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Abstract

This thesis presents new research into human headpose estimation and its appli-

cations in multi-modal data. We develop new methods for head pose estimation

spanning RGB-D Human Computer Interaction (HCI) to far away ”in the wild”

surveillance quality data. We present the state-of-the-art solution in both head

detection and head pose estimation through a new end-to-end Convolutional Neu-

ral Network architecture that reuses all of the computation for detection and pose

estimation. In contrast to prior work, our method successfully spans close up HCI

to low-resolution surveillance data and is cross modality: operating on both RGB

and RGB-D data. We further address the problem of limited amount of standard

data, and different quality of annotations by semi supervised learning and novel

data augmentation. (This latter contribution also finds application in the domain

of life sciences.)

We report the highest accuracy by a large margin: 60% improvement; and demon-

strate leading performance on multiple standardized datasets. In HCI we reduce

the angular error by 40% relative to the previous reported literature. Further-

more, by defining a probabilistic spatial gaze model from the head pose we show

application in human-human, human-scene interaction understanding. We present

the state-of-the art results on the standard interaction datasets. A new metric to

model ”social mimicry” through the temporal correlation of the headpose signal

is contributed and shown to be valid qualitatively and intuitively. As an applica-

tion in surveillance, it is shown that with the robust headpose signal as a prior,

state-of-the-art results in tracking under occlusion using a Kalman filter can be

achieved. This model is named the Intentional Tracker and it improves visual

tracking metrics by up to 15%.

We also apply the ALICE loss that was developed for the end-to-end detection

and classification, to dense classification of underwater coral reefs imagery. The

objective of this work is to solve the challenging task of recognizing and segment-

ing underwater coral imagery in the wild with sparse point-based ground truth

labelling. To achieve this, we propose an integrated Fully Convolutional Neural

Network (FCNN) and Fully-Connected Conditional Random Field (CRF) based



iii

classification and segmentation algorithm. Our major contributions lie in four ma-

jor areas. First, we show that multi-scale crop based training is useful in learning

of the initial weights in the canonical one class classification problem. Second,

we propose a modified ALICE loss for training the FCNN on sparse labels with

class imbalance and establish its significance empirically. Third we show that

by artificially enhancing the point labels to small regions based on class distance

transform, we can improve the classification accuracy further. Fourth, we improve

the segmentation results using fully connected CRFs by using a bilateral message

passing prior. We improve upon state-of-the-art results on all publicly available

datasets by a significant margin.
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Chapter 1

Introduction

Our society is currently faced with multiple paradigm shifting ideas. On one

hand, with ever increasing population in ever growing urban spaces, security and

maintaining law and order has become of paramount importance. The number

of surveillance cameras, both in public and private spaces have exploded to un-

precedented numbers in the last decade. Along with advancements in storage,

affordable sensors and other internet services like YoutubeTM, this has lead to the

proliferation of High Definition and Ultra High Definition videos in all aspects of

life capturing the human experience from innumerable different perspectives. This

presents new opportunities as well as new challenges. The rich information source

present in the data calls for more advanced analytic methods. One of the prime

component of this is understanding and predicting human behaviour. Not only

who they are but who/what they interact with and what they are about to do. All

of this information, along with long term tracking, allows us to build very strong

models for people and their behaviours that might find applications ranging from

security to targeted advertisement.

On the other hand, new specialised fields like advanced robotics and self driving

cars present another unique set of problems, that are ripe for innovative solutions.

Often these problem domains involve multiple modalities like depth, audio etc.

alongside videos. Understanding human behaviour in a scene is very important

for self driving cars faced with the decision of whether a human that came in to

view suddenly saw it approaching or not. Is she going to cross the road? Or is

she just standing on the pavement waving to a friend on the other side? Similarly

for factories with heavy industrial robots and humans working together, how does

1
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one ensure health and safety? Clearly for future autonomous systems to coexist

with humans and share the same space, these challenges need to be adequately

addressed and solved. To this end we believe, understanding human behaviour is

going to be key.

To understand human behaviour, it will be important to understand subtleties

of human gesticulation. In his pioneering work on psycholinguistics, Kendon has

identified the salient features of human gesticulation [6]. While the content of

a gesture varies from from person to person and even culture to culture, there

are things that are invariant. One such invariant is that gestures are always

communicative. That means, gestures always have a recipient, and people tend

to look towards their recipient. Another such invariant is social mimicry, which

means people in a group tend to behave similarly.

It is apparent from psycholinguistic works [6] that friends tend to look at each

other when experiencing both duress and fun among a group of strangers, a very

good cue predicting association. Groups of people in an exhibition tend to follow

similar gazing patterns. Moreover it is intuitive that people tend to look where

they are going before changing course.All this means that one of the corner stones

to understanding the visual aspects of human behaviour is human head pose.

1.1 Motivation

Modelling human head pose is a challenging problem in computer vision and signal

processing. It is desirable because this headpose signal gives us important meta-

information about communicative gestures [6], salient regions in a scene based on

focus of attention [7], group detection, crowd behavioural dynamics and tracking

[8], and anomaly detection. The grand aim of our work is to exploit the advanced

signal acquired from head pose to achieve, what is called, “Social Signal Process-

ing”. In domains where close level iris/eye tracking is not possible, human head

pose is the most important feature in estimating human focus-of-attention. Head

pose estimation has been studied in two separate and distinct domains, visual

surveillance [9–12] and Human Computer Interactions (HCI) [13–15] with differ-

ent methodologies required due to the difference in the quality of the input. In this

work we develop a new technique which unifies these research areas and exploits

the multiple modalities of range images and colour images when it is beneficial so
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Figure 1.1: Illustrative outputs of our system showing gazing direction es-
timation across a range of imaging modalities, resolutions and applications:
(a) visual attention modelling in the 3-D environment; (b) human-human and
human-machine interaction recognition; (c) gazing direction in low-resolution
surveillance video, which may ultimately be used for tracking and anomaly de-
tection. sensor.

to do. The method is also highly robust and fast to compute as we demonstrate

on data from both domains.

In the surveillance domain the nature of the problem requires the exploitation of

priors such as walking direction [11] to augment the low resolution visual features.

In the close range (i.e. higher resolution) domain of HCI, facial landmark detection

approaches are employed for better accuracy [1]. However in HCI, the problem has

been formulated with natural user interaction in mind, i.e., the user is always facing

(near frontal) the sensor and is fairly close by (not more than 1-2 meters). Facial

landmark based techniques typical of HCI cannot perform unconstrained head

pose estimation at a distance. Furthermore, in most indoor interaction scenarios,

the subjects are static and can be frequently occluded.

Hence the priors such as motion direction, body direction that are easily ex-

ploitable in a surveillance scenario may not be useful. Our focus in this thesis is

to introduce a system that addresses these issues by estimating the unconstrained

head-pose by using a unified approach. Figure 1.1 shows some illustrative outputs

of our method.



Chapter 1. Introduction 4

Any image of the head can be used to estimate parameters in this manifold. Oc-

clusions such as hair, accessories like glasses, and/or low resolution make accurate

estimation difficult. However since pose has a very high variance in the feature

space, and thus a large eigenvalue principal component, this should allow us to

recover the head pose in a holistic manner that spans the range of HCI to surveil-

lance. Furthermore, in the surveillance domain the techniques rely on motion

priors like walking direction to smooth the head pose estimation [10, 11]. This

is valid only because most people tend to look where they are going. The draw-

back of such smoothing is that the information of the head pose signal itself is

attenuated. As shown by Baxter et. al in [8] the cases of actual interest are when

people deviate from this behaviour (i.e. look somewhere else). This information

could be useful for anomaly detection or improving tracking and should not be

smoothed out by a prior simply in order to achieve a more accurate result because

the datasets are biased with people looking the direction of walking most of the

time. Similarly, in the HCI domain, most techniques rely on the detection of facial

landmarks. This is a valid assumption given the use-case scenarios. However this

leaves a large gap in the applicability of such methods when it comes to achiev-

ing a reliable head-pose estimation in close range for non-frontal head pose. In

summary, we define our objectives as follows:

1. Establish and review current methods;

2. Bridge the gap in data requirements if any;

3. Exploit high-resolution to low-resolution imageries and exploits multiple

imaging modalities, i.e. RGB and depth where possible;

4. Is independent of explicit facial landmark detection;

5. Do not require motion priors (“instantaneous”, i.e. only requiring single

frames);

6. Create unified end-to-end detection and headpose estimation framework;

7. Evaluate against public datasets;

8. Show applicability of robust headpose estimation to social signal processing;

We categorically don’t use motion prioirs to decouple the headpose signal from

the velocity signal. This preserves the two signals independently and does not

attenuate the raw headpose signal with a prior.
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Our thesis is as follows: A big data driven machine learning approach can be

adapted to solve the human head pose estimation problem. By using modern su-

pervised and unsupervised machine learning techniques we can solve the problem

of detecting heads and estimating head pose in an unified way that spans multi-

ple modalities (RGB and Depth) while being applicable to high resolution Human

Machine Interface to low resolution surveillance domain simultaneously. The ro-

bust headpose estimation can then be used a signal for Social Signal Processing.

We evaluate the success of our approach by reporting higher accuracy compared to

exsisting techniques on publicly available datasets.

1.2 Thesis Roadmap

We have identified that there is a gap in the landmark free head-pose estima-

tion research. We aim to contribute a solution when it comes to unconstrained

head-pose estimation in all resolutions. Our approach to solving this problem is

summarised as follows

In Chapter 2 we review the relevant research in head pose estimation. First we

review the existing solutions and find out what limitations are there that we need

to overcome. Then we discuss the current state-of-the-art methods in data driven

machine learning approaches, mainly deep learning. We identify areas that in both

detection and pose estimation that can be improved.

In Chapter 3 we identify the need for an unified dataset that is lacking in literature.

We propose a large scale RGB-D dataset that has accurate headpose annotation.

We also establish the theoretical limits of head pose estimation accuracy when eyes

are not tracked. We then build upon current state-of-the-art methods and define

and validate our own RGB-D feature called Histogram of Depth Surface Curvature

(HDSC ). We propose to use the novel Zonal Kernel for gaussian process regression

for regression in a closed circular manifold for head yaw angles. We also propose

to smooth the temporal estimations with particle filters. We compare our method

to the existing methods on publicly available and our own datasets.

In Chapter 4 we embark upon the deep learning methods. First we propose a semi

supervised model that can learn from data sources that are labelled differently.

We propose a multi-loss fine tuning. We validate the approach on two publicly

available surveillance RGB datasets.
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In the next section we strive to model the human heads using Convolutional Neu-

ral Networks in both RGB and Depth. We introduce a regression loss that lets us

pose the cyclic function (it is wrapped in a sphere) in the Euclidean space by using

vector decomposition of the unit directional vector. We also model the regression

confidence by a granular classification layer that only learns from the final layer

feature used for the regression. We validate our approach on 6 publicly available

datasets.

In the final section we propose an efficient fully convolutional RGB neural network

that does detection and pose estimation, while sharing all of the computation

among both tasks. We propose a novel ALICE loss function that jointly opti-

mises both detection and pose estimation. We introduce a general region proposal

network after the training to generate the head proposals after the whole compu-

tation through the network. We compare the detection and and pose estimation

performance on two standard datasets.

We report significant improvements in accuracy all across the board with our

methods. We prove that our methods are robust to resolution and modality while

not being dependent on motion priors.

In Chapter 5 we apply the robust headpose estimation algorithm to other problems.

First we show that we can improve tracking accuracy in presence of occlusion when

using the head pose as an intentional prior. We then define three metrics (a) The

Attention Metric (AM) that takes into account the direction and variance of the

headpose estimation, (b) The Interaction Metric (IM) that predicts when people

are looking at each other, and (c) Windowed Cross Correlation (WCC) between

any pair of headpose signal that estimates how much two head pose signals behave

similarly in time.

We validate the AM and IM against the other metrics proposed in literature and

show state-of-the-art performance on publicly available datasets. Further more we

qualitatively show three scenarios and discuss the effects of all the three metrics.

In Chapter 6 we show the general applicability of the ALICE loss proposed in

Chapter 4 to an interesting problem in marine sciences. We apply deep learning

methods to classify underwater coral images. We overcome the challenge of having

very sparse labels and propose a technique to generate dense segmentation of
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underwater coral imagery. We achieve the highest accuracy by a large margin,

nearing expert annotation accuracy while reducing time required by a factor of

2000×.

1.3 Related Publications

Our work has been published in the following locations.

• Sankha S Mukherjee and Neil M Robertson. Deep head pose: Gaze-direction

estimation in multimodal video. IEEE Transactions on Multimedia, 17(11):

2094–2107, 2015

• Sankha S. Mukherjee, Rolf H. Baxter, and Neil M. Robertson. Watch where

you’re going! - pedestrian tracking via head pose. In Proceedings of the

11th Joint Conference on Computer Vision, Imaging and Computer Graphics

Theory and Applications, pages 573–579, 2016. ISBN 978-989-758-175-5. doi:

10.5220/0005786905730579

• Rolf H Baxter, Michael JV Leach, Sankha S Mukherjee, and Neil M Robert-

son. An adaptive motion model for person tracking with instantaneous head-

pose features. Signal Processing Letters, IEEE, 22(5):578–582, 2015

• Sankha S Mukherjee, Rolf H Baxter, and Neil M Robertson. Instantaneous

real-time head pose at a distance. In Image Processing (ICIP), 2015 IEEE

International Conference on, pages 3471–3475. IEEE, 2015

• Henry Lea-Ann, Sankha S Mukherjee, Neil M Robertson, Laurence De Clip-

pele, and J. Murray Roberts. Deep corals, deep learning: Moving the deep

net towards real-time image annotation. In 6th International Symposium on

Deep-Sea Corals. Harvard, 2016



Chapter 2

Related Work

In this chapter we introduce work by other authors that are most relevant to the

field of study. We first discuss the prior work on human head pose estimation

as has been reported in literature. Then review the contributions in deep neural

network in recognition, detection, pose estimation, tracking and segmentation as

these are the methods we have built upon in our work. We provide critique of

the existing methods where necessary. We try to cover as much recent material

as possible and avoid going into too much historical context to keep the review

concise. We cite other works in context in the following chapters where needed.

2.1 Head pose estimation

The pioneering work on low resolution head pose estimation was proposed by

Robertson and Reid [9] which used a detector based on template training to classify

head poses in eight directional bins. This approach is heavily reliant on skin colour

detection. Subsequently this template-based technique was extended to a colour

invariant technique by Benfold et al. [10]. They proposed a randomized fern

classifier for hair face segmentation for the template matching. This work was later

improved upon by Siriteerakul et al. [20] using pair-wise local intensity and colour

differences. However, in keeping with all template based techniques in head-pose

estimation, these suffer from two major problems: first, it is non-trivial to localize

the head in low resolution images; second, different poses of the same person may

appear more similar compared to the same head-pose of different persons.

8
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This led some researchers to propose representing head images in a different fea-

ture space that has more discriminatory property for head pose independent of

persons. Non-linear regression approaches like Artificial Neural Networks [21, 22]

and high-dimensional manifold based approaches [23, 24] try to estimate the head

poses in a continuous range. Chen and Odobez [11] proposed the state-of-the-art

method for unconstrained coupled head-pose and body-pose estimation in surveil-

lance videos. They used multi-level Histogram of Oriented Gradients (HOG) [25]

for the head and body pose features and extracted a feature vector for an adaptive

classification using high dimensional kernel space methods. These techniques are

quite general and do not depend on the heads being in near frontal poses unlike

the HCI techniques. Nevertheless the high degree of error or uncertainties that

arise from these methods, render them unsuitable for the tasks like fine grained

human interaction or attention modelling.

On the other hand, on the HCI side of the problem the formulation is limited to

2 metre distance from the sensor along with near-frontal head-poses. An iterative

closest point (ICP) based mesh fitting approach has been employed for head pose

detection [14, 26]. In [27] the candidate head poses are rendered and matched to

the input depth image and the 6 degree of freedom pose is solved by optimizing

via particle swarm optimisation. Fanelli et al. [1] used a randomized patch based

decision forest regression for head pose regression. Work on head pose regression

for scene and human interaction understanding has been presented [28]. This work

focuses on head-pose regression and interaction detection in 2D movie/ tv-series

scenes. While it is quite robust, this approach is limited in that it only works

with yaw angles of ±90◦. However it does not depend on motion priors or specific

facial landmark detections. Recently, manifold based metric learning methods

have been applied to head pose estimation [29]. In another approach to manifold

learning the spherical nature of the view manifold of objects is used as a strong

prior [30]. Another approach reported in [31] uses reflection symmetry information

in covariant features extracted from Gabor features. Features derived from local

directional quaternary patterns (LDQP) have been used in conjunction with linear

SVM successfully in high resolution RGB data [32].
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2.2 Deep learning

Recently, deep learning, especially CNNs have been shown to learn robust non-

linear representations from input data and have been especially successful on

images [33, 34] and audio [35]. This is in contrast to traditional computer vi-

sion pipelines where problem specific ad-hoc features like HOG [25] are extracted.

These features would typically be used as input to machine learning framework

such as support vector machines (SVM) to achieve classification or regression.

The power of deep models lie in their ability to learn layers of non-linear trans-

formations on the data [34]. The resurgence of these methods started with the

successful introduction of a class of deep generative models called Deep Belief Net-

works (DBN) and their unsupervised training using Contrastive Divergence (CD)

[36]. The power of a generative model, as shown by Tang et al. [37], lies in being

able to reconstruct original images under noise or heavy occlusions [36]. CNNs

[38] on the other hand are supervised, discriminative and have mostly surpassed

the DBNs in terms of accuracy on large labelled datasets like the Imagenet [39].

CNNs have also been applied in the multimodal RGB-D domain. Lu [40] demon-

strated early fusion of RGB-D channels and used transfer learning to initialise the

weights of the green, blue and depth channels with filters learned from the depth

channel. More recently it has been shown that this form of early fusion is not

very helpful because the network can not propagate meaningful gradients across

channels [41, 42]. Hence RGB-D networks are generally trained with late fusion

where the modalities are learned separately and combined in the classifier phase

[41, 42]. Deep learning is an emerging paradigm which has revolutionised cognitive

tasks like object recognition, detection, audio and NLP. In this section we review

the relevant methods for this thesis.

2.2.1 Image Classification

Convnets (CNNs) have been applied to image classification before deep learning

became popular [43–46]. However given large scale datasets CNN methods achieve

the best accuracy [34, 47–49] due to joint feature and classifer optimisation. This

was firmly established by Alex Krizhevsky et al. [34] who developed the AlexNet

architecture achieving the best performance in ILSVRC 2012. Since then other ar-

chitectures have been used to progressively make the accuracy better by increasing
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Figure 2.1: The ResNet building block (Adapted from [5]). x is the input,
F (x) depict the convolution operations and identity connection depicts the skip
connection from input to output.

Figure 2.2: The HD-CNN architecture depicting the coarse to fine grained
classification (Adapted from [56]).

depth [50, 51] or other techniques like the Inception architecture by Google [38].

Recent advances in this direction include the ResNet method [5]. The main idea

of the method is to facilitate the gradient optimisation by adding identity skip

connections. Figure 2.1 depicts the basic building block of a residual network.

By stacking these residual units into very deep networks (¿1000 layers deep) the

state-of-the-art performance in image classification, object detection have been

achieved [5].

For very large number of classes tree based hierarchical classifiers have been used

[52, 53]. The tree is built by putting more general classes a level higher than more

specific classes, for example Siberian husky, Labrador retriever etc. all belong to

the parent class Dog. This way semantic information on classes can be preserved

[54]. A method to learn classes and hierarchies automatically was proposed by [55]

by grouping similar classes according to similarities and the network self-organises

them. In [56] the CNNs are itself made hierarchical. That way the initial CNNs

can learn to generalise among the broad categorical classes while the downstream

CNNs specialises on the fine grained subcategories. Figure 2.2 depicts this process.
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With the recent advent of specialised datasets for Dogs [57], Cars [58], Flowers [59],

Birds [60, 61]etc. fine grained subcategory classification has grown in importance.

Branson et al. [62] have also cast the CNN in a deformable part model framework

where different parts of the objects are fed through the network to extract features

and then are aggregated. In a similar vein Zhang et al. [63] proposed a part-based

R-CNN object part detection and grouping. Like the original R-CNN approach

selective search [64] is used to generate the part proposals.

2.2.2 Object Pose estimation

It should be noted that object classification and pose estimation are orthogonal

problems. In this context orthogonal means that the optimisation targets are not

compatible. This is due to the fact that a generic detector tries to optimise for pose

invariance while the pose classification requires that information to be present in

the final layers. In object recognition, ability to recognize an object irrespective

of pose or view point is considered a virtue of the classifier. Hence the deep neural

network features for object detection or recognition are invariant to pose. Pose also

poses a challenging problem because the pose space is continuous. For that reason

in tasks like head pose estimation the pose angle is binned into coarse classes [10].

Similarly features for a human body detector and pose estimator are orthogonal.

Hence joint optimisation using multi-task learning makes the problem space grow

linearly with every additional task. However, since CNNs have very high capacity,

these problems have been successfully addressed for example in DeepPose [65]

which attains state-of-the-art performance in articulated human pose datasets like

FLIC [66] and LSP [67] and significantly outperformed previous state-of-the-art

methods based on deformable part models that built a graphical model of parts

[68–70].

It has also been shown that although the pooling layers promote, translational

invariance in the features, fully convolutional neural networks retain position in-

formation in the features. Tompson et al. [71] and Chen et al. [72, 73] exploited

this to learn the heatmap of body part priors and used a probabilistic graphi-

cal model to group them into grop them into individuals. This is a bottom up

approach compared to the top down approach of detecting humans and then clas-

sifying poses.
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Figure 2.3: The Flowing ConvNet architecture used in [74] uses the optical
flow and temporal information to stabilise pose estimation (Adapted from [74]).

Pfister et al. in [74] exploited the temporal information in videos to propose the

state of the art method for pose estimation in videos. They warped the output of

the pose model based on temporal optical flow estimation. This introduces a form

of smoothing that stabilises the pose estimation. Figure 2.3 depicts the method

described in [74].

2.2.3 Object Detection

Object detection can be seen as generalisation of object recognition. This due to

the fact that object detection can be seen as densely applying object classification

neural network across all the image pixels followed by non-maximal suppression.

However in practice this can be very expensive computationally to be practical.

The first pioneering architecture that used CNNs for object detection came from

Girshick et al. [75] which used selective search and object proposals to reduce the

number of boxes to apply the CNN to. The final features of those boxes were then

classified by SVMs and the fine grained bounding boxes were also predicted. In

practice this achieved the state-of-the-art performance while reducing compute by

a factor of 103. However it was still very compute intensive as the costly neural

network had to be applied to a couple of thousand objects predicted by the object

proposal algorithm. The biggest flaw was, the object proposal algorithm in the

front was decoupled from the neural network. Hence any error of the algorithm

was propagated down the computational chain.
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To overcome these problems, a Region of Interest (ROI ) pooling layer was pro-

posed and inserted between the convolutional layers and fully connected (fc) lay-

ers [76–78]. Around this time fully convolutional architectures were becoming

the norm in object recognition like Residual Nets (ResNets) [5] and GoogLeNets

[33, 79]. This, we argue is at odds with the objectives of object detection.

These networks by design (deep and convolutional) promote translation invari-

ance through successive convolution and pooling operations that is very much

desirable for object recognition. However, in turn this leads to the later convo-

lutional layers being less sensitive to the position of the objects. On one hand it

might seem prudent to use these networks and apply them fully convolutionally

to a large image produce an object based classification heatmap. However this

proved to be empirically inferior. Hence in [5] ROI-Pooling layers are inserted

between two convolutional layers to break the translation invariance at the cost of

more computation.

To solve these problems, methods that embedded the object proposal as a separate

but connected CNN branch in the pipeline like the Faster-RCNN architecture [78]

was proposed. This enables the two networks to be jointly optimised. This RPN

network is trained to class agnostic.

2.2.3.1 Head Detection

Human head detection when compared to face detection, is often a less studied

subject in literature. In the modern deep learning framework that requires a con-

siderable volume of training data, has two main methods that have been proposed.

Head detection is challenging because, unlike face, heads have a larger degree of

variation in appearance and occlusion like hairstyles, head wear etc. The first

approach modifies the R-CNN approach with graphical models to jointly detect

heads based on their relation to the scene [3]. This approach inherently learns the

appearance models of heads and their relations to each other in a scene explicitly.

They introduce a large scale Hollywood heads dataset. However, we argue that

this assumption is only valid for structured scenes like movies where actors have

their spatial relations defined within constraints. This is not applicable to large

in the wild crowded scenes like shopping malls, or airports.

Another class of detector called the reinspect was proposed in [80] which uses a

fully convolutional neural network to encode an image into a feature volume. The
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Figure 2.4: The Reinspect architecture where a CNN-LSTM architecture is
used for human head detection (Adapted from [80]).

last stage is a Long-Short-Term Memory (LSTM ) based recurrent neural network

that decoded the feature volume into detections. The proposed Hungarian loss

function promoted the decoding to happen in the order of confidence where the

most prominent objects were detected first followed by the less prominent ones in

order of confidence. Figure 2.4 shows the proposed architecture.

However since the LSTMs are like fully connected layers, this constrains the net-

work to fixed sized inputs and the performance drops when other images are

warped to fit the input size due to distortion in aspect ratio and scale. Hence this

architecture is not widely applicable. Furthermore the architecture is capable of

detecting only one class. Like we have discussed, detection and pose classifica-

tion can often be orthogonal. Hence we need to treat end-to-end detection and

pose estimation as a multi class detection and classification problem limiting the

applicability.

2.2.4 Object Tracking

Object tracking has important role in computer vision applications. Tracking al-

lows for incorporating temporal information which often leads to disambiguation.

However object tracking and data association is reliant on the robustness of rep-

resentation. Hence instances of intra class objects like multiple pedestrians, need

to have discriminative representation which then must also be discriminative for

inter class variation.



Chapter 2. Related Work 16

Figure 2.5: The CNN features from VGG16 architecture.(a) Shows the input
image, (b) Conv 3 features show intra class seperation, (c) Conv 5 features show
inter class (category) separation. (Adapted from [81]).

In [82], CNNs features pretrained on imagenet are used for object tracking. The

initial detection feature is taken as ground-truth and a heuristic schema is used to

update the ground truth object appearance models.

Wag et al. [81] propose a multiobject tracker based on the hypothesis that different

levels of CNNs have different discriminatory power. For example higher levels have

categorical information like object class (pedestrian, bike, plane etc.), but lower

level features provide more discrimination among the objects of the same class.

Figure 2.5 show that this hypothesis has merit. However, we must note that, in

environments like stadiums, where a lot of people only vary subtly in appearance,

this may lead to mis-association errors unless we adapt the appearance model on

the fly. Also as appearance changes, domain adaptation becomes a necessity.

Another method proposed by Li et al. [83] introduces a target-specific CNN for

object tracking, where the CNN is adapted to the target with online training.

They maintain pool of CNNs where each CNN maintains a specific set of kernels

that are updated online instantiated by the initial CNN feature. They use rel-

ative low number of filters in the CNN that are updated in the online temporal

adaptation.Given the next image, the highest scoring CNN in the pool are used to

evaluate the hypothesises and the rest of the models are trained with warm-start

back propagation. This approach, though highly adaptable, is very compute in-

tensive. Also it does not explore the design space of the networks itself, and given

the high complexity, it is not easy to intuitively see what the optimal architectures

might be.

Pedestrian Tracking
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In pedestrian tracking, typical motion can be learnt by using flow vectors and

clustering but often requires a strong assumption that motion patterns are stable

[84–87]. Persistent changes can be incorporated over time but ad-hoc trajectories

are still typically seen as outliers [88, 89]. The resulting models cannot accurately

reflect pedestrian response to spatio-temporal context which could cause track-

ing failure and data-association errors, particularly if occlusions occur (Fig. 5.2).

In such cases an intentional prior (feature) that can predict an ad-hoc change in

trajectory is appealing. This theory also generalises to other intentional features:

consider a car approaching a crossroads and the indicator light signals intention

to turn; contextual knowledge enables better predictions. Several authors have

incorporated the concept of ‘personal space’ and collision avoidance into pedes-

trian tracking [90, 91]. Others have incorporated the idea that socially grouped

pedestrians will attempt to stay in close proximity [92, 93]. Both concepts repre-

sent different intentional priors. We propose that head pose as a prior is helpful in

predicting model update. This is due to the fact that people tend to look where

they are going before deviating from trajectory. No prior work has explored head

pose as a prior for tracking.

2.2.5 Semantic Segmentation

Semantic segmentation or scene labelling can be viewed as per pixel classification.

CNNs, like most other vision problems, have been applied successfully to seman-

tic segmentation as well. Farabet et al. [94] first applied CNNs to scene labeling

tasks. They input image patches at multiple scales into their ConvNet and show

that this approach achieves much better perfromance compared to hand crafted

features.The same approach has also been applied to RGB-D semantic segmenta-

tion [95].

In [42] an imagenet pretrained CNN model was converted to fully convolutional

neural network by changing the fully connected layers to 1 × 1 convolutions. Fi-

nally a learnable de-convolutional layer was added to upsample to low resolution

32 stride segmentation map to the input dimensions. To increase the resolution,

the authors added jets of information from lower layers thus increasing the spa-

tial resolution to 8 pixel stride. This approach produced then state-of-the-art

results, but introduced new parameters. The resulting segmentations were not

very smooth as it did not enforce any spatial smoothness prior.
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Figure 2.6: Illustration of the comparative outputs of the semantic segmen-
tation algorithms on the Pascal VOC dataset(Adapted from [97]).

This was addressed by [96] by introducing densely connected conditional random

fields (DCRF ) to filter the final output. This model achieved a much better

segmentation result. However the spatial prior introduced by the DCRF was

separate from the CNN and were learned separately while also introducing another

parameter as to how many iterations of the DCRF is performed.

This was solved by Zheng et al. in [97] by mathematically casting the DCRF infer-

ence as an Recurrent Neural Network layer. This allowed for gradient computation

and end to end learning of both the CNN and DCRF leading to better performance.

Figure 2.6 shows the comparative outputs of the methods on the PASCAL VOC

dataset.

Most work since have improved upon these ideas by introducing deeper CNNs like

ResNet [5]. Also weak labels like bounding box have been exploited in [98] to

increase the amount to training data or conversely reduce the annotation require-

ment by applying a virtuous cycle of weak labels segmentation to form the ground

truth for the next iteration. However we note that none of the works address spare

point based labels as is common for many expert annotated datasets.
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2.3 Discussion

We have identified that there is a gap in the landmark free head-pose estimation

research. We aim to contribute a solution when it comes to unconstrained head-

pose estimation in mid-low resolution. Briefly, we proceed by evaluating current

techniques and augmenting them. Then we also deep learning framework for uni-

fied head pose estimation in RGB and/or RGB-D data that spans from high to

very low resolutions; we also propose an end-to-end state of the art system that

does both detection and pose estimation. We have also found a gap in existing

datasets. We solve that by creating a public headpose dataset that fills the ma-

jor void in head pose research datasets by offering in one unified set, desirable

properties in terms of modalities (RGB and Depth), constraints (all poses, not

only frontal), quality (accurately labelled for regression) and at the same time one

that spans from close to long range resulting in high to low quality data respec-

tively. We also propose to model human gaze and its spatial uncertainty from

head-pose as a spherical Von-Misses Fisher distribution on a spherical manifold

in R3 to define person-person and person-scene interaction metrics and evaluating

them on comprehensive open datasets. Finally we also apply the robust headpose

estimation to address the gap of behavioural tracking with a new tracker called

Intentional Kalman Filter.
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Feature Design Based Approaches

to Head-Pose Estimation

In this chapter we perform experiments to design features discriminative for

headpose estimation in RGB-D data. We evaluate various classification and

regression techniques like Support Vector Machines and Gaussian Process

Regression. We propose a novel depth normal based feature called Histogram

of Depth Surface Curvatures (HDSC). We also evaluate the relative merits of

the features and their ideal fusion. We perform temporal smoothing via Par-

ticle Filtering. We also establish state-of-the-art results sans deep learning

techniques which we investigate in the next chapter.

20
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In domains where close level iris/eye tracking is not possible, human head pose is

the most important factor in determining focus of attention. Head pose estimation

has been studied in two distinct domains namely, visual surveillance [4, 99–101]

and Human Computer Interactions(HCI) [1, 27, 102] with different methodologies

due to difference in the quality of the input. In the surveillance domain the nature

of the problem allows the exploitation of priors like walking direction and crowd

based behavioural priors to augment the low resolution visual features; while in

the close range domain of human computer interaction, more fine grained feature

extraction/ Facial Landmark detection approaches can be employed for better

accuracy. However in HCI domain the problem has been formulated with natural

user interaction in mind, i.e. , the user is always facing(near frontal) the sensor

and is fairly close by (not more than 1-2 meters). So the facial landmark based

techniques typical of HCI are not applicable to unconstrained head pose estimation

at a distance. Furthermore in most indoor interaction scenarios, the subjects are

static and there can be a lot of occlusions. Hence the priors like motion direction,

body direction etc that are more easily exploitable in a surveillance scenario may

not be applicable. Our focus in this chapter is to introduce a system that addresses

these issues by estimating unconstrained head-pose in a static scenario even when

the subjects are more than four meters away from the camera.

The pioneering work on low resolution head pose estimation was proposed by

Robertson and Reid [9] which used a detector based on template training to clas-

sify head poses in 8 directional bins. This approach is heavily reliant on skin

colour detection. Subsequently this template based technique was extended to a

colour invariant technique by Benfold et al. [4]. They proposed a randomized fern

classifier for hair face segmentation for the template matching. This work was

later improved upon by Siriteerakul et al. in [20] using pair-wise local intensity

and colour differences. However like all template based techniques in head pose

estimation, these suffer from two major problems: first, it is non-trivial to localize

the head in low resolution images; second, different poses of the same person may

appear more similar compared to same head pose of different persons.

This has led to the proposals of representing head images in a different feature

space that has more discriminatory property for head pose independent of persons.

Few non-linear regression approaches like Artificial Neural Networks [103, 104] and

High-dimensional manifold based approaches [105, 106] try to estimate the head

poses in a continuous range. Chen and Odobez [11] proposed the state-of-the-art
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method for unconstrained coupled head pose and body pose estimation in surveil-

lance videos. They used multi-level HOG for the head and body pose features and

extracted a feature vector for adaptive classification using high dimensional kernel

space methods. These techniques are quite general and don’t depend on the heads

being in near frontal poses unlike the HCI techniques. Nevertheless high degree

of error or uncertainties that arise from these methods, render them unsuitable

for tasks like fine grained human interaction or attention modelling. On the other

hand, the HCI side of the problem formulation is limited to 2m distance from

the sensor along with near-frontal headposes.In [102] an Iterative closest point

(ICP) based mesh fitting approach is employed for Head pose detection. In [27]

the candidate head poses are rendered and matched to the input depth image and

the 6 DOF pose is solved by optimizing via Particle Swarm Optimisation. Fanelli

et al.[1] used a randomized patch based decision forest regression for head pose

regression. Work on head pose regression for scene and human interaction under-

standing has been presented in [107]. This work focuses on head-pose regression

and interaction detection in 2D movie/ tv-series scenes. While it is quite robust,

this only works with yaw angles of ±90◦. However this method is quite generalized

and does not depend on other priors or specific facial landmark detections.

We have identified that there is a gap in landmark free head-pose estimation re-

search when it comes to unconstrained head-pose estimation in mid-low resolution

which we plan to address in this chapter.

The scientific contributions of this chapter are as follows

(a) Definition of a discriminative depth feature called Histogram of Depth Surface

Curvature (HDSC) on noisy depth data based on second-order implicit filtering

[108]

(b) Detection of unconstrained head-pose azimuthal and pitch angles on a contin-

uous manifold without any other priors.

(c) Definition and validation of a domain specific Gaussian Process Regressor

(GPR) [109] covariance function to fit the problem domain , and

(d) Adaptation of particle filtering scheme for temporal smoothing that takes into

account regressor confidence to smooth the temporally evolving distribution.
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Figure 3.1: The headpose images from (a) [110] in RGB, and (b) Our RGB-D
dataset.

3.1 Datasets

In this section we briefly discuss the datasets used in our work. We have collected

many publicly available datasets for standard comparison. However, we have also

built our own custom RGB-D dataset to address the shortfall of RGB-D headpose

estimation datasets.
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3.1.1 Head Pose Datasets

In standard literature, headpose has has been evaluated mainly on coarse bins due

to low resolution datasets in surveillance domain. Whereas, close proximity HCI

style data only contain face poses. The only dataset that has a continuous angular

annotation is the Oxford Town Centre dataset [10]. However this dataset is quite

small with only a few hundred annotations. Similarly the Caviar shopping centre

dataset also has headpose annotation a limited number of videos. To maximise the

training corpus, we gathered data from multiple sources that had similar under-

lying distributions. Datasets annotated for unconstrained face recognition, facial

landmark detection all have facial data under various poses. The different head

pose datasets that we used are the Oxford town centre dataset, the RGB data

from Biwi Kinect headpose dataset [111], the Caviar shopping centre dataset, the

IIT Head Orientation dataset along with the IDIAP headpose dataset [110] as

shown in Figure 3.1(a) . It should be highlighted that the different datasets have

different annotations; some of them have real valued ground truths, others have

6-8 classes spanning the 360◦. The datasets vary in resolution from very high in

the BIWI dataset to very low in the Oxford town centre dataset. Furthermore

no one dataset covers both RGB and Depth along with distance and non frontal

poses. Hence we created our own dataset to address these shortcomings.

3.2 Creation of Custom RGB-D Dataset

To overcome the lack of large scale data with high quality annotation, we gathered

our own dataset. The objectives for gathering the data were as follows

(a) The data should be large scale for training deep neural networks.

(b) The data should have both RGB and Depth modalities.

(c) The data should span from very high to very low resolution.

(d) The data should capture annotations at a granularity of 1 degree or less to

evaluate against regression approaches.

(e) Should cover all angles and not only frontal poses.

To this end our own dataset captured 46 people (32 males, 14 females) freely

moving in-front of a RGB-D Kinect 2 camera with a miniature wireless IMU

sensor hidden inside their hair for head pose ground truth. Each person covered
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all possible head pose angles in a continuous manifold at a distance varying from

2m-8m from the camera. We gathered approximately 1500 frames per person

giving a total of 68126 examples. The dataset was then manually cleaned for

errors and stored as point cloud files. The IMU sensor was calibrated for each

person by asking them to look straight towards a point and then setting it as the

0 angle in both yaw and pitch. In Figure 3.1(b) we show a few examples from our

dataset. Notice, the data has a very high variation in pose and also resolution.

Since we do not annotate gaze directions or facial landmarks, we collected further

statistics about the fidelity of the headpose angle vs. where the person is looking

by asking all the participants to sit 2 meters from a wall with markers that were

highlighted randomly and the person pressed a button when they saw the marker

that was annotated. The participants were asked to look around naturally and

not forcefully rotate their heads. We calculated the angle of the accurate headpose

annotation of the IMU sensor vs. the actual angle on the wall. This gave us the

average deviation of minimum irreducible error of headpose based gaze estimation

when we do not track the eye. That error turned out to be around 12.3◦.

3.3 Design of Head Pose Features in RGB and

Depth

We extract features from both RGB and depth modalities because they often

provide complementary information. Figure 3.2 shows the extracted features.

3.3.1 Histogram of Oriented Gradients (HOG)

The current state of the art result in Head and Body pose estimation at-a-distance

was presented in [11]. Their main feature was HOG [25] on the detected humans

and heads. Similarly in [107] the HOG feature was again used as an input to the

GPR. Hence for the RGB data we retain the standard HOG feature extraction.

The input 64 × 64 RGB head image generates a HOG feature vector of length

1764. Figure 3.2 (b)(i) plots an example of the HOG feature over the head.
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Figure 3.2: Here we visualize the various features extracted.Each column
shows a different head pose and each row shows a different feature for the corre-
sponding head pose. The heatmap legends have been provided where necessary.
(a) This row shows the input Image in RGB (b) This row visualizes the HOG
feature through the HOGgles visualizer [112] (c) This row shows the surface
normal azimuthal angle as a heat map (d) This row shows the surface normal
elevation angle as a heat map (e) The ratio Γ as defined in Equation 3.5 is
shown in this row as a heatmap

Figure 3.3: Here we show the GPR approach for headpose regression. (a)
Input modalities, (b)The extracted features i. HOG, ii. HDSC , and (c) Re-
gression and tracking

3.3.2 Histogram of Depth Surface Curvatures (HDSC)

Another feature which is very informative in depth data is the mapped surface

normals of the point clouds. This feature has been very useful object recogni-

tion [113]. Apart from surface normals, surface curvatures also encode surface

orientation and curvature information. Hence these can be very powerful features

in depth maps. Hence we have used the curvatures metric and surface normal
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directions to compute a novel feature called the Histogram of Depth Surface Cur-

vatures. (HDSC). To compute the curvature in the organized point cloud field

defined by Z(X, Y ), which is the value of the depth at depth map co-ordinate

X, Y , we used the following equations

−−−→
NXi,Yj =

−−−→
∂XZij ×

−−−→
∂YZij∥∥∥−−−→∂XZij ×
−−−→
∂YZij

∥∥∥ (3.1)

where
−−−→
NXi,Yj is the normalized normal vector at Xi, Yj, Zij which in turn are the

real world coordinate at depth image point Ui, Vjand
−−−→
∂XZij is the X derivative and

−−−→
∂YZijthe Y derivative at point Xi, Yj.

Once we have computed the normals it is easy to compute the curvature tensor by

defining the first and second fundamental forms of the local surface patch. Since

we are dealing with an 2D organised point cloud, the fundamental forms can be

defined in a straightforward manner using the first and second derivatives in the

depth image coordinates u,v. We are dealing with data from Kinect like sensors,

which present the depth data like a 2D image. As defined above, the depth map is

defined over a 2D image grid. Each pixel in this grid has a depth value (Z), a real

world X coordinate (X), and a real world Y coordinate (Y) in meters. This form

of a point-cloud is called an organised point cloud. We index the depth map grid

with the variables u, v to distinguish between real world coordinates and image

coordinates. The first and second fundamental forms are computed as follows

E = ∂uZij · ∂uZij, F = ∂uZij · ∂vZij, G = ∂vZij · ∂vZij, (3.2)

Aij = −∂uNij · ∂uZij B1ij = −∂uNij · ∂vZij
B2ij = −∂vNij · ∂uZij Cij = −∂vNij · ∂vZij

(3.3)

where ∂u and ∂v are discrete partial derivatives with respect to the depth map

grid.This leads to the definition of the Weingarten curvature tensor W as follows

(for notational simplicity we make the subscript i, and j implicit)

W =


AG−B1F
EG−F 2

B2G−CF
EG−F 2

B1E−AF
EG−F 2

CE−B2F
EG−F 2

 (3.4)
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The eigenvectors of W, w1 =
[
w11 w12

]T
, and w2 =

[
w21 w22

]T
give the

principal curvature directions and the corresponding eigenvalues κ1, κ2 are the

scalar principal curvature values.

To accumulate the HDSC feature we first compute the following metrics

Γ =
κ1κ2

1
2

(κ1 + κ2)
, ψ = arctan

(
Nz

Nx

)
, χ = arctan

(
Ny

Nz

)
(3.5)

where Γ is the ratio between gaussian curvature κ1κ2 and average curvature
1
2

(κ1 + κ2) , Nx, Ny, Nz are the components of the Normal vector, ψ is the Az-

imuthal direction of the normal and χ is the elevation direction of the Normal.

In case of some anisotropic patches containing saddle points where κ1 ≈ −κ2 we

set Γ = −1 . We intuitively define Γ to have a positive value at extremums and

negative values at saddle points. This definition is more suitable as it implicitly

encodes the various facial keypoints. From the aforementioned definitions we can

now compute the HDSC feature in local non-overlapping 8× 8 cells. This is done

in a similar way to the original HOG feature [25].We compute two histograms

one for ψand χ each. The angles are binned into 9 bin histograms spanning from

0◦-180◦. For the bin value contribution we use the Γ. Each neighbouring point

contributes to the histograms using a bilinear-interpolation. It can be noted that

since depth data is illumination independent, we do not perform any overlapping

block normalization. It is noteworthy that the values of the histogram bins can

be negative since Γ can be negative. Since in surface maxima and minimas Γ is

always positive and at other points it may be negative or positive, we observe that

the parameter Γ captures a lot more important information about the surface than

the mean-square curvature. Hence the choice of the magnitude metric Γ is well

justified. Furthermore, we note that our HDSC feature encoding is based upon

both curvature Γ and normal directions ψ, χ. This definition captures both curva-

ture and normal information into the feature vector, making it more informative

than either one on their own.

We have broken down the visualisation of the features to aid human interpretation.

In 3.2 (b) the Histogram of Oriented Gradients feature is visualized with the

HOGgles tool [112] that tries to reconstruct the information captured by HOG. The

HDSC(azimuth) and the HDSC(elevation) features are visualised by visualising

the surface normal azimuthal and elevation angles in 3.2(c) and (d) respectively.
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Figure 3.4: (a) The Radial Basis Function Kernel is defined in Linear space us-
ing Euclidean distance (b) The Zonal Kernel is defined on a Wrapped Spherical
Hyper-surface using geodesic distance

Finally the Γ is visualized in 3.2 (e). We have ignored the negative values to

increase the dynamic range of the heat-map visualisation.

The final two feature vectors are created by combining the HOG+HDSC(azimuth)

and HOG+HDSC(elevation) as shown in Figure 3.3. These final feature vectors

are then used to train two Gaussian process regressors[109].

3.4 Gaussian Process Regression for Headpose

Estimation

To transform the feature vectors into headpose angles on a continuous manifold

we use Gaussian Process Regression(GPR) [109]. The choice of gaussian process

regression over Support Vector Regression or other regression techniques is mainly

due to two reasons. Firstly, GPRs are less dependent on parameter selection

and generalize very well; so GPRs can be trained more easily compared to other

techniques. Secondly, GPRs inherently model output variance. This value is very

useful in determining the uncertainty spread due to regressor confidence.
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Gaussian processes [109] are defined as probability distribution over infinite di-

mensional function space that maps the input to output X → Y using f (X).

Using this viewpoint any dataset can be assumed to be a part of a single obser-

vation from multivariate distribution. A gaussian process is much less parametric

than other supervised learning methods. It is defined fully by a mean function,

a covariance function and a prior likelihood function. In practice the mean is

often assumed to be zero everywhere. The covariance function k(X,X ′) on the

other hand change the distribution on the function space. Hence by changing the

nature of the covariance function we can sample different parts of the function

space. Here domain knowledge about the problem comes in handy while choosing

the functional form of the covariance function. For the pitch angle which has a

linear range of −45◦ → 90◦ in out data, we use a standard radial basis function

(RBF) kernel where euclidean distance would suffice.

k(xm, xn) = σ2
fexp

(
−γ

2
(xm − xn)T (xm − xn)

)
+

σ2
nδ(xm, xn) (3.6)

where σ2
n is the noise variance and σ2

f is the maximum allowed variance. δ is the

Kronecker delta function. Γ is the hyper-parameter to be optimized. Figure 3.4

(a) shows the RBF kernel. In case of the yaw angle, it varies in a wrapped circle.

Hence, the standard kernels with linear distance metrics are not good models for

this. Hence we need to define the kernel as geodesic distance on the curve of a

unit sphere in R3. Such kernels are called zonal kernels [114] and are different

from the RBF kernels which depend upon euclidean distance instead of geodesic

distance on the feature space manifold. The zonal kernel can be adapted for the

Gaussian process regression as follows

k( ~xm, ~xn) = σ2
fexp (−2ε (1− ~xm. ~xn)) + σ2

nδ( ~xm, ~xn) (3.7)

where ε is the shape hyper-parameter. Figure 3.4 (a) shows the Zonal kernel.

3.5 Particle Filtering

Now we introduce a modified particle filtering technique to smooth the observa-

tions temporally. Particle filters can be used to compute the posterior probability
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of a distribution from a sequence of observations with the Markov process assump-

tion. Let the target state of the system be described by the variable ξt at time t

and λt is the corresponding observation at time t, then we can define the posterior

probability as

P (ξt | λt) ∝ P (λt | ξt)P (ξt | λt−1) (3.8)

where P (λt | ξt) is the likelihood and P (ξt | λt−1) is the prior probability at time

t. It may be noted that out observation λ corresponds to the regressor outputs

and our prior is defined by our attention metric probability characterized by µ and

η. In the particle filtering framework the probability distribution is sampled by a

set of hypothesis or samples
{
s1t , s

2
t , ...s

N
t

}
. Each hypothesis have a corresponding

set of weights
{

Π1
t ,Π

2
t , ...Π

N
t

}
that are determined by hypothesis evaluation which

is the likelihood of the hypothesis given the observation. After that the particle

filtering consists of three steps that are repeated for each observation cycle

1. Sampling : Select samples
{
s
′1
t−1, s

′2
t−1, ...s

′N
t−1
}

in proportion to weight{
Π1
t−1,Π

2
t−1, ...Π

N
t−1
}

corresponding to sample
{
s1t−1, s

2
t−1, ...s

N
t−1
}

.

2. Propagation : Propagate samples
{
s1t−1, s

2
t−1, ...s

N
t−1
}

with state transition

probability P (ξt | ξt−1)and generate new samples
{
s1t , s

2
t , ...s

N
t

}
.

3. Weight Computation : Compute the new weights ΠN
t ≈ P (λt | ξt) corre-

sponding to samples
{
s1t , s

2
t , ...s

N
t

}
4. Repeat 1-3 for each time step

To adapt to our specific problem we define the state transition probability P (ξt | ξt−1)

is defined as follows

P (ξt | ξt−1) =
1√
2π

exp
(
− arccos

(
µT
t−1µt

))
(3.9)

where µt is the output angle of the GPR at time t. Hence the transition probability

is the difference between the two angles at time t and time t-1. The likelihood

P (λt | ξt) = L is estimated from the regressor output posterior distribution over

output µ from the training data as follows

L =

∫
µ′

p (λ | µ′) p (µ′ | I) p (µ′) dµ′ (3.10)
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where p (λ | µ′) is the distribution of regressor outputting λ given ground truth

angle µ′, p (µ′ | I) is the probabilty of the GP output of µ′ given the image I , and

p (µ′) is the prior distribution of the training ground truth data.

Figure 3.5: (a) Shows the comparative results of [1] and our method without
particle filtering on the Biwi Kinect Headpose data. We report the Mean-Error
instead of the mean-squared error(MSE) on this data because the same metric
was used in [1]. (b) Shows the mean squared errors of the four techniques. We
compare the result of the yaw MSE with the head poses limited to ±90◦; then
we compare the yaw angle MSE on the full dataset; finally we compare the pitch
angle MSE
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3.6 Training and Validation

We validated our method on the BIWI Dataset and our own custom dataset. For

training the GPR we split our dataset 50:50. We randomly chose half the samples

for training. We extracted the features from these samples and trained the GPR

for yaw and pitch angles. We kept the training data fixed for all experiments.

Here we present the validation of our technique on two datasets.

3.7 Validation on Biwi Dataset [1]

We validated our approach on the Biwi Kinect dataset. The data here is captured

very close to the sensor and does not contain back poses. This data lets us compare

our general technique to a finer grained HCI technique as presented in [1]. Since

the dataset is not always continuous we did not apply the particle filter. Hence the

comparison is between their trained random forest and our per frame GPR. This

dataset is for validation of our method only since it resides in a completely different

domain and we wanted to compare our performance at close range on just near-

frontal poses. Figure 3.5 (a) Shows the corresponding results. Here we use mean

angular error as measure since the same metric was used in [1]. Next we compare

on accuracy by computing the percentage of test data that had an angular error

less than 10◦ on both yaw and pitch. In this metric we achieved 87.35% accuracy

compared to 90.4% reported in [1]. This shows that our generalized low resolution

technique is only slightly worse than more granular techniques in high resolution

data even without our temporal smoothing.

3.8 Validation on Our Dataset

Now we report the results on our dataset. Our two baseline methods are the

Here’s Looking at You Kid (HLYK henceforth) [107] which uses only the RGB

data and the Random forest (RF henceforth) based approach [1] which uses only

the depth+normal data. From our method we show two results, one sans particle

filtering, and finally one with our full method. In unconstrained cases where RF

[1] does not detect a nose, we output both pitch and yaw as 0 to compare with



Chapter 3. Classical Feature Based Approaches 34

Figure 3.6: (a)Plot of the Unconstrained Yaw angle MSE for the different
methods with respect to the distance from the sensor, and (b) Plot of the
Unconstrained Pitch angle MSE for the different methods with respect to the
distance from the sensor

Figure 3.7: In this figure we show the output of our system (a) with or (b)
without the particle filter. It should be noted that the temporal smoothing
provided by the particle filter smooths out the rogue estimation errors due to
sensor noise.

the ground truth. This leads to higher error bias for their method hence we have

also included the ±90◦ Figure 3.5 (b) shows the results.

Finally in 3.6 (a) and (b) we show the yaw angle and pith angle Mean Square

Errors with respect to the distance of the person from the sensor, respectively.

Figure 3.7 illustrates our method under various circumstances.
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Figure 3.8: Probability distribution of Output classes for each type of feature.

3.9 Quantitative Analysis of Features

We evaluate the quality of the features with respect to the head angle using a

visualisation technique as shown in Figure 3.8. We compare the various features

and feature combinations by computing their biases in the 8 headpose bins as

shown in Figure 3.2. We first discreetise the ground truth angle and the predicted

angle into 45◦ bins. Then we compute the following metric for each feature in each

bin

p (OCn) =
∑
i

p (OCn|Ci)× p (Ci) (3.11)

Where,p (OCn) is the total probability the classifier outputs class Cn, p (OCn|Ci)
is the conditional probability that the classifier outputs class Cn while the input

originally belongs to class Ci and p (Ci) is the probability of the class Ci. In our

case where each of the class is represented equally in the test dataset, p (Ci) is

uniform and equal to 0.25. Figure 3.8 shows the probabilistic representational

bias of the features for each image class. It is very interesting that the features

don’t represent information about the classes uniformly. While we see that all

the features don’t express various poses equally well, we see that our combined

HOG+HDSC feature has the least bias.
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3.10 Discussion

In this section we proposed a novel feature based method for headpose estimation.

We also proposed a novel covariance function for the gaussian process and we

established the state of the art results on two datasets. However as seen from

Figure 3.8 we see that the features have inherent biases. It is suggested that more

training data is captured to account for the variations. However, since gaussian

processes are inherently sensitive to the number of training samples, because the

size of the covariance matrix is based on the number of training samples, and each

prediction requires inverting this matrix an operation that costs O (n3), it soon

becomes computationally expensive to introduce more training data to account for

more variance in the data. Hence, to make the features more robust by assimilating

more training data, we propose to move to deep neural network based approaches

that have become very popular recently. In the next chapter we approach the

problem with deep learning techniques.



Chapter 4

Deep Learning Approaches to

Head Pose Estimation

In this chapter we investigate stronger machine learning and deep learning

based methods for the human headpose estimation problem. Previous results

show that better features are required for representing human headpose. Al-

though, competitive results were achieved through smoothing, we hypothesize

that, the smoothed headpose signal loses information content compared to raw

head pose signal and is less useful as a result. To this end, we first build a gen-

erative model based representation (based on Deep Belief Network or DBN)

and then build a convolutional neural network (CNN) based representation

that provide state-of-the-art results on both surveillance RGB and low Reso-

lution RGB-D based datasets. Finally we propose an end to end detection and

classification architecture for head detection and headpose estimation with a

novel multi-task loss. We show that the end-to-end solution improves the

accuracy of headpose estimation while maintaining competitive performance

in head detection. The studies in this chapter have been published in the fol-

lowing: in International Conference on Image Processing(ICIP) 2015 [18];

in IEEE Transactions on Multimedia (TMM) 2015 [16]

37
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Figure 4.1: The headpose class bins as depicted are used in this chapter.

In this chapter, we approach the problem from a deep learning perspective. We

first develop a generative semi-supervised approach where we can combine multiple

annotated and non-annotated datasets to learn a classification model in Section

4.1. Then we apply CNNs for classification and regression in Section 4.2. Finally

we propose a novel DFCNN architecture for end-to-end detection and pose esti-

mation in 4.3. We keep the section self-contained and do the evaluation of each

section in that section itself. This is due to the fact that the three approaches

solve different problems on different subsets of data. Hence, it is logical to have

the experiments and validations contained in the section as well. These three sec-

tion form the overarching investigation using deep learning methods. We present

state-of-the art results in all sections.

4.1 A Generative Model

This chapter addresses the need for computing low-resolution gaze estimators with-

out reliance on motion priors to smooth the estimate and presents a demonstrably

more robust method using deep learning based generative model. In summary,

the main scientific contributions of this section are:

(a) Learning a generative human head model in an abstract head space that can

reconstruct heads from low resolution, noisy inputs; (b) Discriminating between

head pose angles from the input image without other prior information using multi

label discriminative training using various loss functions; (c) We report state-of-the

art results on two publicly available datasets when compared to the state-of-the-

art approaches. Figure 4.1 illustrates the pose classes for classification on the low

resolution surveillance data.
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Figure 4.2: Conceptual diagram showing different parameters controlling the
appearance of the head

4.1.1 Parametric Human Head Space

The underlying motivation of this work comes from the theory that human heads

lie in a parametric space. This was first shown to be working by Blanz et al. [115]

where they derived the basis of this space by a linear combination of shape and

texture information of high resolution 3d head scans of 200 adult faces. Hence

by using 400 shape and texture parameters they derived a morphable model that

could be used to synthesize new faces or estimate a model from 2D images of a

given face. However, the human head space is much more complicated because

aside from low resolution, surveillance data contains other complicating factors

such as varying hair styles, facial hair, and occlusions (e.g. hats, glasses). This

requires a much larger parameter space. However, for headpose, which is a very

big factor in appearance (and hence has a big eigenvalue in the pca subspace),

fewer parameters are needed. This can be understood from the fact that, same

person is different poses have a bigger absolute difference in image space compared

to disparate people at same angle. Figure 4.2 shows how a parametric head-space

can generate various human heads with different identity, expression and pose.

The head pose datasets are limited in the number of examples per person and

image quality. Hence, we consolidated many different datasets not necessarily

ground truthed for head pose into an unsupervised framework in a generative

model. Deep Belief Networks [36] are very well suited for this purpose.
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Figure 4.3: Here we show the hierarchical DBN architecture which creates
a 400 dimensional head representation that is then discriminativly trained on
various datasets based with varying ground truths ranging from basic front/back
classification to full real valued angle regression with interchangeable softmax
and L2 loss functions

4.1.2 Deep Belief Networks (DBN)

A DBN is constructed from unsupervised, greedily trained stacks of restricted

boltzmann machines (RBMs). RBMs are a form of energy based generative model

in which the energy functions can be written as follows:

E (v, h) = −b′v − c′h− h′Wv (4.1)

Where b,c and W are the parameters θ and v and h are the visible and hidden units

of the model. The model is trained with contrastive divergence that estimates the

gradients of the energy function with respect to the model parameters given the

training data X.

∂E (X, θ)

∂θ
=
∂ log Z (θ)

∂θ
−
〈
∂ log f (x, θ)

∂θ

〉
(4.2)

where Z (θ) is the partition function defined as
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Figure 4.4: Visualisation of the RBM weights. Each RBM unit connects to the
entire visible input. The weigths are reshaped into visible layer sized squares.

Z (θ) =

∫
f (x, θ) dx (4.3)

Where f (x, θ) is the underlying distribution we are trying to model. It is not easy

to find the derivative of the partition function because we do not know the un-

derlying representation. It can be suitably derived by using Markov Chain Monte

Carlo sampling from the training data and given sufficient examples it should con-

verge to the real derivative, however, this is not computationally tractable. The

parameter update equation derived from just one step of Markov Chain Monte

Carlo sampling from the training data has empirically proven to be effective by

Hinton et al [36]. It can be written as:
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Figure 4.5: What the network sees. This figure shows a reconstruction of
the input image in top row with their reconstruction from network parameters
in the last layer in the bottom row. Sub-figure (a) on the left suggests that
for head pose the eye and mouth region is very important whereas facial hair,
hairstyle and facial expressions are attenuated. The network has learned to
handle occlusions and shift. Sub-figure (b) on the right shows some interesting
errors made by the network. Under extreme low resolution or noisy input on the
left the network sees a face where none exist. On the right the face is eliminated.
However even in these extreme low resolution cases the network can estimate
parameters.

θt+1 = θt+1 + η

(〈
∂ log f (x, θ)

∂θ

〉
X0

−
〈
∂ log f (x, θ)

∂θ

〉
X1

)
(4.4)

Where η is the training rate. The layers of RBMs are trained in an unsupervised

fashion layer by layer to form a Deep Belief Network. Conceptually, by changing

the number of neurons in each subsequent hidden layer the representation of the

underlying data can be learned in a hierarchical fashion. Figure 4.3 shows the

architecture used for our system. We use only two layer because more layers

degraded performance with the amount of data present for training. Figure 4.4

shows the learned weights from the first RBM layer.

4.1.3 Experiments and Validation

We use multiple datasets to train our system and we validate our approach on two

publicly available datasets. Furthermore, for regularisation of the network in the

unsupervised phase we included the Multi-task Facial Landmark Dataset (MTFL)

[117] and the Labelled Faces in the Wild [118] datasets as they have a wide range

of poses, but these are not labelled for head pose. For the unsupervised training



Chapter 4. Deep Learning Approaches 43

Figure 4.6: This graph compares our algorithm in terms of MSE with the
Benfold [116] and Cheng algorithm [11]

we use all the available datasets without any labels. For the final fine tuning using

labelled data, we randomly selected 50% of the data from our dataset.

4.1.4 Training

The network used two RBMs stacked to form a DBN as shown in Figure 4.3. The

final output layer was interchanged for various head-pose datasets depending on

their ground truth. We normalized all the head images to 32× 32 for input to the

network. We also scaled the head bounding box to 0.8, 1, 1.5, 1.8, 2.0, and 2.5

scaled crops to achieve some scale invariance. To achieve translation invariance

we also used scale 1 crops with strides of (3,3) pixels from the 1.5-2.5 scaled crops.

The network was trained with 30% dropout and a decaying learning rate. For

validation on the Caviar and the Oxford datasets we use a training-testing split of

70%-30%. Figure 4.5 shows the reconstructions of the image from the parameters

estimated by the networks top most layer by back projection into the image space.

This gives us a unique perspective into what the network actually found important

for the problem feature selection.
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Figure 4.7: The output of our method on the Oxford town centre database.
The head regions are zoomed in to show the headpose angles.

4.1.5 Results

We report our results on the Oxford and the Caviar datasets. In these datasets

we classify the head pose into 8 equally spaced (45◦) angular bins as shown in

Figure 4.1. For comparison with [11] and Benfold [116] we use the Oxford dataset

in which both have reported results. One consideration has to be made while

comparing because [11] reported the mean square error (MSE) which they derived

from a weighted combination of their 8 class classifier output multiplied with the

bin angles as
∑8

i=1 pi
−→ηθi where pi is the classifier output value for the class i and

−→ηθi is the unit vector in that angular direction. Since our softmax layer gives

probability, it is unclear how to interpret vector addition weighted by probability.

But for the sake of comparison we derive our mean squared error (MSE) in the

same way. Figure 4.6 shows the comparison between our method with the previous

state of the art results. In terms of MSE we outperform the best results by

1.8◦. The margin while comprehensive may not be representative of the true

picture. We therefore present the confusion matrices on the Oxford and Caviar

datasets. In terms of classification accuracy on the Caviar dataset we achieve

76.38% accuracy on the Caviar dataset. To our knowledge it is the best result on
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Figure 4.8: Confusion matrices showing the output of (a) The Benfold algo-
rithm [4] on the Oxford town center dataset, (b) Our DBN approach on the
Oxford town center dataset, (c) Our DBN output on the Caviar dataset.

this dataset. Figure 4.7 shows the output of the DBN on the Oxford data. On the

Oxford dataset, for comparison, we also show the output confusion matrix of the

Benfold algorithm [4] along with our confusion matrix. Apart from the fact that

we outperform the Benfold algorithm by a large margin, it is interesting to note

that the Benfold algorithm shows some interesting biases connected to walking

direction. The confusion matrix shows a large classifier bias in the C2 and C6

pose classes, which, as can be seen from Figure 4.1, coincides with the direction

of the road. As most people are going up or down the road and generally looking

where they are going (as can be seen from Figure 5.1) the algorithm seems to have

learned this bias in the scene.

We out perform both the previous state of the art methods without using any

kind of prior coupling as the confusion matrices in Figure 4.8 show very clearly.

For completeness we show the MSE in Figure 4.6, as this metric is used in the

papers against which we compare. The difference in MSE is not as dramatic as

the confusion matrices shown suggests but nevertheless demonstrates a significant

improvement. One feedforward pass through our DBN on a GPU for headpose

estimation on a single 32×32 image takes 0.8 milliseconds. This makes our system

real-time and it can be scale up massively but still maintain real-time performance.
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Figure 4.9: The input modalities. (a) Shows the RGB input. (b) (c) and
(d) Show the Depth, surface normal elevation angle and the surface normal
azimuthal angle respectively that form the three channels of the DAE encoding

4.2 Convolutional Neural Network for RGB-D

In this section we develop a Multi-Modal Convolutional deep Neural Network

based headpose estimation method that works across RGB and depth modalities

as well as spans the gamut of low resolution surveillance to high resolution human

computer interaction (HCI) domains.

4.2.1 Deep learning and Convolutional Neural Networks

(CNN)

In this section we do not concern ourselves with the problem of detecting heads.

Instead we can adapt the output of any head detector and normalize the heads to

256× 256 as input to our algorithm. Once we have the normalized RGB-D heads

as input the rest of the process can be briefly summarized as follows. First, if

available, we encode the depth image using a scheme that we name DAE encoding

which encodes the depth modality with three channels of depth, surface normal
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Figure 4.10: A visualisation of the first level of learned filters on both the
RGB network and the depth network

azimuthal and surface normal elevation angle as shown in Fig. 4.9 and is similar to

HHA of [41]. We do not encode the preferred gravity direction in DAE like HHA

as all our heads are upright. These inputs are then used to train a CNN each for

RGB and DAE and we call them RGB CNN and Depth CNN respectively. The

combination of the posteriors of the two CNNs are called the RGB-D CNN.

Convolutional neural networks belong to a class of fully supervised deep models

that have proven to be very successful in a wide variety of tasks. The power of

CNNs lie in the ability to learn multiple levels of non linear transforms on the input

data using labelled examples through gradient descent based optimizations. The

basic building blocks of CNNs are fully parametrized (trainable) convolution filter

banks that convolve the input to produce feature maps, non-linearities (like sig-

moid or Rectified Linear Units/ReLU), pooling layers/downsampling layers (e.g.

max pooling, mean pooling etc.) that downsample the feature maps, and fully

connected layers. CNNs in particular through their multiple levels of convolution

and pooling achieve a high degree of translation invariance in their features. Re-

cent studies from Simonyan and Zisserman [48] have shown that deeper models

with smaller filters achieve great expressive power in terms of learning powerful

features from data in tasks like object recognition on large scale datasets like the

Imagenet [119]. As the model go deeper the number of weights/ parameters or the
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networks grow significantly. It then becomes imperative to use large scale labelled

training data to train these networks. However one should note that the number of

parameters in the convolution layers are orders of magnitude lower than the fully

connected layer [120]. Hence by having more convolution layers helps alleviate

the problem of this parameter explosion while retaining the expressive properties

on the deep models. One such model is the recently introduced Googlenet model

[38]. We train two CNNs on the RGB and depth modalities based on this ar-

chitecture [38]. This architecture has the state-of-the-art results on the Imagenet

dataset [119]. In our experiment the same network also gave the best results on

our task. The advantage of this network lies in that it is very deep but has a lot

less parameters (around 5 million) compared to other contemporary networks like

the VGG-16 [48] which has more than 130 million parameters. This lets us train

the networks using considerably less training data. We modified the network by

changing the Rectified Linear Unit non-linearities (RELU) with Parametric Recti-

fied Linear Unit (PRELU) and their corresponding weight initialisation introduced

in [121].

The non-linearities are defined as follows

RELU (x) =

x if x > 0

0 if x ≤ 0
(4.5)

PRELU(x) =

x if x > 0

mx if x ≤ 0
(4.6)

where m, the slope in the negative x is a learned free parameter.

The reason the PRELU activations are better than their RELU counterpart lies in

the fact that PRELU activations have non zero outputs and non zero gradients in

the negative values. This makes them easier to propagate gradients from. Whereas

in case of RELU, if some neuron’s output becomes less than equal to zero, its

gradients also vanish and it hampers learning through gradient descent. The

motivation for doing it is that this small change, without increasing the number

of parameters of the network significantly improves the accuracy (see [121]).

We also exploit the ability of CNNs to learn from multiple types of labels for

the same kind of underlying data to achieve a valid representation learnt on the
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Figure 4.11: A visualisation of the features extracted after the first level of
convolution. We show only the first 36 channels out of the 64 channels. It
is easy to see that some filters are bringing out the facial landmarks (top red
where they are detected and bottom red where they are not) whereas others
have learned skin maps (indicated in green) among other real facial features.

data. Since there are few explicit head-pose regression datasets, we initialize the

training of models with classification into 8 head pose classes spanning 360 degrees.

The representative head-pose classes are shown in Fig. 4.12. We learn an initial

representation that is then transferred to the regression network and fine tuned for

regression. Fig. 4.12 also shows how the CNN features separate easily in only two

dimensions whereas the HOG feature that is used in other techniques including
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Figure 4.12: The Linear Discriminant Analysis (LDA) projected scatter plot
of the clusters of the head pose classes after initial training for classification.
We compare it with the HOG feature [25] which is most common in the com-
parable literature. Not only are our clusters well separated, they maintain the
approximate closed topology of the circular head-pose manifold. The clusters
have their mean near the pose class angles and spread around the circumference
of the manifold. This validates our choice of transferring this network to the
regression task

[11, 28, 122] is nowhere near as effective. It can also be seen from Fig. 4.10 and

4.11 that the network learns filters, some which could have been developed by

intuition, where as other features are not as intuitive but effective nonetheless. It

is interesting to note that the feature space embedding presented in Figure 4.12

shows that the CNN learns the implicit circular geometry of the view manifold

from the data itself. This is in contrast to [30] where this shape is imposed as a

prior assumption. However due to imaging noises and low resolution they might

not lie in an ideal circle. Besides, ideal circular distribution may or may not be

ideal for a classifier as can be seen from Fig. 4.14. Hence, it is our belief that an end

to end approach without prior assumption leads to better results for classification.

For regression we expect to see a similar distribution that is more evenly spread out

on the manifold instead of forming clusters. Figure 4.13 shows the output scatter

plot of the first two LDA components of our fine-tuned features on regression on

our dataset.
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Figure 4.13: Linear Discriminant Analysis (LDA) projected scatter plot of
regression features on our dataset with a colour map that spans the range 0-360
degrees. The features maintain the manifold.

The regression output is then combined heuristically to obtain a probabilistic at-

tention distribution which we parametrise as a Von-Misses Fisher distribution.

This distribution captures two important properties of the head pose regressor

output. First, it inherently models the regressor output confidence directly into

the distribution concentration parameter η; second, it also models the inherent

irreducible uncertainty in every gaze tracking technique where eye balls are not

tracked. We have performed experiments to determine the mean discrepancy be-

tween eye and head-pose to model this phenomenon.

We now discuss each of these steps in detail in the subsections that follow.

4.2.2 DAE depth encoding

For depth data it is important to encode some spatial and surface information

into the data itself, as shown by Gupta et al. [41]. We follow a similar approach
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Figure 4.14: Linear Discriminant Analysis (LDA) projected scatter plot of the
regression features on the BIWI dataset [1]. This shows the headpose regression
features thinly form around the frontal pose manifold. This dataset is relatively
easy as it is very high resolution and contains only frontal/near-frontal head
poses.

however we do not encode the inferred gravity (vertical) direction, because in

our case the heads are always upright and this parameter would yield no more

information. We do however encode the surface normal azimuthal angle and the

surface normal elevation angle along with the depth data to form three channels

as can be seen in Fig. 4.9.

Surface normals have proved to be a very useful feature for object recognition

[113]. We compute the surface normals via:

−−−→
NXi,Yj =

−−−→
∂XZij ×

−−−→
∂YZij∥∥∥−−−→∂XZij ×
−−−→
∂YZij

∥∥∥ (4.7)

where
−−−→
NXi,Yj is the normalized normal vector at Xi, Yj, Zij which in turn are the

real world coordinate at depth image point Ui, Vjand
−−−→
∂XZij is the X derivative

and
−−−→
∂YZijthe Y derivative at point Xi, Yj. To compute the derivatives we use

implicit filtering techniques as described in [108, 123]. Implicit filtering techniques

are much more accurate than the standard morphological derivative as can be seen

in Fig. 4.15. Implicit filtering also involves larger neighbourhoods for computing

more accurate gradients. Considering all these benefits we chose to use the one
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Figure 4.15: The benefit of implicit differentiation is shown in this graph. It
can be seen that the frequency response of the implicit Lele’s and Fourier-Pade-
Gelerkin schemes [108] better approximate the original derivative compared to
the explicit second order central difference scheme.

parameter family of implicit differentiation with the frequency domain transfer

function defined as the following spatial domain equation:

βf ′i−2 + αf ′i−1 + f ′i + αf ′i+1 + βf ′i+2 =

c
fi+3 − fi−3

6h
+ b

fi+2 − fi−2
4h

+ a
fi+1 − fi−1

2h
(4.8)

where f ′iand fi are the x derivative and the function value respectively at x = i .

and its corresponding frequency domain counterpart is defined as follows

H (ω) = j
a× sin ω + (b/2)× sin 2ω + (c/3)× sin 3ω

1 + 2α cosω + 2β cos 2ω
(4.9)

where α, β, a, b, c are user chosen parameters.

The y derivative can be computed similarly. There are many standard parameter

choices for a,b,c, α, and β. Here we use the Lele coefficient values [108].
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4.2.3 Fine-tuning for regression

The classification network is turned into a regression network by replacing the last

Softmax layer with an Euclidian loss layer that measures the L2 distance of the

prediction from the target. To activate the fine-tuning on regression on the head-

pose data the following must be considered. The regression problem is ill-posed

for the linear Euclidean manifold where we compute the regression L2 loss. This

is because the normalized regression label goes from 0 to 1 where 0 is the back

of the head to 0.5 that is for front facing to 1 (360 degree) that is again back of

the head. Now the distance between the angle 0.1 and 0.9 should be 0.2 on the

circular manifold. In the stated example the heads look very similar, however the

loss function penalizes the network by having an error of 0.98, hence the gradients

for weight update are large and these force large changes. Ideally the loss function

would be defined as:

L =

1
2
(t− o)2 if t− o < 0.5

1
2
((1− (t− o))2 if t− o > 0.5

(4.10)

where t is the target angle and o is the output of the network. However this

function is not everywhere differentiable (with a discontinuity at t− o = 0.5). In

order to perform gradient descent the loss must be differentiable w.r.t the weights.

To overcome this issue, instead of using the angles for regression, we use the X,Y

coordinate of the unit vector pointing in that angle, the problem can be posed

on the linear Euclidean manifold again. So instead of a single number we have a

pair. For both Yaw and Pitch this same technique can be easily extended to use

the X,Y and Z coordinates of the head pose vector in 3-D. The network fine-tuned

for regression should have features that are thinly spread along the manifold. We

see this expected result in Fig. 4.14 where we plot the features projected to two

dimensions using Linear Discriminant Analysis (LDA) on the Biwi dataset[1] . We

also plot the same using our dataset in Fig. 4.13.

4.2.4 Fusion of RGB and Depth modalities

Whenever available, both RGB and depth give complementary information that

can be combined to achieve an overall information gain. Apart from that depth

information can further be exploited to compute the scene interaction/ attention
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Figure 4.16: The quality of depth data degrades rapidly while RGB stays
much more reliable with distance

metric in 3D that maps the head pose based attention to the 3D environment.

Hence whenever possible, we average the class posterior scores from both the

RGB and depth classifiers. However we note that depth information quality is

highly dependent on distance from the sensor. Also from our experiments we have

found out that the back of the head depth images are extremely noisy.

Figure 4.16 shows the reliability of the RGB vs Depth information as a function

of distance from the sensor (in this work we used both the Kinect and Kinect v2

sensors). We compute the confidence of the RGB and Depth information from

the relative error with respect to ground truth. From our experiments we have

seen that unless the distance of the detected head is taken into account, depth

information is not very reliable after 3.5 metres as far as headpose is concerned.

Hence if depth data is available and the detected head is less than 3.5m distant,

we average the output of the RGB and Depth models. Otherwise we only use the

RGB information (e.g. in the surveillance domain). As can be seen from Fig. 4.17,

depth information also degrades rapidly for non frontal poses but is very useful

close HCI domain data.
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Figure 4.17: LDA scatter of depth information shows that it is not very
reliable for back of the head poses. This is in line with our expectation as hair
does not reflect the depth sensor Infrared illuminant very well and this often
results in very noisy and sparse data. However the depth information is quite
good for the frontal poses

4.2.5 Regression confidence estimate

We determine the regression confidence by combining the regression angle output

on the yaw angle with the classifier posterior on the angles. For this we train a

Softmax classifier with a granularity of 1 degree (360 classes) on top of the final

regression network while keeping the rest of the network weights constant. This

enables the computation of the variance of the posterior to estimate the confidence

of the regression. Fig. 4.18 shows the output of the classifier posterior along with

regression.

4.2.6 Experimental setup

We train one network for RGB and Depth each. This is done to unify the problem

of both HCI and surveillance domains. Typically, one might adapt the networks

for each domain, however from our initial experiments we found that including

both high and low resolution imagery in the training set improved classification



Chapter 4. Deep Learning Approaches 57

Figure 4.18: To estimate the confidence of the regression to model into the
Attention metric we use the same network to get a posterior distribution on
the 360 degrees. We show the regression output, the ground truth and the
probability distributions

performance on the low resolution inference while the high resolution inference

results were more or less the same. The convergence rate during training was

faster as well. We think this is because the high resolution images help the network

estimate the underlying model better and that translates into better parameter

estimation for low resolution and/or noisy images. For training and validation

we split our dataset in a ratio of 70:30 randomly across several trial runs and

averaged the mean squared error. For training we used a dropout rate of 20%

on before every fully connected layer. We jittered the input images by mirroring

them (with corresponding change in groundtruth) scaling the bounding box and

cropping them with scales 0.75, 0.9, 1.5, 1.8, 2.0, and 2.5. For all scales greater

than 1, we also translated the images randomly by 20% in both directions. This

was done to improve scale invariance along with mitigating the effects of poorly-

aligned or partially-occluded head detections. We used a modified version of the

deep learning framework Caffe [124] to train our network. We translated the

centroid of each head to (0, 0, 0) in 3D Euclidean space and uniformly re-sampled

the point cloud to an organized 256 × 256 set. For re-sampling we used bi-cubic
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interpolation for the RGB values and nearest neighbour interpolation for the XYZ

values. To obtain the mean inherent variance due to eye balls (the true focus

of attention is somewhat independent of head pose), we set up an experiment

with where we tracked the difference between the absolute head-pose (using the

IMU) and the focus of attention of the eye using the Gazepoint eye tracker, which

has a resolution of 0.5◦ degrees at upto 30 cm distance. We computed the mean

variance for 11 people. This provides us with an interesting insight to the problem.

In conclusion, head-pose error less the mean error of 12.35◦ does not make any

sense for the application of true visual attention estimation without tracking the

additional dimensional freedom provided by the eyeballs. In order to gain a good

understanding of human attention model without eyeball tracking, further studies

into human gaze pattern with respect to scene saliency and semantic contextual

information would be needed.

We selectively fused the RGB and Depth modalities based on availability and qual-

ity of the depth data as shown in Fig. 4.16. We only fuse the depth classification

if the detected head is less than 3.5 metres in distance, otherwise the reliability

of the depth data falls off rapidly as can be seen directly from the lower curve in

Fig. 4.16.

For all the experiments we trained both our RGB and Depth CNN by randomly

selecting 70% of the samples from our own dataset. This was due to the fact that

deep CNNs require significantly more training data than traditional approaches.

However, by fixing the training data, we get unbiased results for all the other

datasets in validation. Unlike the other methods that partition the same data for

training and validation, our approach shows the generalisation of our technique to

unseen datasets.

Here we present the comprehensive validation of our technique on both HCI and

surveillance domains.

4.2.7 Validation on BIWI Kinect Headpose Dataset [1]

The data in this dataset has been captured very close to the sensor and does

not contain non-frontal poses. Here the output of our RGB and Depth models

are averaged to get the result. This data lets us compare our general technique

to a finer grained HCI technique as presented in [1]. The comparative results
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Figure 4.19: Comparison of our method on the BIWI dataset with respect to
the random forest (RF) algorithm [1]. Our RGB+Depth CNNs (both RELU
and PRELU) outperform the HCI technique without explicitly tracking facial
landmarks. Here in this range we see the tangible benefit of having depth
information along with RGB data.

are shown in Fig. 4.19. We use mean angular error as the metric which is the

same used in comparable literature [1]. In both pitch and yaw we outperform the

best method [1], which has the advantage of explicit landmark detection, by 7%.

It should be noted that while we do not detect landmarks explicitly, from Fig.

4.11, it is clear that the CNN has now learned landmark detection automatically.

However as can be seen from Fig. 4.11 the network detects landmarks whenever

necessary implicitly along with other non obvious features. We also see that depth

information actually improves the results in this range when combined with RGB.

4.2.8 Validation on our dataset

One weakness of the BIWI dataset is that it does not contain non frontal or

distant head-pose data. To overcome this, and to show the power of our technique

we report the results obtained on our dataset which is far more challenging. Our

two baseline methods are the “Here’s Looking at You Kid” (HLYK) [28] which uses

only the RGB data and the Random forest (RF henceforth) based approach [1]

which uses only the depth and normal data. We outperform both the techniques
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Figure 4.20: The mean squared errors (MSE) of the RF [1] and HLYK [28]
techniques compared to ours on our dataset

by a significant margin as shown in Fig. 4.20. We reduce the relative error by

40% to that of our closest competing technique [28].

4.2.9 Validation on low-resolution surveillance dataset

For the low resolution surveillance domain dataset, we report our results on the

Oxford and the Caviar datasets. In these datasets we classify the head pose into

8 equally spaced (45◦) angular bins as shown in Fig. 4.12. For comparison with

[11] and Benfold [116] we use the Oxford dataset in which both have reported

results. One consideration has to be made while comparing because [11] reported

the mean square error (MSE) which they derived from a weighted combination of

their 8 class classifier output multiplied with the bin angles as
∑8

i=1 pi
−→ηθi where pi

is the classifier output value for the class i and −→ηθi is the unit vector in that angular

direction. Fig. 4.21 shows the comparison between our method with the previous

state-of-the-art results. In terms of MSE we have achieved the best published

results. The margin alone does not give the true picture of performance. We

therefore present the confusion matrices on the Oxford and Caviar datasets, as

shown in Fig. 4.22.

On the Oxford dataset, for comparison, we also show the output confusion matrix

of the Benfold algorithm [10] along with our confusion matrix as shown in Fig.

4.22.
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Figure 4.21: Mean squared error on the Oxford dataset. Here we compare
our regression output with the Benfold [116] and the Chen [11] techniques

Figure 4.22: Confusion matrix comparing the methods the results. (a) Oxford
data benfold algorithm [116], (b) Oxford data, Our RGB CNN, (c) Caviar data
our RGB CNN. On both the datasets we have by far the state-of-the-art results

Table 4.1: Results on the Multi-PIE dataset

Method Mean Angular Error in ◦

LDQP[32] 7.3
circ23D[30] 5.8
Our RELU 4.56

Our PRELU 4.2

4.2.10 Validation on Multi-PIE dataset [2]

The Multi-PIE dataset consists of 337 subjects, under 15 view angles and 19

illumination conditions. This is a close range high resolution RGB dataset. We

compare our method against two state-of-the-art techniques on this dataset 1.

LDQP [32] and 2. circle23Sphere [30]. As shown in Table 4.1 we outperform both
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Figure 4.23: Qualitative output of our headpose estimation system on various
datasets. (a) Caviar dataset, (b) Oxford Dataset, (c) Our RGB dataset, (d) Our
low resolution RGB-D dataset.

competing techniques [32] and [30] in terms of Mean Angular Error(MAE) by a

significant margin without any training on this dataset.

4.2.11 Comparison between PRELU and RELU

In all our experiments PRELU activation outperformed RELU consistently. As can

be seen from Figure 4.21, in case of low resolution surveillance domain dataset [5]

, we gain > 1◦ improvement in angular error by using PRELU. On our challenging

RGB-D dataset the effect is even more pronounced with an improvement of around

2.9◦ as seen in Figure 4.20. Results on the CMU Multi-PIE dataset as reported in

Table I suggests that PRELU provides an additional reduction in MAE of 0.36◦.

Finally in Figure 4.19, on the Biwi dataset where error rates are already pretty

low, we get less improvement ( 0.2◦), but consistent improvement nonetheless by

using PRELU over RELU.
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4.3 End-To-End Head Detection and Headpose

Estimation

In this section we propose a Fully Convolutional Neural Network (FCNN) based

approach for end-to-end head detection and pose estimation called Detection Fully

Convolutional Neural Network (DFCNN). Traditionally, CNN based detectors like

Deformable Part Models [125], R-CNN [75], Faster RCNN [78], YOLO [126] learn

to be invriant to pose and other geometric transformations of an object. Hence the

features from the detector, is not informative for pose. On the other hand, clas-

sification networks when applied in a fully convolutional fashion, like the FCN-8s

[42] retains for localisation and classification properties. However, these semantic

segmentation networks can not delineate between instances of the same object.

To overcome these drawbacks, we propose a new fully convolutional architecture

that excels at both the tasks. As an added benefit, the network shares the whole

computation on an image thus making it a lot more efficient compared to the de-

tections networks like R-CNN [75], and Faster RCNN [78].

We also introduce a new loss function called the Adaptive Localizing Infogain

Cross Entropy (ALICE) loss to convert the detection and pose classification to a

dense classification problem with weak labels (normally only the head bounding

boxes are labelled instead of of the segmented head and its pose class). We report

near state-of-the-art result for detection on the Hollywood dataset[3] and state-

of-the-art result on the Oxford Town Centre Dataset [4] dataset. We also achieve

state-of-the-art result in head pose classification.

4.3.1 DFCNN Architecture

We adapt the VGG-16 architecture [127] which has been succesfully used for both

detection[75] and dense semantic classification[42]. We apply the a trous trick

to the last 3 convolution layers, that uses dialated convolutions to increase the

resolution of the features that are downsampled in max-pooling layers. This has

been shown to improve sptial localisation performance [96]. We first train a 8 class

model that spans the 360◦ and a background class (for non head patches sampled

arbitrarily from the Hollywood heads dataset). We also add a a 4 real number

regression layer to predict the corners of the head bounding box in the patch in
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normalised coordinates. We then convert the last 3 fully connected layers into

convolution layers [42]. This helps us apply the neural network to arbitrary sized

image in a dense fashion. This produces a 13 channel output map. NC + 1 + 4

channels, where NC is the number of headpose classes, in our case 8, 1 for the

background class, and the 4 channels for the distance to the closest corresponding

corner to the bounding box.

4.3.2 DFCNN forward-backward propagation, and infer-

ence

The DFCNN architecture can be described in three parts.

• Encoder frontend. This fully convolutional network with the converted inner

product layers, converts an input image of dimensions W ×H × 3 to W/32×
H/32 × 512, where W and H are the width and height of the input image,

3 is the number of channels for the the input RGB image, and 512 is the

number of feature channels at the end. This part maps the image into a

feature cube that is a compact but discriminative representation of the image.

There are 5 non overlapping max-pooling layers with size 2. Hence the input

gets downsampled by a factor of 32.

• Upsampling. This part maps theW/32×H/32×512 feature volume back to the

image dimensions with a deconvolution layer. The number of deconvolution

filters is equal to C+1+4. This is for the C classes, which for our case is 8, 1

background class, and 4 channels for the bounding box. The output of each

of the channel classes is a per pixel probability map of the pixel belonging

to that class. The 4 channels for the bounding box is the pixel map for the

distance to the nearest bounding box coreners for all the four corners of a

rectangle.

• Slice and Inference. This is the final part of the network that slices the pre-

vious W × H × (C + 1 + 4) volume into two semantically different volumes

of W ×H × (C + 1) for the class map and W ×H × 4 for the bounding box

map. In the training phase the classmap is trained with the ALICE loss and

the bounding box map is trained with the L1 loss. The gradients of these loss

are equally added and backpropagated through the network.

During inference a standard pretrained region proposal network is appended
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Figure 4.24: Architecture for training the DFCNN. The network is pretrained
on pose classifications and then converted to a FCNN. Then a final convolution
layer is added to add the bounding box output map pose classification map.
The two tasks are trained in parallel with a joint multi-task loss.

after the encoder stage, in parallel to the Upsampling and Slice and Inference

stages. This region proposal network (RPN) produces class agnostic bounding

boxes. For each of the bounding boxes we average the class probability repre-

sented within the bounding box. The maximum of the averages of the classes

is selected as the class. For regions with no heads the average is the backgroud

class. For the other remaining bounding boxes, we use the 4 channels of the

bounding box map to average the distance to each of the closest 4 vertices

inside the predicted boxs from the RPN network. We then correct the RPN

box proposal with the average distance from the box maps. Finally we do

a non maximal suppression of the overlapping boxes with Intersection-over-

Union (IoU) ratio greater than 0.4. This produces a list of boxes for human

heads along with their headpose classes

4.3.3 Training

During training we slice the classification and regression layers feed them into

two loss functions. For the classification we use the ALICE loss as described in

section 4.3.5. To generate the training data for the ALICE loss we compute the

distance transform inside each bounding box from the centre of the box to weight

the strength of the loss strength. This means that when the ALICE loss is eval-

uated densely within the bounding box region, the class of the headpose within
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Figure 4.25: Architecture for prediction using the trained DFCNN. The out-
put maps and the region proposal network outputs are combined using maximal
intersection and non maximal suppression to get final bounding boxes. For each
bounding box, the dense pose class is average pooled within the region to get
the pose.

that bounding box is evaluated with all the pixels within that box. We observe

that heads are circular in appearance, hence, the loss strength is maximum at the

centre and isotropically drops off as it goes towards the edge. We control the loss

strength further with the help of the γ and τ parameters as decribed in section

4.3.5.

For the bounding box regression we use the L1 loss defined as

E = |x− xp| (4.11)

Where x is the ground truth distance of the corresponding corner of the bounding

box from the pixel being evaluated and xp is the predicted output. We normalize

the coordinates to the image size so that the values lie within 0− 1 range. Figure

4.24 shows the training procedure and architecture.
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4.3.4 Prediction

Once the neural network is trained, we use it along with a pretrained region pro-

posal network from [78]. This predicts possible object locations.

For each predicted bounding box we average the bounding box distance map val-

ues to get the average predicted bounding box within that location which we call

maximal intersection. Finally we apply non maximal suppression to obtain the

final head bounding boxes. For predicting the headpose within the bounding box

we use a region based average pooling to get average headpose enclosed by that

bounding box. Figure 4.25 shows the prediction architecture.

We bring to attention two factors here. One, by eliminating the need to run the

bounding box features through the last fully connected layers repeatedly like in

[78] we gain a massive computational advantage that is proportional to the number

of bounding bxes predicted by the region proposal network. Second, by averaging

the headpose prediction within the bounding box, the architecture should be more

robust to context and occlusions.

4.3.5 Adaptive Localizing Infogain Cross-Entropy Loss (AL-

ICE)

We define the ALICE loss as the pixel weighted cross-entropy loss with class in-

formation gain as follows

L(l(n), p(n)) =
−1

N

∑
n

[
H−1∑
k=0

[
W−1∑
j=0

[
m∑
i

HlcSijkl
(n)
ijk log p

(n)
ijk

]]]
(4.12)

Where l(n), p(n) are the true label and predicted probability over labels respectively.

The loss is defined over the entire image with indices j, and k summing over the

image. To simplify the notation we henceforth drop the j, and k indices and define

the loss at every pixel as
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L(l(n), p(n)) =
−1

N

∑
n

m∑
i

HlcSil
(n)
i log p

(n)
i (4.13)

where n is the number of images in the training mini-batch. l
(n)
i is the true la-

bel, log p
(n)
i is the log probability of the output of the network. The Hlc is the

information gain term that is drawn from a matrix of size m×m that defines the

relative strength of the loss given class label l and class prediction c where m is the

number of classes. The term Si is the multiplier for the strengh of the loss given

the distance of the pixel from the closest ground truth label. The motivation for

the different terms are described next.

Adaptive. We initialize the H matrix according to the class imbalance present

in the dataset, but we do not fix the H matrix during training, instead we let the

solver optimize the H matrix as follows

Hlc = Hlc − η
∂L

∂Hlc

(4.14)

The intuition behind is that depending on the problem at hand, class imbalance

may not be the only determining factor for performance. Also this helps the back

headposes to be well separated in feature space. Hence, by letting the solver

optimize the H matrix as it goes along, it will be able to directly optimize the

confusion matrix to be diagonal, instead of optimizing for overall accuracy. The

only constraint we impose on the H matrix is that after each mini-batch update

we normalize it by dividing it by its determinant

H =
H

|H|
(4.15)

This ensures that the optimisation of the H does not produce unbouded resutls.

We also fix the learning rate η of the H matrix to 0.0000001.

Localizing.Since our ground truth is bounding box based we would normally

evaluate the ground truth inside the bounding box locations ignoring the rest.

However this introduces error between head and background/occlusion. Hence we

generate a pseudo label inside the bounding box by using distance transform [128]

from the centre of the box to the edge. The strength of the loss back propagated

is multiplied by the strength of this pseudo label. That is at the centre of the box,
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it takes propagates the loss with a multiplier of 1 and it falls off as we go towards

the edge of the box. This helps us give the classifier the context of the whole head

using a pseudo label. We control the strength of the pseudo label by using a γ

parameter defined as follows.

Si = AIγ (4.16)

where I is the distance transform based on the true class labels.

Iout =

Ig Ig ≥ τ

0 Ig < τ
(4.17)

where A is the gain parameter and is set to 1 for our cases. We vary the γ and τ and

find out optimal values for them through cross-validation during our experiments.

4.3.6 Training and Validation

Although, there are multiple datasets for face detection, the only publicly available

large scale dataset for head detection is the Hollywood Heads dataset [3]. However

it does not have headpose annotations. On the other hand the Oxford dataset [4]

has both head and headpose annotations, however it not large enough to train

a full CNN end to end. Hence we use our CNN model trained in section 4.2 to

assign a headpose class to every head in the Hollywood Heads dataset. We divide

it into 45 degree bins to keep the annotations accurate.

For pseudo label generation we found the best γ = 3.5 using a step of 0.5 from

1to5. We combined the datasets, for training and split them into 60 : 20 : 20 ratio

for training, validation and testing.

4.3.7 Results

In this section we validate our detection and heapose classification performance on

two publicly available datasets the Hollywood heads [3] and the Oxford datasets

[4]. For detection we also compare various other methods like DPM [125] RCNN
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Figure 4.26: Precision-Recall curves for various detectors on the Hollywood
Heads dataset [3]. We report the detectors DPM [125], RCNN [75], Contextual-
CNN [3] and Our Model. We also report the average precision in the brackets.
Here we see that our model achieves performance close to the state-of-the-art.

[75] and the Contextual-CNN [3]. For evaluating classification performance, we

report the confusion matrix and the overall accuracy. To compare the effect of

detectors we use the state-of-the-art Contextual-CNN [3] detector and our CNN

model Section4.2 for pose classification and compare it to our end-to-end solution.

4.3.8 Validation on the Hollywood Heads [3] Dataset

Detection performance. We first compare the detector performance on the

Hollywood heads dataset. We use the precision-recall curves as shown in Figure

4.26, to compare the various detectors. We also report the average precision metric.

Classification Performance. We compare the disjoint detector [3] , classifier

as in Section 4.2 called Disjoint approach to Our end-to-end approach using the

confusion matrices and the overall accuracy. Figure 4.27 shows the two confusion

matrices. In terms of overall accuracy, the Disjoint approach achieves 86.2% overall

accuracy whereas our end-to-end model achieves 91.1% overall accuracy.
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Figure 4.27: Confusion matrices on the Hollywood heads dataset [3]. (a)
Depicts the result of using the Context model for detection and our CNN from
Section 4.2 for classification. (b) Shows the end to end DFCNN approach. It is
easily seen that end to end training improves performance.

4.3.9 Validation on the Oxford [4] Dataset

Detection performance. We first compare the detector performance on the

Oxford dataset. We use the precision-recall curves as shown in Figure 4.28, to

compare the various detectors. We also report the average precision metric. The

heads in this dataset are a lot smaller in resolution and we achieve state-of-the-art

performance. We believe this is due to the better field-of-view of the DFCNN

model (which has a stride of 8)

Classification Performance.

We compare the disjoint detector [3] , classifier as in Section 4.2 called Disjoint

approach to Our end-to-end approach using the confusion matrices and the overall

accuracy. Figure 4.29 shows the two confusion matrices. In terms of overall

accuracy, the Disjoint approach achieves 89.5% overall accuracy whereas our end-

to-end model achieves 94.8% overall accuracy.

4.3.10 Qualitative Output

In Figure 4.30 we show the output of our end-to-end detection and headpose

estimation framework on frames from the Hollywood Heads dataset.
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Figure 4.28: Precision-Recall curves for various detectors on the Oxford
dataset [4]. We report the detectors DPM [125], RCNN [75], Contextual-CNN
[3] and Our Model. We also report the average precision in the brackets. Our
model achieves the state-of-the-art performance.

Figure 4.31 shows some of the errors of our end-to-end detection and headpose

estimation framework on frames from the Hollywood Heads dataset.

4.4 Discussion

The importance of head pose as a separate independent information source has

many applications. While coupling different priors like velocity and body direction

may be good for bringing down MSE in a dataset, it actually attenuates the pure

information content from the head pose. This has been apparent in an applica-

tion where a standard Kalman filter [129] has been adapted to perform intentional

tracking [8] which significantly improves upon the standard Kalman filter based

trackers. Baxter et al. empirically showed that using head pose as a separate

information source can be very useful, since many times detections are missed due

to occlusions and it generates sub optimal velocity estimates in the Kalman filter.

Moreover in case of these occlusions, neither the head-body coupling by Cheng

et al. nor the velocity coupling of Benfold et al. will be of any use. Keeping

these in mind and combined with the conjecture that people tend to look where

they want to go before changing course, this intentional tracker has significantly
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Figure 4.29: Confusion matrices on the Oxford dataset [10]. (a) Depicts the
result of using the Context model for detection and our CNN from Section 4.2
for classification. (b) Shows the end to end DFCNN approach. It is easily seen
that end to end training improves performance.

outperformed the standard Kalman filter based trackers. This uniquely shows the

usefulness of a high performing robust independent only-visual head pose esti-

mators like the one developed in this thesis. In the next chapter we show some

applications of robust headpose estimation in some real world problems.
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Figure 4.30: We show the output of our end-to-end detection and headpose
estimation framework on frames from the Hollywood Heads dataset.
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Figure 4.31: For completeness we show some of the errors of our end-to-end
detection and headpose estimation framework on frames from the Hollywood
Heads dataset. (a),(b) and (c) show misdetections that are drawn as red bound-
ing boxes on the left column. As can be seen this is due to most very challenging
lighting conditions. On the right column in (d),(e) and (f) we show bad head-
pose classifications which are mostly due to occlusion.



Chapter 5

Applications of Head Pose

Estimation

In this chapter we exploit the headpose as a signal for various applications.

We first show that robust headpose estimation that is uncoupled from other

prior informations like walking direction, body pose etc. can be used for

various applications. First we show that, using this headpose signal we can

improve the standard velocity model based Kalman Filter for tracking. This

is called the intentional tracker. Furthermore we show that, this headpose

signal can be used in social signal processing. We can detect human-human,

human-scene interactions. We also develop two state of the art probabilistic

metrics called the Attention and Interaction metrics for this purpose. We

also show qualitatively, that a temporal windowed cross correlation computed

between the headpose signals, give us an estimate of social mimicry that can

be combined in future with other factors like spatial position and interaction

metric to model human groups. The studies in this chapter have been pub-

lished in the following: in IEEE Signal Processing Letters 2015 [8]; in IEEE

Transactions on Multimedia (TMM) 2015 [16]; in VISAPP 2016 [17]

76
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Figure 5.1: (a) Head pose deviation from walking direction as a Probability
Density Function in various datasets [8] (b) The conceptual parametric human
head space

5.1 An Intentional Prior for Kalman Filter Based

Tracking

In visual surveillance the resolution of detected heads can be very small so head

pose is often estimated in coarse discrete directional bins of the azimuthal angle

[9]. See for example the eight classification bins used in this paper in Figure 4.12.

Walking direction is then often used as a smoothing prior [4], which reduces mean

squared error, but also attenuates the pure information content of the head pose

signal. As shown in Fig 5.1, an analysis of gazing behaviour in several datasets

demonstrates that most people look where they are going. However, the cases

that are of more interest are when people deviate from this behaviour (i.e. look

somewhere else), as this information could be useful for anomaly detection or

improving tracking [8].

As an example, in scenes where there are dynamic obstacles and occlusions like

parked vehicles and heave crowd occlusions, often times obstacle avoidance be-

haviour causes trajectory changes. Traditional techniques that learn a distribution

of motion flows often fail when the occlusions and obstacles are dynamic[84–87].

To overcome these drawbacks, and with the observation that people tend to look

where they are going before changing course, we formulate a novel headpose prior

for the Kalman Filter provides better results in these scenarios.
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Observed head-pose direction
Observed trajectory

Predicted trajectory (IT)

Occluded trajectory
Predicted trajectory (KF)

Occluded head-pose direction

Person detection

Figure 5.2: (Top) A real person trajectory/head pose behaviour and predicted
trajectory using a Kalman Filter (KF) and our intentional tracker (IT). Tracking
failures can lead to target data association errors. (Bottom) Frames from the
Benfold dataset [116] showing pedestrian head-pose.

We now show how to integrate head pose information into a tracker. Note that

although the algorithm is applied to pedestrian tracking our approach remains

generic and different intentional priors could be used (e.g. car indicator). As a

basis for our tracker we use the KF [129] due to its clear assumptions, wide spread

use and efficiency.

We do tracking by detection. The input to the tracker can be from any pedestrian

or head detection algorithm. For the head pose we use the Deep Belief network

and CNN outputs.

5.1.1 Kalman Filter preliminaries

For brevity we only highlight pertinent aspects of the KF (for a thorough intro-

duction see [130, 131]). The KF estimates the state x ∈ <n of a discrete-time

controlled process governed by the linear equation xt = Ftxt−1 + But−1 + wt−1

with measurements zt = Hxt + vt (where t indicate time).
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We represent the position and velocity of a target by the state vector xt =

[posx, posy, ẋ, ẏ]T , where ẋ and ẏ represent the target’s velocity with respect to

its position.

wt and vt are the process and measurement noise (respectively) and are assumed

to be independent and normally distributed with zero mean and covariance Qt and

Rt (respectively). Ft relates the state of the process at t− 1 to t, B is the process

control input model, ut−1 is the control vector (set to 1 in the experiments) and

H is the observation matrix:

H =

[
1 0 0 0

0 1 0 0

]
(5.1)

That is, we measure target position but not velocity, where a measurement zt

consists of the tuple [posx, posy]t and x0 is initialised as: x0 = (H × z0)T .

5.1.2 Integrating intentional priors

We fuse intentional priors into the KF, firstly, by calculating the strength of the

prior, denoted ŝt, using the absolute magnitude of the deviations for the last

10 time steps (arbitrarily chosen). This allows ŝt to combine both the magnitude

and persistence of the prior signal. Rather than using the raw angles, we eliminate

small fluctuations in deviation/detection inaccuracies by using a binning procedure

to partition the velocity and head pose into 8 bins (numerically numbered 1:8).

Each bin represents a 45◦ sector (see Fig. 4.1). This procedure allows a smoothed

estimate of the head-pose deviation signal to be generated. The signal strength at

time t is then calculated as follows (where θgk is the head pose direction and θvk is

the direction of travel):

ŝt = |
t∑

k=t−10

Bin(θgk)−Bin(θvk)| (5.2)

The tracker does not deal with raw headpose angles. Instead, we bin the angle

into 8 discrete bins of 45◦ each. Hence the Bin operator collapses the raw angle

into the bin center angles, namely 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦.
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Next, we weight the influence of the prior. Intuitively, the weight (αt) should

increase in line with the strength of the prior ŝt. A sigmoid function applied to ŝt

is a simple and effective way to achieve this. The sigmoid is parametrised by ρ and

τ and could be optimised for the scene to reflect the reliability of the prior, where

ρ adjusts the rate at which the function moves from zero to one and τ adjusts

the ‘base-weight’ (weight given for zero strength). Rather than optimising for any

particular scene, we use values for ρ and τ that were empirically derived in [132] .

αt = (1 + exp(−ρ(ŝt − τ)))−1 (5.3)

Having determined αt, the transition model (Ft) is adjusted to reduce the influence

of the target’s previous motion. Denote Ft−1 as the motion model at time t − 1

and γt = 1− αt. The motion model is then updated as follows:

Ft =


1 0 γt 0

0 1 0 γt

0 0 1 0

0 0 0 1

 (5.4)

This has the effect of reducing the influence of ẋ and ẏ by a factor of γt during the

prediction step of the algorithm. The influence of the intentional prior is asserted

using the control matrix Bt:

Bt = [αtdx, αtdy, αtdx, αtdy]T (5.5)

dx = dtcos(θp), dy = dtsin(θp) (5.6)

Where dt is the geometric distance travelled by the target between t− 1 : t and θp

is the predicted travel direction based on head pose angle θdt−1. Two approaches

could be used for calculating dt: It could be estimated from [ẋt−1, ẏt−1], which

is an estimate of the target’s velocity given observations z0:t. Alternatively, a

smoothed velocity could be calculated from [posxt−k:t−1, pos
y
t−k:t−1], where 2 ≤ k ≤

t. In practice the second approach was found to give better performance using

empirically derived k = 5.
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Figure 5.3: The benefit of headpose as a prior is clearly illustrated when no
prior tracking information is available. The Kalman filter output is shown in red
and the intentional tracker output is shown in green. We initialize the tracker
with very few frames and let the trackers evolve without further detection. (a)
The person does not cross the road and his headpose at the instant of exiting
the door is very indicative. (b) Similarly for people who want to cross the road,
the head pose information is again very indicative of their intention. There is a
region of occlusion that is shown in orange. The trajectories qualitatively show
the benefit of the intentional tracker.

Having finally defined all of the components required to generate Ft, the remainder

of the KF algorithm remains the same. Predictions are now based on a target’s

previous motion (with weight γt) and the intentional prior (with weight αt).

Furthermore, the instantaneous head pose prior can be used to initialize tracking

where no prior tracking information is available. This can be used to approximately

predict pedestrian intent with a few time steps. Figure 5.3 shows this scenario

qualitatively. It can be clearly seen that the estimated head pose for people coming

out of the door near the zebra crossing can be very informative in predicting their

intended action.

5.1.3 Experiments

We compare performance of our tracker against the standard KF (by which we

mean having no head-pose information) using the Benfold [116] and Caviar [133]

video datasets.

We report the cumulative log likelihood (CLL) as our evaluation metric for di-

rect comparison with [8]. Since we compare the improvements under occlusion,
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Table 5.1: Percentage improvement (reduction) in mean squared error (MSE)
during occlusion for 7 trajectories.

Traj. No. 7 8 9 10 11 15 22

% Imp. 64.0 75.5 84.5 12.9 73.2 62.0 68.3

it is not possible to compare with ground truth since no ground truth exist un-

der occlusion. Hence we use Cumulative Log-Likelihood to compare the rela-

tive improvements. CLL is based on the measurement innovation and is defined

as CLLKF =
∑T

k=1 LL
KF
k and CLLIT =

∑T
k=1 LL

IT
k . Improvement in CLL is:

CLLKF/CLLIT . CLL measures how well the innovation covariance is modelled

and is a useful metric when MSE cannot be calculated. We use the same values

for the parameters.

As can be seen from Figure 5.5, the intentional tracking performance is greatly

improved by better headpose estimation. On the Benfold dataset we achieve a

CLL median of 8.8% compared to the 5.9% achieved by their headpose estimation

method. Similarly, on the Caviar dataset we achieve a CLL median of 16.02%

compared to the 15.8% achieved by the competing system. It should be noted

that on Caviar data, the head pose ground truth annotation based tracker gives

a median CLL improvement of only 16.1% so there is very little room at the top.

However in both the datasets we achieve state-of-the-art tracking performance.

Since there are only 7 examples of sudden trajectory changes in the Oxford dataset

(none are occluded), we synthesised occlusions on these trajectories. Specifically,

for each change in trajectory we withheld a window of observations from each

tracker to occlude the change (see Fig. 1). Table 5.1 shows the improvement

(i.e. reduction) in mean squared error (MSE) between the predicted and withheld

pedestrian observations. A mean reduction of 62.9% was achieved across the 7

trajectories.

Figure 5.4 (a) shows performance on the video datasets when using annotated

detections. Figure 5.4 (b) shows performance on the video datasets when using

annotated detections. These consisted of person head-pose for the Intentional

Tracker and body bounding box for the standard KF. Our approach out performs

the standard KF under all conditions.

As can be seen from Figure 5.5, the intentional tracking performance is greatly

improved by better headpose estimation. On the Benfold dataset we achieve a
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Figure 5.4: Improvement in Cumulative Log Likelihood (LL) by our inten-
tional tracker vs. a standard KF. (a) Using the simulated, Benfold, & Caviar
datasets under three head/body detection rates, 100%,80%,60% & ground truth
head-pose. The simulated data is generated with random noise as described in
[8] (b) Using head-pose classifications from our deep belief network (Deep BN)
on the Benfold and Caviar datasets.

CLL median of 8.8% compared to the 5.9% achieved by their headpose estimation

method. Similarly, on the Caviar dataset we achieve a CLL median of 16.02%

compared to the 15.8% achieved by the competing system. It should be noted

that on Caviar data, the head pose ground truth annotation based tracker gives

a median CLL improvement of only 16.1% so there is very little room at the top.

However in both the datasets we achieve state-of-the-art tracking performance.

5.2 Exploiting Headpose as a Social Signal

We use our robust head-pose estimation technique to further infer meta infor-

mation regarding human centric scene understanding i.e. we wish to know what

people are looking at in the real world, not merely the image plane. To this end

we first define a “human attention metric” based on the regression output.
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Figure 5.5: Comparative improvement of our headpose estimation based in-
tentional tracking vs the method of [8]

5.2.1 Probabilistic Attention and Interaction Metrics

While pure head pose angle is important, we note that it carries little meaning

by itself if there is no object at which the person is gazing. If we model the

head-pose as a spread of attention with a mean direction and a uncertainty spread

that depends upon regressor confidence that is computed by taking the variance

of the classifier output (we also compute the 360◦classification result along with

the regression output), along with the inherent uncertainty due to not tracking

the eye, we can gain a lot more useful information. Our aim is to achieve gaze

estimation as a spatial probability distribution in an unified framework that can

be used for both gaze estimation and interaction detection. This is distinct from

approaches defined in literature. In [26] head pose is used for estimating gaze

through a fixed sized disc surrounding the intersection point of the head pose ray

and the object/camera plane. This approach does not incorporate the confidence

of the head pose estimate to peak or diffuse the gaze estimate that our technique

proposes. Whereas the LAEO system [28], while useful for interaction detection,

lacks the ability to project the headpose estimate into gaze estimate. Our proposed

approach, the Attention Metric (AM) solves both these problems in a unified

fashion.
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To define the field of attention given the Regressor output of the yaw (θ(t)) and

pitch (φ(t)) head angles and their corresponding variances (σ1(t), σ2(t)) for each

frame, we turn to the field of directional statistics. We define a unit 2-D spherical

probability distribution manifold in the 3-D space using the Von Mises–Fisher

distribution [134] . This distribution is analogous to a 2-D normal distribution

but wrapped around a 2 dimensional unit sphere in R3. In general for a (p− 1)

dimensional sphere in Rp the von Misses-Fisher distribution for the p-dimensional

unit vector x is defined as

fp (x;µ, η) = Cp (η) exp
(
ηµTx

)
(5.7)

where η ≥ 0 is the concentration factor (inversely proportional to the variance

σ) and ‖µ‖ = 1 is the unit vector in the direction of the mean and Cp (η) is the

normalization factor defined as

Cp (η) =
ηp/2−1

(2π)p/2 × Jp/2−1 (η)
(5.8)

where Jv denotes the modified Bessel function of the first kind and order v. In our

case of R3 or p = 3 It reduces to

C3 (η) =
η

4π sinh (η)
(5.9)

Figure 5.6 shows the Von Mises-Fisher distribution for various η.

In our particular case we compute the mean direction unit vector µ from the

yaw and pitch angles in spherical coordinates, and also the concentration factor η

assuming isotropic variance in both yaw and pitch angles as

µ =
1√

1 + θ2 + φ2


1

θ

φ

 , η =
1√

σ′21 + σ′22
(5.10)

The σ′1 and σ′2 are the sum of the regressor variance (σ) and the inherent mean

uncertainty (E- constant due to no eye tracking) in standard deviation units.

In case one needs to preserve anisotropic variances in both directions one can use

the Kent distribution [134] which preserves those properties. However from our

experience, we decided not to use it (keeping in mind its higher computational
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Figure 5.6: The Von-Misses Fisher distribution visualized on a unit sphere.
The mean direction µ is represented by the red line and the factor η represents
the concentration of the distribution.

Figure 5.7: The precision recall curve comparing our Attention metric to the
LAEO metric on our dataset

complexity). So our final attention metric for person i at time t is defined as:

AMi(x, µi(t), ηi) =
ηi

4π sinh (ηi)
exp

(
ηiµ

T
i (t)x

)
(5.11)

To detect interaction between any two people (i,j) we multiply two attention matri-

ces (AMi and AMj) together computed at the location of the other person’s head.

Hence the interaction metric (IM) for a pair of people (i,j) with their corresponding

head positions xi and xj is defined as

IMij =
AMi(xj)× AMj(xi)

r2ij
(5.12)

where rij is the euclidean distance between the pair of heads.
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Figure 5.8 shows the output of our Interaction metric along with interaction detec-

tion on our dataset. For comparison we also show the HLYK interaction detection

scheme ,i.e. looking at each other (LAEO) as reported in [28]. We also show

the raw yaw and pitch angles for both persons. In both the interaction detection

signals, namely IM and LAEO the interaction ground truth is plotted in red, and

the IM and LAEO signals are plotted in blue. To detect interactions from IM

we can simply specify a threshold above which interaction is detected. This is

the only free parameter in the IM scheme. We cross validated the parameter for

various values and found that setting this IM threshold to 0.32 results in highest

accuracy. In contrast, LAEO requires three free parameters, the aperture of the

viewing cone φ , the temporal window for smoothing T and the interaction thresh-

old τ . We computed LAEO using the best reported values for these parameters

from [28]. It is note worthy that IM in bound between [0,1] allowing a probabilistic

interpretation of the same, whereas the LAEO signal is not bounded. From Fig.

5.7, where we show the precision-recall curves comparing both IM and LAEO, it

is evident that IM outperforms LAEO consistently across all parameter choices.

We show another instance of our interaction metric in Fig. 5.9. In this instance

there are two people who are interacting in the beginning (high IM signal), then

one person looks away towards the camera while the other person keeps looking

at the said person (low IM signal), near the middle of the sequence they interact

intermittently, and finally one person walks away. Both the binary ground truth

for interaction (red) and the IM signal (blue) are shown.

Apart from showing interaction metric we also show another social signal metric

called windowed cross correlation (WCC henceforth) [135]. This signal measures

the similarity between any pair of time series head pose signals (within some time

window; leading or lagging) and can be used to detect group behaviour.

To further show our system we consider the scenarios shown in Figures 5.10 and

5.11 by using the both the interaction metric (IM) and WCC signals. In the case

of Fig. 5.10, the scenario starts with two people looking with each other. During

this period we see that the IM signal is indicative of the scenario. Then both the

persons start walking together in the same direction. This leads to a high valued

WCC signal and zero IM signal. This state of the signals persists as both of them

look together into the same object of interest. Finally, one person walks away

before the other causing a drop in the WCC signal, which again goes up as the
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other person joins moments later. All this while the IM signal is zero or near-zero

as no interaction is taking place.

In the case of Fig. 5.11, the scenario represents two people loitering in a common

area until suddenly something attracts their attention and both look towards the

same thing. This leads to a low WCC signal at the beginning which is followed

by a high WCC signal when both of them look towards the same thing. Finally

when they move apart from the scene we see a corresponding drop in the WCC

signal.

Discussion: The IM signal was quantitatively evaluated in Fig. 5.7 and compared

against the state-of-the-art metric LAEO as described in [28]. The IM signal with

significantly less number of free parameters to tune (one, namely the interaction

threshold) outperformed LAEO in all scenarios. Subsequently from all the qual-

itative scenarios described in Figures 5.8, 5.9, 5.10, and 5.11, we see that both

the IM and WCC signals are intuitive, and both provide key evidences that can

contribute towards higher level behaviour inference in social signal processing.

5.3 Discussion

In this chapter we applied the robust headpose signal estimation to understanding

human behaviour. First our intentional tracker is shown to be superior to standard

Kalman filter in presence of occlusion. Then we established the Attention Metric

and the Interaction Metric that explicitly models the output confidence of the

regressor/classifier. We reported state-of-the-art results on standard datasets for

detecting when people are looking at each other. We also qualitatively evaluated

all the three metrics, including the Windowed Cross Correlation (WCC), on three

scenarios and showed the validity of the assumptions. We have contributed these

three strong baseline metrics to the broader literature of Social Signal Processing

where other systems can be built on top.
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Figure 5.8: In this figure we show the use of the head pose angles with the
interaction metrics LAEO [28] and AM to do interaction detection. Subfigure
(a) and (b) show the yaw and the pitch angles along with their 95% confidence
intervals, of two heads in a sequence of two people interacting. Subfigure (c)
shows the output of our our Interaction Metric (IM, in blue) and interaction
detection (dotted cyan) and subfigure (d) compares the LAEO [28] metric (blue)
and its corresponding interaction detection (dotted cyan). The ground truth for
interaction is shown for reference in red in both (c) and (d) and the signal is
binary (interaction is either happening, or not). IM clearly outperforms LAEO.
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Figure 5.9: We show the interaction and WCC head pose signals. The binary
ground truth for interaction is shown in red. The raw head pose signals are
same as 5.8 (a) and (b). The scenario can be described with the four snap
shots as follows: (1) Two people are talking facing each other and from (b) the
IM can be observed to be high while from (a) the WCC is not observed high.
(2) One person looks away towards the direction of the camera which followed
by a drastic fall in the IM in (b) while the WCC in (a) falls while the two
heads behave differently and stabilizes. (3) The person looks back intermittently
and we see the corresponding change in IM. (4) Finally the person walks away
with the other person looking at the same place. This makes the WCC falling
drastically. The peak WCC is achieved around frame 200 when both of them
look at the general direction of the camera.
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Figure 5.10: In this scenario two people are interacting as can be seen from
(1). This results in the corresponding IM and WCC signals in (b) and (a)
respectively. Then in (2) they start walking together in the same direction
facing the camera. This makes the WCC signal go up. This shows the usefulness
of WCC in detecting social mimicry. The WCC signal stays high when in (3)
they look at the same object of interest together. Finally in (4) they walk away
together looking towards the camera. The dip in the WCC signal near frame
220 is caused when one person walks away before the other.
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Figure 5.11: In this scenario the two people are not behaving similarly at
the beginning and are looking at different things at different times. Finally in
(3) they are attracted by the same thing on the wall on the left and look at it
together. This makes their head pose signal to become highly correlated as can
be seen from (a). Finally they walk away their separate ways and we see a drop
in the WCC signal.



Chapter 6

Coral Image Segmentation: AN

Application of ALICE Loss

We digress to an application of the ALICE loss that was developed for the

end-to-end detection and classification in Chapter 5, to dense classification

of underwater coral reefs imagery. The objective of this work is to solve

the challenging task of recognizing and segmenting underwater coral imagery

in the wild with sparse point-based ground truth labelling. To achieve this,

we propose an integrated Fully Convolutional Neural Network (FCNN) and

Fully-Connected Conditional Random Field (CRF) based classification and

segmentation algorithm. Our major contributions lie in four major areas.

First, we show that multi-scale crop based training is useful in learning of

the initial weights in the canonical one class classification problem. Second,

we propose a Adaptive Localizing Infogain Cross-Entropy Loss (ALICE) for

training the FCNN on sparse labels with class imbalance and establish its

significance empirically. Third we show that by artificially enhancing the

point labels to small regions based on class distance transform, we can im-

prove the classification accuracy further. Fourth, we improve the segmenta-

tion results using fully connected CRFs by using a bilateral message passing

prior. Finally, we improve upon state-of-the-art results on all publicly avail-

able datasets by a significant margin. This work has been presented in the

6th International Symposium on Deep-Sea Corals [19].

93
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Coral reefs are Physical structures built by the actions of many tiny coral animals.

They are most diverse underwater ecosystems widely used and economically valu-

able to millions of people as important sources of food and income, serve as living

home for the great amount of fish species, attract divers, snorkelers and underwa-

ter tourists, generate the sand on beaches, and protect shorelines from damages

by storms [136].

However, their existence vulnerable as result of man-made threats. According

to recent study in [136] more than 60% of the world’s reefs are under threat.

Overfishing and destructive fishing are the most prevalent practices that affect

more than 55% of the reef in the world. When the effects of recent thermal stress

and coral bleaching are combined with the other threats, the effect of thermal

stress is also quite high. The estimate of threat to reefs across the region increases

to more than 90%, with the percent of reefs rated at high or very high increasing

to nearly 55%.

Previously coral reef restoration process involves extreme conditions for volunteer

SCUBA divers, who transplant loose fragments from seabed back onto the larger

reef framework. However, limitation as a result of low temperature arises as the

height increases beyond some depth level. The Coralbot project is a recently

proposed idea to autonomously repair deep-sea coral reefs.

A supervised automated labelling tool has become necessary that can be integrated

in AUVs to help detect corals. The aim of this project is to develop the machine

vision algorithms to help a Coralbot to locate a coral reef and a chunk of coral on

the seabed and prompt the Coralbot to pick it up. This involves mainly classifying

different types of coral types. The technical challenges are principally due to

the potential lack of clarity of the water, platform stabilization, spurious artefact

(rocks, fish, crabs etc) and lack of training data, very high intra-class variability.

We develop a deep CNN coral classifier that can be classify corals for the specified

objective with sufficient accuracy. The proposed method is compared with state

of the art methods on recently proposed benchmark coral dataset, the Moorea la-

belled corals (MLC) dataset, and shows relative improvement on overall accuracy.

The consistency of the proposed method is evaluated on smaller dataset prepared

for this purpose, the Atlantic Deep-Sea dataset (ADS) dataset.

Next, we present the related works, in which we summarise the main theories and

current researches that explain the classification of coral reef. Then, we illustrate
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Figure 6.1: Illustrative output of our system on the MLC Dataset. (a) Shows
the sparse point based ground truths. (b) Shows the pixel-wise classification

the development of the proposed methodology and the results of the of coral

classification. Finally, we present conclusions.

6.1 Related Work

Our approach draws on recent successes of deep nets for image classification [33,

127] and fine-tuning techniques for fast and improved classification specially for

small datasets [137, 138]. The following subsection discuss related works on coral

classification and relevant works on object recognition using deep CNNs that are

used as input for this work.

6.1.1 Automated Coral Classification

There are couple of works on literature that deal with coral classification. One

of those, the work by Marcos et al. [139] use a feed-forward back-propagation

neural network to classify close-up images of coral reef with success rate of 86.5%
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on test sets using Color and texture features. This performance might vary under

different Coral datasets.

A Mehta et al. [140] present a method to classify coral reef images based on

their textural appearance using support vector machines. The advantages of this

method are its simplicity and uses a small number of images for classification

though it performs poorly for noisy and under non-uniform illumination.

Stokes and Deane [141] describe an automated computer algorithm for the classi-

fication of coral reef benthic organisms and substrates. Both texture and colour

features are extracted using discrete cosine transform and normalized colour space

respectively and probability density weighted mean distance is used for classifi-

cation. Although good accuracy are obtained with colour correction methods,

achieving consistence result is challenging in underwater imaging.

Beijbom et al. [142] present a novel frame work to classify coral reefs using both

colour and texture features. They used maximum response filter bank to extract

features and SVM with radial basis kernel for classification and achieve 83.1% on

his nine class MLC dataset.

The work by Tusa et al. [143] describes the development of a vision system for

coral detections based on supervised machine learning. Gabor wavelet filters are

used to extract texture features and a good accuracy is obtained using decision tree

algorithms on their dataset. The over-all accuracy obtained is not high enough

and the result is yet to be verified on other datasets.

The work of Shihavuddin et al. [144] discusses classification benthic coral reef using

different machine learning methods. They used completed local binary pattern,

gray level co-occurrence matrix, Gabor filter response, and opponent angle and

hue channel colour histograms to extract feature descriptors. For classification

Knearest neighbor, neural network, support vector machine and density weighted

mean distance are investigated.The performance is evaluated on seven datasets

including three texture datasets. An accuracy of as high as 85.5% is obtained on

Moorea labelled corals (MLC) 2008, one third of the MLC dataset, dataset.

These works have all used hand-crafted features for coral classification. We pro-

posed a deep learning method that extract and learn useful features automatically

without concerning on the preprocessing of raw input images. Another limitation

of the previous works lie in their requirement to extract fixed size crops (sometime
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discrete multiple sizes) around the labelled points for classification. This limits

the applicability to only those images where points of interests have already been

marked. We alleviate this problem by treating it as a segmentation problem where

every pixel will be given a corresponding label. We use the terms dense classifi-

cation, classification with localization and semantic segmentation interchangeably

in this paper. Our approach has the added benefit of allowing the computation of

relative coral area coverages for free. This is a very important statistic in marine

biology for coral reef surveys and health monitoring.

6.2 CNN Architecture for Patch Training

As result of success in different benchmarks there have been a lot of changes in

architecture compared to the first proposed deep CNN by Yann LeCun [145]. More

recently developed architecture are becoming in general deeper and wider, showing

state of the art performance in object recognition challenges [33, 34, 127, 146]. The

power of the CNNs lie in their ability for end to end learning of multiple layers

of non-linear transform on the data from the data itself in a supervised manner.

The operations of Convolutional Neural Networks can be follows

1. Convolutional Layer: A three dimensional feature map at layer l consists of

m
(l)
1 feature maps of size m

(l)
2 ×m

(l)
3 . The ith feature map in layer l, is denoted by

Y
(l)
i . For a given bias matrix B

(l)
i and kernel K

(l)
i;j of size (2h

(l)
1 + 1)× (2h

(l)
2 + 1),

the output feature map at layer Y
(l)
i at position (r, s) is computed as

(yli)r,s = (Bl
i)r,s +

ml−1
1∑
j=1

(K l
i,j ∗ yl−1j )r,s (6.1)

= (Bl
i)r,s +

ml−1
1∑
j=1

hl1∑
u=−hl1

hl2∑
v=−hl2

(K l
i,j)r,s(y

l−1
j )r+u,s+v (6.2)

The trainable parameters are stored in filter K l
i,j and bias matrix Bl

i.

2. Pooling: Pooling layers downsample the feature maps by selecting maximum

or average values across spatial dimensions. Successive layers of pooling makes

the features more translational invariance which is a desired property for object

recognition. Pooling operations may be overlapping or non-overlapping. There
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can be many types of pooling schemes. However the most popular ones are max

or average pooling. In our work we have used max pooling without overlap.

3. Activation function: Non-linearities introduced at each stage after convolu-

tion makes the learned features more robust. Rectified linear unit (ReLU) is

applied to active outputs of the convolution layers. Apart from rectified linear

unit, there are other non-linearities like tanh, sigmoid etc.

4. Initialization: Recently it has been found out that good weight initialization

can mitigate the problem of the training getting stuck at local minima. During

the resurgence of neural networks in the last decade, good weight initialization

using unsupervised pre-training in the form of Restricted Boltzmann Machines

or Auto-encoders were proposed as a solution. However, as can be seen from

recent work [147], for large supervised datasets good weight initialisation by

fixing the limits of the random numbers are just as good. This scheme called

the Xavier weight initialisation scheme can be defined as follows

wij = u

[ √
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
(6.3)

where u
[
a, a
]

as the uniform distribution in the interval (−a, a). nj is the size

of the previous layer output and nj+1 is the number of output of the current

layer.

5. Optimization: Mini batch gradient descent with momentum update is used to

computes the update based on small batch of images. Dropout is also used as

a regulariser to make the network robust to overfitting.

6. Learning rate: Step and power decay methods are considered to decrease the

initial base learning rate for this work.

6.2.1 Fine-tuning

Adapting an already trained model(most of the time on Imagenet as it is quite

general), for different unrelated tasks has been shown to be quite effective [137,

138]. This is especially useful if there is a scarcity of labelled data. Though the

datasets are visually similar to ImageNet, those successful works inspired us to

experiment the technique using the state of the pre-trained ImageNet models.
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Figure 6.2: Adaptation of CNN for pixel-wise classification. (a) Standard
VGG-16 net trained in patchwise training based on . (b) Conversion of (a)
into a fully convolutional architecture that outputs coarse classification map
with sparse point based training. (c) Finally large field of view and low stride
version of net output that is post processed with FC-CRF for final pixel wise
classification.

The models selected for fine-tuning are the Googlenet [38] and Visual Geometry

Group (VGG) [127] models (VGG-16) based on their exceptional performance

in the Large Scale Visual Recognition Challenge 2014 (ILSVRC2014) challenge.

There are few underwater images in ImageNet visually they are hardly similar to

the MLC and ADS dataset, but the trained models are believed to mimic human

visual cortex to some level.

6.3 FCNN Architecture for Semantic Segmenta-

tion

We convert the patch trained CNN architecture to fully convolutional architectures

by converting the Fully-Connected (FC layers) into 1 × 1 convolutions as shown

in [42]. This does not increase the field of view of the layers and makes the

architecture resolution independent. However, as shown in [42], naively doing this

does not guarantee good performance. For example, the VGG-16 architecture

final layer has a stride of 32 pixels and hence the resulting feature resolution is too

coarse for accurate segmentation. To overcome this we replace the convolutions

in the last three convolutional layers with dilated convolutions as described in
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Figure 6.3: Pseudo-label generation based on distance transform. (a) Pro-
vided sparse point based ground truth. (b) Generated pseudo label based on
distance transform with post-processing γ = 5.5 and τ = 0.05

[96]. Figure 6.2 shows the architecture adaptation. This leads to a fairly dense

prediction at 8 pixel stride. The network architecture is thus identical to [96].

6.3.1 Modified ALICE loss

We use the ALICE loss defined in Chapter 4.3.5 to tackle this problem as well.

We show that ALICE loss is applicable broadly to pseudo or weakly labelled data.

The only modification we make is since our ground truth is point based we do

not confine the pseudo distance transform based label within any bounding box.

Instead we compute it all over the image. To achieve this we separate each of the

class into its own image plane and apply distance transform [128] and then merge

them back into one image based on each pixels distance from the closest class point

weighted by the distance from the true point. For example if we have C classes,

then we create C image planes of the same width and height of the image, one for

each class. We initialise the images planes to zero value and then we place each

point label annotation in the planes according to class label. Hence each image

plane represents all the points that belong to that corresponding class. We then

apply the distance transform to each image plane separately. We normalize the
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distance transform to be in the range [0,1] by dividing it by the length of the diago-

nals of the image. Then we combine the C class distance maps to one class-distance

map where at every pixel we choose the lowest distance from the corresponding

pixels of the class maps. Hence this class-distance map has a class label and the

distance value at every pixel. We vary the γ and τ and find out optimal values

for them through cross-validation during our experiments. Figure 6.3 shows the

resulting pseudo labels using γ = 5.5 and τ = 0.05 which were found to be optimal.

We use the distance transform instead of standard image processing based segmen-

tation like graph-cut because of two reasons. Firstly, the labels for our problems

were very sparse and hence by initialising graph-cut based on these points didn’t

provide good results in our experience. Secondly, we wanted to build the ALICE

loss in such a way that it assigned the most weight to the actual labels and lesser

weight to the pseudo-labels. This distance transform based formulation helps us

preserve the relative strength of the labels unlike other segmentation approaches

which would assign a hard label at every point. Any non-optimal results from

these algorithms would adversely affect the training of the neural networks. By

defining the ALICE loss like we did, we address both these issues.

6.3.2 Dense Conditional Random Field for Improvement

of Segmentation

Fully connected CRFs have been shown to perform exceedingly well in fine-grained

image segmentation [148]. The dense CRF model over an image is defined as

follows.

P (x) =
1

Z
exp

(
− E(x)

)
(6.4)

where x is the label for pixels, and E(x) is the energy function. For semantic

segmentation the energy function can be defined as

E(x) =
∑
i

θi(xi) +
∑
ij

θij(xi, xj) (6.5)

where the unary potential θi(xi) = − logP (xi), P (xi) is the probability of assigning

label to pixel i (which is the posterior of our FCNN), while the pairwise potential

is θij(xi, xj) =
∑K

m=1w
m · km(f i,f j). The edge set is the fully connected edges

between any i and j, and each km is a high dimensional Gaussian kernel depends
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Figure 6.4: Sample image from ADS (right) and MLC dataset (left). The 200
points show how the labelling is done for a single image. Markers of the same
colour show corals of the same class

on features computed for each pair of pixels i and j and is weighted by parameter

wm.

θij(xi, xj) = w1 exp
(
− |pi − pj|

2

2σ2
α

− |Ii − Ij|
2

2σ2
β

)
+w2 exp

(
− |pi − pj|

2

2σ2
γ

) (6.6)

where the first kernel is a 5 dimensional Gaussian kernel that depends on both

pixel positions (p) and pixel color (I). This is equivalent to bilateral filtering.

For efficient evaluation of the filter in O(n) time a permutohedral lattice based

algorithm has been used [149]. The second kernel only depends on pixel positions

and is like a standard Gaussian blur filter. The hyper parameters σα, σβ and σγ

specify the variance of the Gaussian kernels.

The efficient inference algorithm is based on mean field approximation to the CRF

distribution, which simplifies the distribution to b(x) =
∏

i bi(xi) and minimizes

the KL-divergence KL(b(x)‖P (x)).

6.4 Dataset

The dataset used for this work are the MLC and the Atlantic Deep sea coral dataset

(ADS) dataset. The MLC dataset [142] consists 2055 high resolution images from

three habitats: fringing reef, outer 10m and outer 17m, acquired in years 2008,

2009 and 2010. The seven most abundant corals are considered for this work.
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The ADS dataset consists 159 images of size 2592 X 1944 collected from north

Atlantic west of Scotland and Ireland in year 2012 from depth of 100-800m. This

data set is prepared for this research work purpose. Similar to the MLC, 200

random points generated in each image are annotated by experts. We consider

only the six most abundant corals in this dataset.

The two datasets show common problems of: mislabelling in which two very close

points are annotated using different labels, labelling ambiguity, high inter-class

similarity on some of their coral types and high artefacts specially in MLC dataset.

6.5 Data Augmentation

Taking appropriate patch size from the high resolution images in the dataset is

an open problem. A trivial approach is to evaluate the performance of different

patch sizes. Patch size of 64 and 200 are experimented. Patching and dataset

splitting to training and validation sets are done simultaneously. 90% of each

class is considered for training and the rest for validation. Because of labelled

data limitation, we didn’t use any separate test set. The class with few image

samples are augmented and the data is resized to 256 X 256. The training is done

in Caffe [124]. The central crop of size 224 X 224 are actually used for training

and validation. Each training samples are also flipped. The training data mean is

subtracted which is essential to centre the data so that its mean is zero for efficient

learning.

Works mentioned [150, 151] describe the advantage of data augmentation to im-

prove performance of Deep architectures and overcome overfitting[34]. We apply

geometric transformations(translation, scaling, homography, flipping and rotation)

to introduce class imbalance and tackle the problem of overfittig by increasing the

number of minor Corals mainly. We are able to increase the training samples in

the MLC dataset by factor of 3 to 5 using scaling, homography, flipping and rota-

tion. For ADS dataset, the amount of data is increased by factor of 5 to 12 using

all possible transformations.
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Figure 6.5: Effect of different Patch size on the test accuracy

Parameter GoogleNet VGG16 Net

Training SGD SGD

Batch size 64 32

Starting Learning Rate(η) 0.01 0.01

Momentum (α) 0.9 0.9

η Decay factor(no. batches) 0.96(2000) 0.75(2500)

L1 weight regularization 10−5 10−5

Table 6.1: Parameters for training CNNs

6.6 Patch Based Training

First the vanilla classification networks (Googlenet and VGG16) are trained on

the extracted patches. Two separate experiments are performed, one for patch

size 64× 64 and the other for patch size of 200× 200. As can be seen from Figure

6.5, a patch size of 200 × 200 provides the best classification results and fastest

convergence in training. Hence, for the training of the patch based classification

experiments, this patch size has been used. The training is stopped once the test

results degrade (or does not improve) for at least 2 epochs.

The patch based classification experiments we tried training both the GoogleNet

and VGG16 nets from scratch, and also experimented with finetuning from their

Imagenet trained models. For finetuning all the architectures, we first train us-

ing the ADS dataset and then further finetune on the MLC dataset. One of the

problems of the patch based classification is that, since the field-of-view of the
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architectures are large, i.e. 224 × 224, multiple classes of coral might be present

in the patches. This leads to degraded classification performance which can be

alleviated by densely localizing and classifying the images with fully convolutional

neural networks. Hence we have adopted the FCNNs for better performance. This

hypothesis is validated in Section 6.8 where one can see that by localizing and clas-

sifying at the same time performance does indeed improve.

Although our labels are provided as point instances, we note that during test time

without classifying a patch at every single pixel, we can not produce class instance

classification. This is a weakness of all the path based approaches which includes

all prior work on this problem. Hence we produce a segmentation based solution.

To bootstrap the segmentation network, we first train a patch classification net-

work by pretraining on the patch based data. Then we modify the patch based

network to produce segmentation and finetune on the segmentation task based on

ALICE loss.

6.7 Classification and Localization

The trained classification models are converted to fully convolutional ones by re-

shaping the fully connected layers to convolutions. For the GoogleNet architecture

it is a simple conversion of the final classification fully connected layers into 1× 1

convolutions. For the VGG16 the last three fully connected layers (FC6, FC7 and

FC8) are converted to convolutional layers with filter sizes of 7×7, 1×1, and 1×1

respectively [42]. However as shown in [152] the 7 × 7 filter is a computational

bottleneck and by simple down-sampling the learned filters by spatial decimation

to 4× 4 or 3× 3 does not affect performance negatively. For our experiments we

converted the FC6 convolution filters to 3×3. The rest of the architecture is same

as the FCN-8s architecture described in [42]. The FCNN is fine-tuned using the

generated pseudo labels as described in subsection 4.3.5. The best values for the

parameter γ as described in equation 4.16 has been established by cross validation.

The learning rate was set to 10−6 and reduced by 10−1 after every 5 epochs. The

output posterior of the FCNNs are then used as input to the DCRF model. The

number of mean-field iterations for the DCRF are fixed at 5 iterations. In our

experience more iterations provide diminishing returns compared to the compu-

tational cost. We compare four models in this experiment, 1. fully convolutional
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Figure 6.6: T-SNE embedding. (a) Embedding of MLC coral classes features
with softmax loss after patch-wise training.

GoogleNet, 2. fully convolutional GoogleNet with Dense-CRF, 3. FCN-8s, and

4. FCN-8s with DCRF. Since the MLC dataset does not have any segmentation

labels, we measured the performance of our system on the MLC dataset by eval-

uating its output at the test point locations. For the ADS dataset we created a

expert labelled holdout test set of 10 images with segmentation labels. This let us

report the segmentation performance using standard metrics of Intersection over

Union(IoU) and mean pixel accuracy. For direct comparison, and to establish the

benefit of localization during classification as hypothesized in subsection 6.6, we

also report the classification accuracy over the test point locations in the ADS

dataset as well.

6.8 Results

6.8.1 Patch recognition experiment

The overall accuracy(OA) of a an algorithm is defined as the sum of the number of

correctly classified examples (the diagonal entries in the confusion matrix) divided

by the total number of the tested examples. The extension of this evaluation

criteria used specially for large scale object classification challenge [33, 34, 127] is

the top-k accuracy, where k can be 5 or 10. We used top-2 accuracy since we have

small class datasets.
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Table 6.2: Summery of the experiments performed on ADS dataset.

VGG fine-
tuned from
ImageNet

GoogleNet
fine-tuned
from Ima-
geNet

Training
GoogleNet
from
Scratch

Iteration 5500 20250 24500 )
Training Error(start ⇒
end)

2.4 ⇒ .25 4.6 ⇒ 1.3 3.7 ⇒ .27

Test Error(start⇒ end) 2.8 ⇒ .35 .55 ⇒ .68 .72 ⇒ .6
Top-1 (Top-2) accu-
racy(%)

88.4
(97.1)

87.2 (95.5) 84.1 (94.7)

Table 6.3: Summery of the experiments conducted on MLC dataset.

VGG fine-
tuned from
ADS

GoogleNet
fine-tuned
from Ima-
geNet

Training
GoogleNet
from
Scratch

Iteration 13250 21100 90000
Training Error(start ⇒
end)

2.04 ⇒ .47 3.27 ⇒ .5 4.3 ⇒ .69

Test Error(start⇒ end) 1.96 ⇒ .45 .79 ⇒ .46 1.3⇒.65
Top-1 (Top-2) accu-
racy(%)

85.2
(96.6)

83.5 (95.3) 81.1 (94.2)

Classification results: Results of experiments on ADS is shown in Table

6.2 and the MLC in Table 6.3. On ADS, we achieve an overall accuracy of 84.1%

top-1 and 94.7% top-2 score for the GoogleNet model trained from scratch and the

training converges. While this accuracy and convergence rate are further improved

(87.2% accuracy) if the weights are initialized from the Imagenet model. This

shows the benefit of good weight initialization and also suggests that there may

be many local minima in the weight space where the previous training got stuck.

Hence for the VGG16 model we initialized the training from Imagenet weights

from the beginning. The VGG16 model achieves an top-1 accuracy of 88.4% and

top-2 accuracy of 97.1%. Both the networks achieve state-of-the-art classification

result on the dataset.

Similarly for the MLC dataset the VGG16 fine-tuned from Imagenet weights

achieves the best classification accuracy at 85.2% top-1 and 96.6% top-2. This

is in comparison to the previous state-of-the art results reported by Beijbom et al.

[142] on this dataset where they achieved an accuracy of 83.1%.

The detail results for MLC dataset are depicted using a normalized confusion

matrix as shown in Figure 6.7. The classification works very well except for the
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Figure 6.7: Confusion Matrix of the MLC dataset fine-tuned from each class
number corresponds: 0-CCA, 1-Turf, 2-Sand, 3-Macro, 4-PORIT, 5-Pocill and
6-Monti.

two classes which described as ambiguously labelled in [142],i.e. the CCA and Turf

classes. Since these two classes are the most frequent classes in the MLC dataset

we believe that there might be a limit to the top-1 accuracy that can be achieved.

This conclusion is further supported by the high top-2 accuracy obtained.

However to alleviate the limitations of patch based classification where defining

the best patch size crop for each point is problematic, we decided to push the

limits of the classification by localizing at the same time using the FCNN-DCRF

framework. The results of which we report next.

6.8.2 Dense Classification results

We report classification accuracy on the test points for both MLC and ADS

datasets. Furthermore, we also report mean pixel accuracy and Intersection over

Union (IoU) results for the ADS dataset for the expert annotated segmentation test

set. The classification accuracy is reported in Table 6.4. We compute the accuracy

based on the point labels provided, i.e., we evaluate the output of our network on

the true ground truth labels provided. It can be seen that classification accuracy
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Figure 6.8: Illustrative output of our full system on the MLC dataset for
dense classification trained with γ = 5.5

improves for every model. This validates our hypothesis that dense classification is

better than patch extraction and classification. Furthermore, we observe that the

DCRF does improve accuracy significantly in every case. For qualitative results

we show the output of our system on the MLC dataset in Figure 6.8.

In Figure 6.9 we show the differentiation between a species of sponge and the

Lophelia pertusa species of coral. In figure 6.10 we show the differentiation between

live and dead Lophelia pertusa species of coral. It is noteworthy that these outputs

are very significant in underwater mapping of flora and fauna.

6.8.3 Accuracy vs Speed

Our new integrated FCNN-DCRF surpassed human and other machine-learning

performance benchmarks in speed and accuracy. Where expert annotation of
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Figure 6.9: Segmentation showing live Lophelia pertusa coral and the sponge
Mycale lingua.

Figure 6.10: Segmentation of live versus dead Lophelia pertusa

Table 6.4: Classification accuracy after dense classification with γ = 5.5

Model Accuracy
MLC ADS

Googlenet-Conv 84.1 89.2
Googlenet-Conv-DCRF 85.6 91.2

FCN-8s 86.8 90.1
FCN-8s-DCRF 88.7 93.4

159 images took an average of 30 minutes per image, that’s 286200 seconds for

159 images; the deep net takes less than 900 milliseconds for annotating each

image. This represents a big jump in capabilities to do vision based ecological

investigations that was not possible before.
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6.8.4 Comparison to Expert Annotation

For completeness we gathered expert segmentation annotations on the ADS dataset.

It must be noted that expert annotations are not 100% accurate due to the ex-

treme tedious nature of the work. Especially in fine details, expert annotations

are not very good. However for sake of comparison we compute intersection over

union (IOU) metric between the automatic prediction and expert annotation. We

achieve an mean IOU accuracy of 86.1% and pixel coverage accuracy of 91.5% .

This shows that our method is very robust at dense prediction.

6.9 Conclusion

Advancement innovative platforms such as AUVs allows to collect large images and

opens a door for machine learning researches in the area. The methods presented

are based on latest developments in deep learning for object recognition application

and are working for different applications. We showed how deep learning methods

can be applied to small coral datasets by data augmentation using the off-the-shelf

CNN architectures. The proposed method achieves overall classification accuracy

of 88.7% on latest standard coral dataset, the MLC dataset. The methods is also

tested on relatively smaller ADS coral dataset to achieve more than 93.4%.

Future work for the proposed method will cover preparing a standard coral dataset

based on standards of deep learning datasets, making extensive augmentation

using variety methods to improve over all result and developing unsupervised or

semi-supervised deep learning methods also helps to use advantage available huge

unlabelled data.
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Conclusion

The purpose of this thesis was to develop a “A data driven machine learning

approach can be adapted to solve the human head pose estimation problem.

By using modern machine learning techniques we can solve the problem of

detecting heads and estimating head pose in an unified way that spans mul-

tiple modalities (RGB and Depth) while being applicable to high resolution

Human Machine Interface to low resolution surveillance domain simultane-

ously. The robust headpose estimation can then be used a signal for Social

Signal Processing”. To this end we show in Section 7.1 that we have met

the objectives of the thesis. Furthermore, we showed wider applicability of

our methods to the problem of deep underwater coral classification. In the

following section we discuss future directions for research.

112
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7.1 Contributions

In this section we review our objectives from Chapter 1 and establish their link to

the research presented. We show that the journey we embarked upon bore fruit

in validating our hypothesis.

Review current methods

In Chapter 2 we reviewed all the relevant methods pertaining to head pose estima-

tion. We also reviewed the methods pertaining to deep learning that we proposed

to exploit for solving the problem. In Chapter 3 we took the state-of-the-art

feature from literature (HOG) and proposed improvements (HDSC) that let us

establish state-of-the-art performance. We compared the merits of the features

quantitatively and showed that combining RGB and Depth information gave bet-

ter overall results and the features were robust as well. Our proposal for the Zonal

Kernel should be widely applicable to regression on closed manifolds.

Bridge the gap in data requirements if any

We identified that the headpose research literature lacks large scale quality data.

Hence in Chapter 3 we introduced a high quality standard dataset that has the

following properties.

(a) The data should be large scale for training deep neural networks.

(b) The data should have both RGB and Depth modalities.

(c) The data should span from very high to very low resolution.

(d) The data should capture annotations at a granularity of 1 degree or less to

evaluate against regression approaches.

(e) Should cover all angles and not only frontal poses.

We successfully created such a dataset. Furthermore we characterized the error

bounds of the headpose estimation approaches when eye tracking is not employed.

That limit was found to be around 12.3◦. That means our accuracies in many

datasets are near the physical limit and in some cases surpasses that (although

that does not contribute to the larger picture of social signal processing).

Finally we also annotated the large scale Hollywood head detection dataset with

pose annotations. Thus we contributed significantly towards creating a unified
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evaluation dataset that can be used for different modalities, detection, classifica-

tion, regression.

Exploit high-resolution to low-resolution imageries and multiple modal-

ities

By creating our dataset that spans both HCI and surveillance domains and by mix-

ing with various available datasets, we show in Chapter 4 that we can successfully

learn from this data even in semi supervised settings by learning an underlying

representation of human heads. We further show that we can learn a CNN from

a RGB-D dataset and apply it successfully to surveillance domain problems.

Method independent of explicit facial landmark detection

All the methods developed in Chapter 3 and 4 explicitly did not impose facial

landmark tracking. However it should be noticed as shown in Chapter 4, certain

CNN filters learned them implicitly anyway. However the CNN does not depend

upon the presence of any such landmark. Hence, we eliminated the heuristic com-

ponents of HCI head pose estimation algorithms.

Do not require motion priors

As seen in prior work in low resolution surveillance data in Chapter 2, one way of

achieving good accuracy in head pose estimation is to couple it to velocity esti-

mate of the tracks. This is possible due to the fact that most people tend to look

where they are going at any instant and that creates a bias in the dataset as seen

in Figure 5.1. Hence that makes the information content of the pure headpose

signal quite redundant. We explicitly avoided this while gathering the dataset by

requiring subjects to move their head independent of body in any erratic fashion.

Also all our methods developed in 4 do not even require any temporal smoothing.

Hence the information content of the headpose signal is not attenuated at all. This

can be seen from the performance when applied to Social signal processing.

Create unified end-to-end detection and headpose estimation framework
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In Chapter 4.3 we created a novel architecture and loss function that solves the

problem of detection and pose estimation in an end-to-end fashion. The intuition

behind any end-to-end solution is that the joint optimisation of the objectives

promote symbioses among the tasks. However one must be careful as shown in

Chapter 2 because the tasks might be orthogonal. However with careful consider-

ation we developed an architecture that proved to be state of the art.

Evaluate against public datasets

We evaluated all our approaches on public datasets against competing methods

from literature. In Chapter 3 we evaluated against the baseline methods and

showed improved performance. In Chapter 4 we reimplemented most methods

and tested on multiple datasets like the Oxford, Caviar, Multi-PIE, Biwi Kinect

and our own data. We also compared our DFCNN detection and pose estimation

against the best detector and pose estimator on the Hollywood heads dataset.

On all datasets, apart from detection on Hollywood heads we reported the state-

of-the-art approach. We performed slightly worse in detection on the Hollywood

head dataset, but we believe that that dataset strongly favours the competing Con-

textual CNN method as it takes into account spatial relationships among heads.

Movie scenes have structures that are learn-able that way. However in an un-

structured scene the Oxford dataset, our detector significantly outperforms other

methods. Hence we conclude that our methods are very robust and validated

against other methods on available datasets.

Applicable to social signal processing

Finally, in Chapter 5 we showed that by having a strong head pose signal and novel

Attention and Interaction Metrics, we significantly outperform other methods like

Here’s Looking at you Kid on social signal datasets. We also showed that our

headpose estimation was successful in predicting pedestrian behaviours, thereby

improving performance of a Kalman filter tracker with intentional priors.

Find general applicability beyond the Headpose problem

We defined and used the ALICE loss for the end-to-end head detection and head-

pose classification. However, with very little modification it was shown to be

applicable to sparse point based annotation problems. We established that by
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applying it to solve the challenging problem of automatic segmentation of deep

sea corals in Chapter 6.

Although there are many ways to take the work forward, we conclude that we have

successfully completed the exploration we set out for in the beginning. However

we discuss some ideas of how the research enables exploration of new ideas briefly

in the next section.

To achieve these objectives, we employed a data driven machine learning approach

as can be seen from Chapter 3 and 4. To this end, having reached the objectives

by employing the methods hypothesised in the thesis statement as stated in 1, we

can conclude the thesis to be true and valid.

Find general applicability beyond the Headpose problem We defined and

used the ALICE loss for the end-to-end head detection and headpose classification.

However, with very little modification it was shown to be applicable to sparse point

based annotation problems. We showed this by

7.2 Future Work

In this section we discuss potential future directions of this work.

Higher level Social Signal Processing

Although we have explored some aspects of social signal processing, we believe

a lot of more research and standardised datasets are required in the field. We

need to understand group behaviour from headpose data. Similarly, it will be

interesting to apply headpose to separate communicative gestures from general

actions. That will then lead to fine grained gesture classifications into various

gesture phases like pre-stoke and stroke as hypothesised in [6]. Once we have large

scale standard datasets for human gestures, headpose and other low level signals

like limb movement and gesture mimicry can be used for better understanding the

behaviour of humans or groups of humans.

End-to-end detection and pose estimation of other objects

The DFCNN framework can be used for other tasks like bodypose estimation. The
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ALICE loss lends itself to learn from weak labels. Hence body parsing part seg-

mentation can be achieved from body joint datasets like FLIC and Leeds Sports.

Other applications might include combining the output with recurrent neural net-

works for action/gesture recognition and distinction via head pose. It can be

applied for pose classification problems for other objects like cars for predicting

traffic from instantaneous snapshots.

Better framework and understanding of early feature fusion of different

modalities in Deep neural network

So far there does not seem to be a theory of multi modal convolutional neural net-

works that fuse features early for joint optimisation. It has been speculated that

one source of gradient is not meaningful for different modalities. It has also been

seen from our work in Chapter 4 that this recipe does not yield good results. How-

ever theoretical investigation is required to understand this phenomenon better so

that multiple modalities can be jointly optimised.

7.3 Final Remarks

In this thesis we set out to solve the problem of human headpose because it is

one of the most important underlying signals for Social Signal Processing. We

successfully identified the problems with current approaches and we proposed new

methods and solved the problem in a unified manner for both detection and pose

estimation in multi-modal RGB-D data. We showed the robustness of the devel-

oped algorithms in both HCI and surveillance domains. Beyond that we showed

that the algorithms are generally applicable by applying them to Deep sea coral

segmentation. We achieved the state of the art accuracy in all domains for head-

pose estimation, and showed that by having an informative signal, it is applicable

to higher lever social signal processing that is very useful for human behaviour

understanding. The main message of this thesis is that a data driven machine

learning based strong and robust solution to an underlying signal processing sub-

problem (head pose) can lead to advanced applications that will one day help

computers understand subtleties of human behaviour.
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[40] Lúıs A Alexandre. 3d object recognition using convolutional neural networks

with transfer learning between input channels. In Proc. the 13th Interna-

tional Conference on Intelligent Autonomous Systems, 2014.

[41] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learn-

ing rich features from rgb-d images for object detection and segmentation.

In Computer Vision–ECCV 2014, pages 345–360. Springer, 2014.

[42] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. arXiv preprint arXiv:1411.4038, 2014.

[43] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face

recognition: A convolutional neural-network approach. IEEE transactions

on neural networks, 8(1):98–113, 1997.

[44] Patrice Y Simard, David Steinkraus, and John C Platt. Best practices

for convolutional neural networks applied to visual document analysis. In

ICDAR, volume 3, pages 958–962, 2003.

[45] Fu Jie Huang and Yann LeCun. Large-scale learning with svm and convo-

lutional for generic object categorization. In 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’06), vol-

ume 1, pages 284–291. IEEE, 2006.

http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527


Bibliography 123

[46] Dan C Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and

Jürgen Schmidhuber. Flexible, high performance convolutional neural net-

works for image classification. In IJCAI Proceedings-International Joint

Conference on Artificial Intelligence, volume 22, page 1237, 2011.

[47] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In Computer Vision

and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages

248–255. IEEE, 2009.

[48] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[49] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object classes chal-

lenge: A retrospective. International Journal of Computer Vision, 111(1):

98–136, 2015.

[50] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-

tional networks. In Computer Vision–ECCV 2014, pages 818–833. Springer,

2014.

[51] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-

scale image recognition. CoRR, abs/1409.1556, 2014.
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