*!

There are various types of force-fields designed for different purposes and can differ

in aspects such as%:
e Potential energy functional form
e Number of cross terms' included
e Type of information used for fitting the parameters

For example, in the case of force fields designed to treat large systems, such as
nucleic acids or proteins, the harmonic form of potentials for bonds and angles are
used. Furthermore, a Lennard-Jones potential is used for the Van der Waals term

and the cross term is not present.® Force fields are usually designed to work for

fin general all kind of terms that couple two (or more) of the bonded terms
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specific systems of interest. For instance, the OPLS*?%3 force field was developed
for organic liquids simulations, the AMBER force field mainly to work with nucleic
acids and proteins in comparison to the CHARMM that is used mainly for proteins.
One of the key ideas that is often used during force-field parametrization is that
structural units (bond-stretching, angle-bending, etc.) defined for similar chemical
environments are transferable between different molecules. An overview of some of
the available force fields can be found in, for example, Introduction to Computational
Chemistry by Jensen® and FEssentials of Computational Chemistry by Cramer?.

Below generic aspects of force fields are given.

2.3.2 Potential Energy and Equations of Motion

Propagation of the studied system in time is acquired by calculating the Newton’s

equations of motion (2.103) for a system of N interacting atoms:

87“,- . ou
fi=mis = 5 (2.103)

where forces f; acting on the atoms are usually derived from a potential energy U

which is given as a sum of individual energy terms for covalent and noncovalent

contributions eq. (2.104):

U= ucovalent + unoncovalent (2104)

Continuing to discuss, for simplicity, a system composed of atoms with coordinates
r1,---,rN and potential energy U(rq,--- ,7N), we introduce an atomic momenta
P1,°* ,DN, in terms of which the kinetic energy may be written as K(py,--- ,pn) =
SN |pi?/2m;. The covalent part of the potential energy consists of bond-stretching,
angle-bending and dihedral (torsion) angle contributions. Illustrative figure of co-

valent contibutions is shown in Figure 2.5 and the related equations (2.105):

1
ruCovalent = 5 Z kij(rij - rijO)Q
bonds
1
T3 Z Kiji (O — Oijro)’ (2.105)

bend
angles

1
3 tz zn: Kijii (1 + cos(ngiju — dijio))
angles

44



¢ijkl

Figure 2.5: Illustrating picture for the definition of bond r; (interatomic distance),
bend angle 6, and torsion angle @jji.

The noncovalent part of potential energy is in the form of a pair-additive poten-
tial where three-body and higher order interactions are neglected. A model of pair
potential can be seen in eq. (2.106) and a real noncovalent potential used in simu-
lations eq. (2.107) consist of a VAW part, which has the form of the Lennard-Jones

potential, and a Coulomb part for electrostatic charges.

WU(ry, -« ,rn) = > ulrg, ;) (2.106)

1<j
o\ 12 o\ 6 1 g,
unoncovalent = 4e [<_) - <_) ] + — 27 (2107)
Tij Tij 471'5() Tij
~ / N——

Vv .
Lennard—Jones potential Coulomb potential

2.3.3 Molecular Dynamics Simulations

The MD simulations are carried out from a starting set of atomic coordinates, which
are usually obtained from X-ray crystallography or NMR experiments. The high
quality starting structure is of an essential importance for MD sampling a proxim-
ity of X-ray potential minimum on a potential energy surface. The reason is that
for most of the simulations due to a limited simulation time only a small confor-
mational space is sampled around the crystal structure minimum. Moreover, MD
cannot overcome large energy barriers due to usually limited kinetic energy related
to reasonable simulation temperatures. 444

In a typical MD simulation, an initial geometry of the studied system is placed in
the environment of solvent (e.g. water) and ions. Immersing the structure into a

solvent box with ions, we are trying to get as close as possible to real conditions.
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Initial velocities are assigned to each of the atoms according to randomly selecting

from a Maxwell-Boltzmann distribution at the simulated temperature:

(via) m Lmivy (2.108)
Vig) = exp | —= :
p okl P s T

where at a given temperature 7" atom ¢ of mass m; is asigned a velocity v;, in the x

direction.

When MD is performed without temperature and pressure coupling this generates
NVE (constant moles, constant volume and constant energy) ensemble. However,
most desired quantities are commonly calculated from MD simulations performed
in the constant temperature NVT or constant pressure NPT ensemble. The NVT
ensemble is usually achieved by coupling the system to a heat bath and there are var-
ious schemes available to simulate the constant temperature or if needed to control
the temperature of the system. For example, since the temperature of the system
is related to the time averaged kinetic energy as (Ex)nyr = 3/2NkgT an obvious
scheme would adjust the temperature by re-scaling the velocities of particles. Such
a scheme is the Berendsen thermostat*® that corrects a deviation of the system tem-
perature by weak coupling to an external heat bath with reference temperature Ty

using the following equation:

drr Ty —-T
dr T

(2.109)

which assures that a temperature deviation decays exponentially with a constant
coupling time 7. However, this termostat does not generate a correct canonical
ensemble and therefore this is achieved by more advanced thermostats such as
velocity-rescaling® or Nosé-Hoover scheme*™*®. For the generation of the NPT en-
sembles the constant pressure is maintained by changing the volume of the simula-
tion cell by scalling the coordinates and simulation box vectors. The Berendsen*’

49,50

or the Parrinello-Rahman scheme are examples of common pressure coupling

algorithms used to ensure the constant-pressure simulations.

MD run generates a series of time-correlated configurations, or "snapshots" of the
simulated system at a given time, which form a trajectory of the system. The time
step is one of the limiting factors of MD and is determined by the rate of the
fastest molecular motions, which are usually vibrations involving hydrogen atoms.
Therefore, the maximum time step is typically of the order of femtoseconds (10~'5s).
Another issue is that the classical harmonic oscillator approach is unsuitable for
high frequency motions with v > kgT'/h. Around the room temperature of 300

1

K this corresponds to the wavenumber of approximately 208 cm™". Therefore, in

order to achieve longer time steps and thus longer simulation times it is common to
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remove the highest frequencies by treating the bonds and angles (typically involving

hydrogen) as constraints.°

Most MD calculations use leap-frog algorithm®!, which step-by-step numerically in-
tegrate coupled differential equations of motion (2.110) and (2.111). In the case of
leapfrog, positions are defined at times t;,¢;11,%49,..., spaced at constant inter-

vals dt, while the velocities are defined at times halfway in between, indicated by

tic1/2,tiy1/2, tigsya, - - -

i 5t) = (t) +v(t + oot (2.110)

1 1 1
v(t+30t) = vt = 56t) + —F(t)st (2.111)

The analysis of the outcome from simulations may provide detailed information
about all aspects of the time evolution (with sub-ps time resolution) of the three-
dimensional structure and interactions within studied system.*' Despite the enor-
mous advance of MD in recent years, the method still encounters two basic limita-
tions. The first one deals with problems of short simulation timescales, which re-
sult in limited sampling of conformational space. However, this limitation is slowly
waning with faster computers, use of graphic cards for some of the calculations and
improvements in the codes used in MD. The second, more critical limitation that
cannot be easily overcome, is because of the approximate nature of the force fields
used in MD. In comparison to more accurate quantum mechanical calculations, how-
ever MD is able to work with larger systems with reasonable computational cost and

provide dynamical, not just static molecular information.

2.4 Hybrid QM /MM Methods

Hybrid QM /MM methods treat a system of interest at multiple levels of theory,
combining high accuracy of quantum mechanical (QM) calculations with the low
computational cost of empirical molecular mechanical (MM) approach. A challenge
for computational chemistry at present is to study reactions and photochemical
processes in large systems or molecules in a realistically modeled environment of
chemical and/or biological interest. However, this goal is currently out of reach
of traditional electronic structure methods for which the computational costs scale
unfavourably with the size of the system, typically limiting them to small model
systems in vacuo. In contrast, methods of molecular mechanics have the advantage

of lower computational requirements than QM methods, but on the other hand
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suffer from several limitations, as they are not able to describe the details of bond
breaking/forming or electron transfer reactions.*** The QM /MM approach provides
a means for overcoming these limitations by partitioning the studied system into two
(or more) parts, which are calculated with different computational methods and are

coupled with each other.

In a typical approach a part of the molecule where a (photo)chemical reaction takes
place, denoted as QM core, is investigated with a reliable QM method (ab initio or
DFT), semi-empirical, or Empirical Valence Bond (EVB) level. The remainder of
the molecule, which impose sterical and polarization constraints on the QM core,
is included using a lower level of theory, typically using molecular mechanics (MM
region). The result is that the complete Hamiltonian and thus the total energy of
the system must be some kind of hybrid of QM and MM.
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Chapter 3

Biomolecular mode of action of

Metformin

3.1 Introduction

The following chapter presents a project studying metal-binding properties of type
2 diabetes drug metformin and structurally closely related compounds. This study
was done in collaboration with Stefan Erhardt and a group of Graham Rena and

was published in 2014 in the journal of Biochemistry.!

Type 2 diabetes (T2D), which covers 90% of all diabetes patients, is characterized
by hyperglycaemia due to insulin resistance in peripheral tissues. One of the most
effective and commonly used antihyperglycemic T2D drugs is metformin, which is
the first-line treatment because of better long-term outcomes compared with those of
other therapies such as insulin secretagogues.? Metformin [N, N-dimethylbiguanide,
Metf (for its chemical structure, see Figure 3.2) belongs to the biguanide family
that also includes other compounds, such as phenformin and buformin, with antihy-
perglycemic properties. Metf and other biguanide derivatives have been developed
after it was discovered that the blood glucose-lowering ingredient in Goat’s Rue is
guanidine and other guanidine derivatives such as galegine. In attempt to mimic
properties of guanidine a synthetic diguanide drug Synthalin was developed, which
was more potent and showed lower toxicity. However, the liver damage caused by
both guanidine and diguanides stimulated a search for safer alternatives, which led

to the development of biguanides as T2D drugs.?

Although, metformin has been in use as well as studied for decades its exact molec-

ular mechanism of therapeutic action and direct target are poorly understood. One
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suggested mechanism of action is suppression of mitochondrial respiration by inhi-
bition of complex I;3* however, the precise mechanism of this inhibition remains

unclear.

It has been shown recently that the cellular effects of metformin significantly depend
on its metal-binding properties, particularly towards copper.® In the above study
it was found that both Metf and biguanide (BG) show antihyperglycemic proper-
ties and no free copper Cu! levels after drug treatment could be detected by a
Cu!! specific fluorescence probe. In contrast propanediimidamide (PDI) showed no
antihyperglycemic effect and free Cu'l was detected. Interestingly, Metf does not
lower the urinal copper concentration which in T2D patients is increased, whereas
triethylenetetramine (trien) decreases the urinal copper concentration, but has no

antihyperglycemic effect.

It remained unclear whether Metf binds to Cu! or Cu''. In water Cu"! is the more
stable oxidation state. However, in living organisms a complex machinery of cupric
reductase, a Cu' specific membrane transport protein, and chaperone proteins within
the cells exist which effectively does not allow free copper ions at cellular level.® 12
The chaperone proteins play a vital role in the copper transport system and are
not only abundant in the cell but also in the mitochondria where the biomolecular
effects of metformin are observed. Moreover, copper metalloenzymes, where the
unique copper redox chemistry is needed, are able to bind both Cu' and Cu. The
idea of potential metformin interaction with the redox active parts inside the cell
is further supported by a study of the antimicrobial properties of binary metformin
metal complexes.!3!* In that study among other physico-chemical properties, the
cyclic voltammogram of [Cu™(Metf),|*" was measured against a Ag/AgCl electrode
and showed a reduction peak at 320mV and oxidation peak at 490mV giving a E;
of +405 mV, which is in the range of the reduction potentials of copper containing

enzymes.'®> Therefore, there are various possibilities of drug interaction with Cu'/™

I/II :

proteins and Metf could potentially interact with protein bound Cu'/" ions.

The study presented in this chapter builds upon the previous work of our collab-
orators on the cellular response to T2D drugs and in particular on the observed
variations of free copper levels after drug treatment. It provides deeper insight into
the copper binding properties of BG and Metf with focus on possible differences to
PDI, which may be important for their different biological antihyperglycemic prop-
erties. In the first part of this chapter, the differences in copper-binding properties
of studied compounds are discussed. In the second part, the optimized structures
are compared to known crystal structures and binding energies are computed. The
last part investigates and discuss the electronic properties such as molecular orbitals

and electrostatic potentials of these molecules.
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3.2 Copper Binding Properties

In order to understand in details copper-binding properties of Metf and similar com-
pounds, an initial computational study of copper complexes of Metformin (Metf),
Biguanidine (BG), Propanediimidamide (PDI), Ethylenediamine (en) and Triethylenete-
tramine (trien), see Figure 3.1, was conducted. In this section the differences in
copper-binding between the studied compounds is first examined from the theoret-

ical point of view.

NH NH NH NH NR NR
H NLNLNH Me N)J\NJKNH R)‘\CJKR
2 H 2 2 H 2 H2

biguanide 1,1'-dimethylbiguanide propanediimidamide
(BG) (metformin, Metf) (PDI)

H
/\/NH2 HzN\/\ /\/N\/\
HoN N NH

H 2

ethylenediamine triethylenetetramine
(en) (trien)

Figure 3.1: Compounds used as ligands.

A sp? hybridised N1 (for atom labels see Figure 3.2) is the ligand atom for BG, Metf
and PDI. This means that m-backbonding can occur and stabilize the lower Cu'
oxidation state by transferring electron density into the m-orbitals of the ligands,
see Figure 3.3. This type of molecular orbital (MO) interaction may also be impor-
tant for Cu/™" as its 3d orbitals are almost filled up. The methylene CH, moiety
in PDI compared to the secondary amine N2 in BG and Metf causes a disruption
of the m-system, whereas the lone-pair of N2 can contribute electron density into
the adjacent carbon p.-orbital in BG and Metf, which results in a planar molecular
structure for the latter ones and a nonplanar geometry for PDI in the complex.

This is similar to the stabilisation effect detected in peptide bonds.

Additionally, the N2H group contains a protic hydrogen whereas the methylene hy-
drogens cannot undergo proton exchange in aqueous media. Deprotonated metal
complexes of PDI are known, however, those are synthesised in non-protic solvents
under conditions that prevent any water contamination.!%'® Due to the protic hy-
drogen, the most stable neutral form of BG and Metf in water is a tautomer in
which the N2H proton is formally transferred to N1 or N3.1% This leads to a fully
conjugated m-system in the ligands. However, only the N2 can then act as a donor

atom as has been observed with a similar ligand in a known Ag' complex.?°
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Figure 3.2: Numbering of atoms in X-ray and computed structures.

Biguanides formally belong to the 1,3,5-triazapentadienyl®"?? (also known as imi-
doylamidine) ligand family and PDI is a member of the 1,5-diazapentadienyl!®!®
(also known as f-diketiminate) ligand class, each of which are well established as
metal ion ligands in inorganic coordination chemistry. However, their structure and
chemistry is mainly established in nonaqueous solvents; hence, their properties can-
not be transferred directly to aqueous environments, particularly biosystems with

very sensitive pH range.

o-donation
m-backdonation

Q& 5

R,C=—N R;C——N
O2e T

A B

Figure 3.3: Schematic representation of possible orbital interactions Cu complexes
with BG, Metf and PDI (A) and with en and trien (B).

o-donation

The protonation equilibria of BG have been studied along with complex formation
with Cu'! at a pH range of 2-12.2%?* First, BG predominately exists in an equilib-

rium between its monoprotonated and neutral forms at physiological pH, and no
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deprotonated BG-H was reported for the given pH range. Second, the formation of
|Cu’(OH)(BG)| T was observed to be the major Cu-BG complex; however, binary
Cu-BG complexes such as [Cu(BG),]**, [Cu(BG)(BG-H)|™ and [Cu(BG-H),|® were
also observed at slightly higher pH values. The pK, value of 6.88 was reported for
[Cu(OH)(BG)]*, hence indicating the possibility of deprotonated BG while being co-
ordinated to Cu''. Neither Metf nor PDI has been studied in this detail. However,

these results are at least qualitatively transferred to Metf.

3.3 Computational Details

Geometries of all the computed structures were optimized using B3LYP %5 2% with all-
electron Def2-TZVPD? basis set and the calculations were performed using Gaus-
sian093! (A.02 and C.01). Further, frequency analysis was performed in order to
verify that each structure is a true minimum by the absence of imaginary frequen-
cies. Spin multiplicities considered were singlet and doublet for Cu(I) and Cu(II),
respectively. In the case of open-shell species spin contamination was found to be
negligible. Other DFT functionals tested were BP86%732, M063% and MO6L34. As
can be seen in Table 3.1 and Table 3.2, although standard deviation in calculated
binding energies between functionals can be up to ~ 10 kcal /mol, the overall trends
in binding energies of the BG and PDI Cu complexes are not changing between
different functionals used. Therefore, mainly B3LYP results are presented in this
chapter. Natural bond orbital (NBO) charges were calculated using NBO 3.1% tool

integrated within Gaussian09.

Table 3.1: Mean and standard deviation (STD) of BSLYP, BP86, M06, MO6L calcu-
lated binding energies (in kcal /mol) for BG and PDI [Cu/"(L),] and [Cu"/"(L-H),|
complexes.

BG PDI

Mean STD Mean STD
[Cul(L)o]t 1159 6.9 134.8 7.2
[Cull(L)o|>*  398.1 7.5 412.8 9.5

[Cul(L-H)o|'~ 230.2 6.9 228.1 7.1
[Cull(L-H)s] 686.0 7.3 687.5 7.5

95



Table 3.2: Binding Energies (in kcal /mol) of BG and PDI [Cu/"(L),] and [Cu!/!(L-
H)s| complexes calculated using B3LYP, BP86, M06 and MO6L with Def2-TZVPD
basis set.

L  B3LYP BP8 M06 MOGL

[Cu(D),]©  BG 106.0 1183 117.2 122.0
PDI 1248 139.7 134.4 140.4

[Cul(L)2]?* BG 391.6 408.8 395.9 396.1
PBI 406.0 426.8 408.6 409.9

[Cul(L-H)o]'~ BG 2205 233.3 230.3 236.7
PBI 2182 231.8 228.0 2345

[Cull(L-H);] BG 678.7 696.0 685.9 683.7
PBI 680.1 697.9 686.3 685.5

3.4 Results

3.4.1 Comparision of X-ray Structures and Computed Com-

plexes

There are several crystal structures known for bisbiguanide-copper complexes. Three
describe the [Cu(BG))*" complex and contain different counterions. ¢ 3® These com-
plexes are planar and non-symmetric in terms of their bond lengths. Table 3.3, Ta-
ble 3.5 and Table 3.6 present a comparison between critical structural parameters of
calculated and crystal structures. Numbers in brackets for crystal structure bond
lengths, where available, are estimated standard deviations or in the case where the
bond length was averaged these represent the standard errors. The standard errors
(SE) are calculated by propagating estimated standard deviations and dividing by
the square root of number of averaged values. Further, uncertainty in calculated
average values are presented. The uncertainties are calculated as (max — min)/2,
which accounts for the best and worst case scenario for the averaged bond length.
In Table 3.3 an average over all three structures is presented and compared to the
DFT optimized structure. This table also contains a published structure for the
neutral complex Cu(BG-H), which has the deprotonated biguanide (BG-H).3

The observed Cu-N1 bond length of 1.945 A is in the normal range of Cu-N ligand
bonds. The computed Cu-N bond distance of 1.980 A is slightly longer, even though
this is outside the range of crystal structure average bond length with uncertainty,
as can be seen in the Table 3.4 the calculated Cu-N bond lengths vary significantly

between functionals tested. Moreover, the individual Cu-N bond lengths in the
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Table 3.3: Comparison of critical bonds® (distance in angstroms) of
[CUH(BG)Q]XLQ {X = CO%‘, Cli, or [CU‘H(C5H702)<CI)]7} and CUH(BG-H)Q
crystal structures and computed [Cu'(BG/BG-H),|>*/° complexes.

BG  CSD code X Cu-N NI1-C1 C1-N2 C1-N3
X-ray BGCUCB?3¢ CO3~ 1.951(7) 1.296(10) 1.374(9) 1.351(10)
COBMAH?" [Cull(C5H702)(C1)|~ 1.936(3) 1.286(3) 1.373(4) 1.337(4)
777D7ZQ0138 Cl™ 1.949(5) 1.291(7) 1.374(8) 1.342(8)
*{[Cu(BG)q)*+} 1.945  1.291 1.373  1.343
SE¢ 0.005  0.007 0.007  0.008
Uncertainty? 0.014  0.020 0.020  0.022
B3LYP [Cu(BG)s)?* 1.980  1.299 1.383  1.344
X-ray SAPFUL® - 1.941(4) 1.320(4) 1.355(4) 1.360(4)
B3LYP Cu(BG-H), 1.971  1.318 1.337  1.383

?Experimental bond lengths are averaged for each crystal structure (BGCUCB C sym-
metry, COBMAH C; symmetry, and ZZZDZQ01 C; symmetry).

bAverage of all [Cul(BG)2]X1 2 structures.

“Standard error of averaged bond length

dUncertainty in averaged bond length

different crystal structures can vary from 1.933 A to 1.958 A for complexes with the
neutral BG ligand. The most symmetrical, coplanar X-ray structure COBMAH3"
is C; symmetric with Cu-N distances of 1.933 and 1.939 A. The same feature is
observed in the DFT calculated structure with slightly longer Cu-N bonds of 1.978
and 1.982 A. Interestingly, the computed minimum structure is slightly twisted and
has Cy symmetry with regards to the heavy atoms which is abolished by the non-
planar H-atoms of the amine groups. The coplanar, Dy, symmetrical geometry is in
fact computed to be a rotational transition state in the gas phase with a negligible
barrier AE* of 1.04 kcal /mol and a AG* of 3.65 kcal /mol.

The observed N1-C1 bond length (X-ray,,: 1.291 A; DFT: 1.299 A) is slightly longer
than a pure C-N double bond and whereas the C1-N2 (X-ray,,: 1.373 A; DFT:
1.383 A) and CI-N3 (X-ray,,: 1.343 A; DFT: 1.344 A) are much shorter than a
C-N single bond, which indicates conjugation of the N2-lone pairs into the N1-C1
double bound. The computed N-C bonds are within the range of uncertainties of
observed bond lengths and in much better agreement with the crystal structure
compared to the metal-ligand bond because these bonds are less affected by crystal
packing. Particularly, the changes upon deprotonation of the secondary amine N2H
group in the N1-C1 and C1-N2 bonds that indicate a delocalization of the negative
charge within the ligand bonds that form the metallacycle is very well reproduced
in the computed structure. The observed differences between the different X-ray
structures could be explained by the different counterions present. The axially po-

sitioned counterions could potentially affect equatorial bond lengths through a so
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called Jahn-Teller effect. The Jahn-Teller effect describes a geometrical distortion of
non-linear molecules with a degenerate electronic state that stabilizes the molecules
by removing that degeneracy and leads to a system of lower symmetry and energy.
This is typically observed in transition metal octahedral complexes with, for exam-
ple, d” Cu®* centres. The result of such a distortion is that the octahedral complex
will either elongate with the axial bonds being longer than the equatorial bonds or
compress with the equatorial bonds being longer than the axial bonds. The type
and strength of distortion varies depending on the type of metal and ligands and are
dictated by the amount of overlap between the metal and ligand orbitals. Interest-
ingly, almost negligible shortening of -0.003 A for the Cu-N bond length is observed
for the Cu(BG-H)33 neutral complex compared to the average of the cationic com-
plexes, whereas in the case of the DFT structure a stronger reduction of -0.009 Ais
observed, indicating a slightly larger increase in the Cu-N bond strength than the
experimental results are suggesting. As can be seen in the Table 3.4, although Cu-
N bond lengths calculated using different functionals can vary up to ~0.02 A, the
observed shortening of -0.009 A between the neutral and cationic BG complexes is

consistent across the functionals tested.

Table 3.4: Mean Cu-N bond lengths and bond length difference (in A) for Cu(BG),
neutral and cationic complexes calculated using B3LYP, BP86, M06 and MOGL
functionals with Def2TZVPD basis set.
Mean Cu-N bond length [A]
Functional [Cuf(BG-H)s] [Cul(BG)3]** Bond length difference

B3LYP 1.971 1.980 -0.009
BP86 1.961 1.969 -0.009
MO06 1.954 1.960 -0.006
MO6L 1.966 1.974 -0.009

In the case of the Metf-Cu complexes, there are in total five crystal structures
known, see Table 3.5, three include the neutral Metf!44%4! and two the deproto-
nated metformin (Metf-H)%*! with Cu'l. Some differences compared to the BG-
Cu complexes in the bond distances can be observed which are due to the methyl
groups that abolish the symmetry of the BG complex. The N1-C1 bond becomes
slightly longer (X-ray.,: 1.305 A; DFT: 1.307 A) and the N1’-C1’ slightly shorter
(X-ray,,: 1.276 A, DFT: 1.298 A) compared to the N1-C1 bond (X-ray,,: 1.291 A;
DFT: 1.299 A) in the BG complex. This alteration is also observed in the computed
complex, although the decrease in the N1’-C1’ bond is only marginal. The asym-
metrical nature of the ligand is also noticeable in different Cu-N bond distances of
Cu-N1 1.941 A and Cu-N1’ 1.932 A, surprisingly the DFT computed Cu-N bond
distances show an opposite trend with 1.973 A and 1.980 A, which might be due to
crystal packing effects compared to the gas-phase computed, single-molecule struc-
ture. However, the other bond distances are either in excellent agreement or well

within the estimated uncertainty of the average crystal bond lengths.
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Table 3.5: Comparison of critical bonds® (distance in angstroms) of |Cu't(Metf)y]X; 2(X = ClOy,
COZ~, or CI7) and Cu''(Metf-H), crystal and computed Structures.

Metf  CSD code X Cu-Nl Cu-NI’ N1-C1 NI-CI’ C1-N2 CI-N2 CI-N3 CI-N3’
Xray AJUHUJY ClO4~ 1.944 1.944  1.303 1.268 1.374 1.384 1.354 1.344
HIBPOX 42 COZ™ 1.931(4) 1.920(4) 1.305(6) 1.282(6) 1.364(6) 1.392(6) 1.342(6) 1.323(6)
HIHDUX % Cl=  1.948(7) 1.932(7) 1.308(11) 1.278(11) 1.376(11) 1.379(13) 1.342(12) 1.343(12)
7 ([Cu(Metf)s]>+) 1.941  1.932  1.305 1.276 1.371 1.385 1.346 1.337
SE? 0.006  0.006  0.009 0.009 0.009 0.010 0.009 0.009
Uncertainty® 0.011  0.011  0.017 0.017 0.017 0.019 0.018 0.018
B3LYP [Cu(Metf)q|*+ 1.973  1.980  1.307 1.298 1.389 1.379 1.346 1.348
X-ray EFIXUM% — 1.943(1) 1.921(1) 1.313(2) 1.306(2) 1.372(2) 1.350(2) 1.365(2) 1.386(2)
ETOFOI*-A® — 1.938(2) 1.928(2) 1.324(3) 1.320(3) 1.358(3) 1.350(3) 1.368(3) 1.371(3)
ETOFOI*-B® 1.950(2) 1.923(2) 1.315(3) 1.310(3) 1.371(3) 1.342(3) 1.357(3) 1.391(3)
@(Cu(Metf-H),) 1.944  1.924 1317 1.312 1.367 1.347 1.363 1.383
SE? 0.002  0.002  0.003 0.003 0.003 0.003 0.003 0.003
Uncertainty® 0.005  0.005  0.008 0.008 0.008 0.008 0.008 0.008
B3LYP Cu(Metf-H), 1.970 1967  1.323 1.320 1.343 1.332 1.383 1.388

%The unit cell of ETOFOI contains two Cu(Metf-H)2 molecules.
bStandard error of averaged bond length
“Uncertainty in averaged bond length

The two crystal structures Cu''(Metf-H),-H,O (ETOFOI)[*! and Cu(Metf-H),-8H,O
(EFIXUM)*° were synthesized under basic conditions. The ETOFOI structure com-
plex contains two Cu'!(Metf-H), molecules in the unit cell, with ETOFOI-A resem-
bling the Cu!'(BG-H), more closely than ETOFOI-B and EFIXUM. The best agree-
ment with the DFT optimized Cu(Metf-H), structure is also with ETOFOI-A. The
lengthened N1-C1 and N1’-C1’ double bond is particularly well reproduced by the
B3LYP optimized structure.

Interestingly, in EFIXUM and ETOFOI-B, hardly any increase in the N1-C1 bond
and decrease in the C1-N2 bond is observed, which most likely is due to strong
H-bonding of crystal water in the proximity of N2. Two crystal waters are close to
N2~ in EFIXUM at a distance of 2.86 A and 2.91 A (N2-O distance), whereas one
water is found in ETOFOI-B to be 2.84 A away from N2~

Overall, the crystal structures of the neutral complex Cu''(Metf-H), indicate the
possibility of the formation of stable Cu'! complex with deprotonated metformin at

basic conditions.

Only one crystal structure for the homoleptic PDI complex is known.** The com-
puted Cu-N bond is longer, similarly to the BG Cu-N bond length, than the observed
crystal structure bond length. When comparing PDI and BG Cu-N bond lengths
the Cu-N bond 1.956 A in the [Cu' (PDI)y|*" complex is slightly longer than in the
BG complex 1.945 A, which is also observed in the computed structure with 1.999
A compared to 1.980 A, for PDI and BG respectively. In contrast to the BG com-
plexes the C1-C2 bond (1.504(2) A) in the PDI complex is much longer compared
to the C1-N2 bond (1.373 A) in [Cu'"(BG),|** and closer to a pure single C-C bond
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than a double bond.

In order to investigate this long C1-C2 bond the rotational barrier of the free, neutral
ligand of 2.42 kcal/mol for PDI and 18.20 kcal/mol for BG were calculated. The
much higher rotational barrier for BG gives an indication about the strength of the

conjugation of the N2 lone pair into the adjacent N1-C1 double bond.

Table 3.6: Comparison of critical structural parameters (bond distances in
angstroms and angles in degrees) of [Cu'! (PDI),|[C10y]; crystal structures and com-
puted [Cu"(PDI/PDI-H),]**/° complexes.

Structure Cu-N N1-C1 C(C1-C2 C1-N3 4« NI-N1-C1’-C2

X-ray MALDOU™  1.956(1) 1.289(2) 1.504(2) 1.333(2) 21.6
B3LYP [Cu(PDI)oJ2t  1.999 1297 1514  1.336 22.1
[Cu(PDI-H)5® 1976  1.321  1.403  1.394 1.4

3.4.2 Binding Energies of Cu/"! Complexes

The binding energies related to the gas phase structures that are presented in Ta-
ble 3.7 were computed in two different ways. The interaction energy AFy, corre-
sponds to the binding energy of the Cu-centre or CuOH fragment with the ligand
in its geometry found in the optimized complex structure. On the other hand, the
binding free energy AGi, is determined using the lowest energy tautomer and con-
former of the ligands. The negative AGjy is equal to the dissociation energy D.
The difference between the energy of the ligand in its complex geometry and its

lowest tautomer and conformer is called preparation energy AFE,,.p.

The binding energies were computed for Cu' and Cu' complexes of the mono-L
complexes, the homoleptic, bis-L complexes, and the mixed [Cu/"(OH)(L)]** com-
plexes. The latter is particular important in aqueous media as this is the major
Cu'-BG species at physiological pH in most biological compartments. In addition,
the complexes with deprotonated ligands were also calculated as these might become

important at higher physiological pH, occurring for example inside the mitochondria.

Firstly, the [Cu/!(L)]*/2* complexes are discussed. Among all ligands Metf shows
the strongest interaction energy with Cu', however, due to lower AFE,,., PDI forms
the strongest [Cu'(L)]" complex. Interestingly, for BG and PDI AE,, is almost
equal. En binds around 25-30 kcal /mol weaker to Cu! compared to the other ligands,
but D, is only 6-16 kcal weaker, which as well is due to a small preparation energy.
The weaker binding of en is possibly due to the lack of 7-backbonding to the sp3-
hydridized N centres of this ligand. Differences in ring strain ( Figure 3.4) may also

make a contribution.
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Table 3.7: Binding Energies (in kcal/mol) of Cu Complexes calculated using
B3LYP /Def2-TZVPD.

BG Metf PDI en trien

[Cd(D)]* ™ 119.77 -125.07 -120.74 -95.15

AG (=-D,) -8471 -87.45 -94.18 -78.60
[Cull(L)]*+ AFin -331.77 -347.81 -332.66 -270.92

AG (=-D,) -286.23 -299.91 -296.49 -250.70
[Cul(L)s|* AFEy -183.80 -187.80 -186.28 -154.32 -151.04

AG (=-D,) -105.97 -106.64 -124.85 -112.52 -117.58
[Cull(L),)>* AFn -489.52 -505.09 -488.51 -410.06 -409.90

AG (=-D,) -391.59 -402.19 -405.96 -355.32 -364.10
[Cu'(OH)(L)] AFE, 50.88 -47.80 -51.05 -42.10

AG (=-D,) -1626 -12.02 -34.12 -24.60
[CuCu"(OH)(L)]*  AFun -138.25 -144.61 -138.73 -112.33

AG (=D,) -97.37 -101.23 -105.93 -88.99
[Cul(L-H)| AF 229.86 -231.38 -234.86

AG (=-D,) -200.71 -201.60 -203.80
[Cul(L-H)|'~ AFn -555.26 -561.38 -566.70

AG (=-D,) -511.20 -518.40 -530.24
[Cul(L-H), |~ AFE,y -353.80 -351.71 -359.31

AG (=-D,) -22055 -220.70 -218.21
[Cu'(L-H),] AFn -836.32 -837.06 -846.10

AG (=-D.) -678.65 -680.45 -680.12
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The Cu'! complexes for BG, Metf and PDI are more than 200 kcal /mol more stable
than the Cu' complex, which is due to stronger Coulomb and orbital interactions,
whereas the en complex does not receive as strong a stabilisation compared to the
other ligands. This could be due to the o-bonding with the N lone pair being
smaller in the sp® hybrid N compared to the slightly larger sp? hybrid lone pair with
more s-character. Although, overall Metf binds strongest, the D, of PDI is only 3.4

kcal /mol lower.

Figure 3.4: BG, PDI and en [Cul(L)|]T structures optimized with B3LYP/Def2-
TZVPD.

Secondly, the homoleptic [Cu'/"(L)y]*/?* complexes are discussed. For BG, Metf
and PDI complexes similar trends are observed as in the mono-complexes, with an
even stronger stabilisation for PDI compared to BG and Metf due to a much larger
AFE,ep for the latter ones. Trien is also included in this group of complexes. Since
trien is tetradentate, its chelating properties are superior to those of BG, Metf and
PDI at equal molarity. However, here it is included in the group for comparison
of its binding properties to copper-ligand complexes with a saturated copper ligand
sphere. Trien has almost the same AFE;;; than en, but a larger D, due to entropic
effects by 5 kcal /mol with Cu' and by ~ 10 kcal /mol with Cu!! which agrees with

the experimentally observed stronger stabilisation of trien with Cu'l.

Next, the binding of BG, Metf, PDI and en in a mixed complex with Cu(OH), where
OH is a stronger ligand than the neutral bidentate ligands, is investigated and dis-
cussed. The Cu! cation forms a strong bond with the hydroxide anion, which results
in weak binding of a second, non-anionic ligand. Here a surprising order is observed
for the Cu' complexes, with PDI (D, = 34.12 kcal /mol) forming the strongest mixed
complexes, en (D, = 24.60 kcal/mol) following as the second strongest, then BG
(D = 16.26 kcal/mol) and Metf (D, = 12.02 kcal/mol) forming the weakest com-
plex. The differences between the ligands is again mainly due to the larger AE,.p,
for BG and Metf compared to low AE,,, for PDI and en.

The mixed Cu!'(OH)(L) complexes are slightly stronger than the Cu'(L) complexes,
with very similar trends and similar stabilities for BG, Metf and PDI.

In addition to the complexes with neutral ligands, the binding energies for the
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deprotonated BG-H, Metf-H and PDI-H were also calculated. It is important to
point out here that at higher pH BG and Metf can be deprotonated in aqueous
medium, on the other hand PDI, even when in a metal complex which lowers its pK,,
will only be deprotonated above pH 14 in non-aqueous medium as the methylene

group in PDI cannot be deprotonated by bases in aqueous media.

These anionic ligands bind much stronger than the neutral counterparts as they
have much larger ionic bonding contributions than the neutral ligands. Also, the
Cu'! complexes receive an even stronger stabilization than the Cu' complexes. This
could indicate an easier oxidation compared to the neutral ligands when a Cu! ion
is extracted from a protein by Metf-H. In addition, these deprotonated forms of the
biguanides alone might be a strong enough as ligands to extract Cu' from proteins
with thiolate ligands. This modelling indicates that any copper-dependent effects
of the drug may be restricted to or most prominent in the mitochondria and other
compartments in the body where physiological pH is above the typical range, al-
lowing deprotonation of the drug. Such pH-dependent activation or priming could
potentially explain why metformin is almost invariably found in the biological lit-
erature to act on the mitochondria, with very few effects reported in other cellular

compartments.

3.4.3 Electronic Properties

In order to gain a deeper understanding about the biguanide type ligands in com-
parison to the PDI the molecular orbitals (MO) of these ligands in their geometry
in a complex are investigated, see Figure 3.5. For simplicity the main focus is on
the m-orbitals and the MOs with the N1 lone pairs.

The lowest lying MOs with 7-character in BG and PDI are the MO-19. PDI, which
is not planar, still shows a 7-like plane with one o-C2-H bond above and the other
0-C2-H bond mixing with the N1-C1 double bond plus contribution from the N3
lone pairs. The MO-19 in BG, which is only 0.01 eV lower in energy than the PDI
MO0-19, is a mix of 7w and o character. The lone pairs of N2 and N3 are mixing with
the pz AO of the sp? hybridized C1, plus o-character from the N1-H bond. For BG
the MO-21 looks very similar to the MO-19 with o- and 7-character, except that it
is the negative combination of the AOs and therefore higher in energy. The MO-21
in PDI is 1.04 eV higher than the BG MO-21 and only shows o-character, which
explains the much lower rotational barrier for PDI compared to BG. The MO-22
looks basically the same for both molecules, however the MO-22 in PDI lies 0.47
eV higher. MO-23 in BG, which lies 1.70 eV higher than MO-23 in PDI, is a pure

combination of N2 and N3 lone pairs, whereas in PDI as there is no lone pair on C2
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Orbital BG PDI Orhital BG PDI

MO-27

HOMO MO-23

o

-0.22031 -0.21733 -0.28636 -0.34896

MO-26 e, 8 MO-22

-0.22492 -0.22903 -0.38088 0.36353

dad
MO-25 0 MO-21

-0.23019 -0.23659 -0.43279 -0.39439

J

MO-24 MO-19

]

-0.26918 -0.26261 -0.44803 0.44750

Figure 3.5: Molecular orbitals for BG and PDI and the corresponding energies in
hartrees.

this MO is a mix of 7-MO with contributions from the N1-C1 double bonds and the
N3 lone pairs plus out-of plane C2-H o-bond character. The MO-24 is the positive
combination of the N1 lone pairs which is responsible for bonding to the empty 4s
AO of Cu. In the BG the MO-24 lies 0.18 eV lower in energy than the corresponding
PDI orbital. The next two MOs 25 and 26 are very close in energy (0.17 eV and
0.11 eV, respectively) for BG and PDI and are pure 7-MOs. The HOMO, MO-27,
is the negative combination of the N1 lone pairs and donate electron density into
the empty 4p AO of Cu. The HOMO orbitals of BG and PDI are energetically only
0.08 eV apart. These MOs show that the electron density on N1 is very similar in
BG and PDI which explains the strong similarities in the observed binding energies

for these ligands with Cu.

Table 3.8: NBO charges for [Cu!(L)|*", L=BG, PDI and en.

BG PDI EN

Cul +1.38 +1.34 +1.30
N1 -0.87 -0.84 -0.80

To emphasise this point further the NBO charges are calculated and compared for
the [Cu(L)]*" complexes. As can be seen from Table 3.8, the charge on Cu decreases
from +1.87, +1.84 to +1.80 for BG, PDI and en, respectively. This is consistent

with a decreasing negative charge on the ligand N1 atoms of these ligands from -
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0.87, -0.84 to -0.80 for BG, PDI and en, respectively. Further, Figure 3.3 illustrates
possible orbital interactions for the sp?-type N in BG, Metf and PDI compared to
the sp3-type N in en and trien. From this figure it can be seen that BG, Metf in
comparison to en and trien are capable of stronger bonds due to o-donation while at
the same time receiving electron density from the metal centre via m-backdonation,
these two types of bonding have a synergistic effect and reinforce each other. On
the other hand, the pure o-donor ligands en and trien cannot accept electron density
in m-MOs, which results in weaker binding. The small difference between BG and
PDI can be due to either slightly larger o-donation or smaller m-backdonation in

PDI or a combination of both.

3.4.4 ESP Maps

The electrostatic potential (ESP) maps for BG and PDI in their neutral forms are
presented in Figure 3.6. Interestingly, the PDI-A shows a slightly more negative
potential than BG-A around the N1 atoms which will form coordination bonds
toward Cu. This means that PDI is a slightly stronger Lewis base than BG-A and
is consistent with the findings that the PDI has a larger AFE},;. It has to be pointed
out here that the presented structure PDI-A is not a minimum energy structure,
but a transition state structure, and therefore not stable in nature; however, this
is the conformation that will bind to a metal center in a bidentate binding mode.
BG-A, on the other hand, is a local minimum energy structure, which also is in one
sense surprising as the two N1 lone pairs should strongly repel each other; however,
it seems that the p-stabilisation as shown by the MOs exceeds the steric repulsion.
Also, the methylene moiety causes a greater part of PDI-A to be hydrophobic (green)
compared to BG-A, which could be important in terms of molecular recognition
when binding to a Cu centre of a protein. Therefore, PDI not only causes greater
steric hindrance due to its lack of planarity but also introduces repulsive or at least

weaker interactions with H-bond acceptors.

The PDI-B represents the lowest energy conformer of the neutral PDI. An internal
H-bond in PDI-B results in a very weak hydrophilicity, with strong, large areas that
can be described as lipophilic. In contrast the BG-B, which is a minimum energy
conformer, but not the lowest tautomer of BG, shows much more pronounced nega-
tive (red) and positive (blue) moieties which results in H-bond donor and acceptor
properties that are stronger than those of PDI-B. This is suggestive evidence that
PDI may be able to penetrate cell membranes, whereas BG and Metf need to be

taken up via transmembrane transporters.
The lowest energy conformer and tautomer of BG-C shows qualitatively slightly
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BG-A PDI-A
+20.90 kcal/mol +16.18 kcal/mol
(minimum) (N0 minimum)

BG-B PDI-B
+6.42 kcal/mol 0.00 kcal/mol
(minimum) (minimum)

BG-C
+0.00 kcal/mol
(minimum)

Figure 3.6: Electrostatic potential maps for BG and PDI. Red negative, green neu-
tral and blue positive ESP values. BG-A and BG-B are local minimum energy con-
formers where BG-A is in the conformation that will bind to a metal center. BG-C
is the lowest energy conformer and tautomer. PDI-A is a transition state structure
in the conformation that will bind to a metal center and PDI-B is the lowest en-
ergy conformer. Color range: from -0.06 (Red) to +0.06 (Blue). Red: H-acceptor;
Blue: H-donor; Green: neutral =~ hydrophobic.

smaller Lewis acid (blue) sites, but at the same time more intense Lewis basic
(red) sites; however, there are also fewer hydrophobic areas above the plane of the

molecules, which means that solvation and stabilisation due to H-bonding can be

stronger not only on the edges of the molecules but also along the molecular plane.

3.4.5 Discussion and Conclusion

In this chapter copper binding properties of Metformin and structurally similar com-

pounds were investigated. It was found that differences in the biologically observed
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effects of neutral biguanide compounds (BG and Metf) and PDI cannot be solely
explained by different Cu-binding energies. When examining the molecular orbitals
it was shown that these ligands are electronically too similar and the substitution of
the secondary amine to methylene has no negative effect on the complex formation
via the N1 atoms for PDI. One of the possible mechanism explaining the difference
in the biomolecular mode of action of biguanidines is that the secondary amine
can be deprotonated in aqueous medium as the pK, value is reduced when BG or
Metf are coordinated to Cu/!. It is known that the mitochondrial matrix pH is
higher than normal cellular or serum pH. Therefore, inside the mitochondria the
equilibrium is potentially shifted towards the Cu/"(Metf-H) complex. Moreover, it
is possible that biguanidines could potentially extract redox active Cu! ions from
proteins inside the mitochondria which after subsequent oxidation to Cu't would fur-
ther stabilise the complex. This suggests that metformin could act in cells at least
in part as a copper-binding prodrug, becoming activated by elevated mitochondrial
pH values. Further, this is consistent with the strong emphasis on the mitochon-
drial effects of metformin often found in the biological literature. In addition, this
potentially explains the differences between mitochondrial responses to metformin
and PDI, as the latter agent only becomes deprotonated at much higher pH values.
There is a possibility that high binding affinities of Metf-H to copper could signifi-
cantly affect the mitochondrial copper pool, which would probably have an impact
on metal homeostasis of other metals and lead to mis-metallation of important met-
alloproteins.*® The redox properties of such copper complexes may interfere with
the sensitive redox chemistries occurring inside the cell, such as the mitochondrial

electron transport chain.

Furthermore, ESP maps show that molecular recognition processes, which are copper-
independent, could play a vital role in explaining the different drug properties of
biguanides and PDI. Further work will establish if the much stronger hydrophilicity
of BG facilitates its mitochondrial activity. On the other hand, in the case of PDI
the higher lipophilicity might enable it to penetrate cell membranes without relying

on membrane transport proteins.

In summary, the pH-dependent complex formation of BG with a pKa within the
physiological pH range?*2?* together with the strongly hydrophilic character as shown
by ESP maps demonstrate that BG potentially works as a pH-sensitive copper-
binding agent. Together, these properties, which are at least qualitatively transfer-
able to metformin, should be able to distinguish it from the other copper-binding
agents studied, and these are also likely to account for many of the biological /therapeutic

responses to the drug.
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Chapter 4

Protocols for Understanding the
Redox Behaviour of Copper

Containing systems

4.1 Introduction

Many fundamental chemical reactions include steps involving electron transfer from
one reacting partner to another. Reduction and oxidation potentials are thermody-
namic quantities that quantitatively describe the tendency of a chemical compounds
to lose or acquire electrons. Experimentally, techniques such as cyclic voltamme-
try provide an experimental means for the measurement of redox potentials for the
reversible electron-transfer processes. However, for measurement of experimentally
more complicated non-reversible reactions use of rapid spectrophotometric tech-
niques such as pulse radiolysis may be needed in order to obtain accurate redox
potentials.! Moreover, a lot of information, such as structure-property relationship,
is hidden due to the complex nature of experimental settings. On the other hand
computational approaches provide deeper insight into the redox potential chemistry
by, for example, separating various effects and breaking down the structural com-

plexity into smaller building blocks.

Computational approach for redox potential calculations rely on the application of
accurate quantum chemistry methods for electron affinity (ionization potential) cal-
culations on the solute combined with a dielectric continuum models to account for
the solvent effects. In general, a thermodynamic cycle that includes the free ener-
gies of products and reactants in the gas phase and their free energies of solvation is

used in order to estimate the standard-state Gibbs free energy of the corresponding
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half-reaction, which is then used to calculate the reduction potential. Solvation free
energies are calculated using implicit solvent models, often referred to as contin-
uum solvation models. Here, solute molecule is usually placed inside the suitably
shaped cavity surrounded by the solvent in a form of an uniform structureless di-
electric medium characterized by macroscopic (fixed or adaptive dielectric constant
e, density) and sometimes also by microscopic properties (molecule polarizability
and an effective solvent radius). This approach, which mainly accounts for bulk
electrostatic effects, is often sufficient and much computationally cheaper, which
enables focusing computational resources on the higher theoretical level calculations
of the solute. In the case when interaction with solvation sphere or encapsulating
protein environment needs to be accounted for there is a possibility to include mul-
tiple layers treated at different levels of theory in a so called QM/QM or QM/MM
approach. This would involve, for example, treating the active site (solute) at the
high QM level (CC, MP2, DFT), first solvation sphere at the lower level (DFT,
semi-empirical or molecular mechanical level) and if needed more extended environ-
ment beyond first solvation sphere at the MM level. However, this can eventually

lead to computationally and technically more demanding calculations.

DFT in conjuction with continuum solvation models was successfully applied in
studies involving the prediction of redox potentials of organic molecules, such as
anilines? and polycyclic aromatic hydrocarbons?; transition metal complexes, such

6.7 A more detailed recent

as ferricinium /ferrocene couple®® and copper complexes
review by Marenich et al.® discusses many more examples of successful application

of DFT and other computational methods in calculations of reduction potentials.

In spite of encouraging results from DFT redox calculations, the redox potential
studies often lack a more systematic approach in order to understand fundamental
elements of the redox potential calculation in depth. Moreover, use of a huge variety
of different functional and basis set combinations across the literature and insufficient
benchmarking may lead to an unnecessarily difficult task for a new user to calculate

redox potentials and assess their accuracy.

In general redox potential calculations of transition metal complexes present a chal-
lenge, because of usually large structural difference between oxidized and reduced
form of the complex, excess charge of the complex and potential multireference char-
acter of the transition metal wave function. Some of these issues can be addressed
by use of higher level methods or use of multiple conformers. Matsui et al.® pro-
posed a scheme to address the metal complexes with excess charge by putting an
image counterion distribution around the charged complex in order to neutralize the

system and improve often poor description of solvation energy.
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Copper complexes play an essential role in living systems involving, for example,
electron transfer, O, binding and various enzymatic reactions.!%!* Therefore, de-
tailed understanding of the redox chemistry of copper-binding complexes can provide
deeper insight into the mechanisms of copper metalloproteins and copper traficking
which is important in regulation of normal human physiology and homeostasis?13.
Moreover, redox properties of copper-binding drugs, such as metformin (see chap-
ter 3), may play a crucial role in the biomolecular function of these drugs as they
can, for example, interfere with the sensitive redox chemistries occurring inside the

cell, such as the mitochondrial electron transport chain.

The effect of coordination geometry, nature of the donor atoms of the ligands as
well as number of substituents have been shown to affect the redox potential of the
Cu(II)/Cu(I) couple.' 16 For example, there is a dependence of the Cu(II/I) redox
potential on the relative number of N and S donor atoms, mainly guided by the
Cu(II) preference for amine nitrogen relative to thioether sulfur.!'” Moreover, the
reduction of Cu(Il) to Cu(I) is facilitated in the case of ligands containing both
unsaturated nitrogen and thioether sulfur atoms.'®

Comparison of the calculated geometries with the solid state structures obtained
using X-ray diffraction and then trying to find correlation with electrochemical be-
haviour may give misleading results. The main reason is that the electrochemical
behaviour may correspond to completely different geometries in solution. Here, the-
oretical calculations offer a possibility to study electrochemical mechanisms of the

solution-phase structures.

4.2 Computational Electrochemistry

The thermodynamic (Born-Haber) cycle, as illustrated in the Figure 4.1, was used
in the calculation of equilibrium redox potentials. The top part represents the
condensed-phase free-energy changes associated with the reduction of metal com-
plex and the bottom part relevant gas-phase processes. The thermodynamic cycle
is completed with parts connecting gas phase and condensed phase, which repre-
sent differential solvation free energies of the oxidized and reduced species. After
neglecting the free electron in the thermodynamic cycle, it is sufficient to compute a
gas-phase free-energy change (at 0 K this would typically correspond to an electron
affinity (EA) as an analog for reduction potential and an ionization potential (IP)

for oxidation potential) and free energies of solvation.

Following the thermodynamic cycle absolute half-cell standard reduction potentials
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AG

red(aq)

L-Cu'-L,, + € > L-Cu-L,,

A A

AG,, (1) AG,,(1)

A Gred(

g)

L-Cu'-L, +e > L-Cu-L,,

Figure 4.1: Born-Haber cycle for calculation of redox potential.

ER,. were calculated using the following equation:

AC;red(aq)

EY = —
Abs n

— 0.03766 ¢V (4.1)

with the last term representing a free electron correction at 298 K, the Faraday
constant I’ = 23.06 kcal/mol.V, n = 1 the number of electrons involved in the redox
couple and the Gibbs free energy change AG\eq(aq) due to the reduction of copper

complex in aqueous solution, computed as follows:

AGred(aq) = AClred(g) + AG(solva) - AG(solv(II) (42)

In the eq. (4.2), the AG edg) = G(g)([Cu'L;]¥) — G ([Cu'L,]¥) in the gas phase and
the solvation AGsy = Elelec,solv) — Elelec,g) Were calculated as a difference between
electronic energies in the implicit solvent and in the gas phase. Further, a correction
to the gas-phase Gibbs energy of reaction, ~ 1.89 kcal/mol, placing it from the
initial reference state of 1 atm to 1 mol/L, is included in the calculation. However,
neglecting this correction would lead to a relatively small error of 80 mV to the

calculated absolute potentials.

Absolute reduction potentials are reported as well as relative potentials referenced
to a standard hydrogen electrode (SHE). In order to reference against SHE, a sug-
gested absolute SHE potential value of +4.28 V,%° which is in good agreement with
experimentally determined value of +4.29 V,?! is substracted from the calculated

absolute potentials.

The following approach was used for reduction potential calculations. Minimum

geometries of all the computed structures were obtained by gas phase optimization
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at the DFT level of theory using various functionals and each structure was verified
to be a true minimum by the absence of imaginary frequencies in the vibrational
analysis. For each calculation stability of the wave function was tested. Basis sets
used were Def2-TZVPD?? and cc-pVTZ?3?4. Calculations were performed using
Gaussian09 (A.02 version)?®. Implicit solvent calculations were computed by using
the standard self-consistent reaction field (SCRF) approach with PCM?530  the
integral equation formalism variant (IEFPCM), and SMD3! solvation model, and

water as a solvent.

Calculations were carried out using the following funcionals SVWN?323% BPg8636:37,
B3LYP 353840 (a5 implemented in Gaussian 09), B3PW91353841-44  CAM-B3LYP %,
B97D*6, wB97xD*", TPSSTPSS*, PBE1PBE (PBE()%**! and Minnesota function-
als with different % HF exchange included (in brackets): M06-L°? (0%), M06°3
(27%), M06-2X53 (54%), MOG-HF>* (100%).

SVWN is a local spin density functional with the Slater exchange, p*/3 with the-
oretical coefficient of 2/3 and Vosko, Wilk, and Nusair 1980 correlation functional
(I1I) fitting the RPA solution to the uniform electron gas. BP86 represents func-
tional from generalized gradient approximation (GGA), which incorporates Becke’s
1988 exchange functional B with Perdew’s 1986 correlation functional P86, family
of functionals. B3LYP is the hybrid functional, which incorporates Becke’s three-
parameter exchange functional B3 with the Lee, Yang, and Parr correlation func-
tional LYP. The B3PW91 is similar to the B3LYP functional, but the non-local cor-
relation is provided by Perdew/Wang 91. B97D is the GGA exchange-correlation
functional including dispersion. TPSSTPSS represents the 7-dependent gradient-
corrected functional and PBEIPBE (PBEO) is the hybrid functional that uses 25%
exact exchange and 75% DFT exchange. Minnesota functionals contain M06-L func-
tional, which is a fully local meta-GGA functional, accounts implicitly for dispersion
effects, and should perform well for systems containing transition metals. In the
same family of functionals M06, M06-2X and M06-HF represent the global hybrid
functionals. In addition, inclusion of Grimme’s GD3 dispersion with Becke-Johnson
damping® was tested with the B3LYP, B3PW91 and BPS86 functionals. In the
above functionals the long-range electron-electron exchange part typically dies off
too rapidly and becomes very inaccurate at large distances, making these functionals
unsuitable for modeling processes such as electron excitations and charge transfer
states. Long range corrected functionals such as wB97xD and CAM-B3LYP were
designed to address these problems by separating the two-electron operator, %,
into the short-range and long-range parts using the standard error function erf.
The commonly used CAM-B3LYP functional uses 19% exact HF and 81% Becke’s
1988 exchange interaction at short-range, and 65% HF and 35% Becke’s 1988 at

long-range. The intermediate region is smoothly described by the parameter pu =
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0.33 controlling the partitioning of the inter-electronic distance.

4.3 Results and Discussion

Computational protocol for calculation of reduction potentials of copper complexes
is being developed and tested on the series of 14-membered quadridentate macro-
cyclic polyamino polyether ligands, see Figure 4.2. These molecules represent a
valid copper-binding model systems, previously used as a model for blue copper
binding sites. Moreover, in these series effect of thioether sulfur substitution for
amine nitrogen on the electrochemical properties is examined. Although, in the
original experimental paper by Rorabacher!” these macrocyclic complexes serve as
model compounds for blue copper protein binding sites, their application as model
systems can be potentially extended to other important copper binding complexes

(e.g. metfomin copper complex).

[14]aneS4:> ( [14]aneN83:> ( 14]aneN282
H
[14]aneNSSi> ( [14]aneN38:> ( [14]aneN4

Figure 4.2: Macrocyclic ligands used in the reduction potentials study.
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Experimental reduction potentials, listed in Table 4.1, are obtained from the article
by Rorabacher!” and these were originally derived using the cyclic voltammetric
measurements on aqueous Cu''Ll solutions at 25 °C. For the empirical estimation of

potential values of the N3S complex the following equation was used!’:

2.303RT . Kcyu,
Ef =FE° — I u 4.3
aq nF Og KCuIL ( )

where the E7 is the standard electrode potential, in terms of molar concentrations,

for the Cuzt/ CuJr couple of the aqueous Cu(II/T). In the original reference!” it was
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measured as Eg =~ 0.13V at 25 °C.

Table 4.1: Experimental E;/, potentials for studied N;S,—, (z = 0,1,2,3,4) com-
plexes.

NSy o Eyy® [mV]
Ny -0.66 (est)®
N3S <-0.24 (est)©

NSSN  -0.01 (pH > 5.0)
NS; 038 (pH > 3.5)
Sy 0.58

“ Experimentally determined F/; should be accurate to within +£0.01 V17

b Values estimated from the trend of methanolic potentials of copper complexes with
related 14-membered macrocyclic N4 ligands containing unsaturated nitrogen®® assuming
Bl o = E{jon - 0.060 V5758

¢ Value estimated using Equation 4.3 assuming Ky, > 1 x 10%2° and Ky, ~ 4 x 1013
(see main text).

4.3.1 Assessing Appropriateness of DFT for Redox Potential

Calculations.

In order to assess the correctness and reliability of the single reference DFT for the
reduction potential calculations of the copper macrocycles following steps were con-
sidered. Multi-reference character of the wave function was assessed using 7} %962
diagnostics value calculated at the CCSD/cc-pVDZ level, spin contamination by
looking at the expectation value of the total spin <S?> and the wave function sta-
bility 63765,

The T} diagnostics, which uses the Frobenius norm of the ¢; amplitudes of the CCSD
wave function, provide an averaged indicator of the quality of a single-reference
couple-cluster, but may fail to indicate a small problem region of a large molecule.
A criteria of T7 > 0.05 were proposed to identify 3d transition metal species with sub-
stantial nondynamical correlation, for which results obtained from a single-reference
quantum method may suffer from large errors and unpredictable behaviour.®® The
T, diagnostic has not been used on many large copper complexes and so data is
limited to only small copper complexes. In general, the T} values for small copper
complexes tend to be lower than 0.05 and the only cases of large 77 noted in the
literature are small coordinately unsaturated species where multi-reference charac-
ter would be expected.%57 For the macrocyclic complexes presented in this chapter
the T7 diagnostic was calculated for completeness as it is readily available from the

final CC wave function, however there is no a priori reason to expect large values.
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The spin contamination is a result of unrestricted wave function being no longer an
eigenfunction of the total spin <S?> and therefore the desired spin state may suffer
from having other spin states mixed in (being spin contaminated), which may result

in some errors, e.g. increase in the total energy.

Finally, the stability test ensures that resulting single-determinant wave function is
a local minimum with respect to relaxing various constraints, e.g. allowing an RHF
determinant to become UHF, allowing orbitals to become complex and reducing the

symmetry of the orbitals.

Examining the T} values in the Table 4.2, all of the studied complexes and copper
oxidation states exhibit 77 values lower than the 0.05 criteria and thus should be
accurately described by a single-reference method. Further, there is a slight increase
in T} for the N,S,_, series where more thioether sulfur is substituted for amine
nitrogen for the Cu' complex as opposed to a slight decrease of T} values for the

Cu' complexes.

Table 4.2: Multireference character measured using 7T} diagnostics values. Calcu-
lated at CCSD /cc-pVDZ level using MO6/cc-pVTZ geometry.

N,Ss, Cul Cul!

Sy 0.016 0.026
N1S;3 0.017 0.024
NoSo 0.016 0.022
NSSN  0.017 0.023
N1Ss 0.018 0.021
Ny 0.019 0.019

Looking at the eigenfunctions of the total spin <S?> for all of the unrestricted
calculations it can be concluded that a spin contamination, if present, was completely
removed after a spin annihilation step and the calculated wave functions represent
pure spin states, <S%?> = 0.75 (Cu'!). Lastly, the stability tests showed none of the

calculations suffered with any stability problems.

4.3.2 Basis Set Dependence of Calculated Redox Potentials

In this subsection, convergence of the reduction potential results for M06 func-
tional with the increase in the basis set quality is examined. Single point energy
calculations are performed on the cc-pVTZ geometries using Dunning’s correlation-
consistent basis sets, cc-pVnZ 224870 with n=D,T,Q (D=double, T=Triple,Q=Quadruple)
and 5 (5=Quintuple) zeta basis sets. The effect on FA, AGs(I) and AGgay (11)

components of the thermodynamic cycle and on the overall calculated reduction

78



potentials is examined. Reduction potentials for the cc-pVnZ series were calculated
using the electronic energy calculated at the given basis set and the thermal cor-
rection to the Gibbs free energy (Georr = Eior + kBT — T'Sior, see subsection 2.1.11)
obtained with the cc-pV'TZ basis set as a frequency calculation using larger basis
sets would be prohibitively expensive. At the end of the subsection performance of
Def2-TZVPD basis set, which is a triple-zeta-valence basis set with polarization and
diffuse basis functions, as taken from the EMSL Basis Set Library 72 is presented.
The Def2-TZVPD is from a family of property-optimized (in this case optimized for
dipole polarizabilities) diffuse augmented basis sets of the Karlsruhe def2-TZVP™
basis sets, which are smaller and less diffuse than augmented Dunning basis sets and
are well-known for their robustness and their excellent cost-to-performance ratio in
large-scale DFT calculations.?? For these calculations the G to the electronic
energies for the reduction potentials were calculated with the Def2-TZVPD basis

set.

As can be seen from figs. 4.3 to 4.8, solvation components (AGso (1), AGsor (1))
for both the SMD and PCM model very quickly converge to the cc-pV5Z basis set
results with the largest deviation at the cc-pVTZ basis set not larger than 10 mV.
In the case of calculated electron affinities (EA) there is much slower convergence
towards more positive values with the basis set size, with the largest deviation of
-36 mV at the cc-pVTZ for the S, complex.

For SMD solvation model, there is increase in the AGy,,(I) solvation energies with
the improvement of the basis set and exponential convergence to the cc-pV5Z result
independent of the copper environment as opposed to the AGg,,(II) component
where the solvation energies decrease with improvement in the basis set for Sy,
N;S3, NSy and NSSN complexes, but increase for the N3S; and N complexes.
Similar environment dependence can be observed for both solvation components
when calculated using the PCM solvation model. Improving basis set there is an
oscillatory convergence of AGg.(II) for both SMD and PCM and in the case of
AGso1y(I) for PCM only. This behaviour is observed for most of the complexes with
an exception of NiS3 (AGg (II), SMD) and S, complexes.

Overall effect of improvement in the basis set quality on the calculated reduction
potentials is that the absolute values of reduction potentials decrease with increase
in the basis set size. This applies to both SMD and PCM solvation model and is
mainly due to the largest change with increase in the basis set size affecting the
EA component. At the cc-pVTZ basis set the results are already very close to
the cc-pV5Z reduction potentials with the largest deviation no more than 32 mV
(S4, SMD) and 33 mV (S4, PCM). As can be seen in Table 4.3 there is basically

no effect of the basis set improvement on the mean absolute deviation (MAD) of

79



calculated reduction potentials for the SMD model, but a more significant effect on
the MAD when PCM solvation is used. This again points to the fact that already at
the cc-pV'TZ basis set the calculated reduction potentials are well converged. The
maximum absolute deviation is 173 mV, 139 mV, 105 mV and 113 mV for the N;S3
complex at the cc-pVDZ, cc-pVTZ, cc-pVQZ and cc-pV5Z, respectively.

Table 4.3:  Effect of basis set improvement on the MAD (mV) of calculated reduction
potentials.

MAD [mV]
cc-pVnZ SMD PCM
2 75 568
3 75 527
4 75 492
5 76 499

Table 4.4: Absolute deviations of calculated reduction potentials (mV) for cc-pVTZ
and Def2-TZVPD basis sets with SMD solvation model.

Absolute deviation [mV]|
N.S4—r cc-pVTZ Def2-TZVPD

Sq 22 10
N1S3 139 171
NS 20 3
NSSN 95 142
N3Sq I0) 131
Ny 70 7

Using the Def2-TZVPD basis set produces a MAD of 77 mV for reduction poten-
tials calculated with the SMD model, which is comparable to MAD of 75 mV cal-
culated using the cc-pVTZ basis set. Interestingly, for S, NoSs and Ny complexes
Def2-TZVPD yields absolute deviations from the experimental values that are sig-
nificantly smaller than the corresponding cc-PVTZ values, see Table 4.4. It may be
possible to lower the absolute deviations of the problematic complexes by optimizing
them with the Def2-TZVPD rather than using the cc-pVTZ basis set geometries.
However, this will be part of the follow up future study where structure-redox rela-
tionship will be examined in more details together with more detailed examination
of the optimized geometries. The overall better performance of the Def2-TZVPD
basis set may be attributed to the improved basis set convergence and thus smaller

basis set error.
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reduction potentials with cc-pVnZ basis set for S, complex.
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Figure 4.8: Convergence of (a) FA, AGs(I) and AGy,(I1); and (b) calculated
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86



4.3.3 Solvation Models

As can be seen in Figure 4.9, overall the best performing functional is the M06 (27%
HF exchange) with MAD = 75 mV when used with SMD implicit solvation. On
the other hand, this functional is one of the worst performing for PCM solvation
where the best performing functionals are pure local MO6L (27% HF') and meta-
GGA TPSSTPSS, both with MAD = 94 mV. Average MAD using SMD is 320 mV
with the maximum MAD of 529 mV for MO6HF functional. In the case of PCM
solvation average MAD is 277 mV and the maximum MAD of 759 mV corresponds to
the SVWN functional. However, when the local SVWN functional, which performs
the worst in the PCM, is removed from the series the averaged MAD drops to 236
mV and the maximum MAD of 527 mV corresponds to the M06 functional. This
SVWN removal could be justified as SVWN represents the simplest approximation
to the density functional approximation. For the SMD solvation there is no obvious
candidate that could be considered for removal from the series in order to lower
the overall MAD. Therefore, when the SVWN is not considered, the PCM solvation
model has better overall performance than the SMD solvation model with the lower

average and maximum MAD from the experimental reduction potentials.
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Figure 4.9: Overview of Mean Absolute Deviation (MAD) of theoretical values from
experimental values for different functionals using cc-pV'TZ basis set.

When we examine effect of functional improvement (climbing a so called "Jacob’s

ladder" of density functional approximations) on the calculated redox potentials
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with SMD solvation, surprisingly, LDA (SVWN) performs slightly better than most
of the GGA and hybrid functionals for the SMD model. In the case of PCM model
there is a huge decrease in the MAD when further improvements to the functional

approximations are included, e.g. gradient correction, moving from SVWN to BP&6.

In the same Figure 4.9, it is shown that including long-range correction to B3LYP
(CAM-B3LYP) decreases the MAD by ~ 87 mV for the SMD, but increases the
MAD by ~ 93 mV for the PCM.

Including Grimme’s dispersion with Becke-Johnson damping (GD3BJ)® to the
BP86, B3LYP and B3PW91 functionals, tables 4.5 and 4.6, has a minor effect on the
MAD in both solvent models. Dispersion corrected functionals used with the SMD
solvation, Table 4.5, increase the absolute deviation from the experimental values
for S4 and NS, complexes, have mixed effect in the case of N1S3, but decrease this
deviation when more thioether sulfurs are substituted for amine nitrogens in the case
of N3S; and Ny. NSSN complex represents an exception as it has the same amount
of sulfur for nitrogen substitutions as NoSs, but exhibit decrease in the absolute de-
viations. For PCM solvation model, Table 4.6, there seems to be exactly opposite
trend when dispersion is considered, with exceptions of Sy (BP86, B3PW91) and
N;S3; (BP86, B3PW9I1).

Table 4.5: Effect of dispersion correction [in mV] on absolute deviation from ex-
perimental value of reduction potential for SMD water model. Using GD3BJ with
BP86, BSLYP and B3PW91 and cc-pV'TZ basis set.

Sy NiSs NSy, NSSN  N3S; Ny

BP86 26 -11 29 -37 -30  -26
B3LYP 43 11 46 -17 -8 -6
B3PW91 40 -5 42 -29 -20  -14

Table 4.6: Effect of dispersion correction [in mV]| on absolute deviation from ex-
perimental value of reduction potential for PCM water model. Using GD3BJ with
BP86, BSLYP and B3PW91 and cc-pVTZ basis set.

S4 leg NQSQ NSSN N381 N4

BP86 32 21 -20 35 32 31
B3LYP -57 -1 -40 13 9 9
B3PW9I1 46 15 -32 26 21 16

Examining the performance of the M06 family of functionals, Figure 4.10, there is
a strong dependence of calculated reduction potential on the percentage of exact
HF exchange included in the functional with the opposite trend for SMD and PCM
solvation models. The optimal value for the SMD model seems to be around 27%

HF exchange corresponding to the M06 functional and increasing this value in either
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direction increases the MAD. On the other hand, in the case of PCM model M06
is the worst performing functional and the MO6L (0% HF) and MO6HF (100% HF)
produce the lowest MAD for reduction potentials. The difference between the MAD
of the worst and best performing functionals of the M06 family is 454 mV (SMD)
and 408 mV (PCM). This points towards a huge importance of %HF exchange used
in a functional and solvation model used in the calculations. A possible explanation
of the strong dependence of redox potentials on the % HF exchange stems from the
fact that functionals with a high %HF exchange are not suitable especially for open-
shell transition-metal systems due to potential multireference character. Although,
this trend is observed for the SMD solvation it is not present in the case of PCM.
This may be due to complex cancellation of errors present and thus further detailed
investigation is required. Another possible explanation of the great performance
of M06 functional with SMD solvation model is that electron affinities were used
during its parametrization and that SMD solvation model was specifically designed

and tested on the M06 family of functionals.
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Figure 4.10: Performance of M06 family of functionals with varying %HF exchange
(in brackets) is compared in SMD and PCM solvent model.

A table of variances of individual components of the thermodynamic cycle, Table 4.7,
is presented in order to identify errors in these components and their sensitivity to
the choice of functional. From this table it can be seen that electron affinities (EA

or AGhed(g) in Figure 4.1) carry the biggest variation across the functionals, followed
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by solvation energies of open-shell systems, AGgy,(II). The solvation energies of
closed-shell systems are the least sensitive to the choice of the functional. In the
same table it is also shown that the functional sensitivity of the PCM solvation
model is half of that of the SMD model for both AGgy(I) and AGyq (11).

Table 4.7: Standard deviation (in mV) of EA (AGieq() in fig. 4.1), AGoy(I) and
AGso1,(IT) taken from the average over all functionals.

Standard deviation [mV]
dGsolv(I) dGsolv(II)
EA SMD PCM SMD PCM

Sy 227 34 16 89 o8
NS; 192 25 9 103 56
NoS, 180 26 12 101 93
NSSN 195 26 9 108 o8
N3S 204 19 9 100 52
Ny 211 15 8 98 48

4.3.4 Effect of S for N substitution

In agreement with the experimental study by Rorabacher et al.'”, for most of the
functionals used the calculated reduction potentials show a fairly linear relationship
with the value of z in the N,S,_, series. In the article by Rorabacher!7 it was shown
that each substitution of a nitrogen donor atom for a thioether sulfur donor atom
resulted in an average decrease in the E, /o value ~ 300 mV per nitrogen. As can be
seen from Figure 4.11, the M06 with SMD closely follows the experimental profile
and has the slope of -326 mV which is in the closest agreement to the experimentally
observed slope. Further, the slope for MO6L = -358 mV, M062X = -468 mV and
MO6HF = -523 mV deviates more significantly and this can also be related to their
overall worse performance for SMD (as seen in Figure 4.10). In the case of PCM
solvation none of the observed slopes (MO6L = -264 mV, M06 = -235 mV, M062X
= -361 mV, MO6HF = -417 mV) is in as close agreement as M06/SMD decrease.
However, it is interesting that the trend in slopes with the increasing %HF exchange

is similar to the one observed for SMD.

Examining the calculated trends in the case of SMD the M06 functional closely
follows the experimental curve, while the MOGL curve also follows the shape of the
experimental one it is shifted by a factor. In the case of M062X and MO6HF func-
tionals the calculated curves diverge from the experimental curve with the increase
in the number of nitrogen substitutions. In the case of PCM solvation model the
MOG6L curve is more closely following the experimental curve, however together with

the M06 functional, these have a more distinct shape from the experimental one.
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The M062X and MO6HF functional trends tend to slowly converge towards the ex-
perimental curve with the increase in the number of nitrogen substitutions with the
MOGHF intersecting the experimental profile at = 3. Further, Figure 4.12 shows
a comparison of reduction potential trends calculated using BP86, B3LYP and the
best performing functionals in terms of the lowest MAD either in the SMD (MO06) or
the PCM (MO6L, TPSSTPSS) solvation model. The SMD profiles calculated with
BP&86, B3LYP, MO6L. and TPSSTPSS have similar shape to the M06 curve which
as mentioned above is closely following the experimental curve, but are shifted in
respect to the experimental profile by a factor. Similarly, in the case of the PCM
all of the functionals have similar profiles, however for PCM it is the MO6L and
TPSSTPSS that follow the experimental curve more closely.

The above findings raise a question whether trying lots of methods and choosing
the one with the lowest MAD is any better than taking a different method with
the best trend and adding an empirical correction. Indeed, it would be possible to
add a correction to the calculated reduction potentials in the case of, for example,
MOGL/SMD in order to produce more accurate potentials. However, estimating an
universal empirical correction may prove to be problematic and its applicability for
other copper complexes would be questionable. On the other hand, a scheme such
as M06/SMD is not just closely following the experimental profile and at the same
time producing the lowest MAD, but seems to be potentially more robust to the
small changes in the chemical environment and thus avoiding the need to derive any

empirical correction.

4.4 Conclusion

This chapter described development and testing of computational protocol for cal-
culation of reduction potentials of copper complexes. The series of 14-membered
quadridentate macrocyclic polyamino polyether ligands were used as models sys-
tems in order to assess the limits of the computational protocol using DFT and

implicit solvation.

It was found that the single-reference DFT is a suitable method for redox potential
calculations of the studied copper macrocyclic complexes. This is further supported
by no spin-contamination and wave function instabilities observed for the studied
systems as well as no significant multireference character present. When examin-
ing the effect of improvement in the cc-pVnZ basis set series on calculated redox
potentials (with the cc-pVTZ geometries), the results are already converged at the
cc-pVTZ level. The all-electron Def2-TZVPD basis set is a suitable choice of a basis
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set for the redox potential calculation part (geometries optimized with the cc-pVTZ
basis set) potentially leading to smaller absolute deviations from the experimental
redox potential. This would be beneficial for a scheme where smaller basis sets are
used for expensive parts of geometry optimization and frequency calculations and
larger basis sets for more accurate redox calculations. However, a more thorough
testing is needed. It was found the biggest error in the calculated redox potentials
is coming from computed electron affinities. This points to the potential way of
improving calculated results by using higher levels of theory for electron affinity
calculations. When it comes to the choice of solvation model the PCM seems to be
less sensitive to the choice of functional (excluding local functionals) in comparison
to the SMD solvation model. Further, there is a strong dependence of accuracy of
calculated redox potentials on the %HF exchange included in the functional and on
the solvation model used. From the preliminary analysis of obtained geometries it
seems that most of the functionals yield comparable geometries (see Appendix sec-
tion 4.5) and thus critical steps in the redox calculations are the single-point energy
calculations and the gibbs free energy correction calculations. Overall, the best
performing functionals are M06 for the SMD and MO6L and TPSSTPSS function-
als for the PCM model. Summarizing the above findings a proposed scheme for
redox potential calculations of copper macrocycles is using M06/cc-pVTZ with the
SMD solvation or either MO6L or TPSSTPSS functional/cc-pVTZ with the PCM

solvation methods.
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4.5 Appendix: Comparison of X-ray Structures and

Computed Complexes

Examining the gas phase optimized geometries it seems that most of the function-
als yield similar geometries. In the case of Cu'' complexes, tables 4.9, 4.11, 4.13,
4.15, 4.17 and 4.19, the standard deviation of copper nitrogen or copper sulfur dis-
tance and corresponding critical angles between functionals is less than 0.027 A and
1.3°, respectively. Further, in cases where X-ray structures are available and Cu'!
complex has the square-planar geometry, tables 4.9 and 4.19, the DFT calculated
values of critical bonds are within 0.05 A of the X-ray values and calculated angles
have negligible deviation from the square-planarity. All of the calculated struc-
tures show angles between the opposing ligands of 180.00 when rounded up to two
decimal places. This may seem a bit odd since no symmetry was imposed during
optimization, but at the same time the angles for both the N,-Cu'' and S,-Cu'!
X-ray structures are also very close to 180.00 degrees or are actually 180.00 degrees
to within decimal places considered. In the case of mixed coordination, table 4.13,
although, the DFT calculated values of critical bonds are still within 0.05 A of the
X-ray values the corresponding angles deviates more significantly. In the case of
Cu! complexes, tables 4.8, 4.10, 4.12, 4.14, 4.16 and 4.18, more significant devia-
tions are observed between the values of critical bonds and angles calculated using
various functionals as well as available X-ray structure ( table 4.10). This points to-
wards more complex coordination chemistry for these complexes. However, a more

detailed study in the future work is required in order to address this points.

Figure 4.13: TIllustrative drawing of labelling system for the critical bonds and angles
of the X-ray and computed structures. The bond angles are defined between the

X;-Cu-X3 and X5-Cu-Xy.
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Table 4.8: Comparison of critical bonds (distances in angstroms) and angles (in de-
grees) of X-ray structures and structures calculated using DFT for S;-Cu! complexes.
DFT structures were optimized with cc-pV'TZ basis set. Average and standard de-
viation (STD) are only over all of the DFT functionals.

Structure CSD code X S1-Cu S3-Cu S3-Cu S4-Cu S1-Cu-S3 So-Cu-Sy

HF 2.597 2.565 2.565 2.597  158.4 158.4
SVWN 2.959 2.157 2289 2211 173.2 158.7
BP86 3.114 2.223 2.358 2.274 1723 157.7
B3LYP 2,937 2.288 2.455 2.333 170.6 162.2
CAMB3LYP 3.019 2.257 2.399 2305 169.9 159.3
B3PW91 2.785 2281 2432 2324 1723 165.3
MO6L 3.013 2.238 2.416 2.290 171.0 160.5
MO6 2.923 2.261 2441 2.304 170.2 162.4
MO062X 2.572 2466 2512 2.507 165.0 165.6
MO6HF 2.547 2.498 2.520 2.517 161.4 163.6
B97D 3.166 2.235 2.414 2301 170.0 158.6
wBI7xD 3.020 2.2564 2.407 2.302  169.5 159.9
PBE1PBE 2.652 2.308 2446 2.352 172.0 167.7
TPSSTPSS 2970 2.236 2.377 2.284 173.0 160.9

AVERAGE 2.898 2.285 2420 2.331 170.0 161.7

STD 0.199 0.095 0.061 0.087 3.4 3.1

Table 4.9: Comparison of critical bonds (distances in angstroms) and angles (in
degrees) of X-ray structures and structures calculated using DFT for S;-Cu'' com-
plexes. DFT structures were optimized with cc-pV'TZ basis set. Average and stan-
dard deviation (STD) are only over all of the DFT functionals.

Structure CSD code X Si-Cu S3-Cu  S;1-Cu-S3
X-ray VIMDOK™ 2x(ClO4)~ 2.292(1) 2.312(1) 179.97
THCDCU™ 2x(Cl0O4)~ 2.297(1) 2.308(1) 179.97

AVERAGE 2.288 2,309  179.97

STD 0.009 0.001 0.00
HF 2.396 180.00
SVWN 2.266 180.00
BP&6 2.333 180.00
B3LYP 2.347 180.00
CAMB3LYP 2.320 180.00
B3PWO91 2.321 180.00
MO6L 2.334 180.00
MO06 2.332 180.00
MO062X 2.364 180.00
MO6HF 2.368 180.00
B97D 2.366 180.00
wB97xD 2.319 180.00
PBE1PBE 2.314 180.00
TPSSTPSS 2.326 180.00
AVERAGE 2.331 180.00
STD 0.027 0.00
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Table 4.10: Comparison of critical bonds (distances in angstroms) and angles (in
degrees) of X-ray structures and structures calculated using DFT for N;S3-Cu! com-
plexes. DFT structures were optimized with cc-pV'TZ basis set. Average and stan-
dard deviation (STD) are only over all of the DFT functionals.

Structure CSD code X Ni-Cu So-Cu  S3-Cu  S4-Cu N;-Cu-S3 So-Cu-Sy

X-ray SOZZAT'T  (ClO4)~ 2.061(5) 2.254(2) 2.277(2) 2.240(2) 114.2(2) 137.25(8)
HF 2.210 2.422 2.556 2.443 106.5 160.4
SVWN 2.033 2.209 2.233 2.218 115.1 134.8
BP86 2.115 2.279 2.315 2.287 118.4 136.6
B3LYP 2.142 2.314 2.374 2.325 117.0 141.4
CAMB3LYP 2.111 2.297 2.347 2.309 117.2 140.6
B3PW91 2.114 2.289 2.328 2.299 118.8 138.8
MO6L 2.133 2.282 2.363 2.293 113.1 141.6
MO06 2.122 2.294 2.368 2.306 113.7 140.9
MO062X 2.159 2.389 2.468 2.406 114.2 146.8
MOGHF 2.147 2.412 2.471 2.433 113.9 149.9
B97D 2.162 2.293 2.354 2.300 111.1 140.5
wB97xD 2.122 2.289 2.354 2.300 113.2 142.5
PBE1PBE 2.108 2.285 2.326 2.295 117.8 139.5
TPSSTPSS 2.099 2.277 2.308 2.287 119.4 135.6
AVERAGE 2.121 2.301 2.354 2.312 115.6 140.7
STD 0.033 0.051 0.063 0.054 2.6 4.2

Table 4.11: Comparison of critical bonds (distances in angstroms) and angles (in
degrees) of X-ray structures and structures calculated using DFT for N;Ss-Cull
complexes. DFT structures were optimized with cc-pV'TZ basis set. Average and
standard deviation (STD) are only over all of the DFT functionals.

Structure CSD code X Ni-Cu S3-Cu S3-Cu S4-Cu N;-Cu-S3 S3-Cu-Sy

HF 2.096 2.441 2.398 2.404 166.6 173.9
SVWN 2.023 2.292 2.246 2.280 169.7 169.9
BP86 2.091 2.358 2.310 2.341  170.7 169.9
B3LYP 2.089 2.375 2.330 2.355 170.2 170.8
CAMB3LYP 2.060 2.348 2.306 2.330 170.3 170.9
B3PW91 2.069 2.348 2.305 2.330 170.9 170.4
MO6L 2.081 2375 2309 2344 1694 171.5
MO6 2.056 2.357 2.313 2.341 170.0 170.5
MO062X 2.068 2.396 2.360 2.376  169.0 172.1
MO6HF 2.061 2.405 2.370 2.379  168.2 172.4
B97D 2.124 2393 2330 2.373  168.2 172.2
wB97xD 2.064 2.350 2.303 2.329  169.8 171.2
PBE1PBE 2.060 2.342 2.300 2.324 170.7 170.7
TPSSTPSS 2.075 2.351 2.307 2.335 171.0 169.7

AVERAGE 2.071 2.361 2315 2.341 169.9 170.9

STD 0.023 0.029 0.030 0.026 0.9 0.9
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Table 4.12: Comparison of critical bonds (distances in angstroms) and angles (in
degrees) of X-ray structures and structures calculated using DFT for NyS,-Cu! com-
plexes. DFT structures were optimized with cc-pV'TZ basis set. Average and stan-
dard deviation (STD) are only over all of the DFT functionals.

Structure CSD code X N1-Cu N4-Cu So-Cu S3-Cu Ni-Cu-S3 Ny-Cu-So

HF 2.545 2.531 2.263 2.285  172.7 147.8
SVWN 2.155 2.068 2.296 2.215 167.6 156.1
BP86 2.256 2.156 2.379 2.300 171.3 156.9
B3LYP 2.205 2.252 2395 2406 174.3 154.5
CAMB3LYP 2.195 2.193 2400 2370 174.3 154.7
B3PW9I1 2.212 2189 2.383 2.341 173.2 155.8
MO6L 2.147 2.289 2.329 2400 1721 152.8
MO06 2.199 2.180 2.399 2364 172.6 156.1
M062X 2.211 2221 2495 2462 176.8 153.1
MO6HF 2.204 2210 2513 2477 1779 152.1
B97D 2.214 2.255 2370 2382 1724 154.1
wB97xD 2,190 2.242 2373 2377 1741 153.5
PBE1PBE 2.204 2.183 2380 2.338 173.5 155.4
TPSSTPSS 2.231 2.152 2372 2303 171.2 156.7

AVERAGE 2.202 2.199 2.391 2.364 173.2 154.7

STD 0.028 0.057 0.058 0.069 2.6 1.6

Table 4.13: Comparison of critical bonds® (distances in angstroms) and angles (in
degrees) of X-ray structures and structures calculated using DFT for N,S,-Cull
complexes. DF'T structures were optimized with cc-pVTZ basis set.

Structure CSD code X N;-Cu S2-Cu N;-Cu-S3 Ny4-Cu-So

X-ray ZUDSOGT 2x(ClO4)~ 2.073(7) 2.344(3) 148.6(2) 178.6(2)
HF 2.071 2.411 173.3 162.7
SVWN 2.012 2.249 167.6 165.4
BP&6 2.072 2.319 169.0 167.2
B3LYP 2.068 2.341 170.1 166.9
CAMB3LYP 2.041 2.315 169.7 166.5
B3PW91 2.050 2.315 169.4 167.3
MO6L 2.066 2.321 170.1 165.6
MO6 2.042 2.317 169.1 166.3
MO062X 2.054 2.371 171.0 164.3
MO6HF 2.047 2.381 170.9 163.2
B97D 2.101 2.336 170.3 164.6
wB97xD 2.044 2.314 169.8 165.7
PBE1PBE 2.041 2.310 169.4 166.9
TPSSTPSS 2.059 2.316 169.1 167.6
AVERAGE 2.053 2.323 169.6 166.0
STD 0.021 0.032 0.9 1.3

a Experimental /Calculated bond lengths are averaged for each crystal/calculated structure.
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Table 4.14: Comparison of critical bonds (distances in angstroms) and angles (in
degrees) of X-ray structures and structures calculated using DFT for NSSN-Cu!
complexes. DFT structures were optimized with cc-pVTZ basis set. Average and
standard deviation (STD) are only over all of the DFT functionals.

Structure CSD code X Ni-Cu N3-Cu S3-Cu S4-Cu Ni-Cu-S3 N3-Cu-S4

HF 2.140 2.095 2.306 2.376 144.9 119.9
SVWN 2.038 2.018 2.201 2.241 138.3 119.8
BP86 2.118 2.092 2.263 2.309 140.1 122.1
B3LYP 2.144 2.105 2.305 2.371 145.1 120.5
CAMB3LYP 2.114 2.082 2292 2351 1444 120.3
B3PW91 2.116 2.092 2.280 2.323 1423 122.0
MO6L 2.146 2.083 2.259 2376  147.6 114.8
MO6 2.133 2.067 2.284 2385 1479 114.8
MO062X 2.163 2.118 2.389 2.492  153.7 113.8
MO6HF 2.149 2.138 2430 2489 155.6 114.2
B97D 2.168 2.112 2.268 2.373  146.7 114.9
wB97xD 2.121 2.083 2.283 2.356  145.8 117.2
PBE1PBE 2.110 2.086 2.278 2322 143.0 121.3
TPSSTPSS 2.104 2.083 2.262 2.304 139.3 122.5

AVERAGE 2.125 2.089 2.292 2.361 1454 118.3

STD 0.033 0.029 0.058 0.070 5.1 3.4

Table 4.15: Comparison of critical bonds (distances in angstroms) and angles (in
degrees) of X-ray structures and structures calculated using DFT for NSSN-Cu'!
complexes. DFT structures were optimized with cc-pV'TZ basis set. Average and
standard deviation (STD) are only over all of the DFT functionals.

Structure CSD code X N;-Cu S3-Cu N;-Cu-S3
HF 2.054 2.385 (2.383) 148.4 (132.2)
SVWN 2.023 2.268 177.3
BP86 2.081 2.332 177.7
B3LYP 2.078 2.347 177.5
CAMB3LYP 2.053 2.321 177.4
B3PW91 2.061 2.322 177.5
MO6L 2.073 2.332 177.5
MO06 2.054 2.331 177.1
MO062X 2.065 2.372 177.1
MOGHF 2.059 2.381 176.9
B97D 2.110 2.351 178.3
wB97xD 2.057 2.319 177.8
PBE1PBE 2.053 2.316 177.5
TPSSTPSS 2.069 2.327 177.4
AVERAGE 2.064 2.332 177.5
STD 0.020 0.028 0.3
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Table 4.16: Comparison of critical bonds (distances in angstroms) and angles (in
degrees) of X-ray structures and structures calculated using DFT for N3S;-Cu! com-
plexes. DFT structures were optimized with cc-pV'TZ basis set. Average and stan-
dard deviation (STD) are only over all of the DFT functionals.

Structure CSD code X N;-Cu N3-Cu N4-Cu S3-Cu Ny-Cu-Ny Ni-Cu-Ss

HF 2.149 2.146 2.080 2.248 123.7 149.2
SVWN 2.059 2.053 2.019 2.183 123.3 144.7
BP86 2.149 2.146 2.080 2.234 123.5 149.4
B3LYP 2.183 2.179 2.100 2.280 121.4 154.7
CAMB3LYP 2.149 2143 2.084 2274 1223 152.7
B3PW91 2.147 2.144 2.086 2.256 123.5 151.3
MO6L 2.178 2170 2.082 2234 117.6 155.0
MO6 2.162 2.150 2.077 2.270 119.9 154.2
MO062X 2,187 2.172 2.145 2.393 121.1 157.3
MO6HF 2174 2163 2.160 2434 1218 158.1
B97D 2.181 2.187 2.108 2.246 116.4 156.3
wB97xD 2.178 2.165 2.079 2.258 118.3 156.0
PBE1PBE 2.140 2.137 2.083 2.256 123.0 151.6
TPSSTPSS 2.132 2127 2.076 2.235 124.6 147.6

AVERAGE 2.155 2.149 2.091 2.273 121.3 153.0

STD 0.034 0.034 0.034 0.067 2.6 4.0

Table 4.17: Comparison of critical bonds (distances in angstroms) and angles (in
degrees) of X-ray structures and structures calculated using DFT for N3S;-Cul!
complexes. DFT structures were optimized with cc-pV'TZ basis set. Average and
standard deviation (STD) are only over all of the DFT functionals.

Structure CSD code X N;-Cu N3-Cu N4-Cu S3-Cu No-Cu-Ny Ni-Cu-S3

HF 2.047 2.055 2.050 2.299 145.9 149.0
SVWN 2.026 2.006 2.020 2.250 173.2 172.1
BP86 2.083 2.059 2.080 2.312 173.4 172.7
B3LYP 2.076 2.057 2.077 2.332 173.4 173.2
CAMB3LYP 2.050 2.034 2.053 2.308 173.5 173.3
B3PW9I1 2.060 2.041 2.061 2.308 173.7 173.1
MO6L 2.072 2.057 2.071 2.315 173.5 173.2
MO06 2.050 2.038 2.048 2.319 173.5 172.8
M062X 2.064 2.053 2.068 2.365 173.6 173.7
MO6HF 2.063 2.048 2.069 2.374 173.4 173.9
B97D 2.104 2.080 2.101 2.326 172.6 173.3
wB97xD 2.052 2.037 2.056 2.305 173.2 173.0
PBE1PBE 2.061 2.034 2.063 2304  173.7 173.2
TPSSTPSS 2.070 2.051 2.068 2.310 173.6 172.7

AVERAGE 2.063 2.046 2.063 2.318 173.4 173.1

STD 0.018 0.017 0.019 0.030 0.3 0.5
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Table 4.18: Comparison of critical bonds* (distances in angstroms) and angles (in
degrees) of X-ray structures and structures calculated using DFT for N,-Cul com-
plexes. DFT structures were optimized with cc-pV'TZ basis set.

Structure CSD code X N;-Cu Ny-Cu N;-Cu-N3 Ny-Cu-Ny

HF 2.227 2.180 115.9 174.0
SVWN 2.070 1.993 123.8 152.7
BP86 2.171  2.047 122.3 159.3
B3LYP 2.198 2.070 120.8 163.1
CAMB3LYP 2.161 2.062 122.3 160.5
B3PW9I1 2.157 2.062 123.3 159.4
MO6L 2.218 2.040 114.7 167.6
MO06 2.194 2.038 116.9 165.6
M062X 2.194 2.129 119.7 165.4
MO6HF 2,172 2.163 121.9 164.6
B97D 2.204 2.063 116.3 166.6
wB97xD 2.186 2.057 118.7 164.2
PBE1PBE 2.148  2.060 122.8 159.5
TPSSTPSS 2.150 2.041 122.9 157.2

AVERAGE 2.171  2.063 120.5 162.0

STD 0.038 0.042 3.0 4.3

2 Experimental /Calculated bond lengths are averaged for each crystal/calculated structure.

Table 4.19: Comparison of critical bonds* (distances in angstroms) and angles (in
degrees) of X-ray structures and structures calculated using DFT for Ny-Cu'! com-
plexes. DFT structures were optimized with cc-pV'TZ basis set.

Structure CSD code X N;-Cu N;-Cu-Nj

X-ray HAFSUC™" 2x(BH,) ™! 2.021  179.97
IPEYUX™ 2x(C;H50,)71,2xHo,O 1.969  180.00
IPEZAE78 2X(011H1302)_172XH20 2.011 180.00

AVERAGE 2.000  179.99

STD 0.028 0.01
HF 2.071  179.99
SVWN 2.009  180.00
BP86 2.062  180.00
B3LYP 2.060  180.00
CAMB3LYP 2.038  180.00
B3PWI1 2.044 180.00
MO6L 2.055  180.00
MO6 2.036  180.00
MO062X 2.057  180.00
MO6HF 2.059  180.00
B97D 2.077  180.00
wB97xD 2.040  180.00
PBE1PBE 2.037  180.00
TPSSTPSS 2.054  180.00
AVERAGE 2.048  180.00

STD 0.017 0.00

2 Experimental /Calculated bond lengths are averaged for each crystal/calculated structure.
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Chapter 5

Development of general low-cost
parameterisation scheme for MD

simulations of conjugated materials

5.1 Introduction

The following chapter presents a step-by-step development of general scheme that
can be applied to obtain classical molecular dynamics force-field parameters of conju-
gated polymers. Critical steps of such parametrization are identified and addressed
together with the choice of appropriate computational methodology for calculations
of, for example, accurate inter-monomer dihedral potentials and partial charges.
Further, a two-step protocol of geometry optimisation and single-point energy calcu-
lations using DFT method was tested for production of accurate dihedral potentials
comparable with high level theory calculations. In addition, the effects of varying
the conjugated backbone length and alkyl side-chain lengths on the dihedral profiles
and partial charges distributions were examined in order to determine the existence
of converged lengths above which universality is observed in the force-field parameter
sets. This could potentially allow extension of simulations to layers of conjugated
polymers with relatively cheap parametrization step required. This study was done
in collaboration with Jack Wildman and a group of Ian Galbraith and was recently

published in the Journal of Chemical Theory and Computation.!

Semiconducting conjugated polymer materials have a great potential in organic-
based opto-electronics with several advantages over, for example, inorganic semicon-
ductors including light-weight, flexibility, low toxicity and inexpensive fabrication

for applications such as photovoltaic cells and light-emitting diodes.?* However,
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there are some challenges for viable devices construction when using organic poly-
mers such as ability to achieve sufficient power conversion efficiencies and durability.
One of the key reasons behind this is the important role of material morphology and

conformation within such materials.®

Detailed understanding of conjugated polymers morphology and conformation al-
lows new modifications of existing materials as well as design of new materials with
the desirable properties. For example, this can lead to more control over solubil-
ity, allowing solution processing and low bulk modulus accounting for flexibility?2.
However, at the same time the polymeric nature of individual molecules and the
statistical nature of their mixing may lead to the existence of phenomena such as
deep-tail trap-states which can inhibit the conductivity.® This is primarily due to
the delicate physics of both intra-molecular conjugation - its sensitivity to local dis-
tortions along the backbone of a polymer” and the effect this has on the resulting

™9 _ and the inter-molecular excitation

optical absorption and emission dynamics
transfer dynamics - the interplay of alignment and separation of conjugated seg-
ments or ’chromophores’ and their spectral overlaps with the Forster-type!® transfer
of excitons and polarons. 112

Molecular Dynamics (MD) is a suitable method to address the questions of the
interplay of the dynamics and statistical mechanics of conjugated polymer-based
materials. It helps to understand and predict macroscopic properties of these sys-
tems based on the detailed knowledge on atomic scale. In MD simulations, the
classical dynamics of molecules are generated using force-fields which describe the
averaged effect of the molecular electrons on the covalent bonding and the Van der
Waals type forces. Treating the system classically as well as using the predefined
force-fields greatly reduces the computational expense of analysing questions of con-
formational properties and allows for the simulations of reasonably long chains. 316
It is important that the force-fields used are able to reproduce experimental be-
haviour with sufficiently high accuracy. Historically, MD force-fields were mainly
designed for applications in biochemical simulations of, for example, large proteins
and DNA /RNA molecules. There exists a number of available force fields!” 25 which
are parameterised in order to yield accurate results for the specific task. These force-
fields usually contain many parameters transferable to the conjugated polymer sys-
tems, however, there are certain aspects that require a careful re-parameterisation
due to the conjugated nature of the molecular physics involved. The key challenge
is to utilise as many transferable parameters as is possible while identifying critical

parameters that require further attention and re-parameterisation.

In the case of organic conjugated polymers one of the most important terms to be
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considered is the energetic profile of the dihedral between monomers in a conjugated
system. The excited-state landscape of conjugated molecules is governed by the
dihedral angles?®; therefore accurate modelling of the dihedral profiles and energy
barriers between conformers is of critical importance when studying the optical
properties of polymer materials as these are crucially dependent on the torsional

profiles.

Another key aspect to consider is how interatomic electrostatic interactions, which
arise due to local deviations in electronic charge densities, are described. The most
common implementation in MD force-fields is in a form of atom centred ’partial
charges’. Derivation of these charges usually requires fitting atomic charges to the
calculated electrostatic potentials of the molecule. While there exist a number of
such fitting schemes?” 3", the RESP scheme®! is generally considered to be one of

the more robust and accurate procedures for this task.

153233 available for generating

There are already some methodological approaches
MD parameters for simulations of conjugated polymers. However, there is often a
lack of systematic parameter development and benchmarking of given methodology
and many of these sources provide conflicting viewpoints on the appropriate levels
of quantum chemical theory required. This leads to a large degree of ambiguity in
the accuracy of a given method as well as whether or not a described computa-
tional scheme could be replaced by a significantly less computationally expensive
one. Given the wide range of organic molecules which are of potential interest for
applications in organic opto-electronics the computational cost and complexity of
obtaining parameters is yet another aspect one needs to consider when aiming to

simulate these systems using MD.

Additional point that has, to date, been neglected is how sensitive a given parame-
terisation scheme is to variation in length of molecules and lengths of their associated
alkyl side chains. A typical solution-cast mixture of conjugated polymers requires
the attachment of branched alkyl side chains to provide solubility. It has also been
shown that these side chains and their interference with the intrinsic molecular mo-
tion of the conjugated backbone of the molecule has a key role in effects such as the

6 as well as the emergence of exotic bulk behaviour

34

inhibition of excitonic diffusion

such as the well-studied §-phase of poly-fluorene

For the above reasons, the work presented here establishes a systematic approach to
the force-field parameterisation. Further, applicability of a given set of parameters
for molecules of varying length and varying length of side chain is investigated and
cases in which the universality of given parameters to these variations is broken are

discussed. This results in a parameterisation protocol which conforms sufficiently
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to both established benchmarks of accuracy; avoids unnecessarily computationally-
intensive calculation methods; and in theory could be applied to any type of conju-

gated system with alkyl side chains.

5.2 Generating Molecular Dynamics Parameters

As described in the section 2.3 a set of force-field parameters typically contains
parameters of five types: three describing the energetics due to covalent bonding
between atoms and two describing non-covalent interactions. The covalent terms ac-
count for the bond-stretching, the angle bending and changes in the dihedral angles
between four atoms. These are modelled by functions ranging from quadratic (par-
ticularly for two-atom vibrations) to Fourier-based functions for the angular types.
Non-covalent interactions are of the form of Lennard-Jones and Coulomb poten-
tials which account for London dispersion, Pauli repulsion and, in the case of the
Coulomb potentials, electrostatic interactions between local variations in electronic

density.

The OPLS'® 2! force-field (as implemented in Gromacs 4.6.53%36) was chosen as
a starting point for the parameterisation due to the availability of parameters for
many atoms in a multitude of different molecular frameworks as well as its use in
previous works parameterising conjugated polymers. 173337

Thiophene and fluorene oligomers with and without alkyl side-chains were chosen as
model systems (see Figure 5.1). One of the reasons behind this choice is that these

molecules are experimentally 343840

well-characterised conjugated systems. The sec-
ond reason is that there are already some parameters available for these molecules

within the OPLS force-field, which greatly simplifies the task at hand.

In order to parameterise a given molecule, the first step is to build on the appropriate
parameters found within OPLS for a monomer. In the case of thiophene and fluorene
the OPLS parameters for monomers were already available. This leads to need to
determine only the bonds, angles, and dihedrals associated with the linking bond
between two connected units of thiophene/fluorene (hereafter referred to as a 2mer
and, for molecules with = connected units, as an zmer) and partial charges. This is

illustrated in Figure 5.2.

An initial expectation is that bond-stretching and angle-bending within the monomers
are reliably parameterised by the existing OPLS force-field terms thus this leaves the
inter-monomer dihedral profile as the primary unknown from the covalent terms. In

the case of non-bonding interactions, existing Lennard-Jones terms are used without
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Figure 5.1: Schematic of (a) fluorene and (b) thiophene 2mers with the associated
dihedral angle, ¢, highlighted in each case.

Figure 5.2: Schematic highlighting the required new parameters in going from a
parameter set for thiophene to di-thiophene. The missing force-field parameters are
the bond-stretching term between the two carbons circled in red; angle-bending term
between each combination of three blue-circled atoms (two from one unit and one
from the other); and the dihedral angle term for each combination of four blue-circled
atoms (two from one unit and two from the other).

any modifications, and the main focus is on partial charge generation and validation.

In order to generate sufficiently accurate dihedral potentials at low computational
expense, a two-step Scan - Single Point (SP) approach®# was adopted. The main
idea behind this approach is to use a computationally inexpensive lower level of
theory such as DFT to perform geometry optimisations over the span of a dihedral
rotation (Scan) and subsequently refine these results with a higher level of theory,
for example, local methods (MP2, CCSD, CCSD(T)) or DFT with a larger basis set

to obtain more accurate SP energies.
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In the first step, the Scan, involves determining, by relaxed scan geometry optimisa-
tion, a series of molecular geometries for different values of dihedral angle between
the units of 2mer. Geometry optimisation can become computationally very expen-
sive task, especially when large molecules are considered. However, it is possible to
obtain reliable geometries in the case of many conjugated molecules using moderate
level of theory, such as DFT, as previously shown by DuBay el al.3® and Bhatta el

al.?”

While it is possible to obtain accurate geometries in the Scan step, as will be shown,
the energies obtained from this step are often quite inaccurate. This is why the
second step, the SP step, using higher levels of theory in order to obtain accurate

energetic profiles is necessary.

Partial charges are generated using the RESP?! scheme with input electronic den-
sities calculated at the above SP step. Further, effects of varying backbone length
on the net charges of the internal monomer units were studied in order to investi-
gate a possibility to determinine a length at which the net charges go to zero and
thus to obtain converged charge distributions which are generalisable to any length
of molecule. Furthermore, similar possibility to generalise charges with respect to

variations of side-chains was examined.

Once the appropriate partial charges have been determined, these are directly im-
plemented into the force-field. The dihedral profile, on the other hand, must be im-
plemented by means of a ’subtraction’ method so as to ensure that energetic terms
already described by the force-field and partial charges are not double-counted.
This involves performing a dihedral scan using the force-field parameters (without
the required dihedral) in order to obtain the contribution already accounted for by
the force-field and subtracting this from the calculated DFT profile. The resulting

'subtracted’ profile is then implemented into the force-field.

Throughout this work the 'polymer convention’ for dihedral angle labelling is used.
This convention casts the trans conformation at 0° and the cis conformation at 180°.
Dihedral potentials taken from other works have been transformed so as to fit with

this convention.

112



5.3 Determination of the Appropriate Methodol-
ogy.

The most important terms identified in the organic conjugated systems parametriza-
tion are the torsional (dihedral) profiles between monomers and the partial charges.
In order to obtain accurate torsional potentials it is necessary to fit the torsional

profiles to potentials obtained from a high level ab initio calculation.

Some of the methodology for computational studies of conjugated systems in the lit-
erature involved using the second-order Mgller-Plesset perturbation theory (MP2) 1541744,
local MP2 (LMP2)33  coupled cluster theory (CCSD(T))*4? and DFT41424447,
The following section examines performance of some of these methods as well as
the possibility to obtain highly accurate torsional profiles using moderate levels of

theory.

In the first part, performance of wave function based methods, such as MP2, CCSD(T)
and their local variations such as LMP2 and LCCSD(T), were examined for the SP

step of dihedral calculations. This is followed by testing various DFT functionals

such as SVWN, BP86, B3LYP, CAM-B3LYP, wB97X, wB97X-D and the family of

MO06 functionals (MO6L, M06, M062X, MO6HF). These calculations were mainly

performed for thiophene dihedral profiles and the results were also compared to the

CCSD(T)/CBS result of Bloom et al.*!.

Once, the appropriate functional was determined the effects of basis set choice on
the Scan step of the dihedral profile calculation were examined. Further, the effects
of including dispersion correction GD3BJ*% were also investigated for thiophene

and fluorene 2mers with no-, methyl- and ethyl-side-chains.

5.3.1 Technical Details

Following procedures were employed when performing calculations presented in this
section, geometries for both thiophene and fluorene dimer were generated using re-
laxed scan geometry optimization at the B3LYP/6-31+G(d,p) level for structures
with dihedral angle ranging from 0° (trans) to 180° (cis) with 10° step. Generated
geometries were used for a Single-Point energy (SP) calculations using cc-pVTZ as
basis set. All DFT calculations presented were performed in Gaussian 09 (Revi-
sion D.01)" and all other calculations, such as canonical MP2, CCSD(T) and their
local variants, were performed in Molpro 20125152, The CCSD(T)/CBS result of

Bloom et al.*!, which was used as a benchmark profile for thiophene dihedral, uses
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geometries obtained at the MP2/aug-cc-pVTZ level. Further, the possibility of us-
ing density fitting to approximate the integrals, was tested as a potential option to

decrease the computational cost of some of the calculations.

Two settings were modified in local methods (e.g. LCCSD(T) and LMP2) in order
to control the size of local domains, mainly the threshold for selecting atoms con-
tributing to orbital domains utilising the Boughton - Pulay algorithm (THRBP) 5354
and MERGEDOM directive (MDom).

Domains are geometry dependent as a result of the restriction of the virtual space
in local calculations and this may result in discontinuities on the potential energy
surface. For this reason, the MERGEDOM directive was employed to generate aug-
mented (merged) domains, that are appropriate for a whole range of geometries in
the scan. Further, the THRBP criterion is somewhat basis set dependent with the
default selection criterion value of 0.98, which should work usually well for small basis
sets like cc-pVDZ. For larger basis sets like cc-pVTZ and ce-pVQZ a slightly larger
values of 0.985 and 0.990, respectively, are recommended to ensure that enough
atoms are included in each domain. For illustration, in the case of THRBP=1.0
this includes all atoms into each orbital domain, i.e. leads to full domains, and if

no pairs are neglected, this should theoretically yield the canonical MP2 energy.

The following calculations were performed in this section in order to address different

questions:

e MP2 and density-fitted MP2 (DF-MP2) to see the effect of density fitting on
dihedral profiles.

e Density-fitted local MP2 (DF-LMP2) calculations were performed in order
to assess the performance of DF-LMP2, specifically different choices of do-
main size. These results were then compared to canonical DF-MP2. Various
mergedom (MDom) and THRBP values were tested; such as MDom=0, 1, 2,
3 and THRBP=0.980, 0985, 0990, 0995.

e Results of DF-LCCSD(T) calculations with the optimal choice of THRBP and

MDom were compared with the canonical CCSD(T) calculations.

e Various DFT functionals such as: SVWN, BP86, BSLYP, CAM-B3LYP, wB97X,
wBI7X-D and the family of M06 functionals (MO6L, M06, M062X, MO6HF)
were tested and compared against CCSD(T)/CBS.

e Performance of CAM-B3LYP with various combinations of Scan step basis

sets and with further SP calculation with cc-pVTZ were examined for fluorene
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and thiophene.

e The effects of GD3BJ dispersion correction with the Scan CAM-B3LYP /6-
31G* and SP CAM-B3LYP /cc-pVTZ were investigated for thiophene and flu-

orene 2mers with no-, methyl- and ethyl-side-chains.

Most of the functionals used in this section were already described in the previous
chapters. From the new ones the wB97X% and wB97X-D are both long-range
(LC) corrected hybrid functional that also include a small fraction of exact short-
range exchange (16%) and in the case of wB97X-D also empirical dispersion is in-
cluded.

5.3.2 Results of Methodology Testing

Examining the results for thiophene, as shown in the Figure 5.3, introduction of
the density fitting (DF-MP2) into MP2 calculation to approximate the integrals
has no noticable effect on the dihedral profile, other than speeding up the calcu-
lations (on average 20% speedup in the case of bithiophene dihedral scan). The
profile obtained using the Density-Fitted Local-MP2 (DF-LMP2) was calculated
using THRBP=0.985 and MDom=1, more on this choice will be discussed below.
From the same figure it can be seen that MP2 dihedral profiles (MP2, DF-MP2
and DF-LMP2) are closely copying CCSD(T)/CBS calculated profile with slightly
shifted trans minimum and the largest deviation of ~ 0.6 kJ/mol (~ 0.2 RT) (DF-
LMP2) for the trans minimum to trans planar structure barrier which is deemed
to be modest deviation. In general, deviations in the calculated torsional profiles
from the CCSD(T)/CBS profile affect the population distribution of conformers at a
given simulation temperature. The ratio of probabilities of two populations which
differ by AFE is defined as % = exp(—AE/RT). When the energy difference is
affected by an error d, where d is the error in energy difference in units of RT,
the population ratio would be affected by a factor of exp(—d). In the situation of
d =1 RT (RT = 2.479 kJ/mol at T = 298K), this leads to a factor of change in

the population ratio larger than 0.6.

Testing various THRBP (THRBP=0.980, 0.985, 0.990 and 0.995) and mergedom
(MDom=0-3) options, figs. 5.4 to 5.7, in the cases where augmented domains are
not used (MDom=0) this gives poorly converged results across all THRBP choices
and leads to discontinuities in the calculated dihedral potentials. On the other hand,
augmented domains with MDom=1 and 2 give results close to the canonical MP2,
with almost identical profile to that of MP2 in the case of THRBP=0.995. It was
found, generally, that MDom=3 gives slightly poorer results than MDom=1 or 2
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Figure 5.3: Dihedral profiles of thiophene dimers calculated using DF-LMP2 (us-
ing THRBP=0.985 and MDom=1), DF-MP2 and MP2 with cc-pVTZ basis set.
CCSD(T)/CBS results of Bloom et al*! is used for comparison.

for all THRBP values except THRBP=0.995. For THRBP=0.995, the choice of
MDom=3 results in unphysical domain formation which is reflected in the resulting
profile. Given that THRBP=0.985 and MDom=1 provides the least computation-
ally intensive and suitably accurate choice, the subsequent DF-LCCSD(T) calcula-

tions were performed using these parameters.

Finally, as can be seen in Figure 5.8, using the THRBP=0.985 and MDom=1 leads to
the dihedral profile for DF-LCCSD(T) almost exactly copying canonical CCSD(T)
profile. Compared to CCSD(T)/CBS, the CCSD(T)/cc-pVTZ result over-estimates
the cis minimum slightly by ~ 0.8 kJ/mol (~ 0.3 RT') while at the same time un-
derestimating the 90° barrier by ~ 1.3 kJ/mol (~ 0.5 RT'), which leads to an overall
reduction of ~ 2.1 kJ/mol (~ 0.9 RT) in the cis to 90° conformation barrier. Given
the scale of this overall deviation, it would be expected that this would considerably
affect the resulting dynamics. Further, Table 5.1 shows some illustrative timing
results between canonical methods and their local versions. Note, however, that
timing benchmark in the table is very limited as there may be more optimal settings
such as number of procesors, memory and using integral-direct calculations (recom-

puting two-electron integrals in the AO basis whenever needed and avoiding the
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5.4: Dihedral profiles of thiophene dimers calculated using DF-MP2 and

DF-LMP2 with THRBP=0.980 and varying mergedom (MDom) value; MDom =

0,1,2,3.
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5.5: Dihedral profiles of thiophene dimers calculated using DF-MP2 and

DF-LMP2 with THRBP=0.985 and varying mergedom (MDom) value; MDom =

0,1,2,3.
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5.6: Dihedral profiles of thiophene dimers calculated using DF-MP2 and

DF-LMP2 with THRBP=0.990 and varying mergedom (MDom) value; MDom =

0,1,2,3.
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5.7: Dihedral profiles of thiophene dimers calculated using DF-MP2 and

DF-LMP2 with THRBP=0.995 and varying mergedom (MDom) value; MDom =

0,1,2,3.
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Figure 5.8: Dihedral profiles of thiophene dimers calculated using CCSD(T) and
DF-LCCSD(T) (THRBP=0.985 and MDom=1) with cc-pVTZ basis set. These are
compared against CCSD(T)/CBS results of Bloom et al.*!.

bottleneck of storing these quantities on disk). Nevertheless, from this table it can
be seen that DF-LCCSD(T) runtime is &~ 70% of the canonical CCSD(T) runtime.

Table 5.1: Average runtime (Real) time in minutes, averaged over runtimes for all
the points along the dihedral potential, for different methods with cc-pV'TZ basis
set. All of the calculations were run at 6 processors with ~ 7.5GB memory per
processor (5 processors, since one is helper processor). Local methods were run
with THRBP=0.985 and MDom=1.

Method Runtime [minutes|
CCSD(T) 378
DF-LCCSD(T) 264

MP2 10
DF-MP2 8
DF-LMP2 9

Both the Figure 5.8 and Table 5.1 point to very promising results for local methods
since for thiophene dimer they are able to achieve accuracy comparable to that of
canonical methods at the reduced computational cost. However, as can be seen
in Table 5.2, trying to apply local methods to larger conjugated systems such as

fluorene monomer the deviation from MP2 energies are in order of tenths of kJ/mol
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and only at much larger THRBP=0.995 and MDom=2 it is possible to achieve
accuracy of the canonical MP2. In the case of fluorene dimer, Table 5.3, it was not
possible to achieve the accuracy of canonical MP2 not even at THRBP=0.995 and
MDom=0. Further, for values beyond THRBP=0.995 and MDom=0 the domain
size becomes prohibitevely too expensive and localization procedure convergence
problems were encountered. Further, Figure 5.8 shows that even if local methods
are able to achieve accuracy of their canonical counterparts both the CCSD(T) and
DF-LCCSD(T) with cc-pVTZ result in a considerably different profile from that of
the CCSD(T)/CBS. This appears to be the result of basis set incompleteness and,
in comparison to results using DFT, the generally slower convergence to CBS limit
of Coupled-Cluster methods.

Table 5.2: Relative energies of single fluorene unit against
canonical MP2 and running time in seconds. In the brack-
ets are the values when DF-HF is used.

cc-pV'TZ Method Relat. to Real
MP2 [kJ/mol]  time [sec]|
HF DF-MP2 0.0 (1.3) 555 (70)
Full dom® HF DF-LMP2 0.0 805
Full dom® HF DF-LMP2 0.0 730
THRB=0.980
MDom=0 HF DF-LMP2 84.5 716
MDom=1 HF DF-LMP2 73.4 762
MDom=2 HF DF-LMP2 73.4 760
MDom=3 HF DF-LMP2 73.4 761
THRB=0.985
MDom=0 HF DF-LMP2 80.1 1063
MDom=1 HF DF-LMP2 70.3 704
MDom=2 HF DF-LMP2 70.3 698
MDom=3 HF DF-LMP2 70.3 667
THRB=0.990
MDom=0 HF DF-LMP2 72.0 751
MDom=1 HF DF-LMP2 51.7 1226
MDom=2 HF DF-LMP2 51.7 1220
MDom=3 HF DF-LMP2 59.3 854
THRB=0.995
MDom=0 HF DF-LMP2 40.7 867
MDom=1 HF DF-LMP2 0.0 (1.3) 3160(2753)
MDom=2 HF DF-LMP2 0.0 3745
MDom=3 HF DF-LMP2 11.5 2434

represents full domain (THRBP=1) with and ® without very
distant pairs being neglected.

From Figure 5.9, it can be seen that for DFT results improving the functional ap-
proximation by moving from local SVWN to gradient corrected BP86 and to hybrid

functionals leads to a significant improvement of not only the important energy
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Table 5.3: Relative energies against canonical MP2 and running time in seconds for
a minimum structure of fluorene dimer (39.3°). In the brackets are the values when
DF-HF is used.

cc-pVTZ Method Relat. to Real
MP2 [kJ/mol] time [sec]|
HF DF-MP2 0.0 (2.6) 2876 (672)

THRB=0.980
MDom=0 HF DF-LMP2 182.8 3152
MDom=1 HF DF-LMP2 159.4 3984
MDom=2 HF DF-LMP2 159.4 4016
MDom=3 HF DF-LMP?2 159.4 3779
THRB=0.985
MDom=0 HF DF-LMP2 171.7 3199
MDom=1 HF DF-LMP2 152.9 3501
MDom=2 HF DF-LMP2 152.9 3500
MDom=3 HF DF-LMP2 152.9 3528
THRB=0.990
MDom=0 HF DF-LMP2 146.9 3549
MDom=1 HF DF-LMP?2 102.3 13141
MDom=2 HF DF-LMP2 102.3 11268
MDom=3 HF DF-LMP?2 123.8 4272
THRB=0.995
MDom=0 HF DF-LMP2 81.9 4659
MDom-=1 HF DF-LMP2 * *
MDom=2 HF DF-LMP2 *
MDom=3 HF DF-LMP2 *

barriers of calculated profiles of thiophene dimers, but also of the overall shape of
the profiles. Further, including long-range correction in the case of CAM-B3LYP
provides dihedral profile with accuracy close to the benchmark CCSD(T)/CBS re-
sult. The only notable deviation between CAM-B3LYP and CCSD(T)/CBS profile
is that CAM-B3LYP modestly over-estimates the energy of the cis minimum by ~
0.8 kJ/mol (~ 0.3 RT), which is similar to the CCSD(T)/cc-pVTZ over-estimation
of this minimum. Testing the choice of different long-range corrected wB97X func-
tional, Figure 5.10, also results in a highly accurate profile, however in comparison
to CAM-B3LYP slightly more underestimating the perpendicular barrier height.
Further, inclusion of empirical dispersion in the case of wB97XD does not provide
any significant improvement over the wB97X, but actually makes it a little worse
for the perpendicular barrier height and trans minimum to trans planar barriers.
Examining the effects of different %HF exchange included, Figure 5.11, it can be
seen that the M06-2X gives the closest agreement to the CCSD(T)/CBS result. On
the other hand, the M06-L is not able to identify any of the minima and the overall
dihedral profile deviates the most from the CCSD(T)/CBS profile. Further, this
figure points to a strong dependence of the dihedral profile shape and energetics on

the %HF exchange included in the functional.
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Figure 5.9: Comparison of thiophene dimer dihedral profiles calculated using various
DFT functionals with cc-pVTZ basis set and CCSD(T)/CBS profile.
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Figure 5.10: Comparison of thiophene dimer dihedral profiles calculated using the
long-range corrected functionals with cc-pVTZ basis set and CCSD(T)/CBS profile.
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Figure 5.11: Comparison of thiophene dimer dihedral profiles calculated using the
MO6 family of functionals with increasing value of %HF exchange (in brackets) and
CCSD(T)/CBS profile. All calculations are performed with cc-pVTZ basis set.

Summary of some of the key results for thiophene is given in the Figure 5.12 and Ta-
ble 5.4. In addition, these results show that CCSD(T) and MP2 with cc-pV'TZ basis
set provide comparable bitiophene dihedral profiles, with MP2 predicting a slightly
larger trans to cis barrier and lower lying cis minimum and cis planar structure.
Moreover, MP2/cc-pVT7Z is overall in better agreement with CCSD(T)/CBS dihe-

Z. 41

dral profile taken from the article by Bloom et al.**, which was obtained at the

MP2/aug-cc-pVTZ geometries.

Table 5.4: Relative energies (E, in kJ.mol™!) and dihedral angles (¢, in deg) for sta-
tionary points along dihedral potential of bitiophene calculated using different methods
with cc-pVTZ basis set.

trans TS cis barrier to planarity
Method E [0) E [0) E 10} trans cLs
CCSD(T)/CBS* 0.0 =~ 25.0 9.10 =~90.0 185 = 150.0 0.49 1.72
CCSD(T) 0.0 <30.0 797 =~090.0 217 >140.0 0.80 2.40
MP2 0.0 <30.0 894 =~090.0 1.79 <150.0 1.09 2.11
CAM-B3LYP 0.0 <30.0 870 =~090.0 2.28 >140.0 0.72 2.00

*CCSD(T)/CBS values, calculated at the MP2/aug-cc-pVTZ geometries, were taken from the
article by Bloom et al.4!.

5.3.3 Results of Basis Set Testing

In order to examine effects of basis set choice on the 2mer dihedral profile calculations

using Scan-SP approach various basis sets from the 6-31G57 % family with added
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Figure 5.12: Dihedral profiles of thiophene dimers for various choices of SP calcula-
tion methods. In (a), results for MP2 and DF-LMP2 are presented with (b) contain-
ing results for BSLYP, wB97X, and M06-2X. In each graph, results for CAM-B3LYP
and CCSD(T) are also provided for comparison as well as the CCSD(T)/CBS re-
sults of Bloom et al*!. All geometries are obtained at the BSLYP /6-31G(d,p) level
except for the CCSD(T)/CBS which were obtained at the MP2/aug-cc-pVTZ level.

polarization and diffuse functions for scans and the cc-pVTZ5" basis set for SP
calculations were tested. For both fluorene and thiophene, comparisons are made
against a scan performed using cc-pVTZ for both Scan and SP (herein referred to
as the cc-pVTZ result), and further comparison is made against the benchmark
CBS-limit CCSD(T) calculations of Bloom et al*! for thiophene. The CBS-limit
CCSD(T) calculations, which are further referred to as the CCSD(T)/CBS result,
were performed with MP2/aug-cc-pVTZ for the Scan and CCSD(T) in the Complete
Basis Set (CBS) limit for the SP.

Figure 5.13 gives an overview of perfomance of the basis sets tested. It can be seen
from Figure 5.13(b) that the cc-pVTZ result of thiophene is in good agreement with
the CCSD(T)/CBS result. As performing such a high-level calculation as that of
Bloom et al for as large a molecule as fluorene is computationally prohibitive, the

cc-PVTZ result is used as a benchmark in the case of fluorene.

From the results for fluorene, Figure 5.13(a), it is observed that the energetics of
the geometry optimisation alone are quite inaccurate when compared to the cc-
pVTZ result. In the case of basis sets without diffuse functions a considerable over-
estimation (= 2 kJ/mol or 0.8 RT') of both the planar conformations barrier and the
barrier at 90° is present. On the other hand, the basis sets with diffuse functions
over-estimate the planar barrier but considerably underestimate the 90° barrier to

a similar degree.

For thiophene, Figure 5.13(b), inclusion of diffuse functions in the basis set pro-
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Figure 5.13: Dihedral profiles from geometry scans for CAM-B3LYP with various
basis sets in (a) fluorene and (b) thiophene 2mers. Those with additional cc-pVTZ
single-point calculations are labelled (SP). Full geometry optimisations using cc-

pVTZ are also included and in (b) comparison is made to the CCSD(T)/CBS thio-
phene result of Bloom et al*!.
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vide considerably less accurate results when compared to results without diffuse
functions. In details, using the diffuse functions, the energetics of conjugation bar-
rier (=~ 90°) appear to be underestimated when compared to the cc-pVTZ and
CCSD(T)/CBS results. This difference is ~ 3 kJ/mol (~ 1.2 RT') which at ~ 20-
30% of the barrier itself, is a significant discrepancy. However, it is also observed
that none of the 6-31G-type basis sets exhibit suitable accuracy as both overestimate
the height of the 180° energy barrier in thiophene by ~ 2 kJ/mol (~ 0.8 RT).

Note that while there exists significant deviation in the energetic barrier heights
due to the inclusion of diffuse functions, upon performing SP calculations with cc-
pVTZ this difference becomes negligible. This implies that all the above discussed
choices of basis-set provide very similar geometries and that the final accuracy of
the dihedral profile is more dependent on the choice of basis set for the following SP
calculation. It follows from this that 6-31G* basis set for the geometry optimisation
is an appropriate choice providing accurate enough geometries at much cheaper

computational cost.

Further, it was found that utilising a subsequent SP calculation offers a significant
improvement to the resulting potentials. In thiophene, it is observed that the error
in the SP curves is ~ 50% of that of the initial 6-31G* calculation when compared
to the CCSD(T) curve. For the largest deviation, at the 180° barrier, this trans-
lates to a reduction of the absolute error to < 1 kJ/mol (~ 0.4 RT) from ~ 2
kJ/mol (~ 0.8 RT'). When compared to the 6-31+G** curve, this error reduction

is considerably greater.

Finally, when comparison is made to the results of a full optimisation using cc-pVTZ
(i.e. performing the Scan step with cc-pVTZ without any further SP calculation)
it is shown that the results of the Scan-SP approach are almost identical to that of
using cc-pVTZ for geometry optimisation. This is yet another proof that reliable
geometries are obtained from basis set choices as low as 6-31G*. With the above in
mind, the choice of CAM-B3LYP/6-31G* Scans and CAM-B3LYP /cc-pVTZ SP’s
is well justified.

5.3.4 Results of Dispersion Corrected DFT

The results of dihedral profiles with and without the dispersion correction GD3BJ4%4°

for 2mers with no- , methyl- and ethyl-side-chains are summarized in Figure 5.14.
In the case of fluorene 2mers, Figure 5.14(a), the use of dispersion correction has
essentially no effect for all side-chains considered. On the other hand, in the case
of thiophene, Figure 5.14(b), it is found that there is little effect only for no and
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Figure 5.14: Dihedral energetics from DFT with and without dispersion correction
for 2mers of (a) fluorene, and (b) thiophene. For each molecule, the profile with no
side-chains, with methyls, and with ethyls is given.

methyl-side-chains. However, ethyl-thiophene is affected in two ways. Firstly, there
is a slight variation of certain energies of ~ 0.5 kJ/mol (~ 0.2 RT) - particularly
those at the planar points. Secondly, the overall profile is far less smooth than those

given without dispersion.

One of the reasons is that the inclusion of dispersion interactions in DFT calculations
of this type often lead to convergence problems as the relatively high flexibility of
the side chains allows for many possible local minimal conformations. Due to this,
the calculations both become increasingly computationally expensive and generate
results which are strongly-dependent on initial conditions; resulting in ambiguity in
their translation into force-field parameters. The second reason is that by effectively
removing the side chain - side chain interactions, what is observed is the effect
of the presence of the side chains on the electronic properties of the backbone.
For the purposes of generating good force-fields for MD calculations, this is the
crucial point as this determines whether or not, in principle, the bare dihedrals
along the molecular backbone require modification due to the presence of the side
chain. Therefore, the dispersion correction is not used in the force-field scheme

presented here.

5.3.5 Discussion and Conclusion

The main result is that two step approach with CAM-B3LYP/6-31G* Scans and
CAM-B3LYP/cc-pVTZ SP performs with accuracy close to that of the benchmark
CCSD(T)/CBS result of Bloom et al. While it was found that MP2 and DF-LMP2
(with the above MDom and THRBP choices) give slightly better agreement than
CAM-B3LYP, given that the method used will be applied to longer molecules and

molecules of larger constituent unit size (for example, fluorene in this work), a
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strongly performing DFT functional will provide highly accurate results with much
better scaling with the system size. Further, although local methods gives us the
possibility for a systematic improvement of calculated results and minimization of
basis set superposition error at lower computational costs, as opposed to their canon-
ical counterparts these methods are not black-box methods. They depend on the
choice of the domain for the local calculations. Furthermore, domains are geome-
try dependent and restriction of the virtual space in local calculations may result
in discontinuities on the potential energy surface. For this reason domains have to
be defined that are appropriate for a whole range of geometries in order to obtain

smooth potential energy profile along the scan coordinate.

In the case of strongly conjugated systems local methods may suffer due to the
intrinsic delocalisation of the conjugated molecular orbitals, which results in the
necessity of impractically large domains. Another problem one may encounter for
strongly conjugated systems is a poor localization of molecular orbitals or that the
localization procedure does not converge at all. Therefore, for the above reasons,
better scaling of DFT when applied to longer polymer chains and side-chains and
for the consistency with the subsequent optical studies CAM-B3LYP was used for
the dihedral modelling in this study. Further, it was shown that basis set choices as
low as 6-31G* are sufficient in order to provide reliable geometries. Furthermore,
it was demonstrated that two step approach using CAM-B3LYP /6-31G* Scans and
CAM-B3LYP/cc-pVTZ SP is needed in order to obtain accurate dihedral profiles.

5.4 Determining Dihedral Profiles

Now, with the above established methodology it is possible to examine the effects of
neighbouring dihedral angles, position of the dihedral along the conjugated backbone
and the length of conjugated backbone on the dihedral energetics. Examining the
effect of neighbouring dihedral angles, as can be seen from individual graphs in
Figure 5.15 and Figure 5.16, in the case of fluorene there is no difference between
dihedral profiles for all neighbouring values while in the case of thiophene there exists
a slight deviation of ~ 0.5 kJ/mol (~ 0.2 RT') in the barrier height. In the same
figures when comparison is made between dihedral profiles on the left (a) and right
(b), a set of curves corresponding to a different position along the conjugated chain,
the differences observed are in both cases small. The above findings point to the
invariance of the dihedral energetic profiles to the value of the neighbouring dihedral
angle and its position along a chain longer than a 2mer. With this in mind it is
possible to examine the sensitivity of dihedral profile to the length of the conjugated

backbone by performing a scan over one dihedral for any chosen values of the others
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in various lengths of molecule.

¥ - $,=0° | 4 i - ¢,=0° | ]
10¢ (a) —0,=90° | 1 | (b) N —¢,=90° | |
= N ,’ \\ —o=180° 4 N ,' \ = 0=180°] £
£ \\ / \ ,I : \\ / \ /
ZI / \ EEREA / \ |-
R / ) i \ /
i v
|E \ I \ ! h r \ / b
2f 1| \ /
i v ! \ / 1t \ / \ /
o \S‘l‘ L ‘\J\ . EeoooNd s e
0 30 60 90 120 150 180 O 30 60 90 120 150 180
Dihedral Angle, ¢, (°) Dihedral Angle, ¢, (°)

Figure 5.15: Dihedral profiles obtained from scans of 4mers of fluorene. The profiles
obtained for (a) the end-most dihedral, ¢, and (b) the second dihedral, ¢y , were
calculated for various values of the other dihedral (¢, and ¢;, respectively). The
third dihedral, ¢3, is optimised to its minimal value in all cases.
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Figure 5.16: Dihedral profiles obtained from scans of tetramers of thiophene. The
profiles obtained for (a) the end-most dihedral, ¢, and (b) the second dihedral, ¢s,
were calculated for various values of the other dihedral (¢, and ¢; respectively).
The third dihedral, ¢3, is optimised to its minimal value in all cases.

Figure 5.17 demonstrates the invariance of the calculated dihedral profile of the end-
most inter-monomer junction for both molecules over a backbone length range of
2-10 units. In fluorene, there is almost no dependence on the chain length while in
thiophene there is a very slight deviation of <a 1 kJ/mol (~ 0.4 RT') in the energetic
barrier heights. The above results suggest it is possible to utilise the same dihedral
energy profile for all inter-monomer dihedrals within any length of molecule. This

greatly reduces the amount of parameterisation required for MD simulations.

In order to examine the influence of alkyl side chains on the dihedral energy profiles
scans have been performed for side chains of lengths varying from 1-10 units. In the
case of fluorene, initial geometries with side chains on opposing sides of the molecule

were used.
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Figure 5.17: Dihedral profiles for various backbone lengths of (a) fluorene and (b)
thiophene. (Legend applies to both graphs.)

0 30

With the above considered, Figure 5.18(a) gives the resulting dihedral profiles calcu-
lated for fluorene with various lengths of side-chains. It is observed that increasing
side-chain length has very little effect on the energetics of the dihedral. However,
in the case of thiophene ( Figure 5.18(b)), the problem becomes considerably more
complex due to the dihedral energetics being strongly influenced by steric repulsion
of the side-chain in close proximity to the dihedral. This is illustrated in Figure 5.19.
In the case of fluorene side-chains are much further from the centre of dihedral rota-
tion than in the case of thiophene. Therefore, the notion of separating long-range
interactions from those due to the electronic conjugation is considerably more com-

plicated for thiophene while it does not pose any issues in fluorene.
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Figure 5.18: Dihedral profiles for 2mers of: (a) fluorene, (b) thiophene, and (c)
‘mirrored’ thiophene for varying lengths of side-chain(s). The side-chain(s) are la-
belled by chemical formula e.g. H; and Cs;Hy; refer to no side-chain(s) and pentyl
side-chain(s) respectively. Each graph has a schematic of the associated molecule
to the right. (Legend in (a) applies to all graphs.)

The issue of this unavoidable steric repulsion creates a problem in interpreting the
dihedral profiles. The parameterisation is built on the ability to transfer parameters
for long-range dispersive forces, the steric contribution to the dihedral profile due
to the side-chains is captured by the existing terms in the force-field. Therefore, a
‘mirrored’ thiophene 2mer ( Figure 5.18(c)) approximation is introduced in order
to investigate the effect of the side-chain on the covalently-bound component of the
dihedral rotation, i.e. the effect it has on orbital conjugation, as it is this component

which comprises the required parameters in the force-field.

In the mirrored 2mer, in order to remove the steric conflict the side-chain of one
unit is moved from the 3 carbon position to the 2 carbon position. The nature of
the approximation is that the effect of the side-chain on the conjugation-dependent

component of the dihedral energetics are the same in both cases. The idea behind
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Figure 5.19: Schematic highlighting the difference in the location of the alkyl side-
chains in 2mers of fluorene and thiophene. The blue area represents the location of
the inter-monomer dihedral; the green the alkyl side-chain; and, in thiophene, the
red area highlights the steric conflict involved.

this approximation is justified by agreement of the fundamental transition energies
( Table 5.5) and transition densities ( Figure 5.20) between thiophene dimers with

no side-chains and with ethyl side-chains in the normal and mirrored case.

Both the transition densities and energies suggest that there is very little effect on
the excitations in all cases. This implies that the side-chains have little effect on the
properties of the orbital conjugation along the backbone. Between the cases with
side-chains and without, the transition energies deviate by ~ 0.05% of the excitation

energy and between the two side-chain cases, the deviation is ~ 0.1%.

0-1 Transition Energies: Thiophene Dimers
None 4.5632 eV
Normal 4.5873 eV
Mirrored 4.5434 eV

Table 5.5: Transition energies of the fundamental bright transition of thiophene
dimers in the three cases shown in Figure 5.20.
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Figure 5.20: 0-1 transition densities of thiophene dimers with (a) no side-chains,
(b) 3-position side-chains (the normal case), and (c) ‘mirrored’ side-chains.

With the above in mind, it can be seen from Figure 5.18(c) that the presence of
side-chains introduces only a small deviation (= 1 kJ/mol) to the dihedral energetic
profile of the mirrored thiophene. This deviation is attributed, in a similar man-
ner to those seen in Figure 5.17, to small remaining dispersive forces between the
mirrored side-chain and the neighbouring unit. These results strongly suggest that
any variance in the dihedral energetics on account of the inclusion of side-chains
is mediated entirely by known long-range, non-covalent interactions. This suggests
that the dihedral profile is invariant to the addition of side-chains and this is further

analysed in section 5.6.

5.5 Partial Charge Calculations

Partial charges are obtained using the RESP scheme?!' within the Antechamber

68 The choice of this scheme

program, which is a part of the AmberTools 14 suite
is based both on consistency with the recommended methodology for OPLS pa-
rameterisation as well as the robustness of the method to slight perturbations in
geometry as opposed to, for example, ESP charges. Not only does this result in
more accurate partial charges for utilisation within MD force-field, the robustness
of the method also allows to accurately determine variations due to the changes
in molecular environment. Input electronic densities for the RESP calculations are
obtained from SP calculations with CAM-B3LYP /cc-pVTZ using geometries taken

from CAM-B3LYP/6-31G* optimisation.

When generating parameters for MD simulations of repeating structures of many
units, such as polymers or oligomers, partial charges are often implemented using a
"three residue’ model in which three sets of charges are built: one for each end unit
and one for the central unit. In order to build such a model that is fully scalable
to a variety of lengths, a first pre-requisite is the requirement that the net charge
for each individual central residue and the sum of the end residues have a net zero

charge. This ensures the overall charge neutrality of the molecule and that this
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neutrality will remain when generating longer molecules by inserting extra central
units. As it is possible for the end residues to have a non-zero net charge, if one
wishes for a model with which scaling to many lengths is possible, it is necessary
to determine the length of molecule at which the above criteria are met. Only for
molecule lengths greater than this length will the application of the three-residue

model be valid.

As an example, Figure 5.21 presents the total charge of each monomer unit for
9mer of fluorene, 9,9-dioctyl-fluorene, thiophene, and 3-hexyl-thiophene. For the
first three of these, the total charge for each monomer is close to zero across the
entire molecule, whereas for hexyl-thiophene, there is a small but notable residual
charge on the two end units. The key feature that distinguishes hexyl-thiophene
from the other molecules is the breaking of reflection symmetry between each end of
the molecule. At one end of the hexyl-thiophene molecule, the hexyl side-chain is
on the side of the thiophene nearest the neighbouring unit while, at the other end,
the side-chain is on the side further from the neighbouring unit. This asymmetry
of molecular structure forms an intrinsic asymmetry in the charge distribution of
cach end of the molecule which leads to a small net charge difference (=~ 0.1 e), i.c.
resulting in a dipole. Therefore, in order to build a three-residue model for hexyl-
thiophene with accurate partial charges, the end residues must encompass two units
of the molecule. In doing so, these two end residues will each have a non-zero net

charge which cancel each other.
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Figure 5.21: Total charge on each monomer unit of 9mers of fluorene, dioctyl-
fluorene, thiophene, and hexyl-thiophene. The end monomers of hexyl-thiophene
retain a considerably larger net charge than those of the other molecules.
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In order to build a partial charges model generalisable to all lengths of side-chain

there must exist a length of side-chain beyond which the charge distribution of
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Figure 5.22: Relationship of the total charge, excluding side-chains, of monomers
of dialkyl-fluorene and 3-alkyl thiophene of various lengths of alkyl chain. Each
display a convergence to near zero at around 6 carbons side-chain length.

the conjugated backbone is invariant. Further, it must be possible to generate a
standardised methylene (CH,y) and methyl (CHjs) groups which allows addition of
these groups in order to create longer structures. The first requirement is inves-
tigated by analysing the charge distributions of a monomer with varying lengths
of side chain, Figure 5.22. From this figure it can be seen that for both fluorene
and thiophene the total charge on the main conjugated component excluding the
side chain converge near zero at around six carbons side-chain length. This im-
plies that the charges on this part of the molecule are invariant to the side-chain
length beyond this point. Examining the charge distributions of the side-chains in
the case of monomer of alkyl-thiophene, Figure 5.23, suggests that at the lengths
of side chain considered (up to 10 carbons) it is not possible to satisfy the second
requirement to generate standardised charge groups for methylene. The reason is
that while there are convergences in the end-most and inner-most groups on a given
side-chain, the charge on the methylene group in the middle of a long chain still
fluctuates considerably as side-chain length is varied. This can be attributed to the
strong asymmetry between each end of the side-chain - one is connected to a large
molecule while the other is terminated only by a hydrogen. However, as can be
seen in Figure 5.24, the overall effect of the residual partial charges would not be
as dramatic as these are balanced by the neighbouring carbons. It may be possi-
ble to generate a sufficiently accurate standardised methylene group charges using
much longer side-chains. However, since lengths of side chains greater than 12 are
not often used in practical settings, it remains that if one wishes to include partial

charges for use with side-chains, it is necessary to compute these charges for each
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length of side-chain required.

0.6F o Ist(C) .
i o 1Ist (H) 1
~ .t + End (O N
L 04 & End (H)
o Mid (C) :
§ 0.2} Mid (H) ]
O [® o © © & e & ]
s
=
av] B ]
a 0.2 °
. e ¢+ $ ¢ 3
o ]
0.4 .\ \ \ \ \ \ B
5 8 9 10

Slde Chain Length (No. of Carbons)

Figure 5.23: Sample of beginning, middle, and end side-chain charges for various
lengths of side-chain in a monomer of alkyl-thiophene. It is observed that, in con-
trast to the end groups, the charge of the carbon on the inner methylene group
(yellow triangles) does not converge with increased side-chain length.
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Figure 5.24: Individual atomic charges of the side-chain atoms of the third through
sixth units ((a) through (d) respectively) of hexyl-thiophenes of various backbone
lengths.

5.6 Force-Field Implementation

Force-field parameters for molecular building blocks of fluorene and thiophene are

generated using pre-existing bond-stretching and angle-bending terms for monomer
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Table 5.6: Comparison of the un-modified and modified OPLS force-fields (MD
and MD; respectively) with DFT calculations for 2mers of fluorene (F0), methyl-
fluorene (F1), thiophene (T0), and ethyl-thiophene (T2). The properties compared
are: the difference in energy between the cis and ¢rans minima (AFE); the dihedral
angle of each minimum (¢); and the end-end length associated with each minimum

AE (kJ/mOI) ¢trans (o) ¢cis (o) lEE,trans (A) lEE,cis (A)
DFT MD, MD, |DFT MD, MD, |[DFT MD, MD,|DFT MD, MD,|DFT MD, MD;
FO| 0.04 0.00 0.08] 39 39 40| 141 135 140| 15.3 15.2 15.4| 15.1 15.0 15.2
F1(-0.05 0.03 0.05| 39 41 38| 141 139 142| 15.3 15.2 15.4| 15.1 15.0 15.2
TO| 2.23 223 209, 26 31 28| 147 145 145 64 64 64| 63 6.3 6.3
T2| 0.84 143 0.86| 45 20 50| 129 129 135 64 6.5 64| 63 6.5 6.3

units from the OPLS force-field. In the case of fluorene also parameters for the
bonds and angles around the inter-monomer junction are available. However, since
inter-monomer parameters are lacking for oligo-thiophenes, the fluorene inter-monomer

parameters are used.

Partial charges which were generated following the procedure described in section 5.5
are directly implemented in the force-field parameter set. However, in the case of
dihedral potentials these require the extra ’substraction’ step, as already described
in section 5.2, before implementation in the force-field (FF). This is to avoid a
double-counting of interactions, such as dispersive and electrostatic interaction, that

are already described by the existing FF terms.

It was found that in order to achieve better agreement between the DFT and MD
results the equilibrium bond lengths and angles of the parameters taken from the
OPLS force-field need to modified while keeping the original force-constants. Equi-
librium values were taken from the global minimal geometries obtained from the
CAM-B3LYP/6-31G* optimisation. Table 5.6 contains a breakdown of these changes
on: the resulting minimal energy difference, AFE; the values of each dihedral min-
Imum, @gans/cis; and the end-to-end length of each minimal geometry, lgg trans)cis-
In all cases, it was found that there is either improvement in particular values or

changes which are negligible (~ 0.1 kJ/mol, 1°, 0.1 A in each value).

In the case of fluorene with and without methyl-side chains (FO and F1, respec-
tively), it was found that the only slight improvement is in the location of ¢ of
FO0. While there are other values which seem to agree less well after modification,
these deviations are generally negligible as mentioned above. Overall, there is good

correspondence between FO and F1 values.

In the case of thiophene with and without ethyl-side chains (T0, T2), there are

some substantial improvements introduced by this modification as the changes are
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made to the inter-monomer junction parameters. While there are significant im-
provements in AFE and ¢;q,s for T2, the deviation of ¢.;, slightly increased by ~ 6°.
For the TO there is a small improvement in the ¢y,.q,s, but on the other hand the AF
value is worsened. This may play a role when considering properties of more mi-
croscopic interest (e.g. if utilising geometries for optical calculations). Overall, the
improvements made in T2 are substantial and the energetic improvement strongly

impacts the resulting dynamics.

The force-field contribution to the dihedral potential is isolated by performing a
dihedral scan using the FF parameters (without the required dihedral) over intervals
of 10° from 0° to 180° in a manner analogous to that of the scans performed using
DFT. In order to isolate all interactions relevant in the dihedral rotation which are
not the covalent interaction and also to restrain the dihedral at each value in the
scan, the four covalent energetic functions at each inter-monomer juncture are used

to impose restraints.

The effective restraints at a given angle, ¢q, are generated by placing each of the

four dihedral terms under the influence of a periodic potential, Vg, given by:

Vr(®) = ke[l — cos(¢ — ¢o)]. (5.1)

When it comes to the choice value k. care must be taken so as to find a balance
between forming an effective restraint without inducing any unwanted distortion to
the molecule. For example, for molecules with methyl or no side-chains, the choice
of k. =5 x 10* kJ /mol is suitable. However, in the case of ethyl-thiophene, a large
reduction is necessary k., = 10® kJ/mol which may be attributed to the prevalence
of large forces in the side-chain - dihedral area. For each point along the scan the
geometry is then optimised in vacuum using the conjugate-gradients minimisation
535,36

algorithm within Gromacs 4.6 and the total energy of each point is used to

generate the corresponding profile.

With the FF contribution isolated, the required dihedral profile is obtained by sub-
tracting the FF contribution from the DFT scan. The resulting ’subtracted’ profile
is then fit to a 5th order Ryckaert-Bellmans function:

Vas(9) = 4 ) [+ cos(¢)]" (5.2)

The fit function described in Equation 5.2 yields two sets of parameters. This results
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from the difference of 180° between one pair of dihedral angles and another of the
four used. For example, for a dihedral angle of 0° in the polymer convention, the
dihedral angle of the two pairs of four atoms in the trans position is ¢° while the
two pairs in the cis position have a (¢ + 180)° dihedral angle. As such, the function
cosine terms in Equation 5.2 must be modified to cos(¢ + 180) = — cos(¢) in order

to yield the appropriate energy.
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Figure 5.25: Subtraction profiles for (a) fluorene, (b) thiophene and (c) ethyl-
thiophene. Each figure displays the calculated DFT profile; the profile obtained
from the MD ’scan’; the resulting subtracted profile; the fit of the subtracted profile
to a bth order Ryckaert-Bellmans function; and the resulting ’effective’ profile given
by the addition of the MD scan profile and the fitted profile. (Legend applies to all
graphs.)

Figure 5.25 provides examples of the curves obtained in the subtraction process for
2mers of fluorene, thiophene, and ethyl-thiophene. In the cases with no side-chains,
Figure 5.25(a) and (b), it can be seen that this procedure and the fitting with the
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Table 5.7: Height of the energetic barriers at 0° (Ep) and 180° (Eig) for 2mers
ethyl-thiophene, methyl-thiophene, and thiophene using fitted profiles obtained from
scans using different side-chain lengths. Each barrier is calculated relative to the
closest local minimum (i.e. the trans minimum for AFE, and the c¢is minimum for
AFEg0). The labels Tz (Ty) denote the energies of a 2mer with an -yl side-chain
with energetic profile taken from a y-yl side-chain scan. The DFT values shown are
those from the dihedral scan of the Ta molecule.

AE() (kJ/mol) AElgo (kJ/mol)

DFT MD | DFT MD
TO (T0) | 0.59 0.33 | 2.02 1.75
T1 (TO) | 1.20 2.35 7.21
T1(T1)| 120  1.33| 4.65 5.00
T2 (T0) | 4.02 11.07 | 6.71 12.00
T2 (T1) | 402  6.67| 6.71 9.18
T2 (T2) | 402 390 6.71 7.66

Ryckaert-Bellemans function result in a force-field which quantitatively mimics the

DFT dihedral potential to a very high degree of accuracy.

It is noted that this procedure results in a far less smooth fit for ethyl-thiophene, Fig-
ure 5.25(c). As discussed with respect to the DFT scans, the introduction of side-
chains is a potential source of inconsistency in the calculations due to the relative
freedom of side-chains. To minimise this inconsistency, the starting geometries are
taken from the DFT calculations so as to reproduce the side-chain conformations as
well as possible. However, this does not, in all cases, lead to a perfect agreement in

the side-chain conformations between the DFT and FF scans.

As seen from the DFT results for alkyl-fluorenes, Figure 5.18(a), addition of methyl
side-chains to fluorene has no effect on the dihedral profile which means no fur-
ther modification are needed. In the case of alkyl-thiophenes, section 5.4, it was
argued that the steric interactions responsible for large changes in dihedral po-
tential should be already accounted for by the force-field. However, as is shown
in Table 5.7, utilising the dihedral potential fitted from a thiophene with a shorter
side-chain leads to drastically overestimated barriers at the planar positions. As
such, reparameterisation of the dihedral term must be performed to accomodate for
this. Therefore, given the tendency for inconsistency observed in ethyl-thiophene
due to the side-chain degrees of freedom and that the difference in DFT dihedral
potential between ethyl and propyl-thiophene is small (= 0.5 kJ/mol at the pla-
nar barriers, Figure 5.18(b)), the ethyl-thiophene potential is used for thiophene

molecules with longer side-chains.
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5.7 Molecular Dynamics Results

53536 with an integrator

All MD simulations were carried out using Gromacs 4.6
step-size of 2 fs and system coordinates sampled every 10 ps. Each simulation was
performed at ambient temperature and pressure (298.15 K, 1.01325 bar). In all
cases, the following measures have been taken prior to the MD run: steepest-descent
minimisation; followed by 0.5 ns of both NVT and NPT ensemble equilibration
with position restraints on the heavy atoms of the molecule followed by 5 ns of

unrestrained NPT equilibration.

Calculations were performed in a fully-solvated manner i.e. in a periodic cubic box
large enough to avoid any possible interactions of periodic images. This condition
leads, in the case of the largest molecules simulated (32 units in length), to the
majority of computational effort being spent on calculating the solvent dynamics.
Simulations were performed with chloroform as a solvent. The solvent parameters
were obtained from the molecule database at virtualchemistry.org%®7,

Long-range electrostatics in all of the simulations have been treated using the
Reaction-Field (RF) scheme™ with a dielectric constant egp of 4.81 for chloro-
form.The RF method for treating the coulomb interaction assumes a constant di-
electric environment beyond the cut-off r. with a dielectric constant of €,;. This

leads to the modified Coulomb potential of the following form:

3
4t Erf —&r Tij q:iq;  3erf
V i) = 1 o Qe Lo 53
RF(T ]) fETTij |: + 2€rf Te, 7“?:| fgrrc 28rf + & ( )

where the constant expression on the right ensures that the potential Vzp is zero at
the cut-off r.. The relative dielectric constant e, describes the dielectric behaviour
within a volume defined by the cut-off radius and is usually set to €, = 1 which
represents a vacuum dielectric environment with local dielectrics emerging from the
explicit short-range electrostatics. The ¢,; defines the dielectric effects within the

cut-off volume due to the electrostatics of the solvent used in the simulation.

Table 5.8 summarizes some of the simulation details of 16mers and 32mers of thio-
phene with hexyl side-chains and fluorene with octyl side-chains. In this table it can
be seen that both the temperature and pressure are stable during the simulation and

are well within the target values.

As an initial test of derived parameters simulations in chloroform of 32mers of fluo-
rene with octyl side-chains (PF8) and thiophene with hexyl side-chains (P3HT) were
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Table 5.8: Simulation details of 16mers and 32mers of thiophene with
hexyl side-chains (T6) and fluorene with octyl side-chains (F8). All
statistics are over first 50 ns of the simulation time.

Molecule  Chloroform Box dimensions Density Temperature Pressure
— length molecules  (x=y=z) [nm] [kg/m?3] K] [ bar|
T6 — 16mer 3289  7.684 £ 0.000 1446.9 £+ 0.1 298.14 4+ 0.00 0.98 £+ 0.06
T6 — 32mer 18621 13.743 £ 0.000 1425.6 £ 0.1 298.12 £+ 0.00 0.99 £ 0.03
F8 — 16mer 20750 14.240 £ 0.000 1428.0 £ 0.1 298.11 #+ 0.00 1.03 % 0.02

F8 — 32mer 151644 27.689 + 0.001 1417.0 £ 0.1 298.09 £ 0.00 1.01 £ 0.01

performed over the course of 50 ns and 100 ns, respectively. Simulations were anal-
ysed and persistence lengths, n, (in number of monomer units) and [, (in nm) were
calculated in order to assess the accuracy of derived parameters. The quantity of
persistence length provides a length along the chain over which the tangent vectors of
the chain become de-correlated, i.e. it defines how long a straight segment 'persists’
for and provides an intuitive measure of the overall rigidity of a polymer. For a very
large polymer (L > 1), a persistent chain effectively behaves like a freely-jointed
chain and the persistence length is one half of a so-called Kuhn statistical length
(12.), which is the length of hypothetical Kuhn segment in an ideal chain of freely
joined segments. Moreover, the persistence length can be inferred from the exper-
imental dynamic light scattering measurements of the radius of gyration (R,) of
polymers in solution. The R, is defined as a mean-squared quantity that measures
the average squared distance of each mass in the molecule from the centre of mass
point and for a freely-jointed chain is given as R> = (R?)/6 with (R®) = Nl rep-
resenting the mean square end-to-end distance and Ny, [k representing the Kuhn
segment and Kuhn length, respectively. The persistence length calculations were
performed by generating vectors, v;, across the first and last carbon of unit ¢ and
generating a correlation function, A(f,), of the angles between each pair of vectors,
0,

A6,) = i Vim) _oqa)). (5.4)

(Vi i)
The persistence length™™ is defined by the e~ '-point of A(f,) i.e.,
A(6,,) = (cos(6,)) =~ exp(—n/n,). (5.5)

The correlation curves for fluorene and thiophene with their respective side-chains
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Figure 5.26: Angle correlation functions, A(6,,), of 32mers of dioctyl-fluorene (F8)
and hexyl-thiophene (T6) simulated in chloroform. Each calculated correlation
function is given along with their respective fitted curves (solid lines, given by
eq. 5.5). From the fitted curves, n,, indicated by arrows corresponding to the cross-
ing of the fitted curve and the e~! line, is found to be 12.9 and 8.5 respectively.

are shown in Figure 5.26. By fitting these to the exponential decay function given
in Equation 5.5, the persistence lengths are n, = 12.9 and n, = 8.5 units, respec-
tively. In order to recast these into nm, the average unit length, [, are calculated
from the MD simulation to be [ = 0.832 nm for PF8 and [ = 0.397 nm for PSHT
which gives [, = 10.8 nm and [, = 3.4 nm respectively. As a means of comparison,
persistence lengths for the polymer in each case have been reported as [, = 8+ 1 nm
for PF8%%3% and [, = 2.4 £ 0.3 nm for P3HT*’; both measured by a combination of

gel permeation chromatography and light scattering in THF solution.

Although the calculated persistence lengths were obtained from MD simulations in
chloroform they show a remarkable agreement with experimental persistence lengths
obtained in THF solution. The main reason behind the choice of chloroform in sim-
ulations was that simulations with THF are ~ 5 times more expensive computation-
ally. This stems from the fact when calculations are performed in a fully-solvated
manner i.e. in a periodic cubic box large enough to avoid any possible interactions
of periodic images, ~ 2 x 10° and 2 x 10* solvent molecules per simulation are
needed for fluorene and thiophene, respectively. Furthermore, in order to obtain
a converged result it was found that it is necessary to use molecules considerably
larger than the persistence length. For example, simulating only a 16mer of fluo-
rene resulted in ~ 2 times larger value of [, = 19.5 units which corresponds to 16.24
nm in comparison to the value obtained for the 32mer. Similar behaviour, but to a

considerably lesser extent, was observed for thiophenes with simulation lengths near
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Figure 5.27: End-to-end length distributions (solid lines) for a 16mer of dioctyl-
fluorene (F8) and a 16mer and 32mer hexyl-thiophene (T6) in chloroform. The end-
to-end length is scaled to give each length as a fraction of the fully extended length of
each molecule. Comparison is given for each distribution to the distribution 72 P..(r)
obtained using Equation 5.6 (dashed lines) ™™ with a curve for an F8 32mer given
based on the calculated persistence length.

the persistence-length (e.g. 1, = 9.5 units for a bmer).

Figure 5.27 shows distributions of end-to-end length computed from simulations for
16mers of dioctyl-fluorene and 16mers and 32mers of hexyl-thiophene in chloroform.
The distributions for 32mers of dioctyl-fluorene have not been shown as, while the
tangent correlation curves were converged, after 50ns the end-to-end length distri-
butions were far from converged. In each example, the end-to-end length is given
as a fraction, r, of the straight length of the molecule, NI, where N is the number

of units and [ is the mean unit length given above.

When a comparison is made between each length of thiophene, it can be seen that
the 32mer has a much wider distribution which peaks at a lower length fraction
(0.7) than that of the 16mer which is narrower and peaked at ~ 0.85. Given the
shorter persistence length calculated, the distribution for the 16mer of fluorene is
less spread and peaked at a higher length fraction =~ 0.9 than the 16mer and 32mer
of thiophene. The distribution obtained for the 16mer of fluorene are consistent
with measurements performed by Muls et al. Using end-marked hexyl-fluorenes of
a similar length scale (=~ 42 monomer units with a polydispersity of 1.8) in an inert
Zeonex matrix, they measured end-end length distributions which are centred at a
length fraction (based on the fully-extended 42mer) of ~ 0.897.

144



Both the progression of the distributions and the difference in overall spread between
fluorene and largely spread thiophene can be understood qualitatively by consider-
ing the increase in conformational entropy with increasing length and is consistent
with the persistence lengths calculated previously. For a quantitative insight, we
have also calculated the end-to-end length distributions, P,..(r), using the expres-
sion derived by a path-integral approach for semi-flexible polymers by Wilhelm and

Frey 74,75,

Po(r) = NY (—1)fH2p2e ke (5.6)
k=1

Where 7 is the end-to-end length fraction, & = n,/N is the persistence length frac-
tion, and N is the normalisation constant such that f01 drr®P..(r) = 1. The values
of £ used are & = 1.219,0.403,0.531,0.266 for the 16mer and 32mer of fluorene,
and the 16mer and 32mer of thiophene respectively. For each fluorene, the corre-
sponding persistence length was used due to the large difference for both lengths (as
described above). The value calculated for the 32mer was used for both thiophenes.
For all the distributions calculated, each MD distribution agrees well with the cor-
responding calculated result and we expect that this behaviour would be replicated

by a fully converged fluorene 32mer distribution.

5.8 Discussion and Conclusion

It was shown, for the two systems considered, that it is possible to reproduce dihe-
dral profiles obtained at high level of theory using a much more economical two-step
approach with CAM-B3LYP/6-31G* and CAM-B3LYP /cc-pVTZ for geometry op-
timisation scans and single-point energy calculations, respectively. Further, it has
been found that dihedral potentials are invariant to the length of the molecular con-
jugated backbone and that any effect due to the inclusion of side-chains seems to

stem from long-range interactions alone.

When it comes to the partial charge distributions it was shown that these converge
quickly with varying length of molecule. However, one must take into account po-
tential deviations in end monomer distributions for molecules which do not possess
end-to-end reflection symmetry. In terms of varying side-chains, it seems that there

is no simple way of generalising the inclusion of partial charges to this variation.

Utilising the above findings a parameterisation scheme has been developed which is

potentially applicable to a wide range of conjugated molecules. This scheme assumes
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pre-existing parameters for monomeric units (e.g. bond-stretching, angle-bending
parameters and L-J terms) where some of the missing parameters can derived from
similar chemical groups. For example, substituting internal dihedrals, which are
not specified, with the dihedral potential for four aromatic carbons. In the next
step dihedral profiles are generated using two-step CAM-B3LYP/6-31G*//CAM-
B3LYP/cc-pVTZ approach for 2mer without side-chains for molecules with side-
chains far from the inter-monomer junction. In the case of molecules with side-
chains close to the inter-monomer junction, such as in 3-alkyl-thiophenes, a more
detailed re-parameterisation may be needed due to potential high steric contibu-
tions of these side-chains to the dihedral energetics. The following step involves
partial charges calculation with electron density calculated at the CAM-B3LYP /cc-
pVTZ SP step. This step involves calculating partial charges using the three residue
model with the RESP scheme, finding a convergence length for total charges of the
backbone units and derive partial charges for side-chains. The final step involves
implementing the above derived parameters either directly as in the case of partial

charges or using the substraction procedure as in the case of dihedral profile.

Preliminary results of persistence lengths and end-to-end lengths calculations using
the MD simulations with newly derived parameters indicate that these are consistent
with experimentally derived values with long thiophene oligomers displaying far

greater flexibility than their fluorene counterparts.
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Chapter 6

Summary and Future Work

This thesis covers two different areas of computational chemistry. First two chap-
ters use the electronic structure theory methods in order to study transition metal
organic molecule interactions which play important role in biological effects of type
2 diabetes drug and redox potential calculations of copper systems. The complexity
of dealing with open-shell transition metal systems is examined and addressed. The
last chapter uses the ab initio methods in order to establish accurate and reliable
methodology for development of molecular dynamics parameterisation scheme appli-
cable to organic conjugated materials with the aim of allowing molecular dynamics

simulations to start to understand how conformation affects morphology.

Chapter 3 examined metal-binding properties of important type 2 diabetes drug
metformin and structurally similar compounds. It was concluded that the copper-
binding properties of neutral biguanide compounds (BG and Metf) and PDI cannot
solely explain the differences in the biomolecular mode of action of these compounds.
One of the proposed mechanism explaining the difference in biological effect is a pos-
sible deprotonation of biguanide compounds, in contrast to PDI, under higher mi-
tochondrial pH which would lead to formation of more stable copper complexes and
potentially affecting the mitochondrial copper homeostasis. Further, redox proper-
ties of copper-biguanide complexes could interfere with the sensitive redox machin-
ery, such as the electron transport chain, present in the mitochondria. Furthermore,
ESP maps of ligands showed that stronger hydrophilicity of BG could play a role
in molecular recognition processes and its mitochondrial activity. Further work will
mainly investigate redox properties of these compounds in more details. In addition,

potential interaction of these compounds with metalloproteins will be studied.

Chapter 4 described a systematic development and testing of computational protocol

for calculation of reduction potentials of copper complexes. It was proposed that
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suitable method for redox protocol of copper complexes is to use M06/cc-pVTZ with
the SMD solvation or either MO6L or TPSSTPSS functional with cc-pV'TZ basis set
and the PCM solvation model. Future work would involve in-depth investigation of
functional and basis sets choice on various properties, for example, implicit solvent
cavity shape/size and HOMO/LUMO gap. Moreover, use of other methods in order
to obtain more accurate electron affinities (ionization potentials) and free-energies
of solvation will be considered. For example, this would involve use of an electron
propagator theory for calculations of correlated electron affinities and ionization
potentials. Also, a potential way of systematically improving calculated electron
affinities and ionization potentials is by using local wave function methods, such as
local MP2 or CC, which by using orbital localization allows to obtain results close
to results from canonical methods for much larger systems of interest. Including
one or more explicit solvent molecules in conjuction with implicit solvent in an
extended QM /MM scheme would potentially lead to improvement of free-energies
of solvation. An ideal protocol for computation of redox potentials would involve
ab-initio QM /MM molecular dynamics simulations. The QM part would involve
high level of theory (e.g. CASSCF) ideally able to treat multireference character
of transition metal complexes. The MM part would include enough explicit solvent
molecules or protein environment in order to account for short-range interaction with
the solute and the whole system would be immersed in an implicit solvent to account
for bulk electrostatic effects. The molecular dynamics would provide time-evolution
of the system accounting for conformational sampling and thus potentially generate
ensemble similar to the experimental one. Also within this scheme since the studied
complexes had a rather rigid framework it would be interesting to investigate the
effect of more flexible binding sites and environmental effects. This way it would be

possible to address some of the issues arrising from the use of the implicit solvation.

In Chapter 5 a scheme is developed that can be used to obtain force-field parameters
for simulations of large organic conjugated polymers applicable in opto-electronic
materials. This chapter first systematically tested the required methodology in or-
der to obtain accurate critical force-field parameters. Some preliminary results of
persistence lengths and end-to-end lengths obtained from simulations using the de-
rived parameters show promising agreement with the experimental values. Future
work will involve further validation and testing of obtained parameters as well as
application of molecular dynamics of these systems to, for example, conformational

sampling and subsequent optical studies.
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