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Abstract

We propose a new mixed-integer programming formulation that very
naturally expresses the layout restrictions of a layered (hierarchical) graph
drawing and several associated objectives, such as a minimum total arc
length, number of reversed arcs, and width, or the adaptation to a specific
drawing area, as a special quadratic assignment problem. Our experiments
show that it is competitive to another formulation that we slightly simplify
as well.

1 Introduction

We consider a widely used drawing style for directed graphs where each vertex
of the graph is assigned to a horizontal layer such that no two adjacent vertices
are assigned to the same layer and all (or, at least most of the) arcs have a com-
mon direction. Frequently, this kind of layout is used to represent hierarchical
adjacency structures such as, e.g., flow diagrams, or dependency illustrations.

Until today, the dominant hierarchical graph drawing framework considered
in research and implemented in software is the one proposed by Sugiyama et
al. [14]. It involves a workflow of four successive and interdependent steps
for (i) cycle removal, (ii) vertex layering, (iii) crossing minimization, and (iv)
horizontal coordinate assignment and arc routing. Classically, step (i) is carried
out by solving the feedback arc set problem, i.e., reversing (a minimum number
of) arcs such that they all have a common direction in steps (ii)–(iv), and after
which the original orientations are finally restored.

In this paper, we concentrate on the first two phases and, in particular,
on their integration in order to obtain a two-dimensionally compact layout.
Irrespective of whether a directed graph is acyclic originally, or (temporarily)
made acyclic in phase (i), the classic approach treats the respective common
arc direction as inviolable within the subsequent steps. Thus, the number of
vertices on any of its longest paths constitutes a lower bound on the height of
the graph’s layering and may impede a compact layout from the very beginning.
This is true in particular if the longest path comprises a large subset of the
graph’s vertices and has thus a poor proportion to the width of a classical layout.
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As opposed to that, an integration of phases (i) and (ii) permits to identify
(a minimum number of) reasonable arcs to be drawn reverse to the intended
hierarchical direction in order to support several aesthetic criteria such as a
minimum total arc length and minimum width, or the adaptation to a drawing
area of a certain aspect ratio. Fig. 1 illustrates the potential aesthetic effects
and improved readability when using this approach. Previous experimental
evaluations, e.g. in [6, 11, 12, 13]), show that significant improvements in terms
of the required drawing area or aspect ratio can be achieved when optimizing
the layering w.r.t. the mentioned objectives.

Figure 1: Two layered drawings of the same directed acyclic graph. On the left
a classic one, i.e., adhering to its longest path with all arcs pointing downward,
and on the right with a much better aspect ratio achieved by reversing only two
arcs (marked dash-dotted).

The central contribution of this paper is a new mixed-integer programming
(MIP) formulation that very naturally expresses all the mentioned objectives
and the conditions of a feasible layering as a special quadratic assignment prob-
lem (QAP). Using a common benchmark set, we show that it computationally
competes on equal terms with the currently best known MIP formulation. An-
other advantage of our formulation is that it is more compact in the number of
constraints and less sensitive to a graph’s density. Due to the newly drawn links
to the QAP, we hope that it will as well inspire further combinatorial (heuris-
tic) approaches to tackle larger problem instances or to support interactive user
applications.

The paper is organized as follows. In Sect. 2, we restate a series of problem
formulations that subsequently generalize on the classical directed graph layer-
ing problem and depict the latest state of the art. Parenthetically, we highlight
the major existing and particularly exact approaches to solve these. In Sect. 3,
we consider the most general and most recently discussed variant in more detail
and show up some pitfalls when reformulating it as a MIP. We then present
a slightly simplified version of the currently best known such model in Sect. 4
before we present our new one in Sect. 5. After discussing a few remarks in
Sect. 6, we report in Sect. 7 on our computational evaluation. Finally, the the
paper closes with a conclusion in Sect. 8.
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2 Definitions and Related Work

A layering L of a directed graph G = (V,A) with vertex set V and arc set A

is a mapping L : V → N
+ that assigns each vertex v ∈ V a unique layer L(v).

Classically, and presuming that G is acyclic, a layering L is considered feasible if
L(v)−L(u) ≥ 1 holds for all uv ∈ A. In 1993, the following associated problem
was introduced and shown to be polynomial time solvable by Gansner et al. [4]:

Problem 1 Directed Layering Problem (DLP). Let G = (V,A) be a directed
acyclic graph. Find a feasible layering L of G such that the total arc length
∑

uv∈A(L(v)− L(u)) is minimum.

Total arc length minimization implicitly contributes to a vertically compact
drawing, and has horizontal effects as well, as it minimizes the number of dummy
vertices being introduced whenever an arc spans across a layer. These are
necessary to perform the subsequent steps and also help to measure the width of
a layering more accurately as is further discussed below. For the final drawing,
they are removed again. A natural generalization of DLP to arbitrary (i.e., not
necessarily acyclic) graphs is to consider a layering L feasible if L(v) 6= L(u)
holds for all uv ∈ A1. Rüegg et al. [11, 12] introduce weights ωlen and ωrev

that allow to express the respective emphasis on the minimization of the total
arc length and the number of reversed arcs. As opposed to DLP, the resulting
multi-objective optimization problem is NP-hard, and it remains so even if one
of ωlen and ωrev is zero [11].

Problem 2 Generalized Layering Problem (GLP). Let G = (V,A) be a directed
graph. Find a feasible layering L of G that minimizes the expression

ωlen

(
∑

uv∈A |L(v)− L(u)|
)

+ ωrev |{uv ∈ A | L(v) < L(u)}|.

The next step on the path to a two-dimensionally ‘compact’ drawing is to ex-
plicitly minimize its width. To be precise, one needs to distinguish the estimated
width of a layering, which is given by the maximal number (or, if these are not
uniform, the maximal accumulated widths) of original and dummy vertices in
any of its layers, from the final drawing width which is further influenced by the
horizontal coordinate assignment and arc routing [12]. Here, we restrict atten-
tion to the estimated width and denote it as W . Integrating width minimization
into DLP (subsequently denoted as problem DLP-W) is, apart from the con-
sideration of dummy vertices, equivalent to solving the precedence-constrained
multiprocessor scheduling problem and thus as well NP-hard [15]. Healy and
Nikolov [5] proposed a MIP formulation for DLP-W, and Jabrayilov et al. [6]
presented one that integrates width minimization into GLP, i.e., that solves the
following problem:

Problem 3 Minimum Width Generalized Layering Problem (GLP-W)2. Find a
feasible layering L of a directed graph G = (V,A) that minimizes the expression

ωlen

(
∑

uv∈A |L(v)− L(u)|
)

+ ωrev |{uv ∈ A | L(v) < L(u)}| + ωwid W .

1This naturally extends to undirected graphs considered as bidirected ones.
2This problem is called Compact Generalized Layering Problem (CGLP) in [6, 13] but

renamed here to harmonize with the other variants.
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Moreover, in [13], Rüegg et al. propose to optimize a layering w.r.t. a target
drawing area of width rW and height rH . Informally, a ‘best’ layering is then
considered one that can be scaled up the most until it exhausts one of the two
dimensions while still respecting the other. Formally, define H := maxv∈V L(v)
to be the height of a layering L. This definition is suitable as we may assume
w.l.o.g. that vertices are assigned to consecutive layers starting from index one.
The scaling factor S to be maximized is then the minimum of the ratios between
the targeted and the actually used width and height, respectively, i.e., S =
min{ rW

W , rH
H }, and the resulting problem is:

Problem 4 Maximum Scale Generalized Layering Problem (GLP-MS). Given
a drawing area of (normalized3) width rW and (normalized) height rH , find a
feasible layering L of a directed graph G = (V,A) that minimizes the expression

ωlen

(
∑

uv∈A |L(v)− L(u)|
)

+ ωrev |{uv ∈ A | L(v) < L(u)}| − ωscl S.

Clearly, each of the problems 2–4 generalizes over its predecessors. Hence,
there is a ‘backward compatibility’ in the sense that MIPs for GLP can solve
DLP (by setting ωrev = ∞), MIPs capable to minimize the width may also
ignore it (by setting ωwid = 0), and MIPs to maximize the scaling factor can
be used to minimize the width (by setting rW = 1 and rH = ∞). For DLP,
there are two further inexact but well-known algorithms: First, the longest-
path method by Eades and Sugiyama [3]. Here, a minimum total arc length is
not guaranteed, but in a certain sense approximated, as the resulting height is
minimal, and each vertex is placed on its lowest possible layer. Second, for a
fixed width upper bound Wmax (w.r.t. original but not dummy vertices), the
Coffman-Graham algorithm [1], that is originally destined to the multiprocessor
scheduling problem, allows for a 2− 2

Wmax
-approximation of the minimum height.

An iterative scheme based on this algorithm, and to obtain drawings with an
aspect ratio close to a desired value, was presented by Nachmanson et al. [9].
Moreover, Nikolov et al. approach DLP-W heuristically in [10], and Rüegg et
al. tackle GLP-MS heuristically in [13].

Figure 2: A directed graph drawn with a layering created by solving GLP-MS
having rW : rH set to 1 : 2 (left), 1 : 1 (middle), and 2 : 1 (right). The obtained
optimal W : H combinations are respectively 5 : 10, 6 : 6, and 8 : 4.

3Normalization is addressed in Sect. 3.
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3 GLP-MS and a Slight Variation GLP-MS∗

GLP-MS is ‘different’ than its preceding problems in Sect. 2 in several ways.
First of all, the parameters rW and rH used to characterize the target drawing
area introduce undesired economies of scale since different values representing
the same aspect ratio lead to different numeric maxima of S. At the same
time, it is not necessary to specify the dimensions of the drawing area using
absolute values as the goal is a best effort layering for the relative aspect ratio
of the targeted area. If that exceeds, e.g., the absolute available width, this
means that ‘zooming out below 100%’ is necessary (and inevitable) to fully
display the graph at once on the target area. As a normalization, we thus
propose to normalize rW and rH to rW

min{rW ,rH} and rH
min{rW ,rH} , respectively.

Fig. 2 indicates how different (normalized) choices of rW and rH affect optimal
layerings of an example graph.

Moreover, the different role of the height H, being now (just like and concur-
rently with the width W) a variable subject to optimization, makes it particu-
larly difficult to design a MIP model for GLP-MS. More precisely, GLP-MS asks
for a maximization of ωscl S that is expressed as a minimization of its negation
in Problem 4. However, translated into a MIP, the definition of S to be the min-
imum of rW

W and rH
H inevitably leads to inequalities of the form S ·W ≤ rW and

S · H ≤ rH - which induce two products of integer variables with a potentially
large value range. It is possible to linearize these, but the resulting formulation
is unlikely to be well-solvable in practice. Rüegg et al. circumvent this problem
elegantly in [13]. Instead of −ωscl S, they minimize ωscl S̄ where S̄ := 1

S . The
above inequalities then turn into W ≤ rW S̄ and H ≤ rH S̄, i.e., linear ones. We
call this slight variation GLP-MS∗.

4 A Reference MIP for GLP-MS∗ and GLP-W

In [6], a MIP formulation, called CGL-W henceforth, was experimentally shown
to be the superior one to solve problem GLP-W to optimality on a common
benchmark set. In [13], Rüegg et al. modified it to obtain a (and the, to the
best of our knowledge, yet only) MIP model for GLP-MS∗ and that we re-
fer to as CGL-MS∗. The following is a slightly simplified and more compact
reformulation of it.

Let Y be a height upper bound to be chosen a priori. Then, for all v ∈ V

and all layers k ∈ {1, . . . , Y − 1}, CGL-MS∗ involves binary variables yk,v being
equal to 1 if and only if k < L(v). In particular L(v) = 1 if and only if yk,v = 0,
L(v) = Y if and only if yk,v = 1 for all k ∈ {1, . . . , Y − 1}, and L(v) = k if and
only if yk−1,v − yk,v = 1. There are further auxiliary variables ruv (equal to 1 if
and only if uv ∈ A is reversed) and duv,k (equal to 1 if uv ∈ A causes a dummy
vertex on layer k ∈ {2, . . . , Y − 1}), and the variable S̄ to represent the inverse
scaling factor. The total number of variables amounts to (|V |+ |A|) ·(Y −1)+1.
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minimize
∑

uv∈A

(

ωrev ruv + ωlen(1 +
Y −1
∑

k=2

duv,k)
)

+ ωscl S̄

subject to:

yk,v − yk−1,v ≤ 0 ∀ v ∈ V ; k ∈ {2, . . . , Y − 1} (1)

y1,u − ruv ≥ 0 ∀ uv ∈ A (2)

y1,v + ruv ≥ 1 ∀ uv ∈ A (3)

yk−1,u − yk,v − ruv ≤ 0 ∀ uv ∈ A; k ∈ {2, . . . , Y − 1} (4)

yk−1,v − yk,u + ruv ≤ 1 ∀ uv ∈ A; k ∈ {2, . . . , Y − 1} (5)

yY −1,u − ruv ≤ 0 ∀ uv ∈ A (6)

yY −1,v + ruv ≤ 1 ∀ uv ∈ A (7)

yk,u − yk−1,v − duv,k ≤ 0 ∀ uv ∈ A; k ∈ {2, . . . , Y − 1} (8)

yk,v − yk−1,u − duv,k ≤ 0 ∀ uv ∈ A; k ∈ {2, . . . , Y − 1} (9)
∑

v∈V

(1− y1,v) ≤ rW S̄ (10)

∑

v∈V

yY −1,v ≤ rW S̄ (11)

∑

v∈V

(yk−1,v − yk,v) +
∑

uv∈A

duv,k ≤ rW S̄ ∀ k ∈ {2, . . . , Y − 1} (12)

1 +
∑

k∈{1,...,Y −1}

yk,v ≤ rH S̄ ∀ v ∈ V (13)

yk,v ∈ {0, 1} ∀ v ∈ V ; k ∈ {1, . . . , Y − 1}

ruv ∈ [0, 1] ∀ uv ∈ A

duv,k ∈ [0, 1] ∀ uv ∈ A; k ∈ {2, . . . , Y − 1}

S̄ ∈ R≥0

To model the objective function, it is exploited that the length of an arc (i.e.,
the difference of the layer indices its endpoints are assigned to) is equivalent to
the number of dummy vertices it causes plus one. Inequalities (1) establish
transitivity in the sense that L(v) > k implies L(v) > k − 1 for available layers
k > 1. Constraints (2) and (3) make sure that it is infeasible to assign both
vertices of any arc to layer 1. More precisely, they imply L(v) > 1 if the arc
uv ∈ A is decided to have its original direction (ruv = 0) or that L(u) > 1 if it is
reversed, respectively. A consistent identification of reversed arcs based on the
assignment of vertices to the other layers is then established by constraints (4)–
(7). More precisely, inequalities (4) state that if L(u) ≥ k, then L(v) > k or the
arc uv ∈ A is reversed (or both, which is then prohibited by inequalities (5)).
Rather unintuitively, inequalities (4) as well imply the condition L(u) 6= L(v) if
ruv = 0, since there must be some layer k such that L(u) ≥ k, and the constraint
then enforces L(v) > k. Similarly, inequalities (5) state on the one hand that if
L(v) ≥ k and the arc uv ∈ A is reversed, then L(u) > k. On the other, since
there must be some layer k such that L(v) ≥ k, they implement the condition
L(u) 6= L(v) if ruv = 1, as then L(u) > k is enforced. Constraints (6) and (7)
simply represent (4) and (5) for the case k = Y (as the variables yY,v do not
exist). Each arc uv ∈ A causes a dummy vertex on layer k if either L(u) > k

and L(v) < k or vice versa. In the first case, inequalities (8) will force duv,k
to be 1, in the second case, inequalities (9) will do so. In any other case, an
optimum solution has duv,k = 0 whenever ωlen > 0. The maximal layer width
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and the height are related to the inverse maximum scaling factor S̄, in the way
explained in Sect. 3, by inequalities (10)–(12) and (13), respectively. The total
number of constraints is exactly (4|A|+|V |+1)·(Y −1)+1. Finally, to reconvert
the presented formulation to CGL-W, it is sufficient to replace the variable S̄
(and its weight ωscl) by W (and ωwid), the occurrences of rW S̄ in inequalities
(10)–(12) by W , and to remove inequalities (13).

5 Neq Quadratic Assignment Formulations

QLA-MS∗ and QLA-W

All the layering problems defined in Sect. 2 may be seen as specialized (quadratic)
assignment problems. In this sense, the seminal integer program for DLP-W
by Healy and Nikolov [5] is natural in that it uses binary variables xv,k tak-
ing on value 1 if and only if vertex v ∈ V is assigned to layer k ∈ {1, . . . , Y }.
However, like CGL-W and CGL-MS∗, its extension to solve GLP-W in [6] re-
quires additional variables in order to model dummy vertices and arc reversals.
In contrast to that, the following new model QLA-MS∗ involves exceptionally
assignment variables and products of these. More precisely, for all uv ∈ A and
k, l ∈ {1 . . . , Y }, the variable pu,k,v,l models the product xu,k xv,l. The total
number of variables is thus |V | · Y + |A| · Y 2 + 1, i.e., larger than in case of
CGL-MS∗. However, we will require less constraints and are able to express
these as well as the objective function very intuitively.

For instance, an arc uv ∈ A is reversed if and only if L(u) > L(v), i.e, if

Y
∑

k=2

(

xu,k ·
k−1
∑

l=1

xv,l

)

=
Y
∑

k=2

k−1
∑

l=1

pu,k,v,l = 1.

Its length (again, the difference of the layer indices u and v are assigned to) is
given by the expression

Y
∑

k=2

k−1
∑

l=1

(k − l) · (pu,l,v,k + pu,k,v,l)

since we know that exactly one of the products summarized over takes on value
one. Moreover, the arc causes a dummy vertex on a layer k ∈ {2, . . . , Y − 1} if
and only if k is between the layers u and v are assigned to, i.e., if

k−1
∑

l=1

Y
∑

m=k+1

(pu,l,v,m + pu,m,v,l) = 1.

Finally, the condition that u and v must be assigned to different layers is ex-
pressed by simply fixing pu,k,v,k to zero for all k ∈ {1, . . . , Y }. In practice, they
can of course be just omitted instead. The full model QLA-MS∗ is the following:
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minimize
∑

uv∈A

(

Y
∑

k=2

k−1
∑

l=1

ωlen(k − l)(pu,l,v,k + pu,k,v,l) + ωrev pu,k,v,l
)

+ ωscl S̄

subject to:

Y
∑

k=1

xv,k = 1 ∀ v ∈ V (14)

Y
∑

l=1

pu,k,v,l = xu,k ∀ uv ∈ A;k ∈ {1, . . . , Y } (15)

Y
∑

k=1

pu,k,v,l = xv,l ∀ uv ∈ A; l ∈ {1, . . . , Y } (16)

pu,k,v,k = 0 ∀ uv ∈ A;k ∈ {1, . . . , Y } (17)
∑

v∈V

xv,k ≤ rW S̄ ∀ k ∈ {1, Y } (18)

∑

uv∈A

k−1
∑

l=1

Y
∑

m=k+1

(pu,l,v,m + pu,m,v,l) +
∑

v∈V

xv,k ≤ rW S̄ ∀ k ∈ {2, . . . , Y − 1} (19)

Y
∑

k=1

k xv,k ≤ rH S̄ ∀ v ∈ V (20)

xv,k ∈ {0, 1} ∀ v ∈ V ; k ∈ {1, . . . , Y }

pu,k,v,l ∈ [0, 1] ∀ uv ∈ A;k, l ∈ {1, . . . , Y }

S̄ ∈ R≥0

Equations (14) let each vertex be assigned a unique layer, and equations (15)
and (16) establish that variable pu,k,v,l correctly represents the value of xu,k ·
xv,l for uv ∈ A, and k, l ∈ {1, . . . , Y } by following the compact linearization
approach [7, 8]. An intuitive interpretation for (15) is, that whenever xu,k is zero,
all products involving it need to be zero as well. Conversely, if xu,k = 1, then
exactly one of the products on the left hand side (which are all the products of
xu,k with different xv,l for some fixed vertex v ∈ V ) must be equal to one as well
due to (14). Equations (15) establish the same relationship for the second factor
of any product variable. The width and height are related to S̄ by inequalities
(18)–(20) in a similar fashion as in model CGL-MS∗. Without accounting for
the variable fixings (17), the total number of constraints is (2|A|+1) · Y +2|V |
and thus about halved compared to model CGL-MS∗ as well as less sensitive to
a higher graph density. Finally, QLA-W is obtained from the displayed model
by omitting (20) and rW , and by replacing S̄ by W and ωscl by ωwid.

6 Remarks on the Height and Alternative Ex-

pressions to Measure it

In both presented MIP models, the height is measured as the maximum layer
index used plus one without loss of generality as discussed in Sect. 2. In practice,
there may however exist optimal solutions to these MIPs that do not assign any
vertex to layer one or that do not place vertices on consecutive layers only.
But, this may happen only if w.r.t. the drawing area, the height (respectively
the inequalities (13) or (20)) is (are) dominated by the width (respectively
constraints (10)–(12) or (18)–(19)) due to the choice of rW , rH , and Y for the
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particular graph instance under consideration. Thus, in this case, the computed
optimal layering and its height measure can be normalized a posteriori by simply
ignoring empty layers.

Moreover, both inequalities (13) in CGL-MS∗ and (20) in QLA-MS∗ express
the height of the layering in a way that emphasizes compactness and supports
bounding S̄ from below. There are however alternative expressions and the re-
spective choice may have an impact on the sustained performance when solving
the respective MIP in practice. First of all, the height can as well be computed
by taking the maximum over single (instead of summarized) layering variables.
In CGL-MS∗, this amounts to the following |V |(Y − 1) constraints as a replace-
ment for (13):

(k + 1) yk,v ≤ rH S̄ ∀ v ∈ V ; k ∈ {1, . . . , Y − 1} (21)

Similarly, in QLA-MS∗, one might use the following |V |Y constraints as a sub-
stitute for (20):

k xv,k ≤ rH S̄ ∀ v ∈ V ; k ∈ {1, . . . , Y } (22)

Another alternative is proposed as part of the initial version of CGL-MS∗ by
Rüegg et al. in [13]. It involves the addition of two auxiliary vertices s and t

connected by an auxiliary arc (s, t) and the replacement of (13) by the following
value assignments and constraints:

yk,s = 0 ∀ k ∈ {1, . . . , Y − 1} (23)

yk,v − yk,t ≤ 0 ∀ v ∈ V ; k ∈ {1, . . . , Y − 1} (24)

1 +
∑

k∈{1,...,Y−1}

yk,t ≤ rH S̄ (25)

Since all variables related to s are fixed and rst can be fixed to zero as well,
the extension causes only 3(Y − 2) additional other constraints (1)–(13).

For the experimental evaluation that follows next, we implemented CGL-
MS∗ using the approach described last, and QLA-MS∗ using (22), as these
variants performed best on average.

7 Experimental Evaluation

Concerning aesthetic drawing criteria, the effects of integrating GLP-MS and
GLP-W into the hierarchical framework by Sugiyama et al. have been evaluated
already in [6, 12, 13]. We thus confine ourselves to show that QLA-MS∗ and
QLA-W compare well to CGL-MS∗ and CGL-W in terms of solution times based
on the same two instance sets as in these references. The first set ATTar are
the AT&T graphs from [2] whereof we extracted all non-tree instances with 20

to 60 vertices. These have 20 to 168 arcs, and density |A|
|V | within [1, 4.72] (on

average 1.47). The second set Random consists of 180 randomly generated and
also acyclic and non-tree graphs with 17 to 60 vertices, 30 to 91 arcs, and about
1.5 arcs per vertex. The experiments cover the rH : rW combinations 1 : 2,
1 : 1, and 2 : 1 for QLA-MS∗ and CGL-MS∗, and an additional run for QLA-W
and CGL-W. The objective weights4 were set to ωlen = 1, ωrev = Y ωlen,

4These are different than in [6, 13] and explain the degraded performance of CGL-W
compared to [6] where ωwid = 1. QLA-W performs on equal terms also in this case.
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and ωwid = ωscl = |A|ωrev + |A| · Y + 1. Priority is thus laid on a maximum
scaling factor or minimum width, and an arc is reversed only if this supports
the respective main goal. Moreover, we set Y = |V | in case of GLP-MS∗ like
in [13] and Y = ⌈1.6 ·

√

|V |⌉ for GLP-W like in [6]. All MIPs were solved
using Gurobi 85 single-threadedly on a Debian Linux system with an Intel Core
i7-3770T CPU (2.5 GHz) and 8 GB RAM, and with a time limit set to half
an hour.
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ATTar QLA-MS∗ CGL-MS∗ QLA-W CGL-W
|V | # 1:2 1:1 2:1 1:2 1:1 2:1 minW minW

20–30 58 1 2 5 1 1 3 1 1
31–45 39 1 2 14 - - 10 2 1
46–60 30 11 14 26 11 16 25 18 19

Random QLA-MS∗ CGL-MS∗ QLA-W CGL-W
|V | # 1:2 1:1 2:1 1:2 1:1 2:1 minW minW

17–30 60 - - 4 - - 2 - -
31–45 61 - 1 50 - 4 41 9 4
46–60 59 6 47 59 12 45 59 54 48

Figure 3: The plots depict the solution times in seconds (a cross per graph) for
the different rH : rW combinations as well as pure width minimization (minW ).
Crosses at the top (1800s) correspond to timeouts, their quantities are listed in
the tables below.

Averaged over the whole experiment, QLA-MS∗ and CGL-MS∗ perform al-
most on equal terms. As is visualized in Fig. 3, the latter is faster and causes
less timeouts in the 2 : 1-case, but in the 1 : 2-experiments often the oppo-
site is true, especially for the Random and larger ATTar instances. In the
1 : 1-experiments, their relative performance is very similar with CGL-MS∗ be-
ing a bit faster on those instances solved but observing slightly less timeouts
with QLA-MS∗. The 2 : 1-case, where the height is constrained to be at most
twice the width, turns out to be the hardest - which is not surprising as e.g. the
ATTar graphs are at least twice as high as wide when drawn with the classic
framework [6]. Minimizing the width w.r.t. a fixed (but larger) height limit
appears to be considerably easier compared to the implicit ‘width emphasis’ in
the 2 : 1-case that additionally involves finding the best H:W-pair under the

5A proprietary MIP solver, see www.gurobi.com
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given aspect ratio constraint. In this discipline, QLA-W often performs slightly
faster if an instance can be solved, but causes more timeouts than CGL-W on
the Random ones.

8 Conclusion

In this paper, we have drawn a series of subsequent generalizations of the classi-
cal directed graph layering problem. We studied in more detail the most general
one among them, where the aim is to best possibly fit a layered drawing to a
given area under further minimization of arc lengths and the number of re-
versed arcs. Besides discussing practical issues when modeling this problem as
a mixed-integer program, we presented a slightly simplified version of the (to the
best of our knowledge) so far only existing such formulation, and then proposed
a new and much more intuitive one that expresses the problem in terms of a
quadratic assignment problem. Further, we showed that using it, a performance
comparable to the previous one can be sustained in practice. Both modeling
concepts can as well be used to solve the slightly more special problem variant
where the drawing area is not fully specified, but the width shall be minimized
w.r.t. a given height restriction. We hope that the drawn links to the quadratic
assignment problem inspire further and also heuristic solution approaches.
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