
Deterministically Counting Satisfying Assignments
for Constant-Depth Circuits with Parity Gates,
with Implications for Lower Bounds
Ninad Rajgopal1

Department of Computer Science, University of Oxford, Oxford, United Kingdom
ninad.rajgopal@cs.ox.ac.uk

Rahul Santhanam2

Department of Computer Science, University of Oxford, Oxford, United Kingdom
rahul.santhanam@cs.ox.ac.uk

Srikanth Srinivasan
Department of Mathematics, IIT Bombay, Mumbai, India
srikanth@math.iitb.ac.in

Abstract
We give a deterministic algorithm for counting the number of satisfying assignments of any
AC0[⊕] circuit C of size s and depth d over n variables in time 2n−f(n,s,d), where f(n, s, d) =
n/O(log(s))d−1, whenever s = 2o(n1/d). As a consequence, we get that for each d, there is a
language in ENP that does not have AC0[⊕] circuits of size 2o(n1/(d+1)). This is the first lower
bound in ENP against AC0[⊕] circuits that beats the lower bound of 2Ω(n1/2(d−1)) due to Razborov
and Smolensky for large d. Both our algorithm and our lower bounds extend to AC0[p] circuits
for any prime p.

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography

Keywords and phrases circuit satisfiability, circuit lower bounds, polynomial method, deran-
domization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.78

1 Introduction

In circuit complexity, we are interested in understanding the power and weaknesses of various
circuit models. This understanding can take various forms for any given circuit class C.
One indication of a deeper understanding is to be able to show lower bounds against C,
i.e., prove that some “explicit” function cannot be computed by small circuits in C. Other
indications come from efficient or at least non-trivial solutions for various meta-algorithmic
tasks involving C, such as satisfiability algorithms for C, learning algorithms for C or pseudo-
random generators useful against C. There are some formal connections between lower
bounds and efficient solvability of meta-algorithmic tasks for classes C satisfying some natural
closure properties, for example, an equivalence between pseudo-random generators against C
and average-case lower bounds in linear exponential time against C [18], an implication from

1 This work was supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2014)/ERC Grant Agreement No. 615075.

2 This work was supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2014)/ERC Grant Agreement No. 615075.

© Ninad Rajgopal, Rahul Santhanam, and Srikanth Srinivasan;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 78; pp. 78:1–78:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ninad.rajgopal@cs.ox.ac.uk
mailto:rahul.santhanam@cs.ox.ac.uk
mailto:srikanth@math.iitb.ac.in
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.78
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

78:2 Deterministially counting satisfying assignments for AC0[⊕] circuits

non-trivial satisfiability algorithms for C to lower bounds in non-deterministic exponential
time against C [26], and an implication from non-trivial learning algorithms for C to lower
bounds in probabilistic exponential time against C [20].

For the class of Boolean circuits in general, our understanding is very limited in these
terms. We have no super-linear lower bounds against general Boolean circuits for any explicit
function, nor do we have non-trivial solutions for any of the meta-algorithmic tasks mentioned.
The situation is far better for more restricted classes of circuits, especially circuits of constant
depth where the gates have unbounded fan-in, both with respect to lower bounds and to
meta-algorithmic questions.

In this paper, we focus on constant-depth circuits with AND, OR and PARITY gates (or
more generally, AND, OR and MODp gates for some prime p). This is a class that has been
intensively studied. Razborov [21] and Smolensky [23] showed super-polynomial size lower
bounds against this class for very simple functions such as the MAJORITY function and the
MODq function where q is a prime different from 2. As we discuss in Section 2, non-trivial
randomized algorithms for deciding satisfiability of circuits from this class are implicit in
[27, 16]. Recently, [5] gave quasi-polynomial time algorithms for learning AC0[⊕] circuits in
the membership query model.

However, there are still several gaps in our understanding of these AC0[⊕] circuits. With
regard to lower bounds, we still do not have tight lower bounds for functions like Majority
or MODq. The Razborov-Smolensky approximation method yields size lower bounds of the
form 2Ω(n1/2(d−1)) for Majority against AC0[⊕] circuits of depth d over n variables. The best
known upper bound is 2Õ(n1/(d−1)) using a standard divide-and-conquer strategy. Closing
this quadratic gap in the exponent between upper and lower bounds has been a long-standing
open question in the complexity theory of constant-depth circuits. Note that, in contrast,
tight bounds are known up to constant factors in the exponent when only AND and OR
gates are allowed - Parity is known to have complexity 2Θ(n1/(d−1)) in this simpler model
[1, 9, 29, 11].

With regard to meta-algorithmic tasks, despite the learning breakthrough of [5] mentioned
previously, the situation for pseudo-random generators (PRGs) and satisfiability algorithms
is still unclear. While we have super-polynomial worst-case lower bounds against AC0[⊕]
circuits, we do not have good average-case lower bounds, and as a consequence, do not
have good PRGs. In the case of satisfiability algorithms, randomized algorithms improving
non-trivially over brute force search are implicit in previous work, but good deterministic
algorithms were unknown prior to this work.

Deterministic satisfiability algorithms are important for a couple of reasons. First, they
indicate an improved structural understanding of the circuit class in question, often requiring
new techniques to design. Second, they imply circuit lower bounds via the connection of
Williams [26] - such an implication is not known from randomized algorithms.3

Note that even under standard derandomization assumptions, it is unclear how to get a
non-trivial deterministic satisfiability algorithm from a non-trivial randomized satisfiability
algorithm. The reason is that derandomization inherently incurs a quadratic slowdown.
The deterministic simulation of a randomized algorithm running in time T will take time
at least T 2 when a PRG is used to do the derandomization, as the range of the PRG will
have size at least T . This quadratic slowdown is unaffordable in the parametric regime

3 One-sided error randomized algorithms, and more generally, co-non-deterministic algorithms for satis-
fiability for the circuit class also imply lower bounds via the result of Williams [26]. However, it is easy
to check that the previous randomized algorithms for AC0[⊕] were two-sided error algorithms.

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:3

under consideration here - we are interested in algorithms running in time 2n−g(n) , for some
g(n) = o(n). Hence the determinization procedure cannot be black-box, but must rather use
refined structural information about the circuit class in question.

The main result of this paper is a deterministic algorithm for counting satisfying assign-
ments to AC0[⊕] circuits that improves non-trivially over brute force search.

I Theorem 1 (Main theorem). The following holds for some absolute constant ε0 > 0. There
is a deterministic algorithm that given an AC0[⊕] circuit C over n variables such that C has
depth at most d and size s ≤ 2(ε0n)1/d

, counts the number of satisfying assignments to C in
time 2n−t where t = t(n, s, d) = n/O(log s)d−1.

I Remark. It is easy to generalize our results to work with AC0[Modp] circuits for any fixed
prime p.

In terms of parameters, the savings over brute force search matches the savings in the
randomized algorithm of [14] for AC0 circuits when the circuit size is n1+Ω(1). Thus any
further improvement in savings in our result would give a corresponding improvement for AC0

algorithms, and moreover via the connection of Williams [26] to circuit lower bounds, a strong
improvement would give super-polynomial formula size lower bounds for non-deterministic
exponential time.

A minor caveat is that we require the circuit size to be 2O(n1/d) in Theorem 1, for technical
reasons. One would expect that the analysis can be extended to circuit size up to 2n1/(d−1) .

We use Theorem 1 to get better lower bounds against AC0[⊕] circuits than known before
by using the connection of Williams [26]. In fact, we need a refinement of the connection
due to [4]. Our lower bound holds for a language in ENP. An intriguing open question is to
use the more refined structural information about AC0[⊕] circuits exploited in the proof of
Theorem 1 to prove a similar lower bound for more explicit problems or even for MAJORITY.

I Theorem 2. For any positive integer d, there is a language in ENP which does not have
AC0[⊕] circuits of depth d and size 2o(n1/(d+1)).

2 Proof Outline for the Main Theorem

Our starting point is a randomized algorithm for the problem of checking satisfiability of an
AC0[⊕] circuit C that runs in time 2n−m where m = n/O(log s)d−1, and s, d represent the
size, depth of C respectively (we also assume that s is suitably upper bounded, but we ignore
it in this section). This algorithm is essentially due to Williams [27] and Lokshtanov, Paturi,
Tamaki, Williams and Yu [16], though it does not appear explicitly in either of these papers.

The idea is to use a result of Razborov [21] that essentially says that small AC0[⊕]
circuits C can be “approximated” by polynomials of small degree. More formally, there is
a randomized algorithm that, when given a circuit C of size s over n variables, produces a
(random) polynomial P ∈ F2[x1, . . . , xn] of degree O(log s)d−1 that agrees with the value of
a circuit C on any given input with good probability (say 0.9). Along with a fast polynomial
evaluation algorithm [25], this immediately yields an enumeration algorithm for C (i.e. an
algorithm to output the truth table of C) that runs in time poly(n)2n + poly(s), which beats
(for large enough s) the trivial algorithm that simply evaluates C on each input and hence
takes time s · 2n. Repeating the algorithm poly(n) times and taking the majority vote on
each input, we get an enumeration algorithm that works with high probability.

To obtain a randomized satisfiability algorithm that runs in better-than-brute-force time,
we use the above idea along with the “blowup-trick” [28, 6, 16]. For any a ∈ {0, 1}m, let Ca
be the circuit obtained by setting the last m variables of C to a. Note that the satisfiability

MFCS 2018

78:4 Deterministially counting satisfying assignments for AC0[⊕] circuits

of C can be computed by checking the satisfiability of C ′ =
∨
a∈{0,1}m Ca, and C ′ is a

circuit of larger size (s · 2m) but fewer variables (n − m). We now run the enumeration
algorithm above on C ′ to check if it is satisfiable. Since the circuit is larger, the polynomial
produced has larger degree: a careful analysis reveals the degree to be m · O(log s)d−1.

Setting m = n/Θ(log s)d−1, we obtain a polynomial of degree � n, which can be computed
in better-than-brute-force time. Running the enumeration algorithm as above gives the
required satisfiability algorithm for C, which now runs in time 2n−n/Θ(log s)d−1

.

The above algorithm can further be modified to count satisfying assignments, by instead
defining C ′ =

∑
a Ca (a sum over Z) instead of using an OR. Now, an additional idea

is required since the polynomials Pa approximating each Ca are F2-polynomials whereas
the sum is over the integers (in the satisfiability case above, the OR gate can further be
approximated by a constant-degree polynomial using an idea of Razborov [21], but this idea
is not available here). What comes to our rescue is an idea of Toda [24] and its subsequent
quantitative refinement due to Beigel and Tarui [3] which tells us that we can simulate a sum
(over Z) of K many F2-polynomials of degree at most D as a polynomial (over Z) of degree at
most D logK. Using this idea, we are able to obtain a polynomial of degree m2 ·O(log s)d−1.

Overall, this yields an algorithm with slightly worse running time 2n−
√
n/Θ(log s)d−1

.

A partial derandomization of these algorithms was obtained by Chan and Williams [6] in
the case that the AC0[⊕] circuits are k-CNFs and generalized by Lokshtanov et al. [16] to
the case of ANDs of degree-k polynomials.4 Chan and Williams [6] observed that Razborov’s
random construction of polynomials could be suitably derandomized using ε-biased spaces [17].
Using this idea (and more work), it was shown that the number of satisfying assignments
to a set of degree k-polynomials in n variables could be computed in time 2n−n/Θ(k), which
meets the running time of the satisfiability algorithm mentioned above in this special case.

However, it is unclear how to extend the ideas to the setting of general AC0[⊕] circuits
since these results used a very special property of the randomized polynomial construction
for a single OR gate (and, dually, a single AND gate): namely, that there is a constant-degree
polynomial whose bias perfectly predicts whether the input to an OR-gate is a 1 input or a 0
input.5 Unfortunately, such a strong property is not known for general AC0[⊕] circuits: the
best we can hope for is to construct a polynomial that with high probability, say 1− ε, equals
the output of the circuit on any given input, but then we have to pay for this precision in
terms of the degree of the polynomial constructed. Further, it is not clear how to derandomize
this general inductive construction.

We start by derandomizing the higher-depth random polynomial construction. Once
again, ε-biased spaces play a crucial role, and we need to further use derandomized sampling
using expanders for a near-optimal derandomization. Using this along with the idea of Beigel
and Tarui [3] would yield a deterministic algorithm for counting satisfying assignments in
time 2n−

√
n/Θ(log s)d−1 .

However, we further improve the running time to 2n−n/Θ(log s)d−1 , matching the running
time of the randomized algorithm for checking satisfiability. The principal idea here is to
observe (by looking inside the Razborov construction) that the polynomials Pa computed for
approximating the individual circuits Ca mentioned above have a very special form: each Pa

4 Note that any k-clause is in particular a degree-k polynomial and hence the latter result generalizes the
former.

5 Briefly, the Razborov polynomial for the OR function on input bits x1, . . . , xs is as follows. Choose
a1, . . . , as ∈ F2 independently and uniformly at random and compute `(x) =

∑
i
aixi. Now, note that

if OR(x1, . . . , xs) = 1, then `(x) computes a uniformly random element of F2 and otherwise, `(x) = 0
with probability 1.

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:5

is a majority of ` = O(m) many polynomials Pa,1, . . . ,Pa,` of degree O(log s)d−1 each. We
use this and some basic Fourier analysis of Boolean functions to write Pa as a real-valued
sum of polynomials of degree at most O(log s)d−1; this idea is inspired by a recent result
of Chen and Papakonstantinou [7], who use it to give an improved depth-reduction result
for constant-depth circuits with Modq gates for composite q. The advantage of doing this is
that the degree blow-up in the randomized #SAT algorithm outline above is restricted to
applying the idea of Beigel and Tarui, which means that the degree drops to m ·O(log s)d−1.
Setting m suitably, we now obtain a deterministic algorithm running in time 2n−n/O(log s)d−1

.

3 Preliminaries

We will consider polynomials over the fields R and F2. We identify F2 with {0, 1} in the
natural way. We use

(
n
≤k
)
to denote

∑k
i=0
(
n
i

)
. All algorithms will be implemented in the

standard Turing machine with RAM model.
We recall that any function f : {0, 1}n → R for any commutative ring R has a unique

representation as a multilinear polynomial. Given two such polynomials representing possibly
different functions f1 and f2, we can compute the multilinear polynomial corresponding to
their product by multiplying the polynomials f1 and f2 and “multilinearizing” by replacing
each copy of x2

i by xi. In particular, this idea yields the following easy algorithm.

I Fact 3. Let R be either F2 or Z. There is a deterministic algorithm which, when given
as input multilinear polynomials f1, . . . , ft ∈ R[x1, . . . , xn] (as a sum of monomials) of
degree d1, . . . , dt such that

∑
i di ≤ D, computes the multilinear polynomial corresponding

to the product f = f1 · · · ft. The algorithm runs in time poly(
(
n
≤D
)
) when R = F2 and time

poly(
(
n
≤D
)
, B) where B is the bit-complexity of the coefficients of f1, . . . , ft when R = Z.

3.1 Polynomials over F2 and Probabilistic polynomials
I Definition 4 (Probabilistic Polynomials). We recall [21, 23] that a Probabilistic polynomial
from F2[x1, . . . , xn] is a random multilinear polynomial P (chosen according to some distri-
bution) from F2[x1, . . . , xn]. We say that P has degree at most D if the distribution of P is
supported on polynomials of degree at most D (or equivalently PrP[deg(P) ≤ D] = 1).

We say that P is an ε-error probabilistic polynomial for a function f : {0, 1}n → {0, 1} if
for each a ∈ {0, 1}n, we have PrP[P(a) 6= f(a)] ≤ ε.

3.2 Polynomials over R and Modulus-amplification
We recall the following basic facts about writing Boolean functions as multilinear polynomials
over the the reals. See, e.g. O’Donnell [19] for proofs.

I Fact 5. Let f : {0, 1}` → {0, 1} be any Boolean function.
1. f can written as a unique real-valued linear combination

f(x) =
∑
S⊆[`]

αSχS(x)

where χS(x) =
⊕

i∈S xi (note that we interpret χS(x) ∈ {0, 1} as a real number and the
sum above is taken over R).

2. For each S, αS ∈ [−1, 1] and is moreover an integral multiple of 2−(`+1).

3. There is a deterministic algorithm C which, given as input f (via its truth table), computes
all the above αS’s in time 2O(`).

MFCS 2018

78:6 Deterministially counting satisfying assignments for AC0[⊕] circuits

We also define the Fourier l1 norm of f as ‖f‖1 =
∑
S |αS |.

The following is a useful Modulus-amplification lemma due to Beigel and Tarui [3]. This
particular version is from the work of Chan and Williams [6].

I Lemma 6 (Beigel-Tarui [3]). For every positive integer t, the degree 2t − 1 polynomial
Ft(y) ∈ Z[y] defined by

Ft(y) = 1− (1− y)t
t−1∑
j=0

(
t+ j − 1

j

)
yj

has the property that for all b ∈ Z,
if b ≡ 0 (mod 2), then Ft(b) ≡ 0 (mod 2t), and
if b ≡ 1 (mod 2), then Ft(b) ≡ 1 (mod 2t).

Many satisfiability algorithms for circuits are based on evaluating multivariate polynomials
efficiently over grids. The following lemma can be found in, e.g., [25].

I Lemma 7 (Fast Polynomial Evaluation). There is a deterministic algorithm FPE, which
given as input a multilinear polynomial P ∈ Z[x1, . . . , xn] as a sum of monomials, computes
the values (P (a))a∈{0,1}n in time poly(n,B) · 2n where B is an upper bound on the bit
complexity of the coefficients of P .

3.3 Small-biased sets
We need the notion of ε-biased sets [17, 2], which are a standard tool in the derandomization
literature.

I Definition 8 (ε-biased sets [17]). For ε ∈
(
0, 1

2
)
, a set S ⊆ {0, 1}n of n-dimensional vectors

is ε-biased if for all non-zero v ∈ {0, 1}n,

Pr
w∈S
{〈v, w〉 = 0 (mod 2)} ∈

(
1
2 − ε,

1
2 + ε

)
There are many explicit constructions for ε-biased sets. We use the following construction:

I Theorem 9 ([2]). There is a deterministic algorithm that, given as input n and ε ∈ (0, 1/2),
produces an ε-biased set S ⊆ {0, 1}n of size O(n2/ε2). The algorithm runs in time poly(n/ε).

For any subspace W of {0, 1}n, define the indicator function 1W : {0, 1}n → {0, 1} as
1W (z) = 1 if and only if the vector z ∈W . From an Observation in O’Donnell’s book [19],
we see that

I Observation 10 (Proposition 3.11 of [19]). Let W be a subspace of {0, 1}n and W⊥ be its
orthogonal complement such that dim(W⊥) = k. Then, the constant term in the Fourier
expansion of the indicator function 1W is 1

2k . Moreover, ‖1W ‖1 = 1.

Essentially, the proof for Observation 10 is based on the fact that a vector z ∈W if and only
if the dot product of z with every basis vector of W⊥ is 0.

De, Etesami, Trevisan and Tulsiani [8] observed that ε-biased spaces also fool functions
with small Fourier l1-norm.

I Lemma 11 (Lemma 2.5 of [8]). Let S be an ε-biased set. For every function f : {0, 1}n → R
we have,∣∣∣∣ E

y∈S
[f(y)]− E

x∼Un

[f(x)]
∣∣∣∣ ≤ ε‖f‖1

where y is picked uniformly at random from S and Un is the uniform distribution over {0, 1}n.

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:7

From Observation 10 and Lemma 11, we state the following useful corollary.

I Corollary 12. Let W be a subspace of {0, 1}n, such that the co-dimension of W is k and
let S be an ε-biased set. Then

Pr
x∈S
{x ∈W} ∈

(
1
2k − ε,

1
2k + ε

)
where x is picked uniformly at random from S.

Intuitively speaking, Corollary 12 states that an ε-biased set also “fools” conjunctions of
parities.

3.4 Expanders
Proofs of the following well-known facts may be found in the monograph of Hoory, Linial
and Wigderson [13].

Given an undirected ∆-regular multigraph G, we denote by A(G) its adjacency matrix
and Ã(G) = (1/∆)A(G) its normalized adjacency matrix. Then, we have the following.

The all-1s vector v ∈ Rn is an eigenvector of Ã(G) with eigenvalue 1.
G is connected if and only if v is the only such eigenvector (up to scalar multiplication).

I Definition 13 (Expanders [13]). An undirected multigraph G is an (N,∆, λ) expander if it
is a ∆-regular connected graph on N vertices (which we will identify with [N]), and all the
eigenvalues (counted with multiplicity) of Ã(G) other than 1 are bounded by λ in absolute
value.

Let (Gn)n≥1 be a sequence of expander graphs with Gn being an (f(n),∆, λ)-expander
for some increasing function f : N → N and constants ∆ and λ. We say that (Gn)n≥1 is
explicit if there is a deterministic algorithm that, when given as input n, produces the graph
Gn in time poly(n, f(n)).

We use Reingold, Vadhan and Wigderson’s [22] explicit construction for an expander
graph.

I Theorem 14 ([22]). For every fixed λ > 0 there exists a constant ∆ > 0 and an explicit
sequence of expander graphs (Gn)n≥1, where Gn is a (2n,∆, λ) expander graph, for some
large enough constant ∆. Further, we can assume that ∆ is a power of 2.

We will need the following expander-based Chernoff bound due to Gillman [10]. The
version below is due to Healy [12].

I Theorem 15 ([10, 12]). Let G be an (N,D, λ)-graph and let S ⊆ [N] be a subset of the
vertices of G such that |S| = βN. Consider the natural `-step random walk on G defined by
choosing a uniformly random vertex u1 ∈ [N] and repeatedly choosing random neighbours
`− 1 times to obtain a (random) sequence (u1, . . . , u`) of vertices of G. Let XS denote the
number of i ∈ [`] such that ui ∈ S. For any fixed ρ ∈ (0, 1), we have

Pr
u1,...,u`

[|XS − β`| ≥ ρ`] ≤ 2 exp
(
−1

4ρ
2(1− λ)`

)
.

4 The #SAT algorithm

In this section we prove Theorem 1. We start with a deterministic algorithmic version of a
lemma of Razborov [21] regarding approximating AC0[⊕] circuits by low-degree polynomials.
Using this version, we then state formally the #SAT algorithm and analyze it.

MFCS 2018

78:8 Deterministially counting satisfying assignments for AC0[⊕] circuits

4.1 Derandomized construction of probabilistic polynomials for AC0[⊕]
The following lemma is an algorithmic version of a result of Razborov [21] (see also Kopparty-
Srinivasan [15] for the dependence on ε). It can be viewed as a derandomization of a
randomized algorithm due to Williams [27].

I Lemma 16. For any ε > 0, an AC0[⊕] circuit C over n variables of depth d and
size at most s has an ε-error probabilistic polynomial P from F2[x1, . . . , xn] of degree at
most D = (O(log s)d−1 · log(1/ε)). Moreover P = Maj(P1, . . . ,P`), where P1, . . . ,P` are
probabilistic polynomials of degree D1 = O(log s)d−1 and ` = O(log(1/ε)).

Moreover, there is a deterministic procedure S, which when given as input the circuit C,
the parameter ε, and a uniformly random Boolean string σ of length r = O(log(s/ε)), produces
a random sample of the polynomials P1, . . . ,P` as sums of monomials. The procedure S
runs in time poly

(
`, s,

(
n
≤D1

))
.

Before we go into the proof of Lemma 16, we prove a weaker version that will be useful
in the proof of Lemma 16. This result is a higher-depth analogue of a result of Chan and
Williams [6] which itself may be viewed as a derandomization of the construction of Razborov
[21] for depth-1 circuits.

I Lemma 17. For every AC0[⊕] circuit C over n variables of depth d and size s, there exists
a probabilistic polynomial P′ with error at most 1

4 with degree at most D1 = O(log s)d−1.
Further, there is a deterministic algorithm S1 that produces a random sample of P′ as a sum
of monomials given as input s, C and O(log s) random bits. The algorithm S1 runs in time
poly

(
s,
(
n
≤D1

))
.

Proof. Let C be the circuit input to the sampling algorithm. Let m = s log(40s), ε = 1/(20s)
and S ⊆ {0, 1}m be an ε-biased set of size poly(s) given by Theorem 9. Fix an input
a ∈ {0, 1}n.

Fix some enumeration g1, . . . , gs of all the gates of C. Let h ∈ {g1, . . . , gs} be the output
gate of C and let C1, . . . , Cr (r ≤ s) be the depth-(d− 1) sub-circuits of C feeding into h.
First we construct a probabilistic polynomial of degree O(log s) for each gate g 6= h in the
circuit, following which we construct a constant degree probabilistic polynomial for the gate
h. Composing these polynomials together gives the probabilistic polynomial for the circuit
C of degree O(log s)d−1.

Fix any gate g 6= h in C. If g is a NOT gate or a ⊕ gate, we can easily get a polynomial
Pg of degree 1 which always agrees with the function computed by g and needs no random
bits. Therefore, let g be an OR gate in C (a dual construction works for AND gates).
Let gi1 , . . . , gik be the gates that are inputs to g and vg ∈ {0, 1}s such that vg[i] = 1 iff
i ∈ {i1, . . . , ik} and gi = 1 (on the fixed input a). Observe that g outputs 1 iff vg is not the
zero vector.

Let t = log(40s). Construct the vectors u1, . . . , ut ∈ {0, 1}m, such that for each up,
1 ≤ p ≤ t, we divide up into t blocks, such that the pth block contains vg and all the other
bits of up are set to 0. The dimension of the vector space V ⊆ Fm2 spanned by {u1, . . . , ut}
is equal to t if vg is a non-zero vector. Let y ∈ S be picked uniformly at random from
S. We split y into t blocks y1, . . . ,yt of size s each. W.l.o.g. consider the vector u1. The
inner product 〈u1,y〉 which is exactly equal to the inner product 〈vg,y1〉, can be calculated
by hardwiring into a MOD2 gate all the input gates of g for which the corresponding bit
in y equals 1. In other words, the inner product 〈u1,y〉 is represented by the polynomial
q1 =

∑
j∈{i1,...,ik} gj · (y1)j in the inputs gi1 , . . . , gik . Repeating this construction for all t

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:9

vectors u1, . . . , ut, we get polynomials qy1 , . . . , q
y
t . Finally, we compute the disjunction of

these t terms using the polynomial Pyg = 1−
∏t
p=1(1− qyp), which is of degree t = O (log s)

in the input variables of g.
We now analyze the behaviour of Pyg on a fixed input to the gate g. If the gate g outputs

0, then for any y ∈ S, we get 〈up, y〉 = 0 for every 1 ≤ p ≤ t. In particular, Pyg outputs 0
with probability 1. On the other hand, if g outputs 1, we see that Pyg errs on this input iff
for each 1 ≤ p ≤ t, qyp = 0. Let V⊥ be the orthogonal complement to V = span({u1, . . . , ut}).
Note that the codimension of the vector space V⊥ is t. We now use Corollary 12 to see that,
if g outputs 1, a uniformly random element y from S belongs to V⊥, or in other words, yields
〈up,y〉 = 0 for every 1 ≤ p ≤ t, with probability at most 1

2t + ε. Thus, Pyg disagrees with
the output of g on any fixed input with probability at most 1

2t + ε = 1
40s + 1

20s = 3
40s .

We pick a single y uniformly at random from S and then use it (for each OR and
AND gate) to get the probabilistic polynomial Pyg for each gate g 6= h in C. For each
j ∈ [r], composing the polynomials representing the gates in Cj , we obtain a probabilistic
polynomial Qj of degree at most O(log s)d−1. Following this, we use the first t1 = 3 blocks
of y in a similar fashion to get a probabilistic polynomial Ph of degree O(1) for the function
computed by the output gate h with error at most 1

2t1 + ε. Now, for any input a ∈ {0, 1}n,
P′ = Ph(Q1, . . . ,Qr) satisfies

Pr
P′

[C(a) 6= P′(a)] ≤ Pr
Q1,...,Qr

[∃j ∈ [r] : Cj(a) 6= Qj(a)]

+ Pr
Ph

[h(C1(a), . . . , Cr(a)) 6= Ph(C1(a), . . . , Cr(a))]

≤ s · 3
40s + 1

2t1 + ε

≤ 3
40 + 1

8 + 1
20s ≤

1
4

where the second inequality uses a union bound over the (at most s) gates g in C.
This gives us a probabilistic polynomial P′ of degree O(log s)d−1 for the circuit C, with

error at most 1
4 and we need O(log |S|) = O(log s) random bits to get this sample. This

polynomial is multilinear and by expanding the monomials at each step we can ensure
multilinearity of the intermediate polynomials. Using Fact 3 we see that the running time of
the sampling algorithm is given by poly

(
s,
(
n
≤D1

))
. J

Proof of Lemma 16. Let k = O(log s) be the number of random bits needed by the algorithm
S1 from Lemma 17. Consider an explicit (2k,∆, λ) expander graph G on V = {0, 1}k given
by Theorem 14, where ∆ is a large enough constant given by the construction and λ = 1

2 .
The graph G can be constructed in time poly(2k) = poly(s).

Let ` = 200 log
(2
ε

)
. We define the algorithm S to be the following deterministic procedure

which takes as input the circuit C, the parameter ε and a random string σ of length
r = k + (` − 1) · log ∆ and produces a random sample of the probabilistic polynomials
P1, . . . ,P`, where each of the Pi is an instantation of the probabilistic polynomial constructed
in Lemma 17.

1. Perform a length ` random walk inG using the bits of σ to obtain u1, . . . ,u` ∈ V = {0, 1}k.
I.e. first choose u1 uniformly at random from V and for each i ∈ {2, . . . , `}, let ui be a
random neighbour of ui−1 in the graph G.

2. For each 1 ≤ i ≤ `, use ui as the input string of random bits to algorithm S1 from Lemma
17 to obtain a random sample Pi of the 1/4-error probabilistic polynomial P′ for C.

MFCS 2018

78:10 Deterministially counting satisfying assignments for AC0[⊕] circuits

The number of random bits used by S to obtain a random sample of P1, . . . ,P` is
r = O(k + `) = O(log s + log

(1
ε

)
) = O (log(s/ε)). At each step of the random walk we

spend poly
(
s,
(
n
≤D1

))
time to get a sample and thus, the overall running time of S is

poly
(
`, s,

(
n
≤D1

))
.

Now, define the probabilistic polynomial P = Maj(P1, . . . ,P`). Since, the majority of `
bits is a polynomial of degree at most `, the degree of P is O(log s)d−1 · log(1/ε).

To show that P is a probabilistic polynomial with error ε for the circuit C, fix an input
a ∈ {0, 1}n. For any u ∈ V , let Pu be the polynomial sampled by the algorithm S1 when
given u as input. Let B be the set of vertices u ∈ V such that Pu(a) 6= C(a). Note that as
S1 samples a 1/4-error probabilistic polynomial for C, we must have |B| ≤ |V |/4. Now, we
have P(a) 6= C(a) iff a majority of the vertices on the random walk sampled by S belong to
B. Using Theorem 15 we show that this event happens with a probability at most ε.

Let XB be the random variable which denotes the number of i ∈ [`] such that i ∈ B.
Using Theorem 15 with the settings β = |B|

|V | ≤
1
4 , λ = 1

2 , ρ = 1
4 and ` = 200 log(2/ε), we see

that

Pr
u1,...,u`

{∣∣XB − `/4
∣∣ > `/4

}
≤ 2 exp

(
−1

4ρ
2(1− λ) · 200 log

(
2
ε

))
< 2 · 2− log(2

ε) < ε J

4.2 The algorithm and its analysis
We begin by describing the #SAT algorithm A.

Algorithm A.

The algorithm A has the following desired input-output behaviour.
Input: An AC0[⊕] circuit C over n variables of size at most s and depth at most d. Recall

that s ≤ 2(ε0n)1/d for some absolute constant ε0 > 0 (to be chosen below). We assume
s ≥ n.

Desired Output: The number of satisfying assignments of C.

Notation. Let m = γn/(log s)d−1 for a suitable absolute constant γ > 0 that will be fixed
below. Let ε = 1/210m. For s and ε as defined above, choose r = O(log(s/ε)) suitably so
that the sampling algorithm S from Lemma 16 works as stated.

For each σ ∈ {0, 1}r, let (Pσ1 , . . . , P σ`) be the output of the algorithm S on string σ (note
that the probabilistic polynomials (P1, . . . ,P`) from Lemma 16 are exactly the polynomials
(Pσ1 , . . . , Pσ`) for a uniformly random σ and hence P = Maj(Pσ1 , . . . , Pσ`)).

For fixed σ ∈ {0, 1}r and c ∈ {0, 1}m, let Pσ,ci ∈ F2[x1, . . . , xn−m] be defined by Pσ,ci =
Pσi (x1, . . . , xn−m, c1, . . . , cm) (i.e. the last m variables of Pσi are fixed to bits of c). Let
Pσ,c = Maj(Pσ,c1 , . . . , P σ,c`).

For S ⊆ [`], let Pσ,cS =
⊕

i∈S P
σ,c
i . Let Qσ,cS be the polynomial with integer coefficients

obtained by treating the F2-coefficients of Pσ,cS as integers. Note that for each b ∈ {0, 1}n−m,
Pσ,cS (b) ≡ Qσ,cS (b) (mod 2).

1. Using the algorithm C from Fact 5, compute6 integers kS ∈ {2−(`+1), . . . , 2(`+1)} for each
S ⊆ [`] such that Maj(z1, . . . , z`) = 1

2`+1

∑
S⊆[`] kS

⊕
i∈S zi.

6 There is actually an explicit description of the integers kS (see, e.g., O’Donnell [19]) using which each kS

can each be computed in time poly(`) as opposed to the 2O(`) time taken by the algorithm C. However,
the algorithm we give here doesn’t need this and works for any Boolean function in place of Maj.

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:11

2. For each c ∈ {0, 1}m, σ ∈ {0, 1}r and S ⊆ [`], construct (as a sum of monomials) the
polynomial Qσ,cS (x1, . . . , xn−m) using the algorithm S from Lemma 16.

3. Construct as a sum of monomials (Fact 3) the multilinear polynomial R ∈ Z[x1, . . . , xn−m]
defined by

R(x1, . . . , xn−m) =
∑

c∈{0,1}m

∑
σ∈{0,1}r

∑
S⊆[`]

kS · Ft(Qσ,cS (x1, . . . , xn−m))

where Ft is the modulus amplifying polynomial given by Lemma 6 and t = A log(s/ε) for
a large absolute constant A > 0 chosen below.

4. Evaluate R(b) for each b ∈ {0, 1}n−m using the algorithm FPE from Lemma 7.
5. Let Rt(b) = R(b) (mod 2t) ∈ {0, . . . , 2t − 1}. Output

∑
b∈{0,1}n−m [Rt(b)/2`+1+r] where

[x] denotes the integer closest to x (if x is a half-integer, [x] is defined arbitrarily).

Theorem 1 follows directly from Lemmas 18 and 19 below.

I Lemma 18 (Running time). For any constant A > 0, there exist constants γ > 0 and
ε0 > 0 such that the algorithm A, on an input circuit C of depth at most d and size at most
s ≤ 2(ε0n)1/d , has running time poly(s) · 2n/10 + poly(n) · 2n−m.

Proof. We analyse the running time of A by looking at the running times for each of its
individual steps. From Fact 5, we see that Step 1 of the algorithm takes 2O(`) running
time. Since ` = O(log(1/ε)) = O(m) = O(n/(log s)d−1) = o(n), this step takes at most
2o(n) < 2n/10 time to run.

For Step 2, we see that the running time is 2`+m+r · poly
(
`, s,

(
n
≤D1

))
, as we construct

2`+m+r many polynomials using the algorithm S, each of which takes poly(`, s,
(
n
≤D1

)
) time to

construct, as seen in Lemma 16. For the parameters we pick, we see that 2`+m+r = 2o(n) and(
n
≤D1

)
≤ nD1 = nO(log s)d−1 = 2O(n(d−1)/d logn). Thus, Step 2 takes at most 2n/10 · poly(n, s)

time.
Step 3 takes time 2`+m+r · poly

(
`,
(

n
≤2tD1

))
, as the modulus amplifying polynomial Ft

blows the degree of the polynomial up by a factor of (2t− 1) and the number of monomials in
the multilinear expansion of the polynomial R(x1, . . . , xn−m) is poly

(
`,
(

n
≤2tD1

))
. To upper

bound this running time, let c′ > 0 be a constant such that the degree parameter D1 from
Lemma 16 is at most c′ · (log s)d−1. Then the degree of the polynomial R is at most

2tD1 ≤ 2t · c′(log s)d−1

= 2A log(s/ε) · c′(log s)d−1

= 2Ac′(log s)d + 20Amc′(log s)d−1

= 2Ac′(log s)d + 20Aγc′n

where we have used log(1/ε) = 10m and m = γn/(log s)d−1.

Fix the constants ε0 =
(1

400Ac′
)
and γ = 1

4000Ac′ . This ensures that the 2tD1 ≤ 0.01n.

From this we see that,
(

n
≤2tD1

)
is at most

(
ne

2tD1

)2tD1
≤
(

ne
0.01n

)0.01n
< 20.09n and we see

that step 3 takes at most 2n/10 time.
Note that each kS computed in Step 1 is an (`+1)-bit integer and hence, the bit complexity

of the coefficients of R is at most O(`+m+ r) ≤ n. From Lemma 7, we see that Step 4 takes
2n−m poly(n) time and Step 5 runs in the same time trivially. Thus, the algorithm A takes
a total of poly(n, s) · 2n/10 + poly(n) · (2n−m) to run. J

MFCS 2018

78:12 Deterministially counting satisfying assignments for AC0[⊕] circuits

I Lemma 19 (Correctness). Assume that A > 0 is chosen large enough so that t > m+ r +
`+ 10. Then the algorithm A above outputs the number of satisfying assignments of C.

Proof. We need to show that the algorithm A computes correctly the number of satisfying
assignments of C. To this end, define the function C ′ on n−m input bits by

C ′(x1, . . . , xn−m) =
∑

c∈{0,1}m

C(x1, . . . , xn−m, c1, . . . , cm)

where the sum is over Z. It suffices to show that, for every b ∈ {0, 1}n−m, [Rt(b)/2`+1+r] is
a correct estimate of C ′(b) since this implies that the number of satisfying assignments of C,
which is equal to

∑
b∈{0,1}n−m C ′(b), is computed correctly.

From the definition of Rt(b), we see that for any b ∈ {0, 1}n−m

Rt(b) = R(b) (mod 2t)

=

 ∑
c∈{0,1}m

∑
σ∈{0,1}r

∑
S⊆[`]

kS · Ft(Qσ,cS (b))

 (mod 2t)

=

 ∑
c∈{0,1}m

∑
σ∈{0,1}r

∑
S⊆[`]

kS ·
(
Ft(Qσ,cS (b)) (mod 2t)

) (mod 2t)

For every σ ∈ {0, 1}r, c ∈ {0, 1}m, S ⊆ [`] and b ∈ {0, 1}n−m, we use the property of the
modulus amplifying polynomial Ft from Lemma 6, to observe that Ft(Qσ,cS (b)) (mod 2t) =
Pσ,cS (b) = ⊕i∈SPσ,ci (b). This observation, along with Step 1 of the algorithm A implies that
the sum

∑
S⊆[`] kS · (Ft(Q

σ,c
S (b)) (mod 2t)) is the same as 2`+1Maj(Pσ,c1 (b), . . . , P σ,c` (b)) =

2`+1Pσ,c(b). In other words,

Rt(b) =

2`+1
∑

c∈{0,1}m

∑
σ∈{0,1}r

Pσ,c(b)

 (mod 2t) = 2`+1
∑

c∈{0,1}m

∑
σ∈{0,1}r

Pσ,c(b)

where the last equality follows from the fact that t > m+ `+ r + 10.
Now, for every b ∈ {0, 1}n−m and c ∈ {0, 1}m, we have∑
σ∈{0,1}r

Pσ,c(b)
{
≥ 2r(1− ε) if C(b, c) = 1
≤ 2rε if C(b, c) = 0

where ε = 2−10m. Since C ′(b) =
∑
c∈{0,1}m C(b, c), we now have that for every b ∈ {0, 1}n−m,

Rt(b) ≥ 2`+1 · 2r(1− ε)C ′(b), and
Rt(b) ≤ 2`+1 · (2r(1− ε)C ′(b) + ε(2m − C ′(b)) · 2r)

≤ 2`+1 · (2r(1− ε)C ′(b) + ε2m · 2r) .

In particular, since ε = 2−10m, for every b ∈ {0, 1}n−m, we see that the estimate returned by
the algorithm, which is [Rt(b)/2`+1+r], is equal to C ′(b). J

4.3 A Consequence for Lower Bounds
Our #SAT algorithm can be used to obtain improved lower bounds against AC0[⊕] circuits
(and more generally, against AC0[p] circuits for prime p), using Williams’ connection between
algorithms and lower bounds. These lower bounds are, however, not very explicit - they hold
for a language in ENP.

We first remind the reader of the best explicit lower bounds that are known against
AC0[⊕] circuits.

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:13

I Theorem 20. [21, 23] For each positive integer d, there is a language computable in
polynomial time that requires depth-d AC0[⊕] circuits of size 2Ω(n1/2(d−1)).

In fact, there is a fixed explicit language in polynomial time, namely Majority, for which
the lower bounds of Theorem 20 hold for all d.

In terms of parameters, the bound in Theorem 20 is weaker than the best known bound
for AC0 circuits as a function of d. Parity is known to require depth-d circuits of size
2Ω(n1/(d−1)). The exponent in the bound of Theorem 20 is quadratically smaller. It has been
a longstanding open problem to improve the bound in Theorem 20 to match the known
bounds for constant-depth circuits without prime modulus circuits. Using the algorithmic
method of Williams and its refinements, we are able to use our #SAT algorithm to make
progress on this problem.

The following lemma can be shown using the proof technique of Theorem 1.5 in [4].

I Lemma 21. [26, 4] Let s be a size function and d a positive integer such that satisfiability
can be solved deterministically in time 2n/nω(1) on AC0[⊕]-circuits of size O(s(n)) and depth
at most d on n variables. Then there is a language in ENP which does not have AC0[⊕]
circuits of depth d− 1 and size o(s(n)).

We now apply the lemma to get better lower bounds than Theorem 20 in terms of size
against AC0[⊕] circuits when the depth is at least 3. A similar lower bound against AC0[p]
circuits can be shown for prime p using the analogue of Theorem 1 for AC0[p] circuits. The
following result is simply a re-statement of Theorem 2.

I Theorem 22. For any positive integer d, there is a language in ENP which does not have
AC0[⊕] circuits of depth d and size 2o(n1/(d+1)).

Proof. Pick ε < ε0, where ε0 is the constant in Theorem 1. By Theorem 1, for any size
s ≤ 2(εn)1/(d+1) , there is a deterministic algorithm solving satisfiability of AC0[⊕] circuits of
size at most s and depth at most d+ 1 in time 2n/nω(1). Now using Lemma 21, we have that
there is a language in ENP which does not have AC0[⊕] circuits of depth d and size o(s(n)),
which establishes our claim. J

References

1 Miklos Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–

48, 1983.
2 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of

almost k-wise independent random variables. Random Struct. Algorithms, 3(3):289–304,
1992.

3 Richard Beigel and Jun Tarui. On ACC. Computational Complexity, 4:350–366, 1994.
4 Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In Automata,

Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part I, pages 163–173, 2014.

5 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In 31st Conference on Computational Complexity,
CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 10:1–10:24, 2016.

6 Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. In Proceedings of the Twenty-Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 1246–1255, 2016.

MFCS 2018

78:14 Deterministially counting satisfying assignments for AC0[⊕] circuits

7 Shiteng Chen and Periklis A. Papakonstantinou. Depth-reduction for composites. In
Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 99–108. IEEE Computer Society, 2016. URL: http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=7781469, doi:10.1109/FOCS.2016.20.

8 Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudorandom
generators for depth 2 circuits. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 504–517. Springer, 2010.

9 Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

10 David Gillman. A Chernoff bound for random walks on expander graphs. SIAM Journal
on Computing, 27(4):1203–1220, 1998.

11 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Symposium on
Theory of Computing (STOC), pages 6–20, 1986.

12 Alexander D Healy. Randomness-efficient sampling within NC. Computational Complexity,
17(1):3–37, 2008.

13 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their ap-
plications. Bull. Amer. Math. Soc. (N.S.), 43(4):439–561, 2006. doi:10.1090/
S0273-0979-06-01126-8.

14 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 961–972, 2012.

15 Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for AC0[⊕] circuits,
with applications. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, In-
dia, pages 36–47, 2012.

16 Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams, and Huacheng
Yu. Beating brute force for systems of polynomial equations over finite fields. In Philip N.
Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2190–
2202. SIAM, 2017. doi:10.1137/1.9781611974782.143.

17 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993.

18 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

19 Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.
20 Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, cir-

cuit lower bounds, and pseudorandomness. In 32nd Computational Complexity Conference,
CCC 2017, July 6-9, 2017, Riga, Latvia, pages 18:1–18:49, 2017.

21 Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987.

22 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders and extractors. Annals of Mathematics,
155(1):157–187, 2002.

23 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of com-
puting, pages 77–82. ACM, 1987.

24 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.,
20(5):865–877, 1991. doi:10.1137/0220053.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7781469
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7781469
http://dx.doi.org/10.1109/FOCS.2016.20
http://dx.doi.org/10.1090/S0273-0979-06-01126-8
http://dx.doi.org/10.1090/S0273-0979-06-01126-8
http://dx.doi.org/10.1137/1.9781611974782.143
http://dx.doi.org/10.1137/0220053

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:15

25 Ryan Williams. Guest column: a casual tour around a circuit complexity bound. SIGACT
News, 42(3):54–76, 2011. doi:10.1145/2034575.2034591.

26 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
J. Comput., 42(3):1218–1244, 2013.

27 Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 194–202, 2014.

28 Ryan Williams. Nonuniform ACC circuit lower bounds. Journal of the ACM (JACM),
61(1):2, 2014.

29 Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In Symposium on Foundations of Computer Science (FOCS), pages 1–10, 1985.

MFCS 2018

http://dx.doi.org/10.1145/2034575.2034591

	Introduction
	Proof Outline for the Main Theorem
	Preliminaries
	Polynomials over {F}_2 and Probabilistic polynomials
	Polynomials over R and Modulus-amplification
	Small-biased sets
	Expanders

	The #SAT algorithm
	Derandomized construction of probabilistic polynomials for AC^0[oplus]
	The algorithm and its analysis
	A Consequence for Lower Bounds

