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Abstract
Let MAJn denote the Boolean majority function of n input variables. In this paper, we study
the construction of depth two circuits computing MAJn where each gate in a circuit computes
MAJm for m < n.

We first give an explicit construction of depth two MAJbn/2c+2 ◦MAJ≤n−2 circuits computing
MAJn for every n ≥ 7 such that n ≡ 3 (mod 4) where MAJm and MAJ≤m denote the majority
gates that take m and at most m distinct inputs, respectively. A graph theoretic argument
developed by Kulikov and Podolskii (STACS ’17, Article No. 49) shows that there is no MAJ≤n−2◦
MAJn−2 circuit computing MAJn. Hence, our construction reveals that the use of a smaller fan-
in gates at the bottom level is essential for the existence of such a circuit. Some computational
results are also provided.

We then show that the construction of depth two MAJm ◦MAJm circuits computing MAJn
for m < n can be translated into the construction of a newly introduced version of bipartite
expander graphs which we call a list expander. Intuitively, a list expander is a c-leftregular
bipartite graph such that for a given d < c, every d-leftregular subgraph of the original graph has
a certain expansion property. We formalize this connection and verify that, with high probability,
a random bipartite graph is a list expander of certain parameters. However, the parameters
obtained are not sufficient to give us a MAJn−c ◦ MAJn−c circuit computing MAJn for a large
constant c.
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1 Introduction

Let MAJn denote the Boolean majority function of n variables, i.e.,

MAJn(x1, . . . , xn) = 1[
n∑
i=1

xi ≥ n/2],

here 1[·] denotes 1 if the condition in the bracket is satisfied, and 0 otherwise.
The problem of finding an efficient construction of circuits (or formulas) computing the

majority function has attracted many researchers for a long time (e.g., [2, 10, 13]). The
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famous AKS sorting network [1] can be viewed as an O(logn) depth circuit computing MAJn
if we pick the middle bit of all the outputs. A probabilistic construction of ∼ 5.3 logn-depth
Boolean formula by Valiant [13] is another beautiful result on this problem. Here we mention
that both of these constructions are monotone, i.e., they do not use negation gates. For more
backgrounds and results, see e.g., the introduction of [4] or [7].

Recently, Kulikov and Podolskii [7] initiated the study on the “down scale” version of
this problem. Specifically, they studied the construction of a small depth circuit for MAJn
consisting of gates computing MAJm such that m < n.

In this paper, we restrict our attention to the case of depth two. Namely, we consider
the following type of problems: What is the minimum value of m such that MAJn can be
computed by a depth two circuits consisting of MAJ≤m gates? How to compute MAJn by a
depth two circuit consisting of MAJ≤m gates for m < n?

In spite of the simplicity of the problem statement, its solution might be highly non-trivial
even for small values of n. For example, constructing a depth two circuit consisting of the
5-bit majority gates that computes the 7-bit majority function is already not trivial.

Formally, we consider depth two circuits of the form M2 ◦M1 for M1,M2 ∈ {MAJm,
MAJ≤m} where MAJm and MAJ≤m denote the majority gates that take m and at most
m inputs, respectively. Here M2 denotes the top gate and M1 denotes the bottom gates.
In addition, we impose the restriction that each MAJm (or MAJ≤m) gate on the bottom
level takes m (or at most m) distinct input variables. Note that this restriction affects the
difficulties for computing MAJn. Kulikov and Podolskii [7, Lemma 11] showed that there is
no MAJn−2 ◦MAJn−2 circuit computing MAJn for every odd n under this restriction. On the
other hand, the author of this paper and Yoshida [3] showed that such circuits do exist for
every odd n ≥ 7 if some of the bottom gates are allowed to read an input variable multiple
times. For example, the following circuit (which was presented by Kulikov and Podolskii [7,
Introduction]) computes MAJ7.

MAJ7(x1, . . . , x7)
= MAJ5(MAJ5(x1, x2, x3, x4, x5),MAJ5(x1, x2, x5, x6, x7),MAJ5(x1, x3, x4, x6, x6),

MAJ5(x2, x3, x3, x5, x6),MAJ5(x2, x4, x5, x7, x7)).

One of the most interesting problems in this line of research is to find the minimum value
of m such that MAJn can be computed by a MAJ≤m ◦MAJ≤m circuit. Kulikov and Podolskii
[7] proved a lower bound of m ≥ n13/19+o(1). This was then improved to m = Ω(n0.8) by
Engels, Garg, Makino and Rao [4]. For the upper bound, the construction of such a circuit
for (n,m) = (7, 5), (9, 7) and (11, 9) is provided by Kulikov and Podolskii [7]. This was then
generalized to (n,m) = (n, n− 2) for all odd n ≥ 7 by the author of this paper and Yoshida
[3]. However, in all of these constructions some of the gates at the bottom level read an
input variable multiple times. In our restricted setting, i.e., every bottom gate can read each
variable only once, no non-trivial upper bounds were previously known.

Note that, throughout the paper, we only use the gates computing the standard majority,
i.e., the majority gates with the threshold value m/2 where m denotes its fan-in. In [11],
Posobin gave the construction of a depth two circuit for MAJn consisting of gates with fan-in
m = (2/3)n+ 4 where the threshold value of the bottom gates is not restricted to m/2.

Contributions
The contribution of this paper is twofolds. First, we present an explicit construction of
MAJbn/2c+2 ◦MAJ≤n−2 circuits computing MAJn for every n ≥ 7 such that n ≡ 3 (mod 4).
The construction is quite simple, but as far as we know, this is the first non-trivial depth
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two circuits for MAJn consisting of the standard majority gates of fan-in strictly less than n
and without multiple weights. Since a graph theoretic argument developed by Kulikov and
Podolskii [7] can show that there is no MAJ≤n−2 ◦MAJn−2 circuit computing MAJn, our
construction reveals that the use of a smaller fan-in is essential for the existence of such a
circuit. Some computational results are also provided in the paper.

During this work, we feel that constructing such a circuit for (n,m) with m� n or even
m = n− 4 may be a hard problem. This motivates us to give an explanation or evidence on
this hardness, which leads to the second contribution of this paper.

In the second part of the paper, we show that the construction of depth two MAJm◦MAJm
circuits computing MAJn for m < n can be translated into the construction of a newly
introduced version of bipartite expander graphs which we call a list expander. Intuitively,
a list expander is a c-leftregular bipartite graph such that for a given d < c, every d-
leftregular subgraph of the original graph has a certain expansion property. We formalize
this connection, and verify that, with high probability, a random bipartite graph is a list
expander of certain parameters. However, the parameters obtained are not sufficient to give
us a MAJn−c ◦MAJn−c circuit computing MAJn for a large constant c.

Organization of the Paper
The organization of the paper is as follows. In Section 2, we give an explicit construction of
MAJbn/2c+2 ◦MAJ≤n−2 circuits computing MAJn for n ≡ 3 (mod 4). The results of some
computational experiments on the total fan-in of the bottom gates of a MAJ≤n−1 ◦MAJ≤n−1
circuit are also provided. In Section 3, we discuss the connection between the construction
of depth two MAJm ◦MAJm circuits and the construction of a newly introduced notion of
bipartite expander graphs, which we call a list expander. Then, in Section 4, we give an
analysis on the expansion property of a random bipartite graph. We close the paper by
giving the conclusions in Section 5.

2 Depth Two Majority Circuits for Majority

For an integer n, [n] denotes the set {1, 2, . . . , n}. For a set S, |S| denotes the cardinality of
S. For an n-bit string x ∈ {0, 1}n, xi denotes the i-th bit of x and |x| denotes the number
of 1’s in x, i.e., |x| = |{i ∈ [n] : xi = 1}|.

In this section, we first give a simple construction of depth two majority circuits for
MAJn.

I Theorem 1. For every n ≥ 7 such that n ≡ 3 (mod 4), there is a MAJbn/2c+2 ◦MAJ≤n−2
circuit computing MAJn.

We should note that in Theorem 1 the use of gates with fan-in less than n−2 at the bottom
level is necessary since Kulikov and Podolskii [7, Lemma 11] proved that, for every odd n,
there is no depth two MAJn−2 ◦MAJn−2 circuit computing MAJn, and a simple generalization
of their proof can be extended to establish the non-existence of MAJ≤n−2 ◦MAJn−2 circuits
for MAJn.

Proof. The proof is by construction.
Let n = 4k+3 for some k ≥ 1. We will construct a MAJ2k+3◦MAJ≤4k+1 circuit computing

MAJn. For 1 ≤ i ≤ 2k + 1, let Si := [n]\{2i − 1, 2i}. Let S2k+2 := {1, 3, ..., 4k + 1} and
S2k+3 := {2, 4, ..., 4k+ 2}. For 1 ≤ i ≤ 2k+ 3, the i-th bottom gate gi computes the majority

MFCS 2018
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of all the xj ’s such that j ∈ Si. The top gate C computes the majority of all the gi’s,
i.e., C(x) := 1[

∑
i gi(x) ≥ k + 2]. For ease of understanding, we show below a 0/1-matrix

representing our circuit (for n = 11). The (i, j)-th entry is 1 iff the gate gi reads the variable
xj .

0 0 1 1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1 1
1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 0 0 1 1 1
1 1 1 1 1 1 1 1 0 0 1
1 0 1 0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0 1 0

Below we verify that this circuit correctly computes MAJn. We first observe that it is
sufficient to verify C(x) = 0 only for every input x with |x| = 2k + 1. The correctness
for x with |x| = n − (2k + 1) = 2k + 2 will follow from the fact that every majority gate
in our circuit has an odd number of inputs and hence computes a self-dual function. This
implies that C(x1, . . . , xn) = 1− C(x1, . . . , xn). Then, all other cases will follow from the
monotonicity of our circuit.

It is convenient to consider a hypergraph G over the vertex set V = {1, 2, . . . , n} consisting
of edges E1, . . . , E2k+3 where Ei = [n]\Si for 1 ≤ i ≤ 2k + 3. Note that G contains 2k + 1
edges of size two and two edges of size 2k + 2. We call the former small edges, and the
latter large edges. For a set of vertices S ⊆ V and an edge E, we say that S covers E if
|E ∩ S| ≥ |E|/2.

For x ∈ {0, 1}n, let Vx := {i ∈ [n] | xi = 1}. It is easy to observe that gi(x) = 0 iff Vx

covers Ei for |x| = 2k + 1. Therefore, it is sufficient to verify that the number of edges that
are covered by Vx is at least d 2k+3

2 e = k + 2 for every x ∈ {0, 1}n with |x| = 2k + 1.
We divide the proof into two cases.

Case 1 4k + 3 6∈ Vx.

Observe that Vx covers at least k + 1 small edges. If Vx covers k + 2 or more small
edges, then we are done. Therefore, we can assume that Vx covers exactly k + 1 small edges.
However, in this case, Vx must cover one of two large edges, and hence Vx covers k+ 2 edges
in total. This completes the proof.

Case 2 4k + 3 ∈ Vx.

We view that small edges form a bipartite matching between 2k + 1 left vertices (odd
numbers up to 4k+ 1) and 2k+ 1 right vertices (even numbers up to 4k+ 2). If Vx covers at
least k + 1 left vertices of small edges or at least k + 1 right vertices of small edges, then at
least k+ 2 edges are covered in total since Vx also covers one of two large edges. If Vx covers
exactly k left vertices and k right vertices of small edges, then it also covers both large edges
and hence Vx covers at least k + 2 edges in total. This completes the proof. J

Remark that it is quite plausible that there are many other constructions of MAJ≤n−2 ◦
MAJ≤n−2 circuit for MAJn. For example, for every n ≥ 9 with n ≡ 3 (mod 6), it seems
likely that the MAJ 3

2n+1 ◦MAJ≤n−2 circuit given below also computes MAJn. Let n = 3k
and suppose that k is odd. For i ∈ [k], S2i−1 = [n]\{3i− 2, 3i} and S2i = [n]\{3i− 1, 3i}. In
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addition, we let S2k+1 := {3, 6, . . . , 3k}. For i ∈ [2k + 1], the i-th bottom gate gi is defined
to be

gi(x) = 1
[∑
i∈Si

xi ≥
|Si|
2

]
,

and the top gate computes the majority of all the gi’s. We have computationally verified the
correctness of this circuit up to n = 27, and it may be a good exercise to give a formal proof.

Sum of Bottom Fan-ins

Let F (n) denote the smallest number of the total fan-ins of all the bottom gates of a depth
two MAJ≤n−1 ◦MAJ≤n−1 circuit that computes MAJn. It would be interesting to find the
value of F (n). The circuit constructed in the proof of Theorem 1 gives the upper bound of
F (n) ≤ (n− 2)bn2 c+ bn2 c · 2 = nbn2 c ∼ n

2/2.
We show below some computational results on F (n) for small values of n. We obtain these

results by using an IP solver [6]. More specifically, if we fix the fan-in of the top gate to m2,
then the optimal value of the following IP problem gives F (n). Intuitively, for each S ⊆ [n],
GS represents the number of wires connecting from the bottom gates 1[

∑
i∈S xi ≥

|S|
2 ] to

the top gate. The number of variables is ∼ 2n, and the number of constraints is ∼ 2
(

n
bn/2c

)
as we only need to check for x with |x| ∈ {dn/2e, bn/2c} by monotonicity.

Minimize:
∑

∅6=S([n]

|S|GS

Subject to:
∑

∅6=S([n]

GS = m2,∑
S:|S∩Vx|≥ |S|2

GS ≥
m2

2 , (∀x ∈ {0, 1}n s.t. MAJn(x) = 1),

∑
S:|S∩Vx|≥ |S|2

GS <
m2

2 , (∀x ∈ {0, 1}n s.t. MAJn(x) = 0).

GS ≥ 0 : integer (∀S).

Here Vx denotes {i ∈ [n] : xi = 1} as in the proof of Theorem 1.
Note that F (n) is undefined for n ≤ 5 since a simple exhaustive search shows that there

is no MAJ≤n−1 ◦MAJ≤n−1 circuit computing MAJn for n ≤ 5. The result of our experiments
is as follows.

F (6) = 18.
F (7) = 21. This is identical to the value given by the circuit in the proof of Theorem 1.
F (8) = 31.
F (9) = 37.
F (10) = 50.
F (11) = 55. This is identical to the value given by the circuit in the proof of Theorem 1.

We show an example of circuits that attain F (n) for n = 6, 8, 9 and 10 in Table 1. Given
these data, we conjecture that F (n) is of the order of n2.

I Conjecture 2. F (n) = Θ(n2). More ambitiously, F (n) ∼ n2

2 .

MFCS 2018
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Table 1 The matrix representation of an example of a MAJ≤n−1 ◦ MAJ≤n−1 circuit for MAJn of
a smallest total fan-ins for n = 6, 8, 9 and 10. Here the (i, j)-entry of each matrix represents whether
the i-th bottom gate reads the variable xj .

0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0
1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0
1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1
0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1
1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1

1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1

1 0 1 0 1 1 1 1 1 1

3 Connection between Circuits and List Expanders

For a MAJm2 ◦MAJm1 circuit on n input variables, we naturally associate a bipartite graph
over m2 left vertices and n right vertices as follows.

I Definition 3. Let C be a MAJm2 ◦MAJm1 circuit on n input variables where the bottom
gates are labeled by g1, . . . , gm2 . We define a bipartite graph GC = (L∪R,E) associated to C
as follows: Let L = {g1, . . . , gm2} and R = {x1, . . . , xn}, i.e., each left vertex is corresponding
to a bottom gate and each right vertex is corresponding to an input variable. For gi ∈ L and
xj ∈ R, (gi, xj) ∈ E iff the gate gi does not read xj as an input in C.

Let G = (V,E) be a graph. For a vertex v ∈ V , NG(v) denotes the neighbors of v, and
for a set of vertices S ⊆ V , NG(S) denotes the neighbors of S, i.e., NG(S) := {u : ∃v ∈
S s.t. (v, u) ∈ E}.

By Definition 3, a bipartite graph GC associated to a MAJm2 ◦ MAJn−`1 circuit C is
`1-leftregular, which means that every left vertex has exactly `1 neighbors, i.e., |NGC (v)| = `1
for every v ∈ L.

The following is the main theorem in this section, which translates the construction of
depth two circuits computing MAJn into the construction a bipartite graph with a certain
expansion property.

I Theorem 4. Suppose that n is an odd integer. For every even numbers `1, `2 > 0, the
following are equivalent.
(i) A depth two MAJn−`2 ◦MAJn−`1 circuit C computes MAJn.
(ii) Let GC = (L∪R,E) be a `1-leftregular bipartite graph associated to C. Then, for every

(`1/2 + 1)-leftregular subgraph G′ ⊆ GC over the same set of vertices of GC ,

|NG′(S)| ≥
⌈
|R|
2

⌉
+ 1 for every S ⊆ L with |S| =

⌈
|L|
2

⌉
.

Proof. By using an argument similar to the one used in the proof of Theorem 1, we see that
the statement (i) is equivalent to the statement that for every x ∈ {0, 1}n with |x| = dn/2e,
C(x) = 1, which we refer to as (i’). Here we use the assumption that n is odd as well as the
fan-in of each gate is also odd.
(i’) → (ii) Assume for contradiction that there exists an (`1/2 + 1)-leftregular subgraph G′
of GC such that |NG′(S)| ≤ d|R|/2e for some S ⊆ L with |S| = d|L|/2e. Fix an arbitrary
such S. Let X1 ⊆ R be an arbitrary superset of NG′(S) with |X1| = d|R|/2e = dn/2e. Define
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x = (x1, . . . , xn) ∈ {0, 1}n so that xj = 1 iff xj ∈ X1 for j ∈ [n]. For every gi ∈ S, we
have gi(x) = 0 and hence C(x) = 0 since |S| = d|L|/2e. This contradicts the statement (i’),
completing the proof.
(ii) → (i’) Assume for contradiction that there exists an input x = (x1, . . . , xn) ∈ {0, 1}n
such that |x| = dn/2e and C(x) = 0. Fix an arbitrary such x. Define X1 ⊆ R as
X1 := {xj : xj = 1}, and for 1 ≤ i ≤ |L|, let Vi ⊆ R be the set of variables xj such that gi
reads xj . By the construction of the graph GC , we have∣∣∣∣{gi ∈ L : |Vi ∩X1| ≤

⌊
n− `1

2

⌋}∣∣∣∣ ≥ ⌈ |L|2
⌉
.

Since |X1| = dn/2e, this is equivalent to∣∣∣∣{gi ∈ L : |Vi ∩X1| ≥
`1

2 + 1
}∣∣∣∣ ≥ ⌈ |L|2

⌉
,

where Vi denotes the set R\Vi.
Let S be an arbitrary d|L|/2e-element subset of

{
gi ∈ L : |Vi ∩X1| ≥ `1

2 + 1
}
. Then we

can pick an (`1/2 + 1)-leftregular subgraph G′ of GC such that NG′(gi) ⊆ X1 for every
gi ⊆ S. For this graph G′, NG′(S) ⊆ X1, and hence |NG′(S)| ≤ |X1| = dn/2e, contradicting
the statement (ii). J

We see that the statement (ii) in Theorem 4 has a similar spirit to bipartite expander
graphs. This leads us to the following definition.

I Definition 5. Let d1 ≥ d2 > 0 be two integers. A d1-leftregular bipartite graph G =
(L ∪R,E) with |L| = m and |R| = n is said to be an ((m,n), (d1, d2),K,A) list expander if
for every d2-leftregular subgraph G′ of G over the same set of vertices of G, it holds that

|NG′(S)| ≥ A for every S ⊆ L with |S| = K.

When d1 = d2 we simply call it an expander. Formally, a d1-leftregular bipartite graph
G = (L ∪R,E) with |L| = m and |R| = n is said to be an ((m,n), d1,K,A) expander if

|NG(S)| ≥ A for every S ⊆ L with |S| = K.

Note that our definition of an expander is different from the usual definition in a sense
that the expansion property is only required for the sets of size equal to K.

The existence of a MAJn−4◦MAJn−4 circuit computing MAJn is equivalent to the existence
of an ((n− 4, n), (4, 3),

⌈
n−4

2
⌉
,
⌈
n
2
⌉

+ 1) list expander. Moreover, an explicit construction of
such a circuit implies an explicit construction of such an expander, and vice versa. Currently,
we do not know whether such an expander can be built from known constructions of expanders
in the usual sense.

A similar argument to the proof of Theorem 4 can show that a list expander of the form
“d1 choose d2” for d2 > d1/2 + 1 captures a promise version of the problem for constructing
majority circuits. The proof of Theorem 6 is very similar to the proof of Theorem 4 and
omitted in this version.

I Theorem 6. Let n be an odd integer, and c ≥ 2 be an even integer. Let C be a MAJn−c ◦
MAJn−c circuit over {x1, . . . , xn} and let GC be a c-leftregular bipartite graph associated to
C. Suppose that d is an integer such that d ≥ c

2 + 1. Then, the following are equivalent.
(i) C(x) = 1 for every |x| = bn2 c −

c
2 + d and C(x) = 0 for every |x| = dn2 e+ c

2 − d.
(ii) GC is an ((n− c, n), (c, d), dn−c2 e, b

n
2 c −

c
2 + d) list expander.

MFCS 2018
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Algorithm 1 Construct an witness for refuting an expansion property.
1: procedure Convert(G)
2: S̃ := S and T̃ := NG(S)
3: d := d1
4: while d > d2 do
5: S′ := S̃ and T ′ := T̃

6: repeat
7: Let v∗ be a vertex v ∈ T ′ minimizing |NG(v) ∩ S′|. Ties are broken arbitrary.
8: Put Sv∗ := NG(v∗) ∩ S′
9: Remove all edges connecting v∗ and a vertex in S′ from G

10: T̃ := T̃\{v∗}
11: S′ := S′\Sv∗
12: T ′ := T ′\(NG(Sv∗) ∩ T ′)
13: until |T̃ | <

(
1 + d−d2

5d2
1

)
A

14: d := d− 1
15: end while
16: end procedure

3.1 List Expanders imply Expanders
In this subsection, we give a result roughly stating that a list expander implies an expander
of a certain expansion factor, and observe that converse of it is not true.

I Theorem 7. Let d1 > d2 > 0 be two integers. Suppose that a bipartite graph G = (L∪R,E)
is an ((m,n), (d1, d2),K,A) list expander for A ≥ K. Then, G is an ((m,n), d1,K, (1 + ε)A)
expander for ε = (d1 − d2)/(5d2

1).

Note that we did not optimize the constant ε in Theorem 7.

Proof. The proof is by contrapositive. Put ε = (d1−d2)/(5d2
1). Assume that a d1-leftregular

bipartite graph G = (L ∪R,E) is not an ((m,n), d1,K, (1 + ε)A) expander for A ≥ K. This
means that there exists a set of vertices S ⊆ L with |S| = K such that |NG(S)| < (1 + ε)A.
We will see that for this case, G is not an ((m,n), (d1, d2),K,A) list expander. In order to
show this, it is sufficient to show that there exists a d2-leftregular subgraph G′ of G such
that for some S̃ ⊆ L with |S̃| = K and for some T̃ ⊆ R with |T̃ | < A, |NG′(S̃)| ⊆ T̃ holds.

We set S̃ := S. We will find a subgraph G′ and a set T̃ ⊆ T by using Algorithm 1 shown
above.

First we observe that whenever |T ′| ≥ A, there are at least A/2 v’s in T ′ such that
|NG(v) ∩ S̃| ≤ 2d1 since if otherwise, we have

∑
v∈T ′ |NG(v) ∩ S̃| > Ad1 ≥ Kd1, which

contradicts the assumption that G is d1-leftregular. Suppose that a vertex v∗ chosen in Line
7 satisfies |Sv∗ | ≤ 2d1. We refer to this condition as (*). Then, in Line 12, |T ′| decreases at
most 2d2

1. For every fixed d, the number of iterations of Lines 6 to 13 is at least 1
5d2

1
A. Since

2d2
1

1
5d2

1
A < 1

2A, the condition (*) is always satisfied.
A crucial observation is that after each execution of the While loop in the algorithm, G

satisfies that |NG(v)| ≥ d for every v ∈ S̃ and NG(S̃) ⊆ T̃ . Hence, after the execution of the
entire algorithm, we have a graph G such that |NG(v)| ≥ d2 for every v ∈ S̃ and NG(S̃) ⊆ T̃
with |T̃ | < A. Then, an arbitrary d2-leftregular subgraph of G is not an expander for the
parameter given in the statement of the theorem. J
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We remark that an argument below suggests that the converse of Theorem 7 is not true.
Let G = (L ∪R,E) be a bipartite graph with L = R = Zp and edge set {(x, x+ 1), (x, x−
1), (x, x−1)}x∈Zp where all arithmetic is modulo p and define 0−1 to be 0. It was shown that
this 3-leftregular bipartite graph has an expansion property with some constant expansion
factor. (This was stated implicitly in [8]. See e.g., [12, Construction 4.26] for the statement
in this form.) If we add the edges {(x, x)}x∈Zp to G (and make a slight rearrangement for
x = 0 to avoid parallel edges (0, 0)), then it becomes a 4-leftregular expander. However,
a 3-leftregular subgraph consisting of the edges {(x, x+ 1), (x, x), (x, x− 1)}x∈Zp is not an
expander anymore.

4 Probabilistic Constructions

In this section, we show a statement roughly saying that a random c-leftregular bipartite
graph is a list expander of the form “c choose d” for d ∼ 2

3c with a non-negligible probability.
Note that this is not sufficient for obtaining a non-trivial depth two circuit computing the
majority function, for which we need d ∼ 1

2c.
We first show a fact that will be used in our analysis.

I Fact 8. Suppose that a, b, p are positive integers satisfying a− p > b− p > 0. Then,

aa−p

bb−p
≥ (a− p)a−p

(b− p)b−p .

Proof. The fact can be verified by the following series of inequalities.

aa−p(b− p)b−p − (a− p)a−pbb−p

= (a− p+ a)a−p(b− p)b−p − (a− p)a−p(b− p+ b)b−p

=
a−p∑
i=0

(
a− p
i

)
(a− p)a−p−iai(b− p)b−p −

b−p∑
i=0

(
b− p
i

)
(b− p)b−p−ibi(a− p)a−p

≥
b−p∑
i=0

(a− p)a−p−i(b− p)b−p−i
{(

a− p
i

)
(b− p)i −

(
b− p
i

)
(a− p)i

}
(1)

≥ 0.

Here the last inequality follows from the fact that the value inside the bracket in Eq. (1) is
non-negative for every fixed i. J

The following is the main theorem in this section.

I Theorem 9. Let ε > 0 be an arbitrary small positive constant. Suppose that c is a
constant such that εc ≥ 3, and let m = n− c. Then for every sufficiently large n, there is an
((m,n), (c, d), dm2 e, b

n
2 c −

c
2 + d) list expander, where d = d( 2

3 + ε)ce.

By Theorem 6 and Theorem 9, we can see that for every sufficiently large n, there exists
a MAJn−c ◦MAJn−c circuit C such that C(x) = MAJn(x) for every x ∈ {0, 1}n such that
|x| . n

2 −
c
6 or |x| & n

2 + c
6 .

The rest of this section is devoted to prove Theorem 9. The proof relies on relatively
basic but a bit lengthy calculations.

Proof. Consider a bipartite graph over the vertex set L ∪ R with |L| = m(= n − c) and
|R| = n. We view a c-leftregular bipartite graph as a union of c bipartite matchings. For
i ∈ [c], let Mi be a bipartite matching over L ∪R in which the left vertices are saturated. A
c-leftregular bipartite graph G = (L ∪R,E) is specified by a sequence of c such matchings

MFCS 2018
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E = (M1, . . . ,Mc), which we denoted by GE . Let E denote the set of all possible E’s and
thus |E| = (n!

c! )c. Notice that at this moment, a graph obtained in this way may have a
multiedge. We will take into account this issue later.

Roughly speaking, a c-leftregular bipartite graph is a list expander if every d-leftregular
subgraph of it is an expander. For d ≤ c, a d-leftregular subgraph of G is specified by
a sequence of m sets Di ⊆ [c] (1 ≤ i ≤ m) of size d. Given a sequence of c matchings
E = (M1, . . . ,Mc) and a sequence of m sets D = (D1, . . . , Dm), let GE,D denote a d-
leftregular bipartite graph such that for every i ∈ [m], the set of edges connecting to the i-th
left vertex consists of an edge in Mj for j ∈ Di. Let D denote the set of all possible D’s and
thus |D| =

(
c
d

)m.
We define E ′ ⊆ E as the set of all E’s in E such that GE is a c-leftregular bipartite graph

where GE does not contain a multiedge. The following lemma says that the cardinality of E ′
is not too small compared to the cardinality of E . Here e denotes the base of the natural
logarithm. The proof of the lemma is postponed to the end of this section.

I Lemma 10. For all sufficiently large n, the cardinality of E ′ ⊆ E satisfies

|E ′| ≥ (n!)c

e(
c
2)nc2

.

Given a set S ⊆ L and a set T ⊆ R and a sequence D ∈ D, we count the number of
E ∈ E such that GE,D satisfies NGE,D(S) ⊆ T , which we refer to as the property PS,T .

For j ∈ [c], let aj := |{i ∈ S : j 6∈ Di}|. Define an auxiliary function f as

f((m,n), (`, r), a) = r!(n− (`− a))!
(r − (`− a))!(n−m)! .

This represents the number of left saturated bipartite matchings in the (m + n)-vertex
complete bipartite graph such that the neighbors of some specified l − a left vertices are
contained in some specified r right vertices. Then, the number of E ∈ E such that GE,D
satisfies PS,T is given by

∏
j∈[c]

f((m,n), (|S|, |T |), aj). (2)

We say that the aj ’s are equally distributed if, for every i, j ∈ [c], |ai − aj | ≤ 1. The
following lemma is useful for our calculation.

I Lemma 11. Eq. (2) is maximized when the aj’s are equally distributed.

Proof. Let bj = `− aj , i.e. bj is the number of edges in Mj connecting to a vertex in S in
the graph GE,D. Suppose that ai = aj + α for some i, j ∈ [n] and for some α ≥ 2. In order
to prove the lemma, it is sufficient to show that

g(ai)g(aj) ≤ g(ai − 1)g(aj + 1),
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where g(a) stands for f((m,n), (`, r), a). This is verified by the following.

g(ai − 1)g(aj + 1)− g(ai)g(aj)

=
(

r!
(n−m)!

)2( (n− (bi + 1))!
(r − (bi + 1))!

(n− (bi + α− 1))!
(r − (bi + α− 1))! −

(n− bi)!
(r − bi)!

(n− (bi + α))!
(r − (bi + α))!

)
=

(
r!

(n−m)!

)2( (n− (bi + 1))!
(r − (bi + 1))!

(n− (bi + α))!
(r − (bi + α))!

)(
n− (bi + α− 1)
r − (bi + α− 1) −

n− bi
r − bi

)
=

(
r!

(n−m)!

)2( (n− (bi + 1))!
(r − (bi + 1))!

(n− (bi + α))!
(r − (bi + α))!

)(
(n− r)(α− 1)

(r − (bi + α− 1))(r − bi)

)
≥ 0.

J

We go back to the proof of Theorem 9.
Put d = ( 2

3 + ε)c, and put |S| = dn−c2 e and |T | = b
n
2 c −

c
2 + d. Then, Eq. (2) is equal to∏

i∈[c]

(
bn2 c+ c

6 + cε
)
! ·
(
n− (dn2 e −

c
2 − aj)

)
!(

bn2 c+ c
6 + cε− (dn2 e −

c
2 − aj)

)
! · c!

=
∏
i∈[c]

(
bn2 c+ c

6 + cε
)
! ·
(
bn2 c+ c

2 + aj
)
!( 2

3c+ cε− 1 + aj
)
! · c!

.

By Lemma 11, this is upper bounded by((
bn2 c+ c

6 + cε
)
! ·
(
bn2 c+ c

2 + a
)
!( 2

3c+ cε− 1 + a
)
! · c!

)c
,

where a = ( 1
3 − ε)(d

n
2 e −

c
2 ). By substituting the RHS for a, the inside of the outer bracket

of the above formula is upper bounded by(
dn2 e+ c

6 + cε
)
! ·
( 2

3n−
εn
2 + c

3 + cε
2
)
! · nC0(

n
6 −

εn
2 + c

2 + 3cε
2
)
! · c!

(3)

for some small positive constant C0. Since c and ε are constants, there are large enough
constants C1 and C2, Eq. (3) is upper bounded by(

n
2
)
! ·
( 2

3n−
εn
2
)
! · nC1(

n
6 −

εn
2
)
!

≤
(
n
2
)n

2 ·
( 2

3n−
εn
2
)( 2

3n−
εn
2 )
nC2(

n
6 −

εn
2
)(n6− εn2 )

en

≤
(
n
2
)n

2 ·
( 2

3n
)( 2

3n−
εn
2 )
nC2(

n
6
)(n6− εn2 )

en

= nC2 · n
n

en
·
(

21/3

31/2

)n
·
(

1
2

)εn
. (4)

Here the first inequality is by the Stirling formula, and the second inequality is by Lemma 8.
The number of E ∈ E such that
∃S ⊆ L ∃T ⊆ R ∃D ∈ D GE,D has the property PS,T (5)

is at most

2n−c · 2n · (Eq.(4))c · |D|(
c
d

)bm2 c = 2n−c · 2n · (Eq.(4))c ·
(
c

d

)dm2 e
. (6)

By using the upper bound on the binomial coefficients (see e.g., [9, Lemma 9.2])(
c

αc

)
≤ 2cH(α),
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where H(p) = −p log2(p)− (1− p) log2(1− p) is the binary entropy function, we have(
c

d

)dm2 e
≤ 2H( 1

3−ε)d
m
2 e < 2H( 1

3 )n2 =
(

31/2

21/3

)n
.

Therefore, we have

(Eq. (6)) < 22nnC2c · n
cn

ecn
·
(

1
2

)εcn
. (7)

Recall that E ′ ⊆ E is the set of all E’s in E such that GE is a c-leftregular bipartite
graph where GE does not contain a multiedge. The proof of Theorem 9 will be completed
if we verify that Eq. (7) is smaller than the cardinality of E ′ since it implies the existence
of a c-leftregular bipartite graph GE not satisfying the condition Eq. (5), i.e., GE is a list
expander of the desired parameter.

By Lemma 10, we have

|E ′| ≥ (n!)c

e(
c
2)nc2

≥ ncn

ecn
1
nC3

,

for a sufficiently large constant C3. We can see that when n goes to infinity the last term in
the above is larger than Eq. (7) by recalling that εc ≥ 3. J

Proof of Lemma 10. We use the result on counting the number of Latin rectangles. A c×n
Latin rectangle is a c × n matrix L with symbols from [n] such that each row and each
column contains only distinct symbols. Let Lc,n denote the number of c× n Latin rectangles.
It was shown by Erdős and Kaplansky [5] that, for c = O((logn)3/2−ε),

Lc,n ∼
(n!)c

e(
c
2)
.

It is easy to observe that a c-leftregular bipartite graph with n − c left vertices and n
right vertices can be naturally represented by a c × (n − c) matrix obtained from a c × n
Latin rectangle by discarding the last c columns. Since we shall discard c2 entries with
symbols from [n], the number of variations of such c× (n− c) matrices is at least Lc,n/(nc

2),
completing the proof of the lemma. J

5 Conclusions

In this paper, we introduce a new notion of expander graphs and give the translation result
from the construction of depth two circuits computing the majority function. Currently,
the existence of a MAJn−c ◦MAJn−c circuit computing MAJn is open even for c = 4. We
hope that our translation result leads us to a better understanding on this problem with the
help of a rich theory on expander graphs. In addition, it would be interesting to find other
applications of list expanders.

References
1 Miklós Ajtai, János Komlós, and Endre Szemerédi. Sorting in c logn parallel steps. Com-

binatorica, 3(1):1–19, 1983.
2 Kazuyuki Amano. Bounds on the size of small depth circuits for approximating majority.

In Automata, Languages and Programming, 36th International Colloquium, ICALP 2009,
Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, pages 59–70, 2009.

3 Kazuyuki Amano and Masafumi Yoshida. Depth two (n−2)-majority circuit for n-majority.
to appear in IEICE Trans. Fundamentals, E101-A(9), 2018.



K. Amano 81:13

4 Christian Engels, Mohit Garg, Kazuhisa Makino, and Anup Rao. On expressing majority
as a majority of majorities. Electronic Colloquium on Computational Complexity (ECCC),
24:174, 2017.

5 Paul Erdős and Irving Kaplansky. The asymptotic number of latin rectangles. Amer. J.
Math, 68:230–236, 1946.

6 LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018. URL: http://www.
gurobi.com.

7 Alexander S. Kulikov and Vladimir V. Podolskii. Computing majority by constant depth
majority circuits with low fan-in gates. In 34th Symposium on Theoretical Aspects of
Computer Science, STACS 2017, March 8-11, 2017, Hannover, Germany, pages 49:1–49:14,
2017.

8 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

9 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

10 Ryan O’Donnell and Karl Wimmer. Approximation by DNF: examples and counter-
examples. In Automata, Languages and Programming, 34th International Colloquium, IC-
ALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, pages 195–206, 2007.

11 Gleb Posobin. Computing majority with low-fan-in majority queries. CoRR,
abs/1711.10176, 2017. arXiv:1711.10176.

12 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012.

13 Leslie G. Valiant. Short monotone formulae for the majority function. J. Algorithms,
5(3):363–366, 1984.

MFCS 2018

http://www.gurobi.com
http://www.gurobi.com
http://arxiv.org/abs/1711.10176

	Introduction
	Depth Two Majority Circuits for Majority
	Connection between Circuits and List Expanders
	List Expanders imply Expanders

	Probabilistic Constructions
	Conclusions

