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Abstract

In the UK, radiotherapy (RT) contributes to a large amount of lung cancer treatment
while its imaging information is limited to computed tomography (CT) and cone beam
CT (CBCT) images. The oncologists defines the gross tumour volume (GTV) manually
on the planning-CT images before any treatment starts. Manual contouring suffers from
many disadvantages and the bad quality of CBCT images makes it very challenging for
the clinicians to observe tumour behaviour in the time of treatment. CBCT is the only kind
of image available throughout the whole course of RT which is used in the mechanical
procedure of adjusting patient position before starting each session of treatment and is
not generally used by clinicians for monitoring the tumour. The goal of this thesis is to
develop a tumour detection model of non-small cell lung tumours on CBCT images in the
course of treatment. By developing this process clinicians will be greatly aided in their
role, helping them to detect lung tumours to allow better diagnosis and improving patient
treatment outcome. Therefore a new segmentation approach is proposed as combined
texture analysis and level set model. It has the potential capability to track the variation
of the tumour shape over time of treatment solely using CBCT images, and evaluate the
accountability of RT for different patients. The texture analysis, second-order statistics
obtained from gray level co-occurrence matrices (GLCM), highlight the tumour boundary
and help Chan-Vese and Li level set models convergence in the segmentation process.
Further on a new parallel level sets model is proposed by combining Chan-Vese and Li
models in the concept of vector-valued image level set. This new approach overcomes
the difficulties in the parameter settings of current models by giving more freedom of
choice in tuning parameters as well as selecting level set models. All proposed models
were evaluated on the dataset of fifty different patients suffered from non-small cell lung
cancer. For the validation procedure, qualitative analysis was carried out by an oncologist
as there is no ground truth in each CBCT image during RT. The decision of the oncologist
based on patient history has proven the results of this work. For quantitative analysis, the
Dice coefficient is used to evaluate the tumour segmentation results on CBCT compared
to GTV on CT images prior to treatment to evaluate the amount of changes especially
after one third of RT on CBCT #10. Additionally, the proposed segmentation models had
the accuracy of almost 90% to the GTV delineated by the oncologist for the only one
patient in the dataset having GTV on CBCT images which proved the ability of these
models for further analysis during the absence of GTV on CBCTs. For improving this
research and helping the clinicians at most, the proposed segmentation model can be used
as a notification model to assist clinicians for a better understanding of the tumour during
RT and subsequent use in offline adaptive radiotherapy (ART).
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Chapter 1

Introduction

1.1 Introduction

In 2011 in the United Kingdom (UK) 43,463 people were diagnosed with lung cancer and
in the following year 35,371 deaths were directly attributable to it [1]. A major part of lung
cancer treatment involves radiotherapy (RT), that is the treatment of cancer by ionising
radiation. This aims to deliver a dose of radiation to the diseased tissue whilst minimising
damage to healthy tissue. RT contributes towards 40% of curative treatment for cancer
[2]. It is used to treat lung cancer patients during different fractionation schedules that
usually last several weeks.

In RT planning, delineation of the volume of interest is based on a visual assessment
of medical images, such as X-ray, computed tomography (CT) and magnetic resonance
imaging (MRI), by an oncologist. The accuracy of the volume of interest is dependent
primarily upon the ability to visualise the tumour, interpret anatomy and understand the
potential areas of tumour involvement based on tumour biology. Interpretation of these
variables is complex, time consuming and requires considerable clinical expertise.

In lung cancer, CT imaging is used before treatment for planning the therapy. During the
treatment period there is no MRI taken in the majority of cases due to the high cost,
lengthy time and delay reporting associated with it. During some RT treatment cone
beam computed tomography (CBCT) images are produced which are used for patient
positioning. Regardless of the RT approach it is essential that the gross tumour volume
(GTV) is accurately defined on CT images used for RT planning and on CBCT images
acquired at the time-of-treatment to verify the position of the patient. However, CBCT
images suffer from poor soft-tissue contrast, which makes identification of the GTV or
indeed the tumours on these images extremely difficult to identify. This is a major problem
for clinicians when assessing CBCT images to discern changes due to disease progression
and response to RT.

Figure 1.1 illustrates some differences in two relevant slices of CT and CBCT. CBCT pro-
duces poorer quality images than CT and projections in CBCT occupy a cone beam shape
rather than CT images which is a fan beam shape as shown in Figure 1.1.a. compared to

1
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Figure 1.1.b. The radiation source in CT rotates around the patient but in CBCT it is fixed.
It also has a lower radiation dose as the slices do not overlap as in CT and has a lower
image resolution. The CT image on Figure 1.1.c. contains a small tumour which is not
visible in the relevant CBCT slice on the Figure 1.1.d.

Figure 1.1: CT vs CBCT, a. fan beam, b. cone beam [3], c. CT image with an obvious tumour
delineated in red and d. CBCT image relevant to c without showing the tumour due to lower
quality.

The poor quality of CBCT images restricts the ability of clinicians to monitor the sta-
tus of a tumour size during treatment thus limiting potential to adapt the RT dosage
and consequently minimizing further damage to healthy tissue. Therefore, the tumour
is radiated with the same shape and position defined on the planning-CT for the whole
period of treatment. Since a tumour may shrink or expand, knowing the situation of the
patient during treatment can be of considerable assistance for clinicians, especially since
treatment sessions can be as long as one month.

This research aims to improve and enhance the quality of CBCT images and analyse the
situation of tumours during the whole period of RT. This will enable clinicians to identify
changes in tumour size. There is however no gold standard during treatment due to the
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difficulties in visualizing and interpreting CBCT images. This research is focused on
analysing the changes after specific RT sessions while the course of treatment is ongoing.
The focus has generally been at fraction 10 (#10), that is the 10th day of treatment, as it
is more likely that the tumour position and condition may have changed by this point in
response to radiation.

To obtain tumour size information during treatment (the main objective of this thesis),
texture analysis combined with a level set method was applied to the CT and CBCT
images. The hypothesis is that the texture of a cancerous region will change during
treatment and differ from a healthy region. Therefore texture analysis will boost the
quality of the region of interest compared to normal CBCT images. Level set methods
were used as the segmentation model to find tumour boundaries on #10, which utilised
the images from #1 for parameter tuning.

The combined texture and level set model was applied to CBCT image data from fifty lung
cancer patients treated at the Edinburgh Cancer Centre in 2010-2011 and results reviewed
by a radiation oncologist. This model has the potential to alert clinicians to unacceptable
changes in tumour shape and location. The model was first tested on non-medical images
which had ground truth and then studied in detail on the lung CBCT of the dataset. One
patient had ground truth on the CBCT images due to the specific location of the tumour
inside the lungs. This enabled the quantitative analysis to be done of the proposed models.
Therefore as a result, the combined texture and level set model showed 90% shape and
area similarity to the tumour shape on CBCT while illustrating 30% of tumour shrinkage
for its CBCT #10.

Choosing an appropriate level set method with proper parameters is the most challenging
issue in the tumour segmentation. A novel level set technique is proposed which combines
two or more different level set methods in parallel. This model is inspired by vector-valued
imaging that uses different information layers of the same image for segmentation. In the
proposed parallel model, the input image is the same in each layer but a different level
set method is applied to each layer. Alternatively, it can be the same level set method
but using different parameter settings in each layer. This concept is further extended to
a multi-phase level set for multi-object segmentation applications. The accuracy of this
model is compared using non-medical and medical images. The proposed parallel level
set methods can be formed differently but the most compatible form was compared to
the conventional vector-valued image level set and proved more flexible for non-medical
cases by 90%, shown in Section 4.5.3.

In this chapter, Section 1.2 provides a brief overview of RT, to illustrate the difficulties in
this research. Concepts in RT are explained, which are required to better understand this
work. In addition, some of the limitations in lung CBCT images that restrict clinicians’
interpretations are discussed. In Section 1.3 the main objectives of this research as well as
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its contribution to the literature are presented and discussed. In Section 1.4, the framework
of monitoring lung cancer using a combined texture and level set model and its further
potential is considered. Finally, Section 1.5 provides an overview of the thesis for the
reader.

1.2 Overview of Radiotherapy Treatment

Medical imaging has been always a highly challenging and popular area of research.
It began with the indistinct glow from the highly energetic electromagnetic radiation
observed by Roentgen in 1895 [4]. Since then, diverse imaging technologies such as
Ultrasound, CT, colour doppler ultrasound, computed radiography (CR), MRI, positron-
emission tomography (PET), and 2D and 3D imaging methods have been developed. The
improvement in medical imaging from planar X-ray to multi-dimensional images has
greatly enhanced medical science and treatment methods. Different medical techniques
are used for different purposes due to their inherent advantages and disadvantages. For
example, MRI is mainly designed for imaging of soft tissues and CT is normally applied
to examine more dense material such as areas of fracture, haemorrhage, calcification,
and infarction. This is especially true in the field of radiation treatment and planning. RT
is based on ionizing radiation, which kills cancerous cells by damaging their DNA [5].
Tumours are essentially a tissue mass that is growing out of control often with signs of
swelling or edema. The treatment of cancer can be performed with radiation if the shape,
magnitude, location, type and size of the tumour is well understood.

In lung tumour treatment, RT is one of the most commonly used methods and in the UK,
CT modalities are used widely on planning the treatment. RT is mainly used for localized
tumours to deliver specific radiation doses to the cancerous cells. The radiation particles
are mostly photons which are focused on the position of the tumour inside the body during
treatment [6]. Figure 1.2.a. shows the CT machine which is used for the first stage in RT.
Based on the images acquired from CT, the oncologist manually delineates the tumour
shape. Using this knowledge of tumour shape, size, position and type, the radiation dose
is calculated and delivered via a linear accelerator (LINAC) machine. As shown in Figure
1.2.b. before starting the treatment, the patient position is adjusted by the radiographer
at the LINAC so that the planned treatment isocentre is in the correct position. CBCT
is an embedded imaging system on the LINAC. The LINAC has two arms that extend
and rotate around the patient body. CBCT is mostly carried out once at each fraction of
treatment to verify the exact set up. The flowchart in Figure 1.2.c. shows the pathway for
a typical lung cancer RT:
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1. Imaging for planning: Planning-CT images acquired for planning the RT.
2. Treatment planning: The stage where clinicians plan the treatment by defining the

tumour shape, treatment period and dose calculation per treatment.
3. Patient set-up for treatment: The CBCT image acquisition before treatment for the

purpose of adjusting patient position to receive the planned radiation therapy.
4. Imaging for verification: Checking CBCT images by the radiographer to set-up and

verify the correct position of the tumour.
5. Treatment: Start of the RT using the LINAC operated by a radiographer using

information supplied by the clinical team.

Figure 1.2: a. CT, b.LINAC and c. Pathway of a typical course of RT.

Planning the treatment based on the available LINAC for treatment differs. Conventional
RT conformal RT (CRT) as shown in Figure 1.3.a. was used to radiate the tumour from
different angles at constant dose. Intensity-modulated RT (IMRT) however, adjusts the
delivery dosage based on the shape of the tumour. In IMRT, organs at risk (OAR) receive
less radiation and the main delivery is focused on the tumour volume as in Figure 1.3.b.

In treatment planning, finding the exact shape of a tumour is the most challenging issue.
The universal standards in RT were introduced by the international commission on ra-
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Figure 1.3: Two different RT dose delivery techniques a. CRT and b. IMRT [7, 8].

diation units (ICRU) [7, 8]. These include the GTV in Figure 1.4 and other associated
planning concepts. However, it is particularly difficult to generate a generally applicable
method without any prior knowledge. In practice the GTV boundaries drawn by clinicians
are delineated not only by image information but also based on medical information and
experience. Different clinicians may contour the GTV slightly different. As a result, most
literature focuses on automatic or semi-automatic methods for certain types of cancers. In
this thesis, the GTV contours available on pre-treatment images or planning-CT images
generated by clinicians are taken as a starting point for the analysis of CBCT images.

Figure 1.4: Illustrative example of GTV, CTV, PTV and their ratio (after [7, 8]).

Clinical target volume (CTV) is another term used when defining the RT boundary which
contains the GTV and an estimated region around the GTV. Since the GTV is delin-
eated on a planning-CT a few days or weeks before starting treatment, clinicians expect
some movement or even growth of the tumour mass as well as estimating the breathing
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movement of the patient during treatment [7]. Therefore, an even larger planning tumour
volume (PTV) is the target of radiation during dose delivery. Although the dose calcula-
tion and delivery is targeting PTV, GTV is the most similar boundary to the actual tumour
shape. An example ratio of PTV, CTV and GTV is shown in Figure 1.4 to illustrate their
concept of treatment volume.

The planning-CT is of a sufficient quality which enables clinicians to manually delineate
the GTV on each slice. This information is used in dose calculation and delivery. The
oncologist knows from empirical data that the tumour will most likely shrink but there is
the possibility of growth or movement inside the lungs. Treatment continues for the whole
course of RT based on the first shape taken from the planning-CT. The main problems with
current CBCT imaging are:

1. Smaller size compared to planning-CT images.
2. Lower quality and noisier compared to planning-CT. This complicates the compar-

ison of these data for the same patient.

It is extremely difficult for the clinicians to see the tumour using CBCT images, hence no
gold standard exists. The limitations of CBCT images combined with the lack of a gold
standard by the oncologist during treatment has restricted research in this area. However it
is a significant clinical problem and is the main motivation for this thesis, i.e., to improve
the quality of CBCT and more accurately analyse the tumour shape during treatment thus
assisting clinicians in making critical decisions that will impact on patients.

1.3 Objectives and Contributions

The objectives of this thesis reporting research on image analysis of the lung cancer
treatment based on external beam RT and the contributions are:

1. The main objective is to determine the GTV boundary on CBCT. Usually in medi-
cal image analysis literature, researchers approach GTV segmentation with prior
knowledge or a gold standard, but the absence of the gold standard on CBCT
images in this research makes the problem extremely complicated. CBCT images
are different from planning-CT images, with a poorer quality, smaller size, and
shorter time of acquisition. Although CT images with their GTV are used as the
primary reference, CBCT may show the changes due to RT and disease progression.
Thus there is a need to pre-process CBCT images, i.e., denoising due to their poor
quality and then registering them to planning-CT images to extract/transfer the
primary GTV.
The major contribution of this thesis is using texture analysis prior to level set
segmentation to enhance low quality CBCT images thus producing improved lung
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tumour segmentation. Prior knowledge of CT and the strength of this segmentation
leads to analysis of the patient’s situation during RT. The method is used not to
exactly define tumour boundary as this is not possible but to indicate to clinicians
and provide them with a better qualitative understanding of tumour changes during
RT. The Dice coefficient was used to evaluate the changes of segmentation on
CBCT compared to GTV on CT before any treatment for finding the changes.
A clinical oncologist, evaluated the results for this method on twenty six patients
visually and compared them slice by slice and rated the algorithm performance.

2. The second objective is to ease the usage of level set segmentation as the current
models are very much dependent on their parameter setting and finding appropriate
parameters is particularly challenging in the absence of any ground truth on the
data.
Therefore another contribution of this research is a new level set technique. First,
the parallel level sets in vector-valued image model can choose the best force
calculation in each iteration as it has two different level set models competing with
each other and takes the average of their force in each iteration. This model benefits
from the strength of two models and minimizes any error that could arise with a
single model based technique. Second, the parallel level sets is extended in multi-
phase technique which can apply different level set models or the same model with
different parameters to segment different objects. The multi-phase level set model
so far deals with the same level set model applied at the same time.

3. Another objective is setting the parameters of level set to the closest possible combi-
nation that enables the level set for its best segmentation performance. Training the
parameters is impracticable and selecting based on trial and error is very difficult.
The relevant contribution to this issue is done by finding the closest performance of
level set on CBCT #1 to the GTV on planning-CT. At first, all possible sets of level
set parameters are selected by choosing the possible range for each parameter and
letting level set perform by any of these combinations. Then selecting the set with
more than 90% similarity among them and GTV.

4. The last but the most important objective is helping clinicians carry out lung cancer
treatment during RT.
The contribution here is an algorithm which can be applied in medical system to
monitor lung cancer evolution during RT. This method can be applied on each
fraction to be used as an offline adaptive RT (ART) to correct the treatment at the
next fraction.
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1.4 Framework of the Thesis
The framework for this thesis is displayed in Figure 1.5. This process starts from planning-
CT images and their relevant GTV, followed by CBCT images which are registered to
the CT images to map the GTV from CT on them. By applying texture and level set
segmentation on CBCT #1 and having GTV as the starting point, a good set of parameters
can be obtained which might need few iterations by checking the similarity between the
segmentation contour and the GTV on planning-CT data. Since CBCT #1 images are
acquired before any RT and after the planning-CT therefore having the Dice coefficient of
more than 90% would result into an appropriate set of parameters. Extending the process
from here to CBCT #10 can give a reliable estimation of the tumour shape through the
RT process. Therefore the same process of registration and texture analysis combined
with level set model should be applied on CBCT #10 by considering the obtained set of
parameters from CBCT #1. The similarity between the segmentation on CBCT #10 and
GTV on planning-CT is the final analysis on CBCT #10. Since almost one third of the
RT is done at this stage, a threshold value for the Dice coefficient at 70% is chosen. If the
similarity is more than the chosen threshold therefore RT should be continued but if not, it
can be an estimation of changes in the tumour. The proposed framework can be extended
further to be used in offline ART applications.

Figure 1.5: The proposed framework for monitoring lung cancer anatomical envelopment during
RT using combined texture and level set model.
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1.5 Outline of the Thesis

An overview of medical background related to this project is given in Chapter 2. An
outline of medical image processing methods used in this work is presented in Chapter
3. Chapter 4 discusses the reasons for the selection of the methods presented in Chapter
3. In Chapter 5, one specific patient for which ground truth was available is studied.
The proposed models are applied to this data to prove the efficiency of this work both
quantitatively and qualitatively. As the rest of data set lacks a gold standard, using the
results from Chapter 5 as a reference, Chapter 6 studies the whole dataset, processing the
data step by step and providing a qualitative analysis. Finally, Chapter 7 concludes this
research. Each chapter is summarized in the following paragraphs.

Chapter 2 focuses on the necessary medical background for placing this thesis in context.
The RT and some relevant challenges in lung cancer treatment are summarized. Lung
anatomy, cancer and its alternative treatment options, specifically RT, are explained. Com-
monly used DICOM (digital imaging and communications in medicine) tags/information
are also introduced. Also a brief description of medical image processing fundamentals
which can assist in understanding this research, various pre-processing (image condition-
ing) methods including re-sampling, and Dice coefficient for data analysis are discussed.

Chapter 3 explains the background studies of image processing algorithms used in this
research. It discusses the fundamentals of the proposed models and current literature in
level set methods. Active contours and specifically level set are discussed, also the dif-
ference between implicit and explicit models and some of the advantages/disadvantages
of snakes as well as level set methods. A survey about different level set methods, the
properties and applications of them are covered. Finally, texture analysis method and its
usefulness for many image processing application specificity in this research is outlined.

Chapter 4 explains the selected level set and texture analysis methods from Chapter 3. It
tests the popular level set methods on non-medical and medical images. Test images in this
chapter include six images which are usually compared in level set papers as well as two
MRI slices of the brain and two CT of the lungs. The proposed parallel level sets method
in vector-valued based and multi-phase based shapes are also introduced and applied to
some test images. Their performance is explained and compared with other models.

In the dataset for lung cancer only one case had a ground truth on each slice of the CBCT
scan. It had a concentrated tumour shape connected to the body of the lungs, which made
ground truth delineation possible by the oncologist. Therefore Chapter 5 is designed to
evaluate to robustness of the proposed texture and level set model. Texture features of this
case are observed and their best combination with level set method is tested quantitatively
and qualitatively. Finally conclusions are drawn and compared with the proposed parallel
level set method.
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Chapter 6 discusses the test results and conclusions of the proposed technique of cascad-
ing texture analysis and level set methods. It uses lung cancer dataset which does not have
any gold standard. This chapter introduces the characteristics of all data and registration
of these images. Texture features and their combination with level set are applied and
assessed by clinicians compared to the gold standard to validate the results.

In Chapter 7, conclusions of all the work presented in this thesis are made and the relevant
contribution to the literature are summarized. Also, some suggestions for further work
based on the discussion of the results are introduced.



Chapter 2

Background

2.1 Introduction

CT and CBCT images are acquired before, during and after lung cancer treatment in
RT. They are used in tumour diagnosis, monitoring tumour progression and planning
treatments. These images contain structural and electron density information which can
indicate the ability of materials to absorb radiation and consequently be used to calculate
the dose distribution from a given beam arrangement. Segmenting tumours on CT images
is challenging due to the poor discrimination provided by CT for soft tissue when com-
pared to MRI of tumour cells in lung cancer. Furthermore it is extremely challenging on
CBCT images due to their noisy characteristics as the projection of the beams is broader
than CT. The CBCT image detectors and source is a part of the LINAC and moves around
the patient in a similar manner to a LINAC gantry whereas in CT the patient is moved
inside the CT. CT is slower as moving the patient can not occur as quickly as moving the
image source/detector in CBCT.

For the purpose of radiation treatment, having an accurate estimation of tumour size is
vital. By knowing the shape and size of the tumour, external beam RT can provide a very
accurate dose delivery to the tumour cells. A typical RT procedure comprises of:

1. Contouring: Delineating the tumour boundaries and organs at risk is carried out
before starting RT.

2. Dose calculation: Determining the maximum dose delivery to the tumour.
3. Simulation and irradiation: Checking and delivering radiation to the tumour.

The tumour shape and boundaries are defined manually by oncologists as this cannot be
achieved using automatic image processing segmentation techniques [9]. Manual con-
touring suffers from many disadvantages, it is tedious, not reproducible and different
oncologists do not identify exactly the same tumour shape for the same patient. The RT
community has acknowledged that the issue of developing automatic contouring method-
ologies should be given a high priority [9].

CBCT images, which are acquired during or before placing the patient on the treatment
position, are even more complicated and difficult for the oncologist to contour. Therefore,

12



2.2. The Lungs and Lung Cancer 13

because of the lack of contour on CBCT during lung cancer RT treatment, it is more
difficult to assess the response of cancer to RT. By processing the CBCT images and
comparing them with CT images, a useful lung tumour contouring model is implemented
in this thesis. This model has great potential as an alert process which notifies the oncol-
ogist about any change in size and shape of the tumours during the course of treatment.

This chapter explains the background of this research in medical imaging content. It
provides the reader with the required terms and for lung cancer RT image analysis. In
Section 2.2 lung anatomy, lung cancer and its treatment methods are briefly explained.
In Section 2.3, an introduction to RT techniques and its applications are described. The
fundamental definitions of medical imaging and the DICOM standards are presented in
Section 2.4. CT and CBCT scanners, being the source of medical images in this work,
are also mentioned in this section. Technical details in different aspects of transforma-
tion, similarity calculation, optimization and assessment are included in a short literature
review of segmentation which is presented in Section 2.5.2. Also this section provides a
description to re-sampling and Dice coefficient which discusses them for image condi-
tioning and quantitative analysis.

2.2 The Lungs and Lung Cancer
Lung cancer, affecting one of the most vital organs in human body, is ranked as the second
most common cancer after prostate and breast cancers for men and women respectively.
Up to 17% of men and 14% of women may be affected by lung cancer regardless of being
a smoker or non-smoker and almost 25% of cancer associated deaths are categorized as
lung cancer [10]. The national health service (NHS) of the UK spends almost £9,000
per patient per year on lung cancer treatment [11]. Early stage treatment costs less than
the advanced stages, for example the treatment of a lung cancer patient in stage 1 to
stage 4 can vary from £7,952 to £13,078 [12]. The survival rate of lung cancer patients
after treatment is less than 40% as shown in Figure 2.1 based on cancer research centre
statistics and data provided by the cancer research centre UK [13].

Figure 2.1: Lung cancer survival in the UK (data from [13]).
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2.2.1 Overview of Lung Anatomy

Figure 2.2 illustrates cancerous lungs inside the human body. Lungs are a pair of soft
tissue organs positioned within the ribcage. They cover the heart inside and are above the
liver and stomach. Each of the lungs consists of two elastic bags for air to pass through
their branches, so that oxygen can pass into the blood and carbon dioxide can be removed.
The trachea (windpipe) is the route for air into the lungs via two main tubular branches,
called bronchi. The bronchus itself consists of microscopic branches (bronchioles). In a
healthy adult the two lungs, weigh approximately 1 lb (0.45 kg) each. However, the left
lung embeds the heart and is about 10% smaller than the right one. Consequently, the right
lung is shorter, thicker and broader. The average total lung volume, for young adults, is 6
litres; while only 0.5 litre of air is used for normal breathing.

Figure 2.2: Localized tumours in the right lung [14].

Each lung has a broad bottom part, called the base, and a narrow top, the apex. The
lungs are surrounded by a double-layered membrane that encloses and protects each lung.
Figure 2.3 shows the cross-sectional shape of lungs.

Figure 2.3: Lung anatomy cross-sectional transverse view [15].
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The lungs are connected via other organs in between as shown in the cross-sectional view
which also might be affected by the tumours inside each lung or affect them if they are
cancerous themselves.

2.2.2 Overview of Lung Cancer Disease

In the UK, almost 1 person in every 1000 of the population is diagnosed with lung cancer
each year, with older people usually being the main victims of this disease. The NHS
statistics indicate that people from 70 to 74 years old are the largest cohort to suffer.
Almost 90% of patients are categorized as smokers though non-smokers are also affected.
Bloody coughs, continuous coughs, tiredness, dramatic weight loss and chest pains are
some of the symptoms of cancerous lungs which usually manifest in advanced stages
of this ailment. Lung cancer can be formed of cancerous cells only inside lungs, or can
spread to other parts of the body [6].

Lung cancer severity depends on the propagation of cancerous cells in the lungs and other
organs. Lungs are considerably larger than some other organs, therefore tumours can grow
and spread for some time before being sensed by patients. Even when symptoms such as
coughing and fatigue occur, people presume they are due to other causes. This makes it
more difficult to discover the disease in its earlier stages and therefore diagnosis usually
occurs in the advanced stages.

Different types of lung cancers grow and spread at different rates, usually they can be
divided into two main types. The first type is the small-cell which is rare and occurs in
almost 20% of patients. It is more dangerous due to its fast spreading nature within the
lungs and it also spreads to other parts of the body earlier than the second type lung cancer.
The oat cell or small-cells are microscopic and majority of cases they are filled with the
nucleus (the control centre of cells) [12].

The second type is non-small-cell lung cancer which is more common affecting almost
80% of patients. Different stages of this type are explained by the following:

Stage I: Tumours are in the lungs only.
Stage II: The cancerous cells spread beyond the lungs and grow in the nearby lymph nodes
as well.
Stage III: Cancer cells grow inside the lymph nodes and can even spread to the other lung
on the other side of the body.
Stage IV: At this stage, tumour cells are widespread, growing in other organs such as the
liver. It is the most progressive stage.

Figure 2.4 illustrates some levels of four stages in non-small-cell lung cancer.
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Figure 2.4: Some levels of four stages in non-small-cell lung cancer: a. Stage IA and IB, b. Stage
IIB, c. Stage IIIB and d. Stage IV [16].

This research studies the second type, non-small-cell lung cancer. The dataset carries
all different stages of this type. Therefore the proposed model can be tested against the
different stages.

2.2.3 Overview of Lung Cancer Treatment

The treatment of lung cancer can be carried out by surgery, chemotherapy, RT or any com-
bination of these methods. A team of clinicians decide the best treatment for each patient
depending on the general health of the patient, the cancer type, stage of advancement and
position of the tumour in the lungs.

Chemotherapy is a method which is usually used for tumours that have spread across lungs
and other organs, typically by administering anti-cancer drugs, mostly small-cell type.
Surgery in lung cancer is another method of treatment and is mostly used for localized
tumours. As shown in Figure 2.5, tumour removal via surgery would cause some healthy
tissue removal as well and can range from removing a wedge section to being as severe as
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removing a whole lung. It is painful compared to RT, therefore some patients prefer RT
to surgery. Furthermore, RT combined with chemotherapy is called chemo-RT.

Figure 2.5: Different lung surgery section removal: a. wedge resection, b. segmental resection,
c. lobectomy and d. pneumonectomy [15].

RT can be used before, after or during surgery because some cancer cells could expand
during operation. The purpose of using RT before surgery is to shrink the tumour. Such a
process is called neoadjuvant treatment. If it is used after surgery to kill the remaining
cells which were not removed during surgery it is called adjuvant treatment. Surgery
combined with RT is usually recommended for early stage small tumours, however a
sole RT program is more practical if the patient is not in an appropriate condition to be
operated on.

2.3 Radiotherapy

RT is the most common treatment for lung cancer. It is also used in treatment of benign
tumours such as thyroid diseases as well as some blood disorders. RT is based on high-
energy radiation. In RT, the cancerous cells are targeted by ionization radiation to kill
them by damaging their DNA. By treating cancer in this manner, normal cells will also
be affected by radiation. The treatment of lung cancer can be very challenging during
RT because of movement of the chest. During the process of image acquisition as well
as radiation, the patient should stop breathing. Holding of breath can affect the shape of
different organs and cause very small differences in images acquired in different times.
Also weight loss or gain can be another issue in the size of lungs. In treatment planning,
clinicians try to estimate the tumour shape by considering all of these possibilities during
treatment. RT is painless but depending on the treatment plan, the patient can go through
treatment for periods of days to weeks. In the case of lung cancer, IMRT or IGRT is
usually performed in 20 to 36 sessions/fractions which can last from four to seven weeks,
or three treatments each day for about twelve days. Stereo-tactic body RT (SBRT) which
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carries the radiation from different angles around the body usually delivered in three to
eight fractions [17].

Figure 2.6: Flow chart of a typical course of RT (after [8]).
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A flow chart of a typical course of RT is shown in Figure 2.6 [8]. It illustrates the main
path of RT as:

1. Pre-RT: The pre-RT is the stage of decision making by clinicians to plan the treat-
ment.

2. RT preparation: Tumour delineation by the oncologist on the planning-CT images
acquired before RT treatment.

3. Planning: Optimizing the treatment plans by modifying the tumours shape and
dosage calculation.

4. Delivery: Started by image acquisition such as CBCT to adjust patient for treatment
and finally delivering radiation.

5. ART (Not necessary): This stage is not used in all RTs. It can be online or offline.
In online ART, before starting each session of treatment, some modification can
happen on the current treatment plan. For example, a new set of images is acquired
and processed to define a new volume of interest. In offline ART, the information
can be used in future sessions of RT while clinicians have more time to plan and
modify the future treatment.

6. Reporting: Recording and reporting the patient treatment information.

RT is either performed inside the body (internal RT) or outside the body (external RT).
Internal RT or brachytherapy is carried out by placing a radioactive material inside the
body near cancerous cells for a temporary period. This type of RT differs for different
patients based on the location and size of tumour. External RT, also known as external
beam RT (EBRT), radiates tumour cells in a patient body from an external source. The
radiation elements can be of anything from electrons and photons (X-rays or gamma-rays)
to heavier elements such as protons and neutrons. The beam source depends mainly on
the machine used for the treatment.

External RT takes place in a LINAC, which targets a beam at the volume of interest as
seen in Figure 2.7 [18]. LINAC was invented in 1928 by accelerating charged particles.
The charged particles release a little amount of energy while travelling through the body
but their peak release should happen while reaching the tumour. Delivering the highest
dose to cancerous tissues with the least amount of radiation to healthy tissues is very
important in dose calculation, therefore targeting PTV properly as well as accurate dose
calculation related to the volume and position of tumour is highly important.

In this regard, different technologies in RT have been developed such as image guided
RT (IGRT), SBRT and intensity modulated RT (IMRT). IGRT is an RT which uses the
information from images such as CT or MRI for radiation. This technology greatly helps
in radiating a lower dose to healthy tissues. Inside IGRT some image processing methods
can be performed, such as noise removal, motion correction and registration to improve
treatment analysis. SBRT uses different radiation beams around the patients which are
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focusing on the tumour from different angles which increases the dose delivery to the
tumour.

Figure 2.7: Linear accelerator with embedded CBCT imaging mechanism [18].

IMRT is the advanced version of 3D conformal RT (3DCRT) shown in Figure 2.8. These
techniques dynamically reshape radiation beams based on tumour shape as shown in
Figure 2.9. The beams can be formed to match the expected PTV by giving the proper
shape to the multi-leaf collimator. It also changes the dose delivery to each voxel from
different angles of radiation.

Figure 2.8: Treatment planning through simulation of the radiation: a. a CT image b. planning-CT
with GTV in red, CTV in green and PTV in blue contours shown and c. treatment planning through
simulation of the radiation [19].
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Figure 2.9: Varian 80-leaf collimator for shaping a radiation beam [20].

During treatment the tumour may shrink, indeed that is the aim of the treatment, but
there are possibilities of expansion or movement of the tumour inside the lungs due to
progression of the disease. Therefore having some information regarding the progression
of disease can be vital for the patients who do not respond well to RT. Generally, there
is no MRI or CT imaging available during treatment. Due to lack of time, high cost and
other difficulties associated with MRI, this imaging technique is not performed. On the
other hand, CT might expose the patient to more X-ray radiation. Also sometimes the time
between two treatments is so short that it does not provide clinicians with another oppor-
tunity to reconsider the tumours shape during treatment. CBCT images often available
during treatment, and are used to position the patient on the LINAC couch to identify the
patient isocentre. This ensures that the exact position of tumour in the body is irradiated.
Therefore, in general, the only modalities of images available for lung cancer treatment
are CT and CBCT. As CBCT quality is poor, they are not used by clinicians for analysis
of soft tissue but to set up the patient.

In planning, the extent of the tumour is defined as the radiation target (GTV, CTV and
PTV); after the target is defined a dose delivery calculation will be made based on the
form of the treatment, for example curative or palliative. After the plan is finalized a
simulation is carried out to verify that the radiation set-up and dose will be delivered
appropriately. After the physical dose, delivery quality control needs to be implemented
to assure that the outcome of the treatment meets expectations. Since this thesis studies
image analysis for GTV definition, in this section RT planning has been detailed, with an
emphasis on the impacts and challenges brought by the recent introduction of IMRT.
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2.4 Medical Imaging Fundamentals

To aid understanding of medical imaging modalities, some fundamentals in medical imag-
ing need to be described first. The first and foremost concepts are pixels in 2D imaging
and voxels in 3D volumes. Pixels, which are usually square units in imaging, are the
smallest quantity in an image. Their physical size can vary depending on the application
and resolution of acquisition device. Voxels are the pixel concept extended into 3D. In
medical imaging they are usually presented in millimetres3 (mm3) on an image. The image
pixel values are known as intensity or gray-scale values which represent the amplitude of
each pixel.

The image size defines the number of pixels in the x and y directions. The image res-
olution, which does not define its physical size, is usually presented as pixel spacing in
DICOM information. For example, a 200×200 image defines the width and height of the
image which are both 200 pixels (and the image size is 40k pixels), it means if the image
is 2 inches wide and 2 inches high with a resolution of 100 pixels per inch (PPI). Also,
a 200× 200× 100 image in 3D refers to 200 pixels per width and height and 100 layers
of images (slices in medical imaging) but they do not define the voxel and size. Medical
images can be acquired through different planes in the body such as sagittal plane, coronal
plane and transverse plane as shown in Figure 2.10.

Figure 2.10: Planes of notion in CT image acquisition a. transverse plane: plane that runs through
the body and horizontally divides it into upper and lower portions, b. frontal or coronal plane: plane
that runs perpendicular to the transverse plane and divides the body into anterior and posterior
(front and back) portions and c. sagittal plane: plane that runs side by side through the body,
dividing it into left and right portions [21, 22].
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The images of CT and CBCT acquired for this research are all taken from the sequence of
transverse mode as shown in Figure 2.11. This montage illustration of tumour slices does
not show much about tumours but illustrates the sampling frequency of imaging per 3mm

thickness in the transverse cross-sectional direction.

Figure 2.11: Lungs montage illustration of planning-CT slices for Patient 25. There are 130 slices
for this patient acquired on 10-05-2011 at Western General Hospital, Edinburgh, UK.



2.4. Medical Imaging Fundamentals 24

In medical imaging, the images are in standard DICOM format and embed the informa-
tion of patient, disease, treatment, date and information needed for further processing
of the image [23]. Some information is sequential for the same patient which should
be considered during the treatment. Some convey different transformation data required
between the patient-based system and image-based system. These data are very important
in the registration procedure which is required in RT treatment, motion correction, 3D
shape reconstruction and re-sampling of the data. Important parameters can be read from
DICOM information directly including:

1. Pixel Spacing: This information shows the physical pixel size in an image in mil-
limetres (mm) and is usually the same in x and y coordinates.

2. Slice Thickness: This information represents voxel size, the distance between each
slice. It is also represented in mm but it is usually larger than the pixel spacing.

3. Image Position Patient: This information presents the position of a patient during
the image acquisition as the origin of the patient-based coordinate system.

4. Image Orientation Patient: This is also like patient position and is based on coor-
dinates which represents the angle of the patient or imaging/RT device from the
origin in the medical space/domain. It is very important if the patient changes the
angle of lying on the bed.

5. ROI Contour Sequence: The structure file which carries the information for clinical
contours delineated by the oncologist.

6. Registration Sequence: These are the registration parameters set by radiographers
to find the reference coordinate between CT and CBCT or any two different data
sets which need registration.

This DICOM information is used during pre-processing CBCT images in lung cancer.
Especially in image registration these DICOM data can be very useful. The difficulties
of CBCT over CT are due to its image generation mechanism, difference in time of
acquisition and gray-levels. Figure 2.12 illustrates the difference between a CT and its
relevant CBCT slice.

The two slices of CT and CBCT of the same patient after registration illustrate the quality
of CBCT declined compared to CT. The red boundary illustrates the GTV on both images
and the blue rectangle refers to the ROI. The CBCT slice in this figure was acquired one
week after the CT and its histogram shows a large difference of the same ROI. The RIO
is chosen from an area containing both soft and hard tissues where their difference is
very feasible on CT histogram while not very well separated on CBCT histogram. These
differences are explained further in the following subsections.



2.4. Medical Imaging Fundamentals 25

Figure 2.12: Relevant CT and CBCT slices differences, Patient 26 Slice 58, a. CT image and b.
CBCT image relevant to CT image on the left side. Both images are followed by the histogram of
the cropped part in blue colour and an intensity plot of the line drawn in green colour along the
cropped boundary. The red boundary illustrates the GTV on both images.

2.4.1 CT

CT or X-ray CT involves a scanner to visualize anatomical elements using X-rays to
capture images from different angles to build cross-sectional (topographical) images of
different depth and resolution. In CT, the beam travels across the human body to generate
tomographic images. Therefore it can be harmful, increasing the risk of cancer by almost
3% to 5% as the X-ray may damage the healthy tissues while scanning procedure is in
progress [24].
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CT can visualize broken bones, injured organs, blood disease and strokes amongst other
ailments. The imaging procedure using CT scanners is painless and less costly compared
than other modalities. It is usually a doughnut shaped machine, open from both ends,
with the patient lying on the bed while the bed moves into the hole. An X-ray tube source
rotates around the patient and sends narrow beams of X-rays through the patient. Normal
CT scans send a sequence of X-ray beams toward the patient from one side. The size of
beam is between 1mm and 10mm wide, that makes a sequence of slices for different depths
within the body. On the other side of the patient, there are X-ray fan-shaped detectors
to detect the amount of X-ray passing through different organs and tissues of the body.
This recorded data can combine different slices of CT images by reconstructing them
into digitally reconstructed radiograph (DRR) images which defines the patient position
during the RT process.

CT lung cancer scans take less than a minute while patients hold their breath in order to
obtain better images due to fewer movements in the chest. More movements cause images
to be more blurry and therefore require additional processing for motion correction. The
radiographer, doctor or technician who is in charge of capturing the CT scan prepares the
patient and leaves the room so as not to be affected by the X-ray. They monitor the patient
from another room by controlling the couch movement toward the CT scanner.

In CT, differences between tissues that differ in physical density by less than 1% can be
distinguished. The quantitative scale for describing radio-density is measured in Hounsfield
units (HU) representing the relative intensity of the organ of interest. The HU scale relates
the voxel attenuation coefficients (the quantity that describes the fraction of a beam of X-
rays or gamma rays that is absorbed or scattered per unit thickness of the absorber, µ) of
different tissues to water and air as shown by the equation 2.1. The coefficient of 1000 is
to magnify the values and can be changed but it is chosen to be 1000 for most of scanners.

H = 1000× µX −µwater

µwater−µair
(2.1)

As µair is almost zero, it can be ignored and the scanner can be calibrated with reference
to water. In Table 2.1, different intensities for various organs and tissues are listed.
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Substance HU

Bone +700 (cancelous bone) to +3000 (dense bone)
Soft Tissue, contrast +100 to +300
Liver +40 to +60
White matter +20 to +30
Grey matter +37 to +45
Muscle +10 to +40
Blood +30 to +45
Kidney +30
Water 0
Fat -100 to -50
Lung -500
Air -1000

Table 2.1: Different intensities of some typical materials in a CT image [25].

Figure 2.13 also illustrates the different densities for different tissues in lung CT image.

Figure 2.13: Different tissue densities shown in a CT image [25].

This information is very useful for clinicians to contour GTV. Based on their experience
they estimate the presence of different tissues in different sections of lungs, and use this
to delineate the abnormalities as cancerous tissues.
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2.4.2 CBCT

CBCT is a type of CT with conical shape instead of fan shape. It is mostly used in dental
imaging but also a component part of a LINAC for interventional radiology (IR) and more
recently IGRT. CBCT image quality is much poorer than CT images because of the wider
projecting of each beam of X-rays. Their resolution and image size is smaller and they
take longer time to acquire. Therefore they are noisier than CT images due to patient
breathing as well as their image projection shape. The time of CBCT is at least 5 breaths
and it exposes the patient to less radiation compared to CT. CBCT scanners on a LINAC
are designed for the purpose of finding the proper position of the patient and tumour
before radiating the tumour cells. After putting the patient on the LINAC bed, the CBCT
arms extends from the LINAC and rotates around the patient. One arm sends the X-rays
and the other arm detects them. The process usually happens before RT treatment and
helps the radiographer to find the exact position of the tumour inside the body and target
the most precise point. CBCT images are available for all different days of RT treatment
and named by fraction. Usually patients will have approximately thirty days of treatment
in almost one month.

2.5 Overview of Medical Image Processing

Image enhancement, denoising, registration and segmentation are the main image pro-
cessing steps used in many medical imaging applications. As previously discussed, the
images of CT and CBCT are noisy and blurry in lung cancer RT although the medical
acquisition software that processes these images specialises in noise removal and motion
correction. Denoising is well studied as the noises are known, as is motion correction since
the movement direction of lungs are predictable. But image segmentation still requires the
effort of clinicians. There are many models developed which assist clinicians. By clearly
identifying a better region of interest to clinicians, patients will have less exposure to
radiation and the diagnosis will be faster and more accurate. Medical image segmentation
is difficult due to the inhomogeneity in the intensity of the images which can be due
to sensitivity of modality (e.g. MRI-soft tissue and CT-bones), noise, faulty devices and
human movement. Segmentation also helps in estimating the size, position, shape and
volume of tumours [26]. This section provides some description about image conditioning
used in this thesis as re-sampling for the follow up registration purposes, then image
segmentation is briefly discussed and finally Dice coefficient as the quantitative analysis
tool used in this thesis is explained.
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2.5.1 Re-sampling of Images

Different modalities usually carry different dimensions and slice thicknesses as well as
number of slices. For example, in this study the planning-CT data for fifty different
patients involved on average 100 slices and for the CBCT data almost fifty slices. Before
applying any image processing algorithm, re-sampling the test data is necessary. In this
work up-sampling and down-sampling are both applied. Up-sampling is the process of
rescaling an image into a larger size and down-sampling is the reverse.

In this work, the first step before registration of CBCT images to planning-CT images
was applying a first-order interpolation (bilinear interpolation) to expand the dimensions
of the CBCT image to CT image dimensions and smooth intensity values by re-sampling
them. Figure 2.14 and Equation 2.2 illustrate this concept, that the final intensity value for
each pixel is the summation of four neighbouring pixels.

Figure 2.14: The general view of bilinear interpolation of a 2D example with (x,y) the target point.

g(x′,y′) = f (x0− y0).(1−dx).(1−dy)

+ f (x1− y0).dx.(1−dy)

+ f (x0− y1).(1−dx).dy

+ f (x1− y1).dx.dy

(2.2)

where g is the new intensity of (x,y) point on the image. The area of the square where
(x,y) is located is 1. Each square is divided into four sub-regions and the area of each one
of them multiplied by the closest neighbour’s intensity value to define the new intensity
value.
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2.5.2 Image Segmentation

Image segmentation can be divided into two main techniques: one is discontinuity based
and the other is similarity based. Discontinuity based techniques are designed to detect
edges, lines and isolated points, whereas similarity based algorithms are designed to
detect thresholding, region growing and region splitting/merging. Edge detection involves
detecting discontinuities in the image, the region boundaries being well defined by edge
detection due to steep variations in the intensity in object edges. Thresholding is the
simplest technique to partition the image by defining a threshold value, which is generally
based on image histogram values. Popular models of thresholding are Ostsu’s model
which is based on maximum variance and K-means clustering. The K-means algorithm
is a recursive technique that partitions the image into K clusters. In similarity based
techniques, which are more powerful than discontinuity based ones, region growing is one
of the simplest models. It is based on initialization of a seed point in an image and growing
a region through pixel based image segmentation. It classifies the neighbourhood region
of the seed by determining if it is a part of the region or not and it moves until it reaches the
object boundaries based on its defined classification growth. Partial differential equation-
based methods, variational models and general optimization algorithms are popular meth-
ods which are getting used more and more due to their flexibility. Partial differential
equation-based methods or PDE-based methods use numerical schemes to solve curve
propagation. The basic idea of PDE based model is to minimize the cost function or an
energy functional defined for a curve. Parametric methods such as snake models were one
of the first models introduced based on PDE which are actually Lagrangian techniques.
Level set is another model of this category which considers curve propagation in an
implicit manner. Fast marching models are also used widely in PDE models as they permit
both a positive and speed propagating speed in an approach called the generalized fast
marching method [26].

A great deal of research using many different methods has already been performed [27–
30]. Further examples exist in 3D shape recovery of the tumour in brain, lung and other
organs, tumour segmentation based on 2D contours [31, 32] as well as 3D contours
[33, 34] which have generated considerable interest. There are a number of different ap-
proaches proposed for tumour segmentation and volume estimation using techniques such
as fuzzy-connectedness in MRI [35], Markov random field [36], support vector machine
[37], graph shifts algorithm [38] and Bayesian method [39]. Many active contour models
(explicitly snakes and implicitly level set methods) have been proposed and implemented
for tumour segmentation over the past twenty years [33, 40]. Many different segmentation
techniques have been tested in tumour segmentation, particularly level set methods due to
their shape adjustment capability regardless of the objects form.
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As the quality of CT and CBCT are different and also CBCT images lack the presence
of ground truth therefore choosing the proper segmentation model is an essential. A good
segmentation model which can converge to the tumour boundaries with the least amount
of prior knowledge is the main concern in this selection. Based on literature review level
set models are tested widely and are well performers on medical images in the present or
absent of ground truth.

Level set methods are a form of active contour which have the freedom of movement
inside an image until it converges to the desired boundary/region. The level set needs to
be initialized as a boundary. Figure 2.15 illustrates the movement of level set contour in
a period of time from left to right until it converges to the correct boundary. Level set
methods can handle complex geometry and topological changes with numerical stability.
The initial contour position is arbitrary, it can be anywhere in the image regardless of the
location of desired segmentation.

Figure 2.15: An example of level set propagation from left to right using Chan-Vese level set
method.

Chapter 3 reviews different level set techniques, implements different models of level
set and Chapter 4 discusses their performance in medical imaging for the purpose of
tumour segmentation in lung cancers and the follow-up after RT. Also proposed model
is cascading texture analysis and level set methods on lung data using CBCT images to
estimate the tumour position and size during treatment.

2.5.3 Ground Truth Comparison to Algorithms Output

Qualitative analysis for the medical dataset was done by the expert oncologist and the
quantitative analysis was carried out using the Dice coefficient. The Sorensen index or
Dice coefficient was developed by Sorenson and Dice as a measure of a comparison. The
Dice coefficient can measure the level of similarity between two closed sets, A and B,
Figure 2.16.

D =
2|A

⋂
B|

|A|+ |B|
(2.3)
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Figure 2.16: Intersection of two closed sets of A and B.

2.6 Chapter Summary

In this chapter, the essential medical background of lung cancer treatment presented to
address the problem studied in this thesis. The main issues in the available modalities in
lung cancer were discussed as well as the difficulties of developing automatic contouring
algorithms for RT planning. CT, CBCT and RT are described with their advantages and
disadvantages with respect to lung cancer. An anatomy of the human lungs is presented,
with an emphasis on lung cancer. The process of GTV contouring, difficulties in the
procedure and the need for assisting clinicians to decrease the time required for treatment
planning discussed which not only has significant influence on the productivity of the
RT process as a whole, but has great potential to be part of IGRT process to increase
the accuracy of PTV definition. A review of medical imaging, image conditioning, image
analysis and a short introduction to level set compared to other segmentation models were
discussed which would be better studied in next chapters.



Chapter 3

Level Set and Texture Analysis

3.1 Introduction

Image segmentation is the process of partitioning the image into meaningful regions. It
is one of the most important techniques in modern imaging for shape reconstruction,
volume estimation, object detection and classification. Many different algorithms have
been proposed to solve image segmentation problems. Those based on partial differential
equations (PDE), began with the Snake technique introduced by Kass in 1987 [41]. The
snake model is based on minimization of an energy term to halt the growth of evolving
contours at edges or boundaries. Another popular image segmentation method is the
level set, introduced in 1988 by Osher-Sethian [42] to overcome the shortcomings of
the Snake such as its topological problem such as topological issues as well as accurate
prior knowledge for their initialization. Since level set models are independent of prior
knowledge, they are very robust segmentation models when there is no ground truth
available. Level set methods are used extensively and have many different applications.
As a result there is often considerable investigation into the performance of several level
set methods for a given problem. It would therefore be helpful to know the characteristics
of a range of level set methods before applying any to a given segmentation problem.
Several review papers on level set segmentation are available but each is focused on one
area or specific aspect of imaging applications. Some of these topics are:

Region-based algorithms; Cremers in 2005 [27], Jiang in 2012 [44].

Medical imaging; Suri in 2001 [45], Elsa Angilini in 2005 [46].

Inverse Problems and Optimal Design; Burger and Osher in 2005 [47].

Piecewise constant application; Tai and Chan in region based methods in 2004 [30].

Deformable models in general; Montagnat in 2001 [48], Suri in 2002 [49].

Short general review; Bhaidasna in [50], Vineetha in 2013 [29].

This chapter reviews a range of level set methods and their application to image seg-
mentation work and explains in detail their properties for practical use. Popular models

33
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were applied to segment synthetic images with defined ground truth and to analyse their
performance. The advantages and disadvantages of each model are discussed and their
properties and limitations when dealing with different images are compared to show
the reasons for choosing the specific level set methods adopted in this research. Also,
texture analysis studies are reviewed for the purpose of pre-processing the images prior
to segmentation as part of this research.

3.2 Active Contours

Active segmentation models are popular due to their ability to iteratively fit a curve to
an image. In general, active contours are growing boundaries/regions for segmenting
different objects or regions in an image. These sort of curve evolution models within
the image can begin by defining an initial curve, which has the ability to move (ex-
pand or contract) until it reaches the object boundaries. The curve movement can be
parametric/polygon/explicit or geometric/continuous/implicit. Figure 3.1 illustrates the
concept of geometric and parametric algorithms where geometric curves are continuous
and parametric curves are polygons. Geometric contours are stored as coefficients of some
function and sampled before each iteration. Each sample moves explicitly in each iteration
to calculate the new coefficients. However, parametric contours are stored as vertices
which all move iteratively. Geometric active contours in general are topologically more
flexible as they implicitly move the curve.

Figure 3.1: Movement of geometric vs. parametric contours.
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In Figure 3.2 the black boundary represents the contour C moving with speed F and in
the normal direction N perpendicular to the interface, any tangential component will have
no effect on the position of the front. F depends on local properties L such as curvature
and normal direction, global properties G such as shape and position of the front and
independent properties I that do not depend on the shape of the front (some physical
energies and properties such as heating an either side of the interface or fluid mechanical
effects) [43, 51]. In general, the force is the negative value of the energy field, F =−∇E.
If the curve moves inward, then the force value would be negative F < 0 and if it moves
outward, it would be positive F > 0.

F = F(L,G, I) (3.1)

Figure 3.2: Contour evolution with speed of F in normal direction to the contour C.

Active contour model, also called snake is one of the first introduction to an explicit
energy minimization contour. A snake model evolves a contour by dividing it into mark-
ers/points (parametrising the contour/getting a number of samples of it). Its contour C is
shaped based on tracking point positions in a Lagrangian framework that move with the
value of the energy field (energy between the inside and outside of the contour).

Snake can be formulated by minimizing an energy functional consisting of an internal
elastic energy term Einternal as well as an external edge-based energy term Eexternal while
C represents the 2D contour of segmentation as C(s) = (x(s),y(s)),s=0,..,1 which should
be initialised first by the user close to the edges of interest:

ESnake = Einternal +Eexternal (3.2)

The internal energy defines the length of each contour which adjusts the deformations
made to the snake. It controls the stiffness, rigidity and elasticity of the curve. The external
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energy helps in minimizing the high-gradient areas in the image, it controls the contour
to be better fitted onto the image. Equation 3.2 can be expanded into Equation 3.3, where
the first two derivative terms refer to the internal energy and the final term represents the
external energy.

ESnake = α

∫ 1

0
|C
′
|2ds+β

∫ 1

0
|C
′′
|2ds+ γ

∫ 1

0
|∇I(C)|2ds (3.3)

where I represents the image in x−y plane, C represents the contour of segmentation, C
′
=

dC
ds

2
the first derivative and C

′′
= d2C

ds2

2
the second derivative. α and β are a composition of

the continuity and the smoothness of the contour which are defined by the user. α which
can control the continuity of the curve by defining the distance between sampling points
in the curve. A larger value of α can stretch the curve more. β controls the amount of
curvature, a large value of it can lead into less oscillations in the contour. γ is the weight
of external energy or the edge functional which is based on the image gradient which is
set to −1.

Snake model suffer from numerous shortcomings that level set method overcomes:

1. Dealing with topological changes: In situations where the curve merges with an-
other curve or splits into two or more segments their performance is poor.

2. Self intersection and overlap: The explicit definition of a snake limits its re-gridding
or re-parametrisation process and causes overlaps or self-intersection during the
evolution.

3. Dependency on initialization: Their sensitivity to the first estimation of contour
position and shape which is because the non-convexity characteristic in energy
functional restricts further shape deformation.

4. Extension: Snake models are not able to be developed into other further segmenta-
tion applications using colour, texture or motion.

5. Sensitivity to noise: Snake performs weakly in a noisy gradient field as its main
formulation does not use region-based statistics whilst level set does.

3.3 Fundamentals of Level Set
The level set was initially designed as an Eulerian formulation of a propagating front,
which grows with the speed F perpendicular to the curve. Level set implicitly provides the
propagation of the contour with good tracking of the topological changes. In other words,
level set embeds a curve in 2D while growing in 3D, shown in Figure 3.3, where the z axis
represents values of function φ(x,y, t) to match the evolution of the interface. The reason
of having another dimension compared to snake is for better tracking of parametrisation
points that collide in snake. However, level set can stand at each point (x,y) and adjust
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the height of the z function which vanishes the topological problem. Such a level set is a
growing or shrinking contour based on curvature-dependent speed for propagating fronts.
It uses Hamilton-Jacobi equations to reconstruct complex shapes.

z = φ(x,y, t) (3.4)

Figure 3.3: Level set function in blue, and zero level set surface in yellow.

In this framework, at any time t, the front Γ(t), implicitly defined by Equation 3.5, which
shows that at each iteration, the new level set would be relocated at zero level again (called
re-initialization). This is easily performed by recalculating the distance, z = 0, of every
point from the contour, however it is computationally expensive.

Γ(t) = {(x,y)|φ(x,y, t = 0) = 0} (3.5)

Figure 3.3 illustrates the formation of level set function. It defines the propagating bound-
ary/region as the zero level set, φ(x,y, t = 0), of a higher dimension on function φ(x,y, t),
where t is time as the curve is evolving. The height (z axis) corresponds to the minimum
distance from each point in a rectangular coordinate (image plane) from the contour C,
based on the signed distance d from each point on (x,y) to the initial front, choosing a
positive distance from outside the region and a negative direction from inside.

φ(x, t = 0) is required as the initial value (initialization) to start. Level set can be initialized
automatically or semi-automatically in two or more phases depending on the decision of
the user on how many different batches of segmentation are expected in an image. The
two-phase level set method segments the image into two regions. Wherever three or four-
phase level set methods exist, they can divide into three or four categories respectively
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by applying two separate level set functions at the same time. By considering only one
level set function in 3.4.a. the yellow region represents the level set front at t = 0 which is
mapped to 3.4.b. on a contour on the 2D image. The inner parts of the contour represented
with negative values which the decrease when they get farther from the zero level set and
the outer points have positive value.

Figure 3.4: Level set and its mapping in image plane.

In order for the points to always move/ride on the edge of the interface, level set should
be re-initialised to zero level in each iteration of movement, Equation 3.6.

φ(x(t),y(t), t) = 0 (3.6)

Since, the interface always corresponds to the place where φ = 0, therefore outside of the
edge dφ ,t)

dt = 0. For better understanding this, consider tracking a particle ~x = (x,y,z) on
the surface in 3D over time:

dφ(~x, t)
dt

= 0 (3.7)

from the chain rule, Figure 3.5 illustrates this:
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Figure 3.5: The chain rule demonstration of tracking a particle ~x = (x,y,z) on the surface in 3D
over time.

then,

dφ

dt
= 0−→ ∂φ

∂x
· dx

dt
+

∂φ

∂y
· dy

dt
+

∂φ

∂ z
· dz

dt
+

∂φ

∂ t
= 0 (3.8)

when, the directional derivative of a function ∇ f (x,y,z) is:

∇ f =
∂ f
dx

~x+
∂ f
dy

~y+
∂ f
dz
~z (3.9)

and the derivative of a vector~x = (x,y,z) is:

d~x
dt

=
dx
dt

+
dy
dt

+
dz
dt

(3.10)

thus Equation 3.8 becomes:

∇φd~x+
∂φ

dt
= 0 (3.11)

Since the signed distance of the level set at each point is required, therefore the surface
normal at each point on the evolving front to its new position is necessary to be considered.
d~x
dt is also known as the speed function ~F that defines the speed of the level set function
and how it evolves. It may also be written as ~F , while it comprised of the normal and
tangential components.
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~F = FN~N +FT~T (3.12)

As shown in Figure 3.6, FN and FT are scalar terms specifying the speed in the normal
and tangential direction. The vector F is the sum of the normal FN , and tangential FT ,
F = FN +FT .

Figure 3.6: Specifying the speed in the normal and tangential direction of a. level set in 3D and
b. a surface in 2D.

thus, 3.11 may be written as:

∂φ

∂ t
+∇φ ·~F = 0 (3.13)

which is a linear partial differential equation. Expanding 3.13:

∂φ

∂ t
+∇φ(FN~N +FT~T ) = 0 (3.14)

As stated in [52], the tangential component has no effect, it vanishes into leading the
scalar term FN to only specify the speed function in the normal direction. Equation 3.14
thus becomes:

∂φ

∂ t
+∇φVN~N = 0 (3.15)

also normal is the gradient scaled in unit length:

~N =
∇φ

|∇φ |
(3.16)

substituting Equation 3.15 into Equation 3.16:
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∂φ

∂ t
+∇φFN

∇φ

|∇φ |
= 0 (3.17)

∂φ

∂ t
+FN

∇φ 2

|∇φ |
= 0 (3.18)

replacing ∂φ

∂ t with φt , therefore:

φt +FN |∇φ |= 0 (3.19)

Re-initialization is repeated during evolution to prevent the occurrence of sharp corners
and prevent flatness by calculating new φ values depending on the specified speed func-
tion. Therefore each iteration grows already knowing the old level set and the penalty
value defined.

φ(x,y, t +1) = φ(x,y, t)+∆φ(x,y, t) (3.20)

Osher-Sethian designed the motion based on magnitude of the gradient and mean curva-
ture flow, which solves the level set geometry problem as a PDE. Curvature plays the role
of smoothing the level set to smooth the contours with the front symbolizing the boundary
of the object when the propagation comes to a halt. The speed in the neighbourhood of
the contour controls the motion of the front and should stop the propagation by tending
towards zero at the limit of propagation. The speed is expressed as:

∂φ

∂ t
= |∇φ(x,y)|(ν + εk(φ(x,y))) (3.21)

where ν is a fixed parameter used to control the shrinkage or expansion and ε balances
the regularity, robustness of evolution and k(φ(x,y)) is the mean curvature of the level set
function that stops leakage into small noisy parts. This can be calculated from:

k(φ(x,y)) = div(
∇φ

|∇φ |
) =

φxxφ 2
y −2φxφyφxy +φyyφ 2

x

(φ 2
x +φ 2

y )
3/2 (3.22)

where φx and φy represent the first-order PDEs of x and y respectively and φxx and φyy

denote the second-order PDEs of each for the level set first function φ(x,y). This model
is the initial representation of the level set presented by Osher-Sethian, which exploits
information from the curvature to increase the performance of the stopping point of the
growing contours. Computation time as well as parameter setting and adjustment are the
key limitations of this model.
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The Key advantages of level set are:

1. The process can be fully-automatic or semi-automatic.
2. They do not need parametrisation of the contour.
3. They are less sensitive to noise.
4. They are easily extendible to higher dimensions.
5. Level set methods can easily segment sharp corners and change topological struc-

ture (topological flexibility) during propagation [43].
6. Good numerical stability.

The growth of a level set is simple and can be listed as follows:

1. Initialization of the level set by initializing the front.
2. Calculating the level set force and growing model.
3. Iterate.
4. Matching the stopping criteria.

The differences between the various level set methods are mostly in the second step that
will be explained and discussed in greater detail in the following sections.

3.3.1 Initialization

There are three main ways of initializing an active contour or level set:

1. Naive initialization.
2. Manual initialization.
3. Automatic initialization.

Naive initialization is when any random or simple geometric shape is chosen as the initial
contour/boundary anywhere in the image. This method is easy and fast to initialize but it
can result in lengthy convergence to the desired boundary and might take many iterations
to calculate the proper segmentation. It can also converge to the wrong object in an image
and lead to divergence. Manual initialization would be when the user chooses to initialize
the contour or interior point manually. This model can be time-consuming and difficult
for the user but is faster for propagation to reach the desired boundary. This model fails
in high dimensional imagery because of the user’s limitation in visualization. Automatic
initialization can be performed in different ways, one major model is called centres of
divergence (CoD) [53]. The other automated methods are force field segmentation (FFS)
[54] and poisson inverse gradient (PIG) initialization [55]. In this thesis, the initialization
models chosen are either naive or manual.
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3.3.2 Parameter Setting

The parameter setting of each model defines a specific range for each parameter, therefore
it is usually based on the model as well as the images used, each model presents different
parameters for different images. Some evolutionary algorithms applied with level set for
better parameter settings are based on genetic algorithm [56], particle swarm optimization
[57], or ant colony optimization [58]. None of these methods can be used in this research
due to lack of ground truth in medical images as well as their computational complexity
on large data. Here the proposed parameter setting was mostly done by experimentation
and comparison to the previous contours which was illustrated in Section 1.4 and will be
explained further in Section 4.6.

3.4 Different Level Set Methods

Since its introduction, level set has developed in different categories and for different
applications. These categories are discussed below.

3.4.1 Osher-Sethian Model

Geodesic Active Contours- In this model, first introduced by Caselles in 1997 [59], the
level set stops at high-gradient locations by attenuating the speed and the propagation is
faster at smooth locations. This is achieved by adding an addition term to Osher-Sethian’s
model, g(|∇I|), which relates the speed term to the inverse of the gradient of the image.
More formally:

∂φ

∂ t
= |∇φ |g(|∇I|)(div(

∇φ

|∇φ |
)+ν) (3.23)

where ν is always positive and,

g(|∇I(x,y)|) = 1
1+ |∇Gσ (x,y)∗ I(x,y)|2

(3.24)

where Gσ is a Gaussian convolution filter with standard deviation σ .

Shape Modelling with Front Propagation- Maladi, Sethian and Vemuri in 1995, im-
proved the early Osher-Sethian level set method by calculating the speed function based
on the entropy-satisfying upwind finite difference and solving level set PDE function
as a Hamilton-Jacobi type equation of motion [60]. In this model, the speed function’s
stopping criteria is a fulfilment of Osher-Sethian’s method. In 2000, Leventon introduced
a model based on a combination of prior shape information and level set methods [61].
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The deformable shapes as well as the probability distribution were presented over the
variances of a set of training shapes. At each iteration of the level set, an estimate is made
based on prior shape information.

3.4.2 Region-Based Level Set

In the 1990s Chan-Vese developed Osher-Sethian’s model by applying an energy min-
imization model instead of PDE, which allows automatic detection of interior contours
[62, 63]. This is performed by using a piecewise constant and piecewise smooth optimal
approximations proposed by Mumford-Shah [64]. They also proposed a two-phase level
set method without edges that could segment the image into two regions and developed
their model further to deal with vector-valued images, which performed robustly in the
presence of noise. In 2002, they presented a multi-phase level set method that uses the log
numbers of the level set function to separate n phases by using piecewise constant [65].

The Chan-Vese method shows that triple junctions and complex topologies can avoid vac-
uum and overlap in front propagation. This model assumes that in each level set region the
intensity values are steady for all points. As a result it may not perform as well for objects
with inhomogeneous intensities such as medical images. The model consists of two main
components, which are minimal partition problems of Mumford-Shah and variational
level sets. Mumford-Shah introduced an energy minimization method for segmentation
[64]:

EMS(u,C) =
∫

Ω

(u−u0)
2dxdy +µ

∫
Ω\C
|∇u|2dxdy +ν |C| (3.25)

Where µ and ν are positive weight values, C is the contour or closed subset in Ω and u

is an approximation of the image u0 in the optimal piecewise smooth shape. This model
can be simplified by considering u as the piecewise constant function of ci inside of each
connected Ωi (Ω =

⋃
i Ωi

⋃
C) and ci = mean(u0) in Ω0.

E(u,C) = ∑
i

∫
Ωi

(u0− ci)
2dxdy +ν |C| (3.26)

The problem of segmentation based on the Mumford-Shah model is that it is not easy to
use due to the unknown value of C and also the problem is not convex.
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Two-Phase Chan-Vese without Edges

Chan-Vese proposed the two-phase level set method without edges firstly. The main
improvement in this version of the Chan-Vese method is the simplification of the energy
functional which is based on the mean intensity values in each region of the level set
(inside or outside in two-phase), c1 and c2, which are defined as:

c1 =

∫
Ω
(1−H(φ(x,y)))(I(x,y))dxdy∫

Ω
1−H(φ(x,y))dxdy

(3.27)

c2 =

∫
Ω
(H(φ(x,y)))(I(x,y))dxdy∫

Ω
H(φ(x,y))dxdy

(3.28)

H is the Heaviside function,

H(x) =

{
1 if x≥ 0
0 otherwise

(3.29)

At each iteration the values of c1 and c2 change and must be recalculated based on the
level set of a new region to calculate a new speed function as:

F(c1,c2,φ) =
∫

Ω

(u0− c1)
2H(φ)dxdy

+
∫

Ω

(u0− c2)
2(1−H(φ))dxdy

+
∫

Ω

|∇H(φ)|

(3.30)

The Chan-Vese level set evolution equation is as follow where δ represents a one-dimensional
Dirac function.

∂φ

∂ t
= δ (φ)[νdiv(

∇φ

|∇φ |
)− (u0− c1)

2 +(u0− c2)
2)] (3.31)

One of the benefits of this model is that the initialization is based on characteristics of
the region. However it is not stable for the inhomogeneous images and the necessary
re-initialization makes it computationally expensive.
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Vector-Valued Image Chan-Vese Method

In this model, Chan-Vese extended the two-phase method to a vector-valued image in
2000 [63]. This model is widely used in colour imaging and video imaging for motion of
objects and texture images.

F(c+,c−,φ) = µ.L

+
∫

inside(C)

1
N

N

∑
i=1

λ
+
i |u0,i− c+i |

2dxdy

+
∫

outside(C)

1
N

N

∑
i=1

λ
−
i |u0,i− c−i |

2dxdy

(3.32)

and the PDE is:

∂φ

∂ t
= δε [µ.div

∇φ

|∇φ |

− 1
N

N

∑
i=1

λ
+
i |u0,i− c+i |

2dxdy

+
1
N

N

∑
i=1

λ
−
i |u0,i− c−i |

2dxdy]

(3.33)

where λ+ and λ− are weighting parameters and c+i and c−i are the mean value of ith

component of the vector image inside and outside of the contours. The advantage of this
model is its ability to converge on edges with or without significant gradient. [27, 66, 67].

Multi-Phase Chan-Vese without Edges

Chan-Vese extended the two-phase method to a multi-phase method by using n level
sets to segment 2n regions in an image [65]. Figure 3.7 and the following equations
demonstrate this model for four-phase which consist of two level sets. They are initialized
separately but the same level set function is applied for both initializations. The mapping
plane shows this growth concept in four-phase clearly.
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F(c,φ) =
∫

Ω

(u0− c11)
2H(φ1)H(φ2)dxdy

+
∫

Ω

(u0− c10)
2H(φ1)(1−H(φ2))dxdy

+
∫

Ω

(u0− c01)
2(1−H(φ1))H(φ2)dxdy

+
∫

Ω

(u0− c00)
2H(φ1)(1−H(φ2))dxdy

+
∫

Ω

|∇H(φ1)|

+
∫

Ω

|∇H(φ2)|

(3.34)

c11 = mean(u0) ∈ {(x,y) : φ1(t,x,y)> 0,φ2(t,x,y)> 0}

c10 = mean(u0) ∈ {(x,y) : φ1(t,x,y)> 0,φ2(t,x,y)< 0}

c01 = mean(u0) ∈ {(x,y) : φ1(t,x,y)< 0,φ2(t,x,y)> 0}

c00 = mean(u0) ∈ {(x,y) : φ1(t,x,y)< 0,φ2(t,x,y)< 0}

(3.35)

Therefore,

∂φ1

∂ t
= δ (φ1)[νdiv(

∇φ1

|∇φ1|
)

−
(
(u0− c11)

2 +(u0− c01)
2)
)

H(φ2)

+
(
(u0− c10)

2 +(u0− c00)
2))
)
(1−H(φ2))]

(3.36)

∂φ2

∂ t
= δ (φ2)[νdiv(

∇φ2

|∇φ2|
)

−
(
(u0− c11)

2 +(u0− c01)
2)
)

H(φ1)

+
(
(u0− c10)

2 +(u0− c00)
2))
)
(1−Hs(φ1))]

(3.37)
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Figure 3.7: Multi-phase level set and its mapping in image plane.

Other Chan-Vese Based Methods

Zhang improved the Chan-Vese method by replacing magnitude of gradient instead of
image intensity as the evolution term [68].

∂φ

∂ t
= δε(φ)(I′−

u+ v
2

) (3.38)

later Zhang further improved his model and defined the energy function as [69]:

∂φ

∂ t
=

αδε(φ)(I′− u+v
2 )

max |I′− u+v
2 |

(3.39)

Zhang [70] proposed a local image fitting model by considering image local characteris-
tics to improve the Chan-Vese method, more advanced than local binary fitting introduced
by Li [71]. To prevent re-initializations at each iteration, Zhang used a Gaussian smoother
to regularize the level set function. In this work, the local fitted image fitting function is
defined:
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ILIF = m1Hε(φ)+m2(1−Hε(φ)) (3.40)

m1 = mean(I ∈ (x ∈Ω|φ(x)> 0∩Wk(x))) (3.41)

m2 = mean(I ∈ (x ∈Ω|φ(x)< 0∩Wk(x))) (3.42)

where Wk(x) is the rectangular window filter, e.g., a constant window.

ELIF =
1
2

∫
Ω

|I(x)− ILIF(x)|2 dx,dx ∈Ω (3.43)

Liu [72] improved the Chan-Vese method by considering the local characteristic named
local region-based Chan-Vese designed for inhomogeneous images. The Energy function
is designed as:

ELBF(φ , f1(x), f2(2)) = λ1

∫
Ω

∫
Ω

g(x− y)(I(y)− f1)
2H(φ(y))dydx

+λ2

∫
Ω

∫
Ω

g(x− y)(I(y)− f1)
2H(φ(y))dydx

+µ

∫
Ω

δ (φ(x))|∇φ(x)|dx

+ν

∫
Ω

1
2
(|∇φ(x)|−1)dx

(3.44)

f1(x) =
∫

Ω
gk(x− y)(H(Φ(x,y)))(I(x,y))dxdy∫

Ω
gk(x− y)H(Φ(x,y))dxdy

(3.45)

f2(x) =
∫

Ω
gk(x− y)(1−H(Φ(x,y)))(I(x,y))dxdy∫

Ω
gk(x− y)(1−H(Φ(x,y))dxdy)

(3.46)

where f1(x) and f2(x) are the image approximate intensity means inside and outside the
contour C and g represents the Gaussian Kernel filters.

Xiao-Feng Wanga [73] introduced a local Chan-Vese (LCV) consisting of three terms:
global, local and regularizer.
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ELCV = α ·EG +β ·EL +ER

= α

∫
(inside(C))

|I− c1|2 dxdy

+α

∫
(outside(C))

|I− c2|2 dxdy

+β

∫
(inside(C))

|gk ∗ I− I−d1|2 dxdy

+β

∫
(outside(C))

|gk ∗ I− I−d2|2 dxdy

(3.47)

where EG is the global energy, EL is the Local, ER represents the regularizing term, gk

is the averaging convolution operator and d1 and d2 are the approximate intensity means
inside and outside of the contour with respect to the difference image, gk ∗ I− I.

Lankton and Tannenbaum proposed a new robust region based segmentation model using
level set which considers local rather than global statistical characteristics [74]. This
model shows a great improvement in the case of inhomogeneous images.

E(φ) =
∫

Ωx

δφ(x)
∫

Ωy

β (x,y).F(I(y),φ(y))dxdy

+λ

∫
Ωx

δ (φ(x))||∇φ(x)||dx

(3.48)

where,

β (x,y) =

{
1 if ||x− y|| ≤ r

0 otherwise
(3.49)

therefore,

∂φ

∂ t
(x) = δφ(x)

∫
Ωy

β (x,y).∇φ(y)F(I(y),φ(y))dy

+λδφ(x)div(
∇φ(x)
|∇φ(x)|

)

(3.50)

The authors compared their model with three other region based level set methods and
demonstrated an improvement with their algorithm, the other models compared were
uniform modelling energy as introduced by Chan-Vese [62], the means separation energy
by Yezzi and Tannenbaum [75] and the histogram separation energy by Michailovich and
Tannenbaum [76].

Pereyra and McLaughlin exploited information theory to define the Riemannian structure
of the statistical manifold associated with the Chan-Vese active contour [77]. They used
the Fisher information matrix to form the natural gradient metric of the statistical mani-
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fold which converges much faster than the Euclidean gradient descent algorithm. In this
algorithm, they defined log-likelihood for information geometry.

log(p(I;φ)) = −Σ
N
i=1

1
2
(Ii− c1)

2H(φi)

−Σ
N
i=1

1
2
(Ii− c2)

2H(−φi)

− N
2

log(2π)

(3.51)

The natural gradient matrix is defined as:

Gε(φ)(i, j) = |δ ′ε(φi)|(c1− c2)
2if i=j and 0 otherwise (3.52)

where δ ′ε(x) =
−2εx

π(ε2+x2)2 , therefore the re-initializer is based on:

φ
t+1 = φ

t +η
tHG−1

ε (φ t)δε(φ
t)((Ii− c1)

2− (Ii− c2)
2) (3.53)

where η t is the time step at iteration t and H is the spatial smoothing operator of Hessian.
For convergence they used the difference between energy functional of each iteration and
the previous one.

In 2012, Yuan represented L2+ Soblev gradient to improve the Chan-Vese method for cal-
culating the energy function. This work presents the L2 gradient for minimizing external
energy and Soblev gradient for the internal energy which represents length of curve and
produces the result in one iteration [78].

In 2008, Cheng proposed a model based on the Chan-Vese level set method that uses shape
prior knowledge for liver segmentation [79]. A training set for prior shape is computed
based on statistical models and in contrast to the previous shape prior of models this model
allows the prior shape to be scaled, rotated or translated by applying an affine transfor-
mation. In general shape prior knowledge enables the process to be speeded up due to
detecting the location of tumour/object first followed by measurement of the intensity
values.

Bernard introduced a continuous representation of a level set based on B-Spline on med-
ical images [80].

Shi introduced a fast two-cycle algorithm for the approximation of level-set-based curve
evolution [81].

In 2001, Droskey [82], presented a multi-grid level set method for 3D medical image
processing. By applying inter-active modulation for the speed function this model can
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deal with non-sharp boundaries.

In 2011, Bara [83], used variational models for solving level set based on Mumford-Shah
and level set methods. Also, Samir applied Dempster-Shafer theory for a surface convolu-
tion model to overcome the problem of topology of front prorogations in Mumford-Shah
and level set methods. This model is very much dependent on initial contour and the
convergence may not be fast in terms of compute time.

In 2003, Ho introduced a software package for level set by applying gradient based and
region competition level set methods [84].

In 2003, Lefohn et al [85], proposed a fast level set algorithm based on GPUs which
enables the user to tune the parameters while solving the PDE of level set to control the
shape of model during evolution in real time.

In 2004, Lin [86], introduced a new model based on a new speed function. Using the
image region intensity instead of the gradient value. The idea behind this model is to
find the intensity range that classifies the tissue type. Leakage, which happens in the
presence of connected components, is prevented in this model by the smoothness of the
propagating surface. This model prevents topology changes and overlaps via the smooth
evolving contour.

In 2008, Cao [87], presented a new energy functional for variational level set approach
for SAR images that take account of speckle noise statistical in the energy functional.
Segmentation is based on minimization of the energy functional via level set which is
suitable for SAR images due to their characteristics.

In 2010, Zhang, [88] developed a variational multi-phase level set for segmenting bound-
aries on MR images. The process of this model is to find the intensity values based on
different Gaussian distributions which vary in means and variances, and transforms the
result to other dimensions by using a sliding window to resist the overlap of different
tissues. In the new domain, Zhang defined the maximum likelihood for each point, which
unified in the whole domain to construct the variational level set evolution.

In 2010, El Hadji, [89], introduced a variational and shape based level set in medical
images. This work considers firstly a penalty factor to push the level set to reach a
signed distance function that prevents the re-initialization process. A Hausforff measure
is also applied to improve visualization of the boundaries and shape. This is followed
by a weighted area term for fast convergence/growth of the level set contour based on
Mumford-Shah functional energy.
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3.4.3 Snake-Based Level Set Methods

Li developed an edge based level set method based on gradient flow for solving the
inhomogeneity in intensity, which previous methods had difficulty solving [71, 90, 91].
This model uses the energy minimization technique, similar to the Snake model, by
reducing the fitting energy in image segmentation. This energy is:

E(φ) = µP(φ)+λL(φ)+νA(φ) (3.54)

where,

P(φ) =
∫

Ω

1
2
(|∇φ |−1)dxdy (3.55)

L(φ) =
∫

Ω

g(I)δ (φ)|∇(φ)|dxdy (3.56)

A(φ) =
∫

Ω

g(I)H(−φ)dxdy (3.57)

and

g(I) =
1

1+ |∇Gσ ∗ I|p
, p≥ 1 (3.58)

P(φ) is a penalty term in the energy functional that is used to level set periodical during
evolution. The stopping operator, g is based on a Gaussian Kernel that forces the level set
to converge to zero when approaching the edges. σ is the standard deviation, L represents
the length of the contour with respect to the stopping operator of g as its weight and A is
the speed controller of the evolution which makes the contour to shrink if the ν is positive
and tends to expand when the ν is negative.

The level set PDE function in this model is based on the Gateaux derivative which is:

∂φ(x,y)
∂ t

=−∂E
∂φ

(3.59)

This equation can be expanded further as:

∂E
∂φ

= −µ(∆φ −div(
∇φ

|∇φ |
))

−λδ (φ)div(g(I)
∇

φ
|∇φ |)

−νgδ (φ)

(3.60)
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therefore,

∂φ

∂ t
= µ(∆φ −div(

∇φ

|∇φ |
))

+λδ (φ)div(g(I)
∇

φ
|∇φ |)

+νgδ (φ)

(3.61)

where µ is the penalizing coefficient, λ is the coefficient for length and ν refers to the
area. The ratio of λ and ν defines the stopping point of level set evolution because both
of these terms contain edge information. The length term keeps the contour tight and the
area helps the expansion of the contour.

Geodesic active contours, introduced by Kichenassamy [75] and Caselles [59] are based
on Snake. In these models, the speed function is calculated by applying minimal distance
curves in a Riemannian space derived from the image. Given an image, I, and for a given
differentiable curve, C(p), p ∈ [0,1], they define the energy as:

E(C) =
∫ 1

0
g(|∇I(C(p))|)|C

′
(p)|d p (3.62)

The PDE functional calculated via derivation of the Euler-Lagrange system is therefore:

∂C
∂ t

= g(|∇I|)κ~N− (∇g(|∇I|).~N)~N (3.63)

Threshold Level Set, Taheri applied a threshold level set method for brain tumour seg-
mentation in 3D which does not depend on density function estimation by using a global
threshold for the speed function [33]. This semi-automatic model requires a user’s input
to initialize the threshold value for the level set based on information from a region inside
a tumour. For convex tumours, a spherical surface is chosen as the initial level set located
in the middle of the tumour. For concave tumours several spheres are required due to the
complexity of the shape. The threshold updates at every iteration during the evolution
which should decrease as it gets closer to the boundaries while the contrast between
tumour (foreground object) and non-tumour (background) is increasing. The threshold
in this model can be calculated based on

Ti+1 = µ̂i− kσ̂i, i≥ 0 (3.64)
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µ̂i =
1
n

n

∑
j=1

xi j (3.65)

σ̂i =
1

n−1

n

∑
j=1

(xi j− µ̂i)
2 (3.66)

In this model Ti+1 is the threshold which is approximated in each iteration of (i+ 1)th

based on a tailed confidence interval, k represents the confidence level, µ and σ are mean
and standard deviation respectively and n is the number of samples (xi j) up to the ith

iterations [33]. Therefore, Taheri’s level set PDE is:

∂φ(x,y, t)
∂ t

+F(x,y, t)‖∇φ(x,y, t)‖= 0 (3.67)

F = F0 ·F
(i)
I − εkφ (3.68)

where F0 is the constant propagation determined by a positive number and F(i)
I is based

on image characteristics in the (i+ 1)th iteration. Propagation stops when a boundary is
reached. kφ is the smoothness parameter. The threshold level set specifies the FI for each
sample based on the diversity between the threshold values. Therefore, the larger diversity
leads to faster propagation/speed.

F i
I (x,y,z) =

∆

2
[
1+ sgn(∆)

max(∆)
− 1− sgn(∆)

min(∆)
] (3.69)

where ∆ is equal to I(x,y,z) and sgn represents the sign function which defines whether the
speed function of F i

I is inside or outside of the tumour and classed as positive or negative
respectively for initializing the level set. This process tends to stop near the boundary of
tumours when threshold variation becomes negligible.

The Table 3.2 summarizes the discussed papers using level set in this chapter. In Chapter
4 it would be better discussed the selection of level set models for this research.
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3.5 Texture Analysis

Texture can be considered to be repeating patterns of local variation of pixel intensities.
Generally, texture analysis is used to measure different features in an image such as
roughness, smoothness, or variations of intensity of different parts which are result of
the physical surface properties. Texture analysis plays a very important role in image
classification, segmentation, compression, feature extraction and shape reconstruction
from texture. Figure 3.8 shows some repeated patterns in different objects which shows
the concept of texture.

Figure 3.8: Different examples of some textured surfaces [92].

The repeated patterns are considered to be related to each other. They present the same
region/object and can help in finding the relationship of pixels. Texture analysis can be
grouped as geometrical, statistical, model based and signal processing (transformation)
methods. In this thesis, texture analysis was used as a pre-segmentation aid to improve
the region of interest before applying the main segmentation model based on the level set.
Both first and second-order based features were used which are explained in the following
subsections although second-order statistical models were chosen finally for the proposed
model in this thesis.

In medical imaging the texture of healthy tissues should be different from the cancerous
tissues while the texture should change during the course of treatment during the changes
happening. Therefore texture analysis can be a great indicator of tracking changes of
images during treatment to be compared with each other. As first-order statistical mod-
els lack the special information, therefore second-order statistics using gray-level co-
occurrence matrix (GLCM) would be a great indicator of changes in respect to the pixel
position.
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3.5.1 First-Order Statistical Models

These models are histogram intensity based features to analyse the statistical information
contained in the image. They are are calculated by having the probability density of
the intensity levels in the image. Central moments such as mean, variance, skewness
and Kurtosis are the main texture features in first-order models. Energy and entropy are
also two other popular models in this range. Although first-order features can be easily
calculated, they are of great value in texture analysis. Their disadvantage compared to
second-order features however, is that they do not convey any information regarding the
position of pixels with respect to others. The features used in this thesis are:

Local Range

The local range of an image simply calculates the range of variation in the neighbourhood
locally around the pixel. It is the difference between maximum and minimum in the
neighbourhood.

R = max(x)−min(x) (3.70)

Local Standard Deviation

This method is also very similar to local range; it calculates the standard deviation through-
out the whole neighbourhood. It quantifies the amount of variation of the image.

σ =

√
1
N

N

∑
i=1

(xi−µ)2 (3.71)

where N is the neighbourhood size and µ is the mean value:

µ =
1
N

N

∑
i=1

xi (3.72)

Entropy

First-order entropy calculates the degree of disorder or lack of predictability of a pixel in
an image.

H(x) =−∑
i

p(i)log(px(i)) (3.73)
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where x is the pixel neighbourhood , p(i) is the probability of pixel ith of x. The more the
possibility of the occurrence of a pixel, increases logarithmically with higher values of
intensity.

3.5.2 Second-Order Statistical Models

The second-order histogram is defined as a GLCM proposed by Haralick in 1979 is a
statistical method that is used to calculate second-order texture features. These second-
order methods use two pixels to estimate the image properties where first-order ones
were using only one. These models calculate spatial relationships based on the number
of occurrences of two pixels relative to each other in specific directions. In other words,
GLCM represents the distance and angular spatial relationship in an image/sub-image.
Each value can occur either horizontally, vertically or diagonally to adjacent pixels.

GLCM scales the intensity values to a number of gray-levels. The number of gray-levels
should be integers, for example two for binary images or eight for numeric. Eight gray-
levels limit the pixel intensity values from one to eight by normalising them between
their minimum and maximum values. Also considering different offsets (distance and
direction) between the pixel of interests can results in different GLCMs.

Figure 3.9 shows the array offsets of [0 1; -1 1; -1 0; -1 -1], which refers to distance one
between two pixels in only one direction (not symmetric). If it is symmetric, it considers
back and forth directions.

Figure 3.9: GLCM offsets.

Haralick Features

In this part, fourteen Haralick features are explained briefly, where:

p(i, j) is (i, j)th entry in a normalized gray-tone spatial-dependence matrix, = P(i, j
R ) .

px(i) is ith entry in the marginal-probability matrix obtained by summing the rows of
p(i, j), = ∑

Ng
j=1 P(i, j) and Ng is the number of distinct gray levels in the quantized image

respectively.
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F1. Angular Second Moment

f1 = ∑
i

∑
j
{p(i, j)}2 (3.74)

F2. Contrast

f2 =
Ng−1

∑
n=0
{|i− j|=n

Ng

∑
i=1

Ng

∑
j=1

(p(i, j))} (3.75)

F3. Correlation

f3 =
∑i ∑ j(i j)p(i, j)−µxµy

σxσy
(3.76)

where µx,µy, σx and σy are the means and standard deviations of px and py, respectively.

F4. Variance

f4 = ∑
i

∑
j
(i−µ)2 p(i, j) (3.77)

F5. Inverse Difference Moment

f5 = ∑
i

∑
j

1
1+(i− j)2 p(i, j) (3.78)

F6. Sum Average

f6 =
2Ng

∑
i=2

ipx+y(i) (3.79)

F7. Sum Variance

f7 =
2Ng

∑
i=2

(i− f8)
2 px+y(i) (3.80)

F8. Sum Entropy

f8 =−
2Ng

∑
i=2

px+y(i)log(px+y(i)) (3.81)



3.5. Texture Analysis 64

F9. Entropy

f9 =−∑
i

∑
j

p(i, j)log(px+y(i)) (3.82)

F10. Difference Variance

f10 = variance ofpx+y (3.83)

F11. Difference Entropy

f11 =−
Ng−1

∑
i=0

px−y(i)log(px−y(i)) (3.84)

F12 and F13. Information measures of Correlation

f12 =
HXY −HXY 1
max{HX ,HY}

(3.85)

f13 = (1− exp[−2.0(HXY 2−HXY )])0.5 (3.86)

HXY =−∑
i

∑
j

log(p(i, j)),(HX and HY are entropies of px and py) (3.87)

HXY 1 =−∑
i

∑
j

p(i, j)log(px(i)py( j)) (3.88)

HXY 2 =−∑
i

∑
j

px(i)py( j)log(px(i)py( j)) (3.89)

F14. Maximal Correlation Coefficient

f13 = (second largest eigenvalue of Q)0.5 (3.90)

Q(i, j) = ∑
k

p(i,k)p( j,k)
px(i)py(k)

(3.91)

Figure 3.10.a illustrates calculating GLCM by considering only one direction offset [0 1],
which only takes the right adjacent pixel into account. GLCM(1,1) refers to the number
of occurrence of (1,1), when number 1 is the right adjacent to any pixel carries value 1
itself in the whole scaled image which resulted three occurrences.
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Figure 3.10: Example for calculating the GLCM by using 8 gray-levels: a. a randomly generated
test image b. symmetric offsets, from left to right [0 1], [-1 1] [-1 0],[-1 -1] and all, c. calculated
GLCM with respect to their above offsets, Σ refers to the sum of the elements (zero entries are
marked in white and the highest value of each matrix is marked in yellow), d. normalized GLCM
and e. fourteen texture features in Section 3.5.2 based on each GLCM in row b, F1: angular
second moment, F2: contrast, F3: correlation, F4: variance, F5: inverse difference moment, F6:
sum average, F7: sum variance, F8: sum entropy, F9: entropy, F10: difference variance, F11:
difference entropy, F12 and F13: information measures of correlation, F14: maximal correlation
coefficient.
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Figure 3.10.b shows 5 different symmetric offsets, from left to right [0 1], [-1 1] [-1 0],[-1
-1], all and their relevant GLCMs are shown in Figure 3.10.c while Figure 3.10.d displays
their relevant normalized GLCM. Figure 3.10.e illustrates the results of all fourteen Haral-
ick features of the test image in Figure 3.10.a based on the calculated probability matrix in
3.10.d In Figure 3.10.c, the zero entries are marked in white and the highest value of each
matrix is marked in yellow, it shows that calculations in single directions lead to sparse
matrices compared to all directions. For example, considering contrast textured image for
the sample image in 3.10.a with respect to the GLCMs in 3.10.c, it returns a measure of
the intensity contrast between a pixel and its neighbour over the whole image. It defines
the local variations from 0 for a constant image up to the square value of GLCM row or
column size. Contrast is the difference moment of the probability values over GLCM. The
variation in contrast values over different GLCMs can show the variation toward different
directions in the image.

3.6 Chapter Summary

In this Chapter, a review of level set methods was presented. Level set methods are
propagating fronts which are widely used in shape and contour evolution which led to
several developments in 2D and 3D image segmentation. The literature review shows that
there are still some problems in level set image segmentation. For example in region-based
methods, they cannot converge to objects boundaries perfectly. In general, they gradually
converge to zero after a large number of iterations, the segmentation result depends on
the initial contour placement, shape and the choice of its parameters. Also, different level
set methods can perform very well for different imaging applications, although they are
very much dependent on the parameter settings. In this thesis parametrisation is one of the
main issues as it is impossible to make it automatic for CT/CBCT scans of the lungs since
there is no reference for training them. The challenges focused and the proposed model
are investigated further in the next chapters. This chapter also provides information about
the basics of texture analysis needed for the proposed method.



Chapter 4

Performance Assessment of Level Set

Methods

4.1 Introduction
In Chapter 3 the performance of texture analysis with different level set methods for image
segmentation applications was reviewed. All level set methods can perform well assuming
the most appropriate parameters for specific images in particular applications are selected;
for example the Chan-Vese model might work better in blurry environments but the
Pereyra-McLaughlin model can perform better for real time segmentation. Therefore
choosing a model with fewer difficulties in parameter tuning as well as better accuracy
for lung CBCT images is the goal of this thesis. Although the time required by analysis
selected model is also important, the goal of this study was not real time operation.
Consequently comparatively slower models are also considered as the focus is more on the
quality of the model. Another issue with the lung dataset is the absence of gold standards
for CBCT images which makes it a particularly challenging problem to find the best
parameters. Therefore a model which has comparatively fewer difficulties in parameter
tuning is a better approach for this research.

In this chapter, the performance of chosen level sets is considered on medical and non-
medical images to help in finding the most appropriate method. While the aim is lung
CBCT image segmentation, other medical and non-medical images are also used to aid
understanding of different algorithms and evaluating them in regards to parameter setting
as ground truth is available for these scenarios. Section 4.2 shows the characteristics on
test images. In Section 4.3, different level set methods are compared for selecting the most
compatible one for the proposed model in combination with texture features. In Section
4.4 Chan-Vese and Li models are used as they are very robust models which can perform
very well in combination with texture analysis for lung CBCT images. Applying first-
order and second-order texture features as a pre-segmentation step, Haralick features are
chosen for texture analysis and used in different combinations with the level set. In this
section, the strength of these models and reasons for selecting them is explained. Section
4.5 describes the second contribution of this thesis, a new level set method by combin-
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ing existing models together. This contribution implies that instead of re-initializing the
same model for level sets in vector-image or multi-phase applications, combining the two
best performing models or the same model with different parameters can result in better
performance. The proposed model is beneficial for multi-region segmentation but not for
the lung CBCT images as two regions of segmentation is sufficient. In Section 4.6, the
parameter settings and the relevant difficulties are discussed, also the proposed parameter
tuning technique for lung dataset in the absence of any knowledge about GTV on CBCT
images is illustrated and explained.

4.2 Test Images

The non-medical images were chosen from the level set segmentation literature as shown
in Figure 4.1. The gourd, gradient-ball and spiral in Figure 4.1.a., b. and c. respectively
is not very textured. These simple images are useful in illustrating the performance of
different level set methods on low detail images. The gradient-ball is chosen to compare
the performance of different methods on a simple inhomogeneous image. The Europe-
night (Figure 4.1.d.) is very textured image which is good to test on the outcomes of
level set for its length of convergence in different methods. The shapes and paper-spiral in
Figure 4.1.e. and f. respectively are good examples of noisy images which can illustrate
the performance of level set methods in an environment. The resolution of the images is
57×77 for the gourd, 128×128 for the gradient-ball and spiral, 187×216 for the shapes,
128×103 for the paper-spiral and 256×243 for the Europe-night shown in Figure 4.1.

Figure 4.1: Non-medical test images: a. gourd, b. gradient-ball, c. spiral, d. Europe-night, e.
shapes and f. paper-spiral.
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Also medical images are used to consider the suitability of these models. The medical
images consist of brain MRI and lung CT. Figure 4.2.a. shows the images of two different
MRI slices of different brain cancer patients with a glioblastoma, highlighted by their
relevant GTV and PTV highlighted in red and blue respectively. Similarly in part b.
two lung CTs sampled from the main dataset for this thesis showing non-small cell lung
cancer of different types. This data specifies the main challenge of this thesis, which is the
absence of GTV on CBCT images and will be discussed further in chapters 5 and 6. In
the following section, the selection of level set method is discussed and the performance
obtained on the test images discussed.

Figure 4.2: Medical test images with GTV in red and PTV in blue colour: a. two different MRI
slices of brain cancer and b. two different CT slices of lung cancer.

4.3 Level Set Method Selection

In order to choose the most appropriate level set method, some of the most popular
models with good performance in medical imaging were tested. In Figure 4.3, the level
set segmentation of different models for the images in Figure 4.1 are illustrated. Each
row shows the performance of one of the popular methods on different test images: a.
test images, b. Pereyra-McLaughlin [77] c. two-phase Chan-Vese [62], d. multi-phase
Chan-Vese [65], e. two-phase Li [90], f. multi-phase Li [71], g. Bernard [80], h. Shi [81]
and i. Lankton[74]. The time of execution and the number of iterations of the different
methods for these images is listed in Table 4.1. Also, Figure 4.4 illustrates the results
for the medical images of Figure 4.2 for more models in addition to Table 4.1. These
experiments were ran on Dell Inspiron 17R SE (Model 7720) with specifications of 3rd
Gen Intel Core i7 quad core processors, 8 GB of DDR3 memory and Windows 8.
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Figure 4.3: Non-medical images segmentation with different level set methods: a. test images
from Figure 4.1, b. Pereyra-McLaughlin [77] c. two-phase Chan-Vese [62], d. multi-phase Chan-
Vese [65], e. two-phase Li [90], f. multi-phase Li [71], g. Bernard [80], h. Shi [81] and i.
Lankton[74].
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Table 4.1 compares the number of iterations for different images while considering the
time of convergence using different level set models. For example, Pereyra-McLaughlin
model converges in two iterations in 0.45 second for a good segmentation while two-phase
Chan-Vese converges in 85.22 seconds while having 4124 iterations.

Non-Medical Pereyra- Two-phase Multi-phase Two-phase Multi-phase
Test Images McLaughlin Chan-Vese Chan-Vese Li Li

gourd 0.59/2 1.08/104 106.1/1000+ 1.83/90 2.93/99
gradient-ball 0.47/3 8.08/1042 64.78/2000+ 10.4/500+ 14.55/500+
spiral 0.49/2 5.59/517 46.72/2000+ 10/100 18.01/500+
Europe-night 0.77/2 91.68/1453 138.53/2000+ 41.87/114 208.73/500+
shapes 0.59/2 104.89/1353 534.07/1000+ 200/500+ 338.92/500+
paper-spiral 0.45/2 85.22/4124 45.43/2000+ 10/100 56.72/498

Table 4.1: Time of execution (s)/number of iterations for non-medical image segmentation with
different level set methods (Pereyra-McLaughlin [77], two-phase Chan-Vese [62], multi-phase
Chan-Vese [65], two-phase Li [90] and multi-phase Li [71]).

In Figure 4.3 and Figure 4.4, the Pereyra-McLaughlin model, performs very well for
simple images but is not as accurate for the more complicated medical images. The
experiment achieves results in two iterations which makes this model suitable for fast
implementation. This model converges faster than most level set methods but it does not
work well for detailed and blurry medical images, performing very effectively locally
but not globally due to lower image intensity range. The two-phase Chan-Vese model
performs well for simple images as it only segments two regions. The first and second
columns in Figure 4.4 for each model illustrate results on brain MR images which are
more complex and the level sets do not show particularly good segmentation results. Fig-
ure 4.4.d and e show the result of applying the Chan-Vese model in two and four-phases
for different medical images. The improvement of the four-phase level set compared to
two-phase is obvious and results from considering more regions of interest. The problem
of this model is the convergence time which is lengthy compared to other models. The Li
model is another very robust and popular model, it has been used in the literature in many
applications and it is faster than Chan-Vese as it does not require to be re-initializated
as frequently. The Bernard model performs well for non-medical images and is a fast
method. The Shi model performs satisfactorily for non-medical images but the lack of
suitability for medical images is obvious. The Lankton model needs tuning at all times
because without proper tuning it does not perform well on any of the images tested.
The results demonstrate that two-phase segmentation is sufficient for medical imaging.
Therefore, two-phase Li and two-phase Chan-Vese are selected as the most stable models.
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4.4 Proposed Combined Texture and Level Set Model

Level set methods were applied first without any texture analysis on the lung dataset with
limited success. The lack of sharpness of these images requires more image enhancement
before image segmentation. Several experiments were conducted to find the best order of
combining these two techniques. Fourteen combinations of them were implemented by
considering different parameters as well as different initializations for level set methods,
as shown in Figure 4.5.

Figure 4.5: Different level set combinations applied on the lung dataset. Initialisation is chosen in
three different ways, level set models are either Chan-Vese, Li or both models. Images are either
CBCT or pre-processed and replaced by their single texture images, PCA or using all of texture
images in vector valued imaging level set concept.

To obtain the optimum performance there were four stages in the procedure:

1. Selection of level set method.
2. Selection of texture features.
3. Combining steps 1 and 2.
4. Initialization of level set.

Section 4.3 narrowed the level set selection to the two-phase Chan-Vese and two-phase Li
models. For texture analysis, first and second-order statistical features were tested. In first-
order texture features, entropy, local range and local standard deviation were used. Figure
4.6 illustrates these three first-order textures combined with different level set methods.
Entropy performs well when it is combined with a level set; it can detect the texture of
tumours. The level set performs better on entropy images than the original lung CT, it is
because of using the texture information of entropy as an advantage to solely depending
on intensity values of the original CT. This is because the local range which is based
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on variations in the neighbourhood of each region/pixel does not perform very well at
showing the textures of tumours but when it is combined with level set, it still detects all
the boundaries. Local standard deviation also performs similarly well to local range, the
level set performs better but still does not detect the tumours.

Figure 4.6: First-order texture features combined with different level set methods; a. texture
images (left column: entropy, middle column: local range and right column: local standard
deviation), b. two-phase Chan-Vese [62], c. multi-phase Chan-Vese [65], d. two-phase Li [90],
e. multi-phase Li [71] and f. Pereyra-McLaughlin [77].
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Second-order texture of Haralick features which were presented in Section 3.5.2 were
applied and are shown in Figure 4.7. This figure illustrates the texture segmentation of a
slice of CT from lung dataset, although some of texture features are redundant for this
purpose.

Figure 4.7: Haralick second-order texture features and their PCA of a lung CBCT #1 image for
Patient 25 Slice 58.

The result of combining Haralick features and a level set is shown in Figure 4.8. The
CT on the right has the GTV in blue and the level set segmentation outcome in red. The
performance of the Li model is applied on all fourteen Haralick features. This clearly
shows that second-order texture features are more robust than the first-order. Among
second-order features, the combination of the sum variance followed by a level set shows
much better results compared to the other combinations.
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Figure 4.8: Li method on different Haralick features of a CBCT image of Patient 3, the blue
contour is the GTV/initialization of level set and the red contour is the level set segmentation, a.
angular second moment, b. contrast, c. correlation, d. variance, e. inverse difference moment,
f. sum average, g. sum variance, h. sum entropy, i. entropy, j. difference variance, k. difference
entropy, l. information measures of correlation, m. information measures of correlation and n.
maximal correlation coefficient.

At this stage, combining texture features with level set methods is carried out in three
different ways:

1. Chan-Vese and Li models applied on all features separately.
2. All fourteen Haralick features were considered as a vector-valued image and Chan-

Vese model applied on it.
3. Chan-Vese and Li models applied on the principal component analysis (PCA) of

the fourteen features.
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The best combinations were from first and second methods while the third combination
based on PCA completely failed due to the large differences among all fourteen images
as shown in Figure 4.7.

Initialization was also performed on different orders which affected the parameter setting
of level set:

1. GTV by setting the parameters to lead the level set inward or outward from the
contour.

2. Setting the centre of GTV as the initial contour by choosing parameters to always
lead the level set outward.

3. PTV by forcing parameters to move the level set inward.

As the different initializations preserved more difficulties in the parameter settings and
also, since images and texture image settings could differ, the GTV with limited freedom
of choice for parameters was selected as the best option.

4.5 Proposed Level Set Method

There are many different level set techniques, every method is designed to be more
efficient in calculating propagation characteristics compared to previous versions. The
literature review in Chapter 3 showed that every approach is robust to a specific applica-
tion but not for all kinds of images. This highlights the importance of parameter setting
to tune each model to handle more images or not relying on only one technique when the
dataset consists of different images. Exploiting the existing models with less computation
difficulties could lead to a more efficient segmentation method. This section proposes two
new compositions of the existing level set methods.

4.5.1 Proposed Parallel Level Sets in Vector-Valued Image Model

A new level set configuration was designed based on the concept of vector-valued imaging
was introduced in Section 3.4.2. The concept of a vector-valued image in level set is in-
troduced first by applying the two-phase Chan-Vese method at the same time on different
images, such as different RGB channels or different texture images, and averaging the
force value in each image at each iteration as shown in Figure 4.9.

The success of the vector-valued Chan-Vese is in using different features of an image. It
needs pre-processing of the image to obtain the features, before applying the same two-
phase Chan-Vese on all layers.
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Figure 4.9: Vector-valued Chan-Vese on RGB channels.

The proposed vector-valued image model in this thesis does not require different features
of an image but it applies different level sets on the same image at each iteration. This
parallel implementation of different level sets on the same image takes advantage of the
original image while engaging with the other level set performance by averaging their
forces in each iteration. The proposed model is illustrated in Figure 4.10 and Equations
4.1 to 4.4.

Figure 4.10: Proposed parallel level sets in vector-valued image.

In the proposed approach, the combination of the Chan-Vese and the Li models were
used but any other models can be used. The reason is to exploit the advantages of both
techniques in each iteration, for example the Chan-Vese model works well for blurred
edges while the Li model for sharp ones. Different level sets can also be used but with
different sets of parameters. This implementation is beneficial when the user does not
know the best set of parameters to tune the model. The force of level set is modified in
each iteration by calculating the average forces of both methods.
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FCV =
∫

Ω

(u0− c1)
2H(φ)dxdy

+
∫

Ω

(u0− c2)
2(1−H(φ))dxdy

+
∫

Ω

|∇H(φ)|

(4.1)

FLi = µP(φ)+λL(φ)+νA(φ) (4.2)

Equation 4.1 and Equation 4.2 are the forces for Chan-Vese and Li level set models which
are explained in Chapter 3 in more details.

F =
1
2
(FLi +FCV ) (4.3)

Equation 4.3 defines the averaging equation for forces which happens in each iteration
that new forces are obtained from each model. Finally, to reinitialise level set, new φ

should be calculated from Equation 4.4.

φ(x,y, t +1) = φ(x,y, t)+∆t.F (4.4)

where ∆t is the step size.

4.5.2 Proposed Parallel Level Sets in Multi-Phase Method

The proposed parallel level sets model in Section 4.5.1 can be extended to a multi-
phase model. The current multi-phase models usually apply the same model twice with a
different initialization for the same model. The original multi-phase level set method can
fail after a large number of iterations because detected regions from different phases can
become the same as the level set characteristics and parameters for different phases are the
same. Also, as different objects in an image are expected to have different specifications,
different level sets can detect them better than the same model. Figure 4.11, Equation 4.5
and Equation 4.6 illustrates this model.

This model also can use the same methods such as the Chan-Vese but with a different
set of parameters like the proposed model in Section 4.5.1. It is actually less complex
to use the same model with different initialization and different parameters. In this case
each level set and the different regions can be calculated in a similar fashion to Equations
(3.34) and (3.35) but different parameters of each level set in PDE can define the new
level set differently.
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Figure 4.11: Proposed parallel level sets in multi-phase shape.
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where ν1 and ν2 are weighting parameters that has been selected differently but their
values are the same in Equations 3.36 and 3.37.

4.5.3 Discussion of Proposed Parallel Level Sets

The main purpose of proposing this model was lung CBCT image segmentation, on which
level set selection and parameter settings were a problem. This model helps in using
both Chan-Vese and Li model where both models provide satisfactory results. Also since
parameter setting is so challenging, it can take advantage of different set of parameters to
reduce the penalty in the case of suboptimal parameters selection. Figure 4.12 shows the
implementation of combined Chan-Vese and Li models on non-medical images in Figure
4.1 and medical images in Figure 4.2.



4.5. Proposed Level Set Method 81

Figure 4.12: Testing proposed parallel level sets in vector-valued imaging on test images (red is
the initial level set and green is the level set segmentation): a. gourd, b. spiral, c. paper-spiral, d.
shapes, e. gradient-ball, f. Europe-night e. brain MRI and g. lung CT.

Figure 4.13: Testing proposed parallel level sets in vector-valued and multi-phase level set on
test images with ground truth: a. gourd, b. spiral, c. shapes and d. gradient-ball.

Comparing Figure 4.12 with Figure 4.3 shows the proposed configurations of the level
set in this Section can perform better than other multi-phase and vector-valued image
models. For instance, combining Chan-Vese and Li models can be compared to an indi-
vidual approach using either method while having the same set of parameters. Medical
images can be combined for a different set of parameters of each model on their texture
feature or smoothing image in parallel with original image while applying same level set
method with slightly different set of parameters. Figure 4.13 illustrates the performance
of proposed model combining Chan-Vese and Li models compared with vector-valued
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and multiphase Chan-Vese as well as multiphase Li. Four non-medical images which
have ground truth are chosen and its similarity with the level set segmenting of them was
compared by Dice coefficient. The results illustrate the success of the proposed model
over its original forms as parallel level set can perform over 90% accurate for all of these
images. The poor performance of other models can be due to low contrast of these images.
Other images in Figure 4.12 were not assessed qualitatively as their ground truth is not
very accurate. The results for these images appear to be subjective assessment through
satisfactory compared to the original models shown in Figure 4.1 and Figure 4.2.

4.6 Tuning Level Set Parameters
The absence of ground truth for lung CBCT dataset makes the importance of parameter
setting based on trial and error more problematic. Since in external diagnostic imaging
the real ground truth would never be available due to their low quality and difference of
opinion among clinicians therefore understanding the characteristic of parameters is the
most important part in any medical image analysis algorithm.

In general, the approach of variational or optimization problems is to assign a cost func-
tion to each element to see how this cost solves the problem, where a low score is a
good match and a high score is a bad match. Once the cost function is designed, the
configuration of the lowest cost if the cost is not convex, can make it difficult to find
the minima. Gradient descent or steepest descent methods work by initializing and then
descending at each instance, the direction is checked by the derivative the slope or the
curve. By respecting this rule and trying to keep the optimization equations always in a
convex form, the parameter setting in active contours and level set methods is simpler.
By finding the most relevant parameters, the level set methods can be tuned to con-
verge to appropriate boundaries. As previously pointed out, the lack of gold standard for
lung/medical imaging makes finding the optimal parameters more challenging, requiring
a greater depth of image analysis.

In the Li and Chan-Vese models, the parameters of α , λ , ε and σ can be chosen in many
possible combinations. In this thesis, µ which is mostly fixed as one tenth of a time-step
in the literature [65] and [71], defines the coefficient of the distance regularization term
R(φ),the parameter for identifying the regularizer’s coefficient that has a great impact on
the smoothness. For the number of iterations which had one inner parameter and one outer
parameter, values were chosen from small to large to give more freedom in convergence of
the level set. λ defines the coefficient of the weighted length term L(φ). The importance of
λ can be shown in the following figures, which employ amounts very high and low amount
for λ . λ can control the smoothness of the optimization, it should not be negative because
it would stop convexity and also would favour (remove) smoothness. α , coefficient of
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the weighted area term A(φ) gives better results for negative values in medical images.
ε , specifies the width of the Dirac Delta function. σ is the variance value for Gaussian
distribution. Time constant or step size which would be better if the value is smaller but
the calculation would be more costly time-wise.

Figure 4.14 shows the flow chart for the parameter setting for level set methods on CBCT
#10 based on their CBCT #1 image.

Figure 4.14: Scheme diagram for parameter settings for lung data.

Although parameters are found in iteration loops, this framework makes the parameter
setting more reliable for the user and faster as the parameter sets are defined for each iter-
ation. For instance Figure 4.15 is one good example of this kind of automatic parameter
setting.

Figure 4.15 shows some of the results for different parameters for lung CT and CBCT
images with further results in Appendix B. These figures illustrate the performance of
Chan-Vese and Li models on CBCT images as well as on texture image (sum variance) by
randomly setting different parameters. The blue contour represents the GTV, delineated by
clinicians, the red contour is the centre of GTV which is used in some cases as the initial
level set to set the parameters in growing always mode and finally the green contours are
the level set results which vary in different images. In some cases that there is no green
contour, which means that the level set could not segment. The best choice of parameters
can lead to an accurate segmentation. This will be studied in greater detail in Chapter 6 .
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Figure 4.15: Performance of different combinations with different parameters for lung CBCT
image tumour segmentation, Patient 2-Slice 41: a. planning-CT, b. CBCT #1, c. cropped part
of of part c with clinical GTV, d. Li model on CBCT using GTV as its initial contour, e. Chan-Vese
model on CBCT using centre of GTV as its initial contour, f. Li model on CBCT using centre of
GTV as its initial contour, g. Chan-Vese model on texture image using GTV as its initial contour,
h. Li model on PCA image using GTV as its initial contour, i. Chan-Vese model on vector-valued
texture image using centre of GTV as its initial contour, j. Li model on PCA image using centre
of GTV as its initial contour, k. Chan-Vese model on PCA image using GTV as its initial contour,
l. Chan-Vese on CBCT using GTV as its initial contour and m. Chan-Vese model on PCA image
using centre of GTV as its initial contour.
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As shown in Figure 4.15 and Appendix B, poor parameter choice can totally change the
performance of a robust model for the worse. Therefore, the parameter setting has to be
done by taking advantage of all existing information. In lung cancer treatment, planning-
CT images which have GTV contours on them are acquired before treatment. CBCT #1 is
the next image taken from cancerous lungs but before any RT treatment. These images are
the closest to planning-CT images as they are acquired less than a week after planning-
CT. There are possibilities of changes in GTV from planning-CT to CBCT #1 but by
considering small changes which are ignorable on average for fifty patients.

4.7 Conclusions

This chapter shows the formation of the proposed model. Combining texture analysis and
level set method in different aspects was reviewed. Different test images in medical and
non-medical shapes were used to illustrate the performance of some popular and well
known level set methods. Chan-Vese and Li methods used in different combinations with
texture features and different initialization mode. The proposed model presents a better
segmentation compared to level set alone. Since lung dataset lacks ground truth on CBCT
images, a parameter setting framework presented which finds the best parameters based
on GTV on CT images.

As level set parameter settings are very challenging, a new level set method has been
proposed which exploits the advantages of different level set methods or same model
with different set of parameters. It gives the freedom of two or more level sets to run in
parallel on the same image in each iteration. The concept can be used in vector-valued
image level set or multi-phase level set. This model was tested on non-medical images
and it succeeded over its conventional forms. The results on medical images from the
lung dataset is shown in Chapter 5 and Chapter 6.

First and second-order statistics were both applied to the data. However, GLCM using
second-order texture provides better information than first-order as it defines the location
relationship. Sum variance combined with two-phase Chan-Vese or two-phase Li level set
methods were performing outstanding compared to other texture features as well as other
level set methods.



Chapter 5

Implementation of Texture and Level

set Analysis on the Lung CBCT Data

with the GTV of a Specific Patient

5.1 Introduction

This chapter investigates the proposed combined texture and level set model on one pa-
tient with the GTV available at CBCT #1 and CBCT #10. This patient had a concentrated
tumour attached to the lung pleura and the tumour shrank dramatically during treatment.
A clinical oncologist was able to estimate the contour on these slices/images for both
#1 and #10. Out of the fifty patients in the dataset, only this case (Patient 25) provided
quantitative analysis to evaluate the performance of the combined texture and level set
model. The other forty nine patients had more complicated tumour shapes and positions
where the cancer was contained in different regions of the lungs, therefore CBCT images
did not provide any visualisation information about the status of tumour to the clinicians.

The shrinkage of the tumour in this case is clearly visible and the Dice coefficient showed
a similarity of greater than 90% between CBCT slices and their relevant ground truth.
The only possible comparison for the other forty nine patients was level set segmentation
of CBCT #10 and the GTV on CT data and not CBCT. In order to evaluate the reliability
of the proposed model, this chapter seeks to demonstrate that the shrinkage of tumour
volume for Patient 25 can be measured automatically. Also this model can be extended in
offline ART to improve the planning treatment to amend the remaining treatment schedule
based on the results of RT obtained up to CBCT #10.

The fifteen level set contours presented in Section 4.4 and Section 4.5.1 are displayed on
CBCT #10. Based on the evaluation of the oncologist, three of the proposed level set-
texture feature combinations based on Chan-Vese and Li methods were selected. Further,
the proposed parallel level sets segmentation was tested and compared with the relevant
GTV on each available fraction of CBCT for Patient 25. The evaluation of this patient is
demonstrated in qualitative and quantitative forms.

86
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This chapter is organised as follows. The patient information is presented in Section 5.2.
The texture analysis and reasons for selecting sum variance among the texture features
are discussed in Section 5.3. All fifteen different segmentation models are discussed in
Section 5.4. The texture and level set segmentation is discussed in Section 5.5 to illustrate
the performance of the proposed model on Patient 25. The texture combined level set is
analysed quantitatively in Section 5.6 and qualitatively in Section 5.7. The outcome of
this chapter confirms the strength of this model, which can subsequently be applied to the
other forty nine cases. Section 5.8 presents the possible extension of the proposed model
to offline ART.

5.2 Patient 25 Data

This patient has a very localized tumour in the right lung. The planning-CT was acquired
on 10th of May 2011 with a resolution of 512× 512× 130, and 3mm slice thickness.
The GTV on the planning-CT was delineated for fifteen slices from Slice 50 to 64. The
position of the tumour is illustrated in Figure 5.1 on one slice in the middle of the tumour
in different planes, the cross-sections are illustrated from transverse, frontal and sagittal
views. Also its 3D shape is shown in the same figure to show the volume of tumour inside
the body.

Figure 5.1: a. transverse, b. 3D shape, c. frontal and d. sagittal image views of Slice 55 of Patient
25 showing the GTV in red. This figure is generated using Varian Eclipse medical software.

The tumour is located toward the upper section of the lung, an area which is less affected
by the breathing movements of the chest than other parts of the lung. Figure 5.1 shows
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three different images of the tumour on the planning-CT for patient 25. Figure 5.1.a is the
transverse cross sectional view where the red contour displays the GTV, the dotted grid
vertically and horizontally across the tumour better illustrates its position in the frontal
and sagittal cross sectional views in 5.1.c and 5.1.d respectively. Figure 5.1.b shows the
full 3D shape of the tumour in red inside the body, the volume of tumour is 5% of both
lungs.

This patient responded very well to RT. Figure 5.2 illustrates the clinical GTV on the
planning-CT, CBCT #1 and CBCT #10 in blue. This patient is the only case where the
oncologist could delineate the tumour volume on the CBCT images due to the obvious
position of the tumour, which may be because of the reduced movement of the chest
in this area. Even in this case, the vessels, airways and other parts of the lungs made
contouring very complicated. These scans/images provide good examples of the efficacy
of the proposed image processing method, however there are more sophisticated stages
of lung cancer for other patients in the dataset where it is impossible to differentiate the
tumour from healthy tissue on the CBCT images as we will subsequently see in Chapter
6.

Figure 5.2 illustrates GTV shrinkage for this patient. The relevant GTVs are all delineated
on each set of images separately. Image 5.2.a is the planning-CT, 5.2.b CBCT #1 with
similar size of tumour because both these images are collected before any RT. Figure
5.2.c is CBCT #10, after 9 fractions of treatment.

Figure 5.2: Patient 25 progress of treatment with the clinical GTV contours on both CT and CBCT
images, a. planning-CT, b.CBCT #1 and c. CBCT #10.

Figure 5.3 shows that the tumour shrunk by 30% between CT, CBCT #1 and CBCT #10.
In this figure the normlized value for area of GTV per slice having tumour is demon-
strated. Slice numbers vary from 50 to 64 which refers to the fifteen slices out of 130
CT slices acquired from the patient during planning-CT. Although CBCT slices were less
than planning-CT but due to registration of these images they have the same numbers.
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Figure 5.3: Tumour area comparison between the clinical GTV on planning-CT, CBCT #1 and
CBCT #10 of Patient 25.

It is important to note that GTV on CT and on CBCT #1 were delineated at different
times, therefore a slight difference is to be expected as the oncologists were different. The
image quality is also noticeably different. The similarity between GTV on CT and CBCT
#1 and #10 can be calculated based on their size and area overlap. It is interesting that the
combined texture and level set model in Figure 5.4 in Section 5.5 shows the same amount
of change. This suggests the proposed model may perform well for other patients in this
dataset. Also the behaviour of the proposed model was considered slice by slice by the
GTV on related CBCT and gave over 90% similarity. All these analyses are shown more
in detail in the following sections.

Figure 5.4 demonstrates the expected area deduction of tumour of Patient 25 as shown in
Figure 5.3. This is effectively the gold standard of this thesis which confirms the strength
of this model which can subsequently be applied to other forty nine cases.

Figure 5.4: Tumour area comparison between the clinical GTV on planning-CT, level set method
of CBCT #1 and level set method on CBCT #10 of Patient 25. The results of Model m is chosen
here to show this comparison.
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The success of the proposed models which was shown in Figure 5.7 and Figure 5.4,
depends on three factors: initialization using GTV on CT, texture image and the choice of
parameters. The level set is very much related to its parameter tuning, therefore choosing
good parameters based on CBCT #1 leads to better performance on CBCT #10. Level
set is assisted by texture and the parameter estimate on CBCT #1 to perform well on
CBCT #10. The framework of this model was shown previously in Figure 4.14. The
recursive parameter setting used in this approach minimises the errors. Each patient and
even each CBCT for each patient needs different parameter settings. Sometimes changing
parameters for different slices also leads to better segmentation. ROI in each slice is
changing, along with time and the patient’s breathing, therefore the best parametrisation
is not possible by having the same set for all slices. For Patient 25 the parametrisation for
all slices are very similar but with some small differences.

5.3 Texture Analysis of Patient 25 Data

Of the fourteen texture features of Patient 25, obviously some of the features are not well
distributed in terms of intensity which might give a weak input for level set convergence.
All Haralick features were applied, while considering GLCM in four symmetric directions
in a 5× 5 area. The best texture model which could be combined well with Chan-Vese
method is sum variance. There are other textures which also show good results but inter-
estingly sum variance always works well.

To gain a better understanding of why sum variance outperforms other features, Figure
5.5 and Figure 5.6 illustrate all features followed by their histogram and the equalised
histogram image of CBCT #1 and CBCT #10 respectively. The red contour refers to GTV
on CT. It is obvious that F6 as the sum average and F7 as the sum variance can pre-
segment the tumour boundary best. Only sum variance has the original smooth histogram
and can highlight the tumour more accurately than other features for all slices of CBCT #1
and CBCT #10. Besides demonstrating the strength of sum variance, Figures 5.5 and 5.6
also show the impractical usage of some other features for this application. For example,
some features such as F12 to F14 cannot assist in any pre-segmentations and can disrupt
the performance of other features when combined with them.

The main reason of failure of most of these texture features is due to their low range of
intensity levels. F1, F3, F5, F8, F9, F11, F12, F13 and F14 have not enough intensity
variation at all, therefore these texture images are not able to provide a better intensity
variation image compared to CBCT image for level set. F2, F4, F6 and F10 are low
dynamic range images which also cannot pre-segment well due to their low variation
levels. F7, sum variance, has sufficient variation in intensity and preserves more of the
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dynamic range of the variation. This accessible dynamic range of histogram proves the
superior performance of sum variance.

Figure 5.5: Haralick texture results for Patient 25 CBCT #1 Slice 58, F1: angular second moment,
F2: contrast, F3: correlation, F4: variance, F5: inverse difference moment, F6: sum average, F7:
sum variance, F8: sum Entropy, F9: entropy, F10: difference variance, F11: difference entropy,
F12: information measures of correlation, F13: information measures of correlation and F14:
maximal correlation coefficient.
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Figure 5.6: Haralick texture results for Patient 25 CBCT #10 Slice 58, F1: angular second
moment, F2: contrast, F3: correlation, F4: variance, F5: inverse difference moment, F6: sum
average, F7: sum variance, F8: sum Entropy, F9: entropy, F10: difference variance, F11:
difference entropy, F12: information measures of correlation, F13: information measures of
correlation and F14: maximal correlation coefficient.

It is interestingly that Figure 5.5 and Figure 5.6 both show the same behaviour for all
texture features specificity for sum variance’s well performance.
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5.4 Level Set

Level set segmentation was applied to this data in fifteen different combinations. In total
sixty seven contours as some models were applied on each of the fourteen texture features.
These are listed in Table 5.1 and illustrated in Figure 5.7.

Model Level Set Image Initialization
Name Method Used of Level Set

Model a Chan-Vese CBCT GTV

Model b Chan-Vese CBCT GTV centre

Model c Chan-Vese PCA of 14 textures GTV

Model d Chan-Vese PCA of 14 textures GTV centre

Model e Chan-Vese Vector image of 14 textures GTV

Model f Chan-Vese Vector image of 14 textures GTV centre

Model g Chan-Vese Texture image F1 GTV
Chan-Vese Texture image F2 GTV
Chan-Vese Texture image F3 GTV
Chan-Vese Texture image F4 GTV
Chan-Vese Texture image F5 GTV
Chan-Vese Texture image F6 GTV
Chan-Vese Texture image F7 GTV
Chan-Vese Texture image F8 GTV
Chan-Vese Texture image F9 GTV
Chan-Vese Texture image F10 GTV
Chan-Vese Texture image F11 GTV
Chan-Vese Texture image F12 GTV
Chan-Vese Texture image F13 GTV
Chan-Vese Texture image F14 GTV

Model h Chan-Vese Texture image F1 GTV centre
Chan-Vese Texture image F2 GTV centre
Chan-Vese Texture image F3 GTV centre
Chan-Vese Texture image F4 GTV centre
Chan-Vese Texture image F5 GTV centre
Chan-Vese Texture image F6 GTV centre
Chan-Vese Texture image F7 GTV centre
Chan-Vese Texture image F8 GTV centre
Chan-Vese Texture image F9 GTV centre
Chan-Vese Texture image F10 GTV centre
Chan-Vese Texture image F11 GTV centre
Chan-Vese Texture image F12 GTV centre
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Chan-Vese Texture image F13 GTV centre
Chan-Vese Texture image F14 GTV centre

Model i Li CBCT GTV

Model j Li CBCT GTV centre

Model k Li PCA of 14 textures GTV

Model l Li PCA of 14 textures GTV centre

Model m Li Texture image F1 GTV
Li Texture image F2 GTV
Li Texture image F3 GTV
Li Texture image F4 GTV
Li Texture image F5 GTV
Li Texture image F6 GTV
Li Texture image F7 GTV
Li Texture image F8 GTV
Li Texture image F9 GTV
Li Texture image F10 GTV
Li Texture image F11 GTV
Li Texture image F12 GTV
Li Texture image F13 GTV
Li Texture image F14 GTV

Model n Li Texture image F1 GTV centre
Li Texture image F2 GTV centre
Li Texture image F3 GTV centre
Li Texture image F4 GTV centre
Li Texture image F5 GTV centre
Li Texture image F6 GTV centre
Li Texture image F7 GTV centre
Li Texture image F8 GTV centre
Li Texture image F9 GTV centre
Li Texture image F10 GTV centre
Li Texture image F11 GTV centre
Li Texture image F12 GTV centre
Li Texture image F13 GTV centre
Li Texture image F14 GTV centre

Proposed Model
Model o Parallel Chan-Vese Li Texture image F7 GTV

Table 5.1: All different proposed model of combining level set methods and texture features. In
total there are fifteen different models resulting into sixty seven different contours per slice of
CBCT.
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Figure 5.7 illustrates the robustness of the proposed parallel level set (Model o) and other
fourteen contours from Table 5.1. Models e and g also performing in expected shape. In
the combination forms of level sets and texture features, the result of sum variance is
shown in this figure. In general, other models do not have consistent performance for all
images such as the ones shown in this figure. Therefore they were not deemed reliable
enough for further study.

Figure 5.7: Fifteen different level set contours on CBCT #1 of Patient 25 mentioned in Table 5.1,
where the green contour is the GTV on CT and the red contour is the result of level set.
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5.5 The Combined Texture and Level Set Model

Texture images are likely to offer a better start for the level set, since the tumour cells are
changing during treatment. Therefore tumour can be better monitored on different CBCTs
using their texture images. The result of sum variance and level set for four different slices
on #10 of Patient 25 is shown in Figure 5.8. There are two red contours in this figure,
the inner one is the segmentation outcome of the proposed model and the outer one is
the boundary of cropped-image for more optimal performance of level set and saving
computation time.

Figure 5.8: Chan-Vese method on sum variance image for four slices of Patient 25 CBCT #10.

The robustness of level set on top of sum variance texture segmentation of CBCT is
perceptible here. Although the tumour position makes the level set convergence easy,
the tumour’s intensity values is very similar to the pleura side. Applying level set alone
on the image instead of sum variance texture image cannot provide the results in Figure
5.8 due to similarity in intensity with the tumour’s neighbouring tissues.

5.6 Qualitative Analysis of Patient 25 Data

The qualitative analysis is performed by the oncologist in two sessions. Firstly by compar-
ing the results generated without the GTV on the CBCTs and secondly in a comparison
after the oncologist contoured GTV on the CBCTs. In both cases the oncologist agreed
with the proposed approach. As there were different combinations proposed for texture
analysis and level set methods, in the first evaluation, the oncologist ranked the best three
of models, Model a to Model n (models using only Chan-Vese or Li level set, not the
proposed model which used both of them) as:
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1. Sum variance + Li level set (Model m)
2. Sum variance + Chan-Vese level set (Model g)
3. Vector-texture images of Chan-Vese level set (Model e)

The quantitative analysis as well as time cost for calculation was compared, with Model
e and Model m both considerably quicker than Model g. The average calculation time per
slice for level set segmentation can be seen in Table 5.2.

Model m Model g Model e

20 seconds 30 seconds 30 minutes

Table 5.2: Average time of execution of proposed different combinations selected by the
oncologist per registered CBCT slice.

The time of execution was measured on average for a 100× 100 pixels CBCT image
(cropped RIO based on common PTV area for all slices) over fifty slices. As mentioned
in Section 4.3, the time of execution can be sacrificed for higher accuracy but due to tuning
difficulties in level set parameters, Model g is not favourable. Also Chan-Vese level set in
Model g (oncologist’s choice 3) took an unacceptably long time to compute.

Considering the robustness of the model and the accuracy of detecting tumours the top
three selected models (two by the oncologist and the proposed model) are:

1. Sum variance + Parallel level set (Model o)
2. Sum variance + Chan-Vese level set (Model g)
3. Sum variance + Li level set (Model m)

Figures 5.9 to 5.11 show the performance of these three models is robust and similar.
In these figures the results of the proposed model on CBCT #10 are acquired without
any assistance from the GTV on CBCTs, only GTV on planning-CT was used for their
initialization. The same framework in Chapter 6 for all other forty nine patients was
applied where the GTV on CBCTs do not exist.

Figure 5.9: The proposed Model o on CBCT#10 Patient 25, where the red contour is the CT’s
GTV and the blue contour is the result of level set.
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In some slices, the level set detects larger areas which seem to be blood vessels at first
glance but are in fact the tumour affecting other regions. Texture analysis helps in this sit-
uation to define the difference between tumour, blood vessel or cancerous tissues attached
to blood vessel. The power of texture analysis is also limited on CBCT images because of
their poor quality but still can not be ignored.

The results of three best models are almost very similar. Figure 5.9 which illustrates
Model o can be compared with both Figure 5.10 and Figure 5.11 since it takes the
advantage of both level set methods used in Model g and Model m while using sum
variance similar to them.

Figure 5.10: The proposed Model g on CBCT#10 Patient 25, where the red contour is the result
of level set.

Figure 5.11: The proposed Model m on CBCT#10 Patient 25, where the red contour is the result
of level set.
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5.7 Quantitative Analysis of Patient 25 Data

As shown in Figure 5.12, parameter setting was tested on CBCT #10 data. In this case
the reference contour from the oncologist is drawn in blue and texture combined by level
set contour is delineated in red. The Dice coefficient between the clinical contour and
segmentation contour for this case is 85%.

Figure 5.12: Registered CBCT #10 of Patient 25 compared to the final segmentation proposed
model, a. registered CBCT #10, b. GTV on CBCT #10 and c. combined sum variance and Chan-
Vese model-Model g.

The oncologist was satisfied that the small differences between GTV and the proposed
model are to be expected. Therefore, a Dice coefficient with an error of±5% is acceptable
since the GTV delineation is the nearest estimate by the oncologist which might be
slightly different in the eyes of other oncologist. Also GTV is not used for the shaping the
radiation during treatment but PTV is used. This coefficient is widely used to compare
contour segmentation accuracy in image processing [93].

The shrinkage of the tumour based on the results obtained from the proposed models on
CBCT #10 is approximately 30%. This amount of shrinkage is almost the same between
the main GTV on CT and GTV on CBCT #10 as shown in Figure 5.13.

Figure 5.13: Change of GTV on CT compared to GTV on CBCTs, the blue bar indicates the
similarity for CBCT #1 and red represents CBCT #10.
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As shown in Figure 5.14, the Dice coefficient between CBCT #1 and #10 with their
relevant GTV for different slices on average is 90% and 93% respectively for the best
three models.

Figure 5.14: Dice coefficient comparison between GTV on CBCTs and different proposed
models, a. Model o, b. Model g and c. Model m. The yellow bar indicates the similarity for CBCT
#1 and brown represents CBCT #10.

The average of GTV similarity on each fraction and level set supports the view that the
proposed method is accurate. It is worth mentioning that contouring in medical imaging,
especially in CBCT imaging, can be reliable way of identifying the presence or absence
of tumour, however, the accuracy may be limited. Therefore some variation of accuracy
is always acceptable in comparisons.

The level set parameter setting was carried out with assistance from the closest Dice
coefficient between GTV on CT and the proposed model on CBCT #1. By finding these
parameters, the level set was tuned for better performance on CBCT #10. Figure 5.15
illustrates the Dice coefficient between the main GTV on CT with the proposed model on
CBCT #1 and #10 for different slices.
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Figure 5.15: Dice coefficient comparison between the main GTV on CT and different proposed
models, a. Model o, b. Model g and c. Model m. The purple bar indicates the similarity for CBCT
#1 and the green represents CBCT #10.

The proposed models can be applied on more complex tumours without any ground truth
on follow-up images. The success of this approach still depends on GTV prior shape
from the CT before treatment since level set can be dependent to the initialization and its
parameter setting. The more recursive parameter tuning used, the better the result from
level set will be.

As discussed in Chapter 2, the aim of image segmentation is to provide assistance to
clinicians. Efficient de-noising, image enhancement, registration and segmentation meth-
ods can assist in online or offline adaptive radiation planning in RT and therefore lead
to IGART. In IGART, the treatment plan changes either within or between fractions.
Therefore, more accurate treatment is delivered to tumour regions and a smaller dose
is delivered to healthy tissues. However, it is not sufficient to generate adaptive radiation
planning using only CT images. Information from CBCT images is also required. Fur-
ther, a robust and automatic segmentation approach that can use all of the segmentation
information as prior knowledge and generate accurate GTV contours is needed. However,
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there is still no generally applicable procedure for online ART in clinical practice. In this
project, the information extracted from CBCT images might not be accurate enough to be
used in IGART but can be used as an alarm for oncologists to reconsider the treatment
plans in case of tumour growth during RT treatment.

5.8 Extension to Offline Adaptive Radiotherapy

Offline ART allows changes to be made between fractions (daily) and also helps to adjust
planning for the remaining RT sessions in a treatment cycle. The frequency of applying
online or offline ART is dependent on the type of treatment. In this research, the clinicians
seek information about changes of tumour in CBCT#10 to monitor the effect of the
treatment one third of the way through therapy.

The information obtained in Section 5.5 showed considerable shrinkage in the tumour
volume. Since it shrank by 30%, the medical team can continue the treatment from CBCT
#11 with a smaller shape of tumour, meaning they can focus the RT on a smaller volume.

The proposed model can be applied on CBCT #20 to compare with GTV and CBCT #10.
New considerations can be applied for the last 10 treatments. On the last day of treatment,
CBCT #30, the proposed model can be applied again. If the cancer is still progressing at
this point, new treatment plans could be proposed.

For Patient 25, the information of the GTV on CBCT images was obtained for the purpose
of this thesis. In general, oncologists do not contour CBCT for all cases, however they
could use the information in the proposed model (for Patient 25) to decrease the PTV
size. By doing this healthy tissues would be at less risk of radiation. The amount of
minimization (or maximization in the opposite situation) depends on the decision of the
medical team for different patients.

Current lung cancer RT accuracy can be improved if the proposed model is applied to
every fraction of the CBCTs and the results of segmentation for the first 10 fractions
show a consistent trend. For the case of consistent outcomes, the doctor would have more
confidence in applying the model in offline ART and the results for the next 10 fractions.

The proposed model can be extended to other offline ART applications such as other
medical image modalities as well as other clinical RT applications. Irrespective of the
ground truth existing or not, the proposed model can assist the clinicians and better inform
their decision making. A typical framework for ART is shown in Figure 5.16.



5.9. Conclusions 103

Figure 5.16: The typical framework for an ART process.

5.9 Conclusions
The proposed method is based on level set methods and texture features in determining the
tumour position during lung cancer RT based on CBCT images. To date, no segmentation
model can detect lung tumours on CT or CBCT images with 100% accuracy due to
the poor intensity variation of these images on soft tissues, although there can be some
changes on a sequence of images over different periods of time (i.e., fractions). Each time
a patient experiences RT, the texture of the lung may change compared to the previous
session due to progression of the cancer or a positive effect of the RT. Knowing this,
different images taken at different times of the same position of a patient during treatment
was considered, using texture analysis to find out the difference in these textures during
course of treatment by applying level set methods on them.

In this chapter, Patient 25 was chosen as an example to illustrate the robustness of the
proposed models. This chapter illustrated that the level set method based texture features
is capable of generating a more accurate boundary with a smaller chance of distortion
while converging. The distortions were identified by minimizing the parameter error based
on the similarity function of Dice coefficient between corresponding parameters which
were defined manually based on CBCT #1 and GTV.

The proposed combined texture and level set model demonstrated an accuracy of almost
90% for Patient 25. This model might not be purely accurate as there is no gold standard
in medical imaging in general. However, it would provide a great help to an oncologist in
knowing the condition of the patient after each RT treatment. Last but not the least, this
chapter discussed that by applying the proposed model on every fraction of CBCT and
having consistent results, this method could be used in offline ART.



Chapter 6

Texture and Level Set Model for Lung

Cancer Analysis on CT and CBCT of 49

Patients

6.1 Introduction

This chapter uses the combined texture and level set model proposed in Chapter 5 to
identify the GTV on CBCT images of forty nine patients from the lung dataset. Initially,
all image processing work carried out on the lung dataset, starting with image condi-
tioning, is discussed. Then, in order to map the GTV from the CT to CBCT images, a
registration model was applied based on RT data included in the CBCT data used by
radiographers during treatment. This registration is the gold standard in RT because it has
real translocation of the patient position. By having the correct position of the original
GTV (from CT) on CBCT #1, and applying the proposed segmentation model, a suitable
range of level set parameters are found. Finally, this tuned proposed segmentation model
was presented to the oncologist for visual evaluation in order to verify its accuracy. The
oncologist also had access to the patient case history while evaluating the results. The
high acceptance score given by the oncologist to this study/analysis is verification of the
effectiveness of the approach.

Figure 6.1 illustrates a general schematic of medical image analysis. Image acquisition,
enhancement, segmentation, feature extraction, decision making and validation are the
most commonly used steps in medical imaging. Although not all steps were required
here, this chapter tries to convey the whole analysis procedure applied in this work. In
Section 6.2 the test images from the data are shown, and their characteristics are discussed.
Section 6.3 presents the registration procedure between the CT and CBCT images. The
GTV contours on CT images are used on CBCT images as an initialization of level set,
therefore registration is needed to map the relevant contours of each slice from CT to its
equivalent CBCT. Registered contours on the CBCT images were assessed by a clinician
as well as being tested by evaluating the distance ratio of airways to the vertebra.
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Figure 6.1: Flowchart of medical image analysis.

In Section 6.4, texture analysis is discussed as a combined texture with level set model
which is proposed in this work, applies level set on the textured images. As lung images
are more textured than brain and other medical images, fourteen Haralick texture features
are calculated to generate the new image. Level set is applied on the textured images to
find out the behaviour of level set on a textured image which highlights the texture in the
image more. In texture analysis, the areas of image with low intensity variation are called
smooth textured and the areas with larger amounts of variation are rough textured. The
performance was assessed by clinicians since the quality of CBCT images is very poor,
hence oncologists cannot contour them. The proposed algorithm in this study can help
doctors to understand any change in the tumour. The results of the combined texture and
level set are discussed mainly in Section 6.5.
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6.2 Lung CT and CBCT Data Details of Patients

The main dataset used in this research is based on two modalities, planning-CT and follow
up CBCT taken at different fractions of the treatment. The combined texture and level set
algorithm formed an analysis framework that could be used as an RT assessment factor, it
is suitable for extension to ART but without any gold standard it would not be pragmatic.
This dataset includes fifty patients who suffered lung cancer and underwent an RT in 2010
and 2011 at the Western General Hospital, Edinburgh, Scotland. All of these patients went
through the whole course of treatment over approximately four weeks. CBCT #1 and #10
are most commonly used, although some patients have more fractions of CBCT data
available. Full information for all fifty patients is described in Appendix A.

All CT images were acquired with 512× 512 pixels and a pixel size of 0.977mm×
0.977mm. All CBCT images were acquired with 384× 384 pixels and a pixel size of
1.172mm×1.172mm. The number of CT and CBCT image slices containing the tumour
volume varied between different patients. A board-certified radiation oncologist evaluated
all images and the contoured GTV, CTV, PTV and OAR. The CT images were acquired
with a General Electronics Medical scanner and CBCT images by a Varian Medical Sys-
tems On-Board Cone-Beam CT (OBI CBCT which is a type of CBCT scanner embedded
inside a LINAC).

GTV contours are available for all fifty patients on their planning-CT images but not on
CBCT images as the poor quality of CBCT restricts the oncologists as noted previously.
They do not expect much change in CBCT #1 as this series is acquired before planning-
CT and immediately prior to comencing RT, therefore the tumour has not undergone
any X-ray treatment. The main concern of the medical team is the tumour response in
CBCT #10. This occurs when the patient has had almost 30% of treatment. At this stage,
having any indication about the tumour’s progression or regression can be a great help
to physicians in monitoring the response of the tumour to initial RT sessions. Since in
most cases observing CBCT alone can not give any indication of tumour shape to the
oncologist, applying the combined texture and level set model proposed in this thesis can
be a beneficial help for clinicians.

Table 6.1 lists 3 patients’ details only which are used for demonstration purposes in this
Chapter, Patients 25, 26 and 34. The reason for choosing these 3 patients were due to the
visible shrinkage of tumour on CBCT images of Patient 25 and 26. Also Patient 26 and
34 were chosen as most of the dataset were similar to them, with cancer seen in different
tissues. Patient 25 was discussed in Chapter 5 in detail. Patient 26 responded positively to
RT, noticeably in some slices and Patient 34 is the final case, which had collapsed lungs
during treatment.
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Case Modality Slice No Date Pixel Size Slice Thickness

Patient 25 CT 130 10-05-2011 512 ×512 3mm
CBCT # 1 64 23-05-2011 384 ×384 1mm
CBCT # 10 54 10-06-2011 384 ×384 1mm

Patient 26 CT 126 05-10-2010 512 ×512 3mm
CBCT # 1 52 18-10-2010 384 ×384 3mm
CBCT # 10 54 01-11-2010 384 ×384 1mm

Patient 34 CT 137 28-06-2011 512 ×512 3mm
CBCT # 1 53 12-07-2011 384 ×384 1mm
CBCT # 3 53 14-07-2011 384 ×384 1mm
CBCT # 4 53 15-07-2011 384 ×384 1mm
CBCT # 6 53 19-07-2011 384 ×384 1mm
CBCT # 7 53 20-07-2011 384 ×384 1mm
CT 127 14-07-2011 512 ×512 3mm
CBCT # 11 53 26-07-2011 384 ×384 1mm
CBCT # 14 53 29-07-2011 384 ×384 1mm
CBCT # 17 53 03-08-2011 384 ×384 1mm

Table 6.1: Details of 3 out of fifty patients from lung cancer dataset.

In Figure 6.2, Patient 26’s planning-CT and relevant CBCT #1 and #10 are shown, even
though the tumour is in the middle of the lungs, the positive results are obvious in CBCT
#10. In Figure 6.2.a. the GTV is shown in red and on CBCT images the estimated region
of GTV is circled in red colour as well to highlight the shrinkage of tumour during RT.

Figure 6.2: Patient 26, a. one slice of the planning-CT with the clinical GTV contour shown in
red, b. the CBCT #1 after 13 days of planning, before applying any RT treatment (GTV region is
circled in red) and c. the CBCT #10 after 26 days of treatment (GTV region is circled in red).
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Patient 34 is the most complicated case among all patients as they suffered from a col-
lapsed lung, or atelectasis, during RT. Briefly, this is when the lung evacuates all air
suddenly and shrinks. Air enters the spaces between lungs and pleural usually happens
due to the presence of a hole in the lung. This can occur for different reasons such as
external injury, for example a car accident, or internal lung diseases, such as cancerous
lesion expansion.

Figure 6.3: Lung tumour state during RT for Patient 34: This patient had two different planning-
CTs with their relevant GTV on each scan as the patient suffered from collapsed lung during RT.
This figure shows different fractions of CBCT with respect to the GTV of their relevant CT.
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Treatment for Patient 34 was stopped on 12-07-2011 and the lung re-inflated during XRT.
Treatment was then re-planned on 14-07-2011. Since the health situation of this patient
was an emergency, the medical team was not able to provide a new GTV quickly. The
treatment was therefore continued with the first GTV from first planning-CT on 28-
06-2011 for a few fractions. From CBCT #11 on 26-07-2011 onwards the treatment
continued using new GTV delineated on the new planning-CT. In Figure 6.3 illustrates
that Patient 34 had two different planning-CTs with their relevant GTV on each scan as
the patient suffered from collapsed lung during RT. This figure shows different fractions
of CBCT with respect to the GTV of their relevant CT and illustrates the tumour shrinkage
on CBCT #11, #14 and #17.

Before moving to the image processing/analysis sections, there are some medical notes
which are essential to point out:

1. The first and foremost consideration is oncologists always include airways inside
the GTV if the tumour is attached or around airways. Figure 6.4 shows the GTV
and PTV delineated by the oncologist on one slice of CT with large tumour that can
be used as the ground truth for comparison of level set and GTV. This example is
chosen to show that the airway is also included in the GTV and PTV even though
the tumour is not growing inside the airway. The reason for this and similar cases
is twofold. First, because there is nothing inside the airway, therefore there will be
no harm from the radiation and second, in case of further growth of tumour in the
airways.

Figure 6.4: GTV and PTV delineated by the oncologist.

2. The second note is that the radiation dose is based on PTV not the GTV as discussed
in Section 1.2. By improving IGART this penalty can be reduced and rescue healthy
tissues from further radiation.

3. A final important principle is that the patients suffering from cancer and treated by
RT will most likely face weight loss. Therefore images of the same patient might
show different volume per slice compared to previous treatments.
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6.3 Registration of CT and CBCT Dataset

Registration is a necessary step in medical imaging to allow clinicians to compare images
from different time intervals and different modalities. From an image processing point
of view, it is very challenging to find the transformation between different images. As
mentioned previously, in medical treatment it is critical to adjust the patient’s body to
the proper position. In RT, radiographers try to capture CBCT images and record the
translation of patient position compared to the planning-CT images. In other words, ra-
diographers register CBCT to CT when preparing the patient for treatment. Finding this
translation is vital for transferring the tumour delineated shape by the oncologist on CT to
CBCT before starting any radiation. All this information regarding the patient’s position
and translation is saved in the patient’s DICOM data and can be used in image processing
to find the most accurate registration between images. It was calculated as follows.

The CBCT images were registered to CT images by a transformation matrix generated as
a gold standard. This registration before segmentation helps to transfer the proper GTV to
CBCT images. In this registration three transformations happen. CBCT images should be
transferred to CT coordinates, but need to be transferred to the centre of CBCT and then
transferred based on image, patient position and patient orientation. Next, the radiology
translation file, attached to each CBCT, can be used to find the changes between CBCT
and CT to bring the image into the origin domain/space of CT. The last translation is based
on embedded information in the CT images which define the patient current position
compared to their original position. DICOM data embedded in CBCT images contains
the values of rotation and translation of the patient body for comparison to CT images.

As shown in Figure 6.5, 3 transformation matrices, T1, T2 and T3 (all of them 4× 4), are
the key parts to calculate the mapping between the reference and target images. T1 and
T2 can be calculated using Equation 6.1 on DICOM information from the reference and
target images respectively. T3 is based on the information from the reference coordinate
system (RCS) which are the DICOM data embedded in CBCT measured and recorded by
the radiographer.

T1 =


Xx∆i Yx∆ j 0 Sx

Xy∆i Yy∆ j 0 Sy

Xz∆i Yz∆ j 0 Sz

0 0 0 1

 (6.1)

where Sxyz are the three values of the Image Position Patient (DICOM tag), which indi-
cates the location from the origin of the Radiation Calibration Service (RCS) in mm. Xxyz

are the first three values of the Image Orientation Patient (DICOM tag) and Yxyz are the
last three values of the Image Orientation Patient (DICOM tag). ∆i and ∆ j are the pixel
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Figure 6.5: The relationship between the reference image (planning-CT), the target image
(CBCT) and their RCS. Here T1 is the transformation matrix from the planning-CT image to the
RCS, T2 is the transformation matrix from CBCT image to the RCS and T3 is the transformation
matrix from the RCS of the target image to the RCS of the reference image.

size, which can be extracted from Pixel Spacing (DICOM tag). After reading T3 from an
RT registration file generated by the radiographers, the transformation matrix T, which
represents the gold standard in rigid registration, can be calculated using Equation 6.2.

T = T−1
1 T3T2 (6.2)

Figure 6.6 illustrates an example of a registration algorithm in which the 512× 512
planning-CT image from Patient 5 was used as the reference image and the 384× 384
CBCT #11 of the same patient was used as the translated image. This figure shows CBCT
images before and after registration. Medical images usually have the same orientation
because they were acquired from patients laid on a couch, which makes the orientation
of patients relatively stable between different time points. As a result, rotation parameters
of the rigid registration defined by radiographers or generated by the presented algorithm
were both 0 for CBCT data sets.

Figure 6.6: The reference CT image with dimension of 512× 512 in green and resized CBCT
image to 512×512 with original dimension of 384×384 in purple before registration.



6.3. Registration of CT and CBCT Dataset 112

This registration uses the most accurate values to find the isocentre of the patient before
CBCT image acquisition. Clinical registration for Patient 30 is shown in Figure 6.7. The
result of registration is prominent although there are visible errors which may be slight
shape variations between the reference and target image because they were acquired at
different time points from different modalities.

Figure 6.7: CBCT #1 and #10 registration to the planning-CT for Patient 30.

Clinical Trick for Validation of Registration

The validation of the registration in this work is performed by measuring the ratio between
airways and the vertebral column. This is the assessment method applied by the oncologist
who evaluated this research. The diameter of the vertebral column is always a fixed value
for any individual during his/her life, but the length of vertebral shrinks as the human ages.
Therefore, it is always the best method of measurement for validating the registration
results on CBCT. The diameter of vertebral and the height between vertebral and airways
is shown in Figure 6.8.
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Figure 6.8: Fixed ratio between distance of airways and vertebral can be measured in each slice
of CT and CBCT.

6.4 Texture Analysis Pre-Segmentation of Lung Dataset

Texture analysis has been widely used for characterising the irregularity in medical images
and for extracting quantitative information not necessarily visible to the naked eye. In this
work second-order texture features introduced in Chapter 3, based on the GLCM in [94],
were calculated on the GTV region present on each CBCT. The pixel values on the CBCT
images were replaced by the texture feature values and these textured images were used
as the image for Chan-Vese level set evolution. Figure 6.9 shows examples of the CBCT
images and the contours produced by level set with and without being combined with
textured features. Columns b. and c. compared when level set only was applied on CBCT
images and when it was applied on sum variance of the same image.

Of the fourteen features used, the image produced by the sum variance feature consistently
produced the best results. This is shown in Figure 6.9, where the blue contour is the
clinical contour and the red contour is the level set. Patient 3 has a small piece of tumour
on his left lung which level set alone was not able to detect. but by applying level set
on top of sum variance, the tumour is picked up. It is a small example which shows the
improvement of level set when it is combined with texture analysis.
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Figure 6.9: Level set comparison on registered CBCT images and their textured images for five
patients, a. Level set on registered CBCT image, b. cropped region of interest in each patient of
previous part and c. cropped region of interest when level set on textured images is applied (blue
contour is GTV and red contour is level set).

6.5 Results and Discussion

As explained in Section 5.4 different level set methods and different texture features were
tested in different combinations. The best combination resulted from textures combined
by level set when the GTV was the initial contour for level set. As the oncologist chose
the three best models, Figure 6.10 shows the performance of these three models on Patient
26.
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Figure 6.11 shows the results of Model m on the shrinkage of CBCT #10 of Patient 26.
Their tumour shrinkage might be more visible in the upper right slice, however the ability
of proposed model is shown on the lower right image where nothing is clear. From the
upper image, it is obvious that tumour responded well to RT but the lower image is the
interesting unknown for clinicians. This model would be a great help when the tumour is
hidden between different tissues.

Figure 6.11: Patient 26: Combined sum variance and Li level set method on CBCT #10.

The Figure 6.12 illustrates the Dice coefficient comparison between the three selected
contours by the oncologist and GTV on planning-CT for all fifty patients on CBCT #10.
Model g has the highest Dice coefficient for all patients which highlights the inability of
this method to move far from the initial point. Models m and e have the best performance
with generally more than 50% similarity with GTV, as should be expected after almost one
third of the RT procedure having been performed. All models are the selected performers
by the oncologist. In general, the performance of Model g leads Model g and also Model
m by comparing their Dice coefficients. Although all models perform well.
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Figure 6.12: The strength of proposed models (e, m and g) on CBCT #10 by comparing the Dice
coefficient for all fifty patients compared to the relevant GTV, Model m in blue, Model e in red
and Model g in green. All models are the selected performers by the oncologist. In general, the
performance of Model g leads Model g and also Model m by comparing their Dice coefficients.

Figure 6.13 shows Dice coefficient measurement between GTV and proposed Model o
for one randomly selected slice per patient shown in 6.14 of all fifty patients. This figure
illustrates the volume of tumour at the same time.

Figure 6.13: The strength of proposed model (Model o) by comparing the Dice coefficient for fifty
patients compared to area of the tumour on CBCT #10-11.

The volume and response of a tumour affects the whole RT and image analysis. Smaller
tumours and those higher up in the chest cavity are less affected by breathing, therefore
from an imaging point of view the images are less distorted by breathing movements. Fig-
ure 6.14 illustrates the position and volume of all patients in the dataset from transverse,
frontal and sagittal views. The depth for these images inside the body are approximately
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in the middle section of human lungs. This image illustrates the exact GTV boundary
in upper bust area in all views. Most patients suffered from tumours in the middle or
connected between both lungs and are categorized mostly as stage III or IV, shown in
Figure 2.4. Figure 6.14 shows that some patients have two or more regions of tumour on
the selected CT image such as Patient 16 has two regions on Slice 49 or Patient 24 has
two regions on Slice 52 and Patient 27 has no GTV on its data.

Figure 6.14: Lung tumour GTV distribution for all fifty patients from transverse, frontal and sagittal
views on a randomly selected CT slice per patient, a. Patient 1 to Patient 10, b. Patient 11 to
Patient 20, c. Patient 21 to Patient 30, d. Patient 31 to Patient 40 and e. Patient 41 to Patient 50.
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The volume as well as position of the tumour can affect the accuracy of the proposed
model. The quantitative analysis is not very reliable since the tumour is located in the
middle area of the lungs. Airways, vessels, oesophagus, the heart and many other organs
are compacted inside rib cage. Based on the clinician’s experience and situation of the
patients, they can contour the GTV to include or exclude different organs which are not
thought to be cancerous. The oncologist mentioned that the proposed model can be wrong
when Dice coefficient presents strangely since the GTV itself might not be accurate.
Although his viewpoint was confidently affirmative when the tumour was just on one
lung, when the tumour is distributed in different organs, especially in the middle sections
between lungs, the texture analysis would not improve level set’s performance as the
texture for different organs is different. Therefore the texture changes would mislead the
level set.

6.6 Conclusions

In this chapter, the pre-processing algorithms, registration, validation, texture features
and segmentations applied on test datasets were discussed. Re-sampling was applied on
lung CBCT images. The clinical registration algorithm presented was devised based on
clinical RT information embedded in the images by applying the affine transform based on
three transformation scales and rotation data from CBCT image domain to its RT domain
followed by CBCT RT domain to CT RT domain and finally from CT RT domain to CT
image domain.

The proposed combined texture and level set framework demonstrates that by using prior
information from pre-treatment images it is possible to automatically segment the GTV
on post-RT images with acceptable clinical accuracy. This method was applied to fifty
different patients with different types and stages of lung cancer. All of which prove that
this model can have a very high accuracy for patients with tumours inside the lungs.
However for cases where tumours grow in between organs and include several parts, the
segmentation results are not reliable. This can be explained for cases where airways are
included inside the GTV because there is no harm of radiating inside GTV as it is hollow
but the proposed level set cannot segment airways as a tumour. The oncologist believed
that the proposed model is working well when the tumour shape and location is not
complicated. The oncologist approved the robustness of combined models and accepted
their performance accuracy even for complicated cases, but since the delineated GTV is
different it cannot be quantitatively graded.



Chapter 7

Conclusion and Suggestions for

Future Work

7.1 Conclusion
There is a need in RT treatment of cancer to identify and segment tumours. The use
of semi or fully automatic segmentation approaches can help to increase accuracy and
reduce the time spent by doctors defining target radiation volumes. Lung cancer RT has
been always a very challenging area in the UK as the image modalities are restricted to
planning-CT before treatment and CBCT during the course of treatment. The proposed
approach in analysing lung tumours based on CBCT images would help the clinicians to
better estimate the location and size of the tumour which is not really visible to the naked
eye.

This thesis describes research to develop novel tumour shape analysis models based
on texture and level set methods which is capable of improving the off-line ART for
lung cancer disease. The improvement of the proposed combined model over level set
segmentation alone is illustrated in this research. However, combining texture technique
and level set model needs consideration in many factors. First is the matter of choosing
the appropriate method from each technique that can combine properly as well as perform
satisfactorily on lung CBCT images. Literature reviews in addition to experiments helped
in choosing Chan-Vese and Li models for level set and Haralick features as texture tech-
niques. Many combinations in different orders were applied and gave the best combination
of sum variance and two-phase Chan-Vese/Li method. The second challenging issue in
the proposed model was initialisation as level set can be very dependent to it. This issue
was solved by using GTV on CT images and clinical registration to map them on CBCT
images. The most and third challenging issue was parameter setting for level set which
can influence its success or failure. The absence of ground truth and the poor quality
of level set restricts each of the combined models, therefore different combinations of
parameters had to be tested on each CBCT slice. A threshold was set to find the Dice
coefficient between GTV and the proposed model’s level set segmentation on CBCT #1.
This recursive parameter tuning was successful in finding the most suitable parameters for
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each slice of its relevant CBCT #10. Sum variance and Chan-Vese as well as sum variance
and Li methods were both performing well for lung dataset. Although one can perform
better than the other for some slices of CBCT for the same fraction of the same patient
and can perform weaker than for the remaining slices.

As there is no gold standard for any of these contours, comparing was not yet possible, so
the GTV is used for initializing level set but the final segmented result cannot be compared
with any fine answer as it is difficult for doctors to delineate the contours of lung tumours
on CBCT images. It makes this work more challenging since any of the contours with any
parameter may or may not be correct but the final decision was made by the oncologist.

Since the parameter setting was a very challenging issue in this research and in general
in most medical imaging in the absence of gold standard. Also, as mentioned earlier,
sum variance combined with Chan-Vese and Li methods can perform well but can be
further improved. Therefore a new novel level set method was proposed which was taking
advantage of the performance of two or more different level set methods in the vector-
valued level set shape. This benefited the proposed combined texture and level set model
even further as choosing two models with slight different parameters could eliminate
the error from the wrong method which could not suit the segmentation image. The
proposed model can be combined in multi-phase level set method as well as combination
of different other level set methods but the combination of Chan-Vese and Li models in
parallel on the sum variance texture image was chosen for the lung data.

The proposed model was applied on non-medical and brain MRI images as well in Chap-
ter 4 also in Chapter 5, Patient 25 is the only case in lung dataset who had GTV on CBCTs.
Patient 25 was a great approval for the robustness of the proposed models. The proposed
combined sum variance and parallel level sets model demonstrated the 30% shrinkage
on the CBCT #10 compared to the GTV on planning-CT as it was expected. This model
demonstrated almost 90% of Dice coefficient between each segmentation and its relevant
GTV on CBCT#10 as well as CBCT#10.

The outcome of analysis in Chapter 4 and Chapter 5 helped the improvement of the
proposed model for all fifty lung cases. Chapter 6 showed the results and introduced this
model as an assistant to the medical team during the course of lung cancer RT. Chapter 6
provided the results of Dice coefficient between proposed models and GTV on planning-
CT data. Also the area of GTV was compared against the proposed parallel level sets
to show the expected changes compared to the area overlap. These models can be very
helpful to the expert oncologists and can be used in offline ART for this data and also for
other similar medical imaging RT applications.
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The oncologist approved the ability of the proposed models. For some cases where the
shape of tumour was complicated and grew in different organs, the oncologist still com-
mented that the proposed model can be correct but there is no possible way of seeing the
real tumour.

7.2 Suggestions for Future Work

Future work will focus on considering different texture parameters in different depths of
the body as the texture of the same patient would vary slightly during image acquisition
at these different depth. Also using the new generation of CBCT images which are more
accurate in quality in 4D can help better analysis of lung tumours for RT purposes.

Another worthwhile approach might be combining level set with Markov random fields
to form a dedicated platform. This approach would be widely applicable and could be
developed on a range of clinical data especially lung cancer.

One drawback of this work is the lack of data, as there is no gold standard. In most
medical image contouring, clinicians are not 100% confident with the boundary they
delineated. Two different oncologists might have different opinions with regards to the
details of the tumour shape even on good quality images like MRI or CT. Therefore,
applying this model on other datasets would be a great help for oncologists and provide
better evaluation for the model.

Another suggestion is considering 3D texture analysis on the same data. The changes over
the volume can give 3D texture analysis as well as more freedom to level set to evolve in
3D.

Detecting any similarity of changes for a cancerous region of different tissues would be
the best method of analysis. Doctors spend time in changing intensity enhancement slice
by slice to detect the tumours, also based on experience and the knowledge they gain
through treating patients. A future work would be developing deep learning algorithms to
detect the shapes, easier direction of growth for the tumour as well as intensity change
speed based on the tissue type and neighbourhood regions which helps in finding the
relativity of cancerous cells with each other.



Appendix A

Description of Lung Dataset

A.1 Image Details of Lung Dataset

The main dataset used in this thesis is shown in Table A.1 which includes the CT and
CBCT images details for all fifty patients. The table shows the main characteristic of each
image sequence which are used for the pre-processing and registration purposes such as
pixel and voxel sizes.

Case Modality Slice No Date Pixel Size Slice Thickness

Patient 1 CT 107 30-01-2010 512 ×512 3mm
CBCT #10 53 30-04-2010 384 ×384 3mm

Patient 2 CT 123 06-04-2010 512 ×512 3mm
CBCT #10 53 05-05-2010 384 ×384 3mm

Patient 3 CT 124 27-04-2010 512 ×512 3mm
CBCT #1 53 10-05-2010 384 ×384 3mm
CBCT #10 53 21-05-2010 384 ×384 3mm

Patient 4 CT 111 18-05-2010 512 ×512 3mm
CBCT #1 53 08-06-2010 384 ×384 3mm
CBCT #10 53 22-06-2010 384 ×384 3mm

Patient 5 CT 111 08-06-2010 512 ×512 3mm
CBCT #1 53 21-06-2010 384 ×384 3mm
CBCT #6 53 28-06-2010 384 ×384 3mm
CBCT #11 53 07-08-2010 384 ×384 3mm

Patient 6 CT 110 13-09-2011 512 ×512 3mm
CBCT #1 53 26-09-2011 384 ×384 1mm
CBCT #11 53 10-10-2011 384 ×384 1mm

Patient 7 CT 144 21-09-2010 512 ×512 3mm
CBCT #1 53 08-10-2010 384 ×384 3mm
CBCT #10 53 15-10-2010 384 ×384 3mm

Patient 8 CT 116 16-11-2010 512 ×512 3mm
CBCT #1 53 30-11-2010 384 ×384 1mm
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CBCT #10 53 10-12-2010 384 ×384 1mm

Patient 9 CT 121 25-01-2011 512 ×512 3mm
CBCT #1 53 14-02-2011 384 ×384 1mm
CBCT #10 53 28-02-2011 384 ×384 1mm

Patient 10 CT 111 18-01-2011 512 ×512 3mm
CBCT #1 53 07-02-2011 384 ×384 1mm
CBCT #10 53 21-02-2011 384 ×384 1mm

Patient 11 CT 118 21-06-2011 512 ×512 3mm
CBCT #1 53 05-07-2011 384 ×384 1mm
CBCT #10 53 18-07-2011 384 ×384 1mm

Patient 12 CT 102 16-07-2010 512 ×512 3mm
CBCT #1 53 19-07-2010 384 ×384 3mm
CBCT #10 53 30-07-2010 384 ×384 3mm

Patient 13 CT 120 29-06-2011 512 ×512 3mm
CBCT #1 53 03-08-2011 384 ×384 1mm
CBCT #10 53 16-08-2011 384 ×384 1mm

Patient 14 CT 97 27-07-2010 512 ×512 3mm
CBCT #1 53 10-08-2010 384 ×384 3mm
CBCT #10 53 23-08-2010 384 ×384 3mm

Patient 15 CT 100 10-09-2010 512 ×512 3mm
CBCT #1 53 27-09-2010 384 ×384 3mm

Patient 16 CT 117 05-01-2011 512 ×512 3mm
CBCT #1 53 19-01-2011 384 ×384 1mm
CBCT #10 53 01-02-2011 384 ×384 1mm

Patient 17 CT 117 22-06-2010 512 ×512 3mm
CBCT #1 53 05-07-2010 384 ×384 3mm
CBCT #10 53 16-07-2010 384 ×384 3mm

Patient 18 CT 121 26-10-2010 512 ×512 3mm
CBCT #1 53 08-11-2010 384 ×384 1mm
CBCT #10 53 22-11-2010 384 ×384 1mm

Patient 19 CT 131 17-08-2010 512 ×512 3mm
CBCT #1 53 31-08-2010 384 ×384 3mm
CBCT #10 53 13-09-2010 384 ×384 3mm

Patient 20 CT 100 20-07-2010 512 ×512 3mm
CBCT #1 53 02-08-2010 384 ×384 3mm
CBCT #10 53 13-08-2010 384 ×384 3mm

Patient 21 CT 112 24-05-2011 512 ×512 3mm
CBCT #1 53 06-06-2011 384 ×384 1mm
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CBCT #10 53 17-06-2011 384 ×384 1mm

Patient 22 CT 109 07-09-2011 512 ×512 3mm
CBCT #1 53 20-09-2011 384 ×384 1mm
CBCT #10 53 05-10-2011 384 ×384 1mm

Patient 23 CT 106 04-10-2011 512 ×512 3mm
CBCT #1 53 17-10-2011 384 ×384 1mm
CBCT #10 53 28-10-2011 384 ×384 1mm

Patient 24 CT 124 06-09-2011 512 ×512 3mm
CBCT #1 53 20-09-2011 384 ×384 1mm
CBCT #10 53 04-10-2011 384 ×384 1mm

Patient 25 CT 130 10-05-2011 512 ×512 3mm
CBCT #1 64 23-05-2011 384 ×384 1mm
CBCT #10 54 10-06-2011 384 ×384 1mm

Patient 26 CT 126 05-10-2010 512 ×512 3mm
CBCT #1 52 18-10-2010 384 ×384 3mm
CBCT #10 54 01-11-2010 384 ×384 1mm

Patient 27 CT 127 06-09-2011 512 ×512 3mm
CBCT #1 53 19-09-2011 384 ×384 1mm
CBCT #10 53 30-09-2011 384 ×384 1mm

Patient 28 CT 121 10-12-2010 512 ×512 3mm
CBCT #1 53 20-12-2010 384 ×384 1mm
CBCT #10 53 06-01-2011 384 ×384 1mm

Patient 29 CT 104 26-04-2011 512 ×512 3mm
CBCT #1 53 13-05-2011 384 ×384 1mm
CBCT #10 53 26-05-2011 384 ×384 1mm

Patient 30 CT 121 07-06-2011 512 ×512 3mm
CBCT #1 53 20-06-2011 384 ×384 1mm
CBCT #10 53 01-07-2011 384 ×384 1mm

Patient 31 CT 95 15-06-2010 512 ×512 3mm
CBCT #1 53 28-06-2010 384 ×384 3mm
CBCT #10 53 12-07-2010 384 ×384 3mm

Patient 32 CT 117 27-09-2011 512 ×512 3mm
CBCT #1 53 10-10-2011 384 ×384 1mm
CBCT #10 53 21-10-2011 384 ×384 1mm

Patient 33 CT 137 01-02-2011 512 ×512 3mm
CBCT #1 53 14-02-2011 384 ×384 1mm
CBCT #10 53 25-02-2011 384 ×384 1mm

Patient 34 CT 137 28-06-2011 512 ×512 3mm
CBCT #1 53 12-07-2011 384 ×384 1mm
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CBCT #3 53 14-07-2011 384 ×384 1mm
CBCT #4 53 15-07-2011 384 ×384 1mm
CBCT #6 53 19-07-2011 384 ×384 1mm
CBCT #7 53 20-07-2011 384 ×384 1mm
CT 127 14-07-2011 512 ×512 3mm
CBCT #11 53 26-07-2011 384 ×384 1mm
CBCT #14 53 29-07-2011 384 ×384 1mm
CBCT #17 53 03-08-2011 384 ×384 1mm

Patient 35 CT 115 19-07-2011 512 ×512 3mm
CBCT #1 53 01-08-2011 384 ×384 1mm
CBCT #10 53 10-08-2011 384 ×384 1mm

Patient 36 CT 113 23-08-2011 512 ×512 3mm
CBCT #1 53 05-09-2011 384 ×384 1mm
CBCT #10 53 09-09-2011 384 ×384 1mm

Patient 37 CT 111 24-05-2011 512 ×512 3mm
CBCT #1 53 06-06-2011 384 ×384 1mm
CBCT #10 53 21-06-2011 384 ×384 1mm

Patient 38 CT 110 16-08-2011 512 ×512 3mm
CBCT #1 53 29-08-2011 384 ×384 1mm
CBCT #10 53 09-09-2011 384 ×384 1mm

Patient 39 CT 115 14-09-2011 512 ×512 3mm
CBCT #1 53 26-09-2011 384 ×384 1mm
CBCT #10 53 07-10-2011 384 ×384 1mm

Patient 40 CT 130 04-05-2011 512 ×512 3mm
CBCT #1 53 23-05-2011 384 ×384 1mm
CBCT #10 53 03-06-2011 384 ×384 1mm

Patient 41 CT 112 03-08-2011 512 ×512 3mm
CBCT #1 53 16-08-2011 384 ×384 3mm
CBCT #10 53 30-08-2011 384 ×384 3mm

Patient 42 CT 93 03-08-2010 512 ×512 3mm
CBCT #1 53 16-08-2010 384 ×384 3mm
CBCT #10 53 30-08-2011 384 ×384 3mm

Patient 43 CT 118 20-09-2011 512 ×512 3mm
CBCT #1 53 03-10-2011 384 ×384 1mm
CBCT #10 53 14-10-2011 384 ×384 1mm

Patient 44 CT 108 17-05-2011 512 ×512 3mm
CBCT #1 53 02-06-2011 384 ×384 1mm
CBCT #10 53 16-06-2011 384 ×384 1mm

Patient 45 CT 120 02-08-2011 512 ×512 3mm
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CBCT #1 53 15-08-2011 384 ×384 1mm
CBCT #10 53 26-08-2011 384 ×384 1mm

Patient 46 CT 108 20-07-2010 512 ×512 3mm
CBCT #1 53 02-08-2010 384 ×384 3mm
CBCT #10 53 13-08-2010 384 ×384 3mm

Patient 47 CT 119 21-06-2011 512 ×512 3mm
CBCT #1 53 06-07-2011 384 ×384 1mm
CBCT #10 53 20-07-2011 384 ×384 1mm

Patient 48 CT 99 03-08-2010 512 ×512 3mm
CBCT #10 53 30-08-2010 384 ×384 3mm

Patient 49 CT 106 27-07-2010 512 ×512 3mm
CBCT #10 53 23-08-2010 384 ×384 3mm

Patient 50 CT 105 11-09-2010 512 ×512 3mm
CBCT #1 53 20-09-2011 384 ×384 3mm
CBCT #10 53 04-10-2011 384 ×384 3mm

Table A.1: Image details of lung dataset used to test the novel proposed combined texture and
level set framework including fifty patients.

A.2 GTV on CT Images for All Fifty Patients

Figures A.1, A.2 and A.3 illustrate the montage form of planning-CT images for patients
25, 26 and 34 respectively. In each figure, all of the slices acquired during CT scan is
shown as well as the GTV delineated for the slices containing the tumour.
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Figure A.1: Montage illustration of planning-CT images for Patient 25 including GTV (by the
oncologist) in red on slices which contain the tumour.
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Figure A.2: Montage illustration of planning-CT images for Patient 26 including GTV (by the
oncologist) in red on slices which contain the tumour.
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Figure A.3: Montage illustration of planning-CT images for Patient 34 including GTV (by the
oncologist) in red on slices which contain the tumour.



Appendix B

Results of Different Parameter Sets for

Level Set

The figures in this Appendix show different parameter settings for level set methods on
different patients and their different CBCT images. Figure B.1 to Figure B.5 illustrate
Patient 2 for all of its slices containing the tumour. Figure B.6 to Figure B.8 show Patient
3 for slices 23 to 25. Figure B.9 to Figure B.11 demonstrates different parameters combi-
nations for Patient 4 slices 14 to 16. Finally, Patient 5 is shown in Figure B.12 for Slice
23 until Figure B.14 for Slice 25.

Figure B.1: Performance of different combinations with different parameters for lung CBCT image
tumour segmentation, Patient 2-Slice 40: a. planning-CT, b. CBCT #1, c. cropped part of of part
c with clinical GTV, d. Li model on CBCT using GTV as its initial contour, e. Chan-Vese model
on CBCT using centre of GTV as its initial contour, f. Li model on CBCT using centre of GTV
as its initial contour, g. Chan-Vese model on texture image using GTV as its initial contour, h.
Li model on PCA image using GTV as its initial contour, i. Chan-Vese model on vector-valued
texture image using centre of GTV as its initial contour, j. Li model on PCA image using centre
of GTV as its initial contour, k. Chan-Vese model on PCA image using GTV as its initial contour,
l. Chan-Vese on CBCT using GTV as its initial contour and m. Chan-Vese model on PCA image
using centre of GTV as its initial contour.
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Figure B.2: Performance of different combinations with different parameters for lung CBCT image
tumour segmentation, Patient 2-Slice 42: a. planning-CT, b. CBCT #1, c. cropped part of of part
c with clinical GTV, d. Li model on CBCT using GTV as its initial contour, e. Chan-Vese model
on CBCT using centre of GTV as its initial contour, f. Li model on CBCT using centre of GTV
as its initial contour, g. Chan-Vese model on texture image using GTV as its initial contour, h.
Li model on PCA image using GTV as its initial contour, i. Chan-Vese model on vector-valued
texture image using centre of GTV as its initial contour, j. Li model on PCA image using centre
of GTV as its initial contour, k. Chan-Vese model on PCA image using GTV as its initial contour,
l. Chan-Vese on CBCT using GTV as its initial contour and m. Chan-Vese model on PCA image
using centre of GTV as its initial contour.
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Figure B.3: Performance of different combinations with different parameters for lung CBCT image
tumour segmentation, Patient 2-Slice 43: a. planning-CT, b. CBCT #1, c. registered CBCT, d.
cropped part of of part c with clinical GTV, e. Li model on CBCT using GTV as its initial contour,
f. Chan-Vese model on CBCT using centre of GTV as its initial contour, g. Li model on CBCT
using centre of GTV as its initial contour, h. Chan-Vese model on texture image using GTV as its
initial contour, i. Li model on PCA image using GTV as its initial contour, j. Chan-Vese model on
vector-valued texture image using centre of GTV as its initial contour, k. Li model on PCA image
using centre of GTV as its initial contour, l. Chan-Vese model on PCA image using GTV as its
initial contour, m. Chan-Vese on CBCT using GTV as its initial contour and n. Chan-Vese model
on PCA image using centre of GTV as its initial contour
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Figure B.4: Performance of different combinations with different parameters for lung CBCT image
tumour segmentation, Patient 2-Slice 44: a. Planning-CT, b. CBCT #1, c. Registered CBCT, d.
Cropped part of of part c with clinical GTV, e. Li model on CBCT using GTV as its initial contour,
f. Chan-Vese model on CBCT using centre of GTV as its initial contour, g. Li model on CBCT
using centre of GTV as its initial contour, h. Chan-Vese model on texture image using GTV as its
initial contour, i. Li model on PCA image using GTV as its initial contour, j. Chan-Vese model on
vector-valued texture image using centre of GTV as its initial contour, k. Li model on PCA image
using centre of GTV as its initial contour, l. Chan-Vese model on PCA image using GTV as its
initial contour, m. Chan-Vese on CBCT using GTV as its initial contour and n. Chan-Vese model
on PCA image using centre of GTV as its initial contour
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Figure B.5: Performance of different combinations with different parameters for lung CBCT image
tumour segmentation, Patient 2-Slice 45: a. Planning-CT, b. CBCT #1, c. Registered CBCT, d.
Cropped part of of part c with clinical GTV, e. Li model on CBCT using GTV as its initial contour,
f. Chan-Vese model on CBCT using centre of GTV as its initial contour, g. Li model on CBCT
using centre of GTV as its initial contour, h. Chan-Vese model on texture image using GTV as its
initial contour, i. Li model on PCA image using GTV as its initial contour, j. Chan-Vese model on
vector-valued texture image using centre of GTV as its initial contour, k. Li model on PCA image
using centre of GTV as its initial contour, l. Chan-Vese model on PCA image using GTV as its
initial contour, m. Chan-Vese on CBCT using GTV as its initial contour and n. Chan-Vese model
on PCA image using centre of GTV as its initial contour
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Figure B.6: Performance of different combinations with different parameters for lung CBCT image
tumour segmentation, Patient 3-Slice 23: a. planning-CT, b. CBCT #1, c. registered CBCT, d.
cropped part of of part c with clinical GTV, e. Li model on CBCT using GTV as its initial contour,
f. Chan-Vese model on CBCT using centre of GTV as its initial contour, g. Li model on CBCT
using centre of GTV as its initial contour, h. Chan-Vese model on texture image using GTV as its
initial contour, i. Li model on PCA image using GTV as its initial contour, j. Chan-Vese model on
vector-valued texture image using centre of GTV as its initial contour, k. Li model on PCA image
using centre of GTV as its initial contour, l. Chan-Vese model on PCA image using GTV as its
initial contour, m. Chan-Vese on CBCT using GTV as its initial contour and n. Chan-Vese model
on PCA image using centre of GTV as its initial contour
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Figure B.7: Performance of different combinations with different parameters for lung CBCT image
tumour segmentation, Patient 3-Slice 24: a. Planning-CT, b. CBCT #1, c. Registered CBCT, d.
Cropped part of of part c with clinical GTV, e. Li model on CBCT using GTV as its initial contour,
f. Chan-Vese model on CBCT using centre of GTV as its initial contour, g. Li model on CBCT
using centre of GTV as its initial contour, h. Chan-Vese model on texture image using GTV as its
initial contour, i. Li model on PCA image using GTV as its initial contour, j. Chan-Vese model on
vector-valued texture image using centre of GTV as its initial contour, k. Li model on PCA image
using centre of GTV as its initial contour, l. Chan-Vese model on PCA image using GTV as its
initial contour, m. Chan-Vese on CBCT using GTV as its initial contour and n. Chan-Vese model
on PCA image using centre of GTV as its initial contour
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Figure B.8: Performance of different combinations with different parameters for lung CBCT image
tumour segmentation, Patient 3-Slice 25: a. planning-CT, b. CBCT #1, c. registered CBCT, d.
cropped part of of part c with clinical GTV, e. Li model on CBCT using GTV as its initial contour,
f. Chan-Vese model on CBCT using centre of GTV as its initial contour, g. Li model on CBCT
using centre of GTV as its initial contour, h. Chan-Vese model on texture image using GTV as its
initial contour, i. Li model on PCA image using GTV as its initial contour, j. Chan-Vese model on
vector-valued texture image using centre of GTV as its initial contour, k. Li model on PCA image
using centre of GTV as its initial contour, l. Chan-Vese model on PCA image using GTV as its
initial contour, m. Chan-Vese on CBCT using GTV as its initial contour and n. Chan-Vese model
on PCA image using centre of GTV as its initial contour
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Figure B.9: Performance of different combinations with different parameters for lung CBCT image
tumour segmentation, Patient 4-Slice 14: a. planning-CT, b. CBCT #1, c. registered CBCT, d.
cropped part of of part c with clinical GTV, e. Li model on CBCT using GTV as its initial contour,
f. Chan-Vese model on CBCT using centre of GTV as its initial contour, g. Li model on CBCT
using centre of GTV as its initial contour, h. Chan-Vese model on texture image using GTV as its
initial contour, i. Li model on PCA image using GTV as its initial contour, j. Chan-Vese model on
vector-valued texture image using centre of GTV as its initial contour, k. Li model on PCA image
using centre of GTV as its initial contour, l. Chan-Vese model on PCA image using GTV as its
initial contour, m. Chan-Vese on CBCT using GTV as its initial contour and n. Chan-Vese model
on PCA image using centre of GTV as its initial contour
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Figure B.10: Performance of different combinations with different parameters for lung CBCT
image tumour segmentation, Patient 4-Slice 15: a. planning-CT, b. CBCT #1, c. registered CBCT,
d. cropped part of of part c with clinical GTV, e. Li model on CBCT using GTV as its initial contour,
f. Chan-Vese model on CBCT using centre of GTV as its initial contour, g. Li model on CBCT
using centre of GTV as its initial contour, h. Chan-Vese model on texture image using GTV as its
initial contour, i. Li model on PCA image using GTV as its initial contour, j. Chan-Vese model on
vector-valued texture image using centre of GTV as its initial contour, k. Li model on PCA image
using centre of GTV as its initial contour, l. Chan-Vese model on PCA image using GTV as its
initial contour, m. Chan-Vese on CBCT using GTV as its initial contour and n. Chan-Vese model
on PCA image using centre of GTV as its initial contour
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Figure B.11: Performance of different combinations with different parameters for lung CBCT
image tumour segmentation, Patient 4-Slice 16: a. planning-CT, b. CBCT #1, c. registered CBCT,
d. cropped part of of part c with clinical GTV, e. Li model on CBCT using GTV as its initial contour,
f. Chan-Vese model on CBCT using centre of GTV as its initial contour, g. Li model on CBCT
using centre of GTV as its initial contour, h. Chan-Vese model on texture image using GTV as its
initial contour, i. Li model on PCA image using GTV as its initial contour, j. Chan-Vese model on
vector-valued texture image using centre of GTV as its initial contour, k. Li model on PCA image
using centre of GTV as its initial contour, l. Chan-Vese model on PCA image using GTV as its
initial contour, m. Chan-Vese on CBCT using GTV as its initial contour and n. Chan-Vese model
on PCA image using centre of GTV as its initial contour
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Figure B.12: Performance of different combinations with different parameters for lung CBCT
image tumour segmentation, Patient 5-Slice 23: a. planning-CT, b. CBCT #1, c. registered CBCT,
d. cropped part of of part c with clinical GTV, e. Li model on CBCT using GTV as its initial contour,
f. Chan-Vese model on CBCT using centre of GTV as its initial contour, g. Li model on CBCT
using centre of GTV as its initial contour, h. Chan-Vese model on texture image using GTV as its
initial contour, i. Li model on PCA image using GTV as its initial contour, j. Chan-Vese model on
vector-valued texture image using centre of GTV as its initial contour, k. Li model on PCA image
using centre of GTV as its initial contour, l. Chan-Vese model on PCA image using GTV as its
initial contour, m. Chan-Vese on CBCT using GTV as its initial contour and n. Chan-Vese model
on PCA image using centre of GTV as its initial contour
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Figure B.13: Performance of different combinations with different parameters for lung CBCT
image tumour segmentation, Patient 5-Slice 24: a. planning-CT, b. CBCT #1, c. registered CBCT,
d. cropped part of of part c with clinical GTV, e. Li model on CBCT using GTV as its initial contour,
f. Chan-Vese model on CBCT using centre of GTV as its initial contour, g. Li model on CBCT
using centre of GTV as its initial contour, h. Chan-Vese model on texture image using GTV as its
initial contour, i. Li model on PCA image using GTV as its initial contour, j. Chan-Vese model on
vector-valued texture image using centre of GTV as its initial contour, k. Li model on PCA image
using centre of GTV as its initial contour, l. Chan-Vese model on PCA image using GTV as its
initial contour, m. Chan-Vese on CBCT using GTV as its initial contour and n. Chan-Vese model
on PCA image using centre of GTV as its initial contour
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Figure B.14: Performance of different combinations with different parameters for lung CBCT
image tumour segmentation, Patient 5-Slice 25: a. planning-CT, b. CBCT #1, c. registered CBCT,
d. cropped part of of part c with clinical GTV, e. Li model on CBCT using GTV as its initial contour,
f. Chan-Vese model on CBCT using centre of GTV as its initial contour, g. Li model on CBCT
using centre of GTV as its initial contour, h. Chan-Vese model on texture image using GTV as its
initial contour, i. Li model on PCA image using GTV as its initial contour, j. Chan-Vese model on
vector-valued texture image using centre of GTV as its initial contour, k. Li model on PCA image
using centre of GTV as its initial contour, l. Chan-Vese model on PCA image using GTV as its
initial contour, m. Chan-Vese on CBCT using GTV as its initial contour and n. Chan-Vese model
on PCA image using centre of GTV as its initial contour
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