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Abstract

The detection of micro-embolic signals (MES) is a mature application of transcra-

nial Doppler (TCD) ultrasound. It involves the identification of abnormally high-

pitched signals within the arterial waveform as a method of diagnosis and predic-

tion of embolic complications in stroke patients. More recently, algorithms have

been developed to help characterise and classify MES using advanced signal pro-

cessing techniques. These advances aim to improve our understanding of the causes

of cereberovascular disease, helping to target the most appropriate interventions

and quantifying the risk to patients of further stroke events. However, there are a

number of limitations with current TCD systems which reduce their effectiveness.

In particular, improvements in our understanding of the scattering effects in TCD

ultrasound propagation channels will benefit our ability to develop algorithms that

more robustly and reliably identify the consistency and material make-up of MES.

This thesis explores TCD propagation channels in three related research areas.

Firstly, a method of characterising TCD ultrasound propagation channels is pro-

posed. Isotropic and non-isotropic three dimensional space (3-D) spherical scatter-

ing channel models are described in terms of theoretical reference models, simulation

models, and sum of sinusoids (SoS) simulators, allowing the statistical properties to

be analysed and reported. Secondly, a TCD ultrasound medical blood flow phantom

is described. The phantom, designed to replicate blood flow in the middle cerebral

arteries (MCA) for TCD ultrasound studies, is discussed in terms of material selec-

tion, physical construction and acoustic characteristics, including acoustic velocity,

attenuation and backscatter coefficients. Finally, verification analysis is performed

on the non-isotropic models against firstly, the blood flow phantom, and secondly,

a patient recordings database. This analysis expands on areas of agreement and

disagreement before assessing the usefulness of the models and describing their po-

tential to improve signal processing approaches for detection of MES.

The proposed non-isotropic channel reference model, simulation model, SoS sim-

ulator, and blood flow phantom are expected to contribute to improvements in the

design, testing, and performance evaluation of future TCD ultrasound systems.
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Glossary

A-mode Amplitude mode is the simplest type of ultrasound system. A single

transducer scans a line through a region of interest (ROI). The echoes are

plotted on a screen to produce an image. The image has depth information

on one axis and received echo amplitude on the other. 10

axial resolution This is the minimum reflector separation required along the di-

rection of sound travel (along the scan line) to produce separate echoes. Axial

resolution is equal to one half the spatial pulse length, i.e. (nλ)/2. 38

B-mode Brightness mode uses a linear array of transducers to simultaneously scan

a plane through a ROI. The pulse from each transducer in the array creates a

scan line. Along this scan line, the encoded brightness is proportional to the

amplitude of the returned echo as the depth increases. By combining multiple

scan lines, where each scan line is a one-dimensional image, a two dimensional

image is created. 10

circle of Willis Named after the 17th century physician and neuroanatomist, this

term is used to describe the system of arteries formed near the centre of the

base of the brain. 15

embolism An obstruction or blockage in a blood vessel caused by an embolus while

traveling through the bloodstream. 1

embolus A blood clot, gas bubble, piece of fatty deposit, calcified plaque, or other

object which has been carried in the bloodstream to lodge in a vessel and cause

an embolism, pl. emboli. 5
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erythrocytes Red blood cells. They are biconcave and discoidal. They are ap-

proximately 8 µm in diameter and 2 µm thick. 14

haemodynamics The study of the movement and forces of circulating blood flows.

11

infarcation The process of tissue damage and death due to the lack of blood flow

and the resulting shortage of oxygen and glucose. 1

insonate To expose to ultrasound waves. 15

ischemia A restriction or blockage of the vascular system leading to a reduction in

blood and a shortage of oxygen and glucose resulting in tissue damage. 1

leukocytes White blood cells. These are approximately spherical and 5 to 20 µm

in diameter. 14

M-mode Motion mode is derived from a B-Mode scan. It captures a ROI corre-

sponding to a single scan line which is displayed relative to time so that tissue

along the ROI can be seen to change over time. 18

mechanical index The mechanical index (MI) is proportional to an ultrasound

beam’s peak negative pressure. It is an indication of an ultrasound beam’s

ability to cause cavitation-related bio-effects (micro mechanical damage). A

higher mechanical index means a larger bio-effect. 38

plasma A clear yellow cell-free fluid that contains no objects bigger than platelets

cells that are approximately 1 to 3 µm in diameter and are responsible for the

clotting reaction in blood. 14

platelets Discoid or irregularly shaped, colourless, refractile bodies, much smaller

than red blood cells. 14

rheography A method used to analyse blood flow by recording fluctuations in

resistance of a region of the body under ultrasonic insonation. 11
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stenosis An abnormal narrowing in a blood vessel. 17

thrombosis A blood clot. The final product of blood coagulation in the haemosta-

sis process in which the bleeding process stops and the blood changes from a

fluid to a solid state. 22
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Chapter 1

Introduction

1.1 Background & Motivation

Stroke, or cereberovascular disease, is the term used to describe the effect when

blood flow in a localised region of the brain is interrupted by ischemia, a blockage

of the vascular system caused by an arterial embolism, or blood loss due to haem-

orrhage. If part of the brain is deprived of blood, brain cells are damaged or die

due to a combined lack of oxygen and glucose. This can lead to infarcation and

may result in a number of different possible effects, most of which are significantly

life changing, depending on the part of the brain affected and the amount of brain

tissue that is damaged.

In 2004, the World Health Organisation (WHO) stated that stroke is the third

most common cause of death in developed countries, exceeded only by coronary

heart disease and cancer [1]. It went on to estimate that globally, 5.5 million people

die from stroke each year and a similar number are permanently disabled. Further,

it was estimated that in the USA, someone dies of a stroke every three minutes. A

staggering statistic.

In Scotland, stroke is one of the most common causes of death, behind cancer,

heart disease, and respiratory system disease. The Registrar General’s Annual Re-

view of Demographic Trends in 2009 examined the most common causes of death
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in Scotland (summarised in Table 1.1) and found that cereberovascular disease ac-

counts for approximately 10% of the total number of deaths each year [2]. There are

approximately 13,000 strokes in Scotland each year. Of these approximately 3,000

are in someone under 65 and one third of the total number of strokes will result in

death. Stroke is the greatest single cause of severe disability in adults in Scotland.
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Table 1.1: The most common causes of death, Scotland, 2009 [2].

Causes of Death % of All deaths All age groups

All cancers 31.78% 15,187

Trachea, bronchus and lung 8.68% 4,147

Bowel 3.30% 1,578

Breast 2.11% 1,010

Lymphoid, haematopoietic etc. 2.06% 986

Urinary tract 1.72% 821

Oesophagus 1.56% 746

Prostate 1.65% 790

Pancreas 1.45% 691

Stomach 1.12% 535

Other cancers (e.g. bladder, liver) 8.13% 3,883

Ischemic heart disease 17.31% 8,274

Respiratory system diseases 14.91% 7,125

Cereberovascular disease 10.27% 4,906

Mental & behavioural disorders 6.96% 3,327

Diseases of the digestive system 6.29% 3,006

Diseases of the nervous system 3.46% 1,652

Accidents 2.79% 1,332

Diseases of the genitourinary system 2.66% 1,269

Endocrine, nutritional and metabolic

diseases 1.83% 873

Certain infectious and parasitic

diseases 1.75% 838

Total deaths 47,789
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As well as the physical cost of stroke, the financial costs are also thought to be

significant but notoriously difficult to estimate accurately. In Europe in 2010 the

cost has been estimated at e64.1 billion [3]. In the UK in 2008-09, the National

Audit Office estimated the direct care cost of stroke was at least £3 billion annually

in England alone [4], within a wider economic cost of about £8 billion once indirect

costs are considered, and it is likely that it incurs proportionate amounts in Scot-

land, Wales and Northern Ireland. In terms of hospital occupancy, stroke patients

occupy around 20% of all acute hospital beds and 25% of long term stay beds [5].

It is against this background that prevention of stroke has been the key focus behind

the progress made in the ultrasound evaluation of cereberovascular disease during

the last thirty years. Yet there is still significant untapped potential in such systems

as we explore and apply new methods of signal analysis and machine learning with

the potential to offer greatly improved risk evaluation, particularly in asymptotic

patients.

1.2 Aims & Objectives

The main topic of this thesis is TCD ultrasonography, a method of Doppler ultra-

sound that was first described by Aaslid et al in 1982 [6]. Aaslid discovered that low

frequency (2 MHz) ultrasound could be used to perform non-invasive investigations

of the intra-cranial arterial system by insonating an area where the temporal bone

thins. This made it possible to detect ultrasound reflections of blood flow from

which haemodynamic information could be derived. Using this technique, blood

flow velocities (mean flow velocity, peak systolic flow velocity, and end-diastolic flow

velocity) in the middle cerebral arteries can be studied, the cerebral CO2 reactivity

can be derived and, most importantly for this study, MES can be detected. The

details of this process are described in more detail in Chapter 2.

The aim of this thesis is to build upon existing research involving the detection and
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characterisation of cerebral micro-embolus by exploring TCD ultrasound propaga-

tion channels in three related research areas; namely the development of theoretical

channel models and corresponding simulation models for TCD ultrasound propaga-

tion channels, the development of a blood flow phantom for TCD studies, and the

verification of simulations with measured results from a patient recordings database.

In the first of these research areas, a method of characterisation of a TCD ultra-

sound propagation channel is proposed. Isotropic and non-isotropic 3-D spherical

scattering channel models are described in terms of theoretical models, simulation

models, and SoS simulations, allowing the spatial-temporal statistical properties to

be analysed and reported.

In the second research area a TCD ultrasound medical blood flow phantom is de-

scribed. The blood flow phantom, designed to replicate the human physiology as-

sociated with blood flow in the MCA for TCD ultrasound studies, is discussed in

terms of material selection, physical construction and acoustic characteristics, in-

cluding acoustic velocity, attenuation and backscatter coefficients.

Finally, the third research area provides verification analysis for the non-isotropic

models against firstly the blood flow phantom, then secondly a patient recordings

database. The analysis expands on areas of agreement and disagreement before

assessing the usefulness of the models and describing the potential to improve sig-

nal processing approaches for detection, classification, and characterisation of MES.

The proposed channel models and blood flow phantom are expected to contribute

to improvements in the design, testing, and performance evaluation of future TCD

ultrasound systems, leading to the development of an ambulatory TCD ultrasound

system that is capable of improved automatic micro-embolus detection. In particu-

lar, it is hoped this project will lead to the development of 3-D scattering channel

models that can be used to develop and improve algorithms for classifying micro-

emboli detected by TCD ultrasound systems by investigating and, where appropri-

ate, combining existing techniques using a combination of signal processing methods,
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including statistical signal analysis based on machine learning.

1.3 Contributions & Original Publications

This thesis explores TCD propagation channels in three related research areas.

Firstly, a method of characterising TCD ultrasound propagation channels is pro-

posed. Isotropic and non-isotropic three dimensional (3-D) spherical scattering

channel models are described in terms of theoretical reference models, simulation

models, and sum of sinusoids (SoS) simulators, allowing the statistical properties to

be analysed and reported. Secondly, a TCD ultrasound medical blood flow phantom

is described. The phantom, designed to replicate blood flow in the middle cerebral

arteries (MCA) for TCD ultrasound studies, is discussed in terms of material selec-

tion, physical construction and acoustic characteristics, including acoustic velocity,

attenuation and backscatter coefficients. Finally, verification analysis is performed

on the non-isotropic models against firstly, the blood flow phantom, and secondly,

a patient recordings database. This analysis expands on areas of agreement and

disagreement before assessing the usefulness of the models and describing there po-

tential to improve signal processing approaches for detection of MES.

The key contributions of the thesis are summarised as follows:

i. 3-D non-isotropic spherical theoretical reference model, simulation

model, and a corresponding SoS channel simulator: A new method of

characterisation of a TCD ultrasound propagation channel has been proposed;

based on 3-D non-isotropic spherical scattering channel models. This work

includes mathematic derivations of the statistical properties, in terms of the

amplitude probability density function (PDF), phase PDF, temporal auto-

correlation function (ACF), Doppler power spectral density (PSD), envelope

level crossing rate (LCR) and average fade duration (AFD).

ii. A new flow phantom for TCD ultrasound studies: A novel wall-less

Doppler flow phantom has been designed for analysis of the 3-D TCD ul-

trasound channel model. The flow phantom can synthesise blood flow and
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occurrences of micro-emboli within the MCA as a result of cerebrovascular

disease.

iii. Verification of the 3-D non-isotropic TCD ultrasound propagation

channel models: A patient measurements database has been created for

verification of the channel models. The 3-D non-isotropic spherical channel

models have been optimised and fitted to the statistical average of the patient

measurements database.

The work presented in this thesis has led to the following publications:

Referred Journals Papers

1. A.J. Weir, C-X. Wang, and S. Parks, “Novel 3D Stochastic Propagation

Channel Models for Transcranial Doppler Ultrasound”, IEEE-UFFC Trans-

actions on Ultrasonics, Ferroelectrics and Frequency Control, submitted for

publication.

Referred Conference Papers

2. A.J. Weir, C-X. Wang, and S. Parks, “3-D Half-Spheroid Models for Tran-

scranial Doppler Ultrasound Propagation Channels”, IEEE-EMBS Interna-

tional Conference on Biomedical and Health Informatics, June 1-4, 2014, Va-

lencia, Spain, pp. 728–731.

3. A.J. Weir, R. Sayer, C-X. Wang, and S. Parks, “A wall-less poly (vinyl alco-

hol) cryogel flow phantom with accurate scattering properties for transcranial

Doppler ultrasound propagation channels analysis”, Engineering in Medicine

and Biology Society (EMBC), 2015 37th Annual International Conference of

the IEEE, August 25-29, 2015, Milan, Italy, pp. 2709–2712.

4. A.J. Weir, C-X. Wang, and S. Parks, “Pre-clinical investigations of multi-

path propagation in transcranial Doppler ultrasound flow phantom”, Engi-

neering in Medicine and Biology Society (EMBC), 2016 38th Annual Inter-

national Conference of the IEEE, August 16-20, 2016, Orlando, USA, pp.

3586–3589.
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1.4 Thesis Organisation

The remainder of the thesis is organised as follows:

Chapter 2 provides an introduction to Doppler ultrasound and its use as a non-

invasive modality for the interrogation and monitoring of blood flow in the intra-

cranial arterial system. It describes the detection algorithms used for micro-embolic

signal detection, discusses the challenges of performing long term ambulatory mon-

itoring of the MCA, and provides a summary of existing medical ultrasound mod-

elling techniques. The motivation and research gaps are addressed in this chapter.

Chapter 3 investigates 3-D isotropic spherical scattering channel models for TCD

ultrasound, including the characteristics and statistical properties; amplitude and

phase PDFs, temporal ACF, Doppler PSD, envelope LCR and AFD. In this chapter,

a theoretical reference model, simulation model, and SoS simulator are defined. The

usefulness and limitations of this approach are discussed.

Chapter 4 extends the investigations of Chapter 3 by defining 3-D non-isotropic

spherical scattering channel models for TCD propagation channels, including the

characteristics and statistical properties; amplitude and phase PDFs, temporal ACF,

Doppler PSD, envelope LCR, and AFD. These models will form the basis of the com-

parison with the flow phantom and patient measurements in Chapter 6.

Chapter 5 describes a flow phantom for TCD ultrasound studies, detailing the design

and measurement results, to include acoustic velocity, attenuation and backscatter

coefficients.

Chapter 6 introduces an information governance approved patient recordings database

and provides comparison of the 3-D non-isotropic spherical scattering channel mod-

els, flow phantom, and patient measurements in terms of the amplitude and phase

PDFs, ACF, LCR, and AFD. The discussion will expand on areas of agreement and
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disagreement before assessing the usefulness of the model and its potential applica-

tions for further study of TCD.

Finally, Chapter 7 concludes the thesis and gives some suggestions for future re-

search topics.
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Chapter 2

Principles of Transcranial Doppler

Ultrasound

2.1 Introduction

Ultrasound is an imaging modality that uses piezoelectric crystal transducer(s) to

transmit and receive sound waves between 1 MHz and 12 MHz, well above the

audible frequency range of humans (below 20 kHz). At these high frequencies,

sound waves act more like electromagnetic waves; they propagate in straight lines

and reflect off objects or tissue interfaces in their path. The strength of reflection

is dependent on a number of factors; the frequency of transmission, the acoustic

impedance of the medium at the object or tissue interface, and the depth (distance)

of the reflection from the transducer.

There are many types of ultrasound system. Although ultrasound was originally

developed as a medical imaging modality, it has emerged in many other applica-

tions; for example, material science and industry for inspection and non-destructive

testing. Early ultrasound imaging systems were simple A-mode systems which pro-

vided depth information on one axis and received echo amplitude on the other. These

progressed to more familiar B-mode systems which generate a two-dimensional im-

age using a linear array of transducers to simultaneously scan a plane through a

ROI. Along this scan line, the encoded brightness is proportional to the ampli-
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tude of the returned echo as the depth increases. By combining multiple scan lines,

where each scan line is a one-dimensional image, a two dimensional image is created.

Doppler ultrasound and colour flow imaging have emerged more recently. These

methods differ from standard methods of ultrasonography in that they provide in-

formation of function of the insonated region rather than a simple two-dimensional

image. This is achieved by analysing the phase and frequency of the reflected pulse

using the Doppler effect. However, like the more traditional forms of ultrasound,

the same fundamental rules of sound wave propagation and reflection are applicable.

2.2 History: The Doppler Effect

The Doppler effect (or Doppler shift) was named after Christian Andreas Doppler

(1803–1853), an Austrian mathematician and physicist. In his famous paper “Uber

das farbige Licht der Doppelsterne” (on the coloured light of double stars) published

in 1843 [7], Doppler introduced the idea that the observed frequency of light from a

source can change relative to the velocity of the observer and vice-versa. In appendix

(A.1) the expression for the Doppler frequency (fD) in an ultrasound system is

derived as

fD =

(
2vo × cos(θ)

c

)
× fc (2.1)

from classical physics theory (A.12), where vo becomes the velocity of blood flow,

c is the velocity of sound in the medium, θ is the insonation angle, and fc is the

insonation frequency. Equation (2.1) is used as the foundation of analysis of the

Doppler effect in ultrasound systems.

2.3 Doppler in Medical Ultrasound

Doppler ultrasound involves a group of ultrasound techniques that use the Doppler

effect to image moving tissue and blood flow velocity. The use of Doppler ultrasound

to measure blood flow velocity was first established in the 1960s [8] as part of

pioneering work studying haemodynamics using rheography and has since become
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an important tool for the measurement and analysis of haemodynamics in a wide

range of clinical applications.

2.3.1 Obtaining Ultrasound images of blood flow

Ultrasound images of blood flow are obtained from measurements of movement. Fig.

2.1 shows a simple view of Doppler ultrasound measurement of blood flow in a ves-

sel. The ultrasound beam is transmitted by a transducer. In the simplified model

presented, echoes received from stationary tissue can be considered to exhibit the

same frequency and phase as the transmitted signal. Echoes from scatterers (i.e.

moving tissue and fluids) will exhibit slight differences in the time and/or phase.

From these differences the ‘Doppler ’ frequency difference is obtained which can then

be processed to produce either a colour flow display or a Doppler sonogram.

Figure 2.1: Doppler ultrasound measurement of blood flow.

12
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As the Doppler frequency equation shows (2.1), in order to detect blood flow, there

has to be flow within the direction of the ultrasound beam. If the incidence angle of

the ultrasound beam is orthogonal to the flow, no relative motion can be detected.

If the incidence angle is less than 90◦, the blood flow detected will be towards the

direction of insonation and the Doppler frequency change detected will be positive

relative to the transmit frequency, i.e. greater than the transmit frequency. Con-

versely, if the incidence angle is greater than 90◦, the blood flow detected will be

away from the direction of insonation and the Doppler frequency change detected

will be negative relative to the transmit frequency, i.e. less than the transmit fre-

quency. However, the simple model described by Fig. 2.1 is further complicated by

the acoustic properties of tissue and the scattering of ultrasound in blood flow.

2.3.2 Acoustic Properties of Tissue

Human tissue is not homogeneous, but consists of various tissue types which have

differing acoustic impedance. Ultrasound signals reduce as a function of distance

and attenuation due to acoustic impedance. Acoustic impedance Z is related to

tissue density ρ and the velocity of sound in the tissue type v such that; Z = ρv.

The amount of energy R reflected at the normal interface of two different tissue

types is defined by

R =

[
(Z2 − Z1)

(Z2 + Z1)

]2

(2.2)

where Z1 and Z2 are the respective impedances of the different tissue types on either

side of the interface [9]. R is termed the reflection coefficient.

The acoustic properties of some tissue types at a frequency of 1 MHz are described

in Table 2.1. Note that although the biological tissues listed have high acoustic

impedance, they have low half 50% signal levels. For example, water is not very

‘lossy’ and exhibits a 50% signal decrease for a depth of 41 m. However, fat, which

has a slightly lower acoustic impedance, exhibits a 50% signal decrease for a depth

of only 3.8 cm. Furthermore, lthough not described by Table 2, it should also be
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noted that the rate of attenuation increases with frequency.

Table 2.1: Acoustic properties of some tissue types at 1 MHz [9].

Tissue
Type

Speed of
Sound
v,ms−1

Acoustic
Imped.

Z,g/cm2s

Atten.
Coeff.
dB/cm

50%
Power

cm Interface
Reflect.
Coeff.

Water 1496 1.49 ×105 0.0022 4100
Air/

Water 0.999

Fat 1476 1.37 ×105 0.63 3.8
Water/

Fat 0.042

Muscle 1568 1.66 ×105 0.96–1.4 2.5
Water/
Muscle 0.054

Brain 1521 1.58 ×105 0.75 ± 0.17 2.5
Water/
Brain 0.029

Bone 3360 6.20 ×105 14.2–25.2 0.23
Water/
Bone 0.614

Air 331 4.13 12 1.1
Tissue/

Air 0.999

2.3.3 Scattering of Ultrasound in Blood Flow

Blood is a highly complex fluid that is composed of objects of differing shapes and

sizes, such as plasma, leukocytes, erythrocytes and platelets. The overwhelmingly

dominant ultrasonic scatterers are the erythrocytes or red blood cells (RBC) [10].

These are biconcave and discoidal cells are approximately 8 µm in diameter and 2

µm thick [11]. At typical ultrasonic frequencies, an individual RBC is two orders of

magnitude smaller than the ultrasound wavelength and can therefore be considered

to be a Rayleigh scatterer, for which the backscattered power increases as the fourth

power of the frequency [10]. Various models have been developed over the years to

describe the scattering process. However, it is recognised that ultrasound backscat-

tering by blood is highly complex due to the tendency of RBCs to aggregate. It is

sufficient in the context of this project to consider the ultrasound backscattering of

RBCs as a stochastic process; RBCs can be considered to behave as a random array

of targets and it can be assumed that the backscattered power is proportional to

the number of RBCs that interact with the ultrasound insonation [10]. Since the

backscattering efficiency of blood increases with frequency, the choice of the opti-
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mal ultrasound frequency to achieve the best signal to noise ratio (SNR) becomes a

compromise with the desired penetration depth.

2.3.4 Operating Modes

Doppler ultrasound has two fundamental operating modes; continuous wave (CW)

and pulsed wave (PW). CW systems use continuous transmission and reception

of ultrasound. Doppler signals are obtained from all scatterers in the path of the

ultrasound beam (until the ultrasound beam becomes sufficiently attenuated due

to depth). Continuous wave Doppler ultrasound cannot be used to determine the

specific location of velocities within the beam and, as a result, cannot produce colour

flow images or a Doppler sonogram for a specified range. PW systems send pulsed

transmissions at a pre-defined pulse repetition frequency (PRF), also referred to as

the sampling frequency. This allows PW systems to measure the depth (or range)

of the flow site and permits a variable sample volume (or range gate) to be defined

which allows the user to select the desired depth for insonation of a particular vessel.

PW ultrasound systems can therefore produce Doppler sonograms and colour flow

images.

2.4 Transcranial Doppler Ultrasonography

Development of an ultrasound method to interrogate the intracranial arterial sys-

tem lagged behind the evaluation of the extracranial arterial systems. It was not

until the 1980s that the techniques described in section 2.2 were used to successfully

insonate the MCA [6] using an intracranial ultrasound system. This delay in the

application of ultrasound to the intracerebral vessels occurred largely because it was

originally thought that insufficient ultrasound could pass through the skull to allow

recording at the required depth of human tissue [12]. However, it was discovered

that a low frequency transducer operating at around 2 MHz could penetrate within

the transtemporal acoustic window, a region of the skull where the bone thins to

around 2-3 mm (shown in Fig. 2.2). This region provides access to the intracerebral

vessels in the circle of Willis, the cerebral arterial circle at the base of the brain
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which includes the MCA.

Figure 2.2: Transcranial Doppler probe acoustic windows [13].

The underlying principles of ultrasound dictate that the choice of operating fre-

quency imposes a trade-off between spatial resolution and desired penetration depth.

Low frequency ultrasound waves have a longer wavelength and achieve less resolu-

tion, but can penetrate deeper into the body. Higher frequency sound waves are

capable of reflecting or scattering from smaller structures and can therefore achieve

a greater resolution. As discussed in section 2.2.2, higher frequency sound waves also

have a larger attenuation coefficient and are thus more readily absorbed in tissue,

limiting the depth of penetration of sound into the body. At 2 MHz, the spatial

resolution is poor and the ultrasonography techniques adopted at this operating

frequency are primarily useful for Doppler. Hence these acoustic windows permit

sufficient insonation to use intracranial ultrasound techniques to analyse blood flow.

TCD is a PW intracranial ultrasound technique. From the definition of a PW

Doppler ultrasound described in section 2.2.4, it permits hemodynamic information
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of a region to be analysed at a selected depth. The depth of insonation is established

by gating the transmitted pulse at a given PRF. This information can be combined

with an anatomical understanding of the intracranial arteries, enabling the accu-

rate identification of a ROI. However, the choice of operating frequency in TCD

ultrasound systems also imposes a trade-off between SNR and desired penetration

depth. Whilst, from the Nyquist-Shannon sampling theory, the maximum Doppler

frequency (fD) that can be measured unambiguously is half the PRF.

These operating characteristics limit the use of TCD to a small number of spe-

cialised clinical applications. Examples of application areas where TCD is currently

being used for research and investigation include:

i. Detection of intra-cranial stenosis.

ii. The analysis of blood flow in the secondary channels after an obstruction or

narrowing of the principal channel i.e. collateral flow.

iii. Measurement of dynamic cerebrovascular responses.

iv. Intra-operative monitoring.

v. Detection of cerebral embolus.

The focus of the system proposed in this project is long term ambulatory detection

and monitoring of cerebral embolus.

2.4.1 Embolic signal detection using TCD

Embolic signal detection is a mature application of Doppler ultrasound. It involves

the detection of abnormally high-pitched signals within the arterial waveform as a

method for diagnosis and prediction of embolic complications in at-risk patients.

These emboli produce unidirectional high intensity transient signal (HITS) which

give a distinctive ’popping’ sound when observed by Doppler ultrasound.
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2.4.2 Patient Examination Procedure

In an Acute Stroke Unit, clinicians will normally perform a TCD ultrasound record-

ing of a patient within 24 hours of admittance following a significant stroke event

or as part of an outpatients appointment when a patient is suspected of having a

transient ischemic attack (TIA) or ”mini stroke”. The assessment results will inform

a risk stratification process. At the Acute Stroke Unit in Glasgow’s Queen Elizabeth

University Hospital the system employed for this purpose is a ST3 PMD150 Digital

Transcranial Doppler Systemi. Typical commercial TCD systems are capable of

separating embolic events from noise and other artefacts and can support automatic

embolus detection at depths of between 30 mm and 80 mm, providing an automated

count of embolic events.

Typically, TCD systems display Doppler information in two standard colour dis-

plays; M-mode and Spectrogram. A ST3 TCD System display is shown in Fig.

2.3.

iSpencer Technologies, Seattle, WA, USA.
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Figure 2.3: TCD M-mode and spectrogram displaysi.

The M-Mode display shows all blood flow in terms of Doppler signal power within

a specified depth range against time. The flow is colour coded using a standard

convention such that blood flowing away from the transducer is shown blue, whilst

blood flow towards the transducer is shown red. The Spectrogram shows the Doppler

spectral waveform, indicating the velocity profile of blood flow at the selected depth

on the M-mode display against time.

Under normal monitoring conditions, the patient is required to lie on a bed ad-

jacent to a trolley mounted TCD unit. A headset is fitted on the patient providing

a fixation for up to two transducer channels (left and right side). Once fitted it is

normally necessary to perform a short system set up procedure during which a blood

flow wave is acquired from the MCA, normally located at a depth of between 35
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mm and 60 mm. Acquisition of an adequate signal is largely down to the skill and

experience of the operator. Once a strong signal is acquired, the patient is ready to

undergo monitoring for up to one hour during which time the system will capture

and record the blood flow waveform. The system is normally configured to auto-

matically detect and count embolus events during a recording. The operator can

then browse and analyse recordings of embolus events post-examination and provide

an assessment of the findings. In combination with other patient observations, the

number and classification of emboli detected will inform a risk assessment and will

be used to devise a course of treatments and interventions.

2.4.3 Limitations of Current TCD Systems

There are a number of issues and limitations with current TCD systems which reduce

the effectiveness of the TCD observations.

i. TCD recordings are highly sensitive to movements by the patient and require

very accurate setup and alignment of the transducer. As shown in section

2.2.1, optimal recordings are obtained with an insonation angle of 0◦ and

perfect lateral alignment with the direction of blood flow in the vessel. If a

misalignment occurs during a test procedure the readings captured are likely

to be incomplete or corrupt.

ii. As a result of (i), frequent monitoring of the patient and test procedure is

required. Operators and clinicians often need to perform fine adjustments of

the transducer during the patient examinations.

iii. A transducer probe fixation head-clamp is required to maintain accurate align-

ment of the transducer probe. However, patients find these to be very uncom-

fortable, particularity if worn for long periods.

iv. Embolus events are counted, not characterised in terms of size, velocity, ma-

terial consistency etc.

v. Movement artefacts and other noise can frequently be misinterpreted as em-

bolus.
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vi. TCD systems are trolley mounted, and are therefore not sufficiently portable

to allow patients to be moved during testing.

These issues are the key limiting factors which prevent patients undergoing longer

term monitoring for embolus events. Since it is thought that embolisation is a dy-

namic process and may show marked variability when short recordings of 30 to 60

minutes are performed, the inability to make longer, more reliable recordings may

be a limiting factor in determining the appropriate level of risk that a patient may

experience further stroke events [14, 15]. This may impede the appropriate inter-

vention strategy and limit the volume of patient data that could be acquired for

both research and audit of patient care.

Furthermore, in the case where a TCD system were employed as part of a wider

research or clinical trials program, the ability to perform much longer ambulatory

monitoring would be highly advantageous. For example, this could be the case when

monitoring patients with asymptomatic embolic signals [15], or when determining

the effectiveness of particular surgical or pharmacological therapies.

In order to understand more about the dynamics of embolus events, clinicians re-

quire the ability to perform longer, more reliable TCD examinations, with improved

levels of reporting accuracy. This requires a system level re-design such that, whilst

the models proposed in the later chapters of this work can contribute to improve-

ments in the performance of future TCD ultrasound systems, a holistic approach is

required to ensure that an optimal solution is delivered to meet all the requirements

of patients and clinicians.

2.5 Microembolic Signal Detection Algorithms

MES signal detection is a standard feature of TCD systems, however not all emboli

are easy to detect. There are two distinctive characteristics of emboli in blood flow

which contribute to this detection problem; motion characteristics and relative re-

flectivity. Of these, the relative reflectivity of the emboli has the highest bearing on
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detectability. For example, if the emboli is a weak scatterer in comparison to the

surrounding blood flow, it may not be possible to analyse its motion characteristic.

Consider a 20 µm diameter emboli consisting of a clot of red blood cells travelling

in the centre of the MCA. The reflectivity will be nearly indistinguishable from the

reflectivity of background blood flow. However, a 20 µm diameter gaseous bubble

travelling at the same velocity and position in the MCA will stand out dramatically

due to its far greater level of reflectivity. The system sensitivity is therefore depen-

dent on the size, composition and location of emboli.

Due to the complexities of their formation, emboli can be corpuscular (e.g. lipid

droplets, calcified particles etc.) or gaseous (e.g. artificially inserted gas or as the

result of micro-cavitation). The exact nature of the formation and development of

embolus is not fully understood. However, it is known that emboli can occur in the

blood stream as the result of a number of complex haemodynamic effects and in a

number of different locations in the body. Those most likely to cause ischemia occur

in the chambers or valves of the heart as a result atrial fibrillation or atherosclerotic

plaques.

Atrial fibrillation or AF is a type of irregular heartbeat (arrhythmia) that reduces

or limits the pumping action of the heart. As a result, thrombosis are more likely to

form in the heart chambers, increasing the risk of a stroke. AF can be asymptotic

and thrombosis can form microemboli from small clusters of RBCs.

Atherosclerosis is a disease where plaque (made from calcium, cholesterol and fatty

deposits) builds up inside the arteries over a period of time, where it can harden

and narrow the artery walls. These deposits can generate embolus of varying size

and consistency. From relatively large thrombus or pieces of calcified plaque which

would lead to significant and devastating stroke events, to microscopic microemboli,

typically less than 100 µm in diameter, which can cause micro-infarction in the small

arteriolar branches and vessels of the brain.
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Microemboli are of particular interest, as they can be a crucial indicator or symptom

of stroke risk and can be detected in asymptotic patients. There have been many

studies of microembolic signal detection in the cerebral arteries in the last twenty

years. At the core of these studies has been the objective of not only achieving

reliable detection of MES using TCD, but also development of the ability to accu-

rately discriminate the size and composition of microemboli, since this can provide

the clinician with crucial information from which to prescribe the most appropriate

intervention strategy. Indeed, it is thought that understanding the composition of

microemboli using TCD can help clinicians better understand the development and

source of microemboli. This section discusses current and emerging approaches to

microembolic signal detection in TCD.

2.5.1 Embolic Doppler Signal Characteristics

The Doppler shift observed by TCD systems lies within the human audible range

and, as mentioned in section 2.3.1, when MES are observed they have a distinctive

‘popping’ sound. This sound is not uniform, but can be described as similar to

Gaussian white noise, that is to say it has a peak central frequency and a bell

shaped Gaussian profile. In signal processing terms, Girault et al [16] described an

embolic Doppler signal in the terms of a time varying signal x(t) as the summation

of a background signal representing the backscatter by blood, background noise and

a brief duration random high intensity signal, given by

x(t) = r(t) +
Ni∑
i=1

Ei(t− θe) +B(t) (2.3)

where r(t) represents the background signal resulting from the backscatter by blood

and B(t) is the background noise in the observation. For each instance i, Ei repre-

sents an embolus, a high intensity signal of brief duration at time occurrence (t−θe).

This signal description can be further elaborated by providing consideration for mo-

tion artefacts Ak, such as patient movement and probe motion, as shown by

x(t) = r(t) +
Ne∑
i=1

Ei(t− θe) +
Nk∑
k=1

Ak(t− θk) +B(t). (2.4)
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However, (2.4) is not normally used in practice since a technique developed by Smith

et al [17] based on dual gated Doppler ultrasound can be used to simultaneously

range-gate at two separate depths, in order to distinguish between emboli and arte-

facts. This technique is used as justification for ignoring motion artefacts Ak and,

as a result, (2.3) is used for all practical situations.

2.5.2 Embolus to Blood Ratio

There are a number of commercial TCD systems available that can automatically

detect and count emboli in human blood. Typically, these systems use power spec-

trum analysis based on a classical Fourier approach (described in section 2.4.3) and

the HITS characteristic of MES in Doppler signals to identify emboli backscatter in

blood. This backscatter can be quantified using the embolus to blood ratio (EBR),

as developed by Moehring et al [18, 19, 20]. The HITS occur randomly and in order

to detect them in the Doppler signal, the Doppler response is sampled at regular

intervals and the EBR is calculated. Moehring showed that “if the Doppler sample

volume is made large enough to include the transverse section of the vessel” the

EBR can be expressed as

EBR =
σE
σB

= 10log10

[(
σB + σE
σB

)
− 1

]
dB (2.5)

where σE is the backscattering cross section of emboli flowing in the sample volume

and σB is the backscattering cross section of the RBC flowing in the sample volume.

A decibel thresholding technique is then used where the calculated EBR is com-

pared to a pre-determined detection threshold. If the calculated EBR is greater

than or equal to the threshold, embolus detection is declared and the embolus de-

tection count is incremented.

Using the EBR model, Moehring et al went on to predict an important aspect

of EBR relating to microemboli detection, sizing and characterisation [20]. Through

exploration of the backscattered power from embolus, the EBR model predicts that
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backscattered power will have a region over which embolus are non-Rayleigh.

This is demonstrated in Fig. 2.4 where line (a) shows the anticipated backscattered

power from blood and curve (b) shows the EBR model prediction of backscattered

power from an embolus. The important feature of curve (b) is that it predicts that

at an insonation frequency above approximately 2.5 MHz, embolus begin to have a

non-Rayleigh region where the backscattered power no longer increases as a fourth

power of frequency. This observation reinforces the importance of selecting an in-

sonation frequency below 2.5 MHz for TCD ultrasound, where Rayleigh scattering

is predicted and the relative backscattered power against frequency plot in Fig. 2.4

remains linear.
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Figure 2.4: EBR model predication of relative backscattered power; line (a) shows

the anticipated backscattered power from blood and curve (b) shows the EBR model

prediction of backscattered power from an embolus [20].

2.5.3 Classical Fourier Based Approach

In the classical Fourier based approach a spectrogram is created to find the power

spectral density of the signal at time t. The power spectral density is calculated
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from the time-varying signal using a short-time Fourier transform (STFT).

In the continuous time case, a Fourier transform of the detected signal taken at

time t is given by

X(τ, ω) =
∫ ∞
−∞

x(t)w(t− τ)e−jωtdt (2.6)

where w(t) is a window function and x(t) is the time varying signal, given by the

summation of the background signal representing the backscatter by blood and

any brief duration random high intensity signals representing backscatter by emboli

(2.3). Equation (2.6) can be approximated in the discrete time case to

X(m,ω) =
∞∑

n=−∞
x[n]w[n−m]e−jωn. (2.7)

where the sequence fm[n] = x[n]w[n − m] is a short-time section of the received

signal x[m] at time n. The spectrogram (power spectral density of the windowed

signal) is given by the modulus of the STFT squared

P (m,ω) = |X(m,ω)|2 =

∣∣∣∣∣
∞∑

n=−∞
x[n]w(n−m)e−jωn

∣∣∣∣∣
2

. (2.8)

Fig. 2.5(a) shows a spectrogram created using MatlabTM(MathWorks, Inc.) from

a TCD recording captured using a ST3 Digital TCD System. In this figure it is

possible to clearly distinguish the high frequency ridge caused by a HITS generated

as the result of an embolus. Fig 2.5(b) shows the HITS in the time domain, where

it can be seen to correspond to an approximate duration 20 msec.
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(a)

(b)

Figure 2.5: (a) A 3-D spectrogram of an embolus detected in a TCD recording. (b)

The same embolus detection in the time domain.
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The limitations of STFT as a signal processing technique are well documented. The

STFT is a linear approach that decomposes the signal into elementary components.

The main drawback is the fixed nature of the time / frequency resolution and its

relationship with the windowing function. The selection of the fixed duration of

the windowing function establishes a trade-off in the Fourier transform, determin-

ing whether there is a good frequency resolution or a good time resolution. If the

analysis window is too narrow, the frequency resolution may be poor but the time

resolution may be good. Conversely, if the analysis window is too wide, the time res-

olution may be poor, but frequency resolution may be good. This presents a major

problem for analysis of MES which, by their nature, are short duration narrowband

signals that are easily compromised by this time-frequency resolution dilemma.

Due to variations in implementation methods such as window size, the number

of FFT points and the detection thresholds used in Fourier based emboli detection

systems, a marked variability was observed in the performance of some early com-

mercial systems [21]. More recently, studies of emboli detection in TCD ultrasound

have focused on a migration from Fourier based signal processing techniques towards

other signal processing techniques in an effort to resolve the limitations described.

2.5.4 Wigner-Ville Distribution

The Wigner distribution (WD) was derived by the Hungarian-American physicist

Eugene Wigner in the 1930s [22] and is defined as

Wx(t, f) =
∫ ∞
−∞

x(t+
τ

2
)x∗(t− τ

2
)e−j2πfτdτ. (2.9)

It is a time-frequency representation used for the analysis of non-stationary time-

varying signals, where non-stationary refers to the frequency content of the signal

which may change over time and cannot be predicted. Functionally, it is similar

to the Fourier based spectrogram, however it offers better temporal and frequency

resolution.
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The Wigner-Ville distribution (WVD), or Wigner-Ville spectrum, is the Wigner

distribution using the analytical associate of the detected signal. In the continuous

time case, the WVD of the detected signal x(t) taken at time t is given by

Wz(t, f) =
∫ ∞
−∞

z(t+
τ

2
)z∗(t− τ

2
)e−j2πfτdτ (2.10)

where z(t) is the analytic associative of x(t), and z∗(t−τ/2) is the complex conjugate

of z(t–τ/2). Signal z(t) is analytic if Z(f) = 0 for f < 0, where Z(f) = F {z(t)}.

The discrete Wigner-Ville distribution (DWVD) [23] can be approximated by

Wz(
n

fs
, f) =

2

fs

N/2−1∑
m=−N/2+1

z[n+m]z∗[n−m]e−j4πf(n/fs) (2.11)

where fs is the sampling rate, N is the number of samples and z[n] is analytic.

The first use of the WVD for detection of emboli in blood is thought to be in

the mid-nineties [24], when it was used to discriminate emboli in blood flow using

measures of instantaneous frequency and power. However there have been more re-

cent examples where DWVD has been used to determine the frequency modulation

index of a Doppler signal to assess the ability of frequency modulation techniques to

discriminate solid and gaseous emboli [25]. As well as better temporal and frequency

resolution, the main motivation for using the WVD is the ability to calculate the

instantaneous frequency and energy spectra at any time within the selected window.

Although the WVD offers potentially a better detection performance based on peak

energy threshold, one of the drawbacks of the Wigner-Ville distribution is the in-

troduction of interference terms (cross-terms) which add noise to the spectrogram.

Since WVD is a quadratic time-frequency analysis method, when there is more

than one frequency component in the received signal cross-terms occur between the

auto-terms, indicating the false existence of signal components. It is possible to

smooth these interference terms by, for example, convolving the Wigner-Ville dis-

tribution with a smoothing function, e.g. the Modified Wigner-Ville distribution
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function. However, the computational efficiency and resulting performance of such

interference mitigation strategies must be balanced against other approaches, such

as wavelet filtering and parametric signal processing.

2.5.5 Wavelet Theory

Although the origins of wavelet theory can be traced back to the 1930s, it was not

until the early 1980s that it emerged as an area of digital signal processing. It is

thought that the first studies of wavelet theory for the application of emboli detection

in blood were made in the late 1990s [26, 27]. Like the application of Wigner-Ville

to emboli detection, the motivation behind applying wavelet theory to improve the

detection of emboli in blood flow was driven by the need to overcome the inherent

trade-off between temporal and spacial resolution in the classical Fourier based ap-

proach. Wavelet theory provides a method for analysing transient or non-stationary

signals and is particularly useful when signals are both non-stationary and of very

short duration. MES fit this description well.

In wavelet theory, signals are analysed in terms of wavelet basis functions. These

wavelets can be composed by scaling and shifting a ‘mother function’ or ‘analysing

wavelet’ to describe a signal x(t). Wavelets are obtained from the ‘mother function’

through modification of scaling (dilation or compression) and shifting (translation)

parameters, as defined by

ψa,b(t) =
1√
a
ψ∗
(
t− b
a

)
, for {a 6= 0, b ∈ <} (2.12)

where ψ∗ denotes the complex conjugate of ψ, a is the scaling factor and b is the

shifting parameter, and belongs to the real set. The continuous wavelet transform

(CWT) is given by

Wf (a, b) =
∫ ∞
−∞

x(t)ψa,b(t)dt (2.13)
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and the inverse continuous time wavelet transform is given by

x(t) =
1

C

∫ ∞
0

∫ ∞
−∞

Wf (a, b)ψa,b(t)db
da

a2
(2.14)

where

C =
∫ |ψ(ω)|2

ω
dω <∞. (2.15)

In the discrete time case, a wavelet series can be obtained by sampling the continuous-

time input signal x(t). For fast computation of the discrete time wavelet transform,

the discrete wavelet transform (DWT) is used. The DWT is based on sub-band

coding, a method of transform that breaks the signal into a number of individual

frequency bands. This is achieved using the Mallat algorithm [28] where the discrete-

time signal is passed through a series of low and high pass filters as described in

Fig. 2.6. The discrete signal sequence x[n] is shown to pass through a high pass

Figure 2.6: A 3-level wavelet filter bank.

filter h[n] and a low pass filter g[n] at the first level in a cascading filter bank and

the output of these filter stages are shown to pass through a sub-sampling stage,

where they are sub-sampled by 2 (denoted by the sub-sampling operator ↓ 2). The

high pass filter stage produces detail coefficients b1[n]. The low pass stage produces

coarse approximation coefficients a1[n] associated with the scaling function. For the

first stage, b1[n] and a1[n] can be expressed by

a1[n] =
∞∑

k=∞
x[n]g[2n− k] (2.16)
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and

b1[n] =
∞∑

k=∞
x[n]h[2n− k]. (2.17)

At the next level in the filter bank the coarse approximation a1[n] is used as the

input to the next filtering stage and the process repeats.

It can be seen from Fig. 2.6 that at each level in the filter bank the filter stages

produce coefficients spanning only half the frequency band. This has the effect of

doubling the frequency resolution at each stage in the decomposition. The number

of levels required depends on the length of the input sample and the sampling rate.

The DWT of the input signal is obtained by concatenating the coefficients from each

filtering level.

The choice of the ‘mother function’ from which to derive the wavelet and scaling

coefficients is of crucial importance and is driven by the desired signal characteristics

in the wavelet transform. Examples of ‘mother functions’ chosen in previous emboli

studies include the Morlet wavelet [26, 27].

More recently, there has been considerable interest in the application of wavelet

theory and DWT to embolic signal detection. Marvasti et al demonstrated that

intelligent wavelet filtering approaches based on a DWT and Daubechies 8th order

wavelet may provide a 2 dB increase in observed EBR and a 10-20% improvement

in detection accuracy compared to commercial based systems using a STFT based

approach [29]. More recently, this technique has been adapted to enhance the de-

tection of emboli signals using wavelet de-noising in order to improve classification

performance and noise tolerance in TCD systems [30].

2.5.6 Parametric Signal Processing

Parametric signal processing methods have been used in studies to detect emboli

in simulated signals [16, 26]. In each case an autoregressive (AR) model has been

used to provide a method of linear prediction of an output signal based on previous
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outputs. The AR model is a stochastic process in which future values are estimated

based on a weighted sum of past valses, i.e. past values effect future values. Using

this approach, the Doppler signal can be modelled as the output of a linear filter

driven by white noise [16]. At sample time n, the discrete-time Doppler signal x(n)

can be described by

x(n) =
p∑
i=1

aix(n− p) + η(n) (2.18)

where η(n) is white noise, a random signal that is assumed to have a constant power

spectral density, zero mean, and a variance of σ2. The order of the AR model is

given by p, and a1...ai are the AR parameters or filter coefficients. It is usually

sufficient for p = 2.

There are a number of possible algorithms that could be used to calculate the AR

parameters. One approach is to use the recursive least squares (RLS) algorithm. As

shown in [26], (2.18) can be re-written as

x(n) = ϕTnθ + η(n) (2.19)

where

ϕTn = [x(n− 1), ...x(n− p)] (2.20)

θ = [a1, ...ap]
T (2.21)

If θ̂ is the estimate of θ, obtained at each sampling time using the RLS algorithm,

the Doppler signal can be estimated at each sampling time using

x̂ = ϕTn θ̂ (2.22)

and the prediction error can then be calculated using

e(n) = x(n)− x̂(n). (2.23)
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The AR model therefore provides an error at each sample time based on the differ-

ence between the predicted Doppler signal and the actual Doppler signal. In normal

conditions where no embolic signal is present, the AR model will produce only slow

variations of predicted error due to the phases of blood flow in the insonated vessel

[16]. When an emboli is present in the Doppler signal, the predicted error shows a

significant change, due to the high intensity nature of the emboli signal (Fig. 2.5(a)).

This change can be compared to a pre-determined threshold. The threshold level

can be determined through analysis of recorded Doppler signals with an acceptable

SNR and no emboli present. As the system is a binary classifier (embolus detection

is either true or false), receiver operating characteristics (ROC)s can then be plot-

ted to establish the probability of false positive detection and an optimal relative

threshold can be determined.

In the results presented in the studies discussed [16, 26], for the simulated embolic

Doppler signals, parametric signal processing techniques based on the autoregressive

model were demonstrated to have the ability to detect smaller MES (embolus with

smaller EBR) than STFT, DWVD and wavelet based systems. Further, Girault et

al observed that, whilst classical STFT based methods were only able to reliably

detect embolus when EBRmin ≥ 12 dB, DWVD and Wavelet approaches can reliably

detect embolus when EBRmin ≥ 10 dB. However, parametric methods were able to

out perform these methods and achieve reliable embolus detection with EBRmin ≥ 5

dB.

2.5.7 Summary of Microembolic Signal Detection Techniques

In this section a number of signal processing techniques have been discussed in the

context of MES detection using TCD ultrasound. The traditional Fourier approach

using STFT is used widely by commercial systems but has significant disadvantages.

These disadvantages are centred on the fixed nature of the time / frequency resolu-

tion and its relationship with the windowing function. This establishes a trade-off in

the Fourier transform between good frequency resolution and good time resolution.
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The Wigner-Ville distribution is functionally similar to the Fourier based spec-

trogram, but offers better temporal and frequency resolution. However, one of the

drawbacks of the Wigner-Ville distribution is the introduction of interference terms

which add noise to the spectrogram. Although there are techniques that can be

used to smooth this interference, the performance of the mitigation strategies must

be balanced against other approaches, such as wavelet theory and parametric signal

processing techniques.

Wavelet theory is a particularly good approach for MES detection since it over-

comes the inherent trade-off between temporal and spacial resolution in the classi-

cal Fourier based approach and provides an excellent technique for detecting signals

that are both non-stationary and of very short duration. Studies using DWT and a

Daubechies 8th order wavelet have demonstrated a 2 dB increase in observed EBR

and a 10-20% improvement in detection accuracy when compared to commercial

based systems using a Fourier based approach.

Similarly, techniques based on parametric signal processing using an autoregres-

sive model have shown significant potential and may actually out perform all the

other techniques described for detection of small MES.

Wavelet theory and parametric signal analysis techniques seem to have some distinct

advantages over the other approaches discussed and may provide features which sig-

nificantly improve the capabilities for detection of emboli in Doppler signals. How-

ever, it seems clear that no single technique is likely to offer the ability to both

robustly detect and accurately discriminate the size and composition of MES in

Doppler signals. A hybrid technique based on a weighted combination of two or

more approaches may offer the best solution to the MES detection problem.
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2.6 Enhanced DSP Techniques

TCD ultrasound developers and researchers have sought to improve methods of

MES detection and classification using complex signal processing techniques. For

example, there has been much recent interest in the use of chirp signals (pulse

compression), coded excitation and pseudo noise (PN) codes [31, 32, 33, 34] which

use coded pulse sequences and digital signal processing (DSP) methods to improve

the sensitivity and reliability of detection, and subsequently the ability to track

blood flow and emboli motion. In the subsections that follow, the history behind

emergence of these techniques are introduced, and the relation to TCD ultrasound

is discussed.

2.6.1 Chirp Signals (Pulse Compression)

Chirp signals are a form of pulse compression where the frequency of the signal

is modulated (FM chirp) in order to create a modified transmit pulse in which

the duration of the pulse is shortened whilst the energy in the pulse is preserved

such it that can be used to increase the resolution and SNR of the received signal.

This technique was pioneered in the development of pulse compression techniques

for early RADAR systems by teams at the Sperry Gyroscope Company and the

M.I.T. Lincoln Laboratory in the 1950s [35]. However, it wasn’t until the late 1970s

when pulse compression and coded excitation (Golay code) methods first emerged in

medical ultrasound. Takeuchi was the first to adapt these techniques to the signal

processing requirements of ultrasound [36, 37], when he observed that in RADAR,

the ”main subject of their signal processors seems to be ‘clutter suppression’ rather

than object detection itself”. However, this work was limited by the capabilities of

ultrasound hardware systems at that time and it would require the emergence of

DSP techniques and more advanced micro-processors overcome these early limita-

tions.

Interest in chirp signals in medical ultrasound rose again in the early 1990s when

O’Donnell demonstrated that major improvements in SNR (15–20 dBs) of an ultra-
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sound phased array system were possible when using coded excitation (pseudo-chirp)

and pulse compression techniques [38]. In TCD ultrasound, methods of improving

conventional pulse compression techniques lag behind conventional ultrasound imag-

ing systems. More recent publications addressing the use of chirp pulses in TCD

systems have demonstrated that amplitude-modulated chirp pulse ’shaping’ can be

used to vastly improve the axial resolution [31], i.e. the discrimination of multiple

scatterers on a single scan-line. However, discussions on the use of chirp signals have

more recently merged into wider efforts on coded-excitation.

2.6.2 Coded Excitation & Pseudo Noise Codes

The concept of using coded excitation in ultrasound imaging to improve the balance

of resolution and penetration depth was established in the early 2000s [39], however

it is relatively new in TCD ultrasound. Within this area of research, techniques

such as pseudo noise (PN) [32, 34] and Barker codes [33] are investigated. These

techniques use coded pulse sequences and signal processing methods to improve the

sensitivity and reliability of detection, and subsequently the ability to track embolus

within blood flow.

In TCD ultrasound systems, to obtain adequate SNR from blood flow in the MCA a

long transmit pulse is required. However, long transmit pulses reduce the sensitivity

of emboli detection through decreased EBR and also result in poor axial resolution,

a problem that is acutely sensitive in TCD since MCA typically have a diameter of

3-4 mm and a length of approximately 20 mm.

Although it is possible to improve both EBR and axial resolution by increasing

the pressure amplitude to compensate for the reduced transmitted pulse length, this

cannot be achieved safely since there is a corresponding increase in the systems

mechanical index, leading to the possibility of undesirable biological effects from

cavitation.
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Pulse compression and shaping using coded excitation methods is a potential so-

lution to this problem. There are a number of methods which can be employed

for this purpose based on phase or frequency modulation approaches and differing

the coding sequences (e.g., Barker, Golay, m-sequences, etc.). For TCD systems,

Barker code excitation has been demonstrated to both improve the sensitivity and

reliability of detection, and the ability to track embolus in blood flow [31, 32, 33].

A Barker code is a finite sequence of N values of +1 and −1. For j = 1, 2, 3...N the

sequence has ideal autocorrelation properties, such that the off-peak (non-cyclic)

autocorrelation coefficients are given by

cv =
N−v∑
j=1

ajaj+v. (2.24)

There are known Barker codes of lengths 2, 3, 4, 5, 7, 11, and 13, however it is

generally accepted that no longer codes exist. In TCD systems the sequence of

desired code length N would be modulated with the base pulse to compress and

shape the transmitted pulse and achieve a shortened sample volume length. The

compression process is normally achieved using a matched filter whilst an inverse

filter can be used to process the received signal.

2.6.3 Summary of Enhanced DSP Techniques

The latest advances in embedded micro-processor performance and software DSP

techniques provide an exciting opportunity for the next generation of TCD systems.

The potential improvements in sensitivity and reliability of MES detection offered by

the use of coded pulse techniques and the latest DSP technology, can deliver systems

capable of precisely tracking blood flow and emboli motion in TCD systems. In order

to achieve an optimal design, a thorough knowledge of TCD ultrasound propagation

channel is required. This can only be achieved by using channel propagation models

which accurately predict the statistical properties of the channel and the received

signal.
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2.7 Modelling Wave Propagation in Medical Ul-

trasound

The modelling of wave propagation in medical ultrasound has concentrated on nu-

merical mathematical models and the majority of this effort in the past twenty

years has involved the development of linear and non-linear acoustic wave equations

[40]. More recently, intra-body ultrasonic communications has begun to generate

interest in stochastic modelling of ultrasound. However, at the time of writing the

author is unaware of any existing literature related to the development or investi-

gation of stochastic modelling of TCD ultrasound. This section summarises current

approaches to acoustic wave modelling, then introduces and describes stochastic

propagation channel modelling of TCD ultrasound.

2.7.1 Acoustic Wave Modelling

In parallel with the rapid advancement in performance of computer processors, mem-

ory peripherals, and graphics processing units (GPU)ii, computationally intensive

linear and non-linear acoustic (NLA) model equations such as Westervelt [41] and

Khokhlov-Zabolotskaya-Kuznetsov (KZK) (modifications of models from underwa-

ter acoustics), and the k-space pseudospectral method [42] (or simply the k-space

method - a set of analytical and conceptual tools for the analysis of ultrasound in

k-space) are being used in biomedical applications. These model equations are used

in areas such as the design of phased transducer arrays, optimisation of imaging

performance, and treatment planning for therapeutic applications. The accuracy

and utility of these numerical mathematical models and their ability to accurately

predict the propagation of ultrasound in heterogeneous tissue is typically dependent

on the management of three important factors; the acoustic properties of tissue,

non-linear wave propagation, and the power-frequency law of attenuation. It should

be noted that the discussions on numerical mathematical models that follows are

included as part of a review of current acoustic wave modelling techniques. Acous-

iiGPUs are used together with a CPU to markedly increase computational efficiency.
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tic wave models and their associated mathematical expressions are not suitable for

stochastic analysis of the received signal and will not be used in this study.

2.7.1.1 Westervelt

The generalised form of the Westervelt wave equation is given by

ρ∇ ·
(

1

ρ
∇p

)
− 1

c2

∂2p

∂t2
+
δ

c4

∂3p

∂t3
= − β

ρc4

∂2p2

∂t2
(2.25)

where p is the sound pressure, c is the small signal sound speed, δ is a measure of

sound diffusion, β is the non-linearity coefficient, and ρ is the ambient density. The

non-linearity coefficient is a function of the pressure-density relation and produces

distortion in the travelling wave [43]. Sound diffusion δ can be considered as a

measure of the even scattering of sound energy in a medium, and is a function of

the viscosity, thermal conductivity, and specific heat capacity [44]. There are several

alternative forms which can be derived from (2.25), such as (2.26), the Westervelt

equation for homogeneous media [40],

∇2p− 1

c2
0

∂2p

∂t2
+
δ0

c4
0

∂3p

∂t3
= − β0

ρ0c4
0

∂2p2

∂t2
(2.26)

where p0, c0, δ0 and β0 become the acoustic parameters for the medium. Further,

by setting the non-linearity coefficient β0 in (2.27) to 0, we can derive the linear

variant of the Westervelt acoustic wave equation,

∇2p− 1

c2
0

∂2p

∂t2
+
δ0

c4
0

∂3p

∂t3
= 0 (2.27)

The Westervelt wave equations are used to characterise acoustic fields for transducer

design and to study acoustic field estimations in biological tissue. The non-linear

versions are used in applications of high intensity, high pressure ultrasound when

the linear approximation begins to introduce inaccuracies due to tissue harmonics,

the thermal effect, and cavitation.

41



Chapter 2: Principles of Transcranial Doppler Ultrasound

2.7.1.2 Khokhlov-Zabolotskaya-Kuznetsov (KZK)

Although the numerical ultrasound community is gradually migrating towards the

Westervelt equation in recent years [40] on account of its greater accuracy in the

near field and at positions off the beam axis, KZK is currently the most popular

acoustic wave equation because of its simplicity whilst also supporting the effects of

diffraction, absorption and non-linearity. The KZK equation is given by

∂2p

∂z∂τ
− c0

2
∇2
⊥p−

δ0

2c3
0

∂3p

∂τ 3
− β0

2ρ0c3
0

∂2p2

∂τ 2
= 0 (2.28)

where the nominal axis of the beam is the z-axis and τ is retarded time, i.e. the

time when the acoustic field began to propagate (τ = t − (z/c0)) [40]. Like the

Westervelt equation, the KZK equation includes the non-linearity coefficient and

is used to model non-linear acoustics. The main advantage over the Westervelt

equation is computational efficiency, however as the KZK equation is less accurate

in the near field and at positions off the main insonation axis [40], the classic version

of the KZK equation cannot be used to accurately model wide angle or beam steering

ultrasound systems [45].

2.7.1.3 k-space Method

The k -space method is a solution to a system of coupled acoustic wave equations

using an exact finite difference scheme that reduces to an operator in the spatial

frequency domain or ’k-space’ [42]. It creates a frequency domain description of an

ultrasound system that can be used to gain insight into linear acoustic propagation.

The k -space representation of an imaging system makes system analysis easier as

image translation, rotation, and shearing transformations are more computationally

efficient in the spatial frequency domain than the time domain [46]. Originally

developed for the analysis of experiments involving anisotropic scattering and for

the design of acoustic tomography systems, k -space ultrasound frequency domain

processing techniques have also found utility in pulse echo ultrasound systems [47].

The k -space method is limited to linear system analysis, although there are a number

of recent modified approaches based on k -space which may be used to model non-
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linear propagation [42, 48]. Furthermore, Anderson et al also states that the k -space

method has no obvious means of representing non-laminar flow or non-Rayleigh

scatterers [49] in blood, such as contrast agent, micro-bubbles or MES. This may be

a limiting factor for the use of k -space methods in TCD Doppler ultrasound.

2.7.2 Ultrasonic Communications

More recently, studies of channel modelling in ultrasound are emerging within in-

vestigations of ultrasonic communications for intra-body networks [50, 51]. In this

special case, experimental observations using a kidney phantom at insonation fre-

quencies of 4-5 MHz were performed, and received ultrasonic signals were measured

to establish the extent of interference from multi-path fading. In this case the

statistical characteristics of the channel fading coefficient were modelled using the

Nakagami distribution [52] and a good match to measured results was reported.

However, this analysis was performed at insonation frequencies much higher than

that used for TCD ultrasound, and interest was focused on the effects of interference

on point-to-point communications. No attempt was made to investigate a stochastic

propagation channel model using first and second order statistics.

2.7.3 Stochastic Propagation Channel Modelling

Stochastic analysis is the study of random probability distributions or patterns that

may be analysed statistically but may not be predicted precisely. The NLA wave

equations and k -space methods described in section 2.6.1 are highly accurate meth-

ods that can be used to analyse complex acoustic wave propagation in heterogeneous

media, however they are less suitable for channel modelling, where the capacity for

information transfer is analysed. When advanced signal processing techniques such

as coded excitation are used (section 2.5), channel modelling can inform the design

of ultrasound equipments, and the development of signal and image processing al-

gorithms. In this section stochastic propagation channel modelling is considered in

relation to multi-path propagation in TCD ultrasound.
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2.7.3.1 Multi-path Propagation in TCD Ultrasound

As with imaging and therapeutic applications of ultrasound, in TCD ultrasound a

pulse is transmitted through tissue and the received echo is the sum of scattered,

diffracted, and reflected components of that pulse as shown in Fig. 2.7.

Figure 2.7: A schematic showing the effects of scattering, diffraction and reflection

on TCD ultrasound propagation channel.

This effect is known as multi-path propagation and although ultrasound waves are

longitudinal compression waves as opposed to two dimensional transverse waves, the

end result is similar to the effects observed in radio channels. It can be considered as

the constructive and destructive superposition of an infinite sum of attenuated, de-

layed, and phase-shifted replicas of the transmitted signal [53]. The degree to which

this scattering occurs is a function of the transmission frequency and the acoustic

properties of the tissue in the insonation path. The acoustic properties of the major

tissue classes (fat, muscle, brain, and water; Table 2.1) are weakly inhomogeneous

with low acoustic impedance at the tissue interfaces. In contrast the velocity of

sound in bone is much higher (over 2×) and has a significantly greater acoustic
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impedance at the tissue interface. It is the presence of these inhomogeneous layers

and the non-linear scattering effects of RBCs that cause artefacts in ultrasound B-

mode images. Similarly, and as discussed in section 2.5, it is this same scattering

effect of RBCs in blood flow that leads to the Doppler frequency and phase shift

that allows us to study haemodynamics and embolisation.

Multi-path fading resulting from these scattering effects can also have a signifi-

cant impact on the design of algorithms for the detection and characterisation of

MES. For example, signal distortion resulting from fading and the associated delay

spread (the difference between the time of arrival of the earliest significant scatter-

ing reflection and the latest significant scattering reflection) can reduce or negate

the ability of an algorithm to detect and analyse a MES. It is therefore crucially

important to understand the fading characteristics of the channel and the degree

to which some form of fading mitigation may be appropriate. Such analysis would

then inform algorithm design.

2.7.3.2 Analysis of the Received Signal

If we consider a perfect system and a normal observation, where no emboli, arte-

facts or background noise are present, the received band-pass signal r(t) will be the

amplified radio frequency (RF) signal resulting from the backscatter of blood. In

terms of the complex envelope, the received signal r(t) may be expressed as

r(t) = Re[g(t)ej2πfct] (2.29)

where g(t) is the multi-path fading channel response and fc is the ultrasound in-

sonation frequency. The channel response comprises of N propagation paths and

can be expressed as [54]

g(t) =
N∑
n=1

Cne
jθn(t) (2.30)

45



Chapter 2: Principles of Transcranial Doppler Ultrasound

where Cn is the signal amplitude and θn(t) is the time-variant phase associated the

nth path. The later is given by

θn(t) = θn − 2π[(fc + fDn)τn − fDnt]. (2.31)

In (2.31), θn is the phase shift randomly introduced by the reflection of the acous-

tic wave from the nth scatterer and can be uniformly distributed between −π and

π. The time delay, τn is the delay of the nth propagation path, and fDn is the

Doppler frequency shift. The magnitude Cn depends on the cross sectional area

of the scatterer and its properties; RBCs are the most significant scattering bodies

in the insonation region. With the assumptions that the insonation frequency is

unmodulated and the channel is flat fading, the received band-pass signal r(t) can

be expressed as [54]

r(t) = Re[(gI(t) + jgQ(t)).(cos(2πfct)j sin(2πfct))], (2.32)

where the in-phase and quadrature components gI(t) and gQ(t) are

gI(t) =
N∑
n=1

Cn cos(θn(t)) (2.33)

and

gQ(t) =
N∑
n=1

Cn sin(θn(t)). (2.34)

In (2.33) and (2.34), as N →∞ the central limit theorem states that gI(t) and gQ(t)

can be treated as Gaussian random processes and the phase angles are continuous

independent random variables with PDF p(θ).

A block diagram showing the simplified receive signal processing chain of a PW

Doppler system is shown in Fig. 2.8. Transmitted pulses are reflected by station-

ary structures and blood flow. The analogue received signal passes through a filter

and RF amplifier, and is digitised by the analogue to digital converter. Pulse-echo

receive range gating is used to select Doppler signals from blood flow according to
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distance from the ultrasound probe [10].

For spectrogram and M-mode processing, quadrature phase detection and phase

filtering are used to separate the in-phase (I) and quadrature (Q) side-bands which

correspond to blood flow direction; forward (systole; U) and reverse (diastole; L).

These outputs feed into the digital signal processing functions used to generate the

M-mode and spectrogram displays.
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Figure 2.8: A block diagram of a TCD system receive signal processing chain.
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2.8 Summary

This chapter began by providing a review of the principles of Doppler ultrasound in

section 2.2, taking the classical theory developed by Christian Doppler and relating

this directly to the problem of obtaining ultrasound images of blood flow and MES

detection. From this starting point, the fundamental operating principles of Doppler

ultrasound were explored in section 2.3 and the challenges of obtaining ultrasound

images of blood flow were described. Importantly, the acoustic properties of tissue

and the scattering properties of blood were also introduced.

In section 2.4, TCD ultrasound was discussed and its use as a non-invasive modality

for the interrogation and monitoring of blood flow in the intra-cranial arterial system

was described. The key challenges of performing long term ambulatory monitoring

of the MCA were also discussed and the limitations of current TCD systems were

highlighted.

Using this basic system description as our starting point, a technology survey was

performed in section 2.5 in which the four main signal processing approaches for

MES detection were described; STFT, Wigner-Ville, wavelet theory and paramet-

ric signal processing. From the results summarised in section 2.5, parametric sig-

nal processing techniques based on an AR model out performed the other meth-

ods. Classical STFT based methods are only able to reliably detect embolus when

EBRmin ≥ 12 dBs, whilst DWVD and Wavelet approaches can reliably detect em-

bolus when EBRmin ≥ 10 dBs. Parametric methods were reportedly able to achieve

reliable embolus detection with EBRmin ≥ 5 dBs. From this comparison, although

parametric techniques show considerable promise, the suggestion was made that a

hybrid technique based on a weighted combination of two or more approaches may

offer the most reliable and robust method of MES detection in blood flow.

Additionally, a summary of the emerging applications of coded excitation and pulse

compression in TCD ultrasound have been included and the basic principles of these
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techniques were explained in section 2.6. These signal modulation schemes are based

on the migration of signal processing approaches first developed in radio communi-

cations systems. Analysis of these techniques found that chirp signals can increase

the SNR of ultrasound phased array systems by 15–20 dBs using coded excitation,

whilst chirp pulse ’shaping’ using coded excitation and PN codes may also improve

axial resolution. However, lessons from radio communications [53] have shown that

successful design and integration of such techniques relies upon a thorough knowl-

edge of the channel and the multi-path propagation effects resulting from reflection,

diffraction, and scattering of the received signal by the medium. This fundamental

analysis is missing from current TCD system design. In order to design an op-

timal TCD system that can take full advantage of the complex signal processing

algorithms that are available, it is crucial that a framework is established through

development of theoretical and simulation models with which to explore and de-

scribe the propagation channel.

This problem was highlighted further in section 2.7, when current methods of mod-

elling wave propagation in medical ultrasound were described and reviewed. These

methods include the traditional NLA wave equations and the k -space method. Al-

though these techniques can provide highly accurate models of ultrasound propaga-

tion in heterogeneous media, they do not support stochastic analysis of the propa-

gation channel and cannot be used to analyse the deleterious effects of multi-path

fading. Since it is understood that multi-path fading can have a significant impact

on the design of algorithms for the detection and characterisation of MES, there

is a fundamental requirement to develop methods of channel characterisation and

modelling for TCD ultrasound. The translation of stochastic channel propagation

techniques from communications technology may provide a solution to this problem.

From the analysis presented in sections 2.5, 2.6, and 2.7, it is apparent that im-

provements in robust and reliable MES detection rates are possible if hybrid signal

processing techniques can be combined with suitable modulation schemes. This

should permit reliable and robust MES detection at EBRmin ≥ 5 dBs or less, and
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may be capable of precise emboli motion tracking. However, since existing acoustic

wave modelling methods do not support analysis of the channels information trans-

fer characteristics, a stochastic propagation channel model is required in order to

design and develop an optimal TCD ultrasound system for this purpose.

In summary, as in many other regions of the developed world, it is widely accepted

that the financial burden of an ageing population in the UK is likely to become un-

sustainable. To meet this challenge, new and improved methods of preventive and

anticipatory healthcare are being investigated and developed across a broad range of

medical applications. TCD ultrasound can be one of those transformative technolo-

gies. It can provide our clinicians with the ability to diagnosis and predict embolic

complications in stroke patients. Indeed, TCD ultrasound may offer the only way to

monitor asymptomatic embolisation and, therefore, must play an important role in

assessing risk and preventing strokes in the future. However, there are a number of

important aspects of current TCD ultrasound system design, as highlighted in this

chapter, that should be improved before it can be fully utilised within a proactive

and preventive use case. Most notably, we need to re-consider our understanding

of the channel characteristics of TCD ultrasound by developing TCD ultrasound

propagation channel models, and use this knowledge to develop new and improved

algorithms that can be optimised to take advantage of this insight. This strategy

would appear to offer the most effective route to delivering more accurate and re-

liable levels of MES detection. If this can be achieved, TCD ultrasound can help

to further our understanding of cerebrovascular disease and significantly improve

outcomes for patients.

The key motivation of this thesis will be the development of a suitable TCD ul-

trasound propagation channel model to support the development and design of the

next generation of TCD ultrasound systems. In Chapter 3 an initial approach to

this problem will be discussed by investigating and analysing 3-D isotropic spherical

scattering channel models for TCD ultrasound.
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3-D Isotropic TCD Ultrasound

Propagation Channel Models

3.1 Introduction

In this chapter, 3-D isotropic spherical scattering channel models for TCD ultra-

sound are developed. Firstly, using a 3-D half-spheroid geometry, the characteristics

of a theoretical reference model are described. Then the statistical properties are

investigated in terms of the PDFs, temporal ACF, Doppler PSD, envelope LCR, and

AFD. These investigations then extend beyond the theoretical model by defining a

simulation model, for which the characteristics and statistical properties are once

again defined. From this simulation model a SoS [55] flat fading channel simulator

is developed. The chapter concludes by summarising and comparing the character-

istics and statistical properties of the theoretical reference model, simulation model,

and SoS channel simulator, analysing the extent to which the models agree, their

usefulness, and limitations.

3.2 Theoretical Reference Model

The study of multi-path effects and the design of wireless communications systems

has evolved through many theoretical 2-D and 3-D channel models [56, 57, 58]. Tak-

ing the signal received at the RF amplifier, as shown in Fig. 2.8, and considering the
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envelope correlation for a fading channel in ultrasound to be analogous to that of a

baseband signal in a radio communications system, we can apply a similar approach

to the characterisation of a Doppler ultrasound propagation channel.

In the sub-sections that follow, a model geometry is developed based on a 3-D

half-spheroid geometry. A single element ultrasound transducer is assumed to be

stationary and positioned at the origin of the Cartesian coordinates. The ultrasound

system is simplified to consider only the returning reflection from a strong isotropic

scattering region within blood flow of an insonated vessel. Tissue is assumed to be

homogeneous with uniform acoustic impedance.

3.2.1 Model Geometry

The scattering geometry can be elaborated by considering the propagation channel

as a 3-D isotropic half-spheroid [54, 59, 60, 61, 62], as shown in Fig. 3.1. Strong

scatterers are assumed to exist within and around the periphery of the half-spheroid

region. The intersection of the scatterers with the x− z plane is a semi-ellipse with

axial lengths 2a and b, along the x and z axis respectively, such that a is the radius

of the base and b is the height of the half-spheroid. The direction of blood flow in the

insonation region is, without any loss of generality, assumed to be in the direction

of the x axis with velocity v.
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Figure 3.1: An illustration of the 3-D plane within a hemispherical model.

Figure 3.2: An illustration of a component wave in a 3-D plane.
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Fig. 3.1 and Fig. 3.2 show illustrations of the nth component wave in a 3-D plane.

Each plane wave has a phase θn, a magnitude Cn, and an angle of arrival (AOA).

The spatial AOA ψn is formed between the incident wave and the direction of motion

of blood flow and consists of two components; an azimuth angle of arrival (AAOA)

αn to the x − z plane and an elevation angle of arrival (EAOA) βn to the x − y

plane. The model parameters αn, βn, θn and Cn are all random and statistically

independent. The nth incident plane wave in a 3-D plane can be described by

En(t) = Cne
j(θnt−kwÂ) (3.1)

where

Â = [x0 cos(α) cos(β) + y0 cos(α) cos(β) + z0 sin(β)] (3.2)

and kw is the wave propagation constant, or wave number, determined by

kw =
2π

λc
. (3.3)

The sum of N statistically independent plane waves is given by

E(t) =
N∑
n=1

En(t). (3.4)

The scattered components can be modelled by a zero-mean complex-valued Gaussian

random process

µ(t) = µ1(t) + jµ2(t) (3.5)

where µ1 and µ2 are the in-phase and quadrature components respectively. In the

isotropic case, the sum of scattered components do not include a line-of-sight (LoS)

component and (3.5) leads to a Rayleigh process such that

ζ(t) = |µ(t)| = |µ1(t) + jµ2(t)| (3.6)
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3.2.2 Statistical Properties of the Theoretical Model

3.2.2.1 Amplitude & Phase PDF

The marginal PDFs of AAOA and EAOA, i.e. pα(α) and pβ(β), can be used to

define the PDF of the spatial AOA, Pψ(ψ). The derivations of the 3-D half-spheroid

PDFs are provided in Appendix B.1. In the case of the PDF of the AAOA pα(α),

it can be assumed that scatterers are distributed uniformly around the transducer,

as shown by (B.45),

pα(α) =
1

2π
, 0 ≤ α ≤ 2π. (3.7)

However, the PDF of the EAOA pβ(β) can be derived as (B.46),

pβ(β) =

(
b
a

)2
cos(β)[

sin2(β) +
(
b
a

)2
cos2(β)

] 3
2

, 0 ≤ β ≤ 2

π
. (3.8)

In (3.8), pβ(β) can be seen to depend only on the ratio of b
a
, and for the special

case where a = b, the PDF simplifies to pβ(β) = cos(β). To demonstrate the effect

of altering the ratio of b
a
, pβ(β) is plotted as a function of the elevation angle for

sample values of b
a

in the oblate spheroid case (b ≤ a) in Fig. 3.3 and in the prolate

spheroid case (b ≥ a) in Fig. 3.4.
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Figure 3.3: The 3-D isotropic half-spheroid PDF of the EAOA seen at the transducer

for b
a

= 0.25, 0.5, 0.75 and 1 (i.e. an oblate half spheroid), where a is the radius of

the base and b is the height of the half-spheroid.

57



Chapter 3: 3-D Isotropic TCD Ultrasound Propagation Channel Models

Figure 3.4: The 3-D isotropic half-spheroid PDF of the EAOA seen at the transducer

for b
a

= 1, 1.25, 1.5, and 1.75 (i.e. a prolate half spheroid), where a is the radius of

the base and b is the height of the half-spheroid.

Further, if we consider the PDFs of the amplitude and phase of the Rayleigh process

as defined by (3.6), we know from [53] that the amplitude PDF is given by

pζ(z) =
z

σ2
0

e
− z2

2σ2
0 , z ≥ 0 (3.9)
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and the phase PDF may be obtained as the uniform distribution

pθ(θ) =
1

2π
. (3.10)

3.2.2.2 Temporal ACF

The normalised temporal ACF rµiµi(τ) of µi(t) where (i = 1, 2) is defined as the

ensemble average E[.] of the received band pass signal µi(t) with itself at a time

separation τ when µi(t) is Wide Sense Stationary (WSS) [54]. As shown by (C.12)

in Appendix C, the temporal ACF can be derived as [61]

rµiµi(τ) =
∫ π

2

0
J0(2πfDmaxτ cos β) ·


(

b
a

)2
cos(β)[

sin2 β +
(

b
a

)2
cos2 β

] 3
2

 dβ (3.11)

where fDmax is the maximum Doppler frequency, β is the EAOA and J0(.) denotes

the zeroth-order Bessel function of the first kind.

The normalised theoretical temporal ACF is plotted in Fig. 3.5 for b
a

values of

0.5, 0.75, 1, 1.25 and 1.5. The plot demonstrates how the ACF changes over a range

of oblate and prolate half-spheroid model configurations.
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Figure 3.5: The 3-D isotropic half-spheroid theoretical ACF for b
a

= 0.5, 0.75, 1, 1.25,

and 1.5, where a is the radius of the base and b is the height of the half-spheroid.

In the remaining analysis, the special case a = b will be used. In this case, (3.11)

becomes

rµiµi(τ) =
∫ π

2

0
J0(2πfDmaxτ cos β) · cos(β)dβ (3.12)

Using the definitions at 6.681.1 and 8.411.11 of [63] gives us

rµiµi(τ) =
π

2
J 1

2
(πfDmaxτ) · J− 1

2
(πfDmaxτ) (3.13)

where

Jv(x) =
2

π

∫ ∞
0

sin(x cosh t− vπ

2
) cosh vtdt (3.14)
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3.2.2.3 Doppler PSD

The Doppler PSD (Sµiµi(f)) is the average power of the channel as a function of the

Doppler frequency, fD. It is derived as the Fourier transform of the ACF rµiµi(τ)

and is obtained as

Sµiµi(f) =
∫ ∞
−∞

rµiµi(τ)e−j2πfτdτ (3.15)

Two important characteristics of the Doppler PSD are the Doppler shift B(1)
µiµi

and

the Doppler spread B(2)
µiµi

[53]. The Doppler shift B(1)
µiµi

is given by

B(1)
µiµi

=

∫∞
−∞ fSµiµi (f) df∫∞
−∞ Sµiµi (f) df

(3.16)

The Doppler spread B(2)
µiµi

is given by

B(2)
µiµi

=

√√√√√∫∞−∞
(
f −B(1)

µiµi

)
Sµiµi (f) df∫∞

−∞ Sµiµi (f) df
. (3.17)

Doppler shift is a measure of the degree of frequency shift introduced by multi-

path fading, where as Doppler spread is the average frequency shift that the signal

experiences during transmission over the multi-path channel. These are important

because they quantify the degree of frequency dispersion experienced by the channel

as a result of the rate and direction of movement of scatterers. B(1)
µµ and B(2)

µµ can

also be calculated using the temporal ACF and its time derivatives [59], defined by

B(1)
µiµi

=
1

2πj
· ṙµiµi(0)

rµiµi(0)
(3.18)

and

B(2)
µiµi

=
1

2π

√√√√( ṙµiµi(0)

rµiµi(0)

)2

− r̈µiµi(0)

rµiµi(0)
. (3.19)

3.2.2.4 Envelope LCR & AFD

The envelope LCR, denoted L(r), is defined as a measure of the rate at which

the received complex envelope crosses a specified level r in the positive or negative
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going direction, such that the LCR is the average number of up or down crossings

through r per second. The L(r) can be derived by considering two uncorrelated

real-valued zero-mean Gaussian random processes, µ1(t) and µ2(t), where R(t) is

the absolute value of this process, such that µ(t) = µ1(t) + µ2(t) and R(t) = |µ(t)|.

Using a procedure similar to that described in [53] we start by finding the joint

probability function for the stationary processes µP1(t), µP2(t), µṖ1
(t), and µṖ1

(t), i.e.

pµP1
µP2

µ̇P1
µ̇P2

(x1, x2, ẋ1, ẋ2). Based on the following characteristics and assumptions,

rµ1µ1(τ) 6= rµ2µ2(τ), τ 6= 0 (3.20)

E [µpi(t)] = mi = 0 (3.21)

var [µpi(t)] = var [µi(t)] = rµiµi(0) = σ2
i (3.22)

E [µ̇pi(t)] = 0 (3.23)

var [µ̇pi(t)] = rµ̇iµ̇i(0) = −ṙµiµi(0) = βi (3.24)

where µ̇pi(t) is the first derivative of µpi(t), the joint probability is given by

pµP1
µP2

µ̇P1
µ̇P2

(x1, x2, ẋ1, ẋ2) =
e
−x1−m1

2σ2
1

√
2πσ1

· e
−x2−m2

2σ2
2

√
2πσ2

· e
− ẋ1

2β2
1

√
2πβ1

· e
− ẋ2

2β2
2

√
2πβ2

(3.25)

which can then be simplified to

pµP1
µP2

µ̇P1
µ̇P2

(x1, x2, ẋ1, ẋ2) =
e
− x1

2σ2
1

√
2πσ1

· e
− x2

2σ2
2

√
2πσ2

· e
− ẋ1

2β2
1

√
2πβ1

· e
− ẋ2

2β2
2

√
2πβ2

(3.26)

using m1 = m2 = 0 for a Rayleigh process.

To make use of (3.26), a transformation from Cartesian coordinates (x1, x2) to polar

coordinates (z, θ) is required in order to get pRṘθθ̇(R, Ṙ, θ, θ̇), from which the joint

PDF of R(t), pRṘ(R, Ṙ) can be found. The LCR is defined as

L(r) =
∫ ∞

0
Ṙ · pR,Ṙ(r, Ṙ)dṘ. (3.27)
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Using a Jacobian determinant, pRṘ(r, Ṙ) can be found as

pRṘ(r, Ṙ) =
r

(2π)
3
2σ1σ2

∫ π

−π

1√
(β1 cos2 θ + β2 sin2 θ)

·

e
−r2

[
(σ2

2cos
2θ+σ2

1 sin2 θ)

2σ2
1
σ2

2

]
· e
−Ṙ2

[
1

2(β1 cos2 θ+β2 sin2 θ)

]
dθ

(3.28)

By substituting (3.28) into (3.27), the expression for L(r) can be derived as

L(r) =
r

(2π)
3
2σ1σ2

∫ π

−π

√
(β1 cos2 θ + β2 sin2 θ) · e

−r2

[
(σ2

2cos
2θ+σ2

1 sin2 θ)

2σ2
1
σ2

2

]
dθ (3.29)

The average fade duration (AFD) is the amount of time that the received complex

envelope remains below a specified level r and is denoted by T (r). In general, the

AFD is defined as

T (r) =
pR−(r)

L(r)
(3.30)

where pR−(r) indicates that the process R(t) is found below the level r, i.e. pR−(r) =

p [R(t) ≤ r], as discussed in [53], such that

pR−(r) =
∫ r

0
pR(R)dR (3.31)

and

pR(r) =
∫ ∞
−∞

pRṘ(r, Ṙ)dṘ. (3.32)

Solving (3.32) and substituting into (3.31) gives

pR−(r) =
∫ r

0

R

σ2
1σ

2
2

e
−R2

4σ2
1 I0

[
R2

4

(
1

σ2
2

− 1

σ2
1

)]
dR (3.33)

where I0 is a zeroth-order modified Bessel function of the first kind. Since R(t) is a

Rayleigh process and the variances (σ1 = σ2) = σ0 and (β1 = β2) = β0, then (3.29)

can be reduced to

Lζ(r) =
r

(2π)
3
2σ2

0

∫ π

−π

√
β0 · e

−r2

(
σ2

0
2σ4

0

)
dθ (3.34)

63



Chapter 3: 3-D Isotropic TCD Ultrasound Propagation Channel Models

and further simplified to

Lζ(r) =

√
β0

2π
· r
σ2

0

· e
− r2

2σ2
0 , r ≥ 0. (3.35)

Similarly, the AFD for a Rayleigh process can be derived by substituting (3.33) and

(3.34) into (3.30), and solving to give

Tζ(r) =

√
2π

β0

· σ
2
0

r
·
(
e
r2

2σ2
0 − 1

)
, r ≥ 0. (3.36)

3.3 Simulation Model

In this section a SoS simulation model is proposed. The simulation model emulates

signals received at the transducer in a TCD ultrasound system using the theoretical

half-spheroid model as a reference. The simulated receive signal µ̂(t) has in-phase

and quadrature components such that

µ̂(t) = µ̂1(t) + jµ̂2(t). (3.37)

The real-valued SoS Gaussian stochastic process µ̂i(t) can be approximated by

µ̂i(t) =
Ni∑
n=1

Ci,n cos(2πfi,nt+ θi,n), i = 1, 2 (3.38)

where Ci,n represents the gains, (2πfi,nt) the Doppler frequencies and θi,n the phases

of Ni respective exponential functions.

3.3.1 MEDS for Parameterisation of the Proposed SoS Sim-

ulation Model

The simulation model parameters must be determined such that the process given by

(3.38) has the desired statistics. For simplicity and to provide a good approximation

to Rayleigh scattering in accordance with the Jakes method for SoS [56], the method

of exact Doppler spread (MEDS) [64] is used to compute these statistics. The
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parameters in (3.38) are generated using the following expressions;

Ci,n = σ

√
2

Ni

, (3.39)

fi,n = fDmax cosψn = fDmax cosαn cos βn, (3.40)

and θi,n = 2π
n

Ni + 1
(3.41)

where Ci,n represents the gains, fi,n the Doppler frequencies, αn and βn the discrete

azimuth and elevation angles, and θi,n the discrete phases of Ni respective sinusoids.

A random generator uniformly distributed over the interval (0, 2π) can be used to

derive values of θi,n. The values for fDmax and σ are identical to the reference model.

These parameters are kept constant during the simulation and the model statistical

properties are derived by using time averaging instead of statistical averaging. In

the analysis that follows Ni is assumed to equal for both Gaussian random processes

µ1(t) and µ2(t), such that Ni = N .

3.3.2 Statistical Properties of the Simulation Model

Using the theoretical model and its corresponding statistical properties, it is possible

to derive the properties of the simulation model.

3.3.2.1 Amplitude PDF

As defined in (B.50) in Appendix B.2, the amplitude PDF of the SoS simulation

model becomes

p̂ζ̂(z) = (2π)2 z
∫ ∞

0

[
N∏
n=1

J0 (2π|Cn|x)

]
J0 (2πzx)xdx. (3.42)

3.3.2.2 Temporal ACF

The closed form expression for the simulated ACF is given by [61] as

r̂µ̂iµ̂i(τ) =
N∑
n=1

Cn
2

2
cos(2πfDmaxτ cosαn cos βn). (3.43)
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The parameters αn and βn in (3.43) must be evaluated for the simulation model

such that the theoretical and simulated temporal ACFs are a close match. These

parameters can be determined using an error minimising function, such as the Lp-

norm method of parameter computation (LPNM) [53]. The parameter βn can be

found using the closed form expressions for the theoretical and simulated spatial

cross-correlation function (CCF) [61], given as

ρ(D) =

π
2∫

0

exp(j2π
D

λ
sin β)pβ(β)dβ (3.44)

and

ρ̂(D) =
1

N

N∑
n=1

e−j2π
D
λ

sinβn . (3.45)

In (3.44) and (3.45), the spatial CCF is calculated at a separation distance D.

Using an arbitrary spatial separation of an integral number of wavelengths allows

parameter βn to be evaluated using the error function

E
(p)
1 =

 Dmax∫
0

|ρ(D)− ρ̂(D)|p dD


1
p

. (3.46)

Similarly, the parameter αn can then be calculated using theoretical and simulated

ACFs, given by (3.12) and (3.43), and the LPNM error function,

E
(p)
2 =

 τmax∫
0

|rµµ(τ)− r̂µ̂µ̂(τ)|p dτ

 1
p

. (3.47)

3.3.2.3 Doppler PSD

The closed form expression for the simulated PSD is simply the Fourier transform

of the simulated ACF and is given by

Ŝµ̂iµ̂i(f) =

∞∫
−∞

r̂µ̂iµ̂i(τ)e−j2πfτdτ. (3.48)
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In a similar process to that described in section 3.2.2.3, the Doppler shift B̂
(1)
µ̂iµ̂i

is

given by

B̂
(1)
µ̂iµ̂i

=
1

2πj
·

˙̂rµ̂iµ̂i(0)

r̂µ̂iµ̂i(0)
(3.49)

and the Doppler spread B̂
(2)
µ̂iµ̂i

is given by

B̂
(2)
µ̂iµ̂i

=
1

2π

√√√√( ˙̂rµ̂iµ̂i(0)

r̂µ̂iµ̂i(0)

)2

−
¨̂rµ̂iµ̂i(0)

r̂µ̂iµ̂i(0)
. (3.50)

By solving (3.49) and (3.50), it can be shown that B̂
(1)
µ̂iµ̂i

and B̂
(2)
µ̂iµ̂i

are given by

[53, 61]

B̂
(1)
µ̂iµ̂i

= 0 (3.51)

and

B̂
(2)
µ̂iµ̂i

=

√√√√ 1

N

N∑
n=1

f 2
Dmax cos2 αn cos2 βn. (3.52)

respectively, for i = 1, 2.

3.3.2.4 Envelope LCR & AFD

Using a similar approach to that followed in section 3.2.2.4, µ̂1(t) and µ̂2(t) are

two uncorrelated real-valued zero-mean Gaussian random processes. The simulated

Rayleigh process is given by ζ̂(t) = |µ̂(t)| = |µ̂1(t) + µ̂2(t)|, and the variances are

(σ1 = σ2) = σ0 and (β1 = β2) = β0. The simulated LCR, L̂ζ̂(r), can be derived as

L̂ζ̂(r) =

√
β0

2π
· p̂ζ̂(r), r ≥ 0 (3.53)

where p̂ζ̂(r) is given by (3.42). This allows the expressions for the simulated LCR

to be given by

L̂ζ̂(r) =

√
β0

2π
· r
σ2

0

· e
− r2

2σ2
0 , r ≥ 0 (3.54)

from the simplification of the expression for the amplitude PDF of the envelope of

a Rayleigh process, as given by (B.51) in Appendix B.2. Similarly, the simulated
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AFD, T̂ζ̂(r), can be derived as

T̂ζ̂(r) =

√
2π

β0

· σ
2
0

r
·
(
e
r2

2σ2
0 − 1

)
, r ≥ 0. (3.55)

Therefore, expressions (3.54) and (3.55) converge with the theoretical equivalents,

as given by (3.35) and (3.36)

3.4 Numerical Results & Analysis

In this section we present and analyse the 3-D models, comparing the theoretical,

simulation, and numerical results. Fig. 3.6 and Fig. 3.7 show plots for the am-

plitude and normalised phase PDFs of the theoretical reference model, simulation

model and SoS simulation, where b
a

= 1, fDmax = 1.07 kHz, σ2 = 1, and N = 30.

It is clear from the close agreement of these plots that the SoS channel simulator

provides a very strong agreement with the theoretical reference, and the models

clearly follow a Rayleigh distribution as designed.
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Figure 3.6: The amplitude PDF of the 3-D isotropic half-spheroid theoretical ref-

erence, simulation, and SoS simulation results, where b
a

= 1, fDmax = 1.07 kHz,

σ2 = 1, and N = 30.
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Figure 3.7: The phase PDF of the 3-D isotropic half-spheroid theoretical reference,

simulation, and SoS simulation results, where b
a

= 1, fDmax = 1.07 kHz, σ2 = 1, and

N = 30.

The level of agreement of the ACFs must be considered in terms of the accuracy of

estimation of the αn and βn parameters using the LPNM. Fig. 3.8 shows the plots

of the theoretical reference and simulation model CCFs for N = 30 and Dmax = 4λ.

This process has been optimised for parameter βn and the theoretical reference

model shows good agreement with the simulation model.
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Figure 3.8: A plot of the theoretical and simulated spatial CCFs for the 3-D half-

spheroid model for N = 30 and Dmax = 4λ.

In Fig. 3.9, the ACFs of the theoretical reference model, simulation model and SoS

simulation are plotted using the resulting parameter αn, where b
a

= 1, fDmax = 1.07

kHz, σ2 = 1, and N = 30. This plot shows strong agreement up to a temporal

separation period of approximately 0.8 ms, after which the simulation results begin

to diverge from the theoretical model. This period of agreement is a function of N ,

such that as (N →∞), so r̂µ̂iµ̂i(τ)→ rµiµi(τ).

71



Chapter 3: 3-D Isotropic TCD Ultrasound Propagation Channel Models

Figure 3.9: The ACF of the 3-D isotropic half-spheroid theoretical reference, sim-

ulation, and SoS simulation results, where b
a

= 1, fDmax = 1.07 kHz, σ2 = 1, and

N = 30.
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The plots of the normalised envelope LCRs and AFDs of the theoretical reference

model, simulation model and SoS simulation are shown in Fig. 3.10 and Fig. 3.11

respectively, where b
a

= 1, fDmax = 1.07 kHz, σ2 = 1, and N = 30. These plots

demonstrate very close agreement. This is perhaps unsurprising given the conver-

gence of the simplified expressions for the theoretical and simulated models, however

this is re-enforced by the agreement of the SoS simulation, which also demonstrates

the same close agreement.

Figure 3.10: The LCR of the 3-D isotropic half-spheroid theoretical reference, sim-

ulation, and SoS simulation results, where b
a

= 1, fDmax = 1.07 kHz, σ2 = 1, and

N = 30.
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Figure 3.11: The AFD of the 3-D isotropic half-spheroid theoretical reference, sim-

ulation, and SoS simulation results, where b
a

= 1, fDmax = 1.07 kHz, σ2 = 1, and

N = 30.

Although the results achieved from the theoretical reference model, simulation model

and SoS channel simulator are promising, there are a number of fundamental dis-

advantages of these 3-D isotropic TCD ultrasound propagation channel models.

Firstly, although theoretically it can be predicted that the backscattered power

from blood demonstrates Rayleigh scattering at TCD insonation frequencies (sec-

tion 2.5.2), these isotropic models are not adaptable to the presence of a significant

LoS scattering component. The complexities of human physiology and the practical

difficulties of ultrasound measurements require a more flexible approach that can

be adapted to measured results. Models that include a LoS component are likely to

be more configurable, provide better optimisation capabilities, and higher accuracy.

Secondly, the derivation of the ACF requires the estimation of the spatial CCF at a

74



Chapter 3: 3-D Isotropic TCD Ultrasound Propagation Channel Models

separation distance of an integral number of wavelengths from the transducer. This

is difficult to verify experimentally using standard TCD systems. It requires the

received signal to be obtained from individually addressable elements of a multi-

element transducer array. This complexity arises from the requirement to jointly

analyse the probability distribution in both azimuth and elevation angles. In the

case described, this process was much simplified in the geometric model by the unre-

alistic assumption that the radius a and the base b dimensions were equal. Finally,

although the LPNM method of parameter computation is known to offer high levels

of accuracy and performance for SoS based isotropic scattering cases [53], in this

case a more efficient and more optimal solution should be investigated for the 3-D

non-isotropic case that provides better or equal accuracy, with increased simulation

performance through lower values of N .

3.5 Summary

In this chapter, 3-D isotropic half-spheroid models have been proposed for inves-

tigation of the characteristics of a TCD ultrasound propagation channel based on

methods developed for stochastic analysis of mobile communications systems. The

stochastic characteristics of the models have been investigated and closed form ex-

pressions have been derived for the amplitude and phase PDFs, ACFs, LCRs and

AFDs. The MEDS and LPNM functions were used to optimise the ACF simulations,

and the simulation models achieve a good fit with the theoretical mathematical ref-

erence model. However, these models are relatively inflexible and may be difficult

to adapt to the TCD measurement environment. In Chapter 4 non-isotropic 3-D

models are investigated.
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Chapter 4

3-D Non-isotropic TCD

Ultrasound Propagation Channel

Models

4.1 Introduction

In this chapter 3-D theoretical and simulation models for statistical analysis of non-

isotropic TCD ultrasound propagation channels are described. Taking inspiration

from 3-D geometry-based stochastic models (GBSMs) that have been developed for

wireless communications systems [65, 66, 67, 68], in this chapter a TCD ultrasound

channel model is developed that will lead to improved understanding of the spatial

and temporal characteristics of TCD ultrasound.

Taking a similar approach to that described in Chapter 3 for 3-D isotropic mod-

els, the first stage of the analysis presented in this chapter is the development of a

theoretical model of a non-isotropic channel that is a combination of LoS and NLoS

components, and a spherical model. In order to remove the unrealistic assump-

tion imposed by the 3-D isotropic propagation channel model that the probability

distributions in the azimuth and elevation angles are independent, the Von Mises-

Fisher (VMF) probability distribution [69, 70] is used to characterise the scattering

distribution. However, this theoretical model will only be used as the starting point

76



Chapter 4: 3-D Non-isotropic TCD Ultrasound Propagation Channel Models

for further analysis, since it assumes an infinite number of effective scatterers, and

cannot be implemented in practice due to the corresponding complexities imposed.

The second stage of the analysis presents a simulation model and a SoS channel sim-

ulator [55, 71]. The simulation model will be used to consider the effect of diffuse

scattering based on single bounce signal reflections and a finite number of scatter-

ers in the receive path. The azimuth and elevation angles of the simulation model

are computed using the method of equal volume (MEV) [68]. Finally, the statisti-

cal properties of the SoS channel simulator are verified through comparison of the

reference model, the simulated results.

4.2 Theoretical Reference Model

In the sub-sections that follow, a model geometry is developed based on a 3-D

spheroid and the statistical properties of this theoretical model are investigated.

4.2.1 Model Geometry

Taking a similar approach to that described in Chapter 3 section 3.2, in this case

the scattering geometry is elaborated by considering the propagation channel as a

3-D non-isotropic sphere, as shown in Fig. 4.1. Let us consider a single element

ultrasound transducer which is assumed to be stationary and positioned at the

origin of the Cartesian coordinates. Once again, the direction of blood flow in the

insonation region is, without any loss of generality, assumed to be in the direction

of the x axis with velocity v. The ultrasound system can be simplified to consider

only the reflections from a strong scattering region within blood flow of an isonated

vessel. Strong incident scatterers such as Sn are assumed to exist within and around

the periphery of the spherical model. The signal received at the RF amplifier in this

non-isotropic sphere will therefore be a combination of direct LoS and single-bounce

NLoS components. The parameters shown in Fig. 4.1 and in the mathematical

expressions that follow are defined in Table 4.1.
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Figure 4.1: 3-D non-isotropic sphere; an incident scatterer Sn is shown in three-
dimensional space (ρ = 3).

As in the isotropic case described in section 3.2.1, the direction of blood flow in the

insonation region is, without any loss of generality, assumed to be in the direction

of the x-axis with velocity v. Tissue is assumed to be homogeneous with uniform

acoustic impedance. Echoes received from stationary tissue can be considered to

exhibit the same frequency and phase as the transmitted signal. Echoes from scat-

terers (i.e. moving tissue and fluids) will exhibit slight differences in delay and/or

phase. From these differences, the Doppler frequency is obtained which can then be

processed to produce a Doppler sonogram. The NLoS complex received signal may

be subject to refraction or diffraction by tissue objects in and around the insonation

path, or reflection at tissue boundaries.

78



Chapter 4: 3-D Non-isotropic TCD Ultrasound Propagation Channel Models

Table 4.1: Definition of parameters for 3-D non-isotropic sphere.

Parameter Definition
αn

[−π ≤ αn ≤ π]
azimuth angle of arrival (AAoA) of the incident receive
signal r

α0

[−π ≤ α0 ≤ π]
mean azimuth angle of arrival (AAoA) of the receive
signal r

βn
[−π ≤ βn ≤ π]

elevation angle of arrival (EAoA) of the incident receive
signal r

β0

[−π ≤ β0 ≤ π]
mean elevation angle of arrival (EAoA) of the receive
signal r

c speed of sound in the medium
εn path distance of incident receive signal r
k

[k ≥ 0]
VMF concentration parameter

K Rician K-factor
fc insonation frequency

fDmax maximum Doppler frequency
N

[N →∞]
number of incident scatterers

v blood flow velocity within isonated vessel
τn time for an incident wave to travel

the path distance
(
εn
c

)
θn phase shift corresponding to incident scatterers path

The complex fading envelope is a superposition of a LoS component m(t) and NLoS

scattering components n(t) and can be expressed as

µ(t) = m(t) + n(t) (4.1)

where

m(t) =

√
K

(K + 1)
ej2πfDmax t cosα0 cosβ0 (4.2)

and

n(t) =

√
1

(K + 1)
lim
N→∞

N∑
n=1

1√
N
ej2πfDmax t cosαn cosβn+θn . (4.3)

In (4.2) and (4.3), K is the Rician K-factor, the ratio between the LoS and NLoS

components, and N is the number of scatterers (N → ∞). Furthermore, it is as-

sumed phase θn is a random variable distributed in the interval [−π, π].
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In section 3.2.1, the scattering geometry was elaborated as a 3-D half-spheroid in

which the probability distributions in azimuth and elevation were analysed sepa-

rately. In this analysis the VMF distribution was used as a method of reducing

complexity by jointly analysing azimuth and elevation angles in the probability

distribution. The application of the VMF distribution to the scattering geometry

shown in Fig. 4.1 is derived as (E.7) in Appendix E, where the probability density

of a random unit vector in sample space S2 is given by

f(α, β) =
k

4π sinh k
ekA cos β (4.4)

where

A = [cos β cos β0 + sin β sin β0 cos (α− α0)] . (4.5)

In (4.5) α, β, α0 and β0 represent the azimuth, elevation, mean azimuth, and mean

elevation angles of the effective scatterer distribution respectively, where α ∈ [−π, π],

β ∈ [−π, π], α0 ∈ [−π, π] and β0 ∈ [−π, π]. The concentration parameter, k, is real

valued and controls the concentration of the distribution relative to the mean angles,

α0 and β0. For TCD, the region of interest reduces to a unit hemisphere correspond-

ing to the maximum effective insonation angle of the transducer.

To demonstrate the VMF distribution and to show the effect of variation of the

mean angles and k, Fig. 4.2 and Fig. 4.3 are presented. In Fig. 4.2(a) the 3-D VMF

probability density function (PDF) is plotted for α0 = 0◦, β0 = 0◦ and k = 3. For

comparison, in Fig. 4.2(b) the 3-D VMF PDF is plotted for α0 = 0◦, β0 = 60◦ and

k = 3, showing how the distribution follows the mean angle of the received signal.
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(a)

(b)

Figure 4.2: 3-D VMF PDF with (a) (α0 = 0◦, β0 = 0◦, k = 3), and (b) (α0 =

0◦, β0 = 60◦, k = 3).
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In Fig. 4.3 we set the mean angles to (α0 = 0◦, β0 = 30◦), and observe the effect

on the scattering distribution when the concentration parameter is varied; (a) k =

0, (b) k = 4, and (c) k = 200. For k = 0 the VMF PDF is observed to be

even over the surface of the sphere, however as k increases the VMF PDF is seen

to be more concentrated towards the mean direction. For scattering analysis in

TCD observations α0, β0, and k can be adapted to the propagation environment.

Additionally, the K-factor can also be adjusted to the level of power observed in the

scattered paths. The geometry of the proposed model can therefore be considered

well characterised and highly flexible.
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(a)

(b)

(c)

Figure 4.3: 3-D VMF distribution of scatterers on a unit hemisphere with mean

angles (α0 = 0◦, β0 = 30◦), and (a) k = 0, (b) k = 4, (c) k = 200.

83



Chapter 4: 3-D Non-isotropic TCD Ultrasound Propagation Channel Models

4.2.2 Statistical Properties of the Non-isotropic 3-D Theo-

retical Model

In this section, the statistical properties of the 3-D non-isotropic spherical model

are derived in terms of the amplitude and phase PDF, the ACF, the Doppler PSD,

the envelope LCR, and the AFD.

4.2.2.1 Amplitude & Phase PDFs

The PDFs of the amplitude and phase of a Rician process are described for similar

procedures in [68] and [71]. For the theoretical model, the amplitude PDF Pξ of the

envelope is described by (B.49) in Appendix B.2 and given as

Pξ(z) =
z

σ2
o

e
−
z2+K2

0
2σ2

0 I0

(
zK0

σ2
0

)
, z ≥ 0 (4.6)

where z is the amplitude variable, Io is the zeroth order modified Bessel function

of the first kind, K0 =
√

K
K+1

, where K is the Rician K-factor, and the variance of

µ(t) is given by Var{µ(t)} = 2σ2
0.

The phase PDF Pϑ of the envelope of a Rician process is given by [71]

Pϑ(θ) =
e
−
K2

0
2σ2

0

2π

{
1 +

K0

σ0

√
π

2
cos (θ − θK)

e
K2

0 cos2(θ−θK)
2σ2

0

[
1 + erf

(
K0 cos (θ − θK)

σ0

√
2

)]
(4.7)

where erf(.) denotes the error function and θK = arg {m(t)}.

4.2.2.2 Temporal ACF

As in the isotropic case described in section 3.2.2.2, the temporal ACF is the ensem-

ble average E [.] of the received band pass signal µ(t) with itself at a time separation

τ , when µ(t) is WSS, expressed as [54]

rµµ(t, t+ τ) = E [µ∗(t)µ(t+ τ)] = rµµ(|τ |). (4.8)
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If we substitute (4.1) into (4.8) we obtain the normalised ACF of the LoS and NLoS

components as follows:

(a) In the case of the LoS component,

rµmµm(τ) =
K

(K + 1)
ej2πfDmaxτ cosα0 cosβ0 . (4.9)

(b) In the case of the NLoS scattering component,

rµnµn(τ) =
1

(K + 1)

∫ π

−π

∫ π

−π
ej2πfDmaxτ cosα cosβf(α, β)dαdβ (4.10)

The normalised theoretical temporal ACF can then be expressed as the summation

of (4.9) and (4.10),

rµµ(τ) = rµmµm(τ) + rµnµn(τ). (4.11)

4.2.2.3 Doppler PSD

The PSD Sµµ(f) is obtained by taking the Fourier transform of the ACF,

Sµµ(fD) =
∫ ∞
−∞

rµµ(τ)e−2πfDτdτ. (4.12)

Two important characteristics of the PSD are the Doppler shift B(1)
µµ and the Doppler

spread B(2)
µµ . The Doppler shift B(1)

µµ is given by

B(1)
µµ =

∫∞
−∞ fSµµ (f) df∫∞
−∞ Sµµ (f) df

(4.13)

The Doppler spread B(2)
µµ is given by

B(2)
µµ =

√√√√√∫∞−∞
(
f −B(1)

µµ

)
Sµµ (f) df∫∞

−∞ Sµµ (f) df
. (4.14)

4.2.2.4 Envelope LCR & AFD

Assuming a 3-D non-isotropic scattering environment, the LCR L(R) is defined as

the rate at which the received signal envelope ξ(t) crosses the level R in a positive (or

negative) going direction and, where a LoS component is present, it can be shown
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that [72]

L(R) =
2R
√

(K + 1)

π
3
2

√√√√b2

b0

− b2
1

b2
0

× e−K−(K+1)R2

×
∫ π

2

0
cosh

(
2
√
K (K + 1) ·R cos θ

)
×
[
e−(χ sin θ)2

+
√
π · χ · sin θ · erf (χ sin θ)

]
dθ

(4.15)

where χ, b0, b1 and b2 are

χ =

√√√√ Kb2
1

(b0b2 − b2
1)

(4.16)

b0
∆
= E

[
µI (t)2

]
= E

[
µQ (t)2

]
(4.17)

b1
∆
= E

[
µI (t)2 µ̇Q (t)2

]
= E

[
µQ (t)2 µ̇I (t)2

]
(4.18)

b2
∆
= E

[
µ̇I (t)2

]
= E

[
µ̇Q (t)2

]
(4.19)

respectively, and where µI(t) and µQ(t) are the in-phase and quadrature components

of the complex fading envelope µ(t) described by (4.1). Correspondingly, µ̇I(t) and

µ̇Q(t) are the first derivatives of µI(t) and µQ(t) respectively. Therefore, for b0, b1

and b2 it can be shown that

bn =
1

K + 1
(2π)

∫ π

−π

∫ π

−π
f (α, β) [fDmax cos(α) cos(β)]n dαdβ (4.20)

and that

b0 =
1

K + 1
. (4.21)

The AFD T (R) is defined as the average time over which the received signal envelope

ξ(t) remains below a certain levelR. For conditions when a LoS component is present

this can be written as [54]

T (R) =
1−Q

(√
2K,

√
2(K + 1)R2

)
L(R)

(4.22)

where Q(a, b) is the Marcum Q function [73].
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4.3 Simulation Model

From the theoretical model described in section 4.2.2, a corresponding simulation

model can be developed based on a SoS approach. From (4.1), (4.2), and (4.3), the

simulation model becomes

µ̂(t) = m̂(t) + n̂(t) (4.23)

where

m̂(t) = m(t) =

√
K

(K + 1)
ej(2πfDmax t cosα0 cosβ0) (4.24)

and

n̂(t) =

√
1

(K + 1)

N∑
n=1

1√
N
ej(2πfDmax t cosαn cosβn+θn). (4.25)

In (4.24), the LoS component in the simulation model is identical to the LoS compo-

nent in the theoretical model defined in (4.2). In (4.25), N becomes a finite number

of effective scatterers and the only parameters which remain to be determined are

the angles (α0, β0) and (αn, βn); the AAoA and EAoA of the mean and effective

scatterers respectively.

4.3.1 MEV for Parametrisation of the Proposed SoS Simu-

lation Model

Using an approach consistent with [68], the MEV is used to jointly calculate the

set of azimuth and elevations angles. An extension to the modified method of equal

area (MMEA) [53] used in the case of 2D non-isotropic scattering, the MEV considers

the volume of the VMF PDF given by the cumulative distribution function (CDF),

F (α, β) =
∫ π

−π

∫ π

−π
f(α, β)dαdβ. (4.26)

In this study, the MEV was used to select a set of AAoA and EAoA angles [αn, βn]Nn=1

to satisfy the condition

∫ βn

(βn−π2 )

∫ αn

(αn−π)
f(αn, βn)dαdβ =

n− 1
4

N
, n = 1, 2, ..., N. (4.27)
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4.3.2 Statistical Properties of the Simulation Model

Using the theoretical model and its corresponding statistical properties, it is possible

to derive the properties of the simulation model. This is achieved by applying the

discrete model parameters to (4.6), (4.7), (4.11), (4.12), (4.13), (4.14), (4.15) and

(4.22) as demonstrated in the sub-sections that follow.

4.3.2.1 Amplitude & Phase PDFs

As defined in (B.47) in Appendix B.2, the amplitude PDF of the SoS simulation

model becomes

Pξ̂(z) = (2π)2 z
∫ ∞

0

[
N∏
n=1

J0 (2π|g|x)

]
J0 (2πzx) J0 (2πK0x)xdx (4.28)

where g is the single bounce gain of the finite scatterers given by g = σ0

√
2/N .

Similarly, the phase PDF of the SoS simulation model becomes

Pϑ̂(θ) =2π
∫ ∞

0

∫ ∞
0

[
N∏
n=1

J0 (2π|g|x)

]

J0

(
2πx

√
z2 +K2

0 − 2zK0 cos (θ − θK)
)
xzdxdz .

(4.29)

4.3.2.2 Temporal ACF

The ACF of the simulation is given by

r̂µ̂µ̂(t, t+ τ) = E [µ̂∗(t)µ̂(t+ τ)] = r̂µ̂mµ̂m(τ) + r̂µ̂nµ̂n(τ) (4.30)

where r̂µ̂mµ̂m(τ) and r̂µ̂nµ̂n(τ) are the LoS and NLoS components respectively.

(a) In the case of the normalised LoS component,

r̂µ̂mµ̂m(τ) =
K

(K + 1)
ej2πfDmaxτ cosα0 cosβ0 (4.31)
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and will thus be identical to the theoretical model.

(b) In the case of the normalised NLoS scattering component,

r̂µ̂nµ̂n(τ) =
1

(K + 1)

N∑
n=1

1

N
ej2πfDmaxτ cosαn cosβn . (4.32)

4.3.2.3 Doppler PSD

The Doppler PSD of the simulation model is simply the Fourier transform of r̂µ̂µ̂(τ)

and may be expressed as

Ŝµ̂µ̂(fD) = F {r̂µ̂µ̂(τ)} = F {r̂µ̂mµ̂m(τ)}+ F {r̂µ̂nµ̂n(τ)} . (4.33)

The Doppler shift B̂(1)
µµ and the Doppler spread B̂(2)

µµ of the simulation model can be

derived from the discrete PSD and ACF as shown in Appendix E (E.6) and (E.7),

expressed as

B̂
(1)
µ̂µ̂ =

fDmax

(K + 1)
×
[
K cosα0 cos β0 +

N∑
n=1

cosαn cos βn

]
(4.34)

and

B̂
(2)
µ̂µ̂ =

√
−¨̂rµ̂µ̂(0)−

(
B̂

(1)
µ̂µ̂

)2
. (4.35)

4.3.2.4 Envelope LCR & AFD

The envelope LCR of the simulation model can be derived as [68]

L̂(R) =
2R
√

(K + 1)

π
3
2

√√√√ b̂2

b̂0

− b̂2
1

b̂2
0

× e−K−(K+1)R2

×
∫ π

2

0
cosh

(
2
√
K (K + 1) ·R cos θ

)
×
[
e−(χ̂ sin θ)2

+
√
π · χ̂ · sin θ · erf (χ̂ sin θ)

]
dθ

(4.36)
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where χ̂, b̂0 and b̂m are

χ̂ =

√√√√√ Kb̂2
1(

b̂0b̂2 − b̂2
1

) (4.37)

b̂0 =
1

K + 1
(4.38)

and b̂m =
1

K + 1
(2π)

1

N

N∑
n=1

[fDmax cosαn cos βn]m (4.39)

respectively, where m ∈ {1, 2}. Similarly, the envelope AFD for the simulation

model can be expressed as

T̂ (R) =
1−Q

(√
2K,

√
2(K + 1)R2

)
L̂(R)

. (4.40)

4.4 Numerical Results & Analysis

In this section we analyse and compare the theoretical, simulation and numerical

results. The model parameters used in this analysis are informed by optimised val-

ues derived during the verification process presented in Chapter 6 and summarised

in Table 4.2.
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Table 4.2: Parameters used in 3-D spherical non-isotropic model analysis.

Parameter Value Definition

fc 2 MHz insonation frequency of TCD ultrasound

c 1500 ms−1 estimated speed of sound in tissue

fDmax 1.09 kHz maximum Doppler frequency

K 0.0078 Rician K-factor

k 4.2 VMF concentration parameter

σ 0.48 standard deviation of the PDF

N 15 number of incident scatterers

v 0.42 ms−1 blood flow velocity within the isonated vessel

α0 0◦ mean azimuth angle of arrival

β0 0◦ mean elevation angle of arrival

θK 0 rad arg {m(t)}

Fig. 4.4 and Fig. 4.5 show plots for the amplitude and phase PDFs of the theo-

retical reference model, simulation model and SoS simulation, where K = 0.0078,

σ = 0.48, θK = 0, and N = 15. For the phase PDFs, Fig. 4.5(a) demonstrates the

phase distribution of a Rician process. Compare this with the uniform distribution

of a Rayleigh process shown in Fig. 3.7. The contiguity of these plots demonstrates

that the SoS channel simulator provides a very strong agreement with the theoret-

ical reference and simulation models. Furthermore, the plots confirm the process

corresponding to the parameters in Table 4.2 is weakly Rician.

91



Chapter 4: 3-D Non-isotropic TCD Ultrasound Propagation Channel Models

Figure 4.4: The amplitude PDF of the 3-D non-isotropic spheroid theoretical ref-

erence, simulation, and SoS simulation results, where K = 0.0078, σ = 0.48, and

N = 15.
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(a)

(b)

Figure 4.5: (a) The phase PDF (b) The normalised phase PDF; of the 3-D non-

isotropic spheroid theoretical reference, simulation, and SoS simulation results,

where K = 0.0078, σ0 = 0.48, θK = 0, and N = 15.
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The level of agreement of the ACFs must be considered in terms of the accuracy of

estimation of the αn and βn parameters in the NLoS components, as calculated using

the MEV. Fig. 4.6 shows the ACFs of the theoretical reference model, simulation

model and SoS simulation, where fDmax = 1.09 kHz, K = 0.0078, k = 4.2, N = 15,

α0 = 0◦ and β0 = 0◦. This plot shows strong agreement up to a temporal separation

period of approximately 4.2 ms, after which the simulation results begin to diverge

from the theoretical model. This period of agreement is a significant improvement

on that achieved for the 3-D isotropic case presented in section 3.4 Fig. 3.9, and has

been achieved with half the number of simulated incident scatterers, N . As in the

case of Fig. 3.9, as (N →∞), so the simulation model and SoS simulation converge

with the theoretical model such that r̂µ̂iµ̂i(τ)→ rµiµi(τ).
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Figure 4.6: The normalised ACF of the 3-D non-isotropic spheroid theoretical refer-

ence, simulation, and SoS simulation results, where fDmax = 1.09 kHz, K = 0.0078,

k = 4.2, N = 15, α0 = 0◦ and β0 = 0◦.

The plots of the normalised envelope LCRs and AFDs of the theoretical reference

model, simulation model and SoS simulation are shown in Fig. 4.7 and Fig. 4.8

respectively, where fc = 2 MHz, fDmax = 1.09 kHz, K = 0.0078, k = 4.2, N = 15,

α0 = 0◦ and β0 = 0◦. These plots show close agreement, demonstrating the accuracy

of the simulation model and SoS simulation.
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Figure 4.7: The normalised LCR (dB) of the 3-D non-isotropic spheroid theoretical

reference, simulation, and SoS simulation results, where fc = 2 MHz, fDmax = 1.09

kHz, K = 0.0078, k = 4.2, N = 15, α0 = 0◦ and β0 = 0◦.
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Figure 4.8: The normalised AFD (dB) of the 3-D non-isotropic spheroid theoretical

reference, simulation, and SoS simulation results, where fc = 2 MHz, fDmax = 1.09

kHz, K = 0.0078, k = 4.2, N = 15, α0 = 0◦ and β0 = 0◦.

The results presented using the non-isotropic theoretical reference model, simulation

model and SoS channel simulator continue to demonstrate a high degree of accu-

racy, whilst overcoming the fundamental disadvantages of the 3-D isotropic TCD

ultrasound propagation channel models discussed in Chapter 3. The performance of

the 3-D non-isotropic models is somewhat better than the isotropic models, demon-

strated by the lower number of incident scatterers used in the SoS channel simulator,

where N = 15, and the reduced complexity achieved by overcoming the requirement

to estimate the spatial CCF and by combining the PDF analysis in azimuth and

elevation using the VMF distribution. Furthermore, these 3-D non-isotropic models

can be adapted to include a LoS scattering component, thus providing better opti-
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misation capabilities and a more flexible approach that can be adapted to measured

results.

4.5 Summary

In this chapter, 3-D non-isotropic spherical models have been proposed for investiga-

tion of the characteristics of a TCD ultrasound propagation channel. The stochas-

tic characteristics of the models have been investigated and closed form expressions

have been derived for the amplitude and phase PDFs, ACFs, LCRs and AFDs. The

MEV was used to optimise the αn and βn parameters, and the simulation models

achieve a good fit with the theoretical mathematical reference model. These models

demonstrate greater accuracy and performance than the isotropic models discussed

previously in Chapter 3, and support the analysis of a Rician process through the

presence of a NLoS component. In Chapter 6 the performance of these models will

be verified against measured results from a TCD Doppler phantom, described in

Chapter 5, and a patient measurements database.
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Chapter 5

A Flow Phantom for TCD

Ultrasound Studies

5.1 Introduction

Medical phantoms are objects with particular dimensions and characteristics that

are specially designed to replicate human physiology for specific imaging modalities,

e.g. magnetic resonance imaging (MRI), positron emission tomography–computed

tomography (PET-CT), and ultrasound. They support activities such as quality

control assessment, performance evaluation, and research analysis. In clinical re-

search, data security and patient ethics governance rules place restrictions on exper-

imental work with patients and patient data. Medical phantoms provide a method

for pre-clinical research which avoids these restrictions.

In this chapter, a blood flow phantom is described which will support pre-clinical

research of TCD propagation channels. Blood flow phantoms, a particular class of

medical phantom that can produce constant and pulsatile blood flow with physio-

logical tissue and blood equivalence, are important tools for designing, developing,

and evaluating Doppler ultrasound systems. This chapter describes the process of

developing and characterising a blood flow phantom test bench for experimental

study of TCD ultrasound channel characteristics and fulfils an important step in

the process of analysing the TCD propagation channel.
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5.2 Tissue Mimicking Materials

There are a number of commercial ultrasound flow phantoms available for purchase

on the market. These are commonly based on tissue mimicking material (TMM)

such as low density reticulated foam, gelatin and agar; the acoustic and mechani-

cal properties of which are mostly well known between 2-10 MHz [74]. However,

poly (vinyl alcohol) cryogel (PVA-C) offers a number of advantages over traditional

TMMs; it’s non-toxic, maintains long-term structural and acoustic stability and can

form vascular models without the use of additional vessel wall tubing, such as sili-

con, rubber, latex etc. This last point is important, since unwanted artefacts in the

received signal can be introduced by the poor acoustic properties of vessel mimick-

ing materials. For these reasons, PVA-C TMMs have emerged from initial use in

magnetic resonance imaging (MRI) and are now widely employed in brain, vessel

and breast ultrasound phantoms [75].

In this chapter, a PVA-C TMM is described which has been specially designed

for analysis and verification of a TCD US propagation channel model. In order to

improve the attenuation and backscattering properties of PVA-C, a number of com-

mon scattering agents were tested; namely silicon carbidei, graphiteii, and aluminium

oxideiii particles. The acoustic velocity, attenuation, characteristic impedance, and

backscatter coefficient of the TMMs were assessed. The results of this evaluation

are reported and a wall-less PVA-C flow phantom design is described.

5.3 Evaluation of PVA-C TMM Compounds

In order to establish the most suitable compound material for the phantom, an

experiment was designed to test the acoustic properties of each candidate TMM

sample at a centre frequency of 2.08 MHz against the standards recommended by

iSilicon carbide powder (Grit 400, 20µ particle size), supplied by Logitech Ltd, Erskine Ferry
Road, Old Kilpatrick, Glasgow G60 5EU.

iiGraphite powder (Mesh size 340<, 44µ particle size), supplied by Easy Composites Ltd, Unit
39, Park Hall Business Village, Longton, Stoke on Trent, Staffordshire ST3 5XA.

iiiAluminium oxide powder (3µ particle size), supplied by Logitech Ltd, Erskine Ferry Road,
Old Kilpatrick, Glasgow G60 5EU.
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IEC 61685 [76]: TMMs should have an acoustic velocity of 1540(±(15))ms−1, an

attenuation coefficient of (0.5± 0.05)× 10−4fdBm−1Hz−1, a characteristic acoustic

impedance of (1.6± 0.16)× 106kgm−2s−1, and a backscatter coefficient of

(1− 4)× 10−28f 4m−1Hz−4sr−1.

5.3.1 Preparation of PVA-C TMMs

PVA is a water-soluble synthetic polymer. An aqueous solution of PVA was pre-

pared by mixing 10% by weight of PVA powderiv with sterile distilled water at room

temperature. To this solution, 0.01% benzalkonium chloridev was added to prevent

microbial invasion. The solution was gently heated and mixed until it became a

thick, clear liquid, as shown in Fig. 5.1. When heating the solution, care must be

taken to prevent the temperature rising above 98 ◦C in order to prevent aeration and

evaporation due to boiling. The solution is then allowed to cool to room tempera-

ture. Once cooled, it is mixed with the desired scattering agent (1% by weight of the

aluminium, graphite and silicon carbide powders) and then degassed in a vacuum

chamber.

The final stage of PVA-C TMM preparation is freeze-thawing the solution to create

a solid cryogel phantom. This was performed in a programmable thermo-cyclervi

that was configured to automatically perform 4, 6 and 8 cycles of 12 hours freezing

to −20 ◦C and 12 hours thawing to +20 ◦C. In total, 12 candidate TMMs were pre-

pared; for each of the (4, 6 and 8) cycles, test samples were produced for control (no

scattering agent), aluminium, graphite and silicon carbide. Examples of the TMM

test samples are shown in Fig. 5.2.

ivPoly (vinyl alcohol) 99+% hydrolysed, product 341584, Sigma-Aldrich UK company Ltd.
Dorset, England.

vBenzalkonium chloride solution, product 63249, Sigma-Aldrich UK company Ltd. Dorset,
England.

viAutomated thermo-cycler, developed by the Department of Clinical Physics & Bioengineering,
NHS Greater Glasgow and Clyde.
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Figure 5.1: An aqueous solution of 10% by weight PVA in water.

Figure 5.2: PVA-C TMM after 4 freeze-thaw cycles samples for control, silicon
carbide (SiC), graphite and aluminium oxide (AlO).

5.3.2 Measurement of Acoustic Parameters

The measurement methods followed were based on the techniques described by

Browne et al [77]. The acoustic velocity, attenuation coefficient, and backscatter

coefficient were measured using the ultrasonic test system shown in Fig. 5.3. The
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test system consisted of an Olympus NDT immersion transducer (A306S-SU) with a

centre frequency of 2.08 MHz, mounted upon a XYZ motion stage, an immersion wa-

ter tank filled with de-gassed water, a programmable pulser-receiver (Utex UT340),

a digital storage oscilloscope (Tektronix TPS2024B), and a personal computer (PC).

The PC was used with supporting software scripts developed in MatlabTMfor control

of the motion stage and analysis of the pulse-echo observations.

Figure 5.3: Ultrasonic pulse-echo test system.

The Olympus NDT immersion transducer (A306S-SU) characteristics are summarised

for reference in Table 5.1.
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Table 5.1: Olympus NDT immersion transducer (A306S-SU) characteristics.

Olympus unfocused immersion transducer A306S

Frequency 2.25 MHz

Centre frequency 2.08 MHz

Minimum focal length 20.3 mm

Maximum focal length 48.3 mm

Crystal diameter 13 mm

6 dB bandwidth 51.82 %

The pulse-echo technique uses a single transducer operating sequentially in trans-

mit and receive modes. The pulser-receiver was configured to drive the transducer

at 100 V with a pulse repetition frequency of 200 Hz. The induced pulse was re-

flected from a highly polished stainless steel reflector in the base of the immersion

tank. The motion stage was programmed to position the transducer over an area

of 8 mm by 8 mm at intervals of 1 mm, allowing measurements to be spatially

averaged. At each position of the transducer, the reflected RF signal was sampled

at 25 MHz using the digital storage oscilloscope and post-processed on a PC using

MatlabTMscripts developed for this purpose. All measurements were conducted with

a water temperature of 20 ◦C± 1 ◦C.

5.3.2.1 Calculating the acoustic velocity

The acoustic velocity in the TMM sample was determined by measuring the time

difference between the RF pulse and its echo from the stainless steel reflector with

and without the TMM sample in place. This was calculated using the expression

cs =
cw

1 + ∆t cw
d

(5.1)
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where cs was the acoustic velocity in the sample, cw was the reference speed of sound

in degassed water with no sample in place, d was the depth of the TMM sample

(measured using digital callipers) and ∆t was the time shift of the RF pulse and

echo with the sample in place. The reference speed of sound, cw, is given by

cw =
2d

∆t
. (5.2)

The calculated value of cw was found to be within 0.25% of the expected value

at T ◦C using the formula for the speed of sound in pure water as a function of

temperature derived by Bilaniuk et al [78], verifying the experimental setup.

5.3.2.2 Calculating the acoustic attenuation coefficient

The acoustic attenuation coefficient (αc) of the sample was calculated as the log

difference of the magnitudes of the gated RF echo using

αc =
−20

d
log10

|V s|
|V w|

(5.3)

where |V s| was the magnitude of the gated RF echo with the sample in place and |V w|

was the magnitude of the gated RF echo through degassed water. The magnitudes

were calculated using a 256-point discrete Fourier transform.

5.3.2.3 Calculating the acoustic backscatter coefficient

The acoustic backscatter coefficient (η) of the sample was calculated as the difference

of the power spectra of the gated RF echo using the formulation derived by Chen

et al [79] for flat transducers, given as

η ∼=


〈|V s|2〉
|V w|2

. ka2

l.4π exp

[
( 2
π

)( r̄
r0

)
1
2

] , r̄
r0
< 1,

〈|V s|2〉
|V w|2

. ka2

l.4π.4E∞
, r̄
r0
> 1

(5.4)

where
〈
|V s|2

〉
was the mean power of the gated RF echo with the sample in place,

|V w|2 was the power of the gated RF echo through degassed water, k is the wave

number, a is the radius of the transducers active element, r̄ is the mean distance
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from the transducer surface to the sample volume, l is the length of the windowed

backscatter signal, and r0 is the Rayleigh distance of the transducer given by

r0 =
ka2

2π
. (5.5)

5.3.2.4 Calculating the acoustic impedance

The acoustic impedance (za) was calculated using the formula

za = ρ× cs (5.6)

where ρ was the measured density of the sample in kg/m3, and cs was the acoustic

velocity calculated for each sample using the method described in section 5.3.2.1.

5.3.3 TMM Sample Test Results

A summary of the observed acoustic properties of the TMM samples are shown in

Table 5.2 and the effects of varying the number of freeze-thaw cycles on the acoustic

velocity, attenuation coefficient and the backscatter coefficient are shown in Fig. 5.4,

Fig. 5.5, and Fig. 5.6, respectively.
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Table 5.2: Measured tissue mimicking material parameters; control, silicon carbide, graphite and aluminium oxide

Scattering Agent No. freeze-thaw Acoustic Velocity (v) Attenuation coeff. (α) Acoustic Impedance (Z) Backscatter coeff. (η)
cycles ms−1 (×10−4)fdBm−1 (×106)kgm−2s−1 (×10−28)f4m−1Hz−4sr−1

IEC 61685 TMM
parameters [76] — 1540± 15 (0.5± 0.05) (1.6± 0.16) 1

Control (none) 4 cycles 1527 0.25 1.72 1.79
6 cycles 1534 0.33 1.75 1.53
8 cycles 1536 0.48 1.79 1.14

Silicon Carbide 4 cycles 1528 0.72 1.71 0.69
6 cycles 1529 1.29 1.73 0.26
8 cycles 1534 0.56 1.75 0.98

Graphite 4 cycles 1528 0.31 1.70 1.66
6 cycles 1529 0.40 1.74 1.35
8 cycles 1524 1.01 1.77 0.44

Aluminium Oxide 4 cycles 1525 0.49 1.72 1.12
6 cycles 1524 0.35 1.73 1.55
8 cycles 1530 1.30 1.76 0.20
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The error bars shown in Fig. 5.4, Fig. 5.5, and Fig. 5.6, are calculated using the

standard error (SE), such that

SE =
σ√
n
. (5.7)

The acoustic velocity results for 4, 6, and 8 cycle test samples are shown in Fig. 5.4.

The acoustic velocity measured in the 4 cycle control sample is generally slightly

lower than previously reported [75], while the 8-cycle graphite sample seems to lie

outside the general trend. However the remaining results are reasonably consistent,

showing that increasing the number of freeze-thaw cycles results in an increase in

acoustic velocity through the sample and the mean acoustic velocities measured are

mostly around or within IEC limits; 1540(±(15))ms−1. In particular, the 4 and

6-cycle aluminium oxide samples are observed to fall just outside the lower IEC

limit. However, with a mean measure of 1525ms−1, the 4-cycle sample is thought to

be within acceptable measurement tolerances given that all observed velocities were

lower than anticipated.

Figure 5.4: Acoustic velocity for 4, 6, and 8 cycle test samples.
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The attenuation coefficient results shown in Fig. 5.5 fall broadly within the an-

ticipated range for the number of freeze-thaw cycles at an insonation frequency of

2 MHz [74, 75]. The introduction of scattering agents can be seen to increase the

attenuation coefficient of PVA-C, and this effect can similarly be observed by in-

creasing the number of freeze-thaw cycles in the control samples. The results for

silicon carbide fall outside of the general trend suggesting there may be a problem

with this sample, and the attenuation coefficients measured for all samples, except

that of 4-cycle aluminium oxide, fall outside the recommended IEC standard of

(0.5± 0.05)× 10−4fdBm−1. This highlights the main problem with PVA-C based

phantoms; it is difficult to accurately obtain the recommended attenuation coeffi-

cient [74]. However, the results show it may be possible to balance the acoustic

velocity and attenuation coefficient requirements using aluminium oxide.

Figure 5.5: Attenuation coefficient for 4, 6, and 8 cycle test samples.
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Finally, the backscatter coefficient results in Fig. 5.6 show that the introduction

of the scattering agents has been observed to reduce the backscatter coefficient of

PVA-C, and this effect increases with the number of freeze-thaw cycles in the con-

trol samples. Once again, the results for silicon carbide fall outside of the general

trend, while the aluminium oxide sample continues to show promise. The overall

trend shows that increasing the number of freeze-thaw cycles beyond 6 will result in

a backscatter coefficient below the requirement of (1− 4)× 10−28f 4m−1Hz−4sr−1.

Notably, the IEC standard places less emphasis on the backscatter coefficient re-

quirement, particularly at frequencies below 4 MHz.

Figure 5.6: Backscatter coefficient for 4, 6, and 8 cycle test samples.

5.3.4 TMM Test Sample Analysis

Although the material benefits of PVA-C are clear, it requires additional scattering

agents to achieve acoustic properties consistent with recommended standards. Tests
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using common scattering agents showed that, although it was difficult to get truly

consistent results, a 4-cycle TMM with 1% aluminium oxide can achieve acoustic

properties that are agreeable with IEC standards, and can be used in wall-less flow

phantoms. Subsequent preparations have shown this process to be repeatable in

small volumes, however the overall velocity, attenuation, and backscatter results

suggest it may be difficult to achieve truly consistent results with PVA-C with

different laboratory production equipment. Furthermore, the inconsistent results

observed with both graphite and silicon carbide are thought to be caused by diffi-

culty in achieving an even dispersal of powder in aqueous solution, resulting in an

inhomogeneous TMM. In the case of silicon carbide, the particles were observed to

settle at the base of the solution, whilst graphite particles tended to cloud or cluster

within the solution. To guarantee consistent results, a mechanical mixing system

is preferred to hand mixing as this is likely to improve powder dispersal, whilst it

is recommended that careful adherence is given to each step in TMM preparation

process to guarantee repeatability. In the flow phantom design in the descriptions

that follow, a TMM based on 4-cycle PVA-C with 1% aluminium oxide was used.

Fig. 5.7 shows an image of the specially designed perspex container used for the

TCD flow phantom, with graduated markings for accurate placement of the trans-

ducer element at the required insonation depth. The steel rod used to create the

vessel channel can also be seen. This rod was positioned during the manufacturing

process and the freeze-thaw cycles. It was carefully removed once the PVA-C process

was complete. The final design was lined with low profile, coarse synthetic grassvii

to provide acoustic damping to minimise ultrasound reflections from the base and

side walls, and improve the SNR.

viiSynthetic grass (6 mm/flat blade), Express Grass, Trinity Trading Estate, Sittingbourne, Kent
ME10 2PG.
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Figure 5.7: Custom designed perspex box for the TCD ultrasound flow phantom.

5.4 Flow Phantom Test Bench

A flow phantom test bench was created to analyse and compare the theoretical

and measured acoustic characteristics of a TCD ultrasound propagation channel, as

shown in Fig. 5.8.

Figure 5.8: A TCD ultrasound flow phantom system.

The test bench consists of a portable, 2 MHz, power-motion or single-channel TCD

(PMD 100, Spencer Technologies) ultrasound system [80], a windows computer run-

ning LabVIEWTM(National Instruments), a pump and pump-controller (Depart-

ment of Clinical Physics & Bioengineering, NHS Greater Glasgow and Clyde) ca-
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pable of operating with constant and pulsatile flow, connected to a 68-pin data

acquisition (DAQ) PC card via a shielded connector block (National Instruments

SCB-68 ), a PVA-C flow phantom and reservoir of blood mimicking fluid (BMF)

[76]. An image of the test bench is shown in Fig. 5.9.

Figure 5.9: An image of the TCD ultrasound flow phantom test bench used in the

experiment.

A LabVIEWTMapplication was used to synthesise a blood flow waveform and drive

the pump using pulsatile flow via the DAQ and pump controller. This process

circulated BMF through the flow phantom whilst a single-element 2 MHz transducer

was placed on the flow phantom to capture Doppler ultrasound.

5.4.1 Flow System Data Acquisition

The flow system is designed to replicate a patient measurement system. The 2 MHz

transducer is placed on the phantom, above the vessel channel and at the desired

insonation depth. The received signal can be used, in combination with the spectro-

gram and M-mode displays on the TCD system, to manoeuvre the transducer to a
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point where the received spectrogram displays the blood flow waveform and the M-

mode display indicates the desired insonation depth (as shown in section 2.4.2, Fig.

2.3). Using the TCD ultrasound system in single channel mode whilst insonating at

a depth of approximately 40 mm and using 10% of maximum power, raw Doppler

signals were acquired and recorded from the flow phantom, and exported as audio

files consisting of 32-bit floating point data sampled at a frequency of 44.1 kHz. The

data acquired from the TCD phantom is a real signal and contains no complex plane.

In order to get a analytical representation of the signal, the real signal undergoes a

Hilbert transform to restore the complex plane using a MatlabTMfunction.

5.5 Summary

In this chapter, PVA-C TMM was evaluated with a number of potential scattering

agents for use in a TCD ultrasound flow phantom. Although the material benefits

of PVA-C are clear, it requires additional scattering agents to achieve acoustic prop-

erties consistent with recommended flow phantom standards. Tests using common

scattering agents showed that a 4-cycle TMM with 1% aluminium oxide was able

to achieve acoustic properties that are agreeable with IEC standards. As such, this

TMM is considered suitable for use in wall-less flow phantoms for investigation of

multi-path propagation effects in TCD ultrasound systems. However, the overall

velocity, attenuation and backscatter results suggest it may be difficult to achieve

truly consistent results with PVA-C. It is possible that some minor differences in

production technique and variations in the dispersal of the scattering agents can

account for some inconsistencies in the results observed. Indeed, the variability in

results of the TMM sample tests suggest that further analysis is required at 2, 3, 5,

and 7 cycles to establish a clearer pattern of results for acoustic velocity, attenuation

coefficient, and backscatter coefficient. In particularly, it was observed that when

using silicon carbide and graphite scattering agents, it is difficult to achieve an even

dispersal of powder in aqueous solution, resulting in an inhomogeneous TMM.

Notwithstanding these results, a TCD flow phantom was created using a TMM based
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on the 4-cycle freeze-thaw process and 1% aluminium oxide powder (3µ particle

size), as described. This phantom, and the accompanying flow system as specified,

provides a suitable test bench for the verification of non-isotropic TCD ultrasound

propagation channel models, as discussed in Chapter 6.
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Chapter 6

Verification of 3-D Non-isotropic

TCD Ultrasound Propagation

Channel Models

6.1 Introduction

In this chapter the 3-D non-isotropic TCD ultrasound propagation channel models,

described in Chapter 4, are verified against measured results from the TCD flow

phantom, described in Chapter 5, and a patient recordings database. The verifica-

tion analysis will compare plots of the first and second order statistics; amplitude

PDF, phase PDF, ACF, LCR, and AFD. The discussion will expand on areas of

agreement and disagreement before assessing the usefulness of the non-isotropic

TCD ultrasound propagation channel models for further study of TCD.

6.2 Patient Recordings Database

A database of anonymised and de-personalised TCD patient examinations was de-

veloped by data-mining archived routine clinical tests of blood flow through the

MCA. This database was created in accordance with UK health information gov-

ernance principles [81] and with guidance from Glasgow health board’s Caldicott

patient confidentiality guardian.
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Raw Doppler signals were acquired from 83 examinations of 34 adult patients,

recorded using a Spencer Technologies TCD ultrasound system. All patients were

being treated for ischemic stroke or were identified as at risk of a stroke event. Au-

dio files consisting of 32-bit floating point data sampled at 48 kHz were recorded,

in addition to peak systolic and diastolic blood flow in ms−1, insonation power (%

full power), SNR, mean, and variance. The captured data sets also include notes on

perceived signal quality, patient sex (M/F), and recording date. The data set was

exported to a MatlabTMMAT-file for convenience of data processing and statistical

analysis.

All patient recordings were pre-processed and categorised to determine suitability

for analysis. Pre-processing was performed in two steps: Firstly a SNR measure

was performed and only recordings with an SNR greater than 3 dBs were deemed

acceptable for analysis. Secondly, all recordings with evidence of detected embo-

lus were excluded from analysis, since these exhibit abnormal high-frequency HITS

which are non-standard signal features that may offset statistical averaging. After

pre-processing, 33% of the recordings in the patient database from 11 patients were

determined acceptable for detailed analysis. As in the case of the TCD phantom

data set, described in section 5.4.1, the patient recording data sets are real signals

containing no complex plane. In order to obtain an analytical representation of

the signal, in the final stage of pre-processing the real signal undergoes a Hilbert

transform using a MatlabTMfunction.

6.3 Model Optimisation

The parameters fDmax , K, k, σ, N , v, θK , α0, and β0 were optimised in the theoretical

and simulation models were optimised to achieve as close a fit as possible with the

patient measurements. Using MatlabTM, fitting algorithms were used to process the

PDFs and ACF of the theoretical model and patient measurements over three stages.

Firstly, the optimal values of σ and K were obtained by fitting the amplitude PDF
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to the PDF of the patient measurements. Secondly, the optimal value of θK was

obtained by fitting the phase PDF to the PDF of the patient measurements. Finally,

the optimal values of fDmax , k, v, α0, and β0 were obtained using a multivariable

sum of least squares regression algorithm to fit the ACFs to the statistical average

of the patient measurements. The optimised parameter values used to achieve the

results presented are described in Table 6.1.

Table 6.1: Definition of parameter values following 3-D spherical non-isotropic model

optimisation.

Parameter Value Definition

fc 2 MHz insonation frequency of TCD ultrasound

c 1500 ms−1 estimated speed of sound in tissue

fDmax 1.099 kHz maximum Doppler frequency

K 0.0078 Rician K-factor

k 4.201 VMF concentration parameter

σ 0.48 standard deviation of the PDF

N 15 number of incident scatterers

v 0.412 ms−1 blood flow velocity within the isonated vessel

α0 0◦ mean azimuth angle of arrival

β0 0◦ mean elevation angle of arrival

θK 0.165 rad arg {m(t)}

The insonation frequency (fc) is a predefined feature of the TCD ultrasound system

and was fixed at 2 MHz. The speed of sound in tissue c was estimated as 1500 ms−1;

a compromise based on the average acoustic properties of tissue in the cranium.

Importantly for the comparison of the models and the phantom study, tissue is

assumed to be homogeneous and does not account for complex tissue structures, or

acoustic interfaces encountered between skin and bone etc. The number of sinusoids

in the SoS simulation model N , was chosen to be as small as possible whilst providing

a close match between the simulation model and the optimised theoretical reference

model. A small value of N leads to a computationally efficient simulation model.
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6.4 Analysis of Theoretical, Simulated and Mea-

sured Results

In this section we analyse and compare the plots of the PDFs, ACFs, LCRs and

AFDs of the 3-D non-isotropic TCD ultrasound theoretical reference model, sim-

ulation model, SoS simulation results, with the measurements from phantom and

patient recordings.

6.4.1 Amplitude & Phase PDFs

Fig. 6.1 and Fig. 6.2 show the amplitude and normalised phase PDFs of the theo-

retical reference model, simulation model, SoS simulation results, phantom measure-

ment, and patient measurements respectively. The key parameters in this analysis

are K, σ, θK and N .

Firstly, considering the amplitude PDF in Fig. 6.1, the patient measurements pro-

vide close agreement with the theoretical and simulation models. As K = 0.0078,

this confirms that the patient measurements exhibit a small but detectable LoS com-

ponent, but this LoS component is not dominant and, as a result, the the amplitude

PDFs exhibit a Rayleigh scattering profile. It also shows the standard deviation of

the patient measurements match the models, where the standard deviation is ob-

served as σ = 0.48. Both K and σ have been optimised effectively, as demonstrated

by the close fit of the models and patient measurements.
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Figure 6.1: The amplitude PDF of the 3-D non-isotropic spheroid theoretical ref-

erence, simulation, and SoS simulation results, phantom measurement and patient

measurement, where K = 0.0078, σ = 0.48, and N = 15.

The phantom measurements plot in Fig. 6.1 exhibits a notable difference to the oth-

ers, indicating that both σ and K are marginally greater in this case. This suggests

the LoS component in the phantom measurements is marginally more significant and

there is slightly greater dispersion of the signal amplitude probability distribution.

These differences are thought to arise from compromises in the flow phantom de-

sign. For example, the flow phantom is homogeneous, where as real tissue structures

are complex, including skin, bone, and tissue interfaces. In addition to the mate-

rial compromises that are made when constructing a flow phantom, background

noise from the mechanical pump system and turbulent flow in the vessel channel

can also be a source of noise in the recorded signal. These differences are proposed
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to explain the variation in signal amplitude observed in the phantom measurements.

For the normalised phase PDF in Fig. 6.2, the plots show phase θ is a random

variable with normal distribution. The patient measurements provide very close

agreement with the theoretical and simulation models, whilst once again there is

a small disagreement with the phantom measurements. The phantom phase PDF

plot shows there is slightly greater phase dispersion in the phantom measurements.

Once again, it is reasonable to assume this difference can be accounted by the rea-

sons stated previously for the amplitude PDF.

Figure 6.2: The phase PDF of the 3-D non-isotropic spheroid theoretical reference,

simulation, SoS simulation results, phantom measurement and patient measurement,

where K = 0.0078, σ0 = 0.48, θK = 0.165 radians, and N = 15.
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A further feature observed in the plots presented in Fig. 6.2 is the small but notice-

able central phase offset, such that the optimised value of θK = 0.165 radians. The

source of this phase offset and the degree to which it might be anticipated are unclear

from the analysis. It is thought this may be an artefact in the TCD system, data

acquisition process, or may have been introduced as a result of the Hilbert transform

during signal pre-processing. However, the effect is small and doesn’t appear to be

significant. Although further investigations are required to understand this obser-

vation more fully, it is also possible an imperfection in the ultrasound system could

be the cause. For example, in communications systems using phase-shift keying

(PSK) modulation, there is always a frequency and phase shift. Such imperfections

are common in communications systems and acceptable from and engineering view

point. Indeed, such features can be used to radio ’fingerprint’ unique transmitters

for security applications [82].

In summary, it is clear from the plots of both amplitude and phase PDF that the

non-isotropic propagation channel models demonstrate very good agreement with

the patient measurements, whilst the phantom measurements are encouragingly sim-

ilar. The utility of the models is provided by the ability to optimise the parameters

K, σ and θK to fit the patient measurements. The differences observed in the phan-

tom measurements highlight the limits in accuracy achieved by this flow system in

terms of acoustic and physiological equivalence, but also sign post an area of further

refinement through investigation of flow settings and material design.

6.4.2 Temporal ACFs

Fig. 6.3 shows the ACF of the theoretical reference model, simulation model, SoS

simulation results, phantom measurement, and patient measurement. The key pa-

rameters in this analysis are; K, fDmax , k, α0, β0 and N . The plots show the

normalised ACF is zero mean, periodic, and has a decaying envelope. There is some

variability evident in the amplitude of the decaying envelope for the patient and

phantom measurements. This may be due to the variation in blood flow velocity
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caused by the cardiac cycle. Normal resting peak diastolic and systolic blood flow

velocities in the MCA can typically vary between 0.1 ms−1 and 1 ms−1, whilst veloc-

ities in diseased arteries can vary more widely. Although the interval (t+ τ) is small

compared to the relative change in motion, in order to better support clinical anal-

ysis, models may be required which support both time-varying and motion-varying

cases in order to describe the channel correlation properties more accurately.

Figure 6.3: The normalised ACF of the 3-D non-isotropic spheroid theoretical ref-

erence, simulation, SoS simulation results, phantom measurement and patient mea-

surement, where fDmax = 1.099 kHz, K = 0.0078, k = 4.201, N = 15, α0 = 0◦ and

β0 = 0◦.

Nonetheless, the theoretical reference model, simulation model, SoS simulation, and
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patient measurement plots show very good correlation up to approximately 0.5 ms.

After 0.5 ms, the patient measurement remains loosely correlated before the simu-

lation model and SoS simulation results diverge at approximately 4.2 ms. The close

agreement of the theoretical reference model, simulation model, and SoS simulation

results confirms that the number of sinusoids in the SoS simulation, N = 15, is an

excellent choice. Furthermore and importantly, the level of agreement of the models

and the patient measurements up to approximately 4.2 ms confirms the error min-

imisation function has optimised the parameters fDmax , k, α0, and β0 to the patient

measurements.

Unfortunately, as a result of the statistical differences identified between the pa-

tient and phantom measurements in the PDF analysis, and further compounded by

the parameter optimisations, the phantom ACF measurement shows poor agreement

with the models.

6.4.3 Envelope LCRs & AFDs

At this stage in the analysis, the parameters used in both the LCR and AFD have

been fully optimised. Fig. 6.4 shows the normalised LCR in decibels of the theoret-

ical reference model, simulation model and SoS simulation, phantom measurement,

and patient measurement. This plot show remarkably close agreement between the

models and experimental data below a normalised envelope level of approximately 8

dBs, above which we reach the limit of the recording levels of the measured results.

The close fit with the SoS simulator reaffirms the narrow band flat fading nature of

the TCD Doppler system.
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Figure 6.4: The normalised LCR (dB) of the 3-D non-isotropic spheroid theoretical

reference, simulation, SoS simulation results, phantom measurement and patient

measurement, where fc = 2 MHz, fDmax = 1.099 kHz, K = 0.0078, k = 4.201,

N = 15, α0 = 0◦ and β0 = 0◦.
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Figure 6.5: The normalised AFD (dB) of the 3-D non-isotropic spheroid theoretical

reference, simulation, SoS simulation results, phantom measurement and patient

measurement, where fc = 2 MHz, fDmax = 1.099 kHz, K = 0.0078, k = 4.201,

N = 15, α0 = 0◦ and β0 = 0◦.

Fig. 6.5 shows the normalised AFD in decibels of the theoretical reference, sim-

ulation, SoS simulation results by experiment, phantom measurement and patient

measurement. Consistent with the LCR, this plot shows close agreement between

the theoretical, simulation, and experimental data up to a normalised envelope level

of approximately 8 dBs.

The close agreement of the LCR and AFD envelopes respectively confirms the non-

isotropic SoS channel simulator is a very good match to the patient measurements

and provides an extremely useful reference for TCD ultrasound.
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6.5 Summary

In this chapter, the 3-D non-isotropic TCD ultrasound propagation channel mod-

els were verified against Doppler ultrasound measurements obtained from a TCD

flow phantom and a patient measurements database. Whilst slight differences were

observed between the TCD flow phantom and the patient measurements, a compar-

ison of the optimised stochastic models with the patient database demonstrated a

strong level of agreement. Further, these results suggest that the TCD ultrasound

propagation channel has a weak LoS component.

The degree of difference observed between the flow phantom and patient measure-

ments of PDFs and ACF are disappointing but not surprising. These differences

highlight the limitations of equivalence between medical phantoms and patient mea-

surements. Ultrasound medical flow phantoms provide a simple reference system,

with acoustic properties which are close, but not identical, to those measured in real

patient data. The cumulative effect of compromising on material selection and flow

system specification make true parity very difficult to achieve.

The proposed models establish a clear benchmark from which the thorough investi-

gation and analysis of the channel statistics of TCD ultrasound may be understood.

Although a relatively small patient cohort have been tested, with only 11 patient

samples of adequate criteria available for analysis, the models described have been

demonstrated to be tuneable and adaptable to the observed statistical patient aver-

age.

As a result of the flexibility and utility of the non-isotropic models verified in this

chapter, it is anticipated that these will have extremely useful application value

in the design and assessment of new and improved techniques for qualitatively

analysing embolisation events in future TCD ultrasound systems. These results

can also inform and guide further stochastic analysis in this field, and may provide

a basis for improving our understanding of scattering effects and fading intervals
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in new and emerging signal processing methods for other applications of Doppler

ultrasound.

In the final chapter, conclusions on the value of this research are offered and ar-

eas of future work are proposed which may help to mitigate some of the issues

associated with multi-path fading in TCD signal ultrasound propagation channels.

128



Chapter 7

Conclusions & Future Work

Improvements in our ability to detect and characterise emboli in the MCA will di-

rectly benefit the lives of those who have, or are at risk of having, a stroke. In

an effort to deal with the financial burden of an ageing population, health services

around the world are seeking imaginative ways to move from a reactive model of

healthcare, to a proactive and preventive model. At this same juncture, those con-

siderable advances we have witnessed in disease treatments and life expectancy made

possible by pharmacological discoveries in the past century are beginning to slow.

A transition is underway, where we can expect healthcare advances in the next cen-

tury to emerge from technological innovations in, for example, genomics, big data,

machine learning, artificial intelligence, and wearable technologies. It is within this

climate of change that engineers, scientists, and clinicians must collaborate, evaluate

and consider how to take advantage of recent technological advances, and meet the

requirements of the next generation.

Within the context of these much greater ambitions, the inspiration emerged to

re-evaluate TCD ultrasound against the latest clinical requirements. The next

technological breakthrough in TCD ultrasound requires a transition from systems

that quantify embolisation events to those which qualitatively analyse embolisation

events. The emergence of such a system would increase the capabilities of our stroke

clinicians, allowing them to detect embolus much earlier in asymptotic patients, as-

sess the composition of embolus, and prescribe the most effective interventions. A
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strategy to, above all, save lives and prevent disabilities as a result of stroke.

Although detection of MES is a mature application of TCD ultrasound, new al-

gorithms are being developed to help characterise and classify MES. In chapter 2 a

review of the latest MES detection algorithms and enhanced DSP techniques was

described. A reasonable conclusion from this work was the prediction that the com-

bination of a hybrid MES detection algorithm and a suitable modulation scheme

should allow the next generation of TCD ultrasound systems to achieve reliable and

robust MES detection at EBRmin ≥ 5 dBs or less. Furthermore, such systems may

also be capable of precise emboli motion tracking. However, since existing acoustic

wave modelling methods do not support analysis of the channels information trans-

fer characteristics, a stochastic propagation channel model is required to support

the design and development of an optimal TCD ultrasound system based on this

approach. Since many of these MES detection algorithms use advanced signal pro-

cessing techniques previously applied to improve the robustness and reliability of

wireless communications, it is fitting that we may also look to wireless communica-

tions systems for methods which help us to optimise and improve these techniques.

Taking inspiration from stochastic models developed for wireless communications

systems, the objective of this thesis was to derive, define, and verify 3-D stochastic

propagation channel models that can be used to develop and enhance techniques for

detecting and tracking emboli in the intra-cranial arteries.

The channel models described in chapters 3 and 4 offer a first step in the process

of using stochastic analysis in TCD ultrasound to inform the development of these

algorithms. The simulation models provided by this research offer a method of re-

producing the statistical properties of TCD ultrasound, and, as demonstrated, these

models can be optimised to efficiently and accurately match measured results, as

demonstrated by the verification of the 3-D non-isotropic TCD ultrasound propaga-

tion channel models described in chapter 6. This chapter provides a brief summary

of the research findings resulting from this work and proposes several suggestions

for future work.
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7.1 Summary of Results

The key results from this thesis are summarised below.

i. 3-D spherical TCD ultrasound propagation channel models: In Chap-

ter 3, 3-D isotropic spherical scattering models were developed for analysis

of Rayleigh fading environments. The proposed reference was based on a

half-spheroid geometry that was adapted from similar approaches for wireless

communications. Mathematical derivations were developed for these models,

in terms of the amplitude PDF, phase PDF, temporal ACF, Doppler PSD,

envelope LCR, and AFD. Additionally, a SoS based channel simulator was

described. Parameter optimisations were performed using the LPNM method

and numerical results were reported for the case b
a

= 1, where a is the radius

of the base and b is the height of the half-spheroid, such that the maximum

Doppler frequency fDmax = 1.07 kHz, the standard deviation σ = 1, and the

number of sinusoids in the SoS simulation model N = 30. The numerical

results and analysis showed good agreement between the models, but issues of

complexity were raised, due to the requirement to jointly analyse the ampli-

tude PDF in both azimuth and elevation. Furthermore, these models are not

sufficiently flexible to consider the presence or importance of a LoS scattering

component.

To address these deficiencies, in Chapter 4, 3-D non-isotropic spherical scatter-

ing models were developed for analysis of Rician fading environments, which

can be used to consider the presence of a LoS component. Again, the proposed

reference model was adapted from similar approaches for wireless communi-

cations, however the model geometry was spherical in this case. Additionally,

the VMF probability distribution was used to characterise the scattering dis-

tribution as a method of reducing complexity by jointly analysing azimuth

and elevation angles in the probability distribution. Mathematical deriva-

tions were developed for the theoretical reference and simulation models, and

a SoS based channel simulator was described. Parameter optimisations were
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performed using the MEV and numerical results were reported for the case

where the maximum Doppler frequency fDmax = 1.09 kHz, the Rician K-

factor K = 0.0078, the VMF concentration parameter k = 4.2, the standard

deviation σ = 0.48, and the number of sinusoids in the SoS simulation model

N = 15. The numerical results and analysis showed strong agreement between

the models. These models demonstrated improved performance and accuracy

in comparison to the previous case, requiring lower numbers of incident scat-

ters ’N ’ in the SoS simulator, whilst offering the flexibility to consider the

significance of a LoS scattering component.

ii. A new flow phantom for TCD ultrasound studies: In Chapter 5, a novel

wall-less Doppler flow phantom was described. This medical blood flow phan-

tom was designed for analysis of 3-D TCD ultrasound channel models. The

process of material selection and construction is described in detail. Analysis

of the available scattering agents demonstrated that 1% aluminium oxide pow-

der (3µ particle size, measurement by weight) per PVA-C preparation, with

4 freeze-thaw cycles, offered the optimal results for acoustic velocity, attenu-

ation, backscatter coefficient, and impedance. A flow system test bench was

specified for the resulting phantom, and the details of data acquisition were

described.

iii. Verification of the 3-D non-isotropic TCD ultrasound propagation

channel models: In Chapter 6, the non-isotropic spherical scattering models

were verified against flow phantom and patient measurements. These models

were fitted to the patient measurements using a multivariable sum of least

squares regression fitting algorithm. Numerical results were reported for the

case where the maximum Doppler frequency fDmax = 1.099 kHz, the Rician

K-factor K = 0.0078, the VMF concentration parameter k = 4.201, the stan-

dard deviation σ = 0.48, the mean AAoA α0 = 0◦, the mean EAoA β0 = 0◦,

the phase offset θK = 0.165 radians, and the number of sinusoids in the SoS

simulation model N = 15. The numerical results and analysis showed strong

agreement between the models and the patient measurements. Differences
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observed in the flow phantom PDFs and ACF were accounted for by design

compromises and flow system performance issues. Furthermore, although there

is limited patient test data from which to draw a definitive result, it has been

established by this analysis that the TCD ultrasound propagation channel has

narrow band flat fading characteristics and no dominant LoS component. In

conclusion, the strong agreement between the 3-D non-isotropic TCD ultra-

sound propagation channel models and the patient measurements have estab-

lish a clear benchmark from which the thorough investigation and analysis of

the channel statistics of TCD ultrasound may be understood.

7.2 Future Work

There are several areas of future work that can be developed from this thesis.

i. Validation of the 3-D non-isotropic spherical TCD ultrasound prop-

agation channel models: The verification process described in Chapter 6

was performed on a small number of patient measurements, and this reduces

the statistical significance of the results. In order to achieve more scientifi-

cally robust results, a process of validation is required. Such a process would

include a measurements data set from a much larger patient sample group,

and should include sub-sample groups of both normal and diseased patients.

This research would take the methods and models verified in Chapter 6 and,

having established an adequate patient sub-sample size, optimise and analyse

the channel models against each of the sub-sample groups. This process would

establish accurately the model parameters and statistical properties of TCD

ultrasound systems and could attempt to identify any significant differences

across the sub-groups. Such research would require approval using a support-

ing application to the Integrated Research Application System (IRAS), an

ethics application and, most likely, clinical support.

ii. Adaptation of 3-D non-isotropic spherical TCD ultrasound propa-

gation channel models for variable blood flow velocity: The models
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developed in Chapters 3 & 4 assume a constant velocity of blood flow in the

insonation region. This assumption is reasonable over the interval (t + τ),

since this interval is small compared to the relative change in motion at blood

flow rates, and given that normal resting peak diastolic and systolic blood flow

velocities in the MCA typically vary between 0.1 ms−1 and 1 ms−1. However,

in diseased arteries, blood flow velocities can vary more widely and may peak

at more than double the mean resting rate. In order to confirm the original as-

sumption, further investigations into models which support both time-varying

and motion-varying cases would be required. This work could be framed to fit

within the validation study described above.

iii. Fading mitigation: Wireless communications systems have developed sev-

eral mitigation strategies to counter act the presence of multi-path fading,

such as diversity, coding, equalisation etc. Some such techniques may not

be appropriate for Doppler ultrasound, however a research question could be

formed to consider appropriate methods of fading mitigation. For example, a

rake receiver. It is feasible in Doppler ultrasound to consider a multi-element

transducer array and complementing sub-receivers. Using techniques comple-

mentary to existing methods in wireless communications, each sub-receiver

would decode a multi-path component and use a weighted algorithm to re-

combine the result. In the presence of reflections from intra-vascular bodies

such as embolus, such a technique could be used to significantly improve the

detection and characterisation process.

iv. MES Signal Pattern Classifier: In combination with the front-end fading

mitigation improvements that have been suggested above, analysis of existing

MES detection algorithms in Chapter 2 showed there is an opportunity to

investigate signal pattern classifiers and adopt a machine learning approach

to improve the robustness and reliability of MES detection. There are many

possible methods of signal classification; statistical, decision-tree, neural net-

works etc. Although there is existing literature on binary classification using

parametric signal processing, it is not clear at this stage what the most opti-
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mal method would be. However, the performance and accuracy of all signal

classifiers rely on a sufficient set of training data. This problem therefore re-

quires the creation of a database of patient TCD recordings which can act as a

repository of embolus detection signals from which to harvest a training data

set. From experience of establishing the relatively small patient measurements

database used in this research, this would require a formal approach to one of

the NHS health boards research and development groups. At the current time,

I’am unaware of a process by which TCD patient measurement recordings are

routinely digitally archived within patient records. Such a requirement would

therefore need to establish a clear case for social health economic benefit, an

assessment on current clinical practice, and formation of a concise research

question. Such research would most likely require approval using a supporting

application to the Integrated Research Application System (IRAS), and would

require an ethics application and, most likely, clinical support.

v. Flow phantom design: The flow phantom design described in Chapter 5

could be improved in several ways. Firstly, the TMM sample results described

in section 5.3.3 should be extended to consider additional freeze-thaw cycle

tests at 3, 5 and 7 cycles. The manufacturing process involved in TMM prepa-

ration is extremely slow. Not enough time was given to performing adequate

testing in the original research, and three data sample points per test variant

is insufficient to draw conclusive results. Furthermore, although the wall-

less phantom was a successful design in the experimental work described, the

walls of the vessel channel begin to degrade in time and this limits the useful

working-life of the phantom. Results should be compared with walled phan-

toms using standard phantom vessel materials, such as silicon, latex etc.

135



Appendix A

Derivation of the Doppler

Equation for TCD ultrasound

A.1 Analysis of Doppler frequency

In this appendix, we derive an expression for the Doppler frequency (fD) in a TCD

ultrasound system. The framework for this derivations is provided by figure A.1.

This figure helps us to relate the insonation frequency (fc), the velocity of the wave

in the medium (c), the velocity of the observer relative to the medium (vo) and the

velocity of the source relative to the medium (vs), to the frequency shift between

the original insonation frequency (fc) and the frequency of the reflected pulse (fα))

observed at the source, known as the Doppler frequency (fD).

Figure A.1: The Doppler effect, as applied to ultrasound pulse reflection.
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Equation (A.1) is the classic definition of fD as developed by Christian Andreas

Doppler, published in 1843,

fD =
(c± vo)
(c± vs)

× fc. (A.1)

However, in ultrasound systems we must consider traversing the medium in two

directions since our transducer shall transmit an ultrasound pulse and will subse-

quently receive an echo or reflection;

1. Outgoing pulse; observed Doppler shift frequency fα.

2. Reflected pulse; observed Doppler shift frequency fβ.

A.1.1 Consider the Outgoing Pulse

From equation (A.1) we derive equation (A.2) for the outgoing pulse, i.e. the Doppler

shifted frequency of the pulse at the observer.

fα =
(
c± vo
c± vs

)
× fc (A.2)

A.1.2 Consider the Reflected Pulse

Now consider the reflected pulse. The reflected pulse must travel back to the source

through the medium and can be described by

fβ =
(
c± vo
c± vr

)
× fα (A.3)

where vr is the velocity of the source of the reflected pulse. Through substitution

with equation (A.2), equation (A.3) can be re-written as

fβ =
(
c± vo
c± vr

)
×
(
c± vo
c± vs

)
× fc. (A.4)

Since the transducer is stationary, we can consider the transducer velocity (vs) to

be zero. Further, we can consider the velocity of the source of the reflected pulse

(vr) to be equal to the negative velocity of the observer (−vo). Substituting these
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values into equation (A.4) gives us

fβ =
c

(c− vo)
× (c+ vo)

c
× fc (A.5)

which can be further simplified to

fβ =
(
c+ vo
c− vo

)
× fc. (A.6)

A.1.3 Derivation of the Doppler Frequency

The Doppler frequency shift (fD) observable at the source can be derived by the

following steps;

fD = ∆f = fβ − fc =
[(
c+ vo
c− vo

)
× fc

]
− fc (A.7)

fD =
(
c+ vo
c− vo

− 1
)
× fc (A.8)

fD =

(
(c+ vo)− (c− vo)

c− vo

)
× fc (A.9)

fD =
(

2vo
c− vo

)
× fc (A.10)

fD =
(

2vo
c

)
× fc (A.11)

Since the velocity of the observer is very small in comparison to the velocity of sound

in the medium, the vo term in the denominator of equation (A.10) can be ignored

and this equation can be re-written as equation (A.11). Equation (A.11) gives us

the Doppler frequency shift detectable at the transducer when the angle of incidence

(θ) is zero. However, in all practical situations this is unlikely to be the case and

(A.11) becomes

fD =

(
2vo × cos(θ)

c

)
× fc (A.12)

to accommodate a non-zero value of θ. Thus equation (A.12) from classical physics

theory provides the foundation for analysis of blood flow in ultrasound systems.
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Derivation of PDFs

B.1 Derivation of AAOA and EAOA PDFs

In this appendix, we derive the closed-form solutions for the PDF in azimuth (P (α))

and elevation (P (β)) planes given by equation (3.5) and (3.6).

B.1.1 Defining the Jacobian Transform

A Jacobian transform is an algebraic method for determining the probability density

of a variable y that is a function of just one other variable x (i.e. y is a transformation

of x) when we know the probability density of x. In this case, the starting point for

defining the Jacobian transform is the equation of a spheroid.

(x2 + y2)

a2
+
z2

b2
= 1. (B.1)

With consideration of figure 3.1, using simple trigonometry it is possible to derive

the following expressions,

cos(ψ) =
xr
r
, xr = cos(ψ)r (B.2)

sin(β) =
zr
r
, zr = sin(β)r (B.3)

sin(α) =
yr
r′
, yr = sin(α)r′ (B.4)

and

cos(β) =
r′

r
, r′ = cos(β)r. (B.5)
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By substituting equation (B.5) into (B.4), we get

yr = sin(α) cos(β)r. (B.6)

Additionally, we know from simple trigonometry that

cos(ψ) = cos(α) cos(β)r. (B.7)

Thus,

xr = cos(α) cos(β)r (B.8)

yr = sin(α) cos(β)r (B.9)

and

zr = sin(β)r. (B.10)

By substituting equations (B.8), (B.9) and (B.10) into (B.1) we get

(cos(α) cos(β)r)2 + (sin(α) cos(β)r)2

a2
+

(sin(β)r)2

b2
= 1. (B.11)

If we simplify this expression this expression we get

r2 cos2(α) cos2(β) + r2 sin2(α) cos2(β)

a2
+
r2 sin2(β)

b2
= 1 (B.12)

therefore

r2 cos2(β)(cos2(α) + sin2(α))

a2
+
r2 sin2(β)

b2
= 1 (B.13)

and then substituting (cos2(α) + sin2(α)) = 1, we get

r2

[
cos2(β)

a2
+

sin2(β)

b2

]
= 1. (B.14)
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If we solve (B.14) in terms of r, we get

r =

[
a2b2

b2 cos2(β) + a2 sin2(β)

] 1
2

. (B.15)

To derive the PDFs we make use of the Jacobian transformation. In this case, the

Jacobian transform is the determinant of a 3-D matrix,

∂(xr, yr, zr)

∂(r, β, α)
=


xr xβ xα

yr yβ yα

zr zβ zα

 =

xr

yβ yα

zβ zα

− xβ
yr yα

zr zα

+ xα

yr yβ

zr zβ


(B.16)

where

xr =
∂(x)

∂(r)
= cos(β)cos(α) (B.17)

yr =
∂(y)

∂(r)
= cos(β)sin(α) (B.18)

zr =
∂(z)

∂(r)
= sin(β) (B.19)

xβ =
∂(x)

∂(β)
= −r sin(β)cos(α) (B.20)

yβ =
∂(y)

∂(β)
= −r sin(β)sin(α) (B.21)

zβ =
∂(z)

∂(β)
= r cos(β) (B.22)

xα =
∂(x)

∂(α)
= −r cos(β)sin(α) (B.23)

yα =
∂(y)

∂(α)
= r cos(β)cos(α) (B.24)

zα =
∂(z)

∂(α)
= 0 (B.25)
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Using equations (B.18) to (B.25), equation (B.16) can be re-written as

∂(xr, yr, zr)

∂(r, β, α)
=

−r2 cos(β)(sin2(α) sin2(β)+

sin2(β) cos2(alpha) + cos2(α) cos2(β)+

sin2(α) cos2(β))

(B.26)

which can be simplified to

∂(xr, yr, zr)

∂(r, β, α)
= −r2 cos(β)(sin2(β) + cos2(β)). (B.27)

The Jacobian transform can therefore be taken as

∣∣∣∣∣∂(xr, yr, zr)

∂(r, β, α)

∣∣∣∣∣ = r2 cos(β). (B.28)

B.1.2 Defining the Joint Density Function

Now that we have the Jacobian, we need to find an expression for the joint proba-

bility density function p(r, β). Taking the volume of a half-spheroid to be

V =
2πa2b

3
(B.29)

then the joint probability density function is

p(r, β) =
r2 cos(β)

V
=

3r2 cos(β)

2πa2b
. (B.30)

Integrating the joint density function with respect to r gives us the joint density in

terms of α and β as shown by

p(β) =
∫ 3r2 cos(β)

2πa2b
dr, (B.31)

= 3 cos(β)
2πa2b

[
1
3
r2
]

(B.32)

p(β) = cos(β)
2πa2b

r3. (B.33)

142



Appendix B. Derivation of PDFs

By substituting with equation (B.15), we remove the r term and form the expression

for p(β) in of a, b and β as shown by

p(β) =
cos(β)

2πa2b

[
a2b2

b2 cos2(β) + a2 sin2(β)

] 3
2

(B.34)

which can be simplified to

p(β) =
ab2 cos(β)

2π(a2 sin2(β) + b2 cos2(β))
3
2

0 ≤ α ≤ 2π, 0 ≤ β ≤ π

2
.

(B.35)

Finally, equation (B.35) can be re-worked into a more convenient form by multiplying

the numerator and denominator by 1
a3 , to obtain

p(β) =
( b
a
)2 cos(β)

2π(sin2(β) + ( b
a
)2 cos2(β))

3
2

. (B.36)

B.1.3 Calculating the Marginal PDFs

The next step is to calculate the marginal PDFs Pα(α) and Pβ(β), such that

p(β) =
∫ 2π

0
P (β, α)dα (B.37)

and

p(α) =
∫ π

2

0
P (β, α)dβ. (B.38)

Taking equation (B.37) and solving for P (β) obtains

p(β) =
∫ 2π

0
( b
a

)2 cos(β)

2π(sin2(β)+( b
a

)2 cos2(β))
3
2
dα (B.39)

=
( b
a

)2 cos(β)

2π(sin2(β)+( b
a

)2 cos2(β))
3
2

[2π − 0] (B.40)

=
( b
a

)2 cos(β)

(sin2(β)+( b
a

)2 cos2(β))
3
2
. (B.41)

Taking equation (B.38) and solving for P (α) obtains

p(α) =
∫ π

2
0

( b
a

)2 cos(β)

2π(sin2(β)+( b
a

)2 cos2(β))
3
2
dβ (B.42)
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=
( b
a

)2

2π

∫ π
2

0
cos(β)

(sin2(β)+( b
a

)2 cos2(β))
3
2
dβ (B.43)

=

 ( b
a

)2

2π
.

√
2a2 sin(β)

b2
√

(b2−a2) cos(2β)+a2+b2

a2

π2
0

= 1
2π
. (B.44)

Thus, in the azimuth plane, the PDF Pα(α) is

p(α) =
1

2π
, 0 ≤ α ≤ 2π (B.45)

and in the elevation plane, the PDF Pβ(β) is

p(β) =
( b
a
)2 cos(β)

(sin2(β) + ( b
a
)2 cos2(β))

3
2

, 0 ≤ β ≤ π

2
. (B.46)

B.2 Derivation of Amplitude PDFs

In this section, we describe the closed-form solutions for the amplitude PDFs of the

envelopes ξ̂(t) and ζ̂(t) used in the isotropic and non-isotropic simulation models

respectively, and referenced by equations (3.35) and (4.28).

The amplitude PDF p̂ξ̂(z) of the envelope of a Rician process under LoS condi-

tions is defined in [53], [68] and [71], and can be expressed as

p̂ξ̂(z) = (2π)2 z
∫ ∞

0

[
N∏
n=1

J0 (2π|Cn|x)

]
J0 (2πzx) J0 (2πK0x)xdx (B.47)

where J0(.) denotes the zeroth-order Bessel function of the first kind and z ≥ 0. In

(B.47) N is the number of incident scatterers and Cn is the gain associated with

each scatterer. By choosing Cn = σ0

√
2/N where (σ2

0 = 1) p̂ξ̂(z) becomes

p̂ξ̂(z) = (2π)2 z
∫ ∞

0
e−2(πσ0x)2

J0 (2πzx) J0 (2πK0x)xdx. (B.48)

Simplifying (B.48) using the definition at 6.626.1 p.704 of [63] results in

p̂ξ(z) =
z

σ2
o

e
−
z2+K2

0
2σ2

0 I0

(
zK0

σ2
0

)
, z ≥ 0 (B.49)
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where z is the amplitude variable, Io is the zeroth order modified Bessel function

of the first kind, K0 =
√

K
K+1

, where K is the Rician K-factor, and the variance of

µ(t) is given by Var{µ(t)} = 2σ2
0.

Furthermore, from (B.48) it is straight forward to derive the amplitude PDF p̂ζ̂(t) of

the envelope of a Rayleigh process. This is obtained by allowing the LoS component

K0 → 0 and is given by

p̂ζ̂(z) = (2π)2 z
∫ ∞

0

[
N∏
n=1

J0 (2π|Cn|x)

]
J0 (2πzx)xdx. (B.50)

As K0 → 0 and choosing Cn = σ0

√
2/N where (σ2

0 = 1), (B.50) can be simplified to

obtain

p̂ζ̂(z) =
z

σ2
o

e
− z2

2σ2
0 , z ≥ 0. (B.51)
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Derivation of the 3-D Isotropic

TCD Ultrasound Propagation

Channel Model ACF

If received signal of a flat fading channel is given by the delayed version of that

signal multiplied by a complex-valued stochastic process µ(t) [53], then

µ(t) =
N∑
n=1

Cne
jθn(t). (C.1)

In (C.1), as N →∞ the central limit theorem may be invoked such that

µ(t) = lim
N→∞

N∑
n=1

Cne
jθn(t). (C.2)

This zero-mean complex valued random Gaussian process can be expressed in terms

of it’s in-phase and quadrature components as

µ(t) = µ1(t) + jµ2(t). (C.3)

In (C.3), it can be assumed that µ1(t) and µ2(t) are statistically uncorrelated and

have equal variances, such that Var {µi(t)} = σ2
0 for i = 1, 2, and the Rayleigh
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process ζ(t) can therefore be denoted as

ζ(t) = |µ(t)| = |µ1(t) + jµ2(t)| (C.4)

The autocorrelation function rµµ(t) is, therefore, a measure of the variation of the

complex received signal µ(t) with time and is defined as the ensemble average of the

product of µ(t) with itself at time separation τ . Thus we have

rµµ(τ) = E[µ∗(t)µ(t+ τ)] (C.5)

where E[ · ] is the ensemble average operator.

In (C.2), it can be assumed that the phases θn(t) are statistically independent ran-

dom variables at any time t, since the path delays τn associated with each scatterer

are all independent due to their random placement. Further, the phases θn(t) at

any time t can be treated as being uniformly distributed over the interval [−π, π].

The azimuth and elevation angles of arrival, α and β are independent due to the

random placement of scatterers. In the limit as N →∞, the discrete azimuth angles

of arrival αn and βn can be replaced by the continuous random variables α and β

having the probability density functions p(α) and p(β) respectively, as defined in

Appendix B.1. The ACF rµµ can therefore be obtained as

rµµ(τ) = lim
N→∞

Eτ,θ [µ∗(t)µ(t− τ)]

=
Ωp

2
Eθn [cos(2πfDmaxτ cos(αn) cos(βn))]

(C.6)

where

τ = (τ1, τ2, ..., τn) (C.7)

θ = (θ1, θ2, ..., θn) (C.8)

Ωp =
∑N
n=1C

2
n. (C.9)
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In equation (C.9), Ωp can be interpreted as the total received envelope power.

As shown in [54] for the 2-D case based on Clarke’s model and similarly in the

3-D isotropic scattering case, the evaluation of the expectations shown in (C.6) re-

quires the distribution of the arriving plane waves in azimuth (p(α)) and elevation

(p(β)) to be defined. An assumption is made that plane waves will arrive from

all directions in azimuth and elevation with equal probability, a transducer gain of

Gα,β(θ) = 1 for θ ∈ (0, 2π), and normalised such that Ωp = 2.

Taking the marginal PDFs derived in equations (B.45) and (B.46), the temporal

ACF of the uncorrelated in-phase and quadrature components of the complex re-

ceived signal µ(t) is obtained as

rµµ(τ) =
∫ π

2

0

∫ 2π

0
ej2πfDmaxτ cos(α) cos(β)p(α)p(β)dαdβ. (C.10)

This can be simplified further by substituting equation (B.45) and (B.46) into (C.7),

such that

rµµ(τ) =
1

2π

∫ π
2

0
ej2πfDmaxτ cos(α) cos(β) ·

(
b
a

)2
cos(β)[

sin2(β) +
(
b
a

)2
cos2(β)

] 3
2

dβ. (C.11)

Equation (C.11) can be simplified further to obtain

rµµ(τ) =
∫ π

2

0
J0 (2πfDmaxτ cos(β)) ·


(
b
a

)2
cos(β)[

sin2(β) +
(
b
a

)2
cos2(β)

] 3
2

 dβ (C.12)

where

J0(z) =
1

2π

∫ 2π

0
ejz cos(θ)dθ (C.13)

is the zero-order Bessel function of the first kind.

148



Appendix D

Derivation of the Coordinates

System and VMF Distribution

In Fig. 4.1 the rectangular and spherical coordinates of an incident scatterer Sn are

plotted in three-dimensional spherical space (ρ = 3) in a reference model. Since the

number of local scatterers in the reference model is infinite, the discrete azimuth

angle of arrival (AAoA) αn and elevation angle of arrival (EAoA) βn can be replaced

with continuous random variables α and β with a joint probability density given by

P (τ) =
∫ π

2

−π
2

∫ π

−π
ej2πτfmax cosα cosβdαdβ (D.1)

In order to remove the unrealistic assumption that the azimuth and elevation angles

are independent, the VMF distribution can be used to characterise the scattering

distribution.

Taking the rectangular coordinate plots we can state that

d2 = x2 + y2 (D.2)

r2 = d2 + z2 (D.3)

therefore

r2 = x2 + y2 + z2. (D.4)

149



Appendix D. Derivation of the Coordinates System and VMF Distribution

and hence

x = d cosα (D.5)

y = d sinα (D.6)

z = r cos β (D.7)

d = r sin β. (D.8)

Using these expressions and assuming a unit sphere (r = 1), we can describe the

rectangular coordinates [x, y, z] in terms of the longitude and colatitude; where

longitude is the angular measure in a counter-clockwise sense from the x-axis denoted

by α and colatitude is the angular measure from the z-axis denoted by β.

x = r cosα cos β = cosα cos β (D.9)

y = r sinα sin β = sinα sin β (D.10)

z = r cos β = cos β. (D.11)

Further, if we consider a unit random vector x and a mean direction vector µ using

a spherical coordinate system

x = (cosα sin β, sinα sin β, cos β)T (D.12)

µ = (cosα0 sin β0, sinα0 sin β0, cos β0)T (D.13)

then

µTx = xTµ

=


cosα sin β

sinα sin β

cos β

 · [cosα0 sin β0, sinα0 sin β0, cos β0]

µTx = cos β cos β0 + sin β sin β0 cos (α− α0) . (D.14)
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It is known that if x is a random unit vector distributed in sample space Sρ−1 when

(ρ = 3), then (α, β) has a PDF given by

P (α, β) =
1

4π
cos β, {0 ≤ α ≤ π}, {0 ≤ β ≤ 2π}. (D.15)

If we now consider the VMF distribution given by F (µ, k) such that

F (µ, k) =
k

sinh k
ek[µ

Tx] (D.16)

then the probability density of a random unit vector using the VMF distribution in

sample space S2 is given by

f(α, β) =
k

4π sinh k
ek[µ

Tx] cos β

=
k

4π sinh k
ek[cosβ cosβ0+sinβ sinβ0 cos(α−α0)] cos β.

(D.17)

In (D.17), α0 and β0 define the mean direction and k is the concentration parameter

that controls the distribution relative to the mean direction.

151



Appendix E

Derivation of the Non-isotropic

Simulation Model Doppler Shift

and Spread

In this appendix, we derive the closed-form solutions for the Doppler shift B̂
(1)
µ̂µ̂

and Doppler spread B̂
(2)
µ̂µ̂ for the non-isotropic simulation model described in section

4.3.2.3.

The Doppler shift B
(1)
µ̂µ̂ is given by

B
(1)
µ̂µ̂ =

∫∞
−∞ fSµ̂µ̂ (f) df∫∞
−∞ Sµ̂µ̂ (f) df

=
1

2πj
·

˙̂rµ̂µ̂ (0)

r̂µ̂µ̂ (0)
.

(E.1)

152



Appendix E. Derivation of the Non-isotropic Simulation Model Doppler Shift and
Spread

The Doppler spread B
(2)
µ̂µ̂ is given by

B
(2)
µ̂µ̂ =

√√√√√∫∞−∞
(
f −B(1)

µ̂µ̂

)
Sµ̂µ̂ (f) df∫∞

−∞ Sµ̂µ̂ (f) df

=
1

2π

√√√√( ˙̂rµ̂µ̂ (0)

r̂µ̂µ̂ (0)

)2

−
¨̂rµ̂µ̂ (0)

r̂µ̂µ̂ (0)

=
1

2π

√√√√(2πj ·B(1)
µ̂µ̂

)2
−

¨̂rµ̂µ̂ (0)

r̂µ̂µ̂ (0)

=

√√√√− (B(1)
µ̂µ̂

)2
−

¨̂rµ̂µ̂ (0)

r̂µ̂µ̂ (0)

(E.2)

where (E.1) and (E.2) can be further simplified by investigating the first and second

derivatives of the normalised ACF, ˆ̂rµ̂µ̂(τ).

r̂µ̂µ̂(τ) =
K

(K + 1)
ej2πfDmaxτ cosα0 cosβ0+

1

(K + 1)

N∑
n=1

1

N
ej2πfDmaxτ cosαn cosβn

r̂µ̂µ̂(0) =
K

(K + 1)
+

1

(K + 1)
= 1.

(E.3)

therefore

˙̂rµ̂µ̂(0) =
2πjfDmax

(K + 1)
×
[
K cosα0 cos β0 +

N∑
n=1

1

N
cosαn cos βn

]
(E.4)

and

¨̂rµ̂µ̂(0) =
−(2πfDmax)2

(K + 1)
×
[
K(cosα0 cos β0)2 +

N∑
n=1

1

N
(cosαn cos βn)2

]
(E.5)

Through substitution of (E.3), (E.4) and (E.5) back into (E.1)

B̂
(1)
µ̂µ̂ =

fDmax

(K + 1)
×
[
K cosα0 cos β0 +

N∑
n=1

1

N
cosαn cos βn

]
(E.6)

and

B̂
(2)
µ̂µ̂ =

√
−¨̂rµ̂µ̂(0)−

(
B̂

(1)
µ̂µ̂

)2
. (E.7)
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[16] J.-M. Girault, D. Kouamé, A. Ouahabi, and F. Patat, “Micro-emboli detection:

an ultrasound doppler signal processing viewpoint,” IEEE Trans. Biomed. Eng.,

vol. 47, no. 11, pp. 1431–1439, 2000.

[17] J. L. Smith, D. H. Evans, L. Fan, P. R. Bell, and A. R. Naylor, “Differenti-

ation between emboli and artefacts using dual-gated transcranial doppler ul-

trasound,” Ultrasound in Medicine & Biology, vol. 22, no. 8, pp. 1031–1036,

1996.

[18] M. A. Moehring and J. R. Klepper, “Pulse doppler ultrasound detection, charac-

terization and size estimation of emboli in flowing blood,” IEEE Trans. Biomed.

Eng., vol. 41, no. 1, pp. 35–44, 1994.

[19] M. A. Moehring, M. P. Spencer, D. L. Davis, and R. P. Demuth, “Exploration

of the embolus to blood power ratio model (ebr) for characterizing microemboli

155



BIBLIOGRAPHY

detected in the middle cerebral artery,” in Proc. of IEEE Ultrasonics Symp.,

vol. 2. Seattle, USA, 1995, pp. 1531–1535.

[20] M. A. Moehring, “Fundamental concepts regarding sizing and discrimination of

air bubbles and red cell aggregates using pulsed-doppler ultrasound,” Echocar-

diography, vol. 13, no. 5, pp. 567–572, 1996.

[21] H. S. Markus and J. Molloy, “Use of a decibel threshold in detecting doppler

embolic signals,” Stroke, vol. 28, no. 4, pp. 692–695, 1997.

[22] E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys-

ical review, vol. 40, no. 5, p. 749, 1932.

[23] E. Chassande-Mottin, A. Pai et al., “Discrete time and frequency wigner-ville

distribution: Moyal’s formula and aliasing,” IEEE Signal Process. Lett., vol. 12,

no. 7, p. 508, 2005.

[24] J. Smith, D. Evans, L. Fan, A. Thrush, and A. Naylor, “Processing doppler ul-

trasound signals from blood-borne emboli,” Ultrasound in Medicine & Biology,

vol. 20, no. 5, pp. 455–462, 1994.

[25] C. Banahan, Z. Rogerson, C. Rousseau, K. V. Ramnarine, D. H. Evans, and

E. M. Chung, “An in vitro comparison of embolus differentiation techniques for

clinically significant macroemboli: dual-frequency technique versus frequency

modulation method,” Ultrasound in medicine & biology, vol. 40, no. 11, pp.

2642–2654, 2014.

[26] C. Guetbi, D. Kouame, A. Ouahabi, and J. Remenieras, “New emboli detection

methods [doppler ultrasound],” in Proc. of IEEE Ultrasonics Symp., vol. 2.

Toronto, Canada, 1997, pp. 1119–1122.

[27] N. Aydin, S. Padayachee, and H. S. Markus, “The use of the wavelet transform

to describe embolic signals,” Ultrasound in Medicine & Biology, vol. 25, no. 6,

pp. 953–958, 1999.

156



BIBLIOGRAPHY

[28] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet

representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp.

674–693, 1989.

[29] S. Marvasti, D. Gillies, and H. S. Markus, “Novel intelligent wavelet filtering

of embolic signals from tcd ultrasound,” in Proc. of IEEE Signals, Syst. and

Comput., vol. 2. Pacific Grove, California, USA, 2004, pp. 1580–1584.

[30] S. Marvasti, M. Ghandi, F. Marvasti, H. S. Markus, and D. Gillies, “Multiple

wavelet denoising for embolic signal enhancement,” in Proc. of IEEE Conf. on

Telecommun. and Malaysia Int. Conf. on Commun. (ICT-MICC). Penang,

Malaysia, 2007, pp. 658–664.

[31] J. Cowe, J. Gittins, and D. H. Evans, “Improving performance of pulse com-

pression in a doppler ultrasound system using amplitude modulated chirps and

wiener filtering,” Ultrasound in Medicine & Biology, vol. 34, no. 2, pp. 326–333,

2008.

[32] J. Cowe, E. Boni, S. Ricci, P. Tortoli, and D. Evans, “Coded excitation can pro-

vide simultaneous improvements in sensitivity and axial resolution in doppler

ultrasound systems,” in Proc. of IEEE Ultrasonics Symp. (IUS). San Diego,

USA, Oct. 2010, pp. 2286–2290.

[33] X. Lei, Z. Heng, and G. Shangkai, “Barker code in tcd ultrasound systems to

improve the sensitivity of emboli detection,” Ultrasound in Medicine & Biology,

vol. 35, no. 1, pp. 94–101, 2009.

[34] J. Li, X. Diao, K. Zhan, and Z. Qin, “A full digital design of tcd ultra-

sound system using normal pulse and coded excitation,” in Proc. of 1st Global

Conf. on Biomedical Eng. & 9th Asian-Pacific on Medical and Biological Eng.

(APCMBE). Tainan, Taiwan, Oct. 2014, pp. 136–139.

[35] I. Genesis, “The early history of pulse compression radar,” IEEE Trans. Aerosp.

Electron. Syst., vol. 24, no. 6, p. 825, 1988.

157



BIBLIOGRAPHY

[36] Y. Takeuchi, “An investigation of a spread energy method for medical ultra-

sound systems: Part one: Theory and investigation,” Ultrasonics, vol. 17, no. 4,

pp. 175–182, 1979.

[37] Y. Takeuchi, “An investigation of a spread energy method for medical ultra-

sound systems: Part two: proposed system and possible problems,” Ultrasonics,

vol. 17, no. 5, pp. 219–224, 1979.

[38] M. O’Donnell, “Coded excitation system for improving the penetration of real-

time phased-array imaging systems,” IEEE Trans. Ultrason. Ferroelectr. Freq.

Control, vol. 39, no. 3, pp. 341–351, 1992.

[39] R. Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system

developer’s perspective,” in Proc. of IEEE Ultrasonics Symp., vol. 1. Hawaii,

USA, 2003, pp. 437–448.

[40] J. Gu and Y. Jing, “Modeling of wave propagation for medical ultrasound: a

review,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 62, no. 11, pp.

1979–1992, 2015.

[41] P. J. Westervelt, “Parametric acoustic array,” J. of the Acoust. Soc. of America,

vol. 35, no. 4, pp. 535–537, 1963.

[42] B. E. Treeby, J. Jaros, A. P. Rendell, and B. Cox, “Modeling nonlinear ultra-

sound propagation in heterogeneous media with power law absorption using a

k-space pseudospectral method,” J. of the Acoust. Soc. of America, vol. 131,

no. 6, pp. 4324–4336, 2012.

[43] M. J. Crocker, Handbook of acoustics. New York: John Wiley & Sons, 1998.

[44] Y. Zhou, Principles and Applications of Therapeutic Ultrasound in Healthcare.

Boca Raton, Florida: CRC Press, 2015.

[45] P. D. Fox, A. Bouakaz, and F. Tranquart, “Computation of steered nonlinear

fields using offset kzk axes,” in Proc. of IEEE Ultrasonics Symp. (IUS), vol. 4.

Rotterdam, The Netherlands, Sept. 2005, pp. 1984–1987.

158



BIBLIOGRAPHY

[46] W. F. Walker and G. E. Trahey, “The application of k-space in medical ultra-

sound,” in Proc. of IEEE Ultrasonics Symp. (IUS), vol. 2. Rotterdam, The

Netherlands, Nov. 1995, pp. 1379–1383.

[47] W. F. Walker and G. E. Trahey, “The application of k-space in pulse echo

ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 3,

pp. 541–558, 1998.

[48] Y. Jing, T. Wang, and G. T. Clement, “A k-space method for moderately

nonlinear wave propagation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,

vol. 59, no. 8, pp. 1664–1673, 2012.

[49] M. E. Anderson and G. E. Trahey, “A seminar on k-space applied to medical

ultrasound,” Department of Biomedical Engineering, Duke University, 2000.

[50] Z. Guan, E. Santagati, and T. Melodia, “Ultrasonic intra-body networking:

Interference modeling, stochastic channel access and rate control,” in Proc. of

IEEE Conf. on Comput. Commun. (INFOCOM). Hong Kong, China, Apr.

2015, pp. 2425–2433.

[51] Z. Guan, G. E. Santagati, and T. Melodia, “Distributed algorithms for joint

channel access and rate control in ultrasonic intra-body networks,” IEEE/ACM

Trans. Netw., vol. PP, no. 99, pp. 1–1, 2016.

[52] M. Nakagami, “The m-distribution-a general formula of intensity distribution

of rapid fading,” Statistical Method of Radio Propagation, 1960.

[53] M. Pätzold, Mobile radio channels. New York: John Wiley & Sons, 2011.
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[67] A. G. Zajić and G. L. Stüber, “Three-dimensional modeling and simulation of

wideband mimo mobile-to-mobile channels,” IEEE Trans. Wireless Commun.,

vol. 8, no. 3, pp. 1260–1275, 2009.

[68] Y. Yuan, C.-X. Wang, X. Cheng, B. Ai, D. Laurenson et al., “Novel 3d

geometry-based stochastic models for non-isotropic mimo vehicle-to-vehicle

channels,” IEEE Trans. Wireless Commun., vol. 13, no. 1, pp. 298–309, 2014.

[69] E. Batschelet, Circular statistics in biology. London, UK: Academic press,

1981.

[70] K. V. Mardia and P. E. Jupp, Directional statistics. New York: John Wiley

& Sons, 2009.

[71] M. Pätzold and B. Talha, “On the statistical properties of sum-of-cisoids based

mobile radio channel models,” in Proc. of the 10th Int. Symp. on Wireless

Personal Multimedia Commun., (WPMC). Jaipur, India, Dec. 2007, pp. 394–

400.
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